ROCHESTER INSTITUTE OF TECHNOLOGY

A Thesis Submitted to the Faculty of The College of Fine and Applied Arts in Candidacy for the Degree of MASTERS OF FINE ARTS

Monster Spells
By
Amy Fossaceca
5/15/92

Adviser: Jim Ver Hague
Date: \qquad

Associate Adviser: John Ciampa
Date: \qquad

Associate Adviser: Mark Collien
Date: \qquad 42

Special Assistant to the Dean for Graduate Affairs: Phil Bornarth Date: 5/28/92

Acting Dealn, College of Fine and Applied Arts: Dr. Peter Giopolus
Date:

I, \qquad , hereby grant permission to the Wallace Memorial Library of RIT to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.
Date: \qquad
Section I Research
Multimedia/Interactivity 2
Children and Learning 3
Play 5
Games 6
Section II Proposal
Conception/Rationale 8
Design Objects and Parameters 14
Identifying Design Problems 15
Application of Thesis Project 16
Section III The Project
Process 17
Evaluation and Projection 30
Conclusion 35
Section IV Endnotes 36
Section V Bibliography 37
Section VI Appendix 41
Section VII Additional Information 68

Multimedia refers to an evolving set of teaching tools that can combine video, sounds, text, and graphics in a computer environment under users control. Interactivity, a function of multimedia, allows the user to manipulate the computer environment with the utilization of physical and mental capabilities. An interactive program is freed from the linear, highly directed flow of printed text. Its comprehensive qualities, varied formats and dynamic linking offers learners individualized access to rich intellectual environments. Such a harmonious environment requires learners to constantly make decisions and evaluate progress, thus forcing the user to apply higher order of thinking skills.

Interactive programs portray familiar actions and objects in many unique ways. The possibility of accessing information in multiple ways can lead to a clearer understanding of the meaning being conveyed. Collaborating the concept of interactive media with education promotes a whole new way of learning. The combining form of computer activities and the existing tools for learning stimulate the curiosity for knowledge. Therefore, computer technology is an important addition to our children's learning experience and processes.

There are five basic types of educational computer software.
Drill and practice programs which reinforce skills: similar to workbooks

Tutorial programs which describe some concept or process and then engage the student in a question and answer dialog

Instructional gains which allow the child to take partial or total control of one side of the action

Simulation programs which provide a model which behaves like some portion of the real world.

Problem solving programs which help the student to learn about some aspect of the real world by writing or using a computer program to solve a problem

Software which allows the child to affect the outcome of a program by taking control over the action, or which allows a child to model behavior, or to solve problems makes use of the unique properties of the computer environment. If the proposition: "the more senses satisfied the easier the belief" is true then interactive media will be an extremely powerful learning tool.

CHILDREN AND LEARNING

Computers can help children understand that animals, people and situations are parts of larger systems that influence one another. The computer is a multifaceted electronic medium. Not only is it interactive but it has the ability to become any and all existing media, including
books and multimedia instruments. This feature will allow users to choose the kinds of media through which they want to receive and communicate ideas. Another facet is the way in which information can be presented from many different perspectives. Computing is building a dynamic model of an idea through simulation that can compare and contrast conflicting theories. In addition, an extensively networked computer will soon become a universally linked information bank. It is possible to design computer programs so learning to communicate with them can become a natural process.

Children seem to be inately gifted learners, acquiring a vast quantity of longknowledge long before they acquire formal education by a process called the Piagetian Theory. The theory describes learning without being taught. Piaget, a noted researcher in child development, thought that children become logical mainly as a result of informal experiences with their environment, rather than as a result of being told things directly. He laid great stress on the idea of intellectual conflict. By that he meant that they tend to acquire new ways of thinking when they find that their existing ways produce conflicting answers. In other words. when they find themselves thinking in two different ways about the same thing. The following is a series of quotes from Seymore Papert, a pioneer in research and development of children's computer interaction. Seymore Papert bases much of his theories on Piaget.

> "You can be the gear, you can understand how it turns by projecting yourself into its place and turning with it. It is this double relationship both abstract and sensory - that gives the gear power."1
> "What the gears cannot do the computer might. The computer is the Proteus of machines. Its essence is it's universality, its power to simulate. Because it can take on a thousand tastes. my own attempts over the past decade to turn computers into instruments flexible enough so that many children can create for themselves something like gears were for me"2
"The computer presence could contribute to mental processes not only instrumentally but in more essential, conceptual ways, influencing how people think even when they are far removed from physical contact with a computer. ${ }^{\prime 3}$

PLAY
During early developmental stages in childhood the primary learning process is exemplified through play and human interaction. Play has traditionally been under valued.

Some people feel play only reduces anxiety and tension.
Recently, I feel the ideas have changed towards the importance of play and games.

Areas of child development which are affected by play include physical, intellectual, social, personality and emotional development. Play builds self-esteem, problem solving, creativity and the ability to relate to others.

Play entices children to discover and deal with their environment. Opportunities for making decisions and choices arise through play. Skills which adults possess are learned
behaviors children have to practice and perfect. Many hours of play are necessary to learn new words, experiment with interactions, test rules, practice skills and solve problems.

Each accomplishment is a step towards a more complex level of being. Piaget, stated that when children discover something for themselves, it will most often remain with them. Children master skills by thinking situations through by themselves. Play offers them this opportunity.

Children need to develop the ability to play alone as well as with playmates. By playing by themselves a child can lengthen their attention span and strengthen the ability to reason for themselves. Playing in a group also enhances their skills and abilities. Small groups of young children tend to repeat experiences continuously and still remain enthusiastic. Repetition is an essential part of learning for the young child. Much of play is done through some sort of game whether it is role playing, pretending, dress-up, activities, creating, board game or electronic media. Most activities are similar to games because both have guidelines or rules to follow that are either implied or standardized.

GAMES

> "A game is an interactional activity played by one or more players, either competitively or collaborative, according to a set of agreed upon rules which define the content of the game and which include criteria for determining the winner ${ }^{\prime / 4}$

Above all, games are supposed to be enjoyable. Games have been an important medium for informal learning for many centuries. It is because of their long standing existence and satisfying rewards that educational computer games have been created. Most games serve three general educational purposes:

1. to teach and bring together society's values, attitudes and beliefs,
2. to provide a uninhibited environment for players to experience, organize, share, develop and alter the guidelines for social interaction
3. the development of both motor and conceptual skills. Games are control systems nested in the facets of our culture.

Enjoyment is the chief motivation in learning games, intended to capture the child's attention and increase the likelihood that the child will internalize the message interwoven in the constructs of the game. Computer based learning games range from drill and practice to complex simulations. The computer as a tool with its wonderful interactive capabilities holds tremendous potential. While the computer has many limitations and cannot fulfill many of the traditional goals of non-electronic games, it can provide other ways to present the concepts in existing games therefore strengthening the educational experiences and fulfill our current needs. Intentional educational games can derive strength from formulating out of familiar models, for they help children approach learning from already learned environments. They have that quality the psychologists call
"representativeness". An electronic learning game is more versatile than many traditional games because it can be used by a variety of learners- gifted, handicapped, remedial, adults, toddlers and the bilingual. I can cover any subject matter and be used in a variety of settings such as the classroom and home.

CONCEPTION AND RATIONALE

In researching Interactive Media and its educational implications my curiosity was heightened by the extensive work done at Bank Street College in New York. The college developed a Interactive project called LOGO which assists the child in learning basic math concepts through programming. Seymore Papert's book Mindstorms added to this idea by introducing me to Turtle Geometry, which is a program very similar to LOGO.

Awareness of the current capabilities of the Macintosh computer and seeing the archaic level of graphic representations in the two programs mentioned above. I decided to create a Children's Interactive educational game. After talking with various elementary school faculty, I narrowed my idea to a game dealing with vocabulary and spelling. I wanted to provide children with a stimulating learning tool that utilized the interactive and dynamic color capabilities of the Macintosh computer. Incorporating exploration in the use of motion, as a visual message.

During my research of existing children's games I found many that were difficult to understand, even for an adult. Other games that were enlightening, however, lacked good use of color and design. Color is important because it attracts and entices the attention of the user. Color also adds to the message put forth by the medium. On another level, our society is engulfed by color television and video games. To compete with this existing media, an educational game must keep up with their level of intensity in terms of content, use of color and level of control by users.

I narrowed the ages of my targeted group to be children in elementary school. The primary reason for my interest in this age group is my extensive experience in elementary children's games. I analyzed two existing word games. I reviewed them in terms of specific criteria that I felt appropriate to the task. I developed the criteria based on a combination of my research and my own experience. (refer to pg 44)

The first game I tested was "Word Munchers". The object is to "munch" as many words as you can that contain the target vowel sound. The more correct words you "munch", the more points you earn. If you earn enough points you enter the "Word Munchers", Hall of Fame. The beginning screen is well designed and extremely clear as to what choices the user has available. While the user is deciding, a continual animation of a "troggle (bad guy)" chasing the "muncher" (good guy) is played. The choices on
this screen are Instructions, Practice and Play Munchers. Instructions were very easy to read but neglected to tell the user that they could click the word they are trying to match and the sound is repeated. I thought this functionality was an important reinforcement and reminder. The second screen of instructions displays all the characters, one good guy and the various troggles. Although I felt these imaginary, genderless creatures to be ludicrous at first, the children easily identify with them and their roles.

The practice mode was an important feature to the program because it allowed the user to practice the game without the pressure of a "troggle" coming to eat their "muncher". This helps slower learners to take their time. The only problem is the user has to complete three screens before they can get the option to actually play the game and there is no navigational tool to return to first screen. This is extremely frustrating for children who learn quicker.

The playing screen design and layout is visually pleasing. The simplicity is appropriate to make the game clear, free of added distraction as you play. The children I tested really liked the time-out function which would pause the game. I found its wording confusing as did the kids. You clicked the button when it says continue to pause and then the button changes to time-out, which can be clicked to continue. This button is awkward but the user can clearly see the game and know whether or not it has been paused.

The screen had the level on the right bottom corner, there were three in all. The score is located to the right of the level. The score is placed in a spot that is easy to check without pausing the game. The playing area is a white rectangle divided into even squares. Each square has a word in it and the user clicks the mouse in the desired square and the "muncher" moves there. A "troggle" may appear and will move in a straight direction across the board changing the words in his path and adding ones in empty boxes.

When playing the game, the user clicks once to move "munchers" and twice to eat a word. Different spaces at different times will be hilighted and these are safe since a troggle can't eat a muncher in there. The player gets four "munchers". They are located on the bottom of the screen and disappear as they get eaten. If the "muncher" eats a correct word, a munching sound is played. If an incorrect word is munched a two note low sound is heard. In addition, the player loses a "muncher" and a message box appears that tells the user the word choice was incorrect, the choices are "hear vowel" or "okay".

As each level is completed an animation is shown in which the good guy gets the bad guy. This scenario is familiar to all children because of the child's understanding of humor and they identify with it, laughing every time. In my point of view, this game is very successful. The users are learning and having fun at the same time being
challenged. The game is a modified version of the popular notion of "the chase." Children thrive on the fear of being caught. It is a natural high. Word munchers also has a point based reward system, similar to video games that satisfies the competitive spirit children possess.

The second game I analyzed and tested was "Word Quest". I had no prior experience with this educational game. I choose the game because of its attractive graphics and description on the cover:
"Word Quest is a spelling application for use with Hypercard. It helps children to learn spelling by guiding them through the enchanted world of castles, caves and passages in hopes of finding the fire magic words that will rid the kingdom of the spell cast by the evil ice witch."
The opening screen did not have any clear directions as what to do. The children basically had to go by trial and error. None of the children tested understood how to play the game from the instruction. It seems the idea of castles and evil witches kept them interested in trying to play anyway.

Each screen is a part of the kingdom which has invisible buttons all over it. The user can randomly click anywhere and something happens, such as going to another place in the kingdom. These buttons are poorly placed. Not only are they on objects but in the background also. Many of the children were extremely frustrated and some continuously clicked everywhere before hitting a button.

The button placement is not in any way related to where that button will take you or what it will do. If the user
is lucky they will hit a "magic button." A message box appears and a word is spoken and the user types in the word. This is a disaster because the voice recording is very unclear. I like the fact the user has to type in the word. If the word is spelled correctly a non-emotional voice say either "fine" or "great." The voice is not a positive stimulating reward because it makes the user unsure whether they really did the right thing or not. The word choice was also very poor. One child I tested was asked to spell "have" three times. I failed to see a correlation in the words asked to spell and any specific level of educational development. Therefore, the educational aspect is nonexistent and pointless.

The children were extremely disappointed in the poor quality of graphics. They had no logical pattern and were drawn inconsistently. The graphics were black and white and very childlike in nature. Children prefer sophisticated graphics in terms of execution. The only reason children draw simply is because they are still developing their skills. A game such as this one, insults children with these illustrations and it is obvious to me that this company did not research children's preferences. Instead they took for granted that children like graphics which are most representational to their level.

The children were easily lost in the game because there is no sense of logical path. Animations were shown at random. They did not pertain to anything the user did.

All of the children tested quit the game before finishing it. Based upon my knowledge of children's educational needs this particular game shows little comprehension of the requirements to learning that make it an effective learning tool. Analyzing and testing these two existing educational games gave me a good basis to begin implementing my ideas.

I sketched out all of my original ideas and layouts for the spelling game. (refer to pg 49) I eventually, selected the fifth concept, which was a modified version of the popular children's game, Hangman.

DESIGN OBJECTS AND PARAMETERS

Monster Spells is a children's interactive educational game created with Supercard and Macromind Director. The program is a combination of two of the basic types of educational programs, Instructional and Simulation. It is instructional because the game allows the child to take partial control of the environment. The programs animations fall into the Simulation category because they provide a model which portrays some portion of the real world. This game is a spelling learning tool intended for ages 6-9. The words are reinforced through repetition. This is accomplished with the use of several communication forms audio, animation and visual display. The extensive use of colors is intended to invoke curiosity and hold the interest of the user.

The object of the game is to correctly spell the word using the visual clues before the monster closes all of his fingers. Every word has a visual representation that is verbally reinforced when a word is completed. The visual display appears in a short animation and the word is verbally repeated a second time. If the child does not correctly spell the word in the allowed amount of chances, the monster verbally encourages the child to play another game. Monster Spells is divided into levels 1, 2, and 3 which increase in difficulty respectively. Each level contains 12 words with related animations. The game includes a help section and practice game.

DESIGN PROBLEMS

Before designing my game, I was aware of many important design concerns. These concerns are aside from the specific positives and negatives uncovered in the two analyzed spelling games. I feel that it is important to design for children around the educational objectives established by the schools. Children's tools should be built to spark motivation and appeal. Interaction is essential for the learner rather than simply presenting information. Correct responses should be appropriately reinforced. Information presented to a learner should be valid and valuable. Metaphors should be observed and implemented which will assist users in relating new media to other, more familiar ones.

One of the most important factors in any design is layout. Young children exposed to well designed media will eventually not accept anything less. Another concern is the appropriateness of the graphics. Art for children can conform to the audience without mocking the brain. Visual observation tends to be the most convincing evidence. Children never forget, yet they do not always consciously remember. Children, being less capable of translating abstractions into actualities, need visual representation more than adults. Children have a lack of experience and less ability to interpret visual clues. Therefore art for children needs to be clear and concise. Symbolism, illusions and imagery can be used but only from a child's point of view with fairly forward interpretations. In addition, the layout should be precisely thought out to insure consistent navigational applications.

Abstract

APPLICATION Monster Spells is a spelling game that can be used in any environment which utilizes a Macintosh computer. However, I was primarily focusing on the school environment. Educational games have many applications. They can help children learn facts and skills that will build on their learning experience in a positive manner.

Players learn what they need to know to play the game. If the game is well designed and contains valuable information, the skill and content can be applied

immediately by actually playing the game. By interacting with the game, the knowledge is likely to be retained for a longer period of time then by other means.

Repetition is an important factor for the user to internalize the content of the game. Games convey the message that learning is a human activity, dependent on human interaction and involving shared understanding rather than adaptation to authority, especially if skill and chance are appropriately mixed.

Game provide opportunity for people with different levels of skills to learn together, in a way which is equal and enjoyable. If used in the classroom, theycan provide opportunities for users to share experience and discoveries.

PROCESS

The early stages of development of my project began with brainstorming words (refer to pg 42) which related to children computers and education. The list was designed to help generate ideas for my thesis. The list assisted me in developing a company , Mind Over Mouse. This imaginary company represents is a corporation that would develop children's interactive educational software. The logo was integrated into an animation that portraysa the company name. The animation was intended to function as the front end of my children's program, Monster Spells.

Beginning research was difficult because my topic does not appear as a subject in the Library. (refer to pg 70)

I then had to use alternative topics to find the related material. One of my advisors suggested that I contact the Bank Street College in New York City. They sent me several technical reports. These documents were very helpful. Not only did they cover the colleges progress with children's programs, but also design concerns and technology and education. The Bibliographies were informative and useful. Several resources in the Wallace Memorial Library assisted me in my research. These included the CD Rom, Microfiche, Microfilm and periodicals. I found some of the material in books, but the information was limited by small sections. The majority of the books and articles were obtained through inter library loans.

Through my research, several ideas emerged. I decided that the interface should be similar to an environment in which the children were familiar. Levels of completion, a reward system and strong navigation became important considerations. I targeted two age groups, 6-9 and 10-12. (refer to pg 71) My initial framework for developing the program was as follows.

Reflect real life events Reward system
Different levels Many paths
Concept approach Nonlinear
Choices produce different events
Warm interaction
Consistent screen design

Map
Clear navigation
Good use of color I presented these ideas at my first committee meeting, with
my advisors Jim Ver Hague, John Ciampa and Mark Collien. They all felt that I needed to concentrate on a specific area. They also suggested the evaluation and testing of existing children's educational programs against a set of criteria. Other points discussed were graphic assumptions, realism versus non realism, and violence versus nonviolence. In addition, they thought I should look at programs that are extremes in terms of the criteria.

After the meeting, I narrowed my target group to children 6-9 and limited the program's content to spelling. I choose to create my project in Supercard and Macromind Director because of their capability, scripting abilities and color dynamics.

As part of my investigation, I contacted the Board of Education for information on the state requirements for each grade level. I spoke to a man named, Mr. Desoto. During this conversation I learned that there are not any guidelines or criteria for the amount of education a child should have by the end of each grade level. He said certain schools may have their own criteria but its not state wide. Schools are, however, required to teach specific subjects including arithmetic, reading, writing and physical education.

There are two state tests given called the PEP and PET. PEP is given to third grade for reading and math, fifth grade for writing, and sixth grade for social studies. The PET is given to the school to assess that the subjects are being taught.

Mr. Desoto is on a committee that is trying to pass a bill called "The New Compact for Learning". This includes in its proposal setting NY State standards for the criteria for each grade level so there will be consistency state wide. Mr Desoto said that the reason NY State has not set standards prior is due to the exceptional excellence in the NY State school system as compared to the rest of the country. This information led me to wonder how any existing educational software was produced and where it's criteria came from. Due to the lack of information, I had to find an alternative source to obtain the parameters of vocabulary for my targeted age group.

A member of my committee recommended researching learning development theories to help formulate the vocabulary list. Piaget's theory was the most conclusive. In reading more in depth I felt there was great significance in his acquisition of vocabulary but the content did not fit the needs of this specific project. Piaget's age 2-10 was too broad for me to narrow down to my group 6-9. Therefore I was not able to formulate a list of words that children at each age level could be expected to know. I did however, collect information that would latter help in the actual design and functionality of my program.

I then decided to use the word lists found in school reading books. These books are not necessarily nationwide but the Houghton-Mifflin is the most popular book used. The Fyle Elementary school reading teacher put together a
vocabulary list from the back of each book for grades first, second and third which best corresponded with my age group. (refer to pg 50)

After obtaining the word lists, I contacted two sources, Boces Software Library and Apple support Pittsford. I was hoping they would let me look at their Macintosh children's programs. Apple Pittsford said they did not have software on the premises and suggested speaking to Ester Kegan at Boces. Mrs. Kegan told me that they had very few Macintosh programs but over 500 for the Apple II computer. When ordering the few programs they had, the Fyle school librarian let me look at hers. The selection was much bigger than Boces. I spent several hours looking at the programs. I reviewed the following programs: (refer to pg 43)

Bannermania	Word Munchers
Earth Quest	Masters Blasters
Kids Time	The Playroom
The Printshop	The Oregon Trail
The Writing Center	

Exploring this wide range of programs designed for children gave me a good sense of what's out there. I began putting together in my head all of the concepts I felt were strong and weak. These would later be included in a criteria list to evaluate children's programs.

At this point my goals became clearer. I decided the strongest type of program, in addition to classroom
procedure, would be in the form of a game. This game needed to conform to its tool the computer so its success depended on the medium. Word picture association and progression in difficulty would be incorporated into the game's structure. At this time I presented my final thesis statement to my committee:

I intend to design and develop a children's educa tional game that primarily focuses on spelling and picture association in context for ages 6-9.
I felt that my goal should be designed as a sophisticated and valuable learning tool not a video game. The functionality of the electronic video game is important but there needs to be distinction between "playing for self" and "playing for the mind".

I completed my criteria for analyzing children's computer programs (refer to pg 44) and chose to apply this to the games "Word Munchers" and "Word Quest". Both of these were created to help children with spelling. I felt these two games were extremes in terms of successfulness. (refer to pgs 45-48) Upon completion of analyzing and testing the two games I began my own. I first sketched out ideas and five possible games arose. (refer to pg 49)

Game 1

This game would show the picture of the word then ask the child to spell it. Every correct letter turns part of the picture into the word. The child scores points for every correctly spelled word. If the child cannot spell the word he/she can push the help button and the wordwill spell itself. In either case after the word is correctly spelled a new screen will appear. At the end of the game they will be asked their name and
their score will be entered into a scoreboard. The game isscored by user receiving 1 point for each correct letter. This does not include the use of the help button.

Game 2

The child looks at the picture and chooses the correct spelling of the word. Each correct choice adds points, while each wrong choice deducts points. The game would have several levels, each one increasingly more difficult.

Game 3

The child is shown nine boxes, with an object drawn on each. On the right side of the screen is a list of words that matches the objects. Each word highlights for a certain amount of time. Within this time the child has to choose the correct corresponding picture. Each game keeps track of time and it is recorded.

Game 4
The game presents the child with 12 words in boxes. The object is to choose all the words that are related. If the child does not know a word they can click on the word to see its visual representation. Each screen is a separate game and there is a number at the bottom of the screen which shows how many words they need to find.

Game 5

The child is shown a covered picture and below are blank spaces for the corresponding word. At the bottom the alphabet is provided. On the right another blank box and below a score box. The child clicks on the letters in the alphabet and correct choices appear in blank spaces. For example if the word is frog then if " f " was chosen it would appear in the first space. Every correct choice reveals a part of the picture. If an incorrect letter is chosen part of a character is added to the right hand box. If the character is completed; the game ends. The score box keeps track of mistakes made. Each screen is a new game.

After careful analyzing, I decided to elaborate on game 5 . I conceptualized the structure of the game by designing a flow chart. (refer to pg 51) Many features were added to enhance effectiveness such as levels of difficulty, a help section and a front end control screen. Each level will have a certain number of screens, that each represent one word. As the user completes a level, an animation is played. In addition the words would be randomly picked to assure the game would be different each time played. When I received the vocabulary list, I selected words which could be easily represented graphically. This is so the users can easily identify the picture even if only parts of it are showing. The visual should be used to give the user clues to spell the word. I felt verbs would be hard to identify without the entire picture showing.

In the early stages of actual development, I had intended to use only Macromind to create the game. I ran into problems displaying an entire alphabet on the screen. Macromind only allows 24 objects on the stage at once and there are 26 letters in the alphabet. To correct the situation, I broke the alphabet into segments and an arrow would control the showing of other segments. The screen had to be redesigned. (refer to pg 52) A quit button was added to let the user get out of the game at any point. The functionality was expanded. A message box would appear saying "try again" if a wrong letter was selected. Instead of having
just two animations my committee suggested designing an animation for each word. I thought this would strengthen its educational implications by presenting the word in another form. Repetition enhances the likelihood a child will retain the message. The screen was designed in colors with similar hues to be stimulating but not take away from the visual representations.

I was still concerned about having the alphabet segmented. I felt if the alphabet was not all on the screen at once the user would tend to pick from the first segment first reducing odds. This was an important implication in the success of my game so I moved my game into Supercard in which their are not any limits in the amount of objects displayed. (refer to pg 53) I also replaced the message boxes with a real voice and choose a letter with a "boing" sound for a wrong letter and a "magic" sound for right letter. To continue designing I needed to name my game. After brain storming I came up with a list of possibilities.

Words, Words and More Words
Monster Word
Word Monster
Word Elf
Words and Imagination
Monster Spells
Creative Spells
Word Spells Monster
I tested all the possibilities and Monster Spells was the most
popular. The final Flow chart was created for Monster Spells (refer to pg 54)

I developed an interesting looking creature for the character in the game which I classified as a monster. The monster was originally drawn with big teeth but later was refined to just a smile with its tongue hanging out. (refer to pg 55) This was because of the negative impact the teeth had on children as well as many adults. I dressed the monster in clothes to make its appearance more familiar and friendly.

The game begins with an animated title after which the monster appears jumping and four choices are presented, level 1, level 2, level 3, and a help. (refer to pg 56) The monster jumps up and down until one of the choices is made. The user is informed of this by the voice of the monster which says: "Welcome to Monster Spells, (Ha, ha, ha,ha,ha) choose level 1,2 , or 3 , if you are confused click help, if you are done click me to quit.

The voice was first recorded by a male but later changed to a more neutral voice. I did not want t set up the monster as a male and the voice of the words being said as a female. I think this would create a parallel in male/female identity for the user.

If help is chosen the next three screens would explain the game more in depth. (refer to pg 57) Following the explanation of the game is a blank screen with typed descriptions on each part. (refer to pg 58) Linked to this
screen is a practice game that the user just watches. All of the help screens have links back to front screen with the choices.

I further cut down the vocabulary list for Level 1 to twelve words: egg. fly, lunch, kite, pencil, ghost, alphabet, yellow, turtle, duck, juice, stamp. I used the word, egg, as the practice word too. I was concerned at the level of detail needed in drawing the visuals, so the user could easily identify them. I went back to a study I had found early in my research. This study compared photos to drawings and computer images. The study emphasized that children generally do not pay attention to detail and that they first look for prominent shapes to determine objects.
(refer to pg 59) With this in mind, I drew the outline of the objects in Adobe Illustrator then screen dumped them into Macromind to add color. I colored the objects in bright vibrant colors to contrast the screen. If the image was too large for game space, I screen dumped the image into Photoshop to resize. In Photoshop I broke up the images into pieces. The number of pieces corresponded with the number of different letters in each word. For example, eggs has three different letters so the picture was broken into three equal pieces.

In creating the actual stack for Level 1, I started with two cards. The first card is blank but hides a field with the list of cards on it. Each level is programmed to open to the blank card and then randomly pick from the rest of the cards to begin. (refer to pg 60) This assures every game will be
different. Each card has an arrow that randomly takes the user to another card for a new game. (refer to pg 61) The stack keeps track of every card shown by a global container and does not go to any card that has been put in the global. I put a script on each card that set the mistake box to 10 , clears out letters at the top and hides appropriate objects. (refer to pg 62) The quit button takes the user back to the opening animation and choices so if they did not really want to quit they can choose the level they were on again.

In addition to the sound on the letters, a script was put on each. Wrong letters, when chosen, uncover the next part of the monster. (refer to pg 63) Correct letters in the word were programmed to show part of the object and the matching letter in the word. When the last letter to complete word is chosen the script plays my voice saying the word. (refer to pg 64) Next, the matching animation is played. In designing animations I wanted to portray the object in actual context. Each animation is fairly short and repeats the word a second time. (refer to pg 65) If the word is not spelled before making 7 mistakes the monster says "You've tried with all your might. Next time I know you'll get it right." After completing all twelve screens the user is asked if they want to go to the next level or quit.

After completing level one I tested the game on six children of appropriate age. The results were very positive with a few minor suggestions. (refer to pg 66) Many children wanted some sort of clue or help. To remedy this I
added a field at the top of the screen to keep track of the letters chosen. This field was supposed to have white letters but the program keep defaulting to black so I made the field pink. (refer to pg 67) By trial and error I finally got the field to hold the white property. At this point I changed the monster's mouth to being a smile because some children and adults felt it was too scary. The mistake box was changed so it would never go below zero. This prevented the user from continuing to play after game was over. Clicking correct letters when game was over will play the animation again. The game seemed to be finished in terms of functionality when changes were implemented. I had to continue finishing the next two levels.

After consulting with my committee, I changed the monster from being uncovered to putting down one of his fingers every time an incorrect letter was chosen. This increased the mistake number to ten which I felt would be better for the users. Restrictions were put on the top field so maximum amount of letters it could hold were 10. By presenting the monster uncovered the curiosity is eliminated so the user will not intentionally choose incorrect letters. In addition if the picture is uncovered by correct choices the uncovering becomes a reward. Therefore it could be assumed uncovering the monster is a reward.

The overall screen design was unbalanced, so I colored the background muted pink. The muted pink color enhanced the dynamic effect of the screen. By changing the
background picture color I had to adjust the pictures.
The next few committee meetings were for further refinement and fine tuning. The following changes were implemented.

> -lighten the blue color in Level object on screen -open spell books faster in beginning animation -give a clue by showing one letter and one part of picture on each card -redo yellow picture and change house to a lemon -incorporate monsters face on stamp instead of flower

Game was finally complete and functioned well. The game can only run at normal speed on an Macintosh II fx. I made some additional adjustments but visually everything remained the same. (refer to pg 67) Upon completion of the entire game I retested it. Responses were all positive and no other suggestions were made. Most of the children did not want to stop playing.

EVALUATION AND PROJECTION

Graphics and Illustrations
I evaluated Monster Spells by the criteria list which I formulated and added more indepth explanations when appropriate. (refer to pg 44) There was a significant amount of information on art for children but not specifically on computer generated design. I applied the information acquired to computer design for children and used this to create the graphics for Monster Spells.

Testing Monster Spells proved successful so I feel the
graphics were appropriate for children and more specifically my targeted age group. I decided to draw the objects myself as opposed to using photos primarily to exercise the full medium. This decision was also influenced by the study of Computer Generated pictures and children. This results of this study proved that a child does not view an entire photograph just the foremost image. The rest of the information is not internalized possibly due to their short attention span. The graphics I designed are original but reflect and mimic their real properties.

In terms of the screen design, the layout is consistent and easy to understand, therefore as a whole complements the game. I am still not sure if the readability of the level object on each screen is effective. I think it completes the screen but is not viewed as information important to the users. The placement may not be the most appropriate. The blank spaces in relation to the frame that holds the picture is not always evenly placed. This is due to the different lengths of the words and was unavoidable. From a design point of view, depending on the length of the word, it appears unbalanced.

The monster is also computer generated. It's colors were chosen to portray the monster as possessing human qualities while keeping its total being imaginary. I feel the pictures of the words complement the screen because they have dynamic brilliant colors, while the screen design is more placid. This keeps the users attention on the pictures
while playing the game.
I choose Helvetica for the type to stay within the realm of the age group. Children 6-9 generally are not yet exposed to serif type and are still polishing up their printing skills. Helvetica is the closet font to the children's educational material. Monster Spells exploits the color potential of the computer extensively.

The color creates interest and curiosity providing a comfortable learning environment. I do not believe that color over stimulates children and tends to confuse their perception as I have read. On the contrary the testing of Monster Spells has proved the opposite in this type of application. The design and layout is consistent throughout the program. Only the words and pictures change with each new game. I feel that the graphic representations of the words are clear and informative, otherwise the game would be to difficult too play. The overall design through testing appeared to be aesthetically pleasing to the children as well as many adults. My only graphic assumption was that to design for children you need to follow all the existing design parameters used for adults, to have an effective outcome. I think Monster Spells captures my assumptions and is enjoyable for people other than the targeted age group.

Computer Software

The object of Monster Spells is to present an aspect of learning in a way that takes the material a step beyond
normal classroom presentation. I feel the aim is met because this program utilizes a combination of many different media present in the computer environment. The educational implications of Monster Spells provide additional stimulus to material presented to further assure it is internalized by the user. The computer environment with its interactive interfaces will become an important asset to our educational system.

Through testing and retesting, Monster Spells has proven its effectiveness as a learning tool. Without implementing the game in an actual classroom lesson, I cannot be sure of its future implications on the user. I can only theorize from my research. In the early stages of the game the navigation was limited, through refinement I feel it was extended to its capacity. The game provides ways of getting to any part of the program quickly including at any point being able to quit the game.

Realism verses non-realism is an important issue for Monster Spells. The concepts are realistic, especially in the animations while the graphics are unrealistic. In this specific application the use computer generated pictures helps retain attention of the user while not jeopardizing the fundamental process of learning. Through watching the children's reaction and gestures I was able to assess that the program was especially significant to the targeted age group.

Monster Spells does not take full advantage of the computers abilities for interaction. The game utilizes the
mouse exclusively fro navigation and control. This is important, but the interface is limited because the user can only navigate the game using the mouse. I feel to implement the full capacity of the medium the user should be able to use the keyboard as well.

The program is free of all grammatical and spelling errors. There is one factual error and that is the ghost ani-mation. The ghost is portrayed floating out of a gravestone but considering there are no known concrete facts believed universally I used my best description. Monster Spells rewards successfully spelling a word with an animation. If the user cannot spell the word the monster asks the user to continue on and try a new word. I feel the reward is effective because it illustrates an accomplishment which the child reacts to positively.

To run Monster Spells any color Macintosh II will work. The Macintosh II fx has enough power to efficiently run the game at a speed comparable to a video game. The format of the material using spelling words is appropriate because it parallels a popular children's game named Hangman. Hangman has been played for generations.

The colors of the graphics and monster have an eye catching quality that children are attracted to. The sound effects are an important facet to my program because they introduce the user to the program, give directions and reinforce the learning content. Monster Spells incorporates many senses. The game stimulates these senses by the use of
visual effects primarily portrayed through the animations. CONCLUSION

Throughout my work on this project, I learned and was enlightened by the incredible diversity of computers and education. Several issues I found important were as follows. First, I learned about children and education. This is important because the understanding of children assists me on planned future projects. The use of actually programming every step to each part of the game helped me understand the direction of logic needed to implement the program. I find that programing is a much more tangible skill learned. Finally, actual software design issues trained me to filter all the necessary components from the unnecessary components of the software design.

1 Seymour Papert, Mindstorms: Children, Computers and Powerful Ideas, (New York: Basic Books, 1980), VIII.

2 Seymour Papert, Mindstorms: Children, Computers and Powerful Ideas, (New York: Basic Books, 1980), VIII.

3 Seymour Papert, Mindstorms: Children, Computers and Powerful Ideas, (New York: Basic Books, 1980), 4.

4 Tom Synder and Jane Palmer, In Search of the Most Amazing Thing: Children, Education and Computers, (Massachutes: Addison-Wesley Pub., 1986), 109.

Char, Cynthia. "Research and Design Issues Concerning the Development of Educational Software for Children." New York, New York: Bank Street College, Center for Children and Technology, 1983.
ERIC ED 257542
Cianciolo, Patricia. Illustrations in Children's Books. Iowa: W.M.C. Brown Company Publishing, 1970.

Collins, Allan and John R. Frederiksen. "A Systems Approach to Educational Testing."
New York, New York: Bank Street College, Center for Children and Technology, 1989.
ERIC ED 25754
Culbertson, Jack A. and Luvern L. Cunningham, ed. Microcomputers and Education. Chicago: University of Chicago Press, 1986.

Design Department. "Hypermedia and Design." Beyond Timid Steps.
England, Claira and Adele M. Fasick. Childview: Evaluating and Reviewing Materials for Children. Colorado: Libraries Unlimited, 1973.

Forbes, David L. and Mark T. Greenberg. Childen's Planning Strategies. San Francisco: Jossey-Bass Inc., 1982.

Frank, M. Young Children in a Computerized Environment. New York: Hawthorne Press, 1981.

Furth, Hans G. Piaget and Knowledge : Theoretical Foundations. New Jersey: Prentice-Hall, 1969.

Gebhardt - Seele, Peter G. Computer and the Child: A Montessori Approach. Maryland: Computer Science Press, Inc., 1985.

Ginsberg, Herbert and Sylvia Opper. Piaget Theory of Intellectual Development. New Jersey: Prentice-Hall, 1969.

Gregory, Richard L. and Pauline K. Marstrand. Creative Intelligences. New Jersey: Ablex Publishing Corporation, 1987.

Hawkins, Jan. "The Interpretation of Logo in Practice." New York, New York: Bank Street College, Center for Children and Technology, 1985. ERIC ED 257542

Hawkins, Jan and Karen Sheingold. "The Beginning of a Story: Computers and the Organization of Learning in Classrooms." New York, New York: Bank Street College, Center for Children and Technology, 1984.

Hurt, Jeffery A. and Robert F. Kirk. "How Do Young Children Interpret ComputerGenerated Pictures?" Computers in the Schools. November 1988, 99-111.

Irwin, Martha E. "Connections: Young Children, Reading, Writing and Computers. Computer in the Schools. Spring 1987, 37-51.

Jewson, Jan and Roy D. Pea. "Logo Research at Bank Street College." Byte, July 1981, 332-333.

Kay, Alan C. "Computers, Networks and Education." Scientific America, September 1991, 138-148.

Keag, R.M., K.M. Swigger and J. Herndon. "Designing Software for Children." Software, Practice, Experience. May 1984, 451-461.

Kurland, D. Median. "Software in the Classroom: Issues in the Design of Effective Software Tools." New York, New York: Bank Street College, Center for Children and Technology, 1983. ERIC ED 319372

Marchioni, Gary. "Hypermedia and Learning: Freedom and Chaos." Educational Technology. November 1988, 8-12.

Mawby, Ronald, Catherine Clement, Roy D. Pea, and Jan Hawkins "Stuctured Interviews on Children Conceptions of Computers." Bank Street College, Center for Children and Technology, 1984. ERIC ED 249932

MacCann, Donnarea and Olga Richard. The Child's First Books. New York: H.W. Wilson Company, 1973.

Muller, James H. "Young People's Logo Association." Byte, August 1982, 331-332.
Kurland, D. Median. "Functional Evironments For Microcomputers in Education."
New York, New York: Bank Street College, Center for Children and
Technology, 1984.
ERIC ED 253195
Papert, Seymore. Minstorms: Children, Computers and Powerful Ideas. New York: Basic Books, 1980.

> Pea, Roy D. "Beyond Amplification: using the computer to reorganize mental functioning." New York, New York: Bank Street College, Center for Children and Technology, 1984.
> ERIC ED 297706

Pea, Roy D. "Intergrating Human and Computer in Intelligence." New York, New York: Bank Street College, Center for Children and Technology, 1984. ERIC ED 257449

Pea, Roy D. and Karen Sheingold. "Mirrors and a Minds: Patterns of Experience in Educational Computing." New York, New York: Bank Street College, Center for Children and Technology, 1984
ERIC ED 257449
Pea, Roy D. and D Midian. "On the Cognitive Effects of Learning Computer Programming." New Ideas in Psychology. 3 February 1984, 137-168.

Pea, Roy D. "Prospects and Challenges for Using Microcomputers in Schools." New York, New York: Bank Street College, Center for Children and Technology, 1984. ERIC ED 257449

Piel, A.J. and A.W. Baller. "Effects of Computer Assistance on Acquisition of Piagetian Conceptualization Amoung Children of Ages 2-4." AEDS Journal. Winter/Spring 1986, 210-215.

Polette, Nancy. E is for Everybody. New Jersey: The Scarecrow Inc., 1976.
Poltarness, Welleran. All Mirrors are Magic. New Jersey: Green Tiger Press, 1972.
Rayner, Keith and Alexander Pollatsek. The Psychology of Reading. New Jersey: Prentice-Hall, 1989

Roberts, Ellen E.M. Non-Fiction for Children. Ohio: Writers Digest Book, 1986.
Sheingold, Karen, Jan Hawkins, and Cynthia Char. "I'm the Thinkist, You're the Typist: the Interaction of Technology and the Social Life of Classrooms. " New York, New York: Bank Street College, Center for Children and Technology, 1984.
ERIC ED 249924
Sheingold, Karen and Janet Kane. "Microcomputer use in Schools: Developing Reasearch Agenda." Harvard Educational Review. 53 April 1983, 412-432.

Sheingold, Karen, Janet Kane, Mari Endrewweit, and Karen Billings. "Study of Issues Related to the Implementation of Computer Technology in Schools." New York, New York: Bank Street College, Center for Children and Technology, 1981.
ERIC ED 319370
Sheingold, Karen. "The Microcomputer as a Medium for Young Children." New York, New York: Bank Street College, Center for Children and Technology, 1984. ERIC ED 249923

Solomon, Cynthia. Computer Environment for Children: A Reflection on Theories of Learning and Education. Massachutes: MIT Press, 1986.

Spencer, C. "The Impact on Today's Children." Personal Computing, October, 1986, 153-157.

Sutherland, Zena and Mary Hill Arbutnot. Children and Books. Chicago: Scott, Foresman and Company, 1986.

Stonier, T., C. Conlin and Wiley. The Three C's : Children, Computers and Communication. New York, New York, 1985.

Synder, Tom. In Search of the Most Amazing Thing: Children, Education and Computers. Maine: Addison-Wesley Pub., 1986.

Valdermar, Setzer. Computers in Education. Uk, Edinberg: Floris Books, 1989.
Watson, J.A., Carole S. Nelson and J.C. Busch. "Getting Hyper: Will Hypercard and Hypermedia Speed Public Educations Shift to Technology?" Instuctional Delivery Systems. November/ December, 1988.

Wilson, Kathy and Bill Tally. "Looking at Discovery-Oriented Multimedia. " New York, New York: Bank Street College, Center for Children and Technology, 1991.

Yazdani, Masoud and R.W. Lawler. Artificial Intelligence and Education: Vol. I: Learning Environments adn Tutoring Systems. New Jersey: Ablex Publishing Company, 1987, 78-94.

Yazdani, Masoud. Tomorrow's Classrooms. New York, New York: Wiley Interscience, 1987, 17-20.
Brainstorming 42
Analyzing Existing Software:
Initial Reactions 43
Analyzing Criteria 44
Word Munchers 45
Word Quest 47
Project Ideas 49
Vocabulary Lists 50
First Flow Chart 51
Early Screens 52
Final Screen Sketches 53
Final Flow Chart 54
Monster Sketches 55
Front End Screen 56
Help Screens 57
Explanation Screen 58
Study: Children and Computer Pictures 59
Scripts:
Project Script 60
Arrow Script 61
Card Script 62
Incorrect Letter Script 63
Correct Letter Script 64
Animation Sketches 65
Testing Results 66
Final Game Screen 67
Additional Information 68

child	parents	poems	teeter	camping	scientific
computer	grandparent	stories	boats	cub scotts	notations
interactive	happy	monsters	swimming	brownies	applications
urprize	sad	religin	pool	pajamas	help menu
nteractive	moon	questons	raft	wheels	startup
colors	prayer	answers	waterwings	slippers	shutdown
toys	stars	why	effort	visit	modem
characters	sun	peopl	hyper	clubs	vax
toon	love	strangs	rubberduck	racing	computer
tdoor	friends	room	mud	casual	ard drives
platground	dolls	bed	taste	fishing	hair
swing	trucks	morriors	sweets	doctors	joystick
slide	curiosity	struggle	little	shot	cursor
animals	exploration	fights	bunny	nurse	color
kitten	fun	brat	girl	cowboy	disk
dog	water	creative	boy	barettes	menu
cat	beach	library	willow	barbies	floppy
tricycle	dressup	ponytails	movies	bully	storage
clown	jewerly	baths	cartoons	bugs	access
bicycle	hats	buds	day	leaves	visual
sand castles	balloons	time	running	bows	virtual
school	$z 00$	timeout	parks	spaghetti	hand-eye
smile	lollipop	ice cream	rollerskates	cheese	coordination
candy	chocolate	jingle	fingerpaints	chips	active
tears	gumballs	mother	sneakers	snacks	spell
cookies	sneakers	popsicle	baseball	naps	apple
books	jeans	man	hot dog	educating	grammer
playmate	mittens	skateboard	applejacks	mouse	teacher
PBJ	snow	neighbor	oatmeal	monitor	brightness
expressions	snowflake	family	excitement	interactive	develope
emotions	babysitter	christmas	cry	keyboard	design
scrape	arithemetic	easter	curls	programs	create
cut	reading	halloween	barn	CPU	mind
scrape knees	teacher	holiday	need	RAM	environment
treehouse	lunch	valentine	support	ROM	calculations
climbing	cafeteria	paperhearts	wild	microchip	desk
detective	flowers	lace	scared	boards	80/40 MB
sports	nature	adorable	kool-aid	basic	32 bit
eagermess	rain	swim	vacation	fortran	
growing	horses	beach	camping	cobalt	
develope	TV	cooking	cubscot	drawing	
spirit	jumprope	sandbox	clubhouse	spreadsheets	

The Writing Center: a simplified Microsoft Word program, used for writing letters and papers, the program is not laid out real well, hard to follow instructions child is better off using an adult word processing program.

Earthquest: no age level specified, the program is a Hypercard stack with many various links, stack intended for educationl use, very complex, easy to get lost, graphics good but crowded, no instructions.

Kids Time: nice idea but poor execution, educational program, screens very empty in design, not very appealing, no age specified, different sections which are seperate excerises, instructions okay but no help section.

The Printshop: extremely hard to use, seems more appropiate for adults than children, writing program.

Bannermania: a very simple delightful banner making program, no age specified but great for children, easy to follow instructions.

Word Munchers: a game focused on vowel sounds, well designed screens and graphics, sound included, fun and challenging, easy instructions.

Math Blasters: only numbers no graphics, not very effective without pictures, easy directions, interesting reward system for correct answers.

The Playroom: very well done young childrens exploration tool, no words, everything is clickable.

The Oregon Trail: decision making is the object, child learns how to plan, object is to get from one point to another, things happen along the way.

Computer Software

1. What is the aim of the program?
2. Educational Implications?
3. Effectiveness in purpose?
4. Level of control?
5. Realism vs. non-realism?
6. Violence vs. non-violence?
7. Is the program simple enough to be used by children of the appropriate age?
8. Does the program take advantage of the interactive qualities of software effectively?
9. Is the program free of grammatical, spelling, and factual errors?
10. Does the program avoid making failure more attractive than success?
11. What type of equipment is needed to use the program?
12. Is the format of the material appropriate for the presentation of content?
13. Will the format appeal to children of the age for which the materials are designed?
14. Are the sound effects and visual effects suitable to the program?

Graphics and Illustrations

1. Are the illustrations or graphics appropriate for the audience?
2. Are they understandable for the age level they are being used for?
3. What type are used (photos, line art, college, other)?
4. Are they stereotyped, average, competent but not original or exceptional in some way?
5. How does the illustration or graphic complement the situation?
6. Are they appropriately placed in relation to the other elements which are portrayed?
7. Is there a unity of text and illustration or graphic?
8. What medium is used?
9. Does the color or medium in any way contribute to the situation?
10. Are they consistent throughout the situation?
11. Are the pictures or elements clear, informative, aesthetically pleasing?

Computer Software

1. The aim of the program is to learn letter sounds and match them up with other words. The program is set up as an educational game.
2. Educationally, I feel the program is very strong. The sounds contained in words are important in recognizing other words. These words can appear in spelling reading and almost anywhere.
3. The program works because while the child plays the game, he/she is constantly repeating the sound to match to other words. Through repetition the words and sounds are reinforced therefore retained.
4. The level of control is strong. At anytime the user can see how many men they have left and their score. There is always the option to Quit or Pause the game. The screen also provides the current level. Every option is readily available at any point of the game.
5. The game has imaginary creatures that are very likable. The user controls a muncher and the bad guys are the troggles. The idea of capturing something without being caught by the bad guys is appealing to children.
6. After completing a level, an animation is played. Each animation portrays a chase between the two characters. Kids really get a kick out of this but I feel the animations are unnecessarily violent. There is enough violence around that kids see and educational games should not portray it.
7. The program was intended for ages 6 and up. These age levels are appropiate for the content of the game. I found in testing this game even adults felt it was a challenge.
8. The program is highly interactive, similiar to a video game. The mouse is the tool used to navagate the muncher. The space bar is pressed to eat a word.
9. The program as far as I can tell is free of grammatical, spelling and factual errors.
10. The program makes failure less attrative by using a low sound anddisplaying a message. The message asks if you want to hear the sound again because the word choosen does not match. When a wrong word is choosen you lose a man. The user has no chance of getting another. If a corect word is choosen the muncher eats it and points are added to your score. If your score beats already played games you can enter your name into the word munchers Hall of Fame.
11. The game uses a Macintosh computer and can be played in black and white or color. This is a nice feature.
12. The material is not in any presented in a familiar.
13. The program was designed for ages 6 and up but through research I found the more appropiate age to be 10 and up. The younger kids really struggled with this game and eventually became frustrated enough to quit.
14. The sound effects and visual effects are suitable to the game in most cases. This is not true when you open game. If you do not choose anything the game automatically defaults to the practice game. The practice game is a pain because there is no way to quit until you finish 4 screens.

Graphics and Illustrations

1. I think the characters are very creative fictional beings. They are easy to like.
2. Yes, the graphics are understandable in the games environment.
3. The graphics are computer generated.
4. The characters are definitely original and nicely drawn.
5. The layout and design is aestetically pleasing. The screens are mainly white with black words. This is good for readability. The characters stand out effectively against the rest of the screen.
6. The placement of information is uniform in this game. The amount of men, level and score are placed on the bottom in a row, easy to see while playing the game.
7. The program is very consistent, you know exactly where you are and where you're going. The actual game screen is the same every time you play and at every level. There are no surprises.
8. The color definitely adds to the game but I feel it is still challenging without color. Either version can hold the attention of the user.
9. The graphics are consistent on all the screens. The actual game screen is the same everytime you play and at every level. The beginning screen is easily recognized. It is graphically different but all choices are still available. The "Hall of Fame" screen is designed very differently but this lends to its purpose. If the user does well their score and name gets entered.
10. The pictures and elements are designed very professionally. They look well thought out with children's ideas in mind.
11. I think the designer created these characters with the video game PacMan in mind. A game most children are familiar with. They also assumed that the idea of the chase with, a "good guy" hurting a "bad guy", is appealing to children. These ideas were incorporated into the animations as well as the game's objective. In testing the game, I found the assumputions to be accurate. The overall game is familiar to the user because many of the concepts and parts mimic excisting media material.

Computer Software

1. The aim of this program is to teach spelling through an adventure in a magic kingdom. This kingdom has many places but user must beware of the wicked witch.
2. Educationally this game is poor. The words that are askedto spell are easier than what the user has to read to play the game. The user is asked to spell the same words again and again even though they were already spelled correctly. The game appears to have many levels all combined into one.
3. I feel because of the above reasons the program is not effective in its purpose.
4. The level of control is poor, eventhough the user is provided a map of the kingdom. There's no indication of where the user has been or where they are going. The user cannot control where they are going because every button goes somewhere that is not necessarily related to the position of the button. For example, a tree button might take you to the castle or a mouse hole button may take you to a kitchen. When the user is asked to spell a word, there is no choice but to spell it or hear it again. Icons for navigation are poorly designed. Even with labels, they are still impossible to figure out. The navigational choices are only available on the first screen. The map of the kingdom has choices but if you go to this card there is no way back to where you came from. This is primarily because there are no labels.
5. The program is a nonrealistic fantasy adventure with elves, castles and witch's. This type of subject matter is appealing to children.
6. Word Quest does not have any violent parts. This is appropiate because the game is an adventure and its for children.
7. The program is to complicated for the targeted age group. The reasons are poor nasvigation, inconsistent levels, unclear directions, complicated icons and the level of the words that are asked to be spelled.
8. The program takes limited advantage of the interactive qualities of hypercard. Buttons are the only form of navigation. Use of key board to type in words is a nice feature. It gives the user a chance to learn the keyboard.
9. The program is free of grammatical, spelling and factual errors but pronunciation is extremely poor.
10. The program attempts to make failure more attractive the success. If a word is spelled wrong the voice says that you missed spelled the word and you can try again later. If a word is correctly spelled a voice says "fine". If it is one of the magic words, a voice says "great". This voice is not very rewarding.
11. The equipment needed is a Macintosh computer either color or black and white.
12. Hypercard is a good program for this type of game.
13. The format of this game would be better if it was executed more professionally. The overall design and presentation is unsuccessful.
14. Sound effects are poorly recorded but definitely relate to the game. The visual effects are very simplistic.

Graphics and Illustrations

1. The illustrations and graphics are poorly designed. The children, I tested, did not find them appealing because they look like a child drew them.
2. The pictures can easily be identified, if the user knows what a witch, elf and castle are. Most children have been exposed to these subjects before.
3. The artwork was created with the Hypercard tools.
4. The graphics are simple but original in terms of design.
5. The illustrations compliment the program because they relate to the story and the adventure. There are a few objects just thrown in to fillup space. For example, a TV, potted plant andwall hanging these items generally do not exist in this type of story.
6. This question can only be applied to the map and the first screen. Both are designed fairly consistent in terms of relation and space of items.
7. There is unity of the text and the graphic on the first two screens. The text on the others screens is barely recognizable. The type font is not really a good choice because chldren are not familiar with serif type. A san serif type would have been more appropiate for the age group and readability.
8. The program does not utilize color. The graphics do however have graytones. The program can be played on any Macintosh because it is black and white.
9. The graphics are consistent on all the cards because they were abviously drawn by the same person. The first two cards have a different layout.
10. The illustrations are clear but not very informative. The children I tested did not find them pleasing.
11. I feel the designer thought children would prefer simplistic childlike graphics and that they would respond better to them. They developer must have also designed the program to be played by an adult and child because of it's difficulty.

PROJECT IDEAS

Game 2

Game 1 -variation

Game 3

Game 5

The table labeled Level B, Bells contains the 31 new words introduced in Bells. The words are listed by page in the order and form in which they first appear. High-frequency words are printed in red. Note, however, that all words introduced at this level are developed to instant recognition.

fun54

like 55,
in
want
56
think
look
home
did
What
out
find
see
cat
would
the
good
Take
But

Animals
too

Hat
big

The table labeled Cumulative Vocabulary contains all of the words introduced in Levels A and B. Teachers who wish to devise additional reading exercises will find the cumulative vocabulary list convenient. The words are listed in alphabetical order. Each word introduced in Bells is preceded by the number of the page on which it first appears. High-frequency words are printed in red. Note, however, that all words introduced at these levels are developed to instant recognition.

The following table contains the 38 new words introduced in Level C, Drums. The words are listed by page in the order and form in which they first appear. High-frequency words are printed in red. Note, however, that all words introduced at this level are developed to instant recognition.

1		25	my
2			day
3		26	Fox
4	me	27	need
	Turtle		tail
5	for	28	
	Rabbit	29	
6	this	30	
7		31	
8		32	Surprise
9		33	Mother
10		34	at
11			with
12		35	that
13	work	36	Some
	are		may
14	your	37	tell
15		38	more
16	where	39	
	little	40	
17	and	41	
18	be	42	
	OK	43	
19		44	
20		45	
21		46	Lunch
22	Kite	47	frog
23	Pig		red
	fly	48	
24	make	49	Yes
	friend	50	

51		54	soup
52	No	55	
53	56		

The following table labeled Cumulative Vocabulary contains all of the words introduced in Levels A through C. Teachers who wish to devise additional reading exercises will find this cumulative vocabulary list convenient. The words are listed in alphabetical order. Each word introduced in Drums is preceded by the number of the page on which it first appears. High-frequency words are printed in red. Note, however, that all words introduced at these levels are developed to instant recognition.

	a		get
17	and		go
	animal		good
13	are		hat
34	at		have
18	be		help
	bear $=$		here
	big		home
	but		I
	can		in
	cat		is
	come		it
25	day	22	kite
	did		like
	do	16	little
	find		look
<23	fly	46	lunch
5	for	24	make
C26	fox	36	may
24	friend	4	me
47	frog	38	more
	fun	33	mother

25 my
27 need
52 no
not
now
18 OK
out
23 pig
5 rabbit
47 red
see
36 some
54 soup
32 surprise ...
27 tail
take
37 tell
35 that
the
think
6 this
to
too
4 turtle $=-$
want
we
what
16 where
will
34 with
iz work
would
49 yes
you
14 your

The following table contains the 51 new words introduced in Level D, Trumpets. The words are listed by page in the order and form in which they first appear. High-frequency words are printed in red. Note, however, that all words introduced at this level are developed to instant recognition.

1
2
§ Bed
\therefore Father
book
on
thing
There

Pencil
smart
show
put
am
best
nose
place
jump
don't
forget
time
bring
tomorrow

Today
37
33

$$
42
$$

47
48
49
Oh 50 51 52

$$
=0
$$

box 5453

$$
41
$$

 Thank
play sing
They
Stop
read
She
He
Pet
please
Why

any

 runMrs.
fish

ROBOT

56	Duck	61	
57		62	how
58	much		word
59		63	
60		64	

The following table contains all of the words introduced in Levels A through D. Teachers who wish to devise additional reading exercises will find this cumulative vocabulary list convenient. The words are listed in alphabetical order. Each word introduced in Trumpets is preceded by the number of the page on which it first appears. High-frequency words are printed in red. Note, however, that all words introduced at these levels are developed to instant recognition.

	a		do
28	all	18	don't
14	am	-56	duck
	and	4	father
	animal		find
45	any	49	fish
	are		fly
	at		for
	be	21	forget
	bear		fox
3	bed		friend
15	best		frog
	big		fun
4	book		get
26	box		go
25	bring		good
	but	33	hard
	can		hat
	cat		have
	come	42	he
	day		help
	did		here

home
62 how
।
in
is
it
17 jump
kite
tike
little
look
lunch
make
may
me
more
mother
55 Mr .
47 Mrs.
58 much
my
need
35 nice
no
16 nose
not
now
24 oh
OK
6 on
28 one
out
12 pencil
43 pet
pig
6 place
36 play
44 please
14 put
rabbit
39 read
red
32 rest

46 run
29 school
see
42 she
13 show
37 sing

13 smart
some
soup
38 stop
surprise
tail
take
tell
35 thank
that
the
8 there
38 they
7 thing
think
this
24 time
to
27 today
25 tomorrow
too
34 try
turtle
want
we
what
where
45 why
will
with
62 word
work
would
yes
you
your

In the following table, the number beside each word is the page on which the word first occurs in Parades. High-frequency words are printed in red.

17
18
19
20
21
22
23
24 Idea
25
26 us
story
27 house
tree
28

29

30
31
32 down
33 our
34
Name

35

36 Say
said
37
38 swim
39
40 bread
Who
41 wheat
plant
42 myself
43 grew
44 cut
Well
45 pound
46 mill
flour
4765
6667

68
69 of
70
71
72
made
kind
73
74
75
76
77
78 Sale
live
his
sign
80 came
paint

48 eat
49
50 was
about
51 pictures
52
53 Bake
54 mix
dough
55 keep
Soon
56
57 Which
Start
58 walk
Count
59
60 orange
61 sandwich
62 juice
63 jar
went
64 coat

132		174	Five	218
133	give	175	dark	219
134	Key	176	Four	220
	lost	177	only	
135	her		Boohoo	
136	by	178	every	
	sat	179	crying	
137	pushed	180		
	still	181	nothing	
138	gave	182		
139		183		
140		184		
141	kitchen	185		
142	biscuits	186	Happen	
	roll		next	
143		187	boat	
144			worms	
145	fell	188	both	
146		189	line	
147	again	190	teddy bear	
148		191		
149	does	192	sister	
150	problem	193		
151		194		
152		195	laugh	
153			won't	
154		195		
155		197	stories	
156	Miss		ghost	
157	children	198	Very	
	decide	199		
158		200	family	
159	sick	201		
	cards	202	tight	
160	poem	203		
161		204	got	
162		205	scare	
163			scary	
164		206		
165		207		
166	feel	208		
	them	209		
167		210		
168		211		
169	Cubs	212	has	
	cute	213		
170	their	214		
171		215		
172		216	or	
173	three	217		

In the following table, the number beside each word is the page on which the word first occurs in Carousels. High-frequency words are printed in red.

1		34	Mile
2			Race
3		35	Goose
4			rocks
5		36	hop
6		37	shouted
7			finish
ε		38	Owl
9			ready
10		39	win
11		40	warm
12	library	4 ?	slowing
13	brother	42	
14	told	43	
15	last	$s *$	hill
16			fast
17	water	45	
	raining	46	
18		47	
15	Mouse	48	
\therefore	woman	$\triangle 9$	knew
	skates		ever
21		50	sentences
22			Map
23	first		before
24		51	- -
25	alphabetical		Opposites
	order	53	Sports
	aphabet		games
	letters		ball
$2:$	-こ ris	54	report
	rns		important
27	None	55	great
2:	- se		took
29	Seecial	56	
3.	authors	57	held
31	should	58	bat
32	librarian	59	hit
	mak	60	talk
33	Write	61	

62		101	Yam
63			grow
64	felt	10 ?	stick
¢		103	part
66	move	104	
67	away	105	
68		106	Stamp
69	share	(1)7	detective -
70			dinosaur
71	from	108	case
72	Dear	110	note
	Love		sticky
73	drew	110	lick
	wrote		side
74	must	119	left
75			same
76	tadpoles	112	
77		113	leave
78		114	head
79		115	smile
80	believe	116	
81		117	
82		118	puddles
83		119	happy
84		120	been
85		121	wet
86		122	
87		123	shoe
88	Garden		off
89	flower	124	slippers
90	just	125	
	prize	126	
91	As	127	
92	right	128	
	mess	12^{-}	
93	even	130	different
94			Save
95		131	
96		132	Main
97			sail
98			Most
99	colors	133	
100	Meaning	134	pens
	than		yellow

135	feeds		woods		legs
136	Pine	175			arms
	Second	176		216	
	Goat	177		217	
	Wind	178		218	
	Man	179		219	
	Fairy	180	hand	220	
137	sad		front	221	hug
	sorry	181	west	222	
138	better	182		223	
	blow	183		224	chicken
139	pretty	184		225	sense
140	tonight	185		220	also
141	needles	186		227	
142		187		228	Caps
143	Hello	189	Monster		wears
144	ate		cave	229	
145	morning	189	ugly	230	old
146		190	lovely		top
147	glass	191		231	
148		192		232	
149	break	193	People	233	
150	broke	194	hide	234	monkeys
	gold		under	235	
151		195	never	236	
152	food	196	deal	237	foot
153	wish	157	sure	238	angry
154		153	open		threw
155		199		239	
156		200		240	
157		201		241	
158		202	Describing	242	
159		203	ground	243	
160		204	birds -	244	
161		295	squirrel	245	
162		206	Moles	246	
163		207	\cdots	247	
164		208	fixed	248	
165			Grandpa		
166	shy	209	Nobody		
167	teacher	210	Mom		
	shake		hold		
168			pulled		
169	umbrella	211	ears		
	blue		dirty		
170	shook	212	mind		
171	grasshopper	213	stuffing		
	holes	214	flat		
172	girls		wrinkled		
173		215	scrubbed		

Vocabulary

Lever shdventures

The number before each word gives the page on which the word first occurs. Following is a list of words introduced in Adventures. High-frequency words are printed in red.

1		turned	
2		learn	
3		slowly	
4		30	spaghetti
5		shoelace	

$\left.\begin{array}{llll} & \begin{array}{l}\text { remember } \\ \text { farola }\end{array} & 59 & \begin{array}{l}\text { sells } \\ \text { musical }\end{array} \\ \text { lanterns } \\ \text { light }\end{array}\right)$

80		breathe			symbols	165	
81		107	pictograph	135	point	166	cold
82		108	exactly		north		gobbled
83		109	heavy		south		perhaps
84	balancing		black		east	167	potato
85	wheelchair		almost		compass	168	cabbage
	crutches	110	_ pails		rose		trotting
	careful		village	136	answer	169	
86	blocks		stuck		park	170	sill
	ten	111	edge	137	code	171	beautiful
	easy	112	tide	138	yard	172	hurried
87	tower		promise	139	meeting	173	
88	principal		die		secret	174	
	carnival	113			agents	175	imagine
89	pay	114	touched		barked	176	characters
	cheered		hurt	140		177	
90	space	115	lifted	141	paper	178	
	dominoes		throw		message	179	
	between	116	toward		clue	180	
91	curves		covered		invisible	181	
	watched	117	swam	142	milk	182	hero
	act	118	able	143			business
92	caught	119		144	followed	183	corner
93		120			across		questions
94	click	121		145	digging	184	okay
95	plastic	122	six	146			rake
96	oldest		bathroom	147		185	brave
	gather	123	leather	148			fire
97	hundred		spread	149	mirror		engine
98			butter	150	club		trouble
99		124	stomped		lots		firefighter
100	example		tub	151	send	186	board
	those		chick	152	belong		pinned
102	world	125	hid	153		187	thief
	sizes	126	snow	154	written		catch
	tiny	127	dreamed		copy	188	danger
103	tallest	128	rope	155	print	189	
	giraffe		tie	156		190	bills
	land	129	string	157	number	191	empty
	neck		photograph	158		192	bunch
104	weigh		through	159	referents	193	doctor
	sixty	130	faint		themselves	194	whom
	herds	131	spent	160	bought	195	common
	thousand		nine		brought		syllables
105	whale	132		161	several		often
	shark	133	earth		quickly		already
	gentle		city	162	apartment		cross
	small		neighborhood	163	dollars	196	added
106	sea	134	rivers	164	turnip	197	because
	seven				doorstep		always

			far	252	
199	elves		drive	253	
200	seemed		train	254	
	poorer	230	subway	255	
201	shop		tunnels	256	solved
202	price		monorail		match
203	sir		rail	257	
	buy		busy	258	pocket
	coins	231	jet		kangaroos
204	afternoon		airports	259	
205		232	helicopter	260	tears
206	daughter		straight		face
	eight		rocket		ride
207			astronauts	261	
208	rich		chance	262	course
	slip	233	large	263	bent
209	behind		sky		manage
	midnight	234	effect		bump
	lose	235	usually	264	baby .-
210	sewed		white		forest
	glued		worse	265	lions
211		236	minutes	266	
212		237		267	
213		238	hamster	268	
214	yesterday		hunt -	269	
215			nocturnal	270	eyes
216		239			apron
217	birthday	240	cage		tools
	bicycle		wire	271	
218	cost		wall	272	popped
	ninety	241	fed		whole
219	roller		cleaned	273	
	spun	242	slid	274	wife
	guess		floor	275	
	paid	243	fit	276	
220	kid	244	began	277	
221	softball		wastebaskets	278	
	teams		lettuce $>$	279	
	town	245	pile	280	
	tickets		leaned	281	
222	rode		traps	282	
223	really		climb $=$	283	
224	umpire	246		284	
	inning	247		285	
225		248	quiet	286	
226			nocturne	287	
227			awakened	288	
228	travel	249	poking		
	transportation	250			
229	near	251	accident		

In the following table, the number before each word gives the page on which the word first occurs in Discoveries. High-frequency words are printed in red.

1			fur
2			stood
3			wagged
4		33	enjoy
5		34	trade
6		35	stroller
7			hang
ε		ES	sprinkler
s			offered
10		37	stairs
11			ham
12		3 C	summer
13	visit sofa		circling whistled
1		39	radish
		40	porch
15	class		harmonica
16	spelling	41	ambulance
	country		hospital
	raise	42	cowboy
17		45	rust
18		44	
19	against		carrot
		45	
20	speak	46	
	louder	47	extra
	yet	48.	year
$2 i$	dropped		life
22	medium	60	born
23	tooth		
	high	50	stronger skip
24	gathered		
25	hi		teenager
26			career
27		51	
28	low		complete college
29			
30	kittens,		adult
	purred		terested
31		52	retire
32	sniffed		

	develop	center	
	hobbies	70	
53	since	71	active
	during		safe
54	materials		enemy
55			raccoon
$5 ¢$	tape		farmers
	crayons		mask
	lid	72	possum
57	punch		insects
58			dead
59	twenty-five	73	crops
	party	74	full
	invite	75	nest
	early		chart
	parents	76	plan
	bowling	77	
60	phone	78	
	ring	79	cupboards
	cook		sighed
	vacation	$\varepsilon \sim$	cousin
	tamales	81	
61	meat	82	wing
	pots		bottom
$\epsilon 2$	truck	\% 3	
	tent	84	hammer
63			nails
64		85	stump
65	bad		voice
	announcement	86	proudly
	led		present
	past	87	building
65	reached		fact
	microphone	88	admired
	camera	89	celebrate
	lead		delighted
67		90	
68	invitation	91	
	include	92	
	date	93	
	mention	94	
69	strips	95	selection
	decorate		title
	lay	96	

97			compare	143		171	
98		122	fog	144	stones	172	yelling
99			breeze	145			dress
100	storm	123	vapor	146	bowl	173	kindhearted
	island		float	147	canyon		knife
101	ferryman	124	drinking	148	star		free
	shack		flood		hole-for-smoke		robin
102	dock		overflowing		hogan		disappeared
	seagulls -		area		sheepskin		strawberry
	beach		damage		stretched		million
	choppy		drifts		pan	174	
103	grabbed	125	thunderstorm		slap	175	horses
	pirates		lightning		piñon	176	
	bury		flash	149	bright	177	barns
	treasure		noise	150	kneeling		hitched
	clouds		tornado		thin		bundle
104	blew		shape		fingers	178	sink
	sand		funnel		gate		sank
105			spins	151	trail	179	reins
106	blown		roofs		mesa	180	
	power	126	forecasters	152	horns	181	
107	blankets		warn	153	snake	182	clods
	hamburgers	127	record	154	graze		haystacks
	tasted	128	princess	155	among		tipped
108	tracks		rule		mud	183	
	woke		kingdom		doll	184	
109	packed		king		cradleboard	185	
	dunes		queen	156	deep	186	
110	washed	129	mountain		logs	187	tongue
111		130			bracelets		twister
112	rang	131	argue	157			pudding
	bell		castle	-158	weaving	188	received
	wrong		balcony		rug	189	bean
	weather		welcome		loom	190	
113		132		-	wagon	191	
114		133	test	159	corral	192	
115		134	stream	160		193	
116	information		charge	161	lap	194	
	organize	135	built	162		195	
	related		dug	163		196	proper
117	students	136		164			knit
	tag	137	defend	165		197	plum
118	primary		knocked	166		198	breath
119	study	138	tossed	167	drove		
	cycle		bag		won	199	classmates
	arrow		kept	168			mayor
	bits	139	sent	169	correct		rice
	lakes	140		170	tangled		moment
120	poster	141			bramble	200	exciting
121	lesson	142			bush	201	slumped

202	station	235	gurgled	268	roadtest	250
203	high－speed	237	pienic		repair	299
	explained	238		269		－0
204	laid	239		270	radio	301
205	nodded	240	wiped	271	middle	302
206	glide	241		272		35
	sled	242	giant	273	crashed	zos
	ice		tantrums	274	communities	305
207		243	snowflakes		provides	？ 0
200		244	roared		services	36
239			whirled		departments	30
210	tramped	245	fists		urban	300
	strange		bounced		rural	$3: 0$
	silence		puckered	275		311
	inch		lips	こう		3ic
211	spot	24.6	sharply	277	theaters	シャ
	boots		slurping		museums	314
21.	searched		temper		art	315
	attention	24.7	earthquake		history	315
213	conductors		police		science	\geq－ 7
	bowed		chief		rodeos	ミ15
214	passengers	248		278		319
213	wide	24%	knees	25		
	folded		begged	25：		
	dining		manners		contents	
216	shut	250			chose	
217		$25 i$		\cdots	cabin	
218	shaggy	25.	distance		moccasins	
219	excused	253			quilt	
	honor	254	reason		carve	
	famous	255		2		
220	springtime	256		284	dish	
$22 i$	calmly	257			spoon	
222		258	third		valley	
223		259	indeed		met	
224		260	fair	205	difficult	
225		2 E i	toys	285	crafts	
226	context	262	merry－go－round		sold	
227			folks	287		
228		263	eleven	288	moon	
229		264	starving	250	backward	
230			bench	290	replied	
231	mail	265	screwdriver	291		
	hall		wrench	292		
232	uncle	266	aim	293	notice	
	trip		bolt	294		
	suit		strength	295		
233			hood	296		
234	certain		rags	297	shade	
235		267			cool	

In the following table, the number before each word gives the page on which the word first occurs in Caravans. High-frequency words are printed in red. Glossary words appear in italic type.

1		21	
2		22	evidence
3			clothes
4			prove
5			thrown
6			shedding
7		23	worth
8		24	hire
9			tore
10		25	
11		26	stallion
12	thumb		strayed
	mysteriously		surrounded
	agency		wild
13	ad		rescue
	wiggled	27	adventure
14	mystery		settle
15	suspect		drawn
	flea		mare
	market		faithfully
	stolen		sacks
	identified		cornmeal
	positive	28	quarrel
	identification		mustangs
	proof		rushed
	twice		galloped
	shrugged		sight
	bodyguards	29	men
	floppy-looking	30	stripes
	startled		nibble
	embarassing		eagerness
	thirsty		nipped
16	yarn		screamed
17			loosen
18	check		pranced
	disguise		whinnied
	perfect		swished
19			mane
20	suspicion		teeth
	officer		motion

31
32

33

coyote
curled sparkled nasty
34 tugged hoofbeats
collar nuzzled 35

36

37
similar
whose
steer
boldface
type
39 tame
ashamed
behavior
meadow
banister
41
42
sculpture
clay
pleasant
expert
sloop
observed
capsize
compose
43
44 blind
45 curtains
burrow
exercises
bending
banging
46 frying
toast
worn
smooth
violets
peonies
carnations
marigolds
47 clock
48 o'clock
dollop
jam
cello
tunes
sternly
imitating
49 splinters
50 gutter
cheeks
51
52
riverbank
patch
conk-a-ree
53 spice
tea
honkers
flock
geese
54 pours
burns
dots
trunk
apple
television
kiss
55
56 chain
lie
creaking
rustling
57
58 paragraph
59
60 sensory
images
nuts

62	clever		whether		loans		due
63		82	guide		interest		root
64	teakettle		appears		rates	105	scornfully
65	steeper		improve	98	peered		spoke
	howls	83	attic		cottage		pink
66	split		gosling		cart		squeal
	women		wail		accounts	106	rays
	serve		gazed		widow		loaded
	son-in-law	84	skeletons		collect	107	filtered
	trembled		scientists		rubles		chased
67			bones		owe		skirts
68	beaten	85	enormous		silver	108	grain
	single		- continent		husband		riddle
	pancakes		extinct		master's	109	debt
	brag		fossils		purse	110	judge
69	salt		diary	99	plump		dust
	rise		remains		gander		court
	iron		rotting	100	insist	111	
	skillets		crumbling		worry	112	
	bite		preserved		ticked	113	litter
	handle		discovery		shadows	114	
	nightgown		quarry		woolens	115	scratching
	bonnet		cliff		heat		thirty
	oven		steep		stove		flew
70	nonsense	86	drilled		slept		rage
71	offstage		blasted		wise	116	wit
	sweetly		chip	101	cereal		relatives
72	bare		brush		cloak		cream
73		87	draftsperson		tucked		joy
74	loaves		position		pie		blossom
	shamrocks		tissue		repeat		fortune
	ruined	88	half-buried		especially	117	
	toothache		plaster cast		thick	118	decision
	jaw		crates		company		agree
75	loaf	89	frame		lonely	119	fat
	squeeze		metal		wolf		delivering
	taught		fiber	102	narrow	120	categories
76	lucky		months		wares	121	champion
77	fooled	90	original		chanted		escape
	difference	91	hours		fowl		minnow
78		92	site		brooms		net
79		93			unhook	122	
80	glossary	94			brass	123	
	ketch	95			snapped	124	
	dictionary	96	wisdom	103		125	
81	entry		tale	104	recited	126	
	masts		peasant		sneered	127	ashes
	poles		greedy		journey		mattress
	support		moneylender		accept	128	aunts
	locating		hated		child's		burro

	drawbridge courtyard		lit		blades performed	277	elf creatures
	throne	233	terified	254	chilly	278	
	interviewing	234	fanciful		hint	279	triceratops
	seventy	235			gradually		tyrannosaurus
	shabby	236			packages		trachodon
	trudging	237			pasted	280	oak
	elbows	238		255	contained		ocean
	bedraggled	239			sweater		shore
	grin	240	flag		rip	281	pale
	palace	241	state	256	old-fashioned		autumn
221	sort		mission		hockey	282	swift-flowing
			dormitories		ankles	283	forced
223	glum		dipper		blunt		molds
	considered		united	257			mushrooms
	fellow		scattered	258	wobbled		sow bugs
	rare	242	salmon		unsteady		damp
	gasped		delicious	259	impatiently		crawled
	ordinary	243	parka	260	teased	284	bass
	roast		jacket		ripples		swallowed
	applesauce		mukluks		cracks		factories
224	innocently		mittens		further	285	smashed
	suggestions		white-and-twinkly		firmly		terns
	sliced		fleet	261	swaying	286	barnacles
	stirred		ships		instructed		mussels
	bubbling		design	262			oysters
225	pork		holidays	263		287	
226	horrified	244	glaciers	264		288	beetles
	beamed		future	265	scraping		gnawed
	marched		union		recognize	289	rat
	trickled	245			scarf		scurried
	kill	246	seigh		puzzled.		beachcombers
	accusingly		melt		knelt		gnarled
	captured		mend	266	relax		polishing
227			season	267	shifted	290	
228	depended	247	capital		neat	291	peaceful
	rid		Jumber		entire		
	soak	248	uniforms		whipped		details
	vinegar		baton		halt	292	
	simmer		twirlers	268	skidded	293	
	onions	249	official		realized	294	cattle
229	anxious	250		269	lady	295	bred
	steaming	251	bar		briefly		remarkable
	chunks		graph	270	natural		dawn
	allow	252		271			nudged
	assistant	253	slender	272	experience	296	grunted
230			swoop	273			ranchers
231	gravy-stained		double	- 274	pajamas		chuck
	beef		blur	275	giggles		bacon
	task		gleaming	276	comics -	297	shot

	boss	317	bitter	347		362	spare
	plenty		drank	348	huts	363	beseech
	scraps	318	scarcely		seeking	364	wept
298	strung		disturbing		patiently		pity
	shivered		crowing		humble		entreats
	tumbleweeds		groom		cane	365	
	crunched	319		349	radiantly	366	
	clumps	320	limits	350	commanded	367	
299		321	carton		reward	368	
300	plunged		smothered		vanished	369	
	stumbled	322	murmured	351	embraced	370	
301	boomed		fricassee		furnishings	371	
	stampede	323	feature		servants	372	
302	electricity		reviews		bidding	373	
	sparks		urgent	352	carriage	374	
	brim	324	mistake		attended	375	
303	slicker	325	custodian		warriors	376	
	- saddle	326	creek		clod	377	
	sleet		telephone		armor	378	
	freeze	327			magnificent	379	
	worst	328	relieved		prince	380	
304	clang		fuss		nobles	381	
305			farewell	353	dwelt	382	
306			screeched		robes	383	
307		329			velvet		
308	compound	330	solution		peacocks		
	displayed	331	phrases		pleasure		
309	separate	332		354	respectfully		
	blanks	333			snatched		
	partner	334	producing	355			
310	opinion	335	source	356	shelter		
	statement		least		weak		
311		336	machines		dales		
312313314		337	assigning		wilt		
	reptiles		editor		heavens		
	rooster		video display		blazing		
315	university	-	terminal	357	huddled		
	arrangement	338	issue		fearful		
	\bigcirc basset hound ..		topic		hailstones		
	parrot		persuade		blotted		
	strutting	339	press	358	fifth		
	intelligent		belt	359	fled		
	dignified	340	routes		budge		
	cocked	341			nor		
	uttered	342			torrents		
	squawking	343		360	fragrant		
316	unlatched	344	column		mossy		
	immediately	345			silent		
	shrill	346	granted	361	mercy		
	ceremonial		elder		emperor's		

Listed below are the High-Frequency words and Selection words that appear on the Unit Overviews for Journeys. Preceding each word is the number of the page on which that word first appears. HighFrequency words are printed in red. Glossary words appear in italic type.

22	aboard	330	banks
85	accidents	296	bargain
60	ache	333	barges
238	acorn	68	barking
$8:$	actors	144	baron
18	additional	68	barre
39	address	228	basic
$2 E 2$	adds	330	basin
it5	admire	$\overline{201}$	bats
280	advance	146	battle
39	advanced	483	bay
$2: 5$	advised	215	beaches
33	ages	183	beak
33	alert	95	beard
$2:$	ambassador	338	beauty
233	amount	176	behaved
105	angriness	35	belts
?	ants	156	bewildered
122	anxiously	129	bewilderment
325	appearance	235	birch
148	appetites	203	bird's
207	apply	229	blacken
63	arena	97	blame
250	aroma	233	blocking
73	arranged	217	bloomed
213	artist	259	bluffs
235	ash	80	bodies
122	astonished	85	boiling
202	attempts	332	border
336	attendants	344	borrowed
87	auditorium	231	boxcars
38	automated	342	bravely
68	automatically	169	breaks
46	automobiles	274	breathless
60	avoid	183	brief
: 66	ballerina 1	114	brittle
67	ballet	298	browsing
336	bamboos	329	bubble

318	bumpers	78	communicate
32	burglars	100	completely
239	burlap	226	completion
236	burr	189	concerned
218	bushels	359	condensed
95	bustling	168	conscientious
168	buzzer	215	conservatory
261	cactus	60	consonant
244	café	148	constant
54	caked	363	convenient
115	calendar	365	cork
216	camel ${ }^{-}$	60	correctly
326	camels	316	couch
36	canceled	115	courage
237	canoes	102	cozy
331	canyons	333	create
361	carelessly	153	creature
287	carrier	203	crickets
294	cartons	311	cries
312	casually	260	crisscrossed
218	catalogs	248	crop
102	causes	260	cross-legged
332	caverns	32	crossing
294	ceiling	361	crossly
320	celebration	100	crouched
292	cement	74	crumpled
145	chambers	45	curb
115	chased	272	curiously
244	chatting	326	curve
165	cherry	185	daily
106	chin	68	dancers
203	chirp	11	dangers
45	chosen	183	darted
312	chuckled	265	dawdled
156	clamor	33	deaf
165	clap	102	deceiving
145	clash	166	definition
74	classes	35	delivers
308	closest	331	delta
333	coal	85	depend
189	coast	15	depot
. 189	coconut	187	deserted
300	coincidence	215	deserts
32	collie	165	desk

35	destination	226	false	116	glanced	35	horseback
233	devices	20	fame	19	gleam	320	horsepower
40	diagram	19	familiar	130	glittering	281	hose
50	diamond	24	fancy	364	gloomily	202	hour
61	dictionaries	213	faraway	21	glory	121	housekeeping
112	dilemma	145	farmed	116	glow	299	human
12	dim	86	farming	307	glumly	32	humans
52	dime	159	fashioned	320	grand	11	hunger
32	direct	127	fatal	213	great-aunt	80	ill
39	directly	52	fault	72	greeted	288	illustrate
244	discuss	242	fellows	284	grill	71	image
172	disgraceful	237	fern	308	grinned	336	imperial
176	dishonest	97	fetch	48	groaned	37	improvement
20\%	dismay	294	fierce	330	groove	166	indecisive
233	distances	177	figured	156	groped	237	independent
17	distant	213	figureheads	45	grounder	178	ingenuity
17	dizzy	314	fitfully	336	grove	240	inherit
$1: 5$	doze	272	fitted	189	groves	189	injured
73	dragged	119	flabbergasted	287	guaranteed	<201	insect
201	dragonflies	189	flapped	284	guests	72	instant
116	dreary	73	flashing	182	gull	127	instantly
183	drowsy	176	flavor	48	guys	31	introduction
16 :	dull	342	flawless	- 266	gym	314	irresistible
158	dumbfounded	202	flipper-like	190	habits	333	islands
287	earned	130	floated	234	hairs	215	isle
204	eaves	167	flopped	74	hampered	226	items
74	echoed	234	fluffy	35	handled	215	jasmine
54	edges	219	flung	82	handtalk ${ }^{-}$	259	jerked
285	eerie	118	flustered	264	harmony	21	jingling
235	elm	235	flutter	21	harness	66	jogged
2.4	emperor	187	fluttering	248	harvested	320	joke
22	encouraged	145	folk	184	hauled	288	journals
333	energy	26	fondly	73	hazy	145	jousts
71	envelope	128	forming	219	headlands	284	juices
165	erasers	228	forms	84	hearing ear	215	jungles
330	erodes	485	fountain	340	heartbroken	133	juniper
330	erosion	129	frantically	97	heights	203	katydids
97	ewes	310	freezing	63	hideous	318	kerchief
132	exasperated	15	freight car	95	highlands	238	kernels
202	excellent	84	frequently	242	hoeing	146	kettledrums
190	expect	259	fried	201	hollow	58	kissed
120	experiences	238	fully	48	homer	144	knight
191	experiment	201	furry-looking	86	homesick	321	knit-and-purled
150	expert	356	gaily	178	honest	196	knowledge
14	exploring	283	gain	24	honorary	354	la
100	exposed	95	gale	236	hook	248	labor
310	expression	22	gangplank	234	hooks	201	ladybugs
176	faced	318	gaped	56	hooted	(314	lamp
35	facer-canceler	51	genuine	362	hopeful	234	lands
36	facing	172	giggle	312	hornet	359	larder

314	layers	359	mugs	183	pelican.	289	pump
204	lays	227	multiple-choice	202	penguins	88	puppet
240	lazy	247	muscles	171	penmanship	74	puzzing
266	leader	115	musty	79	people's	44	quitter
324	leaf	17	mutt	183	perch	146	racket
148	ledge	68	nagged	346	perfection	332	rapid
84	lessons	100	narrow	88	performers	320	raucous
165	licorice .	86	national	311	persnickety	85	rearview
244	lies	118	nature	169	person's	71	reasoned
332	limestone	260	necklace	342	persuaded	39	receive
356	listening-to	243	neighbor's	311	pest	150	reeds
39	local	244	nephews	274	petals	46	refrigerator
72	locked	148	nervous	71	pictured	287	refunded
86	lonesome	101	newly	183	pierced	338	refused
156	100 m	340	nightingale	51	pillowcase)	37	region
359	lovingly	172	noisy	336	pines	37	regions
104	lump	68	noon	182	pirate ${ }^{\text {- }}$	364	relations
213	lupine	247	noontime	45		114	relatives
86	magazine	71	normal	101	pitifully	130	released
296	magnet	287	novelty	328	planet ${ }^{\text {P }}$	344	replaced
286	mail-order	102	numb ,	15	platform	295	reply
235	maple	74	nurse	266	playground	190	reported
189	marine	189	officers	185	plaza	344	request
190	marked	38	offices	68	plié	114	rescued
332	marvels	63	ogre	98	plodded	189	research
14	mascot	61	oil	153	plow	146	restless
226	matching	358	one's	237	pods	338	restore
215	melted	39	optical	359	politely	248	results
329	melts	247	orchard	333	polluted	63	rhythmic
281	member	202	ostrich	237	pop	102	ribbon
248	merriest	280	outcome	296	popular	284	ribs
338	messengers	229	oval,	57	possible	35	riders
158	milled	361	ow	36	postmark	272	rim
35	millions	84	pad	21	postmaster	235	ripen
57	minds	202	paddle	183	pouch	248	ripest
85	mirrors	338	painter	308	pouted	259	rippling
45	mitt	164	palindrome	280	predict	336	rising
146	mock	184	palm	280	predicted	158	risk
215	moist	234	parachute	281	prediction	330	riverbed
164	monitor	78	parents	40	prefer	189	roar
97	moor	54	parted	148	presence	291	romped
63	mosaic	146	particular	168	principal's	326	rough
- 205	mosquitoes ${ }^{\text {- }}$	248	parties	333	products	230	roundhouse
333	motors	24	passport	60	pronunciation	187	ruffled
100	mound	259	pasture	71	propped	60	ruin
153	mounted	32	patroling	66	protested	147	ruined
243	mourned	66	paused	281	proved	46	rules
358	mouthful	336	peach	106	prowling	94	safely
97	mufflers	203	peeping	213	prows	126	saggy
269	muffling	26	peered	86	publishing	247	saplings

22	sassy	207	smoothing	259	tassels	57	vote
217	satisfaction	261	snap	132	tattered	202	waddle
126	satisfied	102	snuggle	300	tax	263	waist
284	sausages.	207	softens	296	telescope --...	294	warehouse
294	savage	233	soil	84	teletypewriter	260	warp
302	scales	240	sons	226	tested	171	waste -...
237	scatter	344	sorrow	226	tests	333	waterfalls
62	schwa	35	sorted	86	theatre	207	waterproofs
288	scientific	248	sour	12	thoroughly	330	wears
108	scones	219	sowing	148	thoughtlessly	260	web
45	scooped	216	sparkle	54	thrilled	364	wedged
17	scram	54	sparkled	79	throat	263	weft
72	scrambled	183	speared	268	timidly	213	wharves
128	screeching	40	speeded	307	tinging	344	whim
84	screen	€0	spellings	159	tinkles	204	whippoorwill
340	scroll	217	spite	30	title	130	whiskers
356	scuffling	148	spits	24	token	247	whites
297	secondhand	236	sprout	145	tournaments	168	wiggle
294	secretary	124	squatted	363	towel-horse	45	wind-up
317	sedan	176	squeak	32	trained	316	wink
330	sediment	97	stable	146	training	215	wintry
¢S	seek	230	stall	148	transformed	45	wiped
228	select	338	starlike	38	translator	346	wisdom
120	selected	153	steady	333	transport	318	wits
35	separate	98	steamy	266	trash	260	wool
124	serious	54	stems	235	traveler	207	worn-out
156	shambles	24	steward	116	treat	158	wreck
235	shaped	213	stoop	329	trickles	282	writers
207	shed	354	stoutness	215	tropical	54	zinnias
97	sheepdogs	116	straighten	67	trudged	37	zoning
227	sheet	261	strands	234	tubes		
32	shepherd	62	stress	183	tug-of-war		
14	shift	73	stretcher	84	tugging		
108	shortbread	101	struggle	228	tulips		
119	shortly	66	studio	329	tumble		
45	shortstop	45	stupid	230	turntable		
261	shrilly	324	sums	263	turquoise		
33	signal	307	sunrays	336	twig		
84	signals	148	supply	332	twin		
24	similar	281	supported	329	twisting		
203	sings	236	surround	293	typing		
73	sirens	291	suspiciously	86	uncomfortable		
280	situation	364	sustaining	63	unique		
112	skis	202	swift	329	unite		
175	slammed	329	swirl	125	unraveling		
260	slanting	167	syllables	300	valuable		
72	sleeve	300	tales	226	various		
183	slice	78	talks	163	view		
48	slide	32	tamed	248	villages		
71	slightly	247	tanned	189	volunteered		

First

Final

STUDY: How do Young People Interpret Computer - Generated Pictures?

be made.

 image. Instead, computer-digitized black and white images profrom pictographic to digital image did not affect recognition of the (1984) reports that in college-age students, the change of mode
 are few differences in interpretation between computer-generated

The limited research concerning this question suggests that there
generated pictures
different from the interpretation of manually-generated or camerainterpretation of computer-generated pictures could be significantly instructional function. Because of this, the possibility exists that to efficiently and correctly use a picture according to its intended physical attributes could have an effect on the ability of the viewer tures are simplistic and lack detail and background. These and other and using motion can be different. Many computer-generated picrestrictions not present in other pictures. The means of expressing pictures. For example, computer-generated pictures have resolution cant attributal distinctions from manually and camera-generated most pictorial formats, computer-generated pictures have signifithe learner. Although there are identifiable similarities between computer generation of pictures causes interpretation problems fo

One question that must be thoroughly researched is whether the
> tended function is being served. cational computer programs is necessary to assure that their inarea in program design. A thorough examination of pictures in eduon learning from educational programs is a relatively unexplored rial evaluations. The effects that computer-generated pictures have because there is very little evidence upon which they can base picto

A great deal is known about how young children interpret manuhem jects appear quite different from the way they would appear in other discussed distinctions in physical attributes, sometimes makes obdigital nature of these types of pictures, coupled with the already on the interpretability of computer-generated pictures, because the to, what they see in the pictures. This could have significant bearing dren have the tendency to interpret pictures based upon, and limited quite common among young children. According to Higgins, chilliteralism, a perceptually dominated interpretation of visuals, was

Higgins (1980) identified one such pitfall by determining that dize the picture's instructional function the child, while avoiding any perceptual pitfalls that might jeoparbe those that most closely match the optimum interpretation level of allows them to interpret. Therefore, the most effective pictures will children, prefer pictures that are as complex as their development complexity, it is generally assumed that all people, including young Since ability to interpret complexity correlates with preference for them to gain information (French, 1952; Myatt \& Carter, 1979). complexity in pictures as they become more experienced in using children also have a tendency to develop a preference for more Alvarado, 1970). Undoubtedly, as a result of this development, the expense of other objects the picture might depict (Travers \& isolate objects in a picture, paying exclusive attention to them, at dren have a greater tendency to overlook or disregard details and to interpretation of the picture as a whole. In other words, young chilmation as well as the ability to incorporate this information into an opment is the increasing capability to process complex visual inforLearned, Metraux, \& Walker, 1953). Corresponding to this develnize a picture as a whole is developed during this time (Ames, strated that the ability to identify details of a picture and to recog

Early research on children ages two through ten years demonem. children's interpretation of computer-generated pictures becale with These two aspects of picture interpretation are important in studying understanding of children's preferences in picture type and detail. plexity of a picture and a child's ability to interpret it. Another is an of this body of knowledge is the relationship between the com-lly-generated and camera-generated pictures. One important as-

METHOD

tures in more traditional formats.
 pictures as a means of determining whether young children interpret recognition of objects contained in computer- and camera-generated addresses this question of picture interpretability by comparing the Apn!s
 tially determine the extent to which the physical attributes of com
 characteristically accompany most computer at the pictures that
 designed to impart. the picture, and it is known that the information a child derives from greatly dependent upon a successful and accurate interpretation of cess of any picture in achieving its intended instructional function is resultant failure of the picture to achieve its intended function. Suc The result could be a distortion of meaning for the picture, and a generated picture, the child might interpret the picture differently depiction of the same object in a manually-generated or a camerarelevant information, or if it depicts an object differently from a
 pictures at face value. and asserts that children have a tendency to accept the content of contained in a picture as a significant interaf relevant information
visual forms. Higgins identifies the amount of relevant information the critical object. On the other hand, the representations of the
rabbit and the deer show not the critical objects, but also the pressist of only one important, recognizable object, called in this study
the critical object. On the other hand, the representations of the with featureless, ambiguous background. Thus, these pictures contions. The car and the truck are shown with either no background or

Two levels of complexity are addressed by the four representavisual distinction can be very noticeable. mary aged children and, as can be seen in Figures 1 and 3, the Both types of representations appear in programs intended for priputer scan) and a low-resolution reproduction (drawing program). tion is the difference between a high-resolution reproduction (comvisual generated on the computer by hand. Structurally, the distincone between a visual generated on the computer by machine and a distinction between the computer scan and the computer drawing is of the objects, the rabbit, can be seen in Figures 1, 2, and 3. The ent objects, were used in the study. The three representations of one 12 pictures, involving three different representations of four differdrawing of each of the objects was also produced. Thus, a total of duced. Using a computer drawing program, a computer-generated computer-generated replica of each of the photographs was protruck, a rabbit, and a deer. Using a picture scanning technique, a dren were produced. Specifically, the photographs show a car, a phenomenal objects that would be recognizable to first-grade chil-

Four separate black and white photographic representations of

Materials

Research

 sessment of the child's ability to recognize objects in the picture.
 you see in this picture? and (b), What things in this picture make asked the same questions about each of the pictures: (a) What do nizing objects according to a perceived pattern. Each child was randomized in order to eliminate the possibility of the child recogal slide presentation instrument with a screen similar to that of a

Procedure

FIGURE 2. Computer scan of rabbit

SLTASE4

 dren's responses were recorded to allow comparisons to be made. pictures nor speed of information processing was assessed. Chil

!

from the interpretability of pictures. The children appear to draw on of complexity in the form of added objects do not appear to detract

NOISS@DSIG

> -ләәр әч। pue נ!৭qел

 graphically depicts this distinction. promote more complete interpretation of the picture. Figure 5 Once again, the low-resolution computer reproduction seemed to

 drawn.

 tent of pictures at face value and that amount of relevant informa-

 were all black and white representations. This suggests that some

 "saw" a stecring wheel in the pictures of the car, even though none

 when asked what it was that made them see a rabbit in the picture, identifying the pictures. In the three representations of the rabbit, ond question is that children appeared to use mental imagery in

An additional observation made concerning responses to the secpictures in noncomputer formats. corresponds with what is known about children's interpretations of jects were most often identified in the computer drawings. This This conclusion is based upon the observation that peripheral obvided a better opportunity to more completely interpret the picture. could be described as the least complex of the three formats, proIt also appears that the low-resolution computer drawing, which and features of objects as points of recognition. past experiences in making these recognitions, and utilize shapes

чэләวऽวу

601

0 II

COMPUTERS IN THE SCHOOLS

important detail and background as possible appear to promote picture's intended instructional function. Pictures with as little uti-

PROJECT SCRIPT

```
Project Script "Level1"
Tuesday, May 12, 1992 9:48 AM Page 1
in startUp
    editor
#na s=artup
in openProject
    Ziobal wordlist, こdcount, wasnere
    put empty into washere
    put O into cdcount
    hide menuBar
    lock screen
    Siay "beautiful"
    \o cd "levell"
    put bg field "words" into wordlisこ
    put random (12) into temp
    put line temp of wordlist into read
    put read after washere
    add 1 to cdcount
    go cd read
    unlock screen
end openProject
on findnew
    global wordlist, washere, zead, sacount
    if cdcount = 12 then
        answer "You have finished Level1" with "Quit" or "Tevel {"
        if it is "Quit" then domenu quit
        if it is "Level 2" then go project "Ievel2"
        exit findnew
    end if
    put random (12) into temp
    put line temp of wordlist into read
    if washere contains read then findnew
end findnew
```


ARROW SCRIPT

```
Object Script "next arrow" ID = 103
Tuesday, May 12, 1992 9:57 AM
    Page 1
on mouseUp
    {iobal read, washere, cdcourt
    _zndnew
    <u\tau read after wasnere
    _ock screen
    Eut empty into bq E゙=eld "worastcre"
    30 ca read
    \equivdd 1 to cdcount
end mouseUp
```

```
Card Script "eggs" ID = 115
Tuesday, May 12, 1992 9:51 AM
in closeCara
    _こCk screen
    -- hide ca graphic I
    _:2de cd grapnic Z
    .2de cd graphic 3
    :ide cd graphic 4
    -- hide cd graphic io
    \ide cd graphic 1:
    nide cd graphic iL
    \mathrm{ nide bg graphic 38}
    :ide bg graphic 39
    :_de bg graphic 40
    hide bg grapnic 41
    ::de bg graphic 42
    Aide bg graphic 43
    nide bg graphic 44
    nide bg graphic 45
    hide bg graphic 46
    hide bg graphic 47
    put "10" into bg field "mistake box"
    put empty into bg field "wordstore"
    uniock screen
end closeCard
on openCard
    global win
    put 0 into win
end opencard
```

Object Script＂letterf＂ID＝ 113
Tuesday，May 12， 1992 9：53 AM
Page 1
or．mouseUp
ziobal read
ミiay＂boing＂
 play＂boing＂
そ－se
put＂E＂after bq Ezeld＂：！orastore＂
\＃nd if
Z character 1 of bg field＂mıstare bo：＂sontains＂ 0 ＂then put＂O＂into bq field＂mistake cox＂
三ise
suotract 1 from zq field＂．．．istake Do：＂
\＃nd if
＿二 read contains＂ミ＂znen play＂beep＂
ᄅise
if bg field＂mistake box＂ここntazns＂Q＂then show bg graphic i3
end if
if bg field＂mistake box＂zantains＂夕＂then
show bg grapnic 39
end if
if bg field＂mistake box＂zontains＂7＂then
show bg graphic 40
end if
̇f bg field＂mistake box＂zontains＂6＂then
show bg graphic 41
end if
ミEbg field＂mistake no：＂sontains＂巨＂Fnen snow bg graphic 42
end if
if bg field＂mistake box＂zontains＂4＂then snow bg graphic 43
end $i=$
if bg field＂mistake box＂zontains＂3＂then
show bg graphic 44
end if
if bg field＂mistake box＂zontains＂？＂then show bg graphic 45
end if
if bg field＂mistake box＂zontains＂I＂then show og graphic 46
and if
＿f bq zield＂mistake icว：＂zこntaン．ss＂气＂znen show bg grapnic 47
end if
\＃nd if
－－í bq field＂mistake zこ：゙＂zontains＂－＂こhen
－－playMovie read
－－end if
＿z bg field＂mistake box＂concains＂n＂then
piay＂Iose＂

CORRECT LETTER SCRIPT

```
Object Script "lettere" ID = 137
Tuesday, May 12, 1992 9:53 AM Page 1
on mouseUp
    global win
    play "magic"
    _ock screen
    snow cd grapnic I
    snow cd graphic IO
    anlock screen
    Z the visible of cd graphic iO is true and the vosible of sa grapnic 12 is true-
        and the visible of cd graphic }12\mathrm{ is true then
        put 1 into win
    #nd iz
    # Nin = 1 then
        ziay "eggs"
        playMovie "egg"
    end if
```

end mouseUp

Level 1

eggs
fly
lunch
kite
pencil
ghost
alphabet
yellow
turtle duck
juice
stamp
Level 2
strawberry
queen
dump
whale
eyes
arrow
crayons
city
hammer
treasure
mask
birthday
Level 3
television
bones
shamrocks
feathers
coconut
mosaic
continent
telephone
flag
bubble
desk
signals

Lunch

Kite

Pencil

Ghost

Alphabet

$$
\begin{aligned}
& \text { ABCDEF } \\
& \text { GHI JKL } \\
& \text { MNOPQR } \\
& \text { STNVWNX } \\
& \text { YZ }
\end{aligned}
$$

Yellow

Juice

Stamp

Strawberry

Queen

Dump

Whale

Eyes

Arrow

Crayons

city

Treasure

Birthday

Birthday

Television

Bones

Shamrocks
ε_{ω}^{3}

Continent

Telephone

Desk

Signal

Karen Duerr-Clark age 8

Karen felt the monster was funny. She had virtually no trouble with using the mouse for the first time. She liked the games screen design. She felt the game was a challange and would have liked to play longer. She seemed to really enjoy the animtions. I helped her with the words a bit. She really could have used some sort of clue. She wanted to know which letters she had already choose. She suggested having some sort of box that displayed letters already used.

Jennifer Stone age 6

The monster disturbed her, too many teeth she said. She played nummerous games but I had to help her some with clues. She said the game was alot of fun. The mouse gave her some trouble but eventually she got it. She also wanted to know what letters she had choosen.

Jennifer Horton age 6

Jen thought the monster was great. She wanted to know more about him. She suggested some sort of clue if you were really stuck. She seemed to enjoy animations and often asked to see them again.

Patrick Sung age 6

Patrick liked the game. The game (level 1) was fairly easy for him. He did not react to the monster at all except that the monster should say something like "alakazam".

Each child was tested individually on Level 1. All the children watched the title animation and then choose the help section. After reading them the fist screen they wanted to play. The other two help screens were not used and none of the children wanted to see the practice game. They were familiar with the game because it relates to the popular game of Hangman. I tested six children a second time on the entire game. All changes were made and every child that played even some older children tried it loved it. None of the children had anything bad to say or anything to say at all they were so busy playing. The children also played with more than one person. This I thought was interesting. One child would man the mouse and the other would make choices. At this point I felt the game was successful in many ways.

ADDITIONAL INFORMATION

Timeline 69
Search Words 70
Age- Groups 71
Review of Literature 72

Complete Time Line For Thesis
Nov 20 - Dec 15 sketches for interactive program, concepts, flowchart
Nov 20 - Jan 10 continue and organize research
Dec 15 - Jan 30 Preliminary run through program
Jan 10 - Feb 30 First draft paper
Jan $30-$ Feb 4 Test program feedback
Feb 4 - Feb 12 Implement changes, revise program
Feb 13 - Feb 15 Repeat testing, Feedback
Feb 15-Mar 26 Revise and refine program
Feb 30 - Mar 26 Revise paper
April 16 written portion finished, refine program

Sectioned Time Line

Thesis Paper
Nov 20 - Jan 10 continue and organize research
Jan 10 - Feb 30 first draft paper
Feb 30 - Mar 26 revise and refine paper
April 16 written portion finished completed
Interface
Nov 20 - Dec 15 Sketches for interactive program, concepts, flowchart
Dec 15 - Jan 30 First run through program
Jan 30 - Feb 4 Test Program
Feb 4 - Feb 12 Implement changes revise program
Feb 12 - Feb 15 Repeat testing, feedback
Feb 15 - Mar 26 Revise and Refine Program

Interactive media

Children's books
Children's graphics
Computers
Education

Learning

Interactive Learning
Child psychology
Multimedia

Video Disk
Children's Art
Early Childhood development

Instructional Delivery Systems magazine

CD Rom - Revive
Multimedia Video Disk Monitor
Apple Pittsford 381-7772
Boces - large collection of learning programs Larry 383-2238

The Tech Horizon Education

Seymore Papert - Interactive
Bank Street College
U of R Library
Personalize Interactive Children's stories Microzine, Apple II

Picture Books: Ages 2-5 for youngest readers who are learning the physical skills involved in reading and are learning letters through pictures of familiar objects, such as home and neighborhood scenes, parent/child relationships, baby animals, vehicles, and favorite toy and television characters.

Easy Readers: Ages 6-9 for children beginning school and mastering basic reading skills. Because these books are geared for children to read by themselves, the format carefully designed to provide large type with only a certain number of characters per line and a small picture on each page or a two page spread.

Middle Grades: Ages 8-12 for children in the upper elementary grades who are achieving real fluency in reading. These books range from 48 to 128 pages, usually contain some illustrations, and are best suited to the writer with a discursive style. Kids this age skip from subject to subject.

Young Teenagers: Ages 10-14 for children of middle school or junior high school age. The format for these books does not vary markedly from that of a middle-grade books, but the design is somewhat snazzier and the subject matter begins to break down into bot interest (field sports, electronics) and the girl interest (biographies, art subjects). Both boys and girls are drawn to contemporary subjects, such as popular music, politics, movies and psychology.

Young Adults: Ages 12-16 for teenagers who generally prefer adult books in the nonfiction area to the carefully tailored "YA" as it's called, because they want to seem sophisticated. The young adult book is usually between 128-256 pages long, contains an index and a bibliography, and is usually more fully illustrated than its adult counterpart. Except for books that address themselves specifically to teen interests-sports, sex, grooming

REVIEW OF LITERATURE

Graphic Elements

the book critics silence about visual content, which is a serious problem
typical reviewers shy away from critical comments on illustrations, or else they repeat only a few generalities
this silence has allowed stereotyped illustrations, both the old-fashioned and the "mod" varieties, to flourish and remain unchallenged
art elements that are seen, and the ability of their art to communicate depends upon the sensory responses of the audience
any consideration of illustrations as less than art suggests that illustration lacks meaning in the very area it utilizes for communication - the visual
it has been suggested, children are unknowing; they merely "read" the pictures anyway
this criterion is based on the false premise that the subject content of the picture is all that children perceive when they look at an illustration

Actually the child's eyes, more than the adults see the whole of the artist's statement untutored unaware of fashion or fad, the child's eyes take in all that the page offers object recognition is the easiest standard for judging illustrations
and there are historical precedents for this ulitarian approach
art used to define and describe objects for the encyclopedia
technical books in the fields of science, medicine, mechanics, how to do books use illustrations to describe what is in the text
the picture illustrator has quite a different function, there is no point in being purely representational
the meaning in his picture comes from the way he arranges colors, lines, shapes and textures into a special synthesis, one that will please the senses and provide and aesthetics of common place standards, recognition, and the sense of familiarity derived from such considerations
the visual are add another dimension, this dimension is one of visual interpretation and the expression of the intrinsic nature of the tex

Color

many people can distinguish only nine colors: red, yellow, blue, green, orange, purple, black, brown,and white
the potential of color is rarely exploited to the fullest
color is solely used as a page filler much of the time, rather the as an inherent part of the arrangement
this limited use of color is in part due to an uneasy feeling among educators that too much color over stimulates children and tends to confuse their perception

Animal Motifs

It is understandable in this vast and difficult universe, that mankind values animals primarily for their usefulness, practical, spiritual and imaginative. It is even to be forgiven that our feelings about animals have grown so powerful that we are weakened in our power to see the beast himself, but truth demands that some homage be paid to the animals as independent creatures that we strike a balance between our need and their reality. In the representation of animals as independent creatures that we strike a balance between our need and their reality. In the representation of animals the worst sin against them is mockery and cuteness is the biggest blight of media for children and the representation of animals eyes are a likely index to cuteness. Cute eyes are likely to be large liquid, appealing and they have generous eyelashes. Even more damaging, they are not the eyes of animals, but the eyes of humans, and ironically the eyes of small children.

Abstract

About users The Human Interface Design Principles are based on some assumptions about people. A good interface allows people to accomplish tasks. Tasks will vary, but people share some common characteristics. People are instinctively curious; they want to leam, and they leam best by active self-directed exploration of their environment. People strive to master their environment; they like to have a sense of control over what they are doing, to see and understand the results of their own actions. People are skilled at manipulating symbolic representations; they love to communicate in verbal, visual, and gestural languages. Finally, people are most productive and effective when the environment in which they work and play is enjoyable and challenging.

General design principles

This section describes the ten fundamental Human Interface Design Principles and discusses how each applies to designing stacks. Briefly, these principles involve

- use of metaphors
- direct manipulation
- see-and-point (instead of remember-and-type)
- consistency
- WYSIWYG (what you see is what you get)
- user control
- feedback and dialog
- forgiveness
- perceived stability
- aesthetic integrity

Metaphors from the real world

- Use concrete metaphors and make them plain, so that users have a set of expectations to apply to computer environments.
- Whenever appropriate, use audio and visual effects that support the metaphor.
People have more experience with the real world than they do with computers. To take advantage of their experience, use metaphors in your stacks that correspond to the everyday world.
HyperCard is already based on a real-world metaphor, the "card." People are familiar with using cards to organize information. The card metaphor allows users to make some important assumptions about how HyperCard works: users assume that cards can be grouped together into "stacks," that they can have both text and pictures on them, and that they can be changed or updated.
If you decide to use a new metaphor in your stack, think about how the new metaphor will affect users' expectations. For instance, a book metaphor would imply that information is presented in a linear format, that travel is limited to "forward," "backward," and "turn-to-a-given-page," and that it's possible to see all pages by simply going forward until the end.
Before you select a metaphor for your stack, make sure the content of the stack lends itself to the metaphor. Real-world metaphors tend to help users understand how to use a stack, but it's better to have no metaphor at all than to force your content into an inappropriate one.
- Users want to feel that they are in charge of the computer's activitites.
- Tell users their options by providing visible choices, ways to make their choices, and feedback acknowledging their choices.
This principle is based on the assumption that people leam best by active, self-directed exploration. People expect their physical actions to have physical results, and they want their tools to provide feedback. This feedback can be provided visually, audibly, or both.

Highlight topics of interest. Show the user what options are available. If an option is normally available, but not in a specific case, convey that information by providing a "grayed-out" version of it. If grave consequences will follow from choosing an option, wam the user before any damage is done. If a particular command is being carried out, provide visual clues. If the command can't be carried out, tell the users why it can't be carried out. Also tell them what they can do instead.

See-and-point (instead of remember-and-type)

- Users select actions from alternatives presented on the screen.
- Users rely on recognition, not recall; they shouldn't have to remember anything the computer already knows.
- Most programmers have no trouble working with interfaces that require memorization. The average user is not a programmer.
Stacks are visually and spatially oriented. The way everything appears-lext, graphics, buttons, options-should be consistent and well thought out. Users should be able to anticipate what will happen when they interact with your stack by choosing objects, activities, and options.
Don't force users to remember the possible destinations and ways of getting around your stack; keep those options present on the screen, and make their use clear. Most stacks will have two kinds of see-and-point navigation options on the screen: those that are available at all times, such as Help, Return to Start, or Quit HyperCard, and those that are card specific.
There can be advantages-such as speed-to the "remember-and-type" approach. If you decide to offer keystroke altematives, offer them in addition to, not in place of, the on-screen methods. Users who are new to your stack or who are looking for potential actions in a confused moment, must always be able to find a desired option on the screen.

Just as the average user is not a programmer, the average user is not a HyperCard power user. Don't rely on the user's knowledge of keyboard shortcuts to navigate. In fact, don't rely on the user's knowledge of stacks or HyperCard at all. Set up an environment, teach the user about it, and provide see-and-point ways to use and navigate through it.

Consistency

Effective applications are both consistent within themselves and consistent with one another.

Consistency within a stack is essential. The look, the usage, and the stack behavior should be the same throughout. The way the user does things should always be consistent within a stack. For example, your stack should have a consistent design for these elements:

- graphic look
- grouping of buttons
- placement of buttons
- visual and audio feedback
- card layout
- background for cards with similar functions
- stack structure

Consistency in these elements makes it easier for the user to focus on the content of the stack.
If you plan to use any of the standard elements of the Apple Desktop Interface in your stack (such as menus, dialog boxes, and so forth) follow the guidelines presented in Human Interface Guidelines: The Apple Desktop Interface.

WYSIWYG (what you see is what you get)

- There should be no secrets from the user, no abstract commands that only promise future results.
- There should be no significant difference berween what the user sees on the screen and what eventually gets printed.
The WYSIWYG principle has special significance in stack modeling and navigation. The layout of your stack should not, except in special cases, be a secret to your user. Part of "What you see is what you get" is letting the users know what they're seeing, and how it relates to the whole stack.

If you provide a representation of your stack, such as a stack map, table of contents, or menu, that representation should contain an accurate and complete model. Nothing frustrates a user more than finding a part of the stack that's not on the stack map, or discovering that the stack's true structure isn't anything like what the menu implied. Make coherent models and communicate them. Let the users know where they are in relation to the whole. Provide a map, but also provide "You-are-here" indicators, or names for the individual screens.

User control

- The user, not the computer, initiates and controls all actions.

People leam best when they're actively engaged. Too often, the computer acts and the user merely reacts. Or, the computer "takes care" of the user, offering only those alternatives that are judged "good" for the user or "protect" the user from detailed deliberations.

This protective approach may seem appealing, but it puts the computer, not the user, in the driver role. In most cases, it's better to let the user try risky things. You can provide wamings, but let the action proceed if the user confirms that this action is indeed desired. This approach protects the beginner but allows the user to remain in control.
Get your user doing something quickly. Good stacks are interactive. Many stacks begin with an "attract mode," where the screen is alive with inviting animation, rich graphics, and the words "Click to begin."
Let the user choose what happens next, both in using the stack and in navigating around it. This is especially important when offering long animation or sound sequences.
Suppose you wanted your stack to provide a slide show with accompanying music. A frustrating implementation, giving the user no control, would start the slide show and music the instant the stack opened, and run for several (possibly loud) minutes until done. An implementation that gives the user more control might open on a screen that indicates the length of the slide show, asks the user to set the volume level or turn off sound, provides a button called "Start slide show" and displays an unobtrusive sentence, saying "Click any time to interrupt."

Feedback and dialog

- Keep the user informed.
- Provide immediate feedback.
- Make user activities simple at any moment, though they may be complex taken together.
To be in charge, the user must be informed. When, for example, the user initiates an operation, your stack should provide immediate feedback to confirm that the operation is being carried out, and (eventually) that it's finished.

Immediate feedback can be provided by buttons that become highlighted, click, beep, or display a visual effect. For time-consuming operations, feedback can be provided by temporarily changing the cursor into a watch or beach ball or by displaying a message that explains the reason for the delay.
If an operation can't be completed, tell the user why it can't be completed. This communication should be brief, direct, and expressed in the user's vocabulary, not the stack designer's or the programmer's.

Forgiveness

- Users make mistakes; forgive them.
- The user's actions are generally reversible-let the users know about any that aren't.
- Users get lost in stacks; help them find their way.

Most users don't like to read manuals. They would rather figure out how something works by exploration, with lots of action and lots of feedback.
As a result, users sometimes make mistakes or explore further than they really wanted to. Forgiveness means letting users do anything reasonable, letting them know they won't break anything, always waming them when they're entering risky territory, then allowing them either to back away gracefully or plunge ahead, knowing the consequences.
When options are presented clearly, with appropriate and timely feedback, alert messages should be infrequent. If the user receives a barrage of alert messages, gets lost frequently, or can't figure out how to use the stack, something is wrong with the stack's design.

Perceived stability

- Users feel comfortable in a computer environment that remains

People use computers because computers are versatile and fast. Computers can calculate, revise, display, and record information far faster than people can. If users are to cope with the complexity a computer handles so easily, they need some stable reference points.

These stable reference points are established by how your stack looks, how it acts, and how it feels. You are setting up an implicit contract with your user about the rules of this particular environment, and those rules should be clear and communicated.

Most important, your stack should provide conceprual stability. Give your user a consistent model for how to perceive the stack's function and structure. Note the emphasis on "perceived"; a user may perceive your stack to have a single-frame, tree, or network structure, even though in fact all stacks are linear sequences of cards, with different navigational control structures superimposed. Provide a clear, finite set of options, and tell the user what they are.
Your stacks should also provide visual stability. Provide a constant overall look and graphic design for your stack. Design the card layout to be constant for similar cards and visually related for all cards in the stack. Place your buttons in reliable and functionally grouped locations. Use a consistent button design; If you're using the same button on several cards, don't represent the button by an icon on one card and a text label on another.

The illusion of stability is what's important. The environment can and should change as users interact with it, but should give users a number of familiar landmarks to rely upon.

- Visually confusing or unatractive displays detract from the effectiveness of human-computer interactions.
- Different "things" should look different on the screen.
- Messes are acceptable only if the user makes them-stacks aren't allowed this freedom.

In traditional computer applications, the visual appearance of the screen has been a low priority and consequently somewhat arbitrary. In contrast, HyperCard stacks depend upon the visual appearance of the screen. As much as possible, commands, features, parameters, choices, navigational options, and data should appear as graphic objects on the screen.

People deserve and appreciate attractive surroundings. Consistent visual and audible communication is very powerful in delivering complex messages and opportunities simply, subtly, and directly.

Summary

These ten general design principles form a powerful basis for designing and evaluating your stacks. These principles provide general guidance. Most people don't have extensive backgrounds in user interface design; following these ten principles is a simple way to make your stacks more usable. A single principle, such as that of user control, can guide many decisions, from giving users buttons with which to control their navigation to giving them volume controls with which to turn sound up, down, or off.

If you plan to use elements from the standard Macintosh desktop interface, get the book Human Interface Guidelines: The Apple Desktop Interface, published by Addison-Wesley. In addition to discussing these design principles, this book specifies in detail how elements such as a Macintosh window, dialog box, or pull-down menu should act.

