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Absolute instability in a plasma-filled backward wave oscillator with sinusoidally corrugated
slow wave structure driven by an intense relativistic electron beam has been analyzed
numerically. The maximum spatial growth rate of the plasma-filled waveguide is found to be
larger than that of an optimally designed vacuum structure. The excitation of a finite length
structure is investigated. Although the spatial growth rates obtained in the linear theory
increase with plasma density in the finite length plasma-filled structure for the fundamental
TMoI mode of oscillation, negative global spatial growth rates prevent the coherent oscillation
for intermediate ranges of plasma density, beam current, and even for structure length.
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scope of linear treatment, we have here developed and ana­
lyzed numerically the absolute instability in the plasma­
filled BWO's. We first consider an infinitely long plasma­
filled corrugated waveguide, and next proceed to finite
length case which is somewhat more complicated than the
former case. Analyses are made within the general
frameworks of absolute instability established in the text­
book of Briggs 18 for the case of infinitely long structure, and
in that ofLifshitz and Pitaevskii 19 for finite length case. Even
in the case of infinitely long structure, we assume a localized
source l8.19 of signals as the original perturbation. It is
known that the absolute instability with this type of pertur­
bation grows up with the particular values of complex wave
number k s and complex angular frequency {Us at a saddle
point (pinch point) ofa dispersion relation in which an arbi­
trary set of k and {U can be conceived in general. To find the
saddle points, we must solve the dispersion relation ass'um­
ing k and {U both complex. 18 On the other hand, if one as­
sumes an infinitely extending sinusoidal origin of perturba­
tion in space, then an arbitrary real wave number k can be
assumed in the analysis ofthe absolute instability. We do not
consider, however, such a case in our analysis. This paper
presents what we believe to be the first pinch point analysis
of the dispersion relation of a plasma-filled BWO. It will be
shown that, according to our pinch point analysis, increased
spatial growth rates in the plasma BWO's13.14 can be expect­
ed for both infinitely long and finite length structures. Of
course, in general, nonlinear analyses are required to predict
enhanced radiation intensities.

The organization of this paper is as follows. In Sec. II,
we formulate the linear theory of an infinitely long plasma­
filled BWO. The spatial and temporal growth rates of abso­
lute instabilities for a waveguide with large corrugation
depth 13.14 are calculated numerically over a wide range of
plasma densities. The effects of the reflection of waves as­
suming a special case of mode changes at both ends ofa finite
length slow wave structure are analyzed in Sec. III. Finally,
discussion and conclusions of this work are given in Sec. IV.

0699·6221/92/041023-10$04.00Phys. Fluids B 4 (4). April 1992

In recent years, extensive efforts have been devoted to
finding microwave sources I at frequency ranges and power
levels beyond the capabilities of the existing ones. In the last
decade, developments in gyrotrons and free-electron lasers
have made it possible to produce short wavelength radiation
at modest power levels. In addition to the innovation ofsuch
wholly novel classes of microwave sources, researchers are
also working to improve the performances of more familiar
devices such as magnetrons and backward wave oscillators
(BWO's) driven by intense relativistic electron beams
(IREB's).

BWO's have a long history as efficient generators of mi­
crowave power. During the past two decades, impressive
results have been obtained both experimentally and theoreti­
cally with these devices. 2

-
14 The use ofIREB's as the source

of energy for the microwaves has resulted in a tremendous
increase in the output power from BWO's. The multiwave
Cerenkov generator'5 and relativistic diffraction gener­
ator, 16 which have a close relationship to BWO's, attained
output power levels greater than I GW at frequencies of tens
of GHz with high efficiencies. Previously, improvements in
efficiency were observed when BWO's were operated in the
presence of background gases. 3

•
4.13 An eightfold enhance­

ment in output power was achieved by the injection of plas­
ma into a BWO from an external plasma gun. 14 Lin and
Chen

l
? reported numerical simulations of the experiment, 14

alt?ough they assumed an artificial periodic boundary con­
ditIOn in the axial direction which did not correspond to the
experiment. They reported that a parametric beam-plasma
wave interaction could not be the dominant mechanism for
the efficiency enhancement and that the enhancement could
be attributed to a decrease in the phase velocity of the most
unstable beam mode in the presence of a background
plasma.

In order to understand the elementary physics on what
was happening in the plasma-filled BWO'S13·14 within the
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II. ENHANCED SPATIAL GROWTH RATES IN AN
INFINITELY LONG PLASMA-FILLED BWO

A. Formulation of the problem

We consider first an infinitely long axisymmetric cylin­
drical waveguide, in which inner wall radius varies, accord­
ing to R(z) = Ro + h cos(koZ), i.e., a slow wave structure.
Here ko = 21T/Zo and Ro, h, and Zo are, respectively, the mean
waveguide radius, the amplitude ofcorrugation, and the axi­
al length of periodicity in corrugation. The waveguide is
filled completely with a uniform, cold, collisionless, and neu­
tralized plasma of density Np • A monoenergetic relativistic
electron beam of radius R b < Ro - h, and density N b uni­
form over the cross section, is moving along the axis of the
waveguide with a velocity v relative to the resting back­
ground plasma. Assuming that the entire system is im­
mersed in an infinitely strong axial guiding magnetic field,
the dispersion relation, D(k,w) = 0, of this beam-plasma
system for TMos modes with field components Ez' Er, and
Be has been derived previously.2o.21 Here, D is the value of
the determinant of a square matrix with elements

kokn h
Qn = (W2/C2) -k~ a=/i;'
o=Rb/Ro , k n =k+nko·

A similar expression for C ~n holds, with Joreplaced by No in
C:" n given by Eg. (2).

The beam in the structure provides the energy source to
drive unstable interaction. In such an active system, the spa­
tial growth rate may be a more practical measure of the
strength of instability than the temporal growth rate for a
localized perturbation source as was pointed by Briggs in
Ref. 18 (p. II).

B. Numerical solutions to the dispersion relation

In general, there exist an infinite number of roots for
high frequencies in our dispersion relation. We confine our
analysis to the case of the low-frequency fundamental TMo,
mode with w> W p' As was expected from previous
works,9.IO,20 four independent periodic roots ofTMo, mode
with a periodicity of real wave number ko are found in our
dispersion relation, D(k,w) = 0, in which a complex
k = kr + ik, is obtained for a given complex W = Wr + iw,.

As will be discussed later in detail, the four roots are, respec_
tively, slow and fast beam space charge waves, forward and
backward structure waves. When we depict the locations of
the roots of the dispersion relation in complex k plane, we
must judge ourselves whether each root corresponds to
growing or decaying (stable) wave. This subtle situation
arises from the fact that the principal sheet of Riemann SUr­
face of multivalued functions, for example, ± (X~) 112, or
± (Y~) 112, included in the functional equation

D(k,w) = 0, is automatically chosen in the process of com-
puter calculation without any physical consideration. So,
the physical interpretation that the particular root corre­
sponds to growing or damping wave is inevitable. For that
purpose, weH-known Briggs-Bers criterion 18 is applied. In
order to accomplish their criterion in practice, the path of
integration in the inverse Laplace transformation in the
complex W plane is deformed downward to the real axis and
observe the behaviors of the corresponding roots in the com­
plex k plane. Physical meaning of this deformation corre­
sponds to the change from the initial value problem (large
positive Wi) to the steady-state problem (w, = 0). Accord­
ing to their criterion, if k crosses the real k axis during this
process, then the wave is growing, i.e., convectively unstable,
otherwise, it is decaying or stable. On the other hand, if the
deformation of the path of integration on the W plane toward
the real axis is prevented by merging on the complex k plane
(saddle point) of two movin'g roots coming from the upper
and lower half-planes at some positive Wi' then the instability
is absolute which corresponds to a BWO. The asymptotic
time response of the absolute instability for a localized
source of perturbation arises mainly from the contribution
near this saddle point and not from the other parts of the
integral along the real W axis. 18 In general, wand k at the
saddle point are both complex I8

•'9 (ks = k rs + ik,,,
Ws = Wrs + iwis ), and the absolute instability in an infinitely
long structure grows up asymptoticaHy with temporal and
spatial factor t - 1/2 exp [i(ksz - wsn], as is shown in Eq.
(2.22) in Ref. 18 or equivalently in Eg. (62.12) in Ref. 19.

In the numerical analysis presented here, the following
parameters are adopted unless specified otherwise; the rela­
tivistic factor r = 2.23, R b = 0.9 cm, Ro = 1.445 em,
h = 0.445 cm, Zo = 1.67 cm, and N b = 2.09 X 10" cm - 3

which corresponds to the beam current I b = 2.3 kA. IJ
· '4

The background plasma density Np is considered to be a
variable. For the assumed parameters, we must calculate the
dispersion equation, D(k,w) = 0, which is here truncated to
9 X 9 determinant composed of each term up to the order of
a 10 in Eq. (2), to obtain the numerical accuracy in periodic­
ity within 1% for two periods of real wave number
ko = 3.7624 cm - I .20

The method of numerical computation devised by one of
the authors (T.W.) (Ref. 22) is as foHows: Since the Taylor
expansion of D( k,w) = 0 around the root gives an equation
of a circle, the solution of k for a given complex w can be
found at the center of the contour circles of ID I in the com­
plex k plane. An example ofthe contour mapping devised for
the present purpose is shown in Fig. I, where Np = 2X 1O'~
cm -3, N b = 5.15X 10 10 cm -3, and WI21T = (14.6)
+ i 0.04) GHz. The size of the white heart-shaped part
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FIG. I. Contour mapping of absolute value of D for Np = 2 X 10" cm - 3,

N, = 5.15X 10'0 cm- 3
, and w!21T = (14.65 + iO.04) GHz.

~IG. 2. Loci of the roots of the dispersion equation on the complex k plane.
p ~ 2X 10" cm - 3 and I. = 2.3 kA. The solid and dashed lines corre­

s~nd, respectively, to constant real and imaginary frequencies. Only the
so Jd lines, which cross the Re(k) axis as w, decreases toward zero, corre­
spond to the growing roots. The diamond indicates the saddle point and the
0:;en circles indicate k for real frequencies (w, = 0). The thick solid line
trough the saddle point with constant real frequency,w,,/21T, is the separa­
tox who h
in IC separates the growing roots from those corresponding to decay-
a g waves. See the text for thick arrows, solid and open circles denoted by

+ • a _ • a'_ I a'~ , b + , and b

.§ Ot----~=E=--------+-___1

- 1 '---__-'--__u--__--'-_-'----'----'

FIG. 3. Roots of the dispersion relation for real frequency on the complex k
plane are shown by solid curves; (a) Np = 0; (b) Np = 1.5X 10" cm-·1 ;

(c) Np = I.7X 10" cm 3. In all cases N. = 2.09X 10" cm - 3 (l. = 2.3
kA). The diamonds in Ell regions indicate the saddle points which corre­
spond to the absolute instability in an infinitely long plasma-filled slow
wave structure.

- 1 c----'-----':'-----'---'---'----'o

roots of the dispersion relation, when W j is changed gradual­
ly. An example of the variation of the loci of the roots in the
complex k plane is shown in Fig. 2. Thin solid and dashed
lines are, respectively, the constant (iJ r /21T and Wj21T lines.
Arrows on the solid lines show the decreasing direction of
w;'s toward Wi = 0 which are marked by open circles. The
roots which cross the real k axis for some Wi > 0 correspond
to the spatially growing waves. The diamond in the figure
indicates the saddle point which corresponds to the absolute
instability in the infinitely long plasma BWO. The thick sol­
id line passing through the saddle point with constant real
frequency, WrJ21T, separates the growing roots from decay­
ing roots near the saddle point, and the thick solid line is
called here the separatrix. The definition of the separatrix is
as follows. The roots of our dispersion relation are divided
into two classes: The first is the waves carrying energy in
positive z direction (positive group velocity), and the second
is those carrying energy in negative z direction (negative
group velocity). The first and the second classes are located,
respectively, above and below the separatrix. This situation
comes from the inverse Fourier transformation in the com­
plex k plane. In the first (second) class, integration along an
infinitely large semicircle must be executed to close the
Fourier contour in the upper-half (lower-half) k plane

~
.§ OH--------+---=--+-=-i

40

Re(k)
3.0-1. 0

.':i 00
E

.....

10

0.5

-0.5

shown by IB (an iceberg floating on the sea) located around
(t} = k n v near the real k axis increases with N b • In IB, ID I is
extremely large of the order of 1030 or more. In other parts in
Fig. I, the values of ID Iare much smaller than those in lB. IB
is comparatively immobile and the observed four roots move
around it quickly, when W j is decreased toward zero from a
large positive value keeping W r constant. The roots corre­
sponding to decaying and growing waves are denoted, re­
spectively, by E and G, which are judged from the Briggs­
Bers criterion. These four roots appear in the complex k
plane with a period of real wave number ko, as is expected
from Floquet theorem.

Taking the roots in Fig. I as a key to the initial data for
our analysis, a Newton iteration method22 for complex W

and k is devised to find successive changes in the loci of the

~
.§ 0.0
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FIG. 5. Spatial growth rate (solid curve) and temporal growth rale (dashed
curve) divided by 21T at the saddle point of a vacuum (Np = 0) slow wave
structure versus axial length of periodicity, zoo Other parameters are the
same as those in Fig. 4. The solid circles on the curves denote the grow1h

rates corresponding to Zo = 1.67 em, the experimental value. See the text for
the double open circle Q.
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FIG. 4. Numerical solution to the dispersion relation of a plasma-loaded
infinitely long slow wave structure: (a) Spatial growth rate (solid curve),
k;" and the real part (dashed curve), k n , at the saddle point versus plasma
density Np • (b) Temporal growth rate divided by 21T (solid curve), W;,/21T,
and the oscillation frequency (dashed curve), W n l21T, at the saddle point,
and plasma frequency (dot-dashed curve), W p l21T versus plasma density
Np • See the text for the double open circle P.

where the roots k are originally located for large positive W;.

The roots marked by a + ' a _ ,a'_ ,a"__ , b + ,and b _ will be
discussed later in Secs. III and IV.

In Fig. 3, the loci of the roots k of the dispersion relation
in the complex k plane for real wl2rr (depicted on the
curves) in the vicinity of beam-structure resonance are
shown. Figures 3(a), 3(b), and 3(c) are, respectively, for
Np = 0, 1.5 X 1012 cm -- 3, and 1.7 X 1012 cm - 3. The curves
in the figures are periodic in the horizontal axis with period­
icity of ko, and they are symmetric regarding the real k axis.
The regions where one finds the complex k roots of the dis­
persion equation for a given complex w with W; > 0 and
W; < 0 are marked, respectively, by ffi and e. The absolute
instability can exist only when the saddle point is located in
ffi regions. The figures depict that the background plasma

strongly deforms the curves near the real k axis, and pushes
them to the right with increase in Np • The saddle points in
the lower half of the complex k plane are marked by the
diamonds. In the cases ofvacuurn or low Np , the saddle point
lies in the region of W; > 0 and k; <0 as shown in Figs. 3(a)
and 3(b). The instability is, therefore, absolute. The instabil­
ity, however, becomes convective as W;s of the saddle point
switches sign, when Np is exceedingly large. This case ofNp

= 1.7 X 1012 cm - 3 is shown in Fig. 3(c) which corresponds
to a plasma traveling wave tube (TWT). Here, the saddle
point obtained mathematically has no meaning in physical
point of view. The convective instability in this case cannot
cause any coherent radiation unless an external positive
feedback mechanism is devised.

The spatial growth rate, k;s> and the real part, k,s' at the
saddle point versus the plasma density, Np , are plotted in
Fig. 4(a), respectively, by solid and dashed lines. As is
shown in Fig. 4(a), both k;s and k" increase with N p . The
temporal growth rate divided by 2rr, w;sl2rr, and the oscilla­
tion frequency, w,J2rr, at the saddle point versus N p are also
shown, respectively, by solid and dashed lines in Fig. 4(b).
The temporal growth rate of the absolute instability, W;s>
decreases with Np , and switches sign at Np = 1.67 X 10 12

cm -- 3 . The instability becomes convective above that value
of Np , and the system will work as a plasma TWT, because
the wave is still growing spatially. The double open circle
shown by P will be discussed later, when a vacuum BWO is
analyzed in Fig. 5.

Next, we look for an optimal system parameter for in­
creasing the spatial growth rate of a vacuum BWO
(Np = 0). For an infinitely long waveguide, the spatial
growth rate at the saddle point is found to increase with the
increase in the axial length of periodicity in corrugation, Zo0

For higher values in zo, however, the absolute instability of
TMol mode is suppressed and only the convective instability
remains. The numerical solution ofspatial growth rate at the
saddle point in the case of vacuum BWO is shown in Fig. 5
for a wide range ofZo0 Other parameters are the same as those
in the plasma BWO shown in Fig. 4. The solid circles on the
curves indicate the growth rates corresponding to Zo = 1.67
em, the experimental value. 13

.
14 It must be noted that the

maximum spatial growth rate shown by the double open
circle Q in Fig. 5 of an optimally designed vacuum BWO is
considerably smaller than that shown by the double open
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FIG. 6. Schematic drawing of the pair of roots that explain the oscillation
and stopping of oscillation in a plasma BWO in (I) low. (2) intermediate.
and (3) high plasma densities. respectively. The pair of roots marked by
solid and open circles correspond, respectively, to the oscillation and the
stopping of oscillation in the plasma BWO.

€=k_ -k+ = -(21TN/L)-i[ln(R)/LJ, (3)

where R = IR ,R 2 1 and N = 0, ± I. ± 2•.... The arbitrary in­
teger N comes from the fact that an infinite number of sheets
ofthe Riemann surface exist for the complex logarithm func­
tion. In(z) = Inlzl + i[arg(z) + 21TN], namely. ex­
p(i21TN) = 1. There is a possibility that the structure with
length L constitutes a cavity resonator. if IN Iand R are com­
paratively large. For example. if R = I and Re(k +)
= - Re(k _ ), IN I becomes the number of half-waves set

on the resonator length L. However, we do not consider such
acaseofapairofk+ andk_ with Re(k+ ) = - Re(k_ )
in the present analysis. To facilitate the interpretation ofEq.
(3), it may be convenient to imagine Bohr's quantizing con­
dition of atomic states, because they are somewhat analo­
gous in the sense that they require a single valued physical
quantity for a given spatial point z and a given time t. Equa­
tion (3)must be satisfied for having coherent oscillation
from a finite L structure in the quasi-steady-state assump­
tion limit. Unless Eq. (3) is satisfied. oscillation then stays at
incoherent, noisy, and low level, no matter how each propa­
gating wave has positive temporal growth rate. In this paper,
we define this case as the stopping of oscillation.

The oscillation in a finite length slow wave structure no
longer occurs at 6Js and k s ofthe saddle point, but at 6J and
k + near the saddle point and are given by Eq. (3) along
with the following two equations:

D(k+. 6J) =0. (4)

D(k+ +€, 6J) =0. (5)

On separating the real and the imaginary parts of € in
Eq. (3), we have

Re(€) =Re(k_) -Re(k+) = -21TN/L. (6)

Im(€) = Im(k_ ) - Im(k+ ) = -In(R)/L>O. (7)

where 0 <R < I has been assumed. Equation (7) holds only
if IIm(k + ) I> IIm(k _ ) I, because both k + and k _ lie in
the lower-half k plane, as was shown in Fig. 2. To satisfy Eq.
(7). therefore. the global spatial growth rate, defined by
Ilm(k + ) I - Ilm(k _ ) I. must be positive. In other words.
the spatial growth rate. Ilm(k + ) I, which lies above the se­
paratrix, must surpass the spatial damping rate. 11m (k _ ) I,

III
HIGH Np

-----Re(k)

k_~k+

k-O-:~+
T V

.: OSC

0: STOP

121
INTERMEDIATE

Np

~+
k_q

T U -

--N~-l

...... N = 1

--SEPARATRIX

111
LOW Np

-----Relk) -----Re(k)

k+O ..~k_
k~-·-··O

S U k_

III. EXCITATION OF A FINITE LENGTH PLASMA-FILLED
BWO

So far. we have ignored the end effects of the slow wave
structure with finite length L. The analysis of the dispersion
relation. D(k.6J) = 0, presented in Sec. II under the assump­
tion L infinity may be extended to the case of finite L struc­
tures. provided that L is considerably larger than the average
waveguide radius. R o. The analysis is made in the general
framework of the global instability of finite length system
shown in the textbook of Lifshitz and Pitaevskii. 19 In other
words, we have considered a quasi-steady-state case. where
the temporal growth of a wave is considerably smaller than
its spatial growth. For systems that are limited in the axial
direction, the oscillation is affected by the reflection from
both ends. The oscillation in this case should be considered
simultaneously as the superposition of an infinite number of
waves given by D(k.6J) = O. i.e., periodic four roots all hav­
ing identical complex frequency. as is shown in an example
in Fig. 1. We have found that, for a given complex 6J with
large positive 6J/s. three of the four roots (the two beam
space charge waves and the forward structure wave) of our
D(k,6J) = 0 are located above the separatrix in the complex
k plane and having positive group velocities, while a single
root (the backward structure wave) is found below the se­
paratrix, where the group velocity is in negative direction. as
was explained in the previous section. It is noted here that
only one (k; <0) of the two beam space charge waves with
positive group velocities is the source of oscillation that is
spatially growing among the four roots, all the rest three
roots are either decaying or stable in nature. For a sufficient­
ly long waveguide, we may be able to assume that the spatial­
ly growing beam space charge wave. k + ' is only the propa­
gating wave in the positive z direction, provided
IIm(k + )L I~ 1. It should be noted that the wave k + car­
ries the Poynting flux in negative z direction. After reflection
from the right end z = L, the counterwave. k _ , which prop­
agates in the negative z direction toward z = 0, can create a
positive feedback in the structure. Because there is only one
root. the backward structure wave. k _ , that propagates in
the negative z direction, the oscillation in a finite length sys­
tem will be determined by k + and k _ . As is shown in Fig. 6.
k+ (growing wave) and k_ (decaying wave) locate. re­
spectively. above and below the separatrix.

The finite length of the waveguide imposes a new con­
straint to the choice ofa pair of roots. k + and k _ . Namely.
in the limit of the quasi-steady-state assumption, the condi­
tion of coherency that an electromagnetic field at any given
point z must be unique imposes the choice of a pair of the
roots k + and k _ proposed by the following relation
given in Eq. (65.4) of Ref. 19: R 1 R 2

Xexp{i[ k + (6J) - k_ (6J) ]L} = I. where R I and R 2 are,
respectively, the reflection coefficients at z = 0 and z = L.
This is rewritten as follows:

circle P of the plasma BWO in Fig. 4( a); this fact suggests
that the plasma BWO (Refs. 13 and 14) may be more advan- ­
tageous than an optimally designed vacuum BWO. The
physical explanation of this result obtained in the present
analysis is left to be tried in the future.
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FIG. 7. Growth rates ofa finite length plasma·filled corrugated waveguide
with L = 16.7 em, R = 0.1, and I b = 2.3 kA versus the plasma density N

p
•

The solid and dashed lines correspond, respectively, toN = - 1and N = I.
The dot-dashed lines show the growth rates for L infinity. Regions (1) and
(3) denoted by OSC (thick solid curves) and those (2), (4), and (5) de·
noted by STOP correspond, respectively, to the oscillation and stopping
oscillation as functions of the plasma density Np •

by the solid circles for N = 1 in the high Np case (3) are
found to cause again coherent oscillation since they satisfy
Eqs. (6) and (7). The above discussion reveals that the out­
put radiation from a plasma BWO may stop for an interme­
diate range of plasma densities.

The growth rates in L = 16.7 cm long plasma-filled cor­
rugated waveguide are shown in Fig. 7. The beam current
and the reflection coefficient, R, were held constant at 2.3
kA and 0.1, respectively. The solid and dashed lines are,
respectively, for N = - I and N = I. The thicker parts of
the curves correspond to coherent oscillation. In the figure,
the oscillation in the region (1), due to the S type of pair of
roots in Fig. 6, stops in the region (2) where the S type of
pair of roots changed into T type ofpair ofroots in Fig. 6. On
the other hand, the oscillation in region (3), due to the V
type ofpair of roots in Fig. 6, stops in region (2), where the V
type of pair of roots changes into U type of pair of roots in
Fig. 6. The interception of the oscillation in the regions (2)
and (4) are due to the failure in satisfying the condition of
positive global spatial growth rate. This novel phenomenon
for stopping oscillation in the regions (2) and (4) is caused
when the separatrix, shown by thick solid line in Fig. 6, be­
comes a horizonal curve for such Np's. In region (5) in Fig.
7, the oscillation is found to stop because of negative (I),. The
growth rates of L infinite structure are also shown by dot-
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which lies below the separatrix. The roots k + and k _ ob­
tained from Eqs. (3), (4), and (5), therefore, must satisfy
the following two conditions simultaneously in order to have
coherent oscillation in a finite length structure: (I) positive
temporal growth rate, i.e., W; > 0; (2) positive global spatial
growth rate, i.e., 11m (k + ) I - 11m (k _ ) I> O. Thus the fact
that the reflection coefficient is 0 < R < I imposes an addi­
tional restriction for having oscillation. We believe that the
following example will give an exact picture of this fact.
Equations (3 )-( 5) are solved simultaneously for the case
N p = 2 X 10" cm - 3 and I b = 2.3 kA which are the same as
those in Fig. 2, for two different sets ofLand R. The pair of
roots k, obtained from Eqs. (3 )-( 5) for L = 16.7 cm,
R = 0.1, and N = - I, are marked by solid circles and are
denoted by a + and a _ in Fig. 2. In this case, the root a +

above the separatrix is located deeper than the root a _ be­
low the separatrix, i.e., Ilm(k + ) I> Ilm(k _ ) I, thus the
pair of the roots satisfy Eqs. (6) and (7). Moreover, the
condition W; > 0 is met as shown by the position of a + . The
waveguide with these parameters, therefore, will oscillate. In
the case of L = 28 cm, R = 0.02, and N = 1, however, the
corresponding pair of the roots are marked by open circles
and are denoted by b + and b _ in Fig. 2. The root b + above
the separatrix is located shallower than the root b _ below
the separatrix. This fact results in 11m (k + ) I< 11m (k _ ) I.
Equation (7), therefore, cannot be satisfied and the struc­
ture will no longer oscillate for these parameters, even
though the real parts of these roots satisfy Eq. (6) and
w, > 0, as shown by the position ofb + . It must be noted here
that the present analysis is restricted to the case of N = ± I
only, simply because the solutions are easily found. We can­
not find oscillation condition for N = 0, because, in this case,
Re(k + ) = Re(k _ ) in Eq. (6), thus k + cannot locate be­
low k _ , as is inspected in Fig. 2. However, there may exist
possibilities of oscillation for IN I> 1.

We have found that the operation of the plasma-filled
BWO can be divided into three major cases depending on the
filled plasma density, namely, the low, intermediate, and
high Np regions. These are shown schematically in Fig. 6. In
vacuum or low Np case (I), the separatrix is a curve extend­
ing from left bottom to right top. For high Np case (3), the
separatrix is from left top to right bottom; and in intermedi­
ate values of Np in case (2), the separatrix is a horizontal
curve. For given values ofLand R, the pairs of k + and k _
satisfying mathematically Eqs. (3)-(5) are connected to
each other by solid lines (N = - I) and dashed lines
(N = I), respectively, in Fig. 6. In ( I) low Np case, the pair
of roots for N = - I, shown by the solid circles and defined
here as the S type of pair, are only found to cause coherent
oscillation, as is expected from Eqs. (6) and (7). However,
with the increase in Np , the separatrix gets horizontal and
the S type of pair of roots for N = - 1changes to T type of
pair as shown for (2) intermediate Np case in Fig. 6. Both
pairsofrootsforN= -1 (Ttype)andN= I (Utype) are
found not to satisfy the conditions for coherent oscillation
required by Eqs. (6) and (7) for such Np's. Further increase
in Np , however, is found to change the U type ofpair of roots
in the intermediate N p into V type of pair of roots for N = I
in the case (3) of high Np • The V type of pair of roots shown
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FIG. 8. Hatched oscillation regions in the parameter plane of the beam cur­
rent, Ib , versus plasma density, N p . The reflection coefficient R = 0.1. The
solid and dashed lines correspond, respectively, to waveguides of length
L = 16.7 and 25.05 cm. The thin dot-dashed curve indicates the maximum
plasma density above which the oscillation in an infinitely long waveguide is
quenched, because lUi. < O. See the text for solid triangles representing the
starting current obtained from three-wave interaction.
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present paper, we assumed a solid beam, and R = 0 must be
- avoided in our formulation, because Eg. (7) becomes infin­

ity. Nevertheless, we have found that our starting currents
for Np = 0 are not contradictory to the results by Swegle '2

and by others. 23 Details will be published elsewhere. The
main difference is as follows; they sometimes chose IN I> I,
whereas we have chosen N = ± I in the present paper.

In Fig. 9, the oscillation regions are hatched in a param­
eter plane of the reflection coefficient, R, versus the wave­
guide length L. The beam current is I b = 2.3 kA. The solid
and dashed lines correspond to the plasma density
N

p
= 2 X 10" and 1.5 X 1012 cm - 3, respectively. The thin­

ner parts of the curves are due tow; = O. The thicker parts of
the curves, on the other hand, come from a negative global
spatial growth rate. The starting length for oscillation (thin­
ner curves) increases roughly as the reflection coefficient, R,
decreases. We observed that the starting length ofwaveguide
filled with plasma for which N = - I (case of Np = 2 X 10"
cm - 3 ) is less than that ofa vacuum waveguide. The starting
length at N/s for which N = I (case of Np = 1.5 X 1012

cm - 3) is, however, higher than that of the vacuum case.
Over a certain range of the reflection coefficient, R, the
waveguide is again found to stop oscillation within an inter­
mediate range of waveguide lengths. The points marked by
A and B in this figure correspond, respectively, to the cases
for which the roots k obtained from Egs. (3 )-( 5) are shown
in Fig. 2 by the notations a + and b + .

Finally, Fig. 10 shows the oscillation region by hatching
in a parameter plane of reflection coefficient, R, versus the
plasma density, Np , computed under the assumption that I b

dashed lines for comparison. The temporal growth rates for
a finite length structure are less than that for L infinite
case,12 as shown in Fig. 7. An opposite situation has oc­
curred, however, for the spatial growth rates.

The oscillation regions are shown by oblilque hatchings
in Fig. 8, in a parameter plane of plasma density, Np , versus
the beam current, I b , fortwo cases ofstructure length L. The
solid and dashed lines correspond to the cases of L = 16.7
and 25.05 cm, respectively. The reflection coefficient R is
assumed to be 0.1 and other parameters are the same as those
in the previous section. The thinner curves appear from the
condition Wi <0, while the thicker curves are due to a nega­
tive global spatial growth rate. The figure shows that the
quenching of the oscillation can occur for an intermediate
range of plasma densities. Oscillation happens in two cases,
for N = - I in low Np region and N = 1 in high Np region,
as was shown in Fig. 6. The figure also shows that the beam
current necessary for the excitation of the plasma BWO, Le.,
the starting current, decreases with Np • The increase in
waveguide length is also found to decrease the starting cur­
rent. The dot-dashed line in Fig. 8 gives a measure of the
critical plasma density, determined from the condition W is

== 0, above which the oscillation of TMo1 mode in an infi­
nitely long waveguide will stop.

Swegle analyzed the starting currents for the oscillation
from a vacuum BWO with finite structure length. 12 He cal­
culated the starting current from the condition that Wi = 0
assuming R = 0 in our notation and an annular beam. In the

E
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FIG. 9. Hatched oscillation regions in the parameter plane of waveguide
length, L, versus reflection coefficient. R, solid and dashed curves are, reo
spectively, for N

p
= 2 X 10" and 1.5 X 10" cm -'; Ib = 2.3 kA. See the text

for the points A, B, and the thickest solid curve I.
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FIG. 10. Hatched oscillation region in the parameter plane of plasma den­
sity. Np • and reflection coefficient. R. I. = 2.3 kA and L = 16.7 em.

= 2.3 kA and L = 16.7 cm. The temporal growth rate, Wi'

becomes negative when the waveguide is overdriven with
plasma above the density determined by the thinner curve, in
which case the system becomes plasma TWT. The thicker
part of the curve arises from the failure in satisfying the con­
dition of positive global spatial growth rate. Here again, an
intermediate range of plasma densities is found to stop oscil­
lation for R <0.98.

mined completely by the nonlinear saturation mechanisms
of the system. For a device which is too short to allow the
signal to grow up according solely to spatial growth rate, the
temporal growth rate at early stage ofdevelopment could be
quite important in determining the output radiation level.
Under different circumstances, the spatial growth rate may
playa greater role in the development of instability than the
temporal growth rate. The saturation levels and efficiencies
of plasma-filled BWO's are beyond the scope of the present
linear analysis. The enhanced radiation observed in the ex­
periments13

,14 may be related to the linear spatial growth
rate which is an increasing function of Np , rather than the
temporal growth rate, a decreasing function of Np , if the
linear process in our analysis was the dominant mechanism
for oscillation.

The instability in a finite length plasma-filled slow wave
structure has also been analyzed with quasi-steady-state as­
sumption. The four independent periodic roots of funda­
mental TMOJ mode shown in Fig. I are again depicted sche­
matically for a real frequency fo in Fig. 11 (a). For the given
oscillation frequency,/o, in Fig. 11 (a), E (a _ in Fig. 2) and
E' (a'_ in Fig. 2) represent, respectively, the backward and
the forward structure waves, and G (a + and a"_ in Fig. 2)
represents the two beam space charge waves. In Sec. III, we
considered a special case of two-wave interaction process
between a + and a __ , i.e., a mode conversion between the
closest modes with N = ± 1in Eq. (3). In other words, case
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IV. DISCUSSION AND CONCLUSIONS

FIG. II. Explanatory drawing for possible choices of mode conversion due
to end reflections: (a) Schematic view of the roots on the dispersion curve;
(i) two-wave interaction. (ii) three-wave interaction. (b) A possible model
for three-wave interaction.
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A linear theory for the small signal gain of a plasma­
filled backward wave oscillator, driven by an intense relativ­
istic electron beam guided by an infinitely strong axial mag­
netic field, has been presented assuming a localized source of
perturbation. For such a source, the existence of the saddle
point with Wi' > 0 determines the instability of the infinitely
long system. As is well-known, the location of the saddle
point can be found by solving the simultaneous equations
D(k,w) = 0 and aD(k,w )/ak = O. Instead of solving these
equations, we have devised a convenient numerical tech­
nique in the present work to find the locations of the saddle
point with sufficient accuracies as much as we want. It is to
calculate the finite length waveguide case with exceedingly
large L. For L infinity, Eq. (3) yields k+ = k_, which is
nothing but the saddle point. This fact would help us to de­
termine the continuous change in the position of the saddle
point over a wide range of plasma density. The results in
Figs. 4 and 5 are obtained from Eqs. (3 )-( 5) with an exceed­
ingly large value of L (8500 cm) and R = 0.999 by using the
Newton iteration method.22

The linear analysis predicts a considerable increase both
in the spatial growth rate and in the oscillation frequency
with increase in Np • In general, the relative merits of the
spatial and temporal growth rates as a measure of the
strength of the instability at linear stage depend on the wave­
guide length as well as on other experimental conditions. In
general, both of the linear growth rates have nothing to do
with the radiation output. For example, if the structure
length and the time of the development of the instability are
both sufficiently large, the output radiation will be deter-

W/21T (a)

WAVENUMBER
ko
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(i) shown in Fig. II (a) was considered to analyze the coher- _
ent oscillations in a finite length system. This was done on
the assumption that the effect of a'_ and a'~ was negligibly
small. This will be cleared, if we have a look at the positions
of a + , a _ , a'_ , and a"_ in Fig. 2. All these four roots have
an identical complex frequency w/2rr = (9.075 + i 0.1553)
GHz. Positive and negative directions of group velocity are
denoted by thick arrows at each root. No doubt, the damping
rate of a'~ is the highest regardless to the values of the beam
current and can easily be ignored, because it has nothing to
do with the resulting oscillation, if IIm(k + )L I~ 1. Near
the starting current condition for oscillation, however, the
damping of a'_ decreases, because it approaches to real k
axis «(V, = 0) in Fig. 2. Accordingly, the effect of a'_ may
not be negligible for small beam currents. The validity of the
two-wave interaction process for starting current condition
is here checked by analyzing a three-wave (a + , a _ , and
a'_ ) interaction process, i.e., case (ii) in Fig. II (a). The
mode conversion in the three-wave interaction process is
shown schematically in Fig. 11 (b). We assume that a _ and
a + are related to each other by the reflection coefficients R I

and R 2 , respectively, at z = 0 and z = L. Similarly, a _ and
a'_ are assumed to be related to each other by the reflection
coefficients S, and S2' respectively, at z = 0 and z = L. The
angular frequency wand the wave numbers a + ' a _ , and
a'_ corresponding to the oscillation of the finite length sys­
tem can be determined by solving the following equations
simultaneously;

D(a+, w) =0,

D(a+ +E, w) =0,

D(a+ +E-T/, w) =0,

R exp( - iEL) + S exp( - iT/L) = I,

where E=a_ -a+, T/=a_ -a'_, R=IR,R 2 1, and
S= IS,S21. Assuming R =S=O.I and L= 16.7 em, we
have solved the above equations for various plasma densities
to determine the starting beam current for oscillation and
the results are shown by the solid triangles in Fig. 8. In this
case, the results of the three-wave interaction are not practi­
cally different from those of two-wave interaction. The effect
ofthree-wave interaction on the minimum waveguide length
necessary to start oscillation has also been checked for
Np = 2 X 10" em - 3 with I b = 2.3 kA assuming R /S = 1.
The result is shown in Fig. 9 by the thickest solid line I. These
results show that the term containing S in the last relation of
the above equations will be a minor correction, unless S is
considerably larger than R. The two-wave interaction pro­
cess is sufficient in many cases to investigate the oscillation
condition of the plasma BWO systems.

In Fig. 8, we obtained the results that oscillation stops
for large beam currents, although the system can oscillate for
small currents above the starting current. Evidently, the rea­
SOn for stopping oscillation in high currents here is due to
negative global spatial growth rates. This result is somewhat
novel and a simple physical explanation cannot be made at
this stage of analysis. Here, we just quote a different case of
stopping oscillation in a case of exceedingly high-beam cur­
rents in vacuum BWO's; for such a current, a large splitting

in branches between the fast and slow beam space charge
waves in the dispersion relation happens 9

.
lo In this Raman

regime, the absolute instability can cease to exist, and the
oscillation of the fundamental TMo, mode may stop resul­
tantly. This example just suggests that stopping of the oscil­
lation for high currents is not very strange physically. The
simple and intuitive physical explanation ofstopping oscilla­
tion for intermediate values of plasma densities, Np , in Fig. 8
may be as follows. In L infinite case, the beam-structure
wave interaction is known to be the strongest in the case ofrr­
mode or 2rr-mode oscillation in terms of normalized wave
number. These cases correspond, respectively, to the real
wave numbers kol2 and ko in our notation. In these cases, the
group velocities of the backward structure wave, lUg I, are
minimal. These operations have been called EIO's24 (ex­
tended interaction oscillators). The interaction gets strong,
when the group velocity of the backward structure wave is

small, because of long time of interaction with the beam
within the finite length structure. For Np = 0 (N = - I) in
Fig. 8, our BWO works near rr-mode, as was shown in Fig. 4
in Ref. 20. In the case of I b = 0, the dispersion curve in real
frequency versus real wave number plane goes upward with
increase in Np , although the undulation of the dispersion
curve also decreases. On the other hand, the beam line re­
mains unchanged. The group velocity lUg I of the backward
structure wave at the crossing point with the beam line in
that figure may increase accordingly. The the beam-wave
interaction may decrease somewhere between rr- and 2rr­
mode operations. Oscillations are still possible, if L or R is
sufficiently large, as were shown in Figs. 9 and 10. For small
Lor R, however, the system may no longer maintain coher­
ent oscillation, resulting in the intermission ofBWO, as was
shown in Fig. 8. For a large Np (N = I), the BWO may
recover again, because the interaction approaches 2rr-mode.
In the case of nonzero I b also, similar situation to the case of
I b = 0 may happen. Increase in the group velocity is esti­
mated as follows. The intermission of the BWO occurred,
when the separatrix becomes a horizontal curve, as was
shown in case (2) in Fig. 6. The group velocity
Iugl = law./ak,1 = law,lak,I~I~w,/~k,l,aswasgivenby

Eq. (2.6.8) in Ref. 25 or equivalently by Cauchy-Riemann
relationship for a complex function w = I( k). When the se­
paratrix near the saddle point in complex k plane is horizon­
tal, I~k, I must be small for a given ~w" i.e., an amount of
approach to real axis in complex w plane keeping w, con­
stant. This is because the solid arrow lines in Fig. 2 must be
parallel to the separatrix near the saddle point. Accordingly,
lUg I is large, and beam-structure wave interaction becomes
weak. We cannot find the pair of k + and k _ for coherent
oscillation, as was shown in case (2) in Fig. 6, if Lor R is
small. On the other hand, for low Np or high Np case, lUg I is
small because ofincreased I~k, I, and we may havea possibil­
ity to find appropriate pair of k + and k _ for coherent oscil­
lation which satisfy Eqs. (3)-(7), even if Lor R is small.

In conclusion, in finite length plasma-filled BWO's, we
have found that there are two reasons that can prevent
N = ± I oscillation; (I) the negative temporal growth
rates, and (2) the negative global spatial growth rates. The
second condition comes from the requirement that the spa-
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tial growth rate of the beam space-charge wave must be
greater than the spatial damping rate of the backward struc­
ture wave for effective positive feedback, because the wave­
guide is leaky, i.e., 0 < R < I. As a result ofthe second condi­
tion, coherent oscillation in the plasma-filled BWO's stops
for intermediate ranges ofplasma density, beam current, and
even for structure length.
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