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THE ISOMORPHISM PROBLEM FOR INCIDENCE RINGS

Gene Abrams, Jeremy Haefner and Angel del Ŕıo

Let P and P ′ be finite preordered sets, and let R be a ring
for which the number of nonzero summands in a direct de-
composition of the regular module RR is bounded. We show
that if the incidence rings I(P,R) and I(P ′, R) are isomor-
phic as rings, then P and P ′ are isomorphic as preordered
sets. We give a stronger version of this result in case P and
P ′ are partially ordered. We show that various natural ex-
tensions of these results fail. Specifically, we show that if
{Pj | j ∈ Ω} is any collection of (locally finite) preordered
sets then there exists a ring S such that the incidence rings
{I(Pj, S) | j ∈ Ω} are pairwise isomorphic. Additionally, we
verify that there exists a finite dimensional algebra R and lo-
cally finite, nonisomorphic partially ordered sets P and P ′ for
which I(P,R) ' I(P ′, R).

Throughout this article P will denote a locally finite preordered set; so
P is a set equipped with a reflexive, transitive relation such that for any
two elements x, y ∈ P , the set {z ∈ P | x ≤ z ≤ y} is finite. R will denote
an associative unital ring. The incidence ring of P with coefficients in R,
denoted by I(P,R) (or simply by A throughout this article), is the ring of
functions {f : P × P → R | f(x, y) = 0 ∀x 6≤ y}; multiplication is given
by (fg)(x, y) =

∑
x≤z≤y f(x, z)g(z, y) (and is well-defined due to the local

finiteness condition on P ). The ring I(P,R) may also be viewed as square
matrices with entries in R, whose rows and columns are indexed by P , for
which the (x, y) coordinate is 0 whenever x 6≤ y.

Given locally finite preordered sets P and P ′, and rings R and R′, the
Isomorphism Problem for Incidence Rings is posed as follows: If the inci-
dence rings I(P,R) and I(P ′, R′) are isomorphic, under what hypotheses
may we conclude that P ' P ′ as preordered sets and/or R ' R′ as rings?
Our investigation in this article focuses on a specific version of the Isomor-
phism Problem; namely, we find various conditions on P , P ′, and R for
which the hypothesis I(P,R) ' I(P ′, R) yields the conclusion that P ' P ′
as preordered sets.

A number of authors have investigated this version of the Isomorphism
Problem. An outstanding historical sketch and bibliography related to the
Problem is presented in [3, Section 7.2]. For our purposes, two articles
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in this area deserve explicit mention. In [4, Theorem 4.3], Voss gives an
affirmative answer to the Isomorphism Problem in the case where P, P ′
are locally finite preordered sets, and R is an indecomposable semiperfect
ring. In fact, in a parenthetical remark made near the end of [4], Voss
actually extends his solution to coefficient rings which are finite direct sums
of indecomposable semiperfect rings, each of whose associated preordered
sets is pairwise isomorphic. More recently, in [1, Theorem 2.4], Dăscălescu
and Van Wyk solve the Isomorphism Problem in the situation where P, P ′
are finite preordered sets, and R is semiprime noetherian. In both of these
articles, various examples are given to show that the hypotheses used cannot
be eliminated.

In this article we make two types of contributions to the investigation
of the Isomorphism Problem. In Section 1 we extend the aforementioned
results in the situation where P and P ′ are finite. We do so by establishing
the following solutions to two versions of the Isomorphism Problem.

Solution 1 (cf. Theorem 1.12). Let R be a ring with the property that the
integer max({n | there exist nonzero right ideals K1,K2, . . . ,Kn with R =
K1 ⊕K2 ⊕ · · · ⊕Kn}) exists, and let P and P ′ be finite preordered sets. If
I(P,R) ' I(P ′, R) as rings, then P ' P ′ as preordered sets.

Numerous classes of rings have the property mentioned in Solution 1;
we say such rings have finite summand length. (It is not hard to show
that this property is left/right symmetric.) Such classes include rings with
Goldie dimension (e.g. Noetherian rings), and semiperfect rings (e.g. finite
dimensional algebras). In particular, Solution 1 extends [1, Theorem 2.4],
even more so than is needed to answer in the affirmative the conjecture made
at the end of that article. Along the way to developing the tools needed to
prove Theorem 1.12, we establish:

Solution 2 (cf. Theorem 1.6). Let R be a ring with the property that
there are only finitely many direct summands of the right regular module
RR which are in addition two-sided ideals of R, and let P and P ′ be finite
partially ordered sets. If I(P,R) ' I(P ′, R) as rings, then P ' P ′ as
partially ordered sets.

Our method of attack used in establishing these two solutions is somewhat
similar in flavor to that used by Voss [4]. As we do not necessarily work
over semiperfect coefficient rings, we are not afforded the luxury of working
with a canonical set of indecomposable projective modules (which proved
so helpful to Voss and others). Instead, we focus on a particular set of
projective right ideals D(T ) for a general ring T , and then show that there
is a strong relationship between D(R) and D(I(P,R)). This relationship
allows us to produce an isomorphism between the direct products of certain
preordered (resp. partially ordered) sets, which then puts us in position



THE ISOMORPHISM PROBLEM FOR INCIDENCE RINGS 203

to use a ‘cancellation’ theorem of Lovasz [2, Theorem 4.3] to establish the
desired result.

Our second contribution surfaces in Section 2, where we show that natural
extensions of various solutions to the Isomorphism Problem (our own, as well
the solutions of others mentioned above) fail. We show first (Proposition
2.1) that Solution 2 cannot be extended to preordered sets. Next we show
(Proposition 2.3) that if {Pj | j ∈ Ω} is any collection of locally finite
preoredered sets then there exists a ring S such that the incidence rings
{I(Pj , S) | j ∈ Ω} are pairwise isomorphic, thereby demonstrating that any
solution to the Isomorphism Problem must contain some stipulation on the
structure of the coefficient rings. Finally, we answer a question posed at
the end of [4] by demonstrating (Proposition 2.4) the existence of a finite
dimensional algebra R and locally finite, nonisomorphic partially ordered
sets P and P ′ for which I(P,R) ' I(P ′, R).

1. Solutions to the Isomorphism Problem.

We begin with some notation and observations. For a ring T we let Id(T )
denote the set of two-sided ideals of T , while Id(TT ) denotes the set of right
ideals of T . We let

D(T ) = {K ∈ Id(T )|K is a direct summand of TT }
= {eT |e = e2 ∈ T and Te ⊆ eT}.

In the sequel we will often view D(T ) as a partially ordered set with relation
⊆. It is not hard to show that D(T ) is closed under finite sums. For two
preordered sets P and P ′ with x ∈ P we let

x̂ = {y ∈ P |x ≤ y ≤ x}

P̂ = {ŷ|y ∈ P} (the partially ordered set associated to P )

AntiHom(P, P ′) = the set of preordered anti-homomorphisms
from P to P ′.

The set AntiHom(P, P ′) is preordered, where for F,G ∈ AntiHom(P, P ′)
we set F ≤ G in case F (x) ≤ G(x) for all x ∈ P . The preordered sets
P and P ′ are isomorphic in case there exists a set bijection H : P → P ′
such that both H and H−1 preserve the respective orders on P and P ′. If
|x̂| = n, then for any ring T we have I(x̂, T ) ' Mn(T ), the ring of n × n
matrices with coefficients in T . For a preordered set P and a ring R we set
A = I(P,R). If X is a subset of P , eX denotes the idempotent of A given
by eX(x, y) = 1 if x = y ∈ X, and eX(x, y) = 0 otherwise. For x ∈ P we
denote e{x} by ex.
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Our first task is to identify the set of two-sided ideals of A = I(P,R) in
case P is finite. Given a map Ψ : P × P → Id(RR), we let

I(Ψ) = {α ∈ A|α(x, y) ∈ Ψ(x, y) for all x ≤ y in P}.
Lemma 1.1. Let P be a preordered set, and let Ψ : P × P → Id(RR) be a
map.

(1) I(Ψ) ∈ Id(AA) if and only if Ψ(x, y) ⊆ Ψ(x, y′) for every x ≤ y ≤ y′
in P .

(2) I(Ψ) ∈ Id(A) if and only if Ψ(x, y) ∈ Id(R) and Ψ(x, y) ⊆ Ψ(x′, y′)
for every x′ ≤ x ≤ y ≤ y′ in P .

(3) If P is finite, then every two-sided ideal of A is of the form I(Ψ) for
some map Ψ : P × P → Id(RR) satisfying the conditions of (2).

Proof. Statements (1) and (2) are straightforward to verify, using the defi-
nition of multiplication in the incidence ring A = I(P,R).

For statement (3), assume that I is a two-sided ideal of A. For every
x ≤ y in P let Ψ(x, y) = {α(x, y)|α ∈ I}. Clearly Ψ(x, y) is a two-sided
ideal of R, and I ⊆ I(Ψ). Let α ∈ I(Ψ). Then for every pair x ≤ y ∈ P
there is αx,y ∈ I such that αx,y(x, y) = α(x, y). By the finiteness of P we
may then write α =

∑
x≤y exαx,yey, which is an element of I. Therefore

I = I(Ψ) and hence Ψ satisfies the conditions of (2). �

Having associated the two-sided ideals of A with certain maps from P ×P
to Id(R), we now determine additional properties of such maps which ensure
that the associated ideal of A is in fact an element of D(A). Specifically,
given any map F : P̂ → Id(RR) we define

ΨF : P × P → Id(RR) by ΨF (x, y) = F (x̂), and

J(F ) = I(ΨF ).

From the matrix point of view, J(F ) is the collection of matrices in I(P,R)
for which the entry in the (x, y) coordinate is taken from the right ideal
F (x̂). In particular, the entries in a given row of an element of J(F ) belong
to the fixed right ideal F (x̂).

Lemma 1.2. Let P be a preordered set. Let F be a map from P̂ to Id(RR).
Then:

(1) J(F ) is a right ideal of A.
(2) J(F ) is a two-sided ideal of A if and only if Im F ⊆ Id(R) and F is

an anti-homomorphism of partially ordered sets.
(3) If P is finite, then D(A) ' {J(F )|F ∈ AntiHom(P̂ ,D(R))}.

Proof. (1) and (2) are consequences of Lemma 1.1.
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(3) Let F ∈ AntiHom(P̂ ,D(R)). For every x ∈ P̂ , let F1(x) ∈ Id(RR) be
a complement of F (x), so that F (x)⊕ F1(x) = R. Then it is easy to check
that J(F )⊕ J(F1) = A, so that J(F ) ∈ D(A).

Conversely, let J = fA ∈ D(A); so f = f2 ∈ A, and Af ⊆ fA. For every
X ∈ P̂ let fX ∈ MX(R) be given by fX(x, y) = f(x, y) for every x, y ∈ X.
If x, y ∈ X, f2

X(x, y) =
∑

z∈X fX(x, z)fX(z, y) =
∑

x≤z≤y f(x, z)f(z, y) =
f(x, y) = fX(x, y). Thus fX is an idempotent of MX(R). Moreover
fXMX(R) ∈ D(MX(R)) because if r ∈ MX(R), then there is α ∈ A such
that reXf = fα and hence rfX = fXαX (where αX is defined similarly).
Since the ideals of MX(R) each arise from an ideal of R, we have that there is
a two-sided ideal KX of R such that fXMX(R) = MX(KX). But MX(KX)
is then also a direct summand of MX(R)MX(R), and hence exMX(KX) is a
direct summand of exMX(R)MX(R) for every x ∈ X. Since the functor given
by exMX(−) is precisely the equivalence functor between Mod−MX(R) and
Mod−R, we conclude that KX is a direct summand of RR. Thus KX = f1

XR
for some idempotent f1

X of R such that Rf1
X ⊆ f1

XR. Consequently we have
fXMX(R) = MX(KX) = MX(f1

XR) = gX ·MX(R), where gX is the scalar
matrix in MX(R) with f1

X on the diagonal. In particular, fX generates the
same right (in fact, two-sided) ideal of MX(R) as the scalar gX .

Now let F : P̂ → D(R) be given by F (X) = f1
XR. We define f1 ∈ A by

setting

f1(x, y) = f1
X if x̂ = ŷ = X, while f1(x, y) = 0 otherwise.

So f1 is simply the diagonal blocks of f . As such, using the finiteness of P
we may write f1 =

∑
{(x,y)|x̂=ŷ} exfey, so that f1 ∈ fA as fA is two-sided

(being an element of D(A)). In particular, since f is idempotent we get that
ff1 = f1. Again using the finiteness of P we have that f − f1 is nilpotent
(necessarily of degree ≤ |P |). Expanding the equation (f − f1)t = 0 and
using that ff1 = f1 yields that f = f t ∈ f1A. Thus we have that fA = f1A.
Now let f2 be the block-diagonal element of A whose entry in the X − X
component is gX . By the discussion in the previous paragraph we have that
f1A = f2A, so that fA = f2A. But the diagonal form of f2 immediately
yields that f2A = J(F ), so that finally we have shown that J = fA =
f2A = J(F ) is of the required form. That F ∈ AntiHom(P̂ ,D(R)) follows
from part (2). �
Definition 1.3. Let P be a partially ordered set. We define the partially
ordered subset P1 of P by setting

P1 = {x ∈ P | there exists x′ < x with the property that

y ≤ x′ for every y < x}.
In other words, x is in P1 in case there exists a unique maximal element x′
in X below x.
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If T is any ring then as noted above D(T ) is a partially ordered set under
inclusion. In the sequel we will focus much attention on the partially ordered
subset D(T )1 of D(T ). We first prove a general result about such subsets.

Lemma 1.4. Let P and Q be two partially ordered sets, such that P is
finite, and such that Q has a unique minimal element 0. Let H : P ×Q→
AntiHom(P,Q) be the map given by setting H(p, q)(x) = q if x ≤ p and
H(p, q)(x) = 0 otherwise. Then H restricts to an isomorphism of partially
ordered sets

H : P ×Q1 ' AntiHom(P,Q)1.

In particular, for every (p, q) ∈ P×Q1, the unique maximal element H(p, q)′
< H(p, q) is given by setting H(p, q)′(x) = q if x < p, H(p, q)′(p) = q′, and
H(p, q)′(x) = 0 otherwise.

Proof. First we check that H = H(p, q) ∈ AntiHom(P,Q). Indeed, suppose
x ≤ y in P . Then either y ≤ p, in which case H(y) = q = H(x), or y 6≤ p,
in which case H(y) = 0 ≤ H(x).

It is clear that the restriction of H to P × (Q \ {0}) is injective and
preserves the order. So we must check that H(P ×Q1) = AntiHom(P,Q)1,
and that the inverse map preserves the order. To this end, suppose that
(p, q) ∈ P ×Q1. Let H ′ : P → Q be given by H ′(x) = q if x < p, H ′(p) = q′,
and H ′(x) = 0 if x 6≤ p. Then H ′ < H = H(p, q). We verify that H ′
satisfies the desired properties. So let G < H in AntiHom(P,Q); we show
G ≤ H ′. Now G(x) ≤ H(x) = 0 if x 6≤ p and hence G(x) = 0 in this case.
Moreover, G(p) ≤ H(p) = q. Assume that G(p) = q. If x ≤ p, then q =
G(p) ≤ G(x) ≤ H(p) = q; but this gives G = H, a contradiction. Therefore
G(p) < q, and hence G(p) ≤ q′. Finally, if x < p, then G(x) ≤ H(x) = q.
Thus G ≤ H ′ and this proves that H ∈ AntiHom(P,Q)1.

Conversely, let H ∈ AntiHom(P,Q)1. Let p and p1 be two different
maximal elements of {x ∈ P : H(x) 6= 0}. Let F1, F2 : P → Q be given by

F1(x) = F2(x) = H(x) for p 6= x 6= p1 and

F1(p) = H(p), F1(p1) = 0, F2(p) = 0, F2(p1) = H(p1).
Since F1 < H and F2 < H we have F1 ≤ H ′ and F2 ≤ H ′. Then H(x) =
F1(x) ≤ H ′(x) ≥ F2(x) = H(x) for p 6= x 6= p1, H(p) = F1(p) ≤ H ′(p) ≤
H(p), and H(p′) = F2(p′) ≤ H ′(p′) ≤ H(p′). But this gives H = H ′, a
contradiction. Therefore there is an element p ∈ P , such that H(p) 6= 0 and
H(x) = 0, for every x 6≤ p.

Let F : P → Q be given by F (x) = H(x) if x 6= p and F (p) = 0. Since
F ∈ AntiHom(P,Q) and F < H, then F ≤ H ′. Therefore H(x) ≥ H ′(x) ≥
F (x) = H(x), and hence H(x) = H ′(x), for every x 6= p. Since H ′ < H,
then H ′(p) < H(p).

Set q = H(p). If H 6= H(p, q), there is x < p such that H(x) > q. Assume
that x is maximal with that condition. Let F ∈ AntiHom(P,Q) be given
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by F (y) = H(y) if y 6= x, and F (x) = q. Then F < H and hence F ≤ H ′.
Therefore q = F (p) ≤ H ′(p) ≤ H(p) = q. Thus H ′ = H a contradiction.
We conclude that H = H(p, q).

We now show that q ∈ Q1. We prove thatH ′(p) has the desired properties;
i.e., we prove that H ′(p) = q′. If x < q, let F ∈ AntiHom(P,Q) be given by
F (y) = H(y) if y 6= p and F (p) = x. Since F < H, then F ≤ H ′ and hence
x ≤ H ′(p).

Now that we have shown that H is a set bijection which preserves the
order, we need only show that H−1 preserves the order as well. So suppose
that H(p1, q1) ≤ H(p2, q2). Then on applying each of these antihomomor-
phisms to p1 ∈ P we get q1 = H(p1, q1)(p1) ≤ H(p2, q2)(p1). But q1 6= 0, so
H(p2, q2)(p1) 6= 0, which by definition of H(p2, q2) gives that p1 ≤ p2, and
that q1 ≤ q2. �

Lemmas 1.2 and 1.4 now yield:

Proposition 1.5. Let P be a finite preordered set, and let R be any ring.
Then there is an isomorphism of partially ordered sets

H : P̂ ×D(R)1 ' D(A)1.

Specifically, for (X,K) ∈ P̂ × D(R)1 we set H(X,K) = J(FX,K), where
FX,K ∈ AntiHom (P̂ ,D(R)1) is defined by setting FX,K(W ) = K if
W ≤ X,FX,K(W ) = 0 otherwise .

In turn, Proposition 1.5 allows us to establish one of the two Solutions to
the Isomorphism Problem mentioned in the introduction.

Theorem 1.6. Let P and P ′ be finite partially ordered sets, and let R be
a ring for which D(R) is finite. If the incidence rings I(P,R) and I(P ′, R)
are isomorphic, then P and P ′ are isomorphic as partially ordered sets.

Proof. As P and P ′ are partially ordered we have P = P̂ and P ′ = P̂ ′. Let
A denote I(P,R) and let A′ denote I(P ′, R). It is straightforward to show
that a ring isomorphism between A and A′ yields an isomorphism of the
corresponding partially ordered sets D(A)1 and D(A′)1. By Lemma 1.5 this
yields an isomorphism of partially ordered sets P × D(R)1 ' P ′ × D(R)1.
Now an application of [2, Theorem 4.3] yields the desired isomorphism be-
tween P and P ′. �

As is apparent from the proof of Lemma 1.2, D(T ) ' D(Mn(T )) for
any ring T and any matrix ring Mn(T ). Thus, as Mn(T ) = I(x̂, T ) for
|x̂| = n, D(−) cannot be used to recover preordered sets. Therefore, in
order to establish a result similar to that given in Theorem 1.6 in the more
general context of preordered sets, we must utilize the more subtle structure
D∗(−) (defined below). The price we pay for weakening the hypothesis on
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the ordered sets is the necessity of imposing additional structure on the
underlying coefficient ring.

Definition 1.7. For any ring T and any right T -module MT we define the
summand length of M , denoted w(MT ), by setting

w(MT ) = max{n|M = ⊕ni=1Mi, for some nonzero submodules Mi ≤M}.
We set w(MT ) = ∞ if no such maximum exists. We say the ring T has
finite summand length in case w(TT ) is finite.

We note that the definition of finite summand length for a ring T given
above is left/right symmetric. To see this, we observe that any direct de-
composition of the right regular module TT having n nonzero summands
gives rise to a complete set of n orthogonal idempotents in T . This set of
idempotents can then be used to give a direct decomposition of the left reg-
ular module TT having n nonzero direct summands. The desired conclusion
follows by symmetry.

Lemma 1.8. For any ring T , if T has finite summand length, then D(T )
is finite.

Proof. We denote w(TT ) by N . Since any chain of proper inclusions of
length n of nonzero elements of D(T ) gives rise to a decomposition of TT
containing n+1 summands, we conclude that the partially ordered set D(T )
has finite height (in fact, height ≤ N). Thus to show that D(T ) is finite
it is enough to show that for every K ∈ D(T ), the set of minimal elements
of {J ∈ D(T )|K ⊂ J} is finite. Indeed, if we denote this set of minimal
elements by {Ji|i ∈ Ω}, then we show that this set contains at most N
elements, by showing that this set can be used to generate an equal-sized
set of nonzero pairwise orthogonal idempotents in T . Let K = gT , Ji = eiT
for idempotents g, {ei}i∈Ω. Since K ⊂ Ji we have eig = g for all i. With this
it is easy to show that each e′i = ei − gei is idempotent. Further, it is easy
to show that eiT ∩ ejT = eiejT ∈ D(T ); the minimality property of these
ideals then implies that eiejT = gT for i 6= j. It follows that e′i and e′j are
in fact orthogonal for i 6= j. Since ei 6= g we have that e′i is nonzero for all
i, and so {e′i}i∈Ω is a set of nonzero pairwise orthogonal idempotents. But
a set of more than N nonzero pairwise orthogonal idempotents in T would
yield a decomposition of TT in violation of the hypothesis that w(TT ) = N ,
so that | Ω |≤ N as desired. �

Definition 1.9. Let T be any ring with finite summand length. We define

D∗(T ) = {(K, i)|K ∈ D(T )1 and 1 ≤ i ≤ w((K/K ′)T )}.
(Here K ′ is the unique maximal element of D(T ) below K, as given in
Definition 1.3.) We note that w((K/K ′)T ) is indeed an integer, as K/K ′ is
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isomorphic to a direct summand of TT . We define a preorder on D∗(T ) by
setting

(K, i) ≤ (L, j)⇔ K ⊆ L.
For any positive integer s, let Ns denote the set {1, 2, . . . , s}.

Lemma 1.10. Let P be a finite preordered set, and let R be a ring with
finite summand length. If K ∈ D(R)1 and X ∈ P̂ , then

|X| · w(K/K ′R) = w(H(X,K)/H(X,K)′A).

In particular, there exists a bijection

φX,K : X ×Nw(K/K′) → Nw(H(X,K)/H(X,K)′).

Proof. Let h(X,K) denote the right ideal eXH(X,K) of A. By Lemma 1.4
one can show that H(X,K) = (

∑
Y <X H(Y,K)) ⊕ h(X,K), and that the

unique maximal element H(X,K)′ below H(X,K) is given by H(X,K)′ =
(
∑

Y <X H(Y,K)) ⊕ h(X,K ′). Therefore, H(X,K)/H(X,K)′ '
h(X,K)/h(X,K ′).

Now let J = I(P,K ′). Since h(X,K)J ⊂ h(X,K ′), then
h(X,K)/h(X,K ′) is a right A/J-module. Moreover, if B = I(P,R/K ′),
then (h(X,K)/h(X,K ′))A/J ' h(X,K/K ′)B and it follows that

w((h(X,K)/h(X,K ′))A) = w((h(X,K)/h(X,K ′))A/J) = w(h(X,K/K ′)B).

Consequently, w(H(X,K)/H(X,K)′A) = w(h(X,K/K ′)B). Since K/K ′ is
isomorphic to a direct summand of K it is in fact isomorphic to a right
ideal of R; thus it suffices to prove that if L is a right ideal of R, then
w(h(X,L)A) = |X|w(LR).

If L = ⊕ni=1Li, then h(X,L) = ⊕x∈X⊕ni=1 exh(X,Li) since eX acts like an
identity on the left of elements of h(X,L). This shows that w(h(X,L)) ≥
|X|w(L). Now suppose w(h(X,L)) = n and so we may write h(X,L) =
⊕ni=1Li where each Li is a nonzero right ideal of A. Again, since eX is an
identity on the left of each Li, we have Li = ⊕x∈XexLi and so h(X,L) =
⊕ni=1⊕x∈X exLi. Since n = w(h(X,L)), it follows that, for every i = 1, . . . , n,
there is exactly one xi ∈ X such that Li = exiLi. (It may be the case that
two such Li share the same x.) For every i = 1, . . . , n, let Ji = {α(xi, xi)|
α ∈ Li}. It is clear that each Ji is a right ideal of R and that, for every
x ∈ X, L =

∑
i,xi=x

Ji. We claim that this sum is direct. To see this,
suppose

∑
i,xi=x

ri = 0, with ri ∈ Ji, and so there are αi ∈ Li such that
αi(x, x) = ri. Since αi ∈ Li = exiLi, it follows that

∑n
i=1 αiex = 0. Since the

original sum ⊕ni=1Li is direct, we have each αiex = 0 and so each ri = 0 and
the claim holds. In particular, the number mx of the i, i = 1, . . . , n such that
xi = x satisfies mx ≤ w(L). Consequently, h(X,L) = ⊕x∈Xexh(X,L) =
⊕x∈X ⊕i,xi=x exh(X, Ji). Once we show that exih(X, Ji) = Li for every
i, the proof will be complete because then we shall have w(h(X,L)) =
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x∈X mx ≤ |X|w(L), as desired. To show the equality, let α ∈ exih(X, Ji).

Then, for y ≥ xi, there are βy ∈ Li such that α(xi, y) = βy(xi, xi) and so
α =

∑
y≥x βyexi,y ∈ Li which shows that exih(X, Ji) ⊂ Li. However, since

exih(X, Ji) and Li are summands of h(X,L), we see from the Modular Law
that Li = exih(X, Ji). �
Proposition 1.11. If P is any finite preordered set, and R is a ring with
finite summand length, then P ×D∗(R) ' D∗(A).

Proof. Let H denote the isomorphism given in Proposition 1.5. For every
X ∈ P̂ and K ∈ D(R)1, let φX,K : X × Nw(KR) → Nw(h(X,K)A) be the
map described in Lemma 1.10. We now define Φ : P ×D∗(R)→ D∗(A) by
setting

Φ(x, (K, i)) = (H(x̂,K), φx̂,K(x, i)).
Using the fact that H is an isomorphism of partially ordered sets and that
φX,K is a bijection, it is straightforward to check that Φ is indeed an iso-
morphism of preordered sets. �

We now have all the tools required to establish our second version of the
Isomorphism Problem.

Theorem 1.12. Let P and P ′ be two finite preordered sets, and let R be
a ring with finite summand length. If I(P,R) ' I(P ′, R) as rings, then
P ' P ′ as preordered sets.

Proof. Let A denote I(P,R) and let A′ denote I(P ′, R). It is straightforward
to show that a ring isomorphism between A and A′ yields an isomorphism of
the corresponding preordered sets D∗(A) and D∗(A′). By Proposition 1.11,
this gives an isomorphism of preordered sets

P ×D∗(R) ' P ′ ×D∗(R).

Now an application of [2, Theorem 4.3] yields the desired isomorphism be-
tween P and P ′. �

We note that Theorem 1.12 answers the question posed at the end of [1];
specifically, we have shown that the Isomorphism Problem has a positive
solution when the preordered sets are finite, and the coefficient ring is right
or left noetherian.

2. Non-extendability of Solutions.

In the second section of this article we present three constructions which
demonstrate the failure of possible extensions of various solutions of the
Isomorphism Problem.

Our first non-extendability result shows that the hypotheses of Theorem
1.12 cannot be replaced by the weaker hypotheses of Theorem 1.6.
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Proposition 2.1. There exists a ring S having finite D(S) and there exist
nonisomorphic preordered sets P and P ′ such that I(P, S) ' I(P ′, S).

Proof. Let k be any unital ring, and let S denote the ring RFM(k) of
countably infinite row-finite matrices over k. It is well-known that S has
the property that S ' M2(S), which yields that I(P, S) ' I(P ′, S) where
|P | = 1 and P ′ = x̂ where |x̂| = 2. Furthermore, since S has only one
nontrivial two-sided ideal, D(S) is finite. �

Prior to presenting our second non-extendability result (Proposition 2.3
below), we review some of the ideas introduced in [4]. Let X be any locally
finite preordered set, and let a ∈ X. We define

X̂a =

{
(xn) ∈

∏
n∈N

X | ∃ N with xn = a ∀n ≥ N
}
.

In [4, Proposition 1] Voss shows that X̂a is a locally finite preordered set
having the property that X × X̂a ' X̂a as preordered sets. Indeed, the
isomorphism φ is given by setting φ(x, (xn)) = (yn), where y1 = x and
yn = xn−1 for all n ≥ 2.

We now let {Xi}i∈Ω be any collection of preordered sets. For each i ∈ Ω
let ai denote a fixed element of Xi, and let āi denote the element (ai, ai, ...)
of X̂i

ai . Finally, let B denote the set

B =

{
(bi) ∈

∏
i∈Ω

X̂i
ai | bi = āi for all but finitely many i

}
.

Lemma 2.2. The preordered set B defined above is locally finite provided
that each Xi is locally finite. Moreover, for each i ∈ Ω we have Xi×B ∼= B
as preordered sets.

Proof. The set B inherits the preorder from the product
∏
i∈Ω X̂i

ai . Now
choose (bi) ≤ (ci) ≤ (di) in B. Then for all but finitely many i ∈ Ω we
have that bi = ci = di = āi. The first statement now follows as each X̂i

ai is
locally finite.

Define φi : Xi × B → B by setting φi((xi, (bj))) = (cj), where cj = bj
in X̂j

aj for j 6= i, and ci = φ((xi, bi)) (using the map φ described above).
Then it is easy to check that φi is an isomorphism of the desired type. �

Our second non-extendability result shows that the Recovery Question
must always fail without some stipulation on the structure of the underlying
coefficient rings.

Proposition 2.3. Let {Xi}i∈Ω be any collection of locally finite preordered
sets. Then there exists a ring S with the property that the incidence rings
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I(Xi, S) and I(Xj , S) are isomorphic for all i, j ∈ Ω. Indeed, each of these
incidence rings is isomorphic to S itself.

Proof. Let B be the locally finite preordered set defined above, let T be any
ring, and let S denote the incidence ring I(B, T ). Then for each i ∈ Ω,

I(Xi, S) ∼= I(Xi, I(B, T )) ∼= I(Xi ×B, T ) ∼= I(B, T ) ∼= S.

�

We mention that the above result generalizes an example from [1]. In
[1, Example 1.1] Dăscălescu and Van Wyk construct a ring R for which the
following five ‘structural matrix rings over R’ are isomorphic:

R R⊕R M2(R)
(
R R
0 R

) (
R 0
R R

)
.

These structural matrix rings are precisely the incidence rings which arise
from the five preordered sets (respectively)

{a} {a, b} {a, b | a ≤ b, b ≤ a} {a, b | a ≤ b} {a, b | b ≤ a}.

The final non-extendability result (Proposition 2.5) addresses the neces-
sity of the finiteness condition on the preordered sets. The key ingredient in
this result is an example of non-cancellability for certain preordered sets. In
[4, Theorem 4] and a subsequent remark, Voss proves that if X,Y and Z are
preordered sets for which X and Y are locally finite, and Z is finite and has
the property that the connected components of Z are pairwise isomorphic,
then X × Z ' Y × Z implies X ' Y . We now show that the condition on
the connected components of Z cannot be dropped from the hypotheses of
Voss’ result. We recall some notation: For x, y in a preordered set X we
say that y covers x in case x < y, and there does not exist z in X with
x < z < y.

Proposition 2.4. There exists a finite (necessarily non-connected) partially
ordered set Z and locally finite (necessarily infinite) partially ordered sets X
and Y such that X × Z ' Y × Z but X 6' Y .

Proof. Let U be any preordered set in which there exists a unique minimal
element a ∈ U . Let Ûa be the preordered set constructed as above, and let
ā denote the constant tuple ā = (a, a, . . . ). Set

Ûa0 = {(an) ∈ Ûa|max{n|an 6= a} is even } ∪ {ā} and

Ûa1 = {(an) ∈ Ûa|max{n|an 6= a} is odd } ∪ {ā}.
We first show that U × Ûa0 ' Ûa1 and U × Ûa1 ' Ûa0 as preordered sets. To

verify this, it suffices to prove U × Ûa0 ' Ûa1 , since the other isomorphism is
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shown symmetrically. Define φ : U×Ûa0 → Ûa1 by setting φ(x, f)(1) = x and
φ(x, f)(n) = f(n − 1) for n ≥ 2. That φ is a set bijection which preserves
the underlying preordering is clear.

We next show, perhaps counter to one’s intuition, that the preordered
sets Ûa0 and Ûa1 are not isomorphic, as long as there exists a unique cover α
of a in U .

Clearly ā is the unique minimal element of both Ûa0 and Ûa1 . Let C0

denote the set of covers of ā in Ûa0 ; so the elements of C0 are of the form
α̂2n, the tuple whose 2n-th coordinate is α, and all other coordinates equal
a. Similarly, the set C1 of covers of ā in Ûa1 are of the form α̂2n+1.

It is easy to see that every element of C0 is covered by an element which
does not cover any other element of C0; for instance, α̂2n is covered in such a
way by d̂2n, the tuple which is α in coordinates 1 and 2n, and is a elsewhere.
However, the element α̂1 of C1 does not have this property; that is, every
cover of α̂1 necessarily covers another element of C1.

Since ā serves as the unique minimal element for both Ûa0 and Ûa1 , and
since covers are preserved by preordered set isomorphism, the above discus-
sion yields that Ûa0 6' Ûa1 as claimed.

Now we construct the example in which cancellation fails. Let U and V
be two preordered sets, with elements a ∈ U and b ∈ V . Set Z = U ]V (the
disjoint union), X = Ûa1 × V̂ b

0 , and Y = Ûa0 × V̂ b
1 . Then

X × Z ' (U ] V )× (Ûa1 × V̂ b
0 ) ' (U × Ûa1 × V̂ b

0 ) ] (V × Ûa1 × V̂ b
0 )

' (Ûa0 × V × V̂ b
1 ) ] (U × Ûa0 × V b

1 )

' (U ] V )× (Ûa0 × V̂ b
1 ) = Y × Z.

Consequently, to find an example of the desired type, it suffices to find U
and V such that X = Ûa0 × V̂ b

1 6' Ûa1 × V̂ b
0 = Y . But if U = {a, α} such that

a < α and V = {b}, then V̂ b
0 = {b̄} = V̂ b

1 , while Ûa0 6' Ûa1 as shown above.
Then X ' Ûa1 6' Ûa0 ' Y , and we are done. �

Our final non-extendability result shows that if we allow the preordered
sets to be infinite, then we need not be able to recover the preordered sets,
even from incidence rings with coefficients taken from a finite dimensional
algebra.

Proposition 2.5. There exist locally finite, non-isomorphic partially or-
dered sets P and P ′ and a finite dimensional algebra R such that the inci-
dence rings I(P,R) and I(P ′, R) are isomorphic.

Proof. Let X, Y and Z be as in Proposition 2.4 and let k be any field.
Let P = X, let P ′ = Y , and let R denote the incidence ring I(Z, k). In
particular, R is a 4-dimensional algebra over k. By hypothesis we have
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P 6' P ′. But we do have P × Z ' P ′ × Z, and so

I(P,R) = I(P, I(Z, k)) ' I(P × Z, k) ' I(P ′ × Z, k)

' I(P ′, I(Z, k)) = I(P ′, R).

�
Since the ring R given in Proposition 2.5 has finite w(R) (and therefore

also finite D(R)), we cannot extend either Theorem 1.6 or Theorem 1.12 to
locally finite partially ordered sets.

At the end of [4], Voss asks whether or not his solution to the Isomorphism
Problem (where the coefficient rings are assumed to be finite direct sums
of indecomposable semiperfect rings each of whose associated preordered
sets is pairwise isomorphic) extends to all artinian rings. Proposition 2.5
provides a negative answer to this question. In fact, the coefficient ring
used in the Proposition is in some sense a minimal counterexample, as any
algebra of dimension three or less over any field can be shown to satisfy
Voss’ hypotheses.
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