

# **Wireless Emergency Communications:**

**Accessible Alerts for People with Disabilities** 





Helena Mitchell
Georgia Institute of Technology







# Why Wireless?

- Mobile wireless applications can increase independence and quality of life for people with disabilities.
- Applications that serve people with disabilities will also be attractive to the general population.
- Lower cost of new models of wireless devices is enabling diffusion to all users, including people with disabilities.
- Federal Communications Commission 2005
  - Amends rules to ensure that people with disabilities have access to public warnings.
  - Substantive filings push access to Emergency Alert System notifications



### Wireless Use Among People with Disabilities

# Survey of User Needs -- RERC Consumer Advisory Network 1200 plus people with disabilities



#### Between 2001-07:

- Access to wireless technology increased from 72% to 85%
- Everyday use increased from 40% to 65%
- Importance to individual increased from 60% to 77%



### Wireless Produce Use

### "84% use wireless products"



#### Most important features

voice: 78% e-911: 45%

text: 43%

email: 41%

Internet: 35%

- 70% use everyday
- 24% have difficulty



### Wireless Emergency Communications Objectives

- Ensure critical, specific and accessible emergency alerts are reaching people with disabilities, utilizing the most optimal means and methods.
  - Examine technology approaches to transmit specific alerts and warnings to wireless devices.
  - Develop prototypes of promising technology approaches to deliver alerts in accessible formats.
  - Field test working prototypes.
  - Generate recommendations to the FCC on feasible approaches to ensure accessible alerts.



## Methodology

- Administer 4 field tests to examine accessibility and effectiveness of alerts to wireless devices.
  - Administer pre-test and post-test questionnaire to users.
  - Wrap-up with focus group session to discuss user experience during the test.
  - Tabulate quantitative and qualitative data for reports, presentations and filings before the FCC.
- Final field test 5 will be based on recommended refinements by users.



# A Pre-test Question

#### "How do you currently receive emergency alerts?"



Majority of participants receive emergency alerts through traditional media outlets and/or low tech systems



### Field Test 1 & 2

#### Field Test one:

- 3 groups of blind/visually impaired users: technical savvy, mixed ability, infrequent users.
- Supplied mobile phones with custom software featuring an audiooriented interface and text-to-speech reading of emergency alerts for the visually impaired.
- Series of 3 text messages (SMS) with increasing audio intensity sent to each device.

#### Field Test two:

- Replicated field test one: users were visually and hearing impaired.
- Included, a vibrating cadence attention signal to differentiate incoming alerts from regular text messages for the Deaf and hard-of-hearing.



### Field Test One: Post test Findings

Post-field test revealed that 94% of participants found the WEC emergency alert software an improvement.

#### **Specific comments -- Pro:**

- Very convenient way to receive alerts.
- Would be able to react to the alert quicker.
- I'm not always around TV, friends or family.
- Hard to get emergency information when you are blind and outside.



#### **Specific comments – Constructive:**

- Provide cues for blind or visually impaired to replay the message.
- Have the ability to speed-up or slow down the voice/message.
- Allow speech output to be adjustable by volume and/or pitch.
- Continued or "looped" alert message until phone is answered/alert receive.



### Field Test Two: Post test Findings

Post-field test revealed that 81% of test participants found the WEC emergency alert software an improvement.

#### **Specific comments -- Pro:**

- ■Liked the "override" feature that interrupts current phone activity.
- ■This format [would] reach and protect more people with disabilities.
- I am alerted if I am not at home or in front of the TV.
- ■I live alone and this would be very helpful to me.

#### **Specific comments – Constructive:**

- Provide a prompt to repeat the message.
- ■Create an interface with a lamp or bed to awaken people who are Deaf/HoH while they are sleeping and/or signal service animals.
- •Allow multiple zip code subscriptions through one account.
- Emergency message should be a blinking text message in a distinctive color.



# **Proposed Technical Approach**

Development of a "gateway" to convert emergency alerts and warnings to SMS messages and audio feeds in accessible formats deliverable to mobile devices





### **Actual Technical Model**





# **Moving Toward Solutions**

 Present findings to the FCC regarding results of field tests to support equal access to critical information via appropriate wireless warning systems



- How to provide accessible emergency alerts
- How to ensure next-generation digitally-based alerts are developed to give equal access to alerts
- EAS improvements that incorporate existing FCC disability access rules and ensure timely accessible notifications



# More FCC Rulemakings

- Commercial Mobile Alert System (CMAS)
  - First Report and Order adopted April 9<sup>th</sup> 2008
    - Adoption of a common audio attention signal
    - Adoption of existing 8-second EAS signal
    - Adoption of common vibration cadence
    - Clear instructions including labels identifying mobile devices suitable for persons with audio and visual disabilities
    - 90 character text limit of CMAS alert
    - Adding trailer to alerts



### PROJECT COLLABORATORS

- Staff: Frank Lucia, Salimah Major, Ed Price, Jeremy Johnson, Laurel Yancey, Ben Lippincott, GRAs
- Panel of Experts: Broadcasters; universities; Blind and low vision; deaf and hard-of-hearing; emergency public safety personnel and trainers
- Other Rehabilitation Engineering Research Centers
   Technology related



Rehabilitation Engineering Research Center for Wireless Technologies
Wireless Emergency Communications

# www.wirelessrerc.org



Helena Mitchell, Ph.D.
Principal Investigator, Wireless RERC
Project Director, Wireless Emergency
Communications Project
Georgia Institute of Technology
404.385.4640

helena.mitchell@cacp.gatech.edu

Special thanks to the National Institute on Disability and Rehabilitation Research (NIDRR) of the U.S. Department of Education for its sponsorship under grant number H133E060061.