
ROCHESTER INSTITUTE OF TECHNOLOGY

A thesis submitted to the Faculty of

The College of Imaging Arts and Sciences

in Candidacy for the Degree of

MASTER OF FINE ARTS

Intelligent User Interfaces and

the Internet

by

William F. Colgrove

May 1995

Certificate of Approval

M.F.A. Degree Thesis

Jim VerHague, (Thesis Committee Chairman)

Bob Keough, Thesis Committee Member /

1-rc:P

John Ciampa. Thesis Committee Member

________----L.....~/;2d-fJ~

Mary Ann Begland, Chairperson of the Graphic
Design Department

I , hereby grant permission to the
Wallace Memorial Library of R.I.T. to reproduce my thesis in whole or in
part. Any reproduction will not be for commercial use or profit.

Abstract

Intelligent User Interfaces and

the Internet

William F. Colgrove

ABSTRACT

The purpose of my thesis was to have the opportunity to

explore the Internet and to attempt to formulate and put into use ideas

which would enable the user to sort through the vast amount of

information which the Internet has put at our fingertips. I examined the

culture of the Internet as well its various uses and difficulties

encountered by having so many different types of machines connected

to one network. I used the Macintosh computer for research on the

Internet as well as a method for presenting and distributing my ideas. I

studied the public's perception of the Internet through its exposure in

mass media and made a conscious effort to dispel the hype and fictions

surrounding the Internet.

Table of Contents

Introduction 2

Reasons 3

Research 5

Developing a Hypertext System for Macromedia Director 6

Thoughts on User Interface Design 10

Functionality of an Interface for the Internet 12

Process 13

Conclusion 15

Bibliography 16

Appendix A: Thesis Diary 17

Appendix B: Scripts 24

Introduction:

I must begin by saying that the purpose of my Thesis project

evolved and changed. I began with an interest in my chosen subject,

this new form of communication and all that it had to offer. I was

frustrated and a bit disappointed by two things: a lack of

standardization of the content, and no immediate feedback. This caused

me to attempt to develop a hypothetical interface for exploring the

content of the Internet as well as creating an interactive multimedia

project which informed the user about the Internet by using the

interface that I developed. Over the course of doing research I am glad

to say that I was able to get a glimpse of the future of the Internet and

see it come true. The advance of computer technologies has had a

great impact on our communication environment in the past few years.

This rapid growth in connectivity and communication has not been

accompanied by organization of content.

Reasons:

The Internet, despite the fact that it has been around and in

widespread use for almost 20 years, has only just begun to have its full

impact on day-to-day life. As an educational tool, the possibilities are

limitless. As Ted Nelson outlined in Project Xanadu there would be a

need to create a front end to this library of knowledge. I wanted to try

my hand at doing that.

It is essential to understanding the nature of the Internet that it

is chaotic. There is a lack of order to its structure which makes it what it

is. This chaos calls for some form of order. Although there will probably

never be one 'killer
application'

or definitive tool for Internet navigation,

great strides have been made toward developing a system which is

fast, effective, and can work on all machines. It is noteworthy that many

machines which can connect to the Internet are machines which are

capable of displaying only 1 bit of color. So it was clear that my thesis

project would not be meant for all machines, because the platform

which I chose to develop the program forwas the Macintosh. I was

most familiar with the available Macintosh tools for developing such a

simulation.

Although it seems like the Internet and the Information

Superhighway should be accessible to all people everywhere it is

painfully clear that electronic modes of communication are either

provided for people by an employer or a university which is usually free

to the user or by means of a dial up service which is paid for by the

user. So we have what amounts to a class of people which are most

likely employed, educated, and/orwealthy enough to afford a home

computer, a modem and the means to pay for a monthly connection

fee. Nonetheless this does not stop the daily influx of new users onto

the Internet. A whole new culture has emerged, a new means of

publishing. The Internet is certainly a way of cutting out the middle

man in many instances and that is exactly the reason why many

companies are seizing this opportunity to stake their claim on the

Information Superhighway's roadside, which is all too easy due to the

lack of governmental regulation of the Net. At this point strict

government regulation would be disastrous to the spread of global

electronic communication. The Internet has made the world a much

smaller place to live in. Letters can now take minutes to reach their

destination. Digital files can be transferred with sound, graphics and

movement. People from different places and different backgrounds can

meet and discuss ideas, technology, the latest music or trends. Never

before in the history of the world has this kind of widespread instant

communication been possible, and the Internet is still in its infancy. All

of these things are my reasons for choosing to use the Internet as the

basis for my Thesis. The Internet was clearly where communication

was headed and I wanted to know more about how it worked and

where it was going.

Because the Internet is a means of communication it is

important that the interface fulfill a role socially as a tool for

communication. The interface for the Internet should, at a certain level,

function like a telephone would. Many on-line services offer a means

for people to meet and chat while logged in to the 'Net. With the abrupt

rise of electronic communication there was also a shift in attention to

syntax. Mass communication had moved a vast distance from the

written word. Television, fax machines, photocopiers and especially the

telephone had caused an evolution of language. When sending an

electronic mail message or posting a message to one of the Internet's

many discussion groups or news groups, writers of these notes soon

became aware of the consequences of ill-chosen words. New language

surrounding the culture of the Internet appeared;
"newbie"

for new

user
"IMHO"

an acronym for In My Humble Opinion or
"flame"

for

openly ridiculing or blasting another person or their point of view. All of

these things in one way or another contributed to the idea that an

interface for the Net must be unifying and variable, that all people can

use it regardless of their skill level and still not feel lost or hindered in

any way.

Research:

About three years ago I was introduced to the Internet. Before

too long it ruled my life. I was fascinated by the variety of content and

conversation which ensued day after day. I soon became aware of other

electronic services which offered a more user friendly front-end to the

Internet such as America Online, CompuServe and Prodigy. Most of

these services were for the home and few at that time offered full-

access to the Internet and its contents. While spending a summer

working at an on-line newspaper I got wind over the news line of a

graphic interface for the Internet: a point-and-click tool which was easy

to use. It was called Mosaic and it was produced by students at NCSA

in Illinois. When school resumed in the fall I made it a point to see if it

was possible to get our computer lab wired up to the campus Ethernet,

thereby hooking us directly to the Internet. As of this writing much time

has passed and Mosaic and the Web have emerged as 'the next big

thing'. It has given birth to offspring all operating on the same method

of reading files which display text and graphics which can link to other

files located just about anywhere in the world. The Web, which was

once an experiment for education and research, largely similar to Ted

Nelson's Xanadu, has become a widespread attempt to create the

shopping malls of the future. The Web is the most visceral and

immediate of all online media which is probably why it is the most

successful.

Developing a Hypertext System for Macromedia Director

It was important for my thesis program to work at some

level as its hypothetical fully implemented version really would

function on the Internet. If this program were fully developed and

implemented for the 'Net it would act as an Intelligent Agent (IA) for

the user, meaning that the program would actively edit which

content reaches the user's computer based on the type of decisions

which the user makes and what kind of information he or she is

looking for. This could be facilitated by asking the user a series of

transparent questions concerning his or her search or by building in

some form of user log-in for each member of the family. Parents

could exercise control over what kind of material that their children

had access to, an option which has become available in many

online services. The program would also be its own best judge of

monitoring network traffic and speed, having an internal clock

which would monitor time elapsed to make requests and transfer

files from other servers. This file could be maintained on the

computer's hard drive and serve as a list of what kind of

information is where. For example, if the user keeps looking for

information on a certain topic, the computer would know where the

quickest and most reliable places were to get that information. For

purposes of my thesis, however, I chose to provide the user with

three varying levels of content in the form of articles which were

acquired from the pages ofWired, Time and the Internet itself.

Macromedia Director was chosen because it was emerging

as the standard for developing multimedia titles and it was

something I felt that I needed to know in order to find a job in the

industry. I first had to construct a list of topics which I wanted to

cover. I spent a great amount of time on the Internet, reading the

news groups and learning how to download files. Much time was

also spent on the campus VAX system. The files which I found were

text since most of the terminals on campus have monochromatic

monitors. I then spent some time using Dartmouth University's

Fetch program for the Macintosh.

Over the course of creating my thesis it became less of an

application, as I has originally intended, and became more of an

interactive program. I began with the concept of a great deal of user

cross-referencing within the program and spent an equally great

amount of time developing the hypertexting system for Macromedia's

Director. Hypertext is a word for files which are linked, (these files may

be in any format; sound, graphics, text) in terms of content as well as

their location, so that one may be accessed from the other. This method

of learning allows the mind to explore more freely and follow the paths

of the topics which most interest the user. In addition to developing the

hypertext system I also developed a method which allowed the

computer program to remember where you had been, or which

sections you had visited and present you with a list of these

documents.When an item from the list was chosen the computer

would return you to that section or open that document. Unfortunately

these items did not make it into my final program but I have included

the scripts here since doing the programming to create this was

invaluable to my learning how to program in Director.

Hypertext is the basis of the World Wide Web. All information is

linked to more information, allowing the user to cross-reference any

number of works in a matter of seconds. The main problem is that

someone, somewhere has to establish those links. Learning is

enhanced by letting the user explore the aspects of a subject that he or

she finds interesting. Since hypertext is employed not only by a great

deal of educational multimedia titles currently on the market and, in

fact, is employed on the Internet itself, it seemed to be a natural choice

to adopt it for use in this program.

Part of the goal of this thesis was to be a hypothetical user

interface for navigating the Internet. Since the Internet is comprised of

hundreds of thousands of files with varying file formats flexibility was a

great issue.When constructing the user interface, I wanted to give the

user as many options as possible for the retrieval of files and the

presentation of information. The whole interface was constructed in

terms of being flexible. Placeholders were used where data, images, or

sound could be played or previewed before they are downloaded to the

user's machine. Part of the problem of many dial up services which

offer Internet access is that they often provide no means of previewing

a file to see whether or not you want to take the time to transfer it to

your machine. Multiply this by the fact that most machines which

comprise the end-users of the Internet are UNIX or PC based machines.

In many cases file formats are not compatible or recognizable across

different platforms, and are therefore rendered useless to the casual

user. There are utilities which will convert files from one platform to

another but these usually require the user to have some form of

technical knowledge.

The project was constructed so that the user would be asked a

question, or series of questions, in order for the computer to help

determine the user's skill level. If fully implemented the computer

would ask a series of transparent questions or be smart enough to

identify the users on a home machine by having a record of the

occupants of the house and the users on the machine.

Once the user's skill level is set the computer then knows what

information to present to the user from a list of all available files. The

list was of a series of ASCII text files which contained definitions on the

uses and the features of the Internet. The ASCII text format was chosen

because it is the file format which allows Director to
"see"

the file so

that it may be retrieved and flowed into a text field which served as a

placeholder for the information. This text is read into Director

unformatted, without text styles, sizes and so forth.

In order to solve the problem of informing the viewer which

words are hypertext since I could not bold, italicize, underline or color

the words in the text file and I could not efficiently script a filter to do so

in Lingo, I chose to place the words which were sensitive in all caps to

alert the viewer to the fact that they were hyperlinked. The Apartment,

which is a series of demonstration movies done in Director with Lingo,

proved to be quite useful in determining what can and cannot be done

with Director to achieve the goal of hypertexting.

The early scripts for the hypertext amounted to getting the

computer to recognize the word or successive string of characters

which the mouse clicked upon. Once this string was recognized it was

placed in a global variable called an array. The array was then

compared to a list, which was stored as text in a field of possible

destinations which did not appear on the screen.

At this point in development there was a unique problem

because the program did not really
"go"

anywhere in the spatial sense.

This program could not be mapped in the traditional manner as is often

done with interactive programs. There are no different areas for the

user to enter, just a static interface. Since there is no variation of the

position of the elements of the screen, the user quickly becomes

familiar with the places where information is entered and where

information is presented. I felt that forcing this familiarity was

absolutely necessary in order to make the user comfortable with what

can be an overwhelming and intimidating subject matter.

Because the program does not have screen variation in which

different screens could be crafted to present different levels of

information to the user, all the variation in information had to be

handled through scripting the computer to retrieve the files which were

appropriate to the stored skill level of the user. The user could then click

on the ASCII text file and expect to receive some additional information

by way of links on any word which was in all capital letters. No matter

where the word appeared in the program it could be clicked upon and

the user could expect to go to a screen OR be presented with more

information about the word which was clicked.

These links would be a synthesis of hard and soft links. A hard

link is the kind of link that is not variable, it is an absolute. This kind of

link will always take you to the same place in the program no matter

where the user is. A soft link is the kind of link that is variable and may

take the user to one place when he is on one screen or somewhere

different when he is on another.

If the comparison returned "true", meaning there was

additional subject matter on the word which was clicked, the computer

then disposed of the opened text file and sent the program to the

screen which contained this additional information. If the comparison

returned
"false"

the computer simply beeped, informing the user that

word was not a link.

Having completed this much of the program my next task was

to create a user-friendly environment which enabled the computer to
"remember"

which sections had been opened and allow the user to

choose from a -list of those sections in the order in which they were

visited. This would give the user the chance to page back and forth

between the places that he or she had visited.

This idea was triggered by NCSA'S Mosaic which allows the

user to select from a pull menu the pages on the Web that he or she

has visited and return there. In this respect Mosaic and theWeb

actually encourage exploration. If users know that they can return to a

given spot, electronically dog-ear the page, they will be more apt to go

off on a tangent which interests them.

In order to get Director to do these pull menus I had to set up a

certain number of additional invisible fields; a field for temporary

storage, one for permanent storage, and one to store the contents of

the pull menu. The temporary field stored the word on which the

mouse clicked. The main list was the list of all the topics which I had

covered in my research and which existed as possible destinations for

the hypertext. The menu field was used to create the pull menu, like the

one in the Macintosh Operating System (OS) by utilizing the

installMenu Lingo command. A global variable was created to keep

track of how many times the hypertext comparison returned
"true."

Each time this comparison returned true, one was added to the variable

and that word was added to the menu field in the line number equal to

the global variable. The menu was then installed and, through the use

of an array, a command was associated with each item on the

pullMenu.

Thoughts on User Interface Design:

The interface to a program, game or utility is essential to how

useful the program is as a tool. One does not need much instruction to

learn how to operate a pencil and paper or even a keyboard to a word

processor. These interfaces are familiar to us having been used since

we were children in the case of a pencil and paper or later in life in the

case of a keyboard. One becomes more and more proficient in using an

interface the more that he or she spends time immersed within it. But

by the same token if a program interface is too simplistic the user may

very well become bored with it and stop using it. I felt that at no time in

the act of creation or exploration should the user be totally conscious of

the interface. Programs which tend to be interface-heavy tend to get

annoying.

The ideal situation would then be to create an interface which is

easy to use and understand at the lower levels while, as the user's

proficiency increases, so does the complexity of the computer program.

A prime example would be the interface of Adobe's Photoshop, a

raster-image editing and creation program. Photoshop provides a

multitude ofways to get results, and as the user's familiarity with the

program grows so does their ability to find better and faster ways of

doing things. This type of interface challenges the user to explore and

find new ways of doing things.

The interfaces of some computer programs tend to borrow

tools or items from other programs. Apple computer took a bold step

forward in terms of interface design when it introduced the Macintosh.

The Macintosh came with a set of built-in tools that programmers could

call upon when designing the interfaces for their computer applications.

These built-in items include icons, pointers, and pull menus. Learning

the interface of one program on the Macintosh operating system

became like learning to drive a car - the tools became familiar to the

user so that he or she could switch programs as easily as one would

switch from driving one make and model of a vehicle to another.

The interface is the filter through which we run our ideas to

transfer them to a digital format where they become much easier to

manipulate and transform than on paper. The interface to a computer
10

program must allow the maximum throughput of ideas so as not to

hinder the creation or exploration process. In light of all this a

computer program interface must be intuitive, flexible, and

encourage exploration.

The interface is the tool with which the user navigates or

manipulates the program. There hasn't really been a great deal of

advancement in this area since the great flood of ideas emerged

from Xerox PARC in the late seventies/early eighties. At the highest

level the Ul should be a tool. Like any tool it should be simple to

operate, or to paraphrase Marshall McLuhan, 'an extension of the

hands'. In order to combat the chaos and the confusion of the

Internet as well as the general level of frustration which comes with

owning a home computer and getting connected to the Internet, the

interface which I planned on developing had to have a certain

functionality as well as a certain look.

The interface itselfwas to be very clean and organized,

combined with the way that it was styled and animated as to

closely resemble a Personal Digital Assistant (PDA). The same

summer that I discovered the Internet, Apple Computer Inc.

unveiled the Newton PDA at MacWorld Boston. The device had

caught the interest of the attendees as well as the news media. The

Newton was a hand-held device which kept track of and organized

day to day routines and information, and also had a certain toy

value. The futuristic styling and animation of my interface would

give the user the feeling that he/she was manipulating an actual

object like the Newton.

11

Functionality of an Interface for the Internet:

If there is to be one application which will help to guide a user

successfully through the Internet it must be able to serve many

functions, and perform many tasks.When creating my program I tried

to take into account many of the problems that face the novice

computer operator when looking for something on the 'Net. I found this

to be particularly easy since I was learning the ups and downs of the

Internet as well as computing.

The interface must be capable of providing two types of

choices; one would be consistent tools which the user could always rely

upon in a panic situation, the other would be variable and location

dependent. For example, the information stored on one machine differs

from that on another and that must be made evident as well as

presentable. Therefore, I would provide the user with two areas to

make choices which reflect these findings.

I also had to provide the user with a method of viewing

graphics, so a window was created for that purpose. Images and

movies could be presented there in a smaller format so the user would

not have to waste time downloading a graphics file, the nature of which

is unclear.

Most current Internet applications require that you use separate

external applications for viewing movies, pictures or playing back audio

files. In theory, the interface and program which I constructed would

have these items built into it in a way that the program would be able

to import and play any file from any platform to the machine you are

currently working on without having to open another application to do

so and converting the file type internally. This would not require the

user to know how to make an X-Windows sound file play on a

Macintosh. This would also take a great deal of the guesswork and

frustration out of surfing the Internet.

The other item which was included in the interface is a

command line to provide feedback not only about where the user is and

where he/she will go if a button is clicked. Where, in this case, means

which computer is at what location on the Internet or for the purposes

of the prototype what section of the interactive program.
12

Process:

When selecting and creating content for the interactive

program I often thought of my parents as a target audience.

Logically I figured that if I could get them to understand what the

Internet is and how it might effect them I would have accomplished

a great task.

I decided to do animations on each of the topics which I had

chosen to explain the Internet and its services. The animations were

created using Macromedia Director's animation capabilities, Strata

StudioPro's three-dimensional modeling, rendering, and animating

capabilities, and Adobe Premiere's ability to edit and create

QuickTime movies.

When I began doing these animations I had planned on

using Premiere to cut between or overlay text that I had animated in

Director and the models which I had constructed in StudioPro, but

while using these programs I stumbled on a feature which enabled

me to integrate both text and image more fully. StudioPro allows

the user the option, when rendering a still or moving image, of

rendering the background as an alpha channel.

An alpha channel is an 8 bit grayscale image which is used

for functionality rather than display purposes. In a 24 bit color (or 3

byte) image, 8 bits each are used for the Red, Green and Blue layer

which when combined create a picture containing millions of

colors. Additional layers of data can be stored in 32 bit images, 24

bits for viewing and the remainder is an 8 bit image which can be

used to store a mask or other data.

I did not really pay much attention to the function in

StudioPro until I opened an animation which I had created in

StudioPro and saved as a QuickTime Movie in Premiere. Premiere

gave me the option of viewing the Alpha Channel of that movie,

which was a perfect mask of the background of the scene I had

created and animated. After a little exploration in Premiere, I found

that I could place the StudioPro animation in the Special Effects

track in Premiere's Construction window and, by using the
13

Transparency Settings option, declare the movie's Alpha Channel as a

mask. This would allow another movie or animation to appear in the

background behind the objects which I had created and rendered in

StudioPro.

After this, I went ahead and used Photoshop to create text, so

that it had a smooth anti-aliased edge, and animated the type scrolling

in Macromedia Director. I then used Director's Export function to save

the animations as a 320 by 240 pixel QuickTime Movie, the same size

which I was creating my object animations in StudioPro. These type

animations were created to show data being sent and received by the

computers which I had modeled. I used lighting, various spotlights

turning on and off, in order to help show that the computers were

communicating.

It was important to have the layout of the interface be as clean

and as organized as possible plus be flexible and free of any

inconsistencies. I made many decisions on the location and the actions

of the buttons which would be used to control the program. I felt that

having the buttons to the right of the interface were similar to having

tabs or bookmarks in an address book, thereby reinforcing the Personal

Digital Assistant analogy. They also helped to present a constant menu

from which the user was able to choose. Like the Macintosh Operating

System in which certain items in pull-menus are dimmed when they are

not available, certain tabs would not pull out when their respective

options were not able to be used. In a similar fashion, input and output

were arranged in certain areas of the interface to give the user a

consistent method of getting information in and out (Figure I).

Animating the buttons proved to be quite a problem. In Director,

once a graphic element (or sprite) is placed under the control of Lingo

(called a puppetsprite), it cannot be animated traditionally in the Score

Window as I was accustomed to doing. Instead of spending a great deal

of time writing an elaborate routine to animate the puppetsprites

through scripting with Lingo, I found another simpler and somewhat

less elegant solution. The program would idle on a specific frame

waiting for the user to make a choice from the buttons or tabs

presented to him/her. All the available tabs are declared puppets which,

when clicked would put a value into a global variable. The button would

swap with a graphic highlight state and once the variable was filled it

would turn off all the puppets and play a series of frames which

animated the tabs closing and then an animation of them reopening

depending on which button was pressed.

555553555^^5<3^^^^^^^^^^^B

|
; Articles ;

j'

J

L2J_____________I
pTM

H_________H

pW

l Qua
j-
ii^B

1

Figure I: Buttons

I decided to hand out a version of my thesis on
3.5"

floppy disks

at the Thesis Show. The program contained no QuickTime movies but

contained all graphics, text and the interface. My philosophy behind it

was that it would serve as an off-line primer for attendees of the thesis

show to learn about the Internet as well as interactive media. 14

Conclusion:

It has been a year since finishing my thesis and much has

happened to the Internet. The Internet has literally gone from rags

to riches as major companies have populated it with electronic

storefronts. TheWeb, and hypertext, has emerged as the standard

method of presenting information and Mosaic has spawned a host

of similar applications, like Netscape for navigating. In my research

I tried to explore how information should be presented and stored

on the Internet while acquainting myself with 'Net culture and

protocol. There are still many subjects I discovered which I might

have touched upon but could not due to time. One thing is for

certain, that the Internet will continue to change rapidly over the

coming years.

15

Bibliography

Burr, Ty. "Future
Hype"

EntertainmentWeekly. 10 December 1993, 38-

49.

Cotton, Bob. Understanding Hypermedia: from multimedia to virtual

reality. London: Phaidon, 1993.

Elmer-Dewitt, Philip. "Who Should Keep the
Keys?"

Time. 14 March

1994,90-91.

Elmer-Dewitt, Philip. "Take a Trip to the Future on the Electronic
Superhighway"

Time . 12 April 1993, 50-55.

Elmer-Dewitt, Philip. "Battle for the Soul of the
Internet"

Time. 25 July

1994, 50-56.

Krol, Ed. The Whole Internet: user's guide and catalog. Sebastopol:

Microsoft Press, 1987.

Nelson, Theodor. ComputerLib / Dream Machines Rev, ed.. Redmond:

O'Reilly & Associates, Inc., 1993.

Nelson, Theodor. Literary Machines 1981.

Powell, Bill. "Eyes on the
Future"

Newsweek. 31 May 1995, 39-50.

Rucker, Rudy ed. Mondo 2000: a user's guide to the new edge. New

York: HarperCollins, 1992.

16

Appendix A: Thesis Diary

12.4.93-1.4.94

These weeks were spent researching the kinds of topics that I

will be presenting as an information database as part of my thesis. As I

see it my thesis will be comprised of many parts: mainly a working

multimedia environment which is
'aware'

of the user's level of

experience with a computer and displays information which the user

will understand, a resource tool for new media and computerized

communications, a stage for some projections on my part about the

future of multimedia and digital networking. I assembled a library of

sources which represent a broad range of audiences, from specialized

textbooks to popular magazines all hyping the Information

Superhighway.

1.17.94

I decided to begin by developing a understanding of Lingo since

my knowledge of it would be the limiting factor in what I could do with

the interactive piece I was planning on creating and distributing. By this

time I had created a series of six Macromedia movies which

represented
'steps'

in the development of this piece, each time that I

made a major revision to my work I would re-save with the same title

followed by a higher numerical value. At this time the project consisted

of two screens; the first set the user's level by clicking on a button

which corresponds to that level (i.e. beginner, intermediate, advanced)

a global variable is assigned and will be called upon throughout the

program. The second screen contains buttons and a field which

retrieves a text (TXT) file based upon the user's level. The contents of

the field are printable and it is worth mentioning that the same field and

'Print
Field'

button gets used throughout the program. Different text

files are retrieved depending on the location of the user. The Print Field

command was downloaded from 'America
Online'

and is a HyperCard

XCommand which someone had adapted for use in Director.

1.19.94

I had posed the question of offering some form of help to the

user. To this effect I thought of creating a floating palette which would

allow the user to select a topic and see the definition of that topic

displayed in the palette or click a Go To button which would send the

user to the section on that particular subject.
17

I also looked into using ResEdit to make the Text files invisible,

and saving the users level (which would effectively personalize the

stack but would become boring if the user could not reset their level to

gain access to more information).

1.24.94

I purchased a copy of the ResEdit
'manual'

which informed me

how to create custom pointers for use and how to make the text files

which were being called by Director invisible. I also made some

discoveries about the Help palette; the windows script in The

Apartment (a Lingo resource provided by Macromedia) could only

display static text, radio buttons, click boxes, or bitmaps not scrolling

text fields. I determined that possibly HyperCard would prove to be of

some use, so I decided to look into it further. I also had an idea

concerning saving the user's level: it could be dumped into a text field

not present on the stage and saved, the only thing I wasn't certain

about was whether Lingo could perform a DoMenu type command.

1.25.94

Created an arrow button to move between subjects which also

cleared the contents of the field so that when a new topic was reached

the material from the old topic wasn't still sitting in the field. At this

stage I had to attach the Read Text File script directly to the button

instead of using a handler to get the text files for that specific topic. I

tried the XCMDGlue Apartment movie and found a movie which creates

a Mac Window which has click lines and would return the selection. I

wondered if this and another script called MakePalette from the

HyperCard PowerTools stack could work together.

1.31.94

I made the text files invisible and the movie was still able to

access them (they were sitting in the same folder). For comparison I

placed a duplicate of the movie in another folder without the text files

present and the movie could not
'see'

out of the folder to get to the text

files. At this point I thought that I had reached a conclusion about what I

was going to do to hide the text files from the user. Unfortunately

making them invisible would prevent the user from copying it to their

hard drive without introducing a serious risk of disabling the functions

of the program, and if the text was invisible I would be doing a great

injustice to the user.. .who would want invisible files on their computer

that they don't know about? I also created a standalone movie to make

sure that the standalone application could still call the text files and it

could.

I thought about making the text files resources using ResEdit

but I found out that TXT files (text only) have NO resource fork and

therefore could not really be
'installed'

into the standalone. I also

recognized the need to script an alert to the user so that when he or she

opens the movie it checked to see if the folder containing the text files 18

is present and alerts him or her to this fact possibly providing

instructions or some other kind of help.

2.6.94

I decided that the best way to help the user was not through

the use of the palette, which I could not create the way that I

wanted. Instead, I created a help screen which offered the user two

choices, an Index or a Definition. Both utilize the script that I found

in the Apartment called XCMDGlue. The contents of the field are the

contents of a Director text cast member. By clicking on a line and

hitting the
'Select'

button, an array is created and then put into a

text field which is used to send the user to a corresponding topic or

enable the user to open the definition on that topic. I also decided

to add the 'Print
Field'

command to this but did not do so at this

point. The computer lab was also connected to the campus network

which allowed me access to the Internet and, more particularly, the

World Wide Web via NCSA Mosaic. Mosaic is an application which

readsWeb pages that can contain hyperlinked text and images. At

this point I made the assumption that Director was incapable of

such things, although I knew that it was capable of determining

what word was clicked when over a text field.

2.15.94

I fleshed out the remainder of the program to include

screens for all the major topics that I plan on including in my thesis.

This enabled me to make the Index button work so that when the

user went to the Index and selected a topic, he or she was taken to

a screen on that topic. At a meeting with Jim it was suggested by

him that I create a pull menu which records where the user has

been and would send him back there if he were to choose a topic

from it. My first inclination was to create an option which allowed

the user to 'dog
ear'

pages which would be added to the Pull Menu,

but I wasn't sure how many people would actually use that feature.

Better to do it for them without even asking, just to make things

more convenient. I altered the Definition to automatically access the

text file when the topic was selected from the dialog box.

Previously a button had to be pressed after the topic was selected

to get the text. Something interesting happened here without really

knowing what I was doing. I began to use the Array which was

created when the item was selected to open the corresponding text

file. This gave me an idea to use an Array to open all the other text

files instead of the series of if/then statements as I had been doing

previously. Since a global variable was in use to declare the user's

level I could use this to tell the program which text file to retrieve. I

wondered if I could add this to the name of a text file and then use

that to open it (ie. if the user's level = L = 1 and the name of the file

was
'Internet'

could I open a file called 'IntemetV). This would

greatly simplify things without
all the hassle of a series of if/then

statements to determine which file to open. This gave me another 19

idea as to where to place the text files. I moved all of the text files to

a folder called
'Resources'

and placed it in the same folder with my

Director file. I then went into my scripts and changed my File I/O

statements to include
"

the PathName &
'Resources:'

". It worked

so that cleared up the problem that I had with making the text files

invisible since in most cases there will be three versions of each

article. Having them remain visible could also mean that the

program could be
'updated'

in terms of the information it contains

simply by replacing the text files.

2.19.94

The idea of hypertext started with me seeing NCSA Mosaic

and was pushed by Jim as something to try to include. I had

thought earlier that doing hypertext with Director would be

impossible and I was wrong. I used two Apartment files as starting

points "Menu
Manipulation"

and "Mousies/Chunky Text". I started

with
"Mousies.."

which identifies what words are under the mouse

when it is clicked. I created a text cast member into which the

clicked word would be dumped. The same word would also be put

into an Array which would then be used to send the user to a

screen with the same name as that Array (ie. go frame xArray). This

worked except that when I clicked on a word which was not also the

name of a frame, an error would occur. Therefore, the MouseWord

would have to be compared to a list of frames which exist as

possible destinations. If field "DIR", which was the same field being

called by the Index and the Definition help screens, contained the

MouseWord then it would proceed to send the user to that screen

otherwise nothing would happen, a simple if/then procedure. I

wrote a script which went 'if field
"DIR"

contains the MouseWord

then go...', this would cause problems later because I was

comparing the larger item to the small. Words like
'in'

would still

pass the test while longer words would not. This was fixed by

switching the order in which the comparison was made, comparing

the smallerword to the large list of words. At this point I also had to

fix my wording in the script a second time. The computer program

was recognizing the words in my list plus the comma as a whole

unit. Dave Seah mentioned that he and Keith Watson had used a

script which called the
'item'

instead of the word. This eliminated

the error that the punctuation caused. The next problem I had was

that topics which were more than one word weren't getting added

to the list or hyperlinked. So I had to change all instances of multi

word topics to include underlines (ie. World_Wide_Web) so the

computer would see them as one chunk.

The next thing that I had to do was to create the menu. I

called upon the "Menu
Manipulation"

movie to do this. I adapted

the scripts in this movie so that when the MouseWord was clicked it

was dumped into a temporary field and subjected to the same test

as the hypertext. If the MouseWord passes the test it is added to a 20

'Pseudo'

field and to a field which is the actual menu. At the start of the

movie, "menu:
file"

is placed into line one of a field. Every time the

mouse is clicked on a sensitive word 1 is added to a global variable

which controls which line the word is put into. The word is then added

to that line # of field
'Pseudo'

and that line # + 1 of the field containing

the menu. The menu is then installed and enabled. The enabling took

some trial and error to figure out. Originally I had a button enable the

menu but if the menu was chosen before the button was pressed

nothing would happen. The EnableMenu handler was written and

called in each instance that the InstallMenu command was used. After

this was tested by Gedeon Maheux, it was found that the Index and

Directory buttons did not add items to the pull menu, only hypertext

did. This was pretty much an oversight on my part and was corrected

by adapting the hypertext script which tests the MouseWord to the

Array which is used to manage the activities on the help screen.

I found limitations because I was flowing in a text only file.

Director didn't have any formatting features which can color text, nor

could you set the color of text by using Lingo. The solution was to type

all hyperlinked text in all caps to notify the viewer that it was clickable.

2.20.94

I added a 'Print
Field'

button to the Definition screen, and a

button to the screen which would allow the user to go to the screen on

that topic so he or she would not have to go back to the Index button to

do so. It was a simple procedure but a nice feature for the user. The

'Print
Field'

button worked well for the definition screen although it

seemed to be a bit of a waste of paper because the definitions

themselves were not all that long. I decided to script something which I

called a Dictionary which is a text cast member that does not appear on

the stage. There were three buttons added to this screen concerning the

Dictionary: Add To Dictionary: which added the current definition being

displayed on the screen to the Dictionary list. A global variable is set to

the # of lines in the Dictionary to which 2 is added so the user won't

erase any information that he or she has put in the Dictionary (when a

new topic is added). Print Dictionary: prints the field and Clear

Dictionary: which empties the field.

Upon quitting, the computer checks to see if something has

been added to the Dictionary and not been printed. Through the setting

of a true/false statement after the print and add commands, if the user

has added something to the Dictionary and not printed it, the computer

does not quit the program. Instead the user is prompted to Print, Quit

Anyway, or Save the Dictionary as a text document.

The final addition to the program was to make the definition

text fields hypertext sensitive. This caused some confusion because I

had named the cast member
'Info'

so the program wasn't always going

to the right spot when I clicked on a word. Once this error was 21

corrected the hypertext worked.

2.28.94

After a brief meeting with two of my thesis advisors I was

redirected. I was told not to throw away anything that I had done up to

that point but I was encouraged to try one of two different things: an

Internet of the future simulator; or a program which would explain the

functions of the Internet. Not to be discouraged I decided to try both.

The focus of the thesis was to try to achieve a new aesthetic in

terms of human-computer interface design. The typical command-line

interface which was currently in widespread use on the Internet would

not prove useful to parties who were interested in being connected but

didn't want to have to learn a new language of archaic commands

which in effect produced results but were not very dynamic or visceral

for the viewer. The end-user needed to feel involved, informed, and

most importantly in control of the Internet of the future. In short, the

interface would have to become user-sensitive and weed out useless

information while presenting that information which is useful to the

person navigating the Information Superhighway. As I looked around

there were two very different fields of thought concerning the horizon

of interactive communication. One group held the belief that the

Information Superhighway would be in everyone's living room in a year

of so with little or no attention to HOW it would get there. But there was

a dollar to be made off of it and get there it would. The other group

raised the battle cry that the Highwaywas already HERE and it was

called the Internet and something for everyone could be found there.

3.12.94

On this date I had begun to do the graphics for the interface and

the animations which would inform the user about the features of the

Internet. I created several three-dimensional models on the computer in

Strata StudioPro. I also began sketching ideas for the structure of the

interface that could be presented to the user and how. And I began

searching the Internet and the World Wide Web for articles to include in

the program.

4.9.94

For the past month I have been at work on the actual interface

of the program. The concept was originally inspired by a combination

of the MARSBook multimedia program interface and the shape and

look ofApple's Newton Personal Digital Assistant. While I was creating

the program, I was forced to change the interactivity of the program

The initial concept was to establish a metaphor of a computer within a

computer, in this case a personal digital assistant. I had examined many

interfaces in interactive programming. I wanted to give the user the

impression that he or she was effecting something above and beyond

that of simply making buttons depress and sounds play. I began with

the concept of an animated interface with control panels which would

enable/disable themselves according to where the user was. The tabs

on the right were created to give the user a familiar, menu-based, 22

system similar to the Macintosh OS. Additional feedback is given in the

window on the right to make the user aware of his/her position in the

program. Most of the difficulty arose in the programming process with

the animations. Two separate animations were created for each section

(at least), one for going
"in"

and one for going "out".Whenever a tab is

chosen a variable is set and the exit animation is played. At the end of

that animation, a check is executed which informs the computer which

button was selected and sends the program to the frames of the

animation which
"opens"

that section.

23

Appendix B: Scripts

on DoTell

global MW,MC

put
""

into cast
"two"

put the mouseWord into MW

put the mouseCast into MC

if field
"dir"

contains word MW of field the name of cast MC then

exit

else

set MW =

""

beep

end if

end DoTell

on Choice

global MW, Q

put the number of lines in field
"Pseudo"

into total

repeat with x = 2 to total

if line x of field
"Pseudo"

= MW then

set Q = 1

exit

else

set Q = 0

end if

end repeat

end Choice

on Teller

global MW,MC,M,Q,PLine

if MW =

""

then

exit

else

if Q = 1 then

put the text of cast a13 into bArray

go to bArray

exit

else

put word MW of field the name of cast MC into line 1 of field
"Two"

24

put the number of lines in field
"dir"

into total

repeat with x = 2 to total

if word 1 of field
"two"

contains item 1 of line x of field
"dir"

then

put the text of cast a13 into bArray
go to bArray

set M = M + 1

set PLine = PLine + 1

put word MW of field the name of cast MC into line PLine of field
"Pseudo"

put word MW of field the name of cast MC into line M of field
"One"

installMenu a12

EnableMenu

end if

end repeat

end if

end if

updatestage

end Teller

Menu Item Script Handlers

Determines which menultemNum was selected and executes

the corresponding script. Called when a menu item from the user

created menu is selected Each menultem in the menu created is set to

call this script with its name as the menultemNum that is passed. These

scripts were set on clicking the
"Pseudo"

menu button which also

creates the menu.(See the script of cast A26) When a menultem is

selected the number of the menu item is returned Since the items can

be in any order, we need to determine the name of the menultem

number.

on fileMenuChoice menultemNum

put the name of menultem menultemNum of menu
"File"

put the name of menultem menultemNum of menu
"File"

into

itemSelected

go to itemselected

end fileMenuChoice

on EnableMenu

if field
"Pseudo"

=

""

then

alert "Please Select a menu item to add to the menu
first"

exit

end if

installMenu A12

repeat with x = 1 to the number of lines in field
"Pseudo"

if line x of field
"Pseudo"

<> empty then

set the name of menultem x of menu
"File"

to line x of field
"Pseudo"

set the script of menultem x of menu
"File"

to

"fileMenuChoice("&x&")"

25

end if

end repeat

end EnableMenu

The Movie Script is as Follows:

on initialize

set the text of cast a33 =
""

global file, LastFrame

set the immediate of sprite 1 to true

set the immediate of sprite 2 to true

set the text of cast a21 to
""

-Articles

set the text of cast a43 =

""

--Definition Text

set the text of cast a45 =

""

-Definition Topic

set the text of cast b1 1 =

""

-Dictionary

set LastFrame = 7

end initialize

on StartMovie

global M, PLine, DefLine, BC, T, AR, GT, IX, DD, DX, DICT

set DICT = 0

set DX = 0

set DD = 0

set IX = 0

set GT = 0

set AR = 0

set T = 0

set BC = 0

set DefLine = -1

set M = 1

set PLine = 0

set the text of cast a13 to
""

- Temporary

set the text of cast a22 to
""

-Pseudo

set the text of cast a51 =

""
- Index

end StartMovie

on StopMovie

global file

if the text of cast a21 <>
""

then

file(mDispose)

end if

set the text of cast a13 to
""

- Temporary

set the text of cast a21 to
""

-Articles

set the text of cast a22 to
""

-Pseudo

set the text of cast a43 =

""

-Definition Text

set the text of cast a45 =

""

-Definition Topic

set the text of cast a51 =

""
- Index

set the text of cast b1 1 =
""

-Dictionary

end StopMovie 26

on FinishRead

global File

file(mDispose)

set the text of cast a21 to
" "

go to frame
"menu"

end finsh read

on TextSet

set the textFont of field a21 to
"Geneva"

set the textSize of field a21 to 12

end TextSet

on PrintField

set aname = CallBackTracer(mNew)

SetCallBack PrintDoc, aName

setPageHeader =
"lll"

set container = the text of cast a21

set PrintDialogString = "Internet Information
Index"

set FontName =

"helvetica"

set FontSize =

"12"

set BooleanSetUp =

"true"

PrintDoc PageHeader, container

PrintDialogString,FontName,FontSize,BooleanSetUp

End PrintField

Reading Text Files

on Getlt

puppetsound "switch.
iff"

global L, file, FilelO, f, d, c, t

puppetsprite 22, true

put the clickon into c

put the mousecast into t

put the name of cast the mousecast into tempArray

set the castnum of sprite c to (t + 8)

updatestage

set the castnum of sprite c to t

set f = 1

set file = FilelO (mNew, "read",the PathName &
"Resources:"

&

TempArray &
"."

& string(L))

if not objectp(file) then exit

set s = file(mreadfile)

if s <>
""

then

set the text of cast a21 to s

TextSet

else

alert "That is the last line of the
file."

& return & "Click Done to
exit."

end if 27

set the castnum of sprite 20 to (t + 32)

set the castnum of sprite 22 to (t + 36)

updatestage

end Getlt

Button Depressing- Used for tabs

on switchbutton

global sb, ob

updatestage

set ob = the mousecast

set sb = (the mouseCast - 79)

puppetsprite sb, true

set the castnum of sprite sb = (ob + 16)

puppetsound "switch.
iff"

updatestage

puppetsprite sb, false

set sb = 0

end switchbutton

Used for Level Setting

on switchbutton2

global sb, ob

updatestage

set ob = the mousecast

set sb = (the mouseCast - 71)

puppetsprite sb, true

set the castnum of sprite sb = (ob + 5)

puppetsound "switch.
iff"

-go to frame the name of cast sb

updatestage

puppetsprite sb, false

set sb = 0

end switchbutton2

Used for Quitting

on switchbutton3

global sb, ob

updatestage

set ob = the mousecast

set sb = (the mouseCast - 135)

puppetsprite sb, true

set the castnum of sprite sb = (ob + 16)

puppetsound "switch.
iff"

-go to frame the name of cast sb 28

updatestage

puppetsprite sb, false

set sb = 0

end switchbutton3

Scroll Articles UP

on up

set the castnum of sprite 13 to 123

puppetsound "switch.
iff"

put the castnum of sprite 15 into y

if y = 129 then

go to frame
"up1"

set the castnum of sprite 15 to 130

set the castnum of sprite 1 6 to 131

else

if y = 130 then

go to frame
"up2"

set the castnum of sprite 15 to 131

set the castnum of sprite 16 to 132

else

if y = 131 then

go to frame
"up3"

set the castnum of sprite 15 to 132

set the castnum of sprite 16 to 129

else

if y = 132 then

go to frame
"up4"

set the castnum of sprite 15 to 129

set the castnum of sprite 16 to 130

end if

end if

end if

end if

set the castnum of sprite 13 to 115

end up

Scroll Articles DOWN

on down

set the castnum of sprite 1 4 to 124

puppetsound "switch.
iff"

put the castnum of sprite 15 into y

if y = 129 then

go to frame
"downl"

set the castnum of sprite 15 to 132

set the castnum of sprite 16 to 129

else

if y= 130 then 29

go to frame
"down4"

set the castnum of sprite 15 to 129

set the castnum of sprite 16 to 130

else

if y= 131 then

go to frame
"down3"

set the castnum of sprite 15 to 130

set the castnum of sprite 16 to 131

else

if y= 132 then

go to frame
"down2"

set the castnum of sprite 15 to 131

set the castnum of sprite 16 to 132

end if

end if

end if

end if

set the castnum of sprite 14 to 116

end down

Previous Topic

on back

set the castnum of sprite 13 to 121

puppetsound "switch.
iff"

updatestage

if the frame = 391 then

go to frame
"WORLD_WIDE_WEB"

else

go marker (-1)

end if

set the castnum of sprite 13 to 114

end back

Next Topic

on forward

set the castnum of sprite 14 to 122

puppetsound "switch.
iff"

updatestage

if the frame = 461 then

go to frame
"Archie"

else

go marker (1)

end if

set the castnum of sprite 14 to 115

end forward

Where to Go? 30

on ButtonCheck

Global BC

f BC = 1 then go to frame
"Articles"

f BC = 2 then go to frame
"Topics"

f BC = 3 then go to frame
"Help"

f BC = 4 then go to frame
"menu"

f BC = 5 then go to frame
"index"

f BC = 6 then go to frame
"define"

f BC = 7 then go to frame
"quit"

end ButtonCheck

Index

on Index

global idArray, BC, GT

put the name of cast the mousecast into idArray
set GT = 1

set BC = 2

go to frame
"IndexDone"

end Index

Dictionary

on Dictionary

global DictArray, DX, file, FilelO, f

puppetsprite 13, true

put the name of cast the mousecast into DictArray

set the castnum of sprite 13 to (the mousecast + 16)

set the loch of sprite 13 to 161

set the locv of sprite 13 to 120

go to frame
"Diction"

set f = 1

set file = FilelO (mNew, "read",the PathName &
"Resources:"

&

DictArray)

if not objectp(file) then exit

set s = file(mreadfile)

if s <>
""

then

set the text of cast a21 to s

TextSet

else

alert "That is the last line of the
file."

& return & "Click Done to
exit."

end if

end Dictionary

PrintDictionary

on PrintField2

global QuitTest 31

set aname = CallBackTracer(mNew)

SetCallBack PrintDoc, aName

set PageHeader =
"Dictionary"

set container = the text of cast b1 1

set PrintDialogString = "You can put the name of your field
here"

set FontName =
"times"

setFontSize =

"12"

set BooleanSetUp =

"true"

PrintDoc PageHeader, container

PrintDialogString,FontName,FontSize,BooleanSetUp
set QuitTest = 0

End PrintField2

factory CallBackTracer

method mNew

method mSendHCMessage x

method mSendCardMessage x

on ReadText2

global L, file, FilelO, myArray,f ,M ,Pline

set f = 1

set file = FilelO (mNew, "read",the PathName &
"Resources:"

&

myArray)

if not objectp.file) then exit

set s = file(mreadfile)

if s <>
""

then

set the text of cast a43 to s

put the number of lines in field
"dir"

into total

repeat with x = 2 to total

if word 1 of field
"Def"

contains item 1 of line x of field
"dir"

then

set M = M + 1

set PLine = PLine + 1

put myArray into line PLine of field
"Pseudo"

put myArray into line M of field
"One"

installMenu a12

EnableMenu

end if

end repeat

else

alert "That is the last line of the
file."

& return & "Click Done to
exit."

end if

updatestage

end ReadText2

Cancel Dictionary

32

on ClearDictionary

global QuitTest

set QuitTest = 0

set the text of cast a43 to
""

set the text of cast a45 to
""

go to frame
"help"

end ClearDictionary

Quitting

on QuitMovie

put the number of lines in field
"Dictionary"

into total

if total > 1 then

go to frame
"quitcheck"

else

play frame
"Main"

of movie "Thesis
v1.01"

end if

end QuitMovie

on writeDictionary

global file, FilelO

set file = FilelO(mNew, "?write",
"Dictionary"

)

if not objectp(file) then

set theProblem = string(file)

exit

end if

set s to the text of cast b1 1

file(mWriteString, string(s) & return)

file(mDispose)

end WriteDictionary

33

	Book title
	Front Cover
	Table of Contents
	2 (R0006143234_0008.jpg)
	3 (R0006143234_0009.jpg)
	4 (R0006143234_0010.jpg)
	5 (R0006143234_0011.jpg)
	6 (R0006143234_0012.jpg)
	7 (R0006143234_0013.jpg)
	8 (R0006143234_0014.jpg)
	9 (R0006143234_0015.jpg)
	10 (R0006143234_0016.jpg)
	11 (R0006143234_0017.jpg)
	12 (R0006143234_0018.jpg)
	13 (R0006143234_0019.jpg)
	14 (R0006143234_0020.jpg)
	15 (R0006143234_0021.jpg)
	16 (R0006143234_0022.jpg)
	17 (R0006143234_0023.jpg)
	18 (R0006143234_0024.jpg)
	19 (R0006143234_0025.jpg)
	20 (R0006143234_0026.jpg)
	21 (R0006143234_0027.jpg)
	22 (R0006143234_0028.jpg)
	23 (R0006143234_0029.jpg)
	24 (R0006143234_0030.jpg)
	25 (R0006143234_0031.jpg)
	26 (R0006143234_0032.jpg)
	27 (R0006143234_0033.jpg)
	28 (R0006143234_0034.jpg)
	29 (R0006143234_0035.jpg)
	30 (R0006143234_0036.jpg)
	31 (R0006143234_0037.jpg)
	32 (R0006143234_0038.jpg)
	33 (R0006143234_0039.jpg)
	Back Cover

