

General Information \& Undergraduate Programs 1990-91

Rochester Institute of Technology Rochester, New York

Rochester Institute of Technology 1990-91 Institute Calendar

- FALL QUARTER

September $2 \quad$ Move-in Day for New Residents
September 2-5 Orientation for New Students
September $5 \quad$ Open Registration
(New and Returning Students)
September 5-8
September 13
October 26
All Classes Begin
End of Drop/Add Period
Last Day to Withdraw with a
Grade of "W"
November 14
November 17
November 16,17, 19,20
November 20 Last Evening Class
November 21-29
Last Day Class
Last Saturday Class
FINAL EXAMS

Fall/Winter Break

- WINTER QUARTER

November 30	Open Registration December 1
December 3	Saturday Classes Begin
December 3	Evening Classes Begin
December 10	Day Classes Begin
December 21	End of Drop/Add Period
January 3,1991	Last Day of Classes Before Break
February 1	Classes Resume
	Last Day to Withdraw with a
February 20	Grade of "W"
February 22,23,	Last Day Class
25,26	
February 23	
February 27	Last Saturday Class
February 28-	Last Evening Class
March 7	Winter/Spring Break

- SPRING QUARTER

March 8
March 11
March 11
March 9
March 18
May 3
May 17
May 20-23
May 24
May 18
May 25
May 26-30

Open Registration
Evening Classes Begin
Day Classes Begin
Saturday Classes Begin
End of Drop/Add Period
Last Day to Withdraw with a
Grade of "W"
Last Day Class
FINAL EXAMS
Last Evening Class
Last Saturday Class
COMMENCEMENT
Spring/Summer Break

About this bulletin	Contents	
The RIT Undergraduate Bulletin does not constitute a contract between the		
Institute and its students on either a	2	RIT at a Glance
collective or individual basis. It repre-	3	RIT's Mission and Goals
sents RIT's best academic, social, and	3	Colleges and Schools
financial planning at the time of publi-	Programs of Study	
cation. Course and curriculum	4	Undergraduate Full-time
changes, modification of tuition; fees;	6	Undergraduate Part-time
dormitory, meal, and other charges;	7	College of Applied Science and Technology
plus unforeseen changes in other	41	College of Business
aspects of RIT life sometimes occur	52	College of Continuing Education
after the bulletin has been printed, but	77	College of Engineering
before the changes can be incorporated	87	College of Fine and Applied Arts
in a later edition of the same publica-	95	College of Graphic Arts and Photography
tion. Because of this, Rochester Insti-	116	College of Liberal Arts
tute of Technology does not assume a	130	College of Science
contractural obligation with its students	148	National Technical Institute for the Deaf
the contents of this Undergradu	Application Procedures and Admission Services	
etin	176	Applying for Admission
RIT will admit and hire men and	Expenses and Financial aid	
omen, veterans, persons with disabil-	177	Procedures and Costs
ities, and individuals of any race,	177	Matriculated Day College Students
eed, religion, color, national or ethnic	178	Refund Policies
origin, sexual orientation, age, or mar-	179	Continuing Education and Others
ital status, in compliance with all appropriate legislation.	180	Financial Aid
	Academic Policies and Student Standards	
General Information and	185	Registration and Student Records
Undergraduate Study 1990-91	186	Academic Standards and Regulations
	187	What You'll Need for Graduation
©Copyright 1990, Rochester Institute of Technology	188	Institute Standards for Student Conduct
	Academic Services	
	190	Career and Academic Advising
Produced by	190	Cooperative Education and Placement
RIT Communications	190	Wallace Memorial Library
	191	Information Systems and Computing
This material was produced, in part, through an agreement between Rochester Institute of Technology and the U.S. Department of Education.	191	Instructional Media Services
	192	Learning Development Center
	193	Counseling Center
	Special Services	
	195	Extra Help: HEOP
For more information concerning undergraduate study at RIT, or for a complete list of courses offered, write or phone:	195	Office of Special Services
	195	International Student Affairs
	196	Veterans' Affairs
	196	Complementary Education
Rochester Institute of Techno Office of Admissions Bausch \& Lomb Center P.O. Box 9887 Rochester, N.Y. 14623-0887 (716)475-6631	Campus; Life	
	197	Student Housing
	198	New Student Orientation
	198	Student Clubs and Organizations
	200	Religious Activities
	200	Physical Education
	200	Physical Education Classes
	201	Intramural Activities
	201	Recreation
	201	Intercollegiate Athletics
	201	Student Health Service
	Personnel	
		Campus Map (inside back cover)

Vol. 6
No. 6
September 14,1990
RIT (USPS 676-870) is published seven times annually by Rochester Institute of Technology, One Lomb Memorial Drive, P.O. Box 9887, Rochester, N.Y.
14623-0887, twice in June, twice in July, once in August, and twice in September. Second-class postage paid at Rochester, N.Y. Postmaster: Send address changes to RIT, Rochester Institute of Technology, One Lomb Memorial Drive, P.O. Box 9887, Rochester, N.Y. 14623-0887.

Overview of Rochester Institute of Technology

RIT at a Glance

FOUNDED IN 1829 and emphasizing career education, RIT is a privately endowed, coeducational university comprised of nine colleges.

RIT is chartered by the legislature of the State of New York and accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools. In addition to institutional accreditation, curricula in some of the colleges are accredited by appropriate professional accreditation bodies. Where applicable, specific mention of these is included in the college descriptions.

The campus occupies 1,300 acres in suburban Rochester, the third largest city in New York State.

The RIT student body consists of approximately 8,500 undergraduate students, including nearly 1,100 deaf students who attend RIT through the National Technical Institute for the Deaf (NTID), 1,500 graduate students, and 4,000 part-time students. Enrolled students represent all 50 states and 63 foreign countries.

RIT alumni number more than 60,000 worldwide, including 2,600 deaf graduates.

RIT is the fourth oldest and fifth largest cooperative education institution in the United States, annually placing 3,100 students in co-op positions with approximately 1,300 employers.

More than 600 companies visit RIT annually, conducting over 9,000 oncampus interviews. In addition, approximately 5,000 positions are listed with the Cooperative Education and Placement Office each year.

Three national sororities and 10 national fraternities offer social activities and promote high scholastic and social standards among their members. Student affiliate chapters of a number of national technical associations also are located on the campus.

Athletics, intramurals, fitness: RIT offers a wide variety of activities for students at all levels of ability. Men's hockey, soccer and lacrosse continue to be ranked nationally, and many other teams receive recognition in the Northeast.

Men's Teams—baseball, basketball, cross country, ice hockey, lacrosse, soccer, swimming, tennis, track and wrestling

Women's Teams—ice hockey, basketball, tennis, track, swimming, cross country, soccer, Softball and volleyball

Over 60 percent of RIT students participate in one or more of our 21 intramural programs. Indoor and outdoor facilities include two gymnasiums, ice arena, swimming pool, fitness center, wrestling room, 12 tennis courts, allweather track, an air-supported structure housing three multi-purpose courts and numerous athletic fields.

ROTC leadership and management classes are an adjunct to the curriculum and offer eligible undergraduates excellent scholarship opportunities. All three ROTC branches are available. (For additional information, see page 37.)

Visits to campus are encouraged and may be arranged in advance by writing or calling (716) 475-6631. Visits to the National Technical Institute for the Deaf may be arranged by calling (716) 475-6318, voice or TDD.

Wallace Memorial Library has, in addition to 300,000 books, the largest microfilm collection and the most extensive collections of video-cassettes, slides, filmstrips, microfiche, motion pictures, Super 8 cartridges, and recordings of any area college library.

Computing services: RIT provides computing services on VAX/VMS and VAX/ULTRIX (UNIX) systems, and various microcomputers to students regardless of their majors. These services are provided at no cost to students. Central computer systems can be accessed via telephone or terminals in six different User Computing Centers. Publications and free seminars are available. Many RIT colleges have additional computing facilities available to students in their programs.

Housing: Many of RIT's full-time students live in RIT-operated residence halls. On-campus fraternities, sororities and special-interest houses are available. Freshmen are guaranteed housing; upper-class students may live in residence halls, on-campus apartments or townhouses.

Specially equipped rooms for deaf students include visual warning systems.

Student activities: Major social events include Homecoming, Parents Weekend, Winter Weekend and Spring Weekend, along with dances, parties, speakers and events sponsored by the College Activities Board, Residence Halls Association, Greek Council and special interest clubs of many kinds.

RIT Today

RIT is a university held in high esteem, attracting outstanding students from across America and around the world.

RIT's reputation for quality comes from a dedication to providing the finest possible career preparation for today's students. This has attracted some of the nation's leading faculty to RIT and has led to the development of academic programs combining outstanding teaching, a strong foundation in the liberal arts and sciences, modern classroom facilities, and work experience gained through the Institute's cooperative education program.

More than 200 different programs attract 12,000 undergraduate and 1,500 graduate students to an astounding array of distinctive academic areas such as microelectronic engineering, imaging science, computer graphics, packaging science, film/video, biotechnology, ultrasound, printing management, international business management, manufacturing management, telecommunications technology, and the programs of the School for American Craftsmen and the National Technical Institute for the Deaf.

As a major comprehensive university, RIT's programs extend beyond science and technology. RIT offers more liberal arts courses and a larger liberal arts faculty than you would find at most liberal arts colleges. With a strong foundation in humanities and social sciences, RIT students not only understand the latest technological developments, they can also address the larger philosophical and ethical issues presented by technology.

For over 75 years, the hallmark of an RIT education has been the practical paid work experience provided through cooperative education. RIT was the first university in New York State to begin cooperative education back in 1912. Today the Institute's co-op program is the fourth oldest and fifth largest in the world, providing both work experience and financial resources for RIT students. More than 3,000 junior and senior level co-op students are employed each year with some 1,300 firms coast to coast. The co-op salaries earned by these students total over \$14 million.

RIT has provided quality programs for successful careers since 1829 , and the Institute has more than 60,000 alumni making an impact around the world. We are confident that RIT is preparing today's graduates to become tomorrow's leaders.

RIT students

Reflecting the diversity of RIT's programs, students come from every state and more than 60 foreign countries. More than one third are transfer students, who have enrolled from twoyear colleges or other four-year institutions. About one third of the Institute's students are women, and adult and part-time students comprise a significant proportion of the total enrollment.

Veterans, often a little older and usually ready to move directly toward a career goal, find at RIT a serious purpose and a place to make up lost time with minimal adjustment problems.

The more than 1,000 deaf students enrolled in RIT's National Technical Institute for the Deaf make a distinct contribution to the educational environment. Deaf and hearing students often share the same dormitories and sometimes the same room. They play on the same teams and attend many of the same classes. Hearing students may participate in programs for deaf students by interpreting, tutoring or taking class notes for them. RIT is proud of its part in this national educational effort for deaf people. (For more information on NTID, see page 148.)

Emphasis on diversity

RIT is proud to be a multicultural place of learning, and students can greatly benefit by living and learning on a campus that so values the diversity of its student body. We are fortunate to have a campus that consists of students from many different backgrounds, cultures, and lifestyles. This diversity offers the community an opportunity to become both personally and professionally enriched by taking advantage of the many formal and/or informal cultural offerings.

RIT's commitment to establishing an environment that encourages appreciation of differences is evidenced in several ways. Courses offered by the College of Liberal Arts include Black Literature, History of Social Discrimination, The Immigrant in American History, and Hispanic American Culture.

There also are many campus events that provide opportunities to learn about different cultures and lifestyles representative of our students, faculty, and staff. Programs are presented by various groups and organizations on campus in a number of ways. RIT also celebrates annual events such as the International Banquet, Black History Month, Deaf Awareness Week, Martin Luther King Celebration, and Hispanic Heritage Week.

Students should take advantage of these many opportunities that RIT provides. The world we will be living in, and the environment we will be working in, will be composed of people from many different backgrounds, lifestyles, and cultures. We should all strive to end ethnic prejudice as there is no room for cultural factionalism in today's world. There also is no room for prejudice against those with alternative lifestyles or those who may be physically disabled.

Graduates will have a lifelong advantage if they leave RIT with an understanding and appreciation of society's rich diversity.

Colleges and Schools

Applied Science and Technology (Computer Science and Information Technology; Engineering Technology; Food, Hotel and Tourism Management; Packaging Science)

Business

Continuing Education

Engineering

Fine and Applied Arts (Art and Design, School for American Craftsmen)

Graphic Arts and Photography (Imaging Science, Printing Management and Sciences, Photographic Arts and Sciences)

Liberal Arts

Science

National Technical Institute for the Deaf

Degrees: RIT offers the associate in arts (AA), associate in science (AS), associate in applied science (AAS), associate in occupational studies (AOS), bachelor of fine arts (BFA), bachelor of science (BS), bachelor of technology (B. Tech.), master of business administration (MBA), master of engineering (ME), master of fine arts (MFA), master of science (MS), master of science for teachers (MST), and the nation's only doctoral program (Ph.D.) in the field of imaging science.

Undergraduate Full-Time Programs	College	Degree and HEGIS*								Page
		Cert.	Dipl.	AOS	AS	AAS	BFA	BS	B.Tech	
Accounting	Business							0502		44
Applied Accounting	NTID		5002				5002			153
Applied Art	NTID	5012	5012			5012				168
Architectural Drafting	NTID		5304							163
Architectural Technology	NTID					5304				164
Biology	Science				5604			0401		135
Biotechnology	Science							0499		136
Business Occupations	NTID	5005								154
Business Technology	NTID									154
Ceramics \& Ceramic Sculpture	Fine \& Applied Arts					5610	1009			94
Chemistry	Science				5619			1905		137
Civil Technology	NTID					5309				163
Communication, Tech. \& Professional	Liberal Arts							0601		126
Communications!										
Biomedical Photographic	Graphic Arts \& Photography					5299		1217		101
Computer Science	Applied Science \& Technology					5101		0701		11
Computing, Biomedical	Science				**			1217		144
Craft Major, Double	Fine \& Applied Arts						1009			93
Criminal Justice	Liberal Arts							2105		120
Data Processing	NTID	5101	5101			5101				156
Design										
Graphic	Fine \& Applied Arts					5012	1009			91
Industrial and Interior	Fine \& Applied Arts					5012	1009			91
Diag. Med. Sonography (Ultrasound)	Science					5299		1299		147
Dietetics \& Nutritional Care, General	Applied Science \& Technology					5404		1306		33
Economics	Liberal Arts							2204		125
Educational Interpreting	NTID					5506				
Electromechanical Technology	NTID					5311				165
Engineering										
Computer Engineering	Engineering							0999		80
Electrical Engineering	Engineering							0909		81
Industrial Engineering	Engineering							0913		82
Mechanical Engineering	Engineering							0910		84
Microelectronic Engineering	Engineering							0999		86
Engineering Technology										
Civil Engineering Technology	Applied Science \& Technology							0925	0925	14
Computer Engineering Technology	Applied Science \& Technology					5399		0925		16
Electrical Engineering Technology	Applied Science \& Technology							0925		18
Manufacturing Engineering Technology	Applied Science \& Technology							0925		26
Mechanical Engineering Technology	Applied Science \& Technology							0925		22
Telecommunications Technology	Applied Science \& Technology							0925		20
Film/Video	Graphic Arts \& Photography					5008		1010		102
Finance	Business							0504		45
Foodservice Management	Applied Science \& Technology					5404		1307		30
Glass	Fine \& Applied Arts					5012	1009			94
Histologic Assistant	NTID	5205								158
Hotel and Resort Management	Applied Science \& Technology					0508		5010		31
Illustration										
Medical Illustration	Fine \& Applied Arts						1299			92
Painting-Illustration	Fine \& Applied Arts					5610	1002			91
Printmaking-Illustration	Fine \& Applied Arts					5610	1002			91
Imaging Science	Graphic Arts \& Photography					5007		1011		108
Imaging \& Photographic Technology	Graphic Arts \& Photography					5007		1011		103
Industrial Drafting	NTID		5303							166
Industrial Drafting Technology	NTID			5303		5303				166
Information Systems	Business							0599		46
International Business	Business							0513		51

[^0]| Undergraduate Full-Time Programs | College | Degree and HEGIS* | | | | | | | | Pag* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Cert. | Dipl. | AOS | AS | AAS | BFA | BS | B. ${ }^{*}$ ch | |
| Management | Business | | | | | | | 0506 | | 48 |
| Manufacturing Management | Business | | | | | | | 0506 | | 47 |
| Manufacturing Processes | NTID | | 5312 | | | | | | | 167 |
| Marketing | Business | | | | | | | 0509 | | 49 |
| Mathematics | | | | | | | | | | |
| Applied Mathematics | Science | | | | 5617 | | | 1703 | | 140 |
| Computational Mathematics | Science | | | | | | | 1703 | | 141 |
| Medical Laboratory Technology | NTID | | | | | 5205 | | | | 158 |
| Medical Record Technology | NTID | | | | | 5213 | | | | 159 |
| Medical Technology | Science | | | | ** | | | 1223 | | 145 |
| Metalcrafts \& Jewelry | Fine \& Applied Arts | | | | | 5012 | 1009 | | | 94 |
| Newspaper Operations Management | Graphic Arts \& Photography | | | | | | | 0699 | | 113 |
| Nuclear Medicine Technology | Science | | | | | | | 1299 | | 146 |
| Office Technologies | NTID | | 5005 | | | 5005 | | | | 155 |
| Ophthalmic Optical Finishing Technology | NTID | | | 5212 | | | | | | 160 |
| Optical Finishing Technology | NTID | 5212 | 5212 | | | 5212 | | | | 160 |
| Packaging Science | Applied Science \& Technology | | | | | | | 4999 | | 35 |
| Packaging Science (design option) | FineS Applied Arts | | | | | | | 4999 | | 92 |
| Painting, Printmaking | Fine \& Applied Arts | | | | | 5610 | 1002 | | | 91 |
| Photo/Media Technologies | NTID | 5007 | 5007 | | | 5007 | | | | 169 |
| Photographic Illustration, Professional | Graphic Arts \& Photography | | | | | 5007 | 1011 | | | 106 |
| Photographic Marketing Management | Business | | | | | | | 0509 | | 50 |
| Photographic Processing \& Finishing Management | Graphic Arts \& Photography | | | | | 5007 | | 0599 | | 105 |
| Physics | Science | | | | 5619 | | | 1902 | | 143 |
| Polymer Chemistry | Science | | | | | | | 1907 | | 139 |
| Printing | Graphic Arts \& Photography | | | | | 5009 | | 0699 | | 109 |
| Printing \& Applied Computer Science | Graphic Arts \& Photography | | | | | | | 0699 | | 114 |
| Printing Production Technology | NTID | 5009 | 5009 | 5009 | | 5009 | | | | 172 |
| Printing Systems | Graphic Arts \& Photography | | | | | | | 0699 | | 112 |
| Professional and Technical Communication | Liberal Arts | | | | | | | 0601 | | 126 |
| Social Work | Liberal Arts | | | | | | | 2104 | | 122 |
| Statistics, Applied | Science | | | | | | | 1702 | | 142 |
| Travel Management | Applied Science \& Technology | | | | | 0510 | | 5011 | | 32 |
| Weaving \& Textile Design | Fine\& Applied Arts | | | | | 5012 | 1009 | | | 94 |
| Woodworking \& Furniture Design | Fine \& Applied Arts | | | 5317 | | 5012 | 1009 | | | 93 |

[^1]| Undergraduate Part-time Programs | College | Degree and HEGIS* Codes | | | | | | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | AS | Cert. | Dipl. | AAS | BS | B.Tech | |
| Accounting | Continuing Education | | | | 5002 | | | 57 |
| Accounting | Business | | | | | 0502 | | 44 |
| \dagger Advanced Communications - Public Relations | Continuing Education | | 5008 | | | | | 60 |
| Applied Arts \& Science ${ }^{1}$ | Continuing Education | | | 5699 | 5699 | 4999 | | 53 |
| Applied Science | | | | | | | | |
| Mechanical | Continuing Education | | | | 5301 | 0910 | | 68 |
| Mechanical/Industrial | Continuing Education | | | | 5301 | 0913 | | 67 |
| Basic \& Advanced Technical Communication | Continuing Education | | 5008 | | | | | 61 |
| Building Technology | Continuing Education | | | 317 | | | | 73 |
| Business Administration | Continuing Education | | | | 5001 | | | 57 |
| Computer Science | Applied Science \& Technology | 5101 | | | | | | 70 |
| Computer Service Technology | Applied Science \& Technology | | | 5105 | | | | 76 |
| Computer Systems | Applied Science \& Technology | | | | 5101 | | | 66 |
| Criminal Justice | Liberal Arts | | | | | 2204 | | 120 |
| Deaf Studies | Continuing Education | | 5506 | | | | | 62 |
| Economics | Liberal Arts | | | | | 2204 | | 125 |
| Emergency Management | Continuing Education | | | | | | | 54 |
| Engineering Science | Continuing Education | | | | 5609" | | | 69 |
| Engineering Technology | | | | | | | | |
| Electrical Engineering Technology | Applied Science \& Technology | | | | | 0925 | | 18 |
| Manufacturing Engineering Technology | Applied Science \& Technology | | | | | 0925 | | 26 |
| Mechanical Engineering Technology | Applied Science \& Technology | | | | | 0925 | | 22 |
| Telecommunications Technology - Management | Applied Science \& Technology | | | | | 0925 | | 21 |
| Finance | Business | | | | 0504 | | | 45 |
| Fine and Applied Arts | Continuing Education | | | 5012 | | | | 63 |
| General Education | Continuing Education | | | | 5699 | | | 59 |
| General Management | Continuing Education | | | | 5004 | | | 55 |
| Graphic Arts | Continuing Education | | | | 5012 | 1002 | | 65 |
| Industrial Technology | | | | | | | | |
| Building | Applied Science \& Technology | | | | 5317 | | | 73 |
| Electrical | Applied Science \& Technology | | | | 5310 | | | 71 |
| Electromechanical | Applied Science \& Technology | | | | 5311 | | | 72 |
| Mechanical | Applied Science \& Technology | | | | 5315 | | | 74 |
| Instrument Making \& Experimental Work | Continuing Education | | | 5312 | | | | 75 |
| Logistics \& Transportation Management | Continuing Education | | | | 5004 | | | 57 |
| Machine Shop | Continuing Education | | | 5303 | | | | 75 |
| Management | Business | | | | | 0506 | | 48 |
| Management Development (also certificate, 5004) | Continuing Education | | | 5004 | | | | 56 |
| Manufacturing Management | Business | | | | | 0506 | | 47 |
| Manufacturing Technology | Applied Science \& Technology | | | | 5399 | | | 74 |
| Marketing | Continuing Education | | | | 5004 | | | 57 |
| Marketing | Business | | | | | 0506 | | 49 |
| Personnel Administration | Continuing Education | | | | 5004 | | | 57 |
| Photography | Continuing Education | | | 5007 | | | | 63 |
| Printing | Continuing Education | | | 5009 | | | | 63 |
| Production Management | Continuing Education | | | | 5004 | | | 57 |
| Professional Photography | Continuing Education | | | | 5007 | | | 64 |
| Public Relations | | | | | | | | |
| Professional Writing | Continuing Education | | 5008 | | | | | 60 |
| Graphic Communications | Continuing Education | | 5008 | | | | | 60 |
| Public Relations \& Technical Communications Services | Continuing Education | | 5008 | | | | | 61 |
| Real Estate/Insurance+ | Continuing Education | | | | | | | 57 |
| Social Work | Liberal Arts | | | | | 2104 | | 122 |
| Tool \& Die Making | Continuing Education | | | 5312 | | | | 75 |

'Higher Education General Information Survey
"AS degree
+Courses offered forNYS licensing
tState Education Dept. approval pending
Students can also participate on a full time basis

College of Applied Science and Technology

Wiley R. McKinzie, Dean
Organized in 1972, the College of Applied Science and Technology incorporates the School of Engineering Technology; the School of Computer Science and Information Technology; the School of Food, Hotel and Tourism Management; and the Department of Packaging Science. The college has programs at the associate, baccalaureate, and master's degree levels. CAST also incorporates the Department of Military Science and the Department of Aerospace Science, ROTC (see page 37).

The School of Engineering Technology accepts freshmen and transfer students with appropriate associate degrees. With its excellent laboratories, strong tradition of cooperative education, and experienced faculty, the school offers quality programs emphasizing the application of existing technology to engineering problems in manufacturing, power, electronics, telecommunications, construction, energy, and environmental concerns.

The School of Computer Science and Information Technology is comprised of two departments: the Department of Computer Science and the Department of Information Technology.

The Department of Computer Science was established in 1971. It has become one of the most highly regarded undergraduate schools of computer science in the nation. Its CSABaccredited bachelor of science program consists of a two-year foundations component covering programming, algorithmic design, data structures, program design, computer organization, and file organization. An advanced topics component includes computer science theory, programming language concepts, operating systems, and data communications; and a concentration component in one of the areas of software engineering, systems software, networking and distributed systems, computer information systems, digital systems design, computer science theory, artificial intelligence, and computer graphics. The program also includes a full year of co-op. The
undergraduate curriculum is supported by dedicated computer facilities, which include numerous Sun workstations driving seven special purpose laboratories: first year, professional programming, computer graphics, operating systems, software engineering, computer architecture, and computer networking. All computer systems run in the UNIX environment and are connected with Ethernet. The faculty are computer science professionals and dedicated teachers with advanced degrees in computer science, as well as years of experience in the computer industry. The computer science program is open to both freshman and transfer students.

The Department of Information Technology offers computing courses for students not majoring in computer science as well as graduate programs in software development and management, instructional technology, and interactive media design.

The School of Food, Hotel and Tourism Management became part of the College of Applied Science and Technology in 1982, but it has roots in the early history of RIT. Ultra modern food and travel laboratories and state-of-the-art computer facilities offer students a wide variety of program choices. Cooperative education, which alternates periods of study and employment, is required of all students and provides the possibility of assignments at locations throughout the world. Those graduates who earn a BS degree with a major in dietetics (Plan IV Traditional Option) are qualified to apply for American Dietetic Association internships.

The Department of Packaging Science, one of only a handful of baccalaureate degree packaging programs in the nation, draws heavily upon courses offered in other schools and colleges of the Institute. With a core of experientially based packaging courses, the broadly developed curriculum is representative of the areas of knowledge that are basic to the packaging industry. Two quarters of cooperative education experience are required in this department.

Resources
The experiential nature of all of the programs in the College of Applied Science and Technology requires excellent facilities and equipment. The Institute continually updates and adds equipment to maintain laboratories that contain state-of-the-art equipment. The engineering technology programs share facilities with the College of Engineering with additional laboratories in CAD/CAM systems, robotics, controls, and soils. A CAD laboratory based on Intergraph hardware supports a number of courses. The extensive computer facilities mentioned previously are totally dedicated to academic support of Undergraduate Computer Science and its joint programs. The packaging science laboratories have some of the most advanced and sophisticated packaging testing equipment in the country. The laboratories in the School of Food, Hotel and Tourism Management rival those in the industry and are coordinated by computer systems.

Acceptance of the associate degree With the exception of the computer engineering technology and the telecommunications technology programs, the School of Engineering Technology gives holders of an appropriate associate degree from a community, junior, or technical college (or other similar two-year institutions) full credit for those curricula leading to the bachelor's degree.

Engineering technology students may receive the engineering technology bachelor's degree in three years of additional study in the cooperative educational program.

The Department of Packaging Science and the Department of Computer Science admit students into upperdivision years and accept the associate degree at full value if the associate degree is obtained in a packaging science program or a computer science program, respectively.

Please see the Food, Hotel and Tourism Management section for details about its transfer policies.

Faculty

Members of the faculty in CAST are highly regarded teachers who have had considerable experience in their respective industrial fields and/or teaching in two-year and four-year colleges, and have completed graduate programs in the various areas of their specialties. All are committed to rigor and academic excellence. While teaching is their primary concern, they serve as active industrial consultants and researchers to maintain current knowledge in their respective fields. The faculty are committed to student growth and development.

Program planning
Each student in CAST is considered individually when his or her program is planned. The diversity of subject background from the two-year colleges necessitates an almost tailor-made pattern of courses and knowledge to assure that associate degrees retain the integrity they deserve, and guaranteeing, as far as possible, that previously studied material will not be repeated.

Admission at a Glance

General information on RIT's admission requirements, procedures and services is included in detail on pages 176-177 of this bulletin.

College of Applied Science and Technology Programs
The College of Applied Science and Technology prepares students for a world of rapidly expanding technological applications and for a world rapidly becoming service driven. The programs reflect RIT's goal of offering students relevant, leading-edge, careeroriented programs that lead to rewarding employment.

The college includes the School of Engineering Technology, the School of Computer Science and Information Technology, the Department of Packaging Science, and the School of Food, Hotel and Tourism Management.

In addition to the programs described in this section, the college also offers the following:

School of Computer Science and Information Technology-AS, Computer Science; AAS, Computer Systems. Contact Eydie Lawson at 475-2995 for more information.

School of Engineering TechnologyAAS, Industrial Technology (Electrical, Building Technology, Mechanical, Electromechanical); AAS, Manufacturing Technology; Diploma, Computer Service Technology; Certificate, Computer Aided Design; Certificate, Engineering Graphics. Contact Jim Scudder, 475-5190, for further information.

Computer Science: The CSAB-

 accredited undergraduate computer science program educates students for positions requiring a strong background in computing theory and practice. Graduates are prepared to enter graduate school or to pursue careers as system software specialists, software engineers, research programmers, systems programmers, applications specialists or computer systems analysts. Degree granted: BS—5 year with co-op.Packaging Science: Three program options-technical, management, or printing-prepare students for initial employment in the technical and engineering aspects of package development and production, structured design, product development, sales, customer technical service, purchasing, or marketing of the company's products. Degree granted: BS—4 year.

Civil Engineering Technology: A program providing broad-based knowledge that leads graduates to employment opportunities in various branches of the civil industry. The program enables the student to pursue career interests through the selection of technical electives in structures, water resource management, environmental controls, construction management, and heavy construction. Degree granted: BS5 year with co-op.

Computer Engineering Technology:

 A program that integrates the skills of digital electronics design with the programming skills of computer science. The courses emphasize current technology in computers and graduates are prepared for employment in designing, manufacturing and servicing computer systems. Transfer into the program with advanced standing is available for those with associate degrees in appropriate fields. Degrees granted: AAS2 year; BS—5 year with co-op.Electrical Engineering Technology: The first two years of the program provide basic courses in electricity, electronics, programming, physics and technical calculus. The upper division of the program provides further mastery in analog and digital electronics, transformed circuits, control systems, and applied differential equations. Elective options in electronic communications, digital computer design, microelectronics and electric power systems are available in the last two years of the program. Transfer into the program with junior standing is available for AAS degree holders from programs in electrical or electronic engineering technology. Degree granted: BS5 year with co-op.

Telecommunications Technology: A program which is designed to place graduates in the rapidly growing field of telecommunications. Options are available in technology and in management. The first two years of both options are identical, emphasizing an introduction to telecommunications and to electrical technology, with foundations in mathematics, physics, computer programming, and the liberal arts.

The Technical Option emphasizes courses specific to telecommunications hardware and software in the last three years. Several technical elective areas in electronic communications and other electrical engineering technology areas are available. The Management Option has six courses in business, plus several hardware and software telecommunications courses. Both options have courses that discuss current regulatory policies.

Transfer into the program with advanced standing is available for those with associate degrees in appropriate fields. Degree granted: BS-5 year with co-op.

Mechanical Engineering Technology:

 The mechanical engineering technology program is designed to prepare individuals to work in all the traditional mechanical areas including machine design; thermal analysis; mechanical testing; product design; utilities operations; manufacturing; and heating, ventilating and air conditioning, as well as sales and service of mechanical equipment of all types. The program is broad in scope and graduates are able to select jobs in a diverse number of industries. Degree granted: BS—5 year with co-op.Transfer Admission with Junior Standing

Program!	Required High School Subjects*	Desirable Elective Subjects	Two-Year College Programs
Computer Science	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Computer science
Packaging Science	Elem. Algebra Inter. Algebra 1 year any science Additionally, for the Technical option, Plane Geometry; Trigonometry	Additional mathematics and science	Packaging science, business administration, engineering technology, science, or equivalent
Computer Engineering Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Computer technology, electronics technology, computer science
Civil Engineering Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Civil, construction, environmental, architectural, transportation and surveying technology, engineering science or equivalent
Electrical Engineering Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional and science	Electrical technology, electronics technology, engineering science, or equivalent
Mechanical Engineering Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Mechanical technology, drafting and design technology, air conditioning technology, electromechanical technology, or equivalent; engineering science
Manufacturing Engineering Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Manufacturing technology, mechanical technology, electromechanical technology, drafting \& design technology, robotics technology or equivalent; engineering science
Telecommunications Technology	Elem. Algebra Inter. Algebra Plane Geometry Trigonometry Physics or Chemistry	Additional mathematics and science	Telecommunications technology, electrical technology, electronic technology, engineering science, or equivalent
Food Management, Hotel and Resort Management, Travel Management	Elem. Algebra Inter. Algebra 1 year chemistry	Additional mathematics and science	Foodservice management, culinary arts, hospitality management, hotel-motel management, travel and tourism management
General Dietetics \& Nutritional Care a) Plan IV b) Coordinated Program (C.P.)	Elem Algebra Inter. Algebra 1 year chemistry	Biology; additional mathematics	Dietetics or equivalent

tAll options include electives in social science, literature and humanities.
'Four years of English are required in all programs, except where state requirements differ.

Manufacturing Engineering Technology: A program designed to provide the skills necessary for applying both today's and tomorrow's manufacturing technologies. Major emphasis is placed on computer-integrated manufacturing. Courses in the program prepare graduates for employment in such fields as manufacturing, computer-aided design and manufacturing, robotics, and quality control. Students are admitted as freshmen as well as at the junior level. Degree granted: BS—5 year with co-op.

Food, Hotel \& Tourism Management:

 Students choose their majors from four career programs: foodservice management, hotel and resort management, travel-tourism management, and general dietetics and nutritional care. The curriculum includes course work in the student's major as well as studies in business, liberal arts and sciences. This balanced approach gives the student a broad professional education complemented by laboratory, experiential project, and industry experience. Industry professionals regularly offer their expertise in all of the program courses.The foodservice management program prepares graduates for a wide choice of management careers in the $\$ 200$ billion foodservice industry: restaurants, hotels, clubs, contract services, health care, educational and other institutions. The balanced academic program, lab practice, and practical work experience through cooper ative education provides graduates with a depth of exposure that prompts a demand for RIT graduates by food and beverage operators.

The hotel and resort program enables students to build their managerial skills through a balanced program concentrating on basic hospitality principles, operations, business and financial management, liberal arts, cooperative education, hands-on class projects, laboratories, and school activities.

The travel-tourism management program addresses the full range of topics associated with the dynamic and expanding travel and tourism industry.

Graduates of the fully approved and accredited, General Dietetics and Nutritional Care Program can, with their base of knowledge about nutrition, practice in many settings from the acute care hospital to wellness centers. The program combines clinical, business and liberal arts courses, enabling graduates to meet today's industry demand for managerial skills. Two options are offered: traditional with coop, and coordinated (C.P.) that meets the eligibility requirements for the National Registration Examination for Dietitians. Degree granted: BS in Dietetics.

During the fall of 1990, the school will develop a fifth major. The food marketing and distribution major will be added. This new major will use some of the existing courses and additionally will provide areas of expertise to the student, to include food packaging and distribution and marketing food products. Call for additional information about this program.

Each separate discipline above uses a capstone series of coursework specificially aimed at addressing the service economy, human resources, training, and leadership and executive development.

[^2]
School of
 Computer Science and Information Technology

William J. Stratton, Director, School of Computer Science and Information Technology
John A. Biles, Chairperson, Department of Computer Science Guy Johnson, Chairperson, Department of Information Technology

The School of Computer Science and Information Technology offers programs leading to the bachelor's and master's degrees. At the undergraduate level, the nationally accredited bachelor of science degree in computer science is offered to both high school and twoyear college graduates, as first-year and upper-division students respectively. The curriculum is designed to meet the staffing demands of industry, government and education. In light of this, both theoretical foundations and applied aspects of computer science and computer technology are emphasized. Laboratory facilities provide the opportunity for hands-on experience, and students are encouraged to use these resources for experimentation. Graduates of the Computer Science program are fully prepared for employment in computer industries and computer applications departments, or for further study at the graduate level.

Supplementing the computing provided by Information Systems and Computing as listed in the Student Services section of this catalog, the School of Computer Science and Information Technology provides extensive facilities for students and faculty. The facilities dedicated exclusively to the support of Undergraduate Computer Science include:

- First-Year Laboratory is devoted to the support of first-year students. Thirty SUN $3 / 50$ workstations and three file servers provide an edge for training students in the discipline of programming.
- Professional Programming Laboratory is equipped with 40 SUN 3/50 and $3 / 80$ workstations and five file servers. After completing the freshman sequence in the First-Year Laboratory, the Pro-Lab is the main computing resource for the duration of the program.
- Computer Graphics Laboratory provides a state of the art environment for the study of computer graphic techniques using eight SUN 3/60 color workstations and a file server.
- Networking and Distributed Systems Laboratory focuses on the study of data communications and networking strategies utilizing seven SUN 2/120 workstations and a file server as networking tools.
- Digital Logic Laboratory provides a hands-on opportunity for students to appreciate and understand the computer equipment they work with throughout the program. This lab is designed for non-Electrical Engineer ing students.

Undergraduate Computer Science has focused on the use of the UNIX operating system because of its applicability to software development. All of these facilities support the UNIX operating system and are connected by a high-speed Ethernet network. Through this network, students also have access to other off-campus networks, such as NYSERNET, USENET, and BITNET. There are also 77 dial-in modem connections, over 20 printers, and Apple Macintosh microcomputers available for student use.

Separate facilities and laboratories are available for school administrative operations and the students in the Graduate Computer Science and Information Technology programs. Those facilities include the following computer systems: two AT\&T 3B2/522, one AT\&T 3B2/600, four AT\&T 3B2/400, 20 AT\&T 3B1, eleven AT\&T 8386, 50 Apple Macintosh systems, three Masscomp super micros, and a 64 -processor INMOS Transputer parallel processing workstation.

Yr.	COMPUTER SCIENCE PROGRAM, BS DEGREE	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	ICSP-241 Programming I-Algorithmic Structures	4	4	4
	ICSP-242 Programming II-Data Structures			
	ICSP-305 Assembly Language Programming			
	SMAM-251,252,253 Calculus	4	4	4
	SPSP-311,312 University Physics or SCHG-211,212 Chemical Principles SPSP-375,376 University Physics Lab or SCHG-205,206 Chemistry Lab GLLC-220 English Composition	4	1	1
	* Liberal Arts	4	40	40
	\ddagger Physical Education Electives			
2	ICSP 243-Programming III-Design and Implementation ICSS-325 Data Organization and Management	4	4	4
	ICSS-315 Digital Computer Organization			
	Professional Computer Science Elective [1]			
	SPSP-313 University Physics III or SCHG-213 Organic Chemistry	$\begin{gathered} 3-4 \\ 1 \\ 4 \end{gathered}$	4	
	SPSP-377 University Physics Lab III or SCHG-207 Organic Chemistry Lab			
	SMAM-265,266 Foundations of Discrete Mathematics I, II			
	SMAM-351 Probability			4
	* Liberal Arts	4	4	
	Free Elective		4	4
	\ddagger Physical Education Electives	0	0	0
345	ICIC-444 Technical Writing for Computer Scientists		$\begin{gathered} 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 8-12 \\ 12-16 \end{gathered}$	
	ICSS-380 Introduction to Computer Science Theory			
	ICSS-440 Operating Systems			
	ICSS-420 Data Communication Systems			
	ICSP-450 Programming Language Concepts			
	Computer Science Concentration [2]			
	Computer Science Electives [3]			
	Non-CS Concentration [4]		16	
	* Liberal Arts		26	
	Science Electives		8	
	Free Elective [5]		4	
	Cooperative Education (4 quarters)			

[11The professional computer science elective in the second year must be chosen from the following courses: ICSP-306 Systems Programming Fundamentals ICSP-307 Business Applications Programming ICSS-312 Introduction to Software Engineering
ICSP-319 Scientific Applications Programming
PJThe computer science concentration consists of one of the following course sequences. Systems Software

ICSS-520 Computer Architecture
ICSS-540 Operating Systems Laboratory
ICSS-580 Language Processors
Networking and Distributed Systems
ICSS-540 Operating Systems Laboratory
ICSS-541 Introduction to Computer Networks
ICSS-542 Distributed Systems Laboratory
Digital Systems Design
ICSS-400 Logic Design
ICSS-520 Computer Architecture
ICSS-545 Computer Architecture Laboratory
Computer Science Theory
ICSS-4 70 Finite State Machines
ICSS-480 Formal Languages
ICSS-515 Analysis of Algorithms
Software Engineering
ICSS-510 Software Specification and Design
ICSS-511 Software Testing and Quality Assurance
ICSS-555 Software Engineering Project Laboratory
Computer Information Systems
iCSS-435 Systems Specification, Design and Implementation
ICSS-485 Database Concepts
ICSP-486 Programming Systems Workshop
Computer Graphics
ICSS-S70 Introduction to Computer Graphics
ICSS-571 Computer Graphics Laboratory
Artificial Intelligence
ICSS-455 Artificial Intelligence
ICSS-456 Expert Systems
PIComputer science courses may be taken as computer science eiectives except as noted in the Course Description Catalog.
4JA non-CS concentration consists of a set of coherent courses giving the student significant expertise in an area other than computer science. Typical concentrations include mathematics, engineering technology, and business [5]Any course open to computer science majors may be taken as a free elective.
See page 116 for Liberal Arts requirements.
See page 200 for policy on Physical Education.

Computer Science Department

John A. Biles, Chairperson

The Bachelor of Science program, which is fully accredited by the Computer Science Accreditation Board (CSAB), attracts students who are interested in both the mathematical theory and technical applications of computer science. Most employers look for students who not only are good computer scientists, but also understand the tools and techniques of mathematics, science and industry. The BS program, then, is for the mathematically adept student who wishes to become a computing professional with knowledge of relevant applications areas. The program also will be attractive to students transferring to RIT with an associate degree in computer science backed up by significant course work in mathematics and science.

Computer science covers a wide spectrum of the field of computing. A computer scientist can specialize in areas such as data communications and networking, software engineering, digital systems design and computer architecture, systems software, programming languages, computing theory, computer graphics, artificial intelligence and information systems. It is important to note that programming is an important tool, but is only a part of the vast field of computer science.

An undergraduate computer science student is required to take a core of computer science courses, which provide a solid foundation for advanced work. Building on this base, students can explore a variety of specializations in their junior and senior years, choosing one of eight concentration sequences. In addition, students have the opportunity to develop a broad appreciation of computer applications and the effects of computers on society via computer science eiectives, liberal arts courses, and a non-computer science concentration in a second discipline.

The program of study in computer science is divided into five major areas:

1. Computer science: required and elective courses in the areas of program development, computer organization, graphics, data communications, networking, artificial intelligence, systems analysis, software engineering, and systems software.
2. Mathematics and science: courses covering calculus, physics or chemistry, probability, and discrete mathematics.
3. Liberal arts: courses in language and literature, humanities, and social sciences.
4. Non-computer science concentration: a coherent set of courses in a discipline other than computer science. Most programs in the Institute can form the basis for a non-computer science concentration.
5. Free eiectives: courses chosen by the student based on his or her personal preferences.
All students in Undergraduate Computer Science are required to obtain credit for one year (four quarters) of cooperative education prior to graduation. To help ensure that the goals of integrated academic and experiential education are attained, students must attend classes at RIT for at least one quarter after their final co-op block.

Extended Day Program

The BS program may be taken on a part-time basis during the evening hours by those who are employed fulltime and desire to receive a baccalaureate degree. The typical evening student requires approximately 25 quarters to complete all the course requirements. Students with a strong associate degree in Computer Science can complete the upper-division course requirements in 13 quarters. The Computer Information Systems computer science concentration is the only one supported in the evening program.

School of Engineering Technology

W. David Baker, Director

Engineering technology is a relatively new field in higher education, and RIT was a pioneer in the development of such programs. Originally conceived as associate degree level educational programs, engineering technology curricula were designed to prepare people to work with engineers and scientists as technicians. This educational role is presently being carried out primarily in two-year community colleges and technical institutes.

More recendy, RIT again was a pioneer in the development of baccalaureate programs in engineering technology. The bachelor degree in engineering technology is designed to meet the growing need for engineering technologists at the baccalaureate level by business and industry.

Five-year programs

The School of Engineering Technology offers five-year cooperative education programs leading to the bachelor of science (BS) degree in:

1. Civil Engineering Technology
2. Computer Engineering Technology
3. Electrical Engineering Technology
4. Mechanical Engineering Technology
5. Manufacturing Engineering Technology
6. Telecommunications Technology

The upper division of these programs is designed specifically to accept graduates of associate degree programs in similar engineering technology fields, and provide a continuation of study in the student's area of specialization. Each program area consists of a carefully integrated program with professional studies, liberal education, mathematics, and on-the-job experience. Through the selection of technical eiectives, students can build and tailor their program based on previous knowledge and co-op experience to launch a career that best meets their needs and aspirations.

Students in the computer engineering technology program have the option of receiving an associate in applied science (AAS) degree after two years of study.

Accreditation

With the exception of the new program in Telecommunications Technology, all programs of study leading to the bachelor degree are accredited by the Technology Accreditation Commission of the Accreditation Board for Engineer ing and Technology (TAC/ABET). The School of Engineering Technology is a member institution of the American Society for Engineering Education and the Council of Engineering Technology in New York State.

Careers

The bachelor degree graduate-an engineering technologist-is a distinct type of professional whose main concern and interest is with existing operation, maintenance, and management of products and processes. As such, the graduate qualifies for positions to fulfill a role within the broad engineering requirements of business, industry and government. Graduates are finding increasing acceptance in positions formerly filled by engineers in such fields as sales engineering, manufacturing engineering, field service engineering, process engineering and product engineering. At the present time, the New York State Board for Engineering and Land Surveying requires the bachelor degree in engineering technology graduate to achieve additional experience prior to becoming eligible for the New York State Professional Engineer examination. Requirements differ in other states.

The associate degree graduate-an engineering technician-works closely with engineers and technologists and is prepared for positions requiring skills in fabricating and producing equipment as well as maintaining and operating apparatus and systems.

Cooperative education plan

An integral and significant part of each School of Engineering Technology program in engineering technology is on-the-job experience through the cooperative education plan. This involves alternate periods of academic study and related industrial employment.

The co-op plan provides opportunity for individual students to learn and become familiar with direct application of techniques, skills, and the latest developments in their field. Students are encouraged to explore and test the wide range of opportunities available. Such things as the specific type of work, the size of the company, the geographic location, and familiarization with the
industrial community and environment can and do affect an individual's decision on the direction a future career might take. Only co-op can provide a suitable trial ground.

Obviously, co-op can also provide a significant income during the work periods which helps defray a major portion of one's educational expenses.

In the School of Engineering Technology each student is assisted in finding work related to specific career goals, however, as is the case in any employment situation, the major impetus must originate with the individual student. In some of the programs the junior class is divided into two sections with one half of the class on a co-op job, and the other half with their academic work. Detailed schedules are provided in the description of the individual programs on the following pages.

Admission requirements

Freshmen Students: Admission to fiveyear programs is open to high school graduates who have completed elementary and intermediate algebra, plane geometry, trigonometry, and physics or chemistry. Emphasis is placed on math and science skills.
Transfer Students: Admission to the upper division of the five-year programs is open to persons holding an associate degree in appropriate engineering technology fields, or an acceptable equivalent. Students should have earned a minimum 2.3 grade point average. Please refer to individual department requirements for a more complete definition of an acceptable degree.

Program requirements

In addition to the required technical courses of each program, a minimum of 38 quarter credit hours of liberal arts and 36 quarter credit hours of mathematics/sciences is required for the bachelor degree. For transfer students, the quantity of credits to be completed at RIT is the specified minimums minus the amount of credits of liberal arts and mathematics/sciences transferred from the two-year college.

Graduation requirements

The minimum academic requirements in the School of Engineering Technology are:
AAS degree-The degree of associate in applied science is awarded upon earning a minimum grade point average of 2.0 in the departmentally approved program.
BS degree-The bachelor of science degree is granted if the student has (1) earned a minimum grade point average of 2.0 in the departmentally approved program and (2) completed the required number of cooperative education blocks for the program.

Evening programs

The School of Engineering Technology offers the following upper-division (junior-senior) programs during the evening hours for part-time students:

1. Electrical Engineering Technology
2. Manufacturing Engineering Technology
3. Mechanical Engineering Technology
4. Telecommunications TechnologyManagement
The evening programs make it possible for students with full-time jobs during the day to receive a TAC/ABETaccredited degree on a part-time basis.

With the exception of the cooperative education and physical education requirements, the evening program requirements and graduation requirements are the same as the full-time day program. Additional part-time program information is provided in the description of the individual programs on the following pages. Persons wishing further information on part-time studies in the evening should contact the School of Engineering Technology parttime studies office at (716) 475-5190.

Civil Engineering Technology Department

Kevin M. Foley, Chairperson

Civil Engineering Technology, baccalaureate program

Background

The civil engineering profession requires the services of many individuals with a wide range of backgrounds and interests: technicians, technologists, and engineers.
The technologist translates the innovative concepts of the engineer into functioning systems and structures, using the language of codes, working drawings, and specifications.

Through electives, students have a choice of following any one of five elective paths. This, coupled with a broad based civil engineering core curriculum, provides for a good entry-level foundation in the industry, plus the ability to meet specific student interest. The program has provided graduates with extensive employment opportunities.

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC/ABET) and is operated as a cooperative education program.

Admission requirements

Freshmen: Admission to the five-year program is open to high school graduates with three years of mathematics (through trigonometry) and either chemistry or physics. Emphasis is placed on math and science skills. Transfer: The admission of transfer students at the third-year level is open to all students who have already received an appropriate associate degree. An appropriate associate degree should include:
Technical Math (2 semesters of college-level math with an introduction to calculus)

Drafting

Technical Physics (2 semesters)
Soils Mechanics
Plane Surveying
Route Surveying
Statics (Mechanics)
Strength of Materials
Methods and Materials of Construction
Students lacking these courses will still be admitted and may be required to take the missing courses concurrently within the program or in addition to the program requirements.

Normally, an associate in science degree is acceptable from an engineer ing transfer program with students taking courses they lack concurrently in the program. Typically, these students graduate in the same six academic quarters as an engineering technology transfer student.

Cooperative education plan

Work experience gained while completing alternating work and study quarters is especially valuable. A typical co-op job at an engineering consulting firm might include assisting engineers in design drafting, feasibility and preliminary report writing; inspecting, surveying, or investigating in the field. Other co-op students work in water and wastewater treatment plants, checking control panels, operating systems, pumps and other equipment. Students working in the construction field typically work a wide range of duties from craft supervision to assisting project superintendents, doing change orders, estimating, drafting, and surveying.

The scope of work accomplished varies with the interests of each student and increases in complexity with each succeeding job. Construction companies, facility departments of large corporations, engineering consultants, testing agencies, and all branches of government employ our students. Some students work all their co-op quarters with the same firm, while others choose from various work experiences. All are expected to use their education on the job and to bring back innovative, new, and unusually successful technologies to share with classmates.

Graduates

Past graduates with their bachelor degree in civil engineering technology are employed by consulting engineers, construction companies, industries, and by federal, state, and local government agencies. They are scattered from coast to coast and from New York to Texas. Their tides range from project superintendent, manager, or structural designer to plant operator, inspector, field party chief, and environmental officer. Also, several graduates have successfully completed master's degrees at other universities and have also registered as professional engineers in several states.

Technical electives

It is anticipated that a student will have at least two electives from one of the sequences shown. Other electives may be chosen from within that sequence, from another sequence, or from the other electives shown.

Water Resources	
ITEC-482 Hydrology	4 cr.
ITEC-485 Hydraulic Structures	4 cr .
ITEC-480 Groundwater	
Hydraulics	4 cr.
Environmental Controls	
ITEC-510 Design of Water Treatment Facilities	
ITEC-514 Land Planning	4 cr .
ITEC-520 Design of Wastewater	
Treatment Facilities	4 cr .
ITEC-525 Hazardous Waste	4 cr
ITEC-522 Principles of Water and	
Wastewater Treatment II	4 cr .
ITEC-556 Wastewater Treatment	
Plant Operation \& Control	4 cr.
Construction Management	
ITEC-500 Labor Relations	2 cr .
ITEC-509 Cost Estimating 2 cr.	
Management I	4
ITEC-561 Construction Project	
Management II	4 cr.
ITEC-544 Contracts and	
Specifications	2 cr .
Structures	
ITEC-470 Timber Design	4 cr.
ITEC-518 Masonry Design	2 cr .
ITEC-516 Reinforced Concrete	
Design	4 cr.
ITEC-552 Steel Design	4

Building and Heavy Construction
ITEC-460 Construction
Equipment 4 cr .
ITEC-550 Construction Practices 2 cr .
ITEC-505 Construction Safety 4 cr.
ITEC-535 Pavement Design 4 cr.
ITEC-444 Mechanical Equipment 2 cr.

Other Electives

ITEF-436 Engineering Economics 4 cr. SMAM-309 Elementary Statistics 4 cr. ITEM-440 Applied Thermodynamics 4 cr. ITEM-405 Applied Dynamics 4 cr.

With departmental approval, technical electives may be selected from existing courses in other RIT colleges.

Also, independent study projects may be pursued for credit in cases where students demonstrate unusual ability and obtain sponsorship of a faculty advisor.

Students are encouraged to utilize the first-class computer facilities and to work with professors on additional applications of computer graphics. The RIT College of Continuing Education offers evening courses, and all of the day college courses are open if schedules can be arranged and the students have the capacity to handle additional credits.

Civil Engineering Technology cooperative education plan

Year	Fall	Winter	Spring	Summer
1 and2	RIT	RIT	RIT	Vacation
3	RIT	RIT	Work	Work
4	RIT	Work	RIT	Work
5	Work	RIT	RIT	

"See page 116 for Liberal Arts requirements.
t See page200 for policy on Physical Education.
"Refer to footnote, Electrical Eng. Tech. chart, p. 18
'"'All students are required to have 90 quarters of Gen. Ed.

Yr.	CIVIL ENGINEERING TECHNOLOGY, B. TECH DEGREE	Qtr. Credit Hours			
1	SMAM-204 College Algebra \& Trigonometry	FALL	WTR.	SPG.	SMR.
		0	43144	431440	
	ITEC-210 Engineering Graphics				
	ITEC-330 Construction Materials				
	ITEC-230 Computer Applications				
	SMAM-228 Analytical Geometry				
	SPSP-211 College Physics I				
	SPSP-271 College Physics Lab I				
	GLLC-220 English Composition				
	ITEF-260 CAD-Introduction				
	SMAT-420 Calculus for Technologies I				
	SPSP-212 College Physics II				
	SPSP-272 College Physics Lab II				
	ITEC-220 Civil Engineering Graphics				
	Liberal Arts (Core)				
	\ddagger Physical Education				
	SPSP-213 College Physics III	3			
	SPSP-273 College Physics Lab III	1			
	ITEC-320 Surveying I	4			
	ITEC-428 Technical Communications	4			
	ITEM-302 Introduction to Statics	4			
	ITEC-360 Elementary Soils		4		
2	ITEC-422 Elements of Building Construction		4		
	ITEM-303 Strength of Materials		4		
	ITEC-340 Route Surveying			4	
	ITEC-380 Elementary Structures			4	
	Technical Elective			4	
	Liberal Arts (Core)		4	4	
	Physical Education	0	0	0	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Or completion of an appropriate associate degree or equivalent				

"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"Refer to footnote, Electrical Eng. Tech. chert, p. 18
'"All students are required to have 90 quarters of Gen. Ed

Civil Engineering Technology cooperative education plan

Year	Fall	Winter	Spring	Summer
1 and 2	RIT	RIT	RIT	Vacation
3	RIT	RIT	Work	Work
4	RIT	Work	RIT	Work
5	Work	RIT	RIT	

Computer Engineering Technology Department

Thomas J. Dingman, Chairperson

Computer Engineering Technology, AAS and BS programs
There is an increasing need for graduates possessing both computer programming skills and a sound knowledge of computer (digital) electronic hardware. This is true for both technicians with an AAS degree and for technologists with the bachelor of science degree.
Based on a foundation in physics and applied mathematics, the computer engineering technology program is designed to develop the hardware and software skills necessary for design and development of systems involving computers. The upper division of the program also includes a required co-op work/study component, giving the student valid work experience before graduation.

Students completing the first two years of the program will be eligible to receive the AAS degree and enter the employment field as a computer technician.

Computer Aided Design plays a significant role in the curriculum. The students will learn to work in a design automation environment on computer workstations, using design tools running state-of-the-art software. The skills developed both in system operation and design creativity will enhance their preparation for both co-op and permanent job opportunities.

Electives are available in the upper division and may be taken from computer science or electrical engineering technology courses. Other courses are available on approval by an advisor.
The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC/ABET).

Admission requirements

Freshmen are admitted by normal RIT procedures with an emphasis given to mathematics and science skills.

Transfer admission is open to graduates of closely allied associate degree programs. Transfer students from these closely allied programs may normally expect to complete the requirements for the BS degree in three years which
includes seven academic quarters and four quarters of cooperative employment experience. Recognizing that no single program of study can effectively integrate all AAS transfer students into the curriculum, each qualified transfer student will be evaluated on a course-by-course evaluation and will be given a specific program of study that best meets his or her career goals, provides a meaningful cooperative work experience, and permits the student to fulfill the degree requirements in a reasonable period of time.

Cooperative education plan

Students in the five-year program attend classes during the Fall, Winter, and Spring quarters of their first and second years and begin their cooperative education plan during the third year. Students transferring with an associate degree in a similar program begin their cooperative education plan during their first year of the program. The charts illustrate the cooperative education plan for the five-year program.

Technical electives

A wide variety of technical electives can be taken from existing courses in Computer Science and Electrical Engineer ing Technology. Examples of these are:
A. ICSP-450 Programming Language Concepts
ICSS-580 Language Processors
B. ICSP-306 Systems Programming Fundamentals
ICSS-540 Operating Systems Lab
C. ICSS-541 Introduction to Computer Networks
ICSS-545 Computer Architecture II
D. ITEE-520 Electrostatic and Magnetic Fields
ITEE-534 Analog Communications
ITEE-535 Telecommunication Systems
E. ITEE-560 Microelectronics I ITEE-561 Microelectronics II

Other special electives might be:
ITEE-524 Microwave Systems
ITEE-547 Digital Processing of Signals
ITEE-554 Electronic Optic Devices
ITEE-555 Transmission Lines and Antennas
ICSS-570 Introduction to Computer Graphics

-See page 116 for Liberal Arts requirements.
fSee page 200 for policy on Physical Education.

Computer Engineering Technology cooperative education plan (five-year program)

Year	Fall	Winter	Spring	Summer
Iand 2	RIT	RIT	RIT	Vacation
3	RIT	Work	RIT	Work
4	Work	RIT	Work	RIT
5	Work	RIT	RIT	

Computer Engineering Technology cooperative education schedule (sample schedule for transfer student with third-year status)

Year	Fall	Winter	Spring	Summer
3	RIT	RIT	Work	RIT
4	Work	RIT	Work	RIT
5	RIT	Work	RIT	

Electrical Engineering Technology Department

Thomas Young, Chairperson

Electrical Engineering Technology, baccalaureate program

This relatively new professional program is designed to meet the growing needs for technologists in a rapidly changing society.

The bachelor of science program in electrical engineering technology is a five-year baccalaureate program including over a year of cooperative work experience for full-time students. The program also accepts transfer students into the upper division from appropriate electrical or electronic engineering technology associate degree programs with full junior standing. The upper division feature of the program provides a viable option for students who have completed their associate degree and desire to continue their education in technology.

The bachelor of science degree in electrical engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC/ABET).

A typical program for the bachelor of science curriculum is shown in the chart. The first two years of the program provide basic courses in electricity, analog and digital electronics, physics, technical calculus and liberal arts. The third and fourth years of the program expand on basic courses with upper-level courses in applied differ ential equations, liberal arts, transformed circuits, control systems, analog and digital electronics, and mechanical engineering technology. The progam is completed by the student choosing a group of options in science, free, and technical electives. Technical electives sequences are available in electric power systems, electronic communications, digital computer design and microelectronics. Several electives also are available from other technical disciplines, and the student's academic advisor will help the student determine the best elective choices for him or her.

Students begin their cooperative work experience in the third year of the program, and are required to complete five quarters of cooperative work experience. A cooperative education counselor is assigned to each student.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Yr. \& ELECTRICAL ENGINEERING TECHNOLOGY, B.S. DEGREE \& \multicolumn{4}{|c|}{Otr. Credit Hours}

\hline \multirow{14}{*}{1} \& Lower Division \& FALL \& WTR. \& SPG. \& SMR.

\hline \& SMAM-204 College Algebra \& Trigonometry \& \multirow[t]{13}{*}{4
4
4
1
4

0} \& \multirow{13}{*}{4
4
4

4} \& \multirow[b]{13}{*}{4
4
4
4
0} \& \multirow[t]{13}{*}{}

\hline \& GLLC-220 English Composition \& \& \& \&

\hline \& ITEE-201 DC Circuits \& \& \& \&

\hline \& ITEE-207 First Year Orientation \& \& \& \&

\hline \& ITEE-205 Drafting \& Fabrication \& \& \& \&

\hline \& SMAT-420 Calculus for Technologists I \& \& \& \&

\hline \& ITEE-202 AC Circuits \& \& \& \&

\hline \& ICSA-208 Introduction to Programming \& \& \& \&

\hline \& SMAT-421 Calculus for Technologists II \& \& \& \&

\hline \& ITEE-203 Electronic Devices \& \& \& \&

\hline \& ITEE-231 Digital Fundamentals \& \& \& \&

\hline \& Liberal Arts (Core) \& \& \& \&

\hline \& \ddagger Physical Education \& \& \& \&

\hline \multirow{15}{*}{2} \& SPSP-211 College Physics I \& \multirow[t]{15}{*}{3
1
4
4
4

0} \& \multirow[b]{15}{*}{3
1
4
4
4

0} \& \multirow{10}{*}{4} \& \multirow[t]{15}{*}{}

\hline \& SPSP-271 College Physics Labi \& \& \& \&

\hline \& ITEE-361 Applied Electronics I \& \& \& \&

\hline \& SMAT-422 Solution of Engineering Problems \& \& \& \&

\hline \& Liberal Arts (Core) \& \& \& \&

\hline \& SPSP-212 College Physics II \& \& \& \&

\hline \& SPSP-272 College Physics Lab II \& \& \& \&

\hline \& ITEE-353 Introduction to Microprocessors \& \& \& \&

\hline \& ITEE-362 Applied Electronics II \& \& \& \&

\hline \& ITEE-337 Machines \& Transformers \& \& \& \&

\hline \& SPSP-213 College Physics III \& \& \& \multirow[t]{5}{*}{3
1
4
4
0} \&

\hline \& SPSP-273 College Physics Lab III \& \& \& \&

\hline \& ITEE-363 Applied Electronics for Communication \& \& \& \&

\hline \& ITEE-401 Transformed Circuits I \& \& \& \&

\hline \& \ddagger Physical Education \& \& \& \&

\hline $$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$ \& Or completion of an appropriate associate degree or equivalent \& \& \& \&

\hline
\end{tabular}

"The program shown is that which would be taken by those who start at RIT as freshmen. Each transfer student will be given a program tailored to their particular needs upon acceptance. Graduates will have to meet a minimum of 36 quarter hours of mathematics and science (including credits transferred) and include mathematics SMAT422 or equivalent.
'See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education

Electrical Engineering Technology cooperative education plan

Year		Fall	Winter	Spring	Summer
Iand 2		RIT	RIT	RIT	Vacation
3	A	RIT	RIT	Work	Work
	B	RIT	Work	Work	RIT
4	A	RIT	Work	Work	RIT
	B	Work	RIT	RIT	Work
5	A	RIT	Work	RIT	-
	B	Work	RIT	RIT	

Admission requirements

Freshmen are admitted by normal RIT procedures with an emphasis given to mathematics and science skills.

Transfer admission is open to graduates of two-year associate degree electrical or electronic engineering technology programs. Students currently enrolled in engineering science associate degree programs also may apply and be assigned to a slightly different series of courses. Students from associate degree programs that are closely related to electrical technology and that have appropriate circuits and electronics course levels are also accepted, but may be required to complete some lower-level courses before starting the third year of the program.

Elective sequences

Computer Design

ITEE-538 Digital Computer Design I
ITEE-539 Digital Computer Design II
ITEE-543 Peripherals and Interfacing
ITEE-565 16-Bit Microprocessors

Power Systems

ITEE-550 Power Systems I
ITEE-551 Protective Relaying
ITEE-552 Power Systems II

Electronic Communications

ITEE-534 Analog Communications
ITEE-535 Telecommunications Systems
ITEE-524 Microwave Systems
ITEE-555 Transmission Lines and Antennas
ITEE-547 Digital Processing of Signals

Microelectronics

ITEE-560 Microelectronics I
ITEE-561 Microelectronics II

Other Eiectives:

ITEE-554 Electronic Optic Devices
ITEE-536 Control Systems II
ITEE-580 Senior Project
ITEF-424 Statistical Quality Control
ITEF-485 Robots in Manufacturing
ITEF-437 Value Analysis

Evening program

The upper-division portion of this program may be taken on a part-time basis during the evening hours by those who are employed full-time and desire to receive an ABET-accredited baccalaureate degree. The typical evening student requires approximately 13 quarters to complete the upper-division course requirements. In the early quarters the fundamentals of mathematics, circuit theory and power concepts are emphasized to provide the background for later courses in control systems and microprocessors.

ELECTRICAL ENGINEERING TECHNOLOGY, B.S. EVENING PROGRAM			
Year	Quarter	Courses	
1	Fall Winter Spring	SMAT-421 ITEE-337 ITEE-337 SMAT-422 GLLC-403 ITEE-437 ITEE-424 ITEE-424	Calculus for Technologists II* Machines and Transformers Lab (Lower Division Makeup) Solutions of Engineering Problems Effective Technical Communications Computer Programming Techniques Logic and Digital Devices Lab
2	Fall Winter Spring	ITEE-542 ITEE-542 ITEE-401 ITEE-401 SMAT-423 ITEE-402	Microprocessors Lab Liberal Arts (core) Transformed Circuits I Lab Linear Math for Technologists Transformed Circuits II Liberal Arts (core)
3	Fall Winter Spring	ITEE-440 ITEE-440 ITEE-441 ITEE-441 SMAM-309 ITEE-404 ITEE-404	Amplifiers I Lab Liberal Arts (concentration) Amplifiers II Lab Statistics Control Systems I Lab Liberal Arts (concentration)
4	Fall Winter Spring	ITEM-408 ITEF-436	Intro, to Strength of Materials Technical Elective Technical Elective Liberal Arts (Concentration) Engineering Economics General Education Elective
5	Fall		Math/Science Elective Senior Seminar

This sequence is based on students who have had the equivalent ofSMAT-420as apart of their associate degree. If a student has not had this course, the recommended sequence for the first year for these courses is: Fail SMAT-420, Winter SMAT-421, Summer SMAT-422.

Technical eiectives that are available and appropriate for the electrical engineering technology program include:

Course

ITEE-524 Microwave System
ITEE-534 Analog Communications
ITEE-535 Telecommunication Systems
ITEE-536 Control Systems II
ITEE-538 Digital Computer Design I
ITEE-539 Digital Computer Design II
ITEE-543 Peripherals and Interfacing
ITEE-550 Power Systems I
ITEE-551 Protective Relaying
ITEE-554 Electronic Optic Devices
ITEE-555 Transmission Lines and Antennas
ITEE-560 Microelectronics I
ITEE-561 Microelectronics II
ITEE-565 16-Bit Microprocessors
Note-some eiectives are offered only on an alternating year basis. Please check with an advisor while planning your program technical elective content.

1980-91 EVENING COURSE OFFERINGS - ELECTRICAL ENGINEERING TECHNOLOGY				
Course Number/Name	Fall	Winter	Spring	Summer
060927170 Tetecom Fund $\quad T$			TR 8:00-9:50	
	$\begin{aligned} & \text { T8:00-10:20 } \\ & \text { R6:00-7:50 } \\ & \text { R 8:00-9:50 } \end{aligned}$			
060936370 App.Elec. for Comm.		TBA		
$\begin{array}{lr} 0609401.70 & R \\ \text { Trans. Cir. I } & \text { (4cr) } \end{array}$		TR 5:30-7:50		
$\begin{array}{rrr} 060940240 & \mathrm{D} / \mathrm{N} & \mathrm{R} \\ 81 & & \\ 82 & & (3 \mathrm{Ci}\} \end{array}$			$\begin{aligned} & \text { TR 5:30-7:50 } \\ & \text { T6:00-7:50 } \\ & \text { T 8:00-9:50: } \end{aligned}$	
			$\begin{aligned} & \text { MW 8:00-9:50 } \\ & \text { R 6:00-7:50 } \\ & \text { R:00-9:50 } \end{aligned}$	
		MW 6:30-7:50 R6:00-7:50 R 8:00-9:50		
$\begin{array}{rrr} \hline 0609 \begin{array}{ll} 412 & 70 \\ 81 & \mathrm{D} / \mathrm{N} \\ 82 & \\ & \\ \text { Elec. Prin. Des. II } & \\ \text { (4cr) } \end{array} \end{array}$			$\begin{aligned} & \text { MW 6:30-7:50 } \\ & \text { R6:00-7:50 } \\ & \text { TBA } \end{aligned}$	
060941370 S 81 82 Appl. Micropro (4cr)	NOTOFFERED	1990-1991		
060942470 R 80 81 Log Digital Dev (4cr)			$\begin{aligned} & \text { TR 8:00-9:20 } \\ & \text { M 6:00-7:50 } \\ & \text { M 8:00-9:50 } \end{aligned}$	
$\begin{array}{lr} \hline 060943770 & R \\ \text { Comp Prog Tech. } & \text { (4cr) } \end{array}$			TR 6:00-7:50	
060944070 R 81 82 Linear Amp Des	$\begin{aligned} & \text { MW 8:00-9:50 } \\ & \text { R 6:00-7:50 } \\ & \text { R 8:00-9:50 } \end{aligned}$			
$\begin{array}{cc} 060944170 & R \\ 81 & \\ 82 & \\ \text { Operational Amps } & \text { (5cr) } \end{array}$		$\begin{aligned} & \text { MW 6:00-7:50 } \\ & \text { R 6:00-7:50 } \\ & \text { R 8:00-9:50 } \end{aligned}$		
$\begin{array}{lr}060947270 & \quad{ }^{\top} \\ \text { Telecom Concepts } & \text { (4cr) }\end{array}$		TR6:00-7:50		
$\begin{array}{lr} 060952070 & E \\ \text { Elect. Mag. Fields } & \text { (4cr) } \end{array}$			TR 6:00-7:50	
$\begin{array}{lr} 060953470 & \mathrm{E} \\ \text { Anal Comm. Sys. } & (4 \mathrm{cr}) \\ \hline \end{array}$		$\begin{aligned} & \text { TR 6:30-7:50 } \\ & \text { M 6:00-7:50 } \end{aligned}$		
$\begin{array}{lr} 060953570 \\ \text { Telecomm Sys } & (4 \mathrm{cr}) \end{array}$			$\begin{aligned} & \text { TR 6:30-7:50 } \\ & \text { M 6:00-7:50 } \end{aligned}$	
$\begin{array}{cc} 060953870 & \text { E } \\ 81 & \\ 82 & \\ \text { Dig. Com. Design I } & \text { (4cr) } \end{array}$	$\begin{aligned} & \text { TR 8:00-9:20 } \\ & \text { M 5:00-7:50 } \\ & \text { M 8:Co-9:50 } \end{aligned}$			
$\begin{array}{lr} \hline 0609 \text { 539 } 70 & \mathrm{E} \\ \text { Dig. Com. Design II } & \text { (4cr) } \end{array}$		$\begin{aligned} & \text { TR 8:00-9:20 } \\ & \text { M 6:00-7:50 } \end{aligned}$		
	$\begin{aligned} & \text { TR 6:00-7:50 } \\ & \text { M 5:00-7:50 } \\ & \text { M 8:00-9:50 } \end{aligned}$			
$\begin{array}{rrr}060954370 & \mathrm{E} \\ 81 & \\ 82 & \\ \text { Peri. \& Inter } & \text { (4cr) }\end{array}$			$\begin{aligned} & \text { MW 8:00-9:20 } \\ & \text { R 6:00-7:50 } \end{aligned}$	
$\begin{array}{lll} 0609550 \\ \text { Power Sys. } 1 \end{array} \quad \mathrm{D} / \mathrm{N} \quad \begin{gathered} \mathrm{E} \\ \text { (4cr) } \end{gathered}$		MW 5:30-7:50		
$0609551 \quad 70$ Protective Relay (4cr)	TR 5:30-7:50			
$\begin{array}{cc} 060955470 & \mathrm{E} \\ 81 & \\ 82 & \\ \text { Elec. Opt. Devices } & \text { (4cr) } \end{array}$			$\begin{aligned} & \text { TR 8:00-9:20 } \\ & \text { M 6:00-7:50 } \\ & \text { M 8:00-9:50 } \end{aligned}$	
060956070 Micro. Elect. 1 E (4cr)	TR 5:30-7:50			
$0609561 \quad 70 \quad D / N \quad\left(\begin{array}{l}\text { Er } \\ \text { Micro. Elect. II }\end{array}\right.$	NOTOFFERED	1990-1991		
$\begin{array}{r} 060956570 \\ 81 \end{array}$ $16 \text { BIT Micro }$	$\begin{aligned} & \text { TR 6:30-7:50 } \\ & \text { M 8:00-9.50 } \end{aligned}$			

Telecommunications Technology, BS program

This new program is designed to meet the ever increasing need of the telecommunications industry for professionals trained with state-of-the-art principles, applications, equipment, and current regulatory policies. Telephone companies, equipment manufacturers, and telecommunications users all need a cadre of those capable of utilizing equipment to its fullest, both from a technical and from a management perspective. This bachelor of science program in Telecommunications Technology is a five-year program, including over a year of cooperative work experience for full-time students.

Two options are available to fulfill the needs of specific employers. The Technical Option is designed for the person whose interests lie in the applications of equipment, while the Management Option is designed for the individual who wants to move into the management of telecommunications resources. The two options differ at the junior and senior level by eight courses, allowing the students to choose after they have been introduced to the fundamentals of telecommunications, electronics, mathematics, science and the liberal arts.

The Technical Option emphasizes the applications and equipment used in specific job sites. Technical electives are available from the electronic communications and other areas of electrical engineering technology.

The Management Option emphasizes the management of resources of an overall telecommunications installation. Business courses in accounting and management are included.

Transfer is available for students with associate degrees i:i telecommunications technology, electrical or electronics technology and other related areas.

Students begin their cooperative work experience in the third year of the program, and are required to complete five quarters of cooperative work experience. A cooperative education counselor is assigned to each student.

Admission requirements

Freshmen are admitted by normal RIT procedures with an emphasis given to mathematics and science skills.

Transfer admission is open to graduates of two-year associate degree programs by a course-by-course evaluation. Students from closely related programs, such as telecommunications technology or electrical/electronics technology, can normally expect to graduate in three years, which includes seven academic quarters and four quarters of cooperative employment. Graduates of other, less related, programs are also welcome to apply, but may expect to take longer to complete the program.

Elective Sequences:

Electronic Communications:

ITEE-534 Analog Communications
ITEE-520 Electronic \& Magnetic Fields
ITEE-524 Microwave Systems
ITEE-555 Transmission Lines and Antennas
ITEE-547 Digital Processing of Signals ITEE-554 Electronic Optic Devices

Power Systems:

ITEE-550 Power Systems I
ITEE-552 Power Systems II
ITEE-551 Protective Relaying

Computer Design:

ITEE-542 Microprocessors
ITEE-538 Digital Computer Design I
ITEE-539 Digital Computer Design II
ITEE-543 Peripherals and Interfacing
ITEE-565 16-bit Microprocessors

Microelectronics:

ITEE-560 Microelectronics I
ITEE-561 Microelectronics II

Evening program:

The upper division of this program may be taken evenings, beginning in the Fall of 1990. A special schedule is available through the department office.

Also, courses have been identified that can be taken for the equivalent of the lower division of this program. Please contact the department for an appointment with an advisor to discuss this option.

TECHNICAL OPTION
Upper Division

3		FALL	WTR.	SPG.	SMR.
	SMAM-205 Intro, to Math for Computing I	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	4444	$\begin{aligned} & C \\ & 0 \\ & 0 \\ & p \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & 0 \\ & \mathrm{p} \end{aligned}$
	SMAT-422 Solution to Engineering Problems				
	ITEP-302 Linear Electronics				
	ITEE-363 Appl. Electronics for Com				
	ITES-099 Co-op Preparation				
	ITEE-353 Intro, to Microprocessors				
	ITEE-472 Telecommunication Concepts				
	ITEE-474 Telephone Systems				
	SMAM-206 Intro, to Math for Computing II				
	ITEE-473 Transmission Systems	4	C		C
	ITEE-476 Digital Communications	4	0		0
	Liberal Arts (Core)	4	0		0
4	Technical Elective	4	p	4	p
	ITEE-477 Data Communication Technology			4	
	ITEE-475 Switching Technologies			4	
	Liberal Arts (Core)	4		4	
	ITEE-571 Network Engineering	C	4		
	Liberal Arts (Senior Seminar)	0	2		
	Liberal Arts (Concentration)	0	4	4	
5	ITEE-572 Network Management	p	4		
	Math/Science Elective		4		
	ITEE-574 Network Planning \& Design			4	
	ITEM-436 Engineering Economics			4	
	Technical Elective			4	

Telecommunications Technology cooperative education plan

Year	Fall	Winter	Spring	Summer
Iand 2	RIT	RIT	RIT	Vacation
3	RIT	RIT	Work	Work
4	RIT	Work	RIT	Work
5	Work	RIT	RIT	

MANAGEMENT OPTION Upper Division					
3	BBUA-301 Financial Accounting	FALL	WTR.	SPG.	SMR.
		$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	4444	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & 0 \\ & \mathrm{p} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & 0 \\ & \mathrm{P} \end{aligned}$
	* SMAT-422 Solution to Engineering Problems				
	ITEP-302 Linear Electronics				
	ITEE-363 Applied Electronics for Communications				
	ITES-099 Co-op Preparation				
	BBUA-302 Managerial Accounting				
	ITEE-472 Telecommunication Concepts				
	ITEE-474 Telephone Systems				
	""General Education Elective				
4	BBUB-430 Organizational Behavior	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & 0 \\ & \mathrm{P} \end{aligned}$	4	C
	ITEE-473 Transmission Systems				
	ICSA-483 Applied Database Management				
	"Liberal Arts (Core)				
	Math/Science Elective				
	ITEE-475 Switching Technologies				
	GSEE-302 Principles of Economics II				
	BBUB-431 Cost Accounting				
5	ITEE-571 Network Engineering	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & \mathrm{O} \\ & \mathbf{p} \end{aligned}$	4248	4444	
	Liberal Arts (Senior Seminar\}				
	ITEE-572 Network Management				
	Liberal Arts (Concentration)				
	ITEE-574 Network Planning \& Design				
	BBUB-441 Corporate Finance				
	BBUF-455 Human Resource Management				

This program Is that which would be taken by those who start at RIT as Freshmen. Each transfer student will be given a program tailored to his or her particular needs upon acceptance. Graduates will have to meet a minimum of 36 quarter hours of mathematics ml science (including credits transferred) and include mathematics SMAT422or equivalent.
"See Liberal Arts requirements p. 116.
"General Education Elective. This course must be taken from the College of Liberal Arts. It is recommended that It be used as a first course in a foreign language, to allow students to take their concentration In a foreign language. tSee policy on Physical Education p. 200.

1090-91 EVENING COURSE OFFERINGS-TELECOMMUNICATIONS TECHNOLOGY-MANAGEMENT

Year	Quarter	Course
1	Fall Winter Spring	SMAT-421 Calculus for Technologists II ICSA-411 Data Comm. \& Comp. Networks GLLC-403 Effective Technical Communications ITEE-472 Telecommunications Concepts SMAT-422 Solutions of Engineering Problems ITEE-271 Telecom. Fundamentals
2	Fall Winter Spring	ICSA-410 Computer Concepts \& Software Sys. ITEE-473 Transmission Systems ICSA-483 Applied Database Management ITEE-474 Telephone Systems GSEE-302 Principles of Economics II Liberal Arts (core)
3	Fall Winter Spring	TBA Liberal Arts (concentration) TBA SMAM-309 Statistics BBUB-430 Organizational Behavior Liberal Arts (concentration)
4	Fall Winter Spring	BBUB-431 Corporate Finance ITEE-475 Switching Technologies ITEE-571 Network Engineering Liberal Arts (concentration) ITEE-574 Network Planning \& Design BBUB-441 Corporate Finance
S	Fall Winter	Math/Science Elective BBUB-455 Human Resource Management ITEE-572 Network Management Senior Seminar

NOTE: Only the first yeer of this schedule Is firm. The remainder Is subject to change as the program evolves.

Mechanical Engineering Technology Department

Ronald F. Amberger, P.E. Chairperson

Mechanical Engineering Technology, baccalaureate program

The demand for technology graduates to support the wide ranging activities of the mechanical engineering industries is ever on the increase due to discoveries, inventions, and the new needs which arise from the desire to do things in a more creative and efficient manner. The central theme of all industry is to successfully design and produce a functional, reliable and profitable product or service. This task can only be accomplished by individuals who are familiar with concepts, the body of knowledge, and a set of learned skills which apply to their specific field.

The Mechanical Engineering Technology Program develops in students the ability to conceive the design problem and to derive solutions through the application of familiar concepts in innovative ways, so that they can make a vital contribution to the objective of technological enterprise in their subsequent career.

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC/ABET) and is operated on the cooperative education plan.

Objectives of the program

The objectives of this program are to prepare the student to occupy professional positions in mechanical design, manufacturing test engineering, field service engineering, technical sales, and plant operations upon graduation. The program emphasizes the development of a design methodology, and this is reinforced through the use of project-oriented assignments which challenge the student to develop his or her design abilities.

Curriculum

In the early quarters, students develop their skills in the fundamentals of mechanics, mathematics, materials technology and computer-aided design.

In later quarters, courses focus both on mechanical design and applied thermofluid engineering. Individuals may specialize by taking electives in such areas as machine design, air conditioning, thermal power, instruments and controls and manufacturing.

A substantial measure of laboratory work is required, including the preparation of quality reports. Use of the computer is emphasized throughout the curriculum.

Admission requirements

Freshmen are admitted by normal RIT procedures with an emphasis given to mathematics and science skills. Transfer students enter this program at the third-year level having received an appropriate associate degree in mechanical technology, design-drafting technology, air conditioning technology, engineering science or an acceptable equivalent. It is expected that these associate degree programs will have provided the student with background in the following:

Mathematics through Introductory Calculus
Physics
Mechanical Drafting
Computer Drafting
Manufacturing Processes
Statics and Elementary Strength of Materials
Machine Design Elements
Computer Programming

Elective Sequences

Mechanical Engineering Technology
Elective sequences are available in mechanical design and energy systems. Other custom sequences may be created with department approval.

Energy Systems Sequence

ITEM-542 HVAC Systems Engineering
ITEM-546 Advanced HVAC Systems
ITEM-580 Power Plant Design
ITEM-543, 544 Energy Management I \& II

Mechanical Design

ITEM-406 Dynamics of Machinery
ITEM-451 Vibration and Noise
ITEM-512 Computer Aided Mechanical Design

Evening program

The lower-division portion of this program may be taken on a part-time basis by completing a mechanical engineer ing technology associates degree (AAS) in the RIT College of Continuing Education (Mechanical Technology,
CTIM). After completion of the AAS degree, students must apply for admission to the upper-division program in the School of Engineering Technology. Admission is guaranteed to those who complete the AAS degree requirements in the College of Continuing Education. Those who obtain their AAS degrees at other institutions are considered transfer students and are admitted

\begin{tabular}{|c|c|c|c|c|c|}
\hline Yr. \& MECHANICAL ENGINEERING TECHNOLOGY, B.S. DEGREE \& \multicolumn{4}{|c|}{Qtr. Credit Hours}

\hline \multirow{17}{*}{1} \& \& FALL \& WTR. \& SPG. \& SMR.

\hline \& SMAM-204 College Algebra \& Trigonometry \& \multirow[t]{16}{*}{4
4
4
4

0} \& \multirow[b]{16}{*}{4
3
1
4
3
1

0} \& \multirow{16}{*}{4} \& \multirow[t]{16}{*}{}

\hline \& "GLLC-220 English Composition \& \& \& \&

\hline \& ITEC-210 Intro. Graphics \& \& \& \&

\hline \& ITEF-220 Manufacturing Processes I \& \& \& \&

\hline \& SMAM-228 Analytic Geometry \& \& \& \&

\hline \& SPSP-211 College Physics I \& \& \& \&

\hline \& SPSP-271 College Physics Lab I \& \& \& \&

\hline \& ITEM-220 Mechanical Design Drafting \& \& \& \&

\hline \& ITEM-2111ntroduction to Materials Technology \& \& \& \&

\hline \& ITEM-304 Materials Testing \& \& \& \&

\hline \& SMAT-420 Calculus for Technologist I \& \& \& \&

\hline \& SPSP-212 College Physics II \& \& \& \&

\hline \& SPSP-272 College Physics Lab II \& \& \& \&

\hline \& ITEF-260 Introduction to CAD \& \& \& \&

\hline \& ITEM-302 Introduction to Statics \& \& \& \&

\hline \& \ddagger Physical Education \& \& \& \&

\hline \multirow{14}{*}{2} \& SMAT-421 Calculus for Technologist II \& \multirow[t]{14}{*}{4
3
1
2
4

0} \& \multirow[b]{14}{*}{4
4
4

4
0} \& \multirow{14}{*}{4} \& \multirow[t]{14}{*}{}

\hline \& SPSP-213 College Physics III \& \& \& \&

\hline \& SPSP-273 College Physics Lab III \& \& \& \&

\hline \& ITEM-212 Metrology \& \& \& \&

\hline \& ITEM-303 Strength of Materials \& \& \& \&

\hline \& SMAT-422 Solutions to Engineering Problems \& \& \& \&

\hline \& ITEC-230 Computer Application \& \& \& \&

\hline \& ITEM-308 Kinematics \& \& \& \&

\hline \& SMAM-309 Statistics \& \& \& \&

\hline \& ITEM-432 Computers in MET \& \& \& \&

\hline \& General Ed. Elective \& \& \& \&

\hline \& "Liberal Arts (Core) \& \& \& \&

\hline \& ITEM-099 Careers in MET \& \& \& \&

\hline \& \ddagger Physical Education \& \& \& \&

\hline $$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$ \& On completion of an appropriate associate degree or equivalent \& \& \& \&

\hline
\end{tabular}

3		FALL	WTR J SMR.	
	ITEM-404 Applied Mechanics of Materials	$\begin{array}{r} 4 \\ 3 \\ 1 \\ \boldsymbol{A} \end{array}$ 4	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$	
	SCHG-271 Basic Chemistry			
	SCHG-275 Basic Chemistry Lab			
	GLLC-403 Effective Technical Communication			
	SCHG-273 (Chemistry)			
	SCHG-277 (Chemistry Lab)			
	ITEM-407 MET Lab I			
	"Liberal Arts (Core)			
	"Liberal Arts (Concentration)			
4		FALLI WTR.		SPRJ SMR.
	ITEM-416 Materials Technology	4		4444
	ITEM-440 Applied Thermodynamics	4		
	ITEM-411 Electrical Principles for Design I	4		
	ITEM-409 MET Laboratory II	2		
	"Liberal Arts (Concentration)	4		
	ITEM-460 Applied Fluid Mechanics			
	ITEM-506 Machine Design I			
	ITEM-406 Dynamics of Machinery			
	ITEE-XXX Electrical Technology Elective			
5	ITEM-465 Thermofluids Laboratory E	FALLI WTR.		SPR.
		3444		8
	ITEM-508 Machine Design II			
	Technical Elective			
	ITEM-442 Heat Transfer			4
	"Liberal Arts (Senior Seminar)			2

[^3]at the upper-division level. The typical evening student requires approximately 13 quarters to complete the upperdivision course requirements.

A typical sequence of courses for a part-time student might be as shown at right.

Technical eiectives that are available and appropriate for the Mechanical Engineering Technology program are the same as those listed with the fulltime program.

Students also may elect certain courses from the manufacturing engineering technology and electrical engineering technology programs with approvals.

Note—some eiectives are offered only on an alternating year basis. Please check with an advisor when planning your program technical elective content.

Mechanical Engineering Technology cooperative education plan

Year		Fall	Winter	Spring	Summer
Iand 2		RIT	RIT	RIT	Vacation
3	A	RIT	RIT	Work	Work
	B	RIT	Work	Work	RIT
4	A	RIT	Work	Work	RIT
	B	Work	RIT	RIT	Work
5	A	RIT	Work	RIT	
	B	Work	RIT	RIT	

MECHANICAL ENGINEERING TECHNOLOGY, B.S. EVENING PROGRAM		
Year	Quarter	Courses
1	Fall Winter Spring	SMAT-420 Calculus for Technologists 1 Liberal Arts (core) SMAT-421 Calculus for Technologists II GLCC-403 Effective Technical Communications SMAT-422 Solutions of Engineering Problems ITEM-404 Applied Mechanics of Materials
2	Fall Winter Spring	ITEM-405 Applied Dynamics SCHG-271 Fundamentals of Chemistry SCHG-275 Basic Chemistry Lab SCHG-273 Basic Chemistry II SCHG-277 Basic Chemistry Lab II ITEM-407 Mechanical Engineering Technology Lab I ITEM-432 Computers in MET ITEM-416 Materials Technology ITEM-409 Mechanical Engineering Technology Lab II
3	Fall Winter Spring	Liberal Arts (core) General Education Elective ITEM-411 Electrical Principles for Design 1 ITEE-411 Lab Liberal Arts (concentration) ITEE-4XX Electrical Technical Elective Liberal Arts (concentration)
4	Fall winter Spring	ITEM-440 Applied Thermodynamics Liberal Arts (concentration) ITEM-460 Applied Fluid Mechanics SMAM-309 Elementary Statistics ITEM-465 Thermofluid Laboratory Technical Elective
5	Fall Winter	ITEM-506 Machine Design I Senior Seminar ITEM-508 Machine Design II

Course Number/Nam		Fall	Winter	Spring
$\begin{aligned} & 061040470 \\ & \text { Appl. Mech.. Mat. } \end{aligned}$	$\begin{array}{r} R \\ (4 \mathrm{c} 0 \end{array}$		TR 8-10:20	
061040570 Appl. Dynamics	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$	TR 5:30-7:50		
061040670 D/N Dyn. of Machinery	$\underset{(4 c r)}{E}$	MW 5:30-7:50		
$\begin{aligned} & 061040781 \\ & \text { MET Lab I } \end{aligned}$	$\begin{array}{r} \mathrm{R} \\ \{2 a) \end{array}$		$\begin{array}{\|l} \text { T7:30-10:20 } \\ \text { R 7:30-10:20 } \end{array}$	
061040970 Int. Stren. of Mat.	$\begin{array}{r} R \\ (4 c r) \end{array}$	TR 8-10:20		
$\begin{aligned} & 061040981 \\ & \text { MET Lab II } \end{aligned}$	$\begin{array}{r} R \\ <(\mathrm{c}) \end{array}$			T7:30-10:20
061041470 Mat. Tech. I	$\begin{array}{r} R \\ (3 \mathrm{a} 1 \end{array}$		TR 6-7:20	
061041570 Mat. Tech. II	$\angle 20<$			TR6-7:20
061043270 Comp. in MET	$\begin{array}{r} R \\ <3 c r) \end{array}$			TR 8-9:50
061044070 Appl. Thermo	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$	MW 8-9:50		
061044270 D/N Heat Transfer	$\underset{(4 \mathrm{cr})}{\mathrm{E}}$		MW 8-10:20	
061045170 D/N Vibration \& Noise	$\begin{array}{r} \mathrm{R} \\ (4 \mathrm{cr}) \end{array}$			TR6-7:50
061046070 Appl. Fluid Mech	$\begin{array}{r} R \\ <400 \end{array}$		MW 8-9:50	
$\begin{array}{r} 061046581 \\ 82 \\ \text { Thermo. Lab } \end{array}$	$\begin{array}{r} R \\ (3 c r) \end{array}$			$\begin{aligned} & \text { M 6-9:50 } \\ & \text { R 6-9:50 } \end{aligned}$
061050670 Machine Design I	$\begin{gathered} \mathrm{R} \\ (4 \mathrm{cr}) \end{gathered}$	MW 8-10:20		
061050870 Machine Design II	$\begin{array}{r} R \\ (4 \mathrm{C} » \end{array}$		MW 8-10:20	
061051270 Com. Integ. Mech. Des.	$\underset{(4 \mathrm{cr})}{\mathrm{R}}$			TR6-7:50
061051570 Plastics pre.	$\begin{array}{r} R \\ (4 a) \end{array}$		MW 6-7:50	
$\begin{aligned} & 061052170 \\ & \text { Log. Con. Sys. } \end{aligned}$	$\underset{(4 \mathrm{cr})}{\mathrm{E}}$			TR 5:30-7:50
061053070 D/N Instrumentation	$\underset{(4 c r)}{E}$		MW 5:30-7:50	
$\begin{aligned} & 061054201 \\ & \text { HVAC Sys. Eng. } \end{aligned}$	$\underset{(4 \mathrm{cr})}{\mathrm{E}}$	NOTOFFERED	1989-1990	

NOTE: S-Service course (not to be taken for credit by MET students)
R-Required course, E-Elective course, D/N-Combined day/evening section

1990-91 EVENINQ COURSE OFFERINOS - ENOINEERINQ TECHNOLOGY					
Course Number/Name		Fall	Winter	Spring	Summer
050240371 Effective Tech. Comm.	$\begin{array}{r} \text { O.R.S } \\ (4 \mathrm{cr}) \end{array}$		TR 8:00-9:50		
$\begin{array}{r} 060941170 \\ 81 \\ 82 \end{array}$ Elect. Princ. Des. I	R,S (4cr)		$\begin{aligned} & \text { MW 8:00-9:20 } \\ & \text { R 6:00-7:50 } \\ & \text { R 8:00-9:50 } \end{aligned}$		
$\begin{array}{cc} 0609412 & 70 \\ 81 \\ 82 \end{array}$	S (4cr)			$\begin{aligned} & \text { MW 8:00-9:20 } \\ & \text { R 6:00-7:50 } \\ & \text { R 8:00-9:50 } \end{aligned}$	
060941370 81 Appl. MicroPro.	$\begin{array}{r} \mathrm{S} \\ (4 \mathrm{cr}) \end{array}$	NOTOFFERED	1990-1991		
060940870 Int. Stren of Mat	$\begin{gathered} 0 \\ (4 \mathrm{cr}) \end{gathered}$	TR 8:00-10:20			
$\begin{aligned} & 061742470 \\ & \text { Stat. dual. Cont.I } \end{aligned}$	$\underset{(4 \mathrm{ct})}{\mathrm{S}}$		MW 8:00-9:50		
$\begin{aligned} & 061743670 \\ & \text { Eng. Econ. } \end{aligned}$	$\begin{gathered} \text { Q.S } \\ (4 \mathrm{cr}) \end{gathered}$			MW 8:00-9:50	
$\begin{aligned} & 101127170 \\ & \text { Basic Chemistry } \end{aligned}$	$\begin{aligned} & \text { (3cr).R } \\ & \text { (} \end{aligned}$	TR 8:00-9:20			
101127581 Chemistry Labi	$\begin{array}{r} R \\ (1 c r) \end{array}$	M 6:00-8:50			
101127370 Basic Chemistry II	R.S		TR 8:00-9:20		
101127781 Chemistry Lab II	R.S		M 6:00-8:50		
$\begin{aligned} & 101630970 \\ & \text { EJem. Stats } \end{aligned}$	$\begin{gathered} \text { O.R.S } \\ (4 \mathrm{cr}) \end{gathered}$		MW 8:00-9:50		
101942070 Cajc. Tech. I	O.R.S (4a)	TR 6:00-7:50	TR 6:00-7:50		
$\begin{aligned} & 101942170 \\ & \text { Calc.Tech.II } \end{aligned}$	$\begin{array}{r} \text { O.R.S } \\ \text { (4cr) } \end{array}$	TR 6:00-7:50	TR 6:00-7:50	TR 6:00-7:50	
101942270 Sol. Eng. Prob.	Q.R.S (4cr)		TR 6:00-7:50	TR 6:00-7:50	
101942370 Linear Math-Tech.	O		TR 8:00-9:50		

NOTE: The Q,R, S, refer to required courses (Q-Elec. Eng. Tech., R-Mech. Eng. Tech., S-Manf. Eng. Tech.)

Manufacturing Engineering Technology Department

V. Raju, Chairperson

Manufacturing Engineering

Technology, baccalaureate program
Leaders in the manufacturing engineer ing profession estimate that the present shortage of qualified manufacturing engineers and technologists is between 50,000 and 100,000 people-and this need is increasing. They also estimate that between 20,000 and 30,000 new jobs are created in manufacturing engineering every year. The two principal factors generating this demand are industrial productivity and technological innovations. The rate of increase of productivity in American industry is lagging behind most industrial nations.

Realizing that competitive positions in world and domestic markets are tied to the productivity of manufacturing units, there is considerable effort by industrial organizations to improve their productivity. This nationwide effort is causing organizational and planning changes in many corporations which now recognize the manufacturing unit as the key to profits; for example, many corporations have placed manufacturing engineers in charge of new product design functions in an effort to insure product manufacturability.

These efforts to improve productivity have led to the rapid introduction of new processes, equipment, and increased levels of automation. This has created a demand for personnel well-versed in the new manufacturing technologies: computer-aided design, computer numerical control, microprocessor controls, robotics, computer aided manufacturing, flexible manufacturing systems, and computer integrated manufacturing.

The manufacturing engineering technology program is designed to meet the demands of the industry. The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (TAC/ABET) and is operated on the cooperative education plan.

Yr.	MANUFACTURING ENGINEERING TECHNOLOGY, B.S. DEGREE	Otr. Credit Hours			
		FALL	WTR.	SPG.	SMR.
1	SMAM-204 College Algebra \& Trigonometry GLLC-220 English Composition ITEC-210 Intro, to Graphics ITEF-220 Manufacturing Proc. I tPhysical Education SMAM-228 Analytic Geometry SPSP-211 College Physics I SPSP-271 College Physics Lab I ITEM-220 Mechanical Design Drafting ITEM-2111ntroduction to Materials Technology tPhysical Education SMAT-420 Calculus for Technologists I SPSP-212 College Physics II SPSP-272 College Physics Lab II ITEF-260 Introduction to CAD ITEM-302 Introduction to Statics IPhysical Education	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 4 \\ & 4 \end{aligned}$	
2	SMAT-421CalculusforTech.il SPSP-213 College Physics III SPSP-273 College Physics Lab III ITEM-303 Strength of Materials ITEM-212 Metrology "Liberal Arts (Core) tPhysical Education SMAT-422 Solutions of Eng. Prob ITEC-230 Computer Applications ITEM-304 Materials Testing ITEM-320 Fluid Power "Liberal Arts (Core) Physical Education SMAM-309 Statistics ITEF-403 Machine Elemnts "Liberal Arts (Core) General Education	$\begin{aligned} & 4 \\ & 3 \\ & 1 \\ & 4 \\ & 2 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 1 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Completion of an appropriate associate degree or equivalent				

'Seepage 116 for Liberal Arts requirements.
"Transfer students will take SMAT-420 or 421 depending on an evaluation of their mathematics background. Graduates will have to meet a minimum of 36 quarter credits of mathematics and science (including credits transferred), and include mathematics SMAT-422or equivalent. Rearrangement of the above schedule will be allowed to meet the math/science requirements.
\}See page 200 for policy on Physical Education.

Objectives of the program

The primary objective of the manufacturing engineering technology program is to prepare individuals for professional employment in the manufacture ing field. This program is designed to provide the academic skills necessary for applying both today's and tomorrow's manufacturing technologies. These academic skills are enhanced by a full co-op program in manufacturing industries. Throughout the academic program, a large measure of hands-on laboratory experiences related to manufacturing technology is provided.

Curriculum

The manufacturing engineering technology curriculum has been designed with the aid and consultation of professionals in the field. The major emphasis of the program is on computerintegrated manufacturing. Subject matters covered include traditional and non-traditional manufacturing processes, fundamentals of electronics and microprocessors, computer-aided design, computer numerical control, robotics, group technology, computeraided process planning, material requirements planning, flexible manufacturing systems, quality control, engineering economics, value analysis and plastics.

Admission requirements

Freshmen are admitted by normal RIT procedures with an emphasis given to mathematics find science skills. Those who transfer from two-year colleges should have an AAS degree or equivalent in one of the following majors: manufacturing technology, mechanical technology, management engineering technology, engineering science, electrical technology, computer technology, quality control technology, design and drafting technology, electromechanical technology. Students with other backgrounds may have to take additional courses to meet the entrance requirements. The chart shows the sequence of courses in the program for students entering as freshmen and those entering as juniors.

Manufacturing Engineering Technology cooperative education plan

Year	Fall	Winter	Spring	Summer
Iand 2	RIT	RIT	RIT	Vaction
3	RIT	RIT	Work	Work
4	RIT	Work	RIT	Work
5	Work	RIT	RIT	-

MANUFACTURING ENGINEERING TECHNOLOGY, B.S., EVENING PROGRAM		
Y«ar	Quarter	Courses
1	Fall Winter Spring	SMAT-420 Calculus for Technologists I ITEF-420 Manufacturing Processes SMAT-421 Calculus for Technologists II GLLC-403 Effective Technical Communications SMAT-422 Solutions of Engineering Problems ITEF-460 Computer Aided Design
2	Fall Winter Spring	ITEF-403 Machine Elements Liberal Arts (core) ITEF-471 Computer Numerical Control ITEE-411 Electrical Principles for Design I ITEE-411 Lab ITEE-413 Microprocessors ITEE413Lab ITEF-410 Computers in Mfg. Eng. Tech (Not offered 1990)
3	Fall Winter Spring	SCHG-271 Chemistry SCHG-275 Chemistry Lab ITEF-470 Controls for Mfg. Automation (Not offered 1990) SCHG-273 Chemistry II SCHG-277 Chemistry Lab SMAM-309 Statistics ITEF-425 Statistical Quality Control II Liberal Arts (core)
4	Fall Winter Spring	ITEF-485 Robots in Manufacturing Technical Elective General Studies elective Liberal Arts (concentration) ITEF-436 Engineering Economics ITEF-475 Computer Aided Manufacturing
5	Fall Winter Spring	Liberal Arts (concentration) ITEF-510 Process Design ITEF-472 Tool Engineering Liberal Arts (concentration) Senior Seminar ITEF-437 Value Analysis

Technical electives

Manufacturing Engineering
Technology
ITEF-372 CAD Applications to Tool Design
ITEF-385 Introduction to CAM
ITEF-502 Non-traditional
Manufacturing Processes
ITEF-450 Plastics Processing
ITEF-491 Production Control
ITEF-405 Materials in Manufacturing
ITEF-526 Quality Systems
ITEF-481 Work Simplification and
Measurement
ITEF-530 Special Topics in Computer
Integrated Manufacturing
ITEF-599 Independent Study
With departmental approval, technical electives may be selected from existing courses in other RIT colleges.

Evening program

The upper division of this program may be taken on a part-time basis during the evening hours by those who are employed full time and desire to receive an ABET-accredited baccalaureate degree. The lowei \wedge di vision portion of this program may be satisfied by completing the appropriate AAS program in the College of Continuing Education. The actual upper-division program will depend upon the courses taken for the AAS program. The typical evening student requires approximately 13 quarters to complete the upper-division course requirements. In the early quarters, the fundamentals of mathematics, electronics and processes are emphasized to provide the background for later courses in computer integrated manufacturing and technical electives. Students also may elect certain courses from other programs.

Note-some technical electives are offered only on an alternating year basis. Please check with an advisor when planning your program technical elective content.

Court* Number/Nam*		Fall	Winter	Spring	Summer
061740370 (also 01) Machine Elements	$\begin{array}{r} \mathrm{R} \\ (3 \mathrm{c} » \end{array}$	TR 5:30-7:00			
061740570 D/N Mat7Manuf.	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$		TR 6:00-8:00		
$\begin{array}{r} 061742070 \\ 81 \end{array}$ Manuf. Proc	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$	MW 6:00-8:00 M 8:00-10:00			
$0617424 \quad 70$ Stat. Qual. Cont. I	$\begin{array}{r} \mathrm{S} \\ (3 \mathrm{cr}) \end{array}$		MW 6:00-8:00		
$0617 \quad 425 \quad 70$ Stat. Qual. Cont. II	$\begin{array}{r} \mathrm{R} \\ (3 \mathrm{cr}) \end{array}$			TR 5:30-7:00	
$0617 \quad 436 \quad 70$ Eng. Econ.	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$			TR6:00-8:00	
061743770 Value Anal.	$\begin{array}{r} \mathrm{E} \\ (3 \mathrm{cr}) \end{array}$			MW 5:30-7:00	
$\begin{aligned} & 0617 \quad 46070 \quad \mathrm{D} / \mathrm{N} \\ & \text { CAD } \end{aligned}$	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$			MW 5:30-8:00	
061747170 D/N Comp. Num. Cont.	$\begin{array}{r} R \\ (3 \mathrm{cr}) \end{array}$		MW 6:00-8:00		
061747270 D/N Tool Engineering	$\begin{array}{r} R \\ (4 \mathrm{cr}) \end{array}$		TR 6:00-8:00		
$\begin{array}{lrr} 0617 & 475 & 70 \\ & 81 \\ \text { CAM } & & \end{array}$	$\begin{array}{r} R \\ (4 c r) \end{array}$			TR 5:30-8:00	
061748570 (also 01) Robots In Manuf	$\begin{array}{r} \mathrm{R} \\ (4 \mathrm{cr}) \end{array}$	TR 8:00-10:30			
$\begin{aligned} & 061749170 \\ & \text { Prod. Cont. } \end{aligned}$	$\begin{array}{r} E \\ <4 \mathrm{cr}) \end{array}$	MW 5:00-7:00			
061750270 Non-Trad. MI. Proc.	$\begin{array}{r} E \\ (3 c r) \end{array}$		MW 8:00-10:30		
061751070 Proc. Design	$\begin{array}{r} E \\ (4 \mathrm{Cr}) \end{array}$	MW 8:00-10:00			

NOTE: S-Service course (not be be taken for credit by Manf. ET students)
R-Requlred course, E-Elective course
D/N-Comblned Day/Evening Section

School of Food, Hotel and Tourism Management

(99 Years of Service to Hospitality Education)

Francis M. Domoy, Director
RIT's School of Food, Hotel and Tourism Management offers four programs leading to BS and MS degrees in hospi-tality-tourism management: foodservice management; hotel and resort management; travel and tourism management; general dietetics and nutritional care.

The school prepares students for a wide variety of career choices that include, but are not limited to, restaurants, health-care facilities, or travel consulting. A career in the hospitality industries has become highly specialized in today's business world and RIT graduates are in demand.

The four school programs provide a broadly based view of hospitality, tourism and client care through a common core of courses. This approach promotes an understanding of the inter relationships among the food, lodging and travel components and allows students to retain the flexibility to switch majors or jobs if their career goals change.

These diverse and specialized fields require a common set of abilities: creative problem solving; technical knowledge; leadership and excellence. The school's first priority is to equip students with these skills and qualities.

Now in its 99th year, RIT's School of Food, Hotel and Tourism Management is one of the nation's leading hospi-tality-tourism management programs and has been recognized for its outstanding programs by Forbes, Travel Weekly, Nation's Restaurant News, and Corporate Travel magazines.

The curriculum is designed to be fully integrated whereby competencies acquired in earlier courses are further developed in more advanced courses. Students may take electives that contribute to building a strong concept of the total industry by studying accounting, marketing, finance, economics, computer science, business management, behavioral science, nutrition, food preparation, food and beverage service principles, hotel operations, travel and other topics.

The goal of the school is to offer students a rigorous, challenging and interdisciplinary program of study in order to develop their talents. It provides them with the opportunity to develop their full potential in a managerial environment. Small classes promote a dynamic learning interaction among faculty, students and industry professionals.

Objectives

It is the mission of the school to prepare students to excel in their chosen profession by developing:

1. Theoretical and technical knowledge essential to successful attainment of professional, executive level management.
2. The ability to apply knowledge and original thinking to solving management problems.
3. The skills and techniques of leadership.
4. An awareness and desire for a lifetime of learning.
5. An intellectual spirit for constructive thought and action in building a good life and effective citizenship.

Cooperative education

The School of Food, Hotel and Tourism Management requires each student to combine 1,600 hours of practical co-op experience with classroom theory in order to graduate.

Cooperative education (co-op) is one of the many ways students are introduced to hands-on learning and employment in the hospitality and tourism industries. Co-op is usually taken during summer quarters after the freshman and sophomore years, and during any academic quarter in the junior and senior years, except the senior-year, final quarter when students are required to be in residence on campus. Co-op is planned, monitored and evaluated by the student, the co-op counselor, the faculty advisor, and the employing firm.

Many students find that their career goals take shape and become refined as they progress through co-op experiences. In general, co-op provides students with the opportunity to apply the theory of classroom instruction to an actual work setting.

Faculty

Faculty members in the School of Food, Hotel and Tourism Management are outstanding in their academic credentials and for their work in industry. They serve in professional and trade associations at the national level, guestspeak frequently, and consult in the fields of their expertise: tourism, marketing, hospitality operations, nutrition and health care, to name a few.

Advising

Students are assigned to faculty members on an individual basis throughout their academic years. In addition students have access to the school's administrative staff for assistance with registration, records, scheduling and for referral to other RIT support services.

Advisory Council

National industry leaders comprise the National Advisory Board, contributing professional and technical expertise to the school's four undergraduate programs and strengthening the development of the School.

Transfer students

Students who have earned an associate degree in a business program prior to enrollment at RIT may normally expect to complete the BS degree in two years, which includes six academic quarters and two required quarters of cooperative education. The school recognizes as fully as possible the past academic accomplishments of each student.

Facilities

State-of-the-art equipment and laboratories are available to all students in the School of Food, Hotel and Tourism Management to enhance their educational experiences. Henry's, a fullservice, licensed restaurant, provides an excellent training environment for students who manage special luncheons and dinners with the help of computer ized beverage and point-of-sale systems. The food lab is commercially equipped for developing, testing and evaluating new food products and testing equipment.

Information management is a critical element in hospitality, travel and tourism. The school is fortunate to have for instruction the American Airlines SABRE computerized-reservation and accounting systems in the live mode. The AT\&T Computer laboratory and the training studio allow students to prepare for the technology they will encounter on the job.

Programs of study in foodservice management

The foodservice industry employs more people than any other industry in the nation, and will continue to do so as the public demands more services. Foodservice offers an array of work places located far and wide: restaurants from full-service to cafeteria; fast-food and special chain operations; hotel fine dining and catering; clubs; contract ser vices for manufacturing; business firms; recreation and sports centers; education, health and life care institutions; retail stores; governmental agencies; and food vending.

Students in foodservice management experience a sampling of these foodservice sectors during cooperative education. By graduation students will accumulate more than 1,600 hours of work experience, more than any other four-year hospitality management program in the country. It is because of this depth of exposure that RIT students are in demand by food and bever age operations.

The program is designed to prepare students for management by lab experience in Henry's, the school's fullservice, licensed restaurant. They rotate through all of the kitchen, dining room and bar positions in the Restaurant Operations, Restaurant Management, and Beverage Operations courses.

Students learn basic principles and procedures of nutrition; sanitation; menu planning and merchandising; product development; equipment design; food production; presentation and service; purchasing; cost control; and the management of Henry's. The program requires severed management topic courses including accounting, computer science, data analysis, leadership and executive development, per sonnel and labor management, and organization behavior. These professional and business courses are balanced by a strong component of liberal arts and science.

The first student chapter chartered by a state restaurant association is available to foodservice management students. The New York State Restaurant Association's goad is to foster inter change of ideas between industry and students and professional growth in organizational and social skills. Students with junior standing are encouraged to attend the National Restaurant Association Show in Chicago each year.

*Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Hotel and resort management

Hotel and resort management is a professionally oriented curriculum for students interested in careers involving the management and operations of hotel, resort, leisure time and related enterprises. A composite of discipline areas allows students to understand the physical characteristics of the properties as well as to gain the business expertise necessary to manage and market them.

The program is designed to build student skills with a balanced academic program of the basic principles of hotel and restaurant operations, tourism, resort development and management, business and financial management, and liberal arts, together with paid work experience (co-op) in four quarters, hands-on class projects, laboratories and school activities. Specialized courses include data analysis, hotel engineering and maintenance, hotel marketing and sales, personnel and labor management, leadership and executive development, and negotiation and conflict management. Industry professionals regularly offer their expertise in all of the program courses.

Students develop communication skills through participation in the student chapter of the Hotel Sales \& Marketing International Association (HSMAI). In 1988 RIT HSMAI students hosted the national student chapter convention-an intensive learning experience. Students with senior standing are encouraged to attend the International Hotel/Motel and Restaurant Show in New York City in November.

Travel and Tourism management The dynamic growth of modern travel and tourism has created many technical problems for the traveling public and with them the need to consult highly qualified experts to plan, arrange and coordinate travel. Today, more than ever before, travelers are faced with many alternatives for transportation, accommodations and other travel ser vices, and are increasingly relying upon the travel professional to help guide them wisely and honestly. Travel agencies and travel counselors have an important impact on tourist economics and on foodservice, lodging, transportation and leisure time enterprises that supply services to tourists. Managers of tourist businesses and destination marketing organizations such as visitor and convention bureaus also assist the public in meeting their travel and tourism needs. In addition, tour operators and meeting managers provide the public with tourism opportunities and arrange trips, conferences, and seminars.

Travel and tourism management combines a study of specialized courses in travel management with a sound general education. In addition to the specialty courses, students are provided a broad-based curricular approach with courses in accounting, management principles, marketing, business law, foreign languages, and the computer sciences. The program is structured to provide students with a balance of hands-on experience and management theory. This is necessary to further their understanding of why the travel industry operates as it does in its business environment. This career education orientation provides both the four-year and transfer student with a balance of theoretical classroom-based instruction with the experiential opportunities that are furnished by cooper ative education.

Equipped with this program of academic study and work experience, students in travel and tourism management prepare for careers in corporate travel, consulting and professional meeting management, as well as management and marketing positions with state tourism agencies, visitor and convention bureaus, and group tour companies. Employment opportunities are also excellent with airline companies, hotels, resorts, retail travel agencies and other leisure time businesses.

Yr.	TRAVEL MANAGEMENT	Qtr. Credit Hours			
1		FALL	WTR.	SPG.	SMR.
	ISMT-210 Introduction to AA SABRE	44244	4444	44440	Co-op
	ISMH-200 Hotel Operations				
	ISMF-220 Career Seminar				
	GLLC-220 English Composition				
	'Liberal Arts				
	ISMT-205 Introduction to Tourism				
	GLLL-332 Literature				
	SMAM-225 Algebra for Management Science				
	GSSE-210 Introduction to Economics				
	ISMT-206 Travel Distribution Systems				
	ICSA-200 Survey of Computer Science				
	SMAM-319 Data Analysis				
	\ddagger Physical Education				
	ISMF-499 Cooperative Education				
2	ISMH-310 Resort Development \& Management	442	244	44440	Co-op
	ISMF-222 Introduction to Food Service Management				
	ISMT-312 Travel Reservation Procedures				
	ISMT-314 Salesmanship Techniques in TvI				
	BBUA-301 Financial Accounting				
	ISMH-210 Hotel Marketing \& Sales Mgt				
	BBUA-302 Managerial Accounting				
	ISMF-224 Decision Making in Food Sci. Mgt				
	SXXX-289 Contemporary Science Elective				
	"Liberal Arts				
	\ddagger Physical Education				
	ISMF-499 Cooperative Education				
3	BBUM-463 Principles of Marketing	444	4444	844	Co-op
	ISMH-480 Personnel \& Labor Mgt. in Hospitality				
	ISMT-438 Tourism Planning \& Development				
	ISMT-420 Corporate Travel Planning				
	BBUB-430 Organizational Behavior				
	ISMF/ISMH/ISMT Electives				
	ISMT-413 Marketing Tourism Destinations				
	"Liberal Arts				
	ISMF-499 Cooperative Education				
4	BBUF-441 Corporate Finance	4246	Co-op	$\begin{aligned} & 8 \\ & 4 \\ & 4 \end{aligned}$	12
	"Liberal Arts (Senior Seminar)				
	Free Electives				
	ISMF/ISMH/ISMT Electives				
	ISMH-470 Leadership \& Executive Development				
	"Liberal Arts				
	ISMF-499 Cooperative Education				

- Seepage 116 for Liberal Arts requirements.
iSee page 200 for policy on Physical Education

American Airlines SABRE Systems

 Available to the students in the School of Food, Hotel and Tourism Management in live mode are the automated reservation and accounting systems designed by American Airlines to allow corporate travel planners and meeting managers to serve the client faster, while handling the complex details of their business more efficiently. The reservation system, SABRE, enables travel professionals to give their clients immediate confirmation for flights operated by airlines worldwide.With SABRE the students are seated at SABRE reservation sets that use video screens and typewriter-like keyboards and are linked directly to American's worldwide travel informa-
tion system. This provides access to accommodations at hotels-domestic and international, major car rental firms, and to wholesale tour operators who design tours to vacation destinations such as Hawaii, the Caribbean, Mexico, Canada and the U.S. mainland.

SABRE provides the student with a view of a world wide market distribution system. The system also performs fare quotations, currency conversions, and, with the aid of the Telenet printers, prepares a printed ticket, a comprehensive invoice and a passenger itinerary.

Students are also versed in the use of SABRE's special file designed for the frequent business traveler. Known as STARS (Special Travelers Account Record System), the file contains not only addresses and telephone numbers, but individual preferences in flight
times, aircraft, seating, menus, etc. It will also automatically "remember" the traveler's customary requests with regard to hotel reservations, car rentals, and billing procedures.

Beginning the winter quarter of 1990, the school will provide a Sabre certification course for part-time students. Refer to the part-time enrollment catalog for details.

The School of Food, Hotel and Tourism Management's utilization of the American Airline's SABRE System truly represents a whole new dimension in hospitality and tourism education.

General dietetics and nutritional care Today's public is becoming increasingly interested in nutrition requirements for good health and long life. People are concerned about balanced menus away from home and about special diet menu selection availability for persons with serious ailments. Physical fitness centers seek educated advice about meal planning.

Dietitians are involved with people of all ages, cultures and economic means. They enjoy people and learn to understand them as individuals, thereby helping to solve their food needs. Dietitians are health professionals who apply the science and art of human nutrition.

The general dietetics and nutritional care program offers a challenging curriculum that prepares students for diverse career opportunities. From their base of knowledge about nutrition, registered dietitians practice in many settings. Possible career paths may be developed in private practice; community nutrition and public health; wellness and fitness programs for sports; education and corporations; clinical dietetics or food management in hospitals and long-term care facilities; research for clinical, education or food manufacturing operations; nutrition education; restaurant consulting; and writing for publications.

Dietetics program options Today industry and institutions are looking for dietitians with strong management skills. Two options in the general dietetics and nutritional care program are offered: Traditional Plan IV dietetics and the Coordinated Program (C.P.) in general dietetics. These options combine clinical and business courses so that students become prepared for either arena.

All RIT dietetics students are enrolled in the traditional program in general dietetics during the first two years. Upon completion of the necessary pre-professional (first and

\begin{tabular}{|c|c|c|c|c|c|}
\hline Yr. \& GENERAL DIETETIC' \& NUTRITIONAL CARE PLAN IV \& \multicolumn{4}{|c|}{Qtr. Credit Hours} \\
\hline \multirow{14}{*}{1} \& \& FALL \& WTR. \& SPG. \& SMR. \\
\hline \& ISMD-213 Nutrition Science \& \multirow[t]{13}{*}{\[
\begin{aligned}
\& 4 \\
\& 4 \\
\& 4 \\
\& 4
\end{aligned}
\]} \& \multirow{13}{*}{\[
\begin{aligned}
\& 5 \\
\& 4 \\
\& 4 \\
\& 4
\end{aligned}
\]} \& \multirow{13}{*}{4} \& \multirow[t]{13}{*}{} \\
\hline \& ISMF-222 Intro, to Food Service Management \& \& \& \& \\
\hline \& "SCHG-201,221 Survey of General Chemistry (plus lab) \& \& \& \& \\
\hline \& GLLC-220 English Composition \& \& \& \& \\
\hline \& ISMF-215 Principles of Quality Food Production \& \& \& \& \\
\hline \& GSSE-210 Introduction to Economics \& \& \& \& \\
\hline \& "SCHG-202,222 Survey of Organic Chemistry (plus lab) \& \& \& \& \\
\hline \& GLLL-332 Literature \& \& \& \& \\
\hline \& ISMF-224 Decision Making in Food Service Management . . . ICSA-200 Survey of Computer Science \& \& \& \& \\
\hline \& "SCHG-203 Biochemistry I \& \& \& \& \\
\hline \& Liberal Arts \& \& \& \& \\
\hline \& ISMF-314 Sanitation \& Safety \& \& \& \& \\
\hline \& Physical Education \& \& \& \& \\
\hline \multirow{10}{*}{2} \& "SBIG-210 Microbiology \& \multirow[t]{10}{*}{\begin{tabular}{l}
4 \\
4 \\
4 \\
4 \\
0
\end{tabular}} \& \multirow[b]{10}{*}{\begin{tabular}{l}
2 \\
4 \\
4 \\
8 \\
\hline
\end{tabular}} \& \multirow[b]{10}{*}{\[
\begin{aligned}
\& 4 \\
\& 4 \\
\& 8 \\
\& 0
\end{aligned}
\]} \& \multirow{10}{*}{Co-op} \\
\hline \& "SCHG-204 Biochemistry II \& \& \& \& \\
\hline \& SMAM-225 Algebra for Management Science \& \& \& \& \\
\hline \& ISMF-321 Menu Planning and Merchandising \& \& \& \& \\
\hline \& SMAM-319 Data Analysis \& \& \& \& \\
\hline \& SBIG-211,212 Human Biology I, II, plus lab \& \& \& \& \\
\hline \& BBUQ-301 Financial Accounting \& \& \& \& \\
\hline \& Liberal Arts \& \& \& \& \\
\hline \& ISMF-499 Cooperative Education \& \& \& \& \\
\hline \& Physical Education \& \& \& \& \\
\hline \multirow{8}{*}{3} \& ISMF-424 Food \& Labor Cost Control \& \multirow[t]{8}{*}{4
6
4
2

4} \& \multirow{8}{*}{4
5
8} \& \multirow[b]{8}{*}{Co-op} \& \multirow[b]{8}{*}{Co-op}

\hline \& ISMF-416 Product Development \& \& \& \&

\hline \& BBUB-430 Organizational Behavior \& \& \& \&

\hline \& ISMF-330 Quantity Foods \& \& \& \&

\hline \& ISMF-512 Design and Layout of Food Operations \& \& \& \&

\hline \& ISMD-554 Nutrition in Life Cycle \& \& \& \&

\hline \& Liberal Arts \& \& \& \&

\hline \& ISMF-499 Cooperative Education \& \& \& \&

\hline \multirow{9}{*}{4} \& ISMD-525 Advanced Nutrition/Diet Therapy I \& \multirow[t]{9}{*}{$$
\begin{gathered}
\hline 4-5 \\
\\
4 \\
8 \\
2-4
\end{gathered}
$$} \& \multirow{3}{*}{2} \& \multirow[b]{9}{*}{4

4

4
8} \& \multirow[t]{9}{*}{}

\hline \& 'Liberal Arts (Senior Seminar) \& \& \& \&

\hline \& ISMH-470 Leadership and Executive Development \& \& \& \&

\hline \& Liberal Arts \& \& \multirow[t]{6}{*}{$$
\begin{gathered}
4 \\
4 \\
4 \\
4-5
\end{gathered}
$$} \& \&

\hline \& ISMF Eiectives \& \& \& \&

\hline \& ISMH-480 Personnel \& Labor Management \& \& \& \&

\hline \& "ISMD-526 Advanced Nutrition/Diet Therapy II \& \& \& \&

\hline \& ICIC-519 Educational Methods \& \& \& \&

\hline \& "ISMD-550 Community Nutrition \& \& \& \&

\hline
\end{tabular}

'Changes in the dietetics program are subject to approval by the American Dietetics Association.
"These courses offered ONL Y in the quarters listed on the schedule.
'Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Yr.	GENERAL DIETETICS (CP)	Quarter Credit Hours			
3		FALL	WTR.	SPG.	SMR.
	ISMD-402 Dietetic Environment	$\begin{aligned} & 4 \\ & 6 \\ & 4 \\ & 4 \\ & 2 \end{aligned}$	844	8	
	ISMF-416 Product Development				
	BBUB-430 Organizational Behavior				
	'Liberal Arts				
	ISMD-512 Design and Layout of Food Operations				
	ISMF-330 Quantity Foods				
	ISMD-554 Nutrition in Life Cycle				
	ICIC-519 Educational Methods				
	ISMF-424 Food and Labor Cost Control				
	ISMD-551 Food Systems Management II (Clinical Course) . .				
4	ISMD-560 Clinical Dietetics I	444	484	428	
	ISMD-561 Clinical Dietetics II				
	Liberal Arts (Senior Seminar)				
	ISMD-562 Clinical Dietetics III				
	ISMD-563 Clinical Dietetics IV				
	ISMH-480 Personnel \& Labor Management				
	ISMD-550 Community Nutrition				

"Changes in the dietetics program are subject to approval by the American Dietetics Association.
-See page 116 for Liberal Arts requirements.
second year) courses, students may apply for admission into the coordinated dietetics program. Applications for the Coordinated Program must be submitted by February 15 to be considered for admission into the professional phase the following September.

The dietetics program combines courses in physical, biological and social sciences; nutrition in health and disease; food principles; management, accounting and finance; and a required component of liberal arts.

Traditional Plan IV dietetics:

The program in Traditional Plan IV dietetics leading to a BS degree meets the education requirements of the American Dietetic Association. Fouryear students must complete three quarters of approved cooperative work experience. To become credentialed as a registered dietitian (RD), students also will need to complete an approved supervised practice and pass the National Registration Examination of the American Dietetic Association.

Coordinated program option: This option combines the undergraduate curriculum and planned supervised practice to meet the academic and performance requirements established by the American Dietetic Association, for eligibility as a Registered Dietitian, (ADA).

This option also is planned to integrate formal teaching and over 900 hours of planned, supervised practice in hospitals, long-term care facilities, school and corporate food services and community health agencies. Academic and supervised practice phases are taught together to reinforce each other. Learning experience involves team teaching by RIT faculty and clinical instructors, each contributing their expertise in the profession.

Co-op is not required of students in C.P. because the supervised practice hours planned for the junior and senior years establish eligibility for students to take the National Registration Examination for dietitians upon graduation.

Completion of this option leads to a bachelor of science degree plus eligibility to take the national examination to become a registered dietitian (RD).

Transfer credit
Two-year transfer program for foodservice management, hotel and resort management, and travel-tourism management. Students who have earned an appropriate associate degree or its equivalent prior to enrollment at RIT may normally expect to complete the requirements for the BS degree in two years which includes six academic quarters and cooperative education.

Transfer students must complete a minimum of 102 quarter credit hours with an earned minimum grade point average of 2.0 and two quarters of approved cooperative education assignments.

Transfer students with less than two years of college or from other educational backgrounds can be accommodated. The amount of transfer credit will be determined by an evaluation of the individual's transcript.

In every instance, it is the policy of the college to recognize as fully as possible the past academic accomplishments of each student.

Two-year transfer program for coordinated dietetics. RIT makes every effort to facilitate transfer credit. Due to specific areas of study required by the American Dietetic Association and RIT, transfer students applying for admission to the professional phase of C.P. in dietetics must meet course prerequisites listed in the preprofessional phase.

The following areas of study must be completed:

Food and Nutrition Principles
General and Organic Chemistry
Biochemistry I
Physiology
Management Courses: Mathematics, Accounting and Statistics
Economics
TOTAL of 24 credit hours of Liberal Arts (including Introduction to Sociology)

Applicants are required to have a minimum grade point average of 2.5 from two years of basic professional courses before they are considered for admission in the coordinated program.

Students who are not accepted in the coordinated program may be admitted to the traditional program in general dietetics. Due to the special professional requirements of the American Dietetic Association, the amount of transferable credit and estimated time to complete work for the BS degree must be determined by evaluation of each individual's transcript.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions Office.

Department of Packaging Science

David L. Olsson, Director

Packaging Science, baccalaureate program

The Packaging Science program, leading to the bachelor of science degree, is broadly interdisciplinary providing educational opportunities for men and women seeking careers in the multifaceted packaging industry.

Graduates are prepared for initial employment in such areas as package engineering, development, sales, pur chasing, structural design, production, research, and marketing.

Packaging is a multi-billion dollar industry exhibiting dynamic growth and providing employment for many thousands of men and women with wide-ranging skills and expertise.

Since the end of World War II the development of a package for a given product has become increasingly complex, involving input from many areas of business and from people with diverse backgrounds. This has resulted in the need for specially trained professionals able to work with concepts, individuals, materials, and machines. Qualified persons in this area are in demand and find themselves in a rapidly changing, challenging career. The RIT program trains people for this exciting profession.

The degree program in packaging science was developed because of a close and well-established relationship between the packaging industry and Rochester Institute of Technology over many years.

Packaging has become increasingly related to total marketing concepts; it has even greater dependence upon new developments in materials and processes. Therefore, the industry requires management personnel with strong backgrounds in business, engineering, science and the creative dimension.

Characteristics of the program

The program has these characteristics:

1. It is career oriented-the graduate is ready to enter direcdy into a position of responsibility.
2. It is interdisciplinary-the student becomes familiar with the many facets of packaging through courses in several RIT colleges.
3. It is flexible-the program offers three options, management, technical, and printing, with ample opportunity for electives according to interest.

Yr.	BS DEGREE IN PACKAGING SCIENCE - TECHNICAL OPTION	Otr. Credit Hours		
1		FALL	WTR.	SPG.
	IPKG-201 Principles of Packaging	3	3	3
	IPKG-301 Engineering Design Graphics			
	IPGK-311 Packaging Materials I			
	SMAM-204 Modern Algebra	4	3	3
	SMAM-214,215 Introduction to Calculus	4		
	SGHG-208,209 College Chemistry			4
	GLCC-501 Effective Speaking			4
	"Liberal Arts (Foundation)	4	8	4
	Education	0	0	0
2	IPKG-312 Packaging Materials II	33	4	444
	IPKG-313 Methods of Evaluation			
	IPGK-321 Rigid Containers			
	IPKG-322 Flexible Containers			
	IPKG-341 Computer Applications			
	SMAM-319 Data Analysis			
	SCHO-231,232 Organic Chemistry	3	3	
	SCHO-235,236 Organic Chemistry Lab	1	1	4
	"Liberal Arts (Foundation)	4	4	
	tPhysical Education	0	0	0
3	IPKG-401 Career Seminar	4	1	
	IPKG-420 Technical Communication			
	IPKG-431 Packaging Production Systems			
	IPKG-432 Packaging for Distribution		4	
	IPKG-433 Packaging for Marketing			4
	IPKG-485 Shock and Vibration		3	4
	SPSP-211,212,213 College Physics	3		31
	SPSP-271,272,273 College Physics Lab	1	1	
	SPSP-341 Foundations of Scientific Thinking			1
	PPRT-200 Introduction to Printing	34	4	4
	"Liberal Arts (Concentration)			
4	IPKG-462 Packaging Regulations	4	344	4
	Professional (Packaging) Electives			
	BBUM-463 Principles of Marketing			
	BBUB-430 Organizational Behavior			4
	"Liberal Arts (Electives and Senior Seminar)	6	4	43

"Seepage 116 for Liberal Arts requirements.
fSee page 200 for policy on Physical Education.
4. It is representative of industry needs-the content developed with the assistance of the Rochester Area Packaging Association, consultants from the packaging industry, and educational specialists.
5. It is adaptable to a modified cooperative plan, used widely in other RIT programs. Two quarters of co-op work experience are required. This can be scheduled at the student's convenience, following development of appropriate skills.

Admission requirements

The four-year BS degree program considers for admission high school graduates who meet the following requirements: English, 4 years; mathematics, elementary algebra and either plane geometry or intermediate algebra; science, one year. Candidates are evaluated in relation to career objectives, designated option, and other indications of potential success in the program.

Upper division (transfer)

Transferring into the program with advanced standing is particularly advantageous, since RIT has had many years of experience in assimilating graduates of two-year colleges into its programs and moving them from this point in their education directly into a chosen career field. Some candidates now in four-year colleges will find in the packaging science program a career opportunity with outstanding potential. Associate degree holders (AA, AS, AAS) have courses arranged to meet the requirements of the program and to correct deficiencies resulting from work taken at other institutions not offering the courses required for graduation. With a selective choice of electives by students in the two-year colleges, it is possible to complete the packaging science curriculum in two additional years at RIT.

Principal field of study

For students matriculated in the interdisciplinary Packaging Science program, the principal field of study is defined to be all courses in the Packaging Science Department as well as the required courses in the College of Science for the technical option, the required courses in the colleges of Business and Science for the management option, and the required courses in the Colleges of Science and Graphic Arts and Photography in the printing option. Matriculated students not maintaining a 2.0 cumulative grade point average in their principal field of study are subject to academic probation or suspension according to Institute policy.

Yr.	BS DEGREE IN PACKAGING SCIENCE - MANAGEMENT OPTION	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	IPKG-201 Principles of Packaging	3	3	3
	IPKG-301 Engineering Design Graphics			
	IPKG-311 Packaging Materials I			
	IPKG-341 Computer Applications			
	SPSP-211,271 Collge Physics/Lab	4	4	
	SMAM-225 Algebra for Management Science			4
	SMAM-226 Calculus for Management Science			
	GSSE-301,302 Principles of Economics I, II	4	4	
	"Liberal Arts (Foundation)	4		4
	tPhysical Education	0	0	0
2	IPKG-312 Packaging Materials II	3	4	4
	IPKG-313 Methods of Evaluation			
	IPGK-321 Rigid Containers			
	IPKG-322 Flexible Containers			
	SCHG-201,221 Survey of General Chemistry/Lab		4	
	SCHG-202,222 Survey of Organic Chemistry/Lab	4	2	
	SPSP-341 Foundations of Scientific Thinking			4
	SMAM-309 Elementary Statistics			
	PPRT-200 Introduction to Printing	3	4	
	BBUA-301 Financial Accounting			8
	"Liberal Arts (Foundation)	4	4	
	tPhyslcal Education	0	0	0
3	IPKG-401 Career Seminar	34	1	
	IPKG-420 Technical Communication			
	IPKG-431 Packaging Production Systems			
	IPKG-432 Packaging for Distribution		4	
	IPKG-433 Packaging for Marketing			4
	IPKG-485 Shock and Vibration			3
	BBUB-430 Organizational Behavior			4
	BBUM-463 Principles of Marketing	4	4	
	GLLC-501 Effective Speaking			4
	"Liberal Arts (Concentration)	4	4	
	Free Elective			
4	IPKG-462 Packaging Regulations	4	3	4
	Professional (Packaging) Electives			
	"Liberal Arts (Electives and Senior Seminar)	64	4	4
	Management Electives			4
	Free Electives	4	4	4

'Seepage 116 for Liberal Arts requirements. tSee page 200 for policy on Physical Education.

Yr.	BS DEGREE IN PACKAGING SCIENCE - PRINTING OPTION	Otr. Credit Hours		
		FALL	WTR.	SPG.
	IPKG-201 Principles of Packaging	3	3	33
	IPKG-301 Engineering Design Graphics	4		
	IPGK-311 Packaging Materials I			
	IPKG-312 Packaging Materials II			
	SMAM-225 Algebra for Management Science		4	4
	SMAM-226 Calculus for Management Science			
1	SMAM-309 Elementary Statistics	4		
	SPSP-211,271 College Physics/Lab		0	2
	SPSP-341 Foundations of Scientific Thinking			
	"Liberal Arts (Foundation)	4		4
	tPhysical Education	0		0
2	IPKG-313 Methods of Evaluation	3	4	4
	IPGK-321 Rigid Containers			
	IPKG-322 Flexible Containers			
	IPKG-341 Computer Applications	4	3	
	IPKG-420 Technical Communication	4		
	SCHG-201,221 Survey of General Chemistry/Lab		4	3
	SCHG-202,222 Survey of Organic Chemistry/Lab			
	PPRT-200 Introduction to Printing	3	3	
	PPRT-213 Principles of Copy Preparation			
	PPRT-239 Gravure Process			
	PPRT-342 Properties of Paper			3
	"Liberal Arts (Foundation)	4	4	4
	tPhysical Education	0	0	0
3	IPKG-401 Career Seminar	4	1	4
	IPKG-431 Packaging Production Systems		4	
	IPKG-432 Packaging for Distributionn			
	IPKG-433 Packaging for Marketing		3	
	IPKG-462 Packaging Regulations			
	IPKG-485 Principles of Shock and Vibration	3		3
	PPRT-240 Lithographic Process		4	3
	PPRT-328 Flexographic Process	4		
	BBUM-430 Organizational Behavior			4
	GSSE-301,302 Principles of Economics I, II			
	"Liberal Arts (Concentration)	4		
4	Professional (Packaging) Electives	4	4	4
	GLLC-501 Effective Speaking			
	PPRT-372 Image Capture and Conversion			3
	"Liberal Arts (Electives and Senior Seminar)	4	6	4
	Free Electives			4

-Seepage 116forUbenlArts requirements.
tSee page 200 for policy on Physical Education.

Department of Military Science and Reserve Officers' Training Corps (ROTC)

LTC Frederick F. Lash, Professor of Military Science

Overview

RIT offers full-time students from all degree fields the opportunity to enroll in our program. Participation in the program includes classroom instruction, laboratory practicums, physical training, and some weekend field training exercises. RIT students who join the Reserve Officers' Training Corps become cadets in a dynamic and challenging aspect of life at RIT. The title of cadet carries with it the potential for many rewards and responsibilities as members of the college community.

Annual social events include a formal dinner in the Fall Quarter and a Spring Quarter Military Ball. Army cadets also assist in the fall student orientation, demonstrations of military training throughout the academic year, special events geared towards fostering community relations and fund raising for worthy charities. Army ROTC extracurricular activities include adventure training, pistol team, rappelling, cross-country skiing, rafting exercises, survival training, and numerous field events throughout the year.

The Department of Military Science and Army ROTC offers a unique educational experience. A student is exposed to a curriculum that cannot be obtained through any other source. Modern weapon systems, military tactics and leadership experiences are just a part of the total program. Through this program a college graduate acquires the knowledge and skills to lead the men and women of today's modern Army.

The program is divided into two parts: The Basic Course (Freshman/ Sophomore years) and the Advanced Course (Junior/Senior years).

Financial benefits

A subsistence allowance of $\$ 100$ per month is provided, tax free, directly to each contracted ROTC cadet throughout the school year. This, plus pay for Advanced Camp attendance, amounts to over $\$ 2,500$ for the last two years of college.

RIT offers room scholarships and tuition supplement to cadets who are recipients of 4 year, $31 / 2$ year, and 3 year ROTC scholarships received through the Four-year Scholarship Program. In order to receive RIT's room scholarship and tuition supplement, students must file a Financial Aid Form by March 1. Contact the Financial Aid Office for further information.

Scholarship opportunities

Our program offers each student the opportunity to compete for two- and three-year scholarships during the freshman and sophomore years. These scholarships are awarded based on academic strength and leadership potential. Both enrolled cadets and nonenrolled students may apply for this program.

Cooperative education (Co-op)

Engineering and science students enrolled in ROTC also are eligible to apply for co-op positions through the Department of the Army Scientific and Engineering Co-op Program at a wide variety of installations around the country. The ROTC curriculum is very compatible with RIT's co-op program.

Basic course

The Basic Course is available throughout the freshman and sophomore years. During this period, non-scholarship students have absolutely no military service obligation. The curriculum is flexible and is designed to develop selfconfidence, to test responsibility and to develop leadership abilities. Freshmen and sophomores participate approximately two hours per week. A student may sample ROTC at any time within his or her first two years. Cadets enrolled in military science study basic military organization, tactics and history. This complete military experience qualifies a cadet for enrollment in the Advanced Course, scholarships, airborne training, summer employment, air assault training, and many other opportunities to gain valuable on-thejob experiences.

Summer camp program

A two-year program is offered to all qualified students with two academic years remaining who did not previously participate in the Basic Course. Students in this program attend a six-week Basic Summer Camp between their sophomore and junior years. Upon successful completion of the basic camp, the student may be enrolled in the Advanced Course for the last two years. It should be noted that two-year scholarships are available on a competitive basis during the Basic Camp. Interested students should begin processing applications for this program early in the Winter Quarter of their sophomore year.

Advanced course

The Advanced Course is conducted during the last two years (three years if you co-op) of college and includes attendance at the ROTC Advanced Camp, normally between your junior and senior years. Military Science Department classes during the Advanced Course serve as a prelude to subsequent instruction at specific Army Service Schools. Advanced Course ROTC cadets perform in leadership positions with a cadet company and may participate in and/or lead various training activities.

The program includes an annual trip to Fort Drum, N.Y. Usually scheduled during April, this exercise is conducted in preparation for the Advanced Camp. The Advanced Camp at Fort Bragg, N.C. trains and evaluates thousands of cadets annually from all schools on the Eastern Seaboard of the United States. The six-week Advanced Camp gives each participant an opportunity to plan, organize and lead one's peers through a vigorous and challenging training program. Attendees are paid travel expenses and a salary for this intellectually and physically rewarding experience.

Yr.	DEPARTMENT OF MILITARY SCIENCE FOUR-YEAR PROGRAM	Qtr. Credit Hours		
$\begin{gathered} 1 \\ \text { MS } \\ \text { I } \end{gathered}$		FALL	WTR.	SPG.
	-MMSM-201 Introduction to Military Science	2	2	2
	tMMSM-202 Applied Military Dynamics			
	tMMSM-203 Military Heritage			
$\begin{gathered} 2 \\ \text { MS } \\ \text { II } \end{gathered}$	-MMSM-301 Military Geography	2	2	2
	"MMSM-302 Psychology and Leadership			
	'MMSM-303 The Military and American Society			
$\begin{gathered} 3 \\ \text { MS } \\ \text { III } \end{gathered}$	-MMSM-401 Military Tactics	3	3	3
	-MMSM-402 Military Communications			
	-MMSM-403 Military Operations			
$\begin{gathered} 4 \\ \text { MS } \\ \text { IV } \end{gathered}$	-MMSM-501 Combined Arms Operations	3	3	32
	"MMSM-502 Military Administration and Logistic Management			
	'MMSM-503 Military Ethos			
	MMSM-510 Senior Seminar			

* A Leadership Lab, which is conducted on a weekly basis for one hour, is an integral part of each course offered throughout the year. Class 1, Lab 1 = Credit 2, orClass2, Lab 1 = Credit 3. \ddagger Completion meets physical education requirements.

Yr.	DEPARTMENT OF MILITARY SCIENCE TWO-YEAR PROGRAM BASIC CAMPIADV. PLACEMENT/SUMMER COMPRESSION	Qtr. Credit Hours		
		FALL	WTR.	SPG.
3	-MMSM-401 Military Tactics	3		
MS	-MMSM-402 Military Communications		3	
III	-MMSM-403 Military Operations			3
4	-MMSM-501 Combined Arms Operations	3		
MS	-MMSM-502 Military Administration and Logistic Management		3	
IV	-MMSM-503 Military Ethos			3
	MMSM-510 Senior Seminar	2		

* A Leadership Lab, which is conducted on a weekly basis for one hour, is an integral part of each course offered throughout the year. Class 1, Lab 1 = Credit 2, orClass2, Lab 1 = Credit 3.

After Advanced Camp, selected cadets have the opportunity to participate in the Cadet Troop Leader Training Program for an additional two or three weeks in Active Army units in leadership positions throughout the U.S. and overseas.

Airborne (parachute), Air Assault (helicopter) and Ranger Training also are available on a competitive basis to cadets in the upper division of ROTC. RIT cadets may earn their badges as parachutists, air assaultists, or rangers and become fully qualified to be assigned duties in these activites after commissioning.

Professional Military Education

In addition to the Military Science curriculum and the Fort Bragg Advanced Camp, each cadet must complete a course in the following designated fields of study.

1. Written Communication
2. Military History
3. Human Behavior
4. Computer Literacy
5. Math Reasoning
6. Foreign Language (scholarship cadets only)

After graduation

Today's ROTC graduates are working in commissioned officer positions that range from commanding units overseas to serving in National Guard and Army Reserve units throughout the United States.

Graduate school opportunities

Commissioned officers may have an opportunity to pursue graduate work in their chosen discipline. Normally the cost of a graduate degree or attendance at a professional school is at the individual's expense. Certain specialties may be paid for by the U.S. Army.

Technological enrichment program

 Students who plan to pursue graduate studies in high-technology areas can compete for a full graduate school scholarship through the Army in their senior year of college.
For additional information

For additional information about broadening your career options through Army ROTC, visit or call the Department of Military Science on the third floor of the George Eastman Building (475-2881 or -2882).

AFROTC-Air Force Reserve Officer Training Corps, Department of Aerospace Studies

Col. William (Bill) Savage
Professor of Aerospace Studies

Background

Air Force Reserve Officer Training Corps (AFROTC) opened at RIT in September 1985. Since 1947 AFROTC has afforded graduating college students an appointment as commissioned officers in the United States Air Force. There are three methods to obtain a commission as an officer in the Air Force: through the Air Force Academy, the Air Force Officer Training School, and our Air Force ROTC program. Participation in the ROTC program allows college students a firsthand view of the Air Force while attending the college of their choice. Activities are extremely varied and enriching, encompassing classroom instruction, leadership experiences, visits to Air Force bases, summer field training, flight instruction for those qualified, physical fitness, and more.

Characteristics

The Department of Aerospace Studies at RIT has designed an approach to its curriculum totally compatible with the normal four-year curriculum in some RIT colleges, and additionally, compatible with the five-year cooperative education program in existence at a larger number of colleges within the Institute. RIT and the Department of Aerospace Studies believe the program will develop very well-rounded individuals fully prepared to enter into their chosen career fields and to become future leaders in our society.

Four-year program

This program has three distinct parts: the General Military Course (GMC), the Professional Officer Course (POC), and the Summer Field Training.

Cadets normally enter the four-year program directly from high school. The GMC is taken by freshman and sophomore students. Cadets entering this curriculum incur no military commitment. Air Doctrine, Air Force Mission Structure, Organization, the Nature of Conflict, Air Power Development, National Security, the Evolution of Air Power and more are studied. Successful completion of the GMC requirements and the four-week field training exercise qualifies a student to apply for entry into the POC.

The POC is the advanced Aerospace Studies curriculum and is conducted during the junior and senior year at RIT. The curriculum prepares cadets for entry into the Air Force as commissioned second lieutenants. Fundamentals of leadership and management, ethics, staffing, planning, coordinating, the need for national security, policy direction and implementation, and actual leadership case studies are examined.
Additionally, in both GMC and POC curriculum, several instructional blocks on written and oral communicative skills are taught.

Every cadet must complete a Summer Field Training encampment, normally between the sophomore and junior year. In the four-year program, the summer exercise is four weeks in duration. The curriculum and activities at summer field training educate and evaluate a student's leadership potential and qualify the cadet for entry into the POC. The training program includes leadership evaluation exercises, orientation, survival training, officer training, confidence courses, aircraft and aircrew orientation, physical training and more.

Leadership and management experience is gained in the Air Force ROTC curriculum through a series of Leadership Laboratories. The labs are conducted in the Fall, Winter and Spring quarters throughout a cadet's four- or five-year college curriculum. The lab is managed by the cadet corps staff with a detachment officer overseeing all activities. Practical command and staff leadership experience, drill and ceremonies, customs and courtesies and career decision making are all part of the Leadership Laboratory experience.
The four-year program is very comprehensive. Spirited and well-rounded Air Force officers are the result.

Two-year program

This program is specifically designed to allow college students to join the cadet corps with as little as two years remaining at college. The General Military Course (GMC) material and leadership laboratories are obviously not taught, but instead cadets receive all GMC curriculum and laboratory experience in an extended six-week summer field training exercise, usually conducted between their sophomore and junior
years. Successful completion of the summer camp qualifies cadets for entry into the Professional Officer Course, referenced above in the four-year program. Cadets then complete their remaining AFROTC requirements as members of the Professional Officer Corps.

Other programs

Several other programs and activities are afforded cadets in both the two- and four-year Air Force ROTC programs. They are offered to highly competitive cadets to further develop the officer "whole person" concept. These programs include: airborne training with the U.S. Army, flight instruction, Advanced Training Program (an on-the-job training program at selected Air Force bases), base visitations, a Light Aircraft Orientation Program, and Arnold Air Society.

Physical education graduation requirements

Physical education graduation requirements can be satisfied by completion of the Department of Aerospace Studies Leadership Laboratories. Students must be enrolled in Air Force ROTC (the two- or four-year program) to enroll in the leadership laboratories.

Qualifications and selection procedure

To become a member of the Air Force ROTC team requires many different and varied qualifications. Some are very simply met, others are more complex, involving Air Force Officer Qualifying Testing, physicals, interviews and selection boards. Please contact the Air Force ROTC office for complete details and learn how you may qualify. The phone number is (716) 475-5196.

Scholarships

Air Force ROTC also offers a variety of scholarships to qualified students in many academic disciplines. Four-year, three and one-half year, three-year, two and one-half year, and two-year scholarships are available in technical, nontechnical, pilot, navigator and missile career fields. The needs of the Air Force dictate which scholarships will be offered on a yearly basis. Competition is very keen. Applications for a fouryear scholarship for a high school student must be completed very early in the senior year of high school. Any student awarded a scholarship is entitled to numerous benefits. Most scholarships pay the majority of tuition and textbook expenses. Also, contract cadets receive $\$ 100$ per month non-taxable allowance during the school year.

Air Force ROTC specialized programs

The Air Force ROTC program also has several specialized career programs, pre-health being the most widely known. In addition a number of graduate study programs are available. Certain specialties may be paid in full; the requirements are extremely varied and contact with the Air Force ROTC detachment at RIT is imperative.

Financial assistance

Every scholarship cadet and all POC cadets receive a $\$ 100$ monthly allowance. RIT offers room scholarships and tuition supplement to cadets who are recipients of 4 year, $31 / 2$ year and 3 year ROTC scholarships received through the Four-year Scholarship Program. In order to receive RIT's room scholarship and tuition supplement, students must file a Financial Aid Form by March 1. Contact the Financial Aid Office for further information. In addition, during field training, transportation is paid, room and board provided and salary of $\$ 16$ per day is provided. Other student loan programs are available to cadets from both the Air Force and RIT.

Yr.	AFROTC - DEPARTMENT OF AEROSPACE STUDIES	Qtr. Credit Hours		
		FALL	WTR.	SPG.
	IMAF-210,211,212 Air Force Today I, II, III	1	1	1
	IMAF-201,202,203 Leadership Lab I	1	1	1
	GLAA-201,202,203 Hist, of Air Power I, II, III	1		1
	IMAF-301,302,303 Leadership Lab II	1	1	1
3	BBUB-310,311 Air Force Ldr. \& Mgmt. I, II	5		5
	IMAF-401,402,403 Leadership Lab III	1	1	1
5	GSSM-401,402 Nat'I Security Forces I, II	5		4
	IMAF-404,405,406 Leadership Lab IV	1	1	1

-NOTE:

1. This is a typical flow. Certain degree programs may desire the Air Force Junior- and Senior-Level courses to be taken in any one combination listed below.
Years3and5, Years4andS, or as printed in years 3 and 4.
2. While students are enrolled at RIT but not taking Air Force Junior- or Senior-Level courses, they must be enrolled in a Leadership Lab.
3. Although the number of credit hours seem less than required, the contact hours actually meet or exceed those required by AFROTC/Hdqtrs.

Commissioning

The commissioning of cadets as second lieutenants takes place close to graduation day ceremonies. Prior to commissioning, each cadet must perform the following:

1. Complete all degree requirements
2. Complete the aerospace studies curriculum
3. Complete the applicable summer field training
4. Complete one quarter of English composition (scholarship recipients only)
5. Complete one quarter of college mathematics
6. Complete one year of a foreign language (scholarship recipients only)

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions Office, (716) 475-6631.

For more AFROTC information

 Call:Department of Aerospace Studies Rochester Institute of Technology (716) 475-5196

Or Visit:
Department of Aerospace Studies
Rochester Institute of Technology
George Eastman Memorial Building
3rd Floor, Room 3211
Rochester, N.Y. 14623-0887

College of Business

Richard N. Rosett, Dean

The College of Business offers programs in accounting, finance, information systems, international business, marketing, management, manufacturing management, and photographic marketing management. Within these majors, several options for further specialization are possible.

The environment which graduates of the College of Business will enter is both complex and rapidly changing. A well-educated and prepared manager must have a broad foundation of knowledge not only in business but also in the social sciences, humanities and sciences in order to understand and act intelligently in this business environment. In addition, specialization is necessary if one hopes to make immediate contributions to an organization following graduation.

Plan of education

To achieve the educational aims described above, the College of Business has prepared a program which has four components: the liberal arts, the business core, the major and the cooperative work experience.

The liberal arts component of the business student's program is found in 16 courses (nearly one third of the total program) in the humanities, social sciences and sciences. Within this component, the student is expected to display proficiency in both oral and written forms of communication, and choose a humanities or social science concentration. The capstone course of the liberal arts program is a senior seminar in which a subject is explored in depth.

The business core component, described later in the bulletin, is comprised of a variety of courses in economics, business, mathematics, statistics and computer science. These courses, required of every student regardless of major, provide the fundamental knowledge and analytical skills necessary for successful performance in the pursuit of advanced study in a major. They also provide the background and perspective for consideration of career alternatives.
The third component, the major, provides an opportunity for the student to concentrate study in a specific career field in business. Majors offered by the college are as follows:

Accounting

Public Accounting Option
General Accounting Option

Finance

Information Systems*

International Business Dual Major*

Management

General Management Option
Entrepreneurship Option
Manufacturing Management

Marketing

Photographic Marketing

Management*
'Majors offered daytime only
By building on the liberal arts and business core components, the major will provide mastery of marketable skills which are conceptually grounded in the knowledge of larger organizational and societal issues and perspectives.

The final component, cooperative work experience, gives the student a chance to apply and question what has been learned in the classroom. These hands-on, paid work opportunities are planned for the student's last two years so that he or she will have sufficient educational background to contribute to the workplace.

The rigorous, challenging program described above is designed to provide a unique level of competence as well as to lay the foundation for continuous intellectual and career growth.

Cooperative education

Cooperative employment is an integral part of the program in the College of Business. Students obtain practical work experience in an area related to their chosen field of interest. This work experience is part of the student's career exploration and provides not only practical experience which can be related to course work, but also an opportunity to observe and perform work directly related to the student's major. This experience should help the student develop a greater insight into his or her chosen field and provide a record of practical experience which may increase the student's opportunities for placement and more rapid career advancement upon graduation.

All College of Business students are required to complete two successful cooperative work experiences. These "work blocks" take place following the completion of the sophomore year. While RIT and the College of Business cannot guarantee anyone cooperative employment, RIT's Office of Cooperative Education and Placement is available to assist students in their job search efforts.

Advising

The College of Business is committed to providing advising services throughout a student's academic program. In its Student Services Office, all students are assured administrative support to effectively deal with registration, records and scheduling. In addition, the administrative staff is prepared to provide students with information about other support areas within RIT such as career and personal counseling. Students are also assigned an individual faculty advisor in their major area of study once the major is declared by the student. Faculty advisors are an integral part of the student's advising network and are available for questions about courses and scheduling, as well as for cooperative education assessment and placement advising.

Transfer programs

The College of Business has, for many years, integrated transfer students into its baccalaureate degree programs. Typically, students who have earned an associate degree in a business program prior to enrollment at RIT may normally expect to complete the requirements for the BS degree in two years, which includes six academic quarters and two required quarters of cooper ative employment experience.

In every instance, it is the policy of the college to recognize as fully as possible the past academic accomplishments of each student.

Part-time studies

Evening classes are offered by the College of Business for students who wish to pursue a baccalaureate degree in the areas of accounting, marketing, finance, management, and manufacturing management. These upper-level programs are designed for students who have earned an associate degree. RIT's College of Continuing Education offers lower-division business courses for those students who are just beginning their college studies and who are interested in pursuing an associate degree.

Upon successful completion of the associate degree, students may transfer to the College of Business.

Students who wish to pursue parttime studies during the day have the option of selecting one of the following baccalaureate degree programs: accounting, finance, information systems, international business, marketing, management, manufacturing management, and photographic marketing management.

Graduation requirements

The minimum academic requirements in the College of Business for the bachelor of science degree are: 1) minimum of 180 quarter credit hours, 2) earned minimum grade point average of 2.0 in the departmentally approved program, 3) completion of required number of supervised cooperative education blocks for the program, and 4) satisfactory completion of college writing competency requirement.

Resources

The College of Business is housed in the Max Lowenthal Memorial Building. In addition to modern classrooms, facilities include time-sharing terminals on line with RIT's extensive computer system and excellent software support. The college also has two labs with IBM personal computers available for student use.

Business students especially benefit from RIT's library facility with its extensive collection of business texts, periodicals and references. One of the most advanced libraries in the country, Wallace Memorial Library is a multimedia resource center featuring a computerized on-line catalog with remote terminal access.

Accreditation

RIT is accredited by the nationally recognized Middle States Association of Colleges and Schools. Additionally, the College of Business is accredited by the American Assembly of Collegiate Schools of Business (AACSB), a professional accreditation held by approximately 265 of the 1,200 undergraduate business programs in the United States.

Professional affiliations

The public accounting curriculum of the College of Business is registered with the New York State Education Department, and graduates meet the educational requirements for candidacy for the Certified Public Accountant (CPA) examination.

The college's Center for Production and Inventory Management is affiliated with the American Production and Inventory Control Society (APICS) and operates an international information service for APICS.

Memberships in professional organizations contribute to the quality of the programs in the College of Business.

Graduate programs

The College of Business offers a master's degree program in business administration on a part-time and fulltime basis.

The program is professional in nature and prepares the student in all aspects of business management as well as offering a concentration in a field of specialization. Undergraduate business students may want to consider the $4: 1$ program, which allows completion of both a BS and an MBA degree in five years. Specific details are contained in the Graduate Bulletin, available from the Admissions Office.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions office.

Admission at a Glance: College of Business Proems

> General information on RIT's admission requirements, procedures and services is included in detail on pages $176-177$ of this bulletin.

The College of Business offers several programs of study, referred to as majors, and often provides options within. This allows a student to focus on a specific area of interest. A more detailed description of each major is provided in subsequent pages.

Accounting-The accounting options provide career opportunities in public accounting as well as in accounting departments in corporate organizations. Students majoring in accounting may choose the public accounting option or the general accounting option. Graduates of the public accounting option meet the educational requirements for the CPA examination in New York State. Students interested in the certification in management accounting (CMA) are encouraged to follow the general accounting option.

Finance-Students majoring in finance may choose careers in financial management or security analysis. The finance major will prepare students for entry-level financial management positions in business organizations and entry-level management positions in financial institutions.

Management-Students majoring in management may choose either the general management or entrepreneurship option. Both areas have been developed to prepare students for positions in the field of management consistent with their personal cbaracteristics and career goals.

Marketing-The marketing major is designed to enable students to develop a career foundation based on high degrees of personal and marketing management competencies. Since a great variety of employment opportunities in consumer and industrial organizations exist, the program is reasonably flexible.

Information Systems-This program prepares students for career opportunities in the area of computer information systems. Centered in the College of Business, this program responds to industry's demand for individuals wellversed both in computer technology and major business functions. RIT provides the education needed for a unique career, which spans applications programming, systems analysis and design, and the management of corporate information systems.

International Business-This dual major offers a second field of study in marketing, management or finance. The program is designed as an added opportunity for students who may want to enhance their basic professional career preparation in marketing, management or finance with international business competency. The education acquired through this dual major, coupled with the growing interest of American business in global markets, will provide students with a number of career options.

Manufacturing Management—This specialized program prepares students for entry-level positions in manufacture ing management. Because its curriculum is based partly on the needs of professionals in the fields of production and inventory management, purchasing management and quality assurance, highly motivated students may elect to pursue professional certification by organizations such as APICS, NAPM, or ASQC.

Photographic Marketing Manage-ment-This program is designed to provide students with a thorough knowledge of the photographic process and a solid background in business administration. A combination of work in these two disciplines prepares the student for a management-level career in the photographic business.

Freshman admission requirements Required high school subjects for all programs in the College of Business are:

Elementary Algebra
Intermediate Algebra
1 year any science
4 years of English (except where state requirements differ)

Desirable elective subjects:
Additional mathematics and science
Transfer admission requirements Every effort is made to recognize the past academic work of each transfer student. The College of Business has agreements with several two-year schools designed to facilitate the transfer process and, in most cases, assure junior status for transfer students.

The College of Business Core Curriculum

All students in the College of Business are required to take the business core courses described below (and later displayed in the sample four-year programs). These courses provide the skills specific to functional competencies in accounting, finance, marketing, and production management, and serve as a foundation for advanced study in a specific area of interest.

Business core courses
Career Seminar
Algebra for Management Science
Calculus for Management Science
Survey of Computer Science
Economics I (Macro)
Economics II (Micro)
Financial Accounting
Managerial Accounting
Legal Environment of Business
Introduction to Data Analysis
Management Science
Organizational Behavior
Corporate Finance
Information Systems
Principles of Marketing
Operations Management
Business Environment
Strategy and Policy

Additional requirements
2 contemporary science courses
7 lower-division liberal arts courses
3 upper-division liberal arts electives
3 upper-division liberal arts concentration courses
Senior Seminar
6 quarters physical education
2 quarters cooperative education

Department of Accounting and Finance

Accounting Major

The accounting major provides fundamental theory and practice in the required accounting core. Beyond this core, students choose an option which best fits their career interests.

Students wishing to become certified public accountants must choose the public accounting option and complete each course prescribed in this program. This program is registered by the New York State Board for Public Accountancy, which means that the prescribed course work satisfies the state's CPA examination educational requirements. Candidates must have earned at least a "C" grade point average in their accounting courses to be admitted to the CPA exam.

The general accounting option allows more flexibility in choice of courses. This flexibility has been designed to permit students to tailor their programs to meet the diversity of industrial, commercial and municipal opportunities for accounting graduates. Of particular interest to both students and employers in the current environment is the opportunity to take advanced courses in computer and information sciences. Students should consult with an advisor before choosing electives in this option.

'See page 116 for Liberal Arts requirements.
\ddagger See page 200 for policy on Physical Education
"NOTE: Students are expected to complete co-op requirement during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.

Accounting Major Curriculum Chart

Finance Major

Finance Major

The finance major will prepare students for financial management positions in financial, commercial, industrial, and governmental organizations. Students are taught the principles of financial decision making and given an understanding of the economic, legal, and financial environment in which they must operate.

Finance major graduates would pursue management positions in commercial, industrial, or governmental organizations. The finance student interested in security analysis usually will find positions in asset and securities management with financial institutions such as banks, brokerage houses, insurance companies, or real estate firms.

Yr.	FINANCE-TYPICAL SCHEDULE	Qtr. Credit Hours			
1	0106-330 Introduction to Data Analysis	FALL	WTR.	SPG.	SMR
		4	4	4	
	0511-301,302 Principles of Economics I \& II				
	0602-200 Survey of Computer Science	4	4		
	1016-225,226AIg. for Mgmt. Sci; Calc. for Mgmt. Sci. . . 0102-312 Career Seminar		$\begin{aligned} & 4 \\ & 2 \end{aligned}$	4	
	Contemporary Science	4	4		
	"Liberal Arts (lower division core)	4		8	
	tPhysical Education	0	0	0	
2	0101-301,302 Financial and Managerial Accounting . . 0101-319 Legal Environment of Business	4	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	
	0102-430 Organizational Behavior				
	0105-463 Principles of Marketing				
	0106-334 Management Science	48	4	8	
	"Liberal Arts (lower division core)				
	"Liberal Arts (upper div. concentration \& elect.)		4		
	Free Elective			0	
	tPhysical Education	0	0		
	Completion of College Writing Competency Requirement				
3	0103-405 Intermediate Microeconomics	4	4	4	$\begin{aligned} & \text { C } \\ & 0 \\ & 0 \\ & \mathbf{p . .} \end{aligned}$
	0103-406 Intermediate Macroeconomics				
	0104-441 Corporate Finance	4	4		
	0104-445 Advanced Corporate Finance	4			
	0104-507 Security Analysis				
	0104-525 Theory of Finance				
	0106-401 Operations Management		4		
	"Liberal Arts (upper div. concentration or elect.)			48	
	Free Electives	4			
4	0102-507 Business Environment	4	COOp..	4	
	0102-551 Strategy and Policy				
	0104-510 Financial Institutions and Markets			4	
	0106-505 Information Systems	4		8	
	"Liberal Arts (upper div. concentration or elect.)	4	p..		
	"Liberal Arts (Senior Seminar)	2			
	Free Elective	4			

'See page 116 for Liberal Arts requirements.
fSee page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirement during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41

Department of Decision Sciences

Information systems major

The information systems major will prepare students for careers involving the development and management of information systems. The curriculum provides students with a thorough understanding of data processing fundamentals, including the ability to write properly documented programs. Students are introduced to the tools available for the analysis, design and implementation of computerbased and manual information systems. As a result, they are able to design practical, cost-effective information systems that will satisfy an organization's needs. Major career focuses for graduates of this program include applications proramming, systems analysis, and information systems management.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Yr. \& INFORMATION SYSTEMS - TYPICAL SCHEDULE \& \multicolumn{4}{|c|}{Qtr. Credit Hour*}

\hline \multirow{10}{*}{1} \& \& FALL \& WTR. \& SPG. \& SMR

\hline \& 0602-200 Survey of Computer Science \& \multirow[t]{5}{*}{4} \& \multirow{3}{*}{4} \& \multirow{5}{*}{4} \&

\hline \& 0602-208 Introduction to Programming \& \& \& \&

\hline \& 0602-210 Program Design and Validation \& \& \& \&

\hline \& 0511-301,302 Principles of Economics I \& II \& \& \multirow[t]{2}{*}{4} \& \&

\hline \& 0102-312CareerSeminar \& \& \& \&

\hline \& 1016-225,226 Alg. for Mgmt. Sci.; Calc. for Mgmt. Sci \& \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{4} \& \multirow[b]{2}{*}{4} \&

\hline \& Contemporary Science \& \& \& \&

\hline \& "Liberal Arts (lower division) \& \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{4} \& 4 \&

\hline \& \wedge Physical Education \& \& \& 0 \&

\hline \multirow{10}{*}{2} \& 0602-300 Business Applications Using Cobol \& \multirow[t]{3}{*}{4} \& \multirow[b]{2}{*}{4} \& \multirow{4}{*}{4} \&

\hline \& 0602-303 Advanced Business Applications \& \& \& \&

\hline \& 0106-363 Systems Analysis \& Design I \& \& \multirow{3}{*}{4} \& \&

\hline \& 0101-301,302 Financial \& Managerial Accounting \& \multirow[t]{3}{*}{4} \& \& \&

\hline \& 0101-319 Legal Environment of Business \& \& \& \multirow[t]{3}{*}{4} \&

\hline \& 0106-334 Management Science \& \& \multirow[t]{2}{*}{4} \& \&

\hline \& 0106-330 Introduction to Data Analysis \& 4 \& \& \&

\hline \& "Liberal Arts (lower division core) \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{4
0} \& \multirow[t]{3}{*}{8} \&

\hline \& IPhysical Education \& \& \& \&

\hline \& Completion of College Writing Competency Requirement \& \& \& \&

\hline \multirow{8}{*}{3} \& 0602-483 Applied Database Management \& \multirow[t]{8}{*}{4
4

4
4} \& \multirow{8}{*}{4
8} \& \multirow{6}{*}{4

4} \& \multirow{8}{*}{$$
\begin{aligned}
& \mathrm{C} \\
& 0 \\
& 0 \\
& \mathrm{P}^{\prime \prime}
\end{aligned}
$$}

\hline \& 0106-464 Systems Analysis \& Design II \& \& \& \&

\hline \& 0102-430 Organizational Behavior \& \& \& \&

\hline \& 0104-441 Corporate Finance \& \& \& \&

\hline \& 0105-463 Principles of Marketing \& \& \& \&

\hline \& 0106-401 Operations Management \& \& \& \&

\hline \& "Liberal Arts (upper div. concentration or elect.) \& \& \& 4 \&

\hline \& Free Electives \& \& \& 4 \&

\hline \multirow{8}{*}{4} \& 0106-540 Microcomputer Hardware \& Applications \& \multirow{8}{*}{$$
\begin{aligned}
& \text { C } \\
& 0 \\
& 0 \\
& \text { p.. }
\end{aligned}
$$} \& 4 \& \multirow{3}{*}{4} \&

\hline \& 0106-553 Information Systems Management \& \& \multirow{3}{*}{4} \& \&

\hline \& Information Systems Elective \& \& \& \&

\hline \& 0102-507 Business Environment \& \& \& \multirow[t]{2}{*}{4} \&

\hline \& 0102-551 Strategy and Policy \& \& 4 \& \&

\hline \& "Liberal Arts (upper div. concentration or elect.) \& \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{4
4} \&

\hline \& "Liberal Arts (Senior Seminar) \& \& \& \&

\hline \& Free Elective \& \& \& \&

\hline
\end{tabular}

'Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.

Information Systems Major Curriculum Chart

Manufacturing Management

The manufacturing management program is designed to give students an integrated view of the skills needed to manage manufacturing and materials in today's competitive, high-technology environment. Graduates of this program will understand how materials and manufacturing expertise contributes to the strategic well-being of a firm. They will understand and be able to use the basic techniques and systems for materials and operations planning and control, purchasing management, quality assurance (including statistical process control) and quality and productivity improvement. Highly motivated students may elect to pursue professional certification by APICS, NAPM or ASQC.

Center for Production and Inventory Management

George A. Johnson, Director
The Center for Production and Inventory Management (CPIM) is devoted to applied research, instruction and professional service in support of students and practitioners. The center operates an international information service for APICS, authors a monthly professional help column, called "Dear APICS," which appears nationwide in P\&IM Review magazine, and prepares the APICS Bibliography. The CPIM is a center of activity for faculty, students and practitioners seeking to learn more about the profession of production and inventory management and about how to solve day-to-day problems.

Yr.	MANUFACTURING MANAGEMENT TYPICAL SCHEDULE	Qtr. Credit Hours			
1		FALL	WTR.	SPG.	SMR
	0106-330 Introduction to Data Analysis	44	4	4	
	0511-301,302 Principles of Economics I \& II				
	0602-200 Survey of Computer Science		$\begin{aligned} & 4 \\ & 4 \\ & 2 \end{aligned}$		
	1016-225,226 Alg. for Mgmt. Sci.; Calc. for Mgmt. Sci. . . 0102-312 Career Seminar				
	Contemporary Science	4	4	4	
	"Liberal Arts (lower division)	4		8	
	tPhysical Education	0	0	0	
2	0101-301,302 Financial \& Managerial Accounting 0101-319 Legal Environment of Business	4	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	
	0104-441 Corporate Finance				
	0105-463 Principles of Marketing				
	0106-334 Management Science	4			
	0106-401 Operations Management			4	
	"Liberal Arts (upper div. concentration or elect.)	8	4	4	
	"Liberal Arts (lower division core)		40	0	
	tPhysical Education				
	Completion of College Writing Competency Requirement				
	0106-406 Quality Control \& Improvement	44	4	4	$\begin{aligned} & \text { C } \\ & 0 \\ & 0 \\ & \mathbf{p} . . \end{aligned}$
	0106-412 Inventory Management \& Materials Ctrl				
	0106-408 Materials \& Operations Planning I				
	0106-409 Materials \& Operations Planning II		4	4	
3	0106-415 Purchasing Management				
	0106-444 Manufacturing Strategy \& Tactics				
	"Liberal Arts (upper div. concentration or elect.)		4	4	
	Free Electives	4		4	
	0102-430 Organizational Behavior	4	4		
4	0102-507 Business Environment	$\begin{aligned} & \mathbf{C} \\ & 0 \\ & 0 \\ & \mathbf{p} . . \end{aligned}$	4	4	
	0102-551 Strategy and Policy				
	0106-505 Information Systems			4	
	"Liberal Arts (upper div. concentration or elect.)		4	4	
	"Liberal Arts (Senior Seminar)				
	Free Electives		8	4	

-See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41. † state approval pending title change from Manufacturing \& Materials Management to Manufacturing Management.

Manufacturing Management Major

Department of Management and Marketing

Management major

The management major is designed for students who wish to pursue management positions in a business organization. Careers may develop in areas as diverse as sales or production or various levels of management, including the potential to rise to the executive level.

The two options in this major are general management and entrepreneurship. The general management option is designed for students interested in working in medium- to large-sized organizations, while the entrepreneurship option specializes in entrepreneurial or stable small business organizations.

Yr.	MANAGEMENT MAJOR - TYPICAL SCHEDULE	Qtr. Credit Hours			
1	0106-330 Introduction to Data Analysis	FALL	WTR.	SPG.	SMR
		4	4	4	
	0511-301,302 Principles of Economics I \& .ll.				
	0602-200 Survey of Computer Science		4		
	1016-225,226 Alg. for Mgmt. Sci.; Calc. for Mgmt.Sci. . . 0102-312 Career Seminar	4	4 2		
	Contemporary Science	4		4	
	"Liberal Arts (lower division)	4	4	8	
	tPhysical Education	0	0	0	
2	0101-319Legal Environment of Business	4	4	4	
	0101-301,302 Financial \& Managerial Accounting 0102-430 Organizational Behavior				
	0105-463 Principles of Marketing				
	0106-334 Management Science	4	4		
	"Liberal Arts (lower division core)			4	
	"Liberal Arts (upper div. concentration or elect.)	4	40	4	
	Free Elective			0	
	tPhysical Education	0			
	Completion of College Writing Competency Requirement				
3	0102-455 Human Resources Management	4444	8	8	$\begin{aligned} & \mathrm{C} \\ & \mathrm{o} \\ & 0 \\ & \mathrm{p}^{* *} \end{aligned}$
	0104-441 Corporate Finance				
	0106-401 Operations Management				
	Major Electives				
	Free Electives				
4	0102-507 Business Environment	4824	$\begin{aligned} & \mathrm{C} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{P} \end{aligned}$	448	
	0102-551 Strategy and Policy				
	0106-505 Information Systems				
	"Liberal Arts (upper div. concentration or elect.)				
	"Liberal Arts (Senior Seminar)				
	Free Elective				

"Seepage 116for Liberal Arts requirements.
fSee page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.

Marketing major

The marketing major prepares students for entry-level marketing management positions. As a marketing major, students acquire knowledge of markets, marketing and consumer behavior. Students acquire this knowledge through a combination of academic education and cooperative field education. This combination provides an understanding of problems related to a number of marketing areas: e.g., advertising, sales management, retailing, marketing research and product planning. *
For the student interested in a business career with an objective to explore, experience, and experiment, the marketing major is an ideal option. With a marketing background, the student will find a wide variety of employment opportunities which center on customer understanding and analysis, the major focus of any business. To develop this focus, the marketing curriculum provides an understanding of business, in general, and specific marketing operations with emphasis on customer motivation and business problem solving.

- Those interested in direct marketing may want to take the following additional courses offered by the College of Graphic Arts and Photography and the Marketing Group: Introduction to Printing, "typography /, Layout \& Printing Designs, Copy Preparation, Materials \& Process of Photography (10-week Summer Course), Retail Accounting \& Merchandise Control.

-See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.

Marketing Major

Photographic marketing management major

The photographic marketing management major is a joint degree program offered by the College of Business and the School of Photographic Arts and Sciences. This program is designed to provide students with a thorough knowledge of the photographic process and a solid background in business administration and retail management. The combination of course work in $\mathrm{tf} \wedge$ ese two disciplines prepares students for management careers in the photographic industry. Opportunities for positions include those in customer service aspects of photofinishing and professional color laboratories, and management positions with the photographic manufacturers and photographic retailers.

'Seepage 116 for Liberal Arts requirements.
(See page 200 for policy on Physical Education.
"NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.

Photographic Marketing Management
Major Curriculum Chart

International business major

The international business major is offered by the College of Business in cooperation with the College of Liberal Arts. Designed to meet the growing interest of American business in global markets, the major in international business has an adjunct major in either finance, marketing, or management.

Students in international business develop the business and liberal arts foundations necessary to understand business, political and cultural diver sity. Proficiency in a foreign language is an integral part of the program. Students who have a language proficiency equivalent to College Level II may begin Level III in their first year. Language Levels I and II may be taken at RIT, if necessary, and program credits may exceed the required amount. The cooperative education feature for the international business student may be satisfied through foreign work experience, international experience within a domestic corporation, or study abroad. Designed for highly motivated students with strong academic credentials, the international business major has a total quarter credit hour requirement of 192.

Upon graduation, international business students are prepared to step into entry-level positions in several aspects of international trade. They can assume positions such as assistant international product managers, assistant exportimport managers, international financial analysts, sales representatives or regional analysts.

This language requirement may be completed at RIT in successive previous quarters, or in conjunction with the overseas experience which may last from six to nine months.
"Seepage 116 for Liberal Arts requirements.
fSae page ZOO for policy on Physical Education.

International Business Major

 Curriculum Chart

College of Continuing Education

A traditional college education is not always the answer. For the adult student-juggling work, family and social obligations-alternative ways to reach educational goals are a necessity.

The courses and programs offered by the College of Continuing Education (CCE) are tailored to the adult student who has been working for several years and is reaching for the next rung on the career ladder, is contemplating a career switch, or is re-entering the work force after some years away. Students can earn certificates, diplomas, and degrees.

The courses and programs are offered during the day, at night, on Saturdays, through Weekend College, and even via TeleCourses that students can take at home.
The CCE Academic Division offers numerous options in areas such as management, photography, technologies, and machine tool, as well as fine and applied arts, technical communication, business administration, computer science, general education, and emergency management. CCE offers diplomas, associate degrees, bachelor of science degrees and certificate programs in a number of professional areas, as well as the flexible interdisciplinary Applied Arts and Science Degrees at the diploma, associate and baccalaureate levels.

The Center for Quality and Applied Statistics (CQAS) offers a master of science degree in applied and mathematical statistics for part-time or full-time students. Summer study and co-op programs also are available. The center presents short courses and seminars through its "Quality and Productivity Series" for individuals, business and industry. Call 475-6129 for additional information.

The Career and Human Resource Development Department (CHRD) provides graduate study leading to a master of science degree in career planning and human resource development. The behavioral science-based program emphasizes the areas of organizational development, career development, human resource development and statistical analysis. The program is open to both full- and part-time students and prepares professionals for employment in education, business, industry, and social services agencies. Call 475-5069 for additional information.

The CCE Open Enrollment Policy allows a student to take any course or pursue any degree for which he or she has sufficient background. Academic advisors are available throughout the year to answer questions regarding course or program choices.

To officially choose a program, students must matriculate-that is, complete an admissions application and be accepted. At the time of matriculation degree requirements are defined and documented, transfer credits are evaluated to meet degree requirements, and eligibility for applying for student loans and state and federal aid is established.

Students matriculated in CCE bachelor's degree programs are normally expected to complete their degrees within seven years. However, students may take up to eleven years to complete their degrees, if they have not dematriculated and are making satisfactory progress toward their degrees.

Specially trained financial aid counselors can provide students with information about some of the grants and loans available for part-time students. In addition to federal, state and private programs, RIT has special financial aid funds for part-time students that can cut tuition costs by as much as 50 percent. Many companies have employee education benefits that will pay for some or all tuition costs; active U.S. Army Reserve and National Guard members are eligible for benefits that pay up to 90 percent of tuition.

For students who want to try a new field, brush up on some old skills, or are looking for personal satisfaction rather than credit, RIT's new Audit Policy may be the answer. Students can audit many of the CCE credit courses on a non-credit basis, and the tuition is half price.

For more information on any of the programs offered by CCE, call 475-2234.

What about transfer credit from other schools?

Degree programs in CCE are structured to permit transfer of credit from other accredited institutions. When a student matriculates into a specific program, a complete evaluation is made of prior academic work. The student will know immediately how much transfer credit is awarded and what courses will be needed to earn a specific degree.

Transfer credit may also be awarded for courses included in the New York State Education Department Publication, Guide to Educational Programs in Non-Collegiate Organizations. Call 475-2218 for more information.

Who teaches our courses?

Most courses in the College of Continuing Education are conducted by instructors who teach what they do professionally. Our faculty are selected for their professional competence, academic background and teaching ability. Our faculty teach because of their enthusiasm for their subject, their interest in seeing others develop personally and professionally, and their own need for a creative outlet.

When are courses taught?

In addition to our weekly evening and trick work schedules, we also offer courses on television and through audio conferences, and Weekend College.

Telecourses offer quality programming which students can take at home. Courses combine video-tape lectures aired on cable and public broadcast television with textbook readings, audio and computer conferencing, assignments, exams, and a limited number of class meetings. Students have access to instructors by mail, computer, telephone, or individual appointment. These electronic delivery systems allow students to learn at times and places convenient to them.

Weekend College courses meet on Saturdays (leaving the rest of your weekend free), usually every other weekend, and a full course may be completed in five weekends. Weekend College students enjoy the schedule and the seminar-like environment. Through Weekend College, you can earn credits toward a degree or complete a certificate or diploma program.

Applied Arts and Science Degrees

Lynda Rummel, Chairperson

Adult students returning to college on a part-time basis need high-quality degree programs in a variety of fields that are both flexible and recognize an adult's prior college level-learning. The College of Continuing Education now offers you the opportunity to tailor an individualized program of technical and professional study through its Applied Arts and Science program. There are three levels:

Diploma

36 credits; 1 area of concentration
Associate of Applied Science (AAS) degree: 52 core credits plus 38 credits in 1-2 areas of concentration plus general education courses

Bachelor of Science (BS) degree: 90 core credits plus 90 credits in $2-4$ areas of concentration plus general education courses

Individualized Concentrations

The associate and bachelor's degrees allow you to study several different professional and technical areas, selected specifically to meet your unique career and personal goals. The diploma focuses on one concentration. For your professional concentrations, you can draw on a wealth of educational resources from across RIT colleges and departments, including: engineering technologies, sciences, computing, photography and printing, business and management, liberal arts, physical and social sciences, mathematics, fine arts, and applied communication.

No two Applied Arts and Science programs will be exactly alike because each takes into account the student's previous learning and brings together a special combination of courses that are right for the individual student's career and professional development. For example, one individualized program might lead to a bachelor's degree with concentrations in computing, graphic arts, and management, while another could lead to a bachelor's degree that combines fields of communication and health systems administration.

As their career plans evolve and the demands of their technical and professional fields change, students meet regularly with advisors to review and update plans of study.

Common Features

Every Applied Arts and Science degree has certain features in common:

1. An approved program of study developed with an individual advisor and advisory committee
2. General education courses in mathematics, computer science, science, and liberal arts (52 credits for the AAS; 90 credits for the BS)
3. One or more professional concentrations which provide each student with the opportunity to develop an interdisciplinary program tailored to specific career and personal objectives.

Recognition for Prior College-Level Learning

Each program begins by taking account of what the student already knows and has accomplished. For example, college credits earned at RIT or other institutions will be reviewed to see how they might be applied to the program of study; professional certifications and experiences will be evaluated for the possibility of receiving credit; and credits may be earned (by examination, portfolio reviews, or other documentation) for college-level learning that was gained on-the-job or through other educational experiences. For information, contact Bette Anne Winston, Coordinator, at 475-2218.

Course requirements, CIDA-AAS \& CIDB-BS degrees

	Math/ Computer/Science	Qtr. Cr.	Liberal Arts	Qtr. Cr.	Concentration(s)* 1 or 2	Qtr. Cr.
		8 8 4 4 4 4 4 12 12	Communications ++ CHGL-220 Literature \quad CHGH-260 Communications \quad Elective Humanities Electives Behavioral Science \quad Electives	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 8 \\ & 8 \end{aligned}$	To be developed by student with advisor	38
	Math/Science Math OR Science Electives***	8	Liberal Arts Humanities Elective** Liberal Arts Concentration***" Liberal Arts Electives**** Senior Seminar	4 12 16 2	Concentration(s)* 2 or 3 To be developed by student with advisor	52

[^4]
Emergency Management Certificate

Raymond A. Santirocco, Chairperson

Heightened public and governmental awareness of the hazards associated with high technology has led to stringent new Federal and state laws requiring communities to plan comprehensively for toxic chemical or radiation emergencies. In addition, there has always been a need to protect the public during natural emergencies such as floods, earthquakes, and tornados. The field of emergency management has evolved from an intuitive art to a sophisticated specialty with its own body of doctrine. Practitioner organizations and the Federal government are working to develop national standards for the accreditation of emergency managers.

CCE's certificate in Emergency Management is intended to upgrade the skills of existing emergency managers in police, fire, and ambulance work; public safety planners; and emergency officials in industry, and to provide a strong foundation for emergency response personnel desiring to develop a new career specialty. Possession of this certificate is expected to bear significantly on graduates' ability to qualify for national accreditation.

The sequence of five courses is designed to provide students with knowledge of the physical phenomena underlying emergency situations, such as elementary meteorology, earthquake phenomena, toxic chemicals, and radiation; the legal aspect of emergency planning and operations; the theory and methodology of emergency planning, including the planning and management of evacuations; and the theory and practice of operations at a disaster scene. Up to four credits may be awarded to emergency response agency personnel for demonstrable training or experience in lieu of the Emergency Operations course.

Certificate in Emergency
Management
---:
Hours

Earth Science for the Emergency

Courses are scheduled so that the certificate may be completed in three consecutive quarters beginning in the fall. The courses may also be applied toward professional requirements for the B.S. degree in Applied Arts and Science.

Certificate courses were developed with the assistance of local and state professionals in emergency management and will be taught by such professionals. For advising and further information about this program, call Raymond Santirocco at 475-5006.

Business and The Arts

Lynda Rummel, Director Nancy Kunkler, Academic Program Assistant

The Business and The Arts Division of CCE provides a wide variety of technical and professional programs of study at severed distinct levels of achievement. In addition, many general education courses, which are a required part of every degree program in CCE, are offered by this division.

Each program of study is carefully designed to meet the interests of students and Rochester's expanding business, artistic and industrial complex. Advisory committees composed of representatives from local business, industries and professional groups contribute to an ongoing assessment of courses and programs of study to assure high-quality education. Business
and The Arts includes the following:

- Individual courses and sequences of special interest
- Small Business Management Certificate
- Customer and Consumer Service Certificate
- Health Systems Administration Concentration
- Management Certificate
- Certificates in Basic and Advanced Technical Communication
- Certificate in Public Relations and Technical Communication Services
- Business and Career Communication Certificate
- Certificates in Public Relations Communications-Programs in Professional Writing and Graphic Communication
- Certificate in Advanced Public Relations Communications
- Management Diploma (7 options)
- AAS in accounting, business administration, marketing, personnel administration, production management, and logistics and transportation
- AA in general education (with career options)
- Deaf Studies Certificate
- Graphic Arts Certificate
- Diplomas in fine and applied arts and crafts
- Diplomas in printing and photography
- AAS in professional photography
- AAS/BS in graphic arts (with 3 options)

Business and Management Studies

paniel Smialek, Chairperson

Approximately 50 credit-bearing courses in business and management subjects are available through the College of Continuing Education.

Courses leading to an AAS degree and transferable to appropriate baccalaureate degree programs in RIT's College of Business and other schools are available in business administration, accounting, marketing, personnel administration, production management, and traffic and transportation. For those interested in a short-term concentration in one of these fields, CCE also offers a Management Development Program leading to a Management Certificate and Management Diploma, a Small Business Management program, and a program in Customer and Consumer Service. Courses also may be taken individually.

General requirements for an AAS degree, diploma, or certificate in business or management are:

- Completing the necessary quarter credits
- Following the program outline when selecting courses
- Achieving a program GPA of at least 2.0 in order to be certified

Small Business Management Program

The certificate of achievement program in Small Business Management is designed for enterprising individuals who want to launch a new venture or improve an existing small business. It is especially appropriate for entrepreneurs, key members of families owning businesses, and key employees in companies with sales under $\$ 2$ million.

The three courses in the program are tightly integrated, to provide a solid foundation in managing, marketing, and financing small businesses. The faculty include academically qualified entrepreneurs who have managed their ${ }^{\circ}$ wn small companies. Courses may count as business electives in degree Programs, may serve as foundation courses to the Management Diploma, and do not have to be taken in sequence. Typically, the program is offered as part of Weekend College and ${ }^{\circ}$ ur regular schedule.

Business/Management Program Paths

Like most courses in CCE, Small Business Management courses may be taken on an audit basis (non-credit, without exams), at a reduced rate.

Small Business Management Certificate Program

New Venture Credit Hours
Development-CBCE-221
Small Business Management
\& Finance-CBCE-222
Small Business Marketing
\& Planning-CBCE-223
Total 12

Customer and Consumer Service

Increasingly, in today's competitive and growing service economy, the key to success is customer satisfaction. Customer satisfaction comes from delivering quality products and services that are strongly shaped by thorough and comprehensive attention to customer needs.

This unique certificate of achievement program focuses on customer satisfaction as the sustainable competitive advantage for both manufacturing and service industries (e.g., health care, communications, banking and finance, transportation, retailing). Special attention is paid to developing an orientation toward customer satisfaction throughout organizations, and to the relationship between customer satisfaction and customer service.

This program is designed for:

- managers and potential managers who want to implement customer satisfaction principles and practices throughout their organizations
- current and future managers, supervisors, and personnel in sales, customer service, consumer service, customer relations, quality management, and human resource management.
The program consists of 16 credits10 in required core courses and an additional 6 selected from an array of specialized electives. The Certificate may be completed in one year of study.

Health Systems Administration

Raymond A. Santirocco, Chairperson

The health care industry has been transformed in recent years by advances in technology, new modalities of care, changes in financing and organization, greater demand for accountability, and a general expansion as the population ages. These developments have led to increasing demand for administrators at all levels.

CCE's concentration of courses in Health Systems Administration is designed to equip students with the skills necessary to obtain entry-level positions in health administration. Such students are typically those with a clinical background in nursing or an allied profession desiring to change their professional emphasis. However, certain courses may also be of interest to present administrators desiring to upgrade their skills in special areas.

The sequence of six courses consists of three survey courses (a systems overview, administration in the health care setting, and finance and budgeting), followed by three specialized courses (legal aspects of health care, quality assurance, and program planning and development).

Health Systems
Administration
Courses Credit Hours
Survey of Health Care Systems

$$
\begin{equation*}
-\mathrm{CBCF}-310 \tag{4}
\end{equation*}
$$

Health Systems Administration —CBCF-320
Health Care Economics and Finance-CBCF-351
Legal Aspects of Health Care
Administration-CBCF-421
Health Care Quality Assurance-CBCF-431
Health Planning and Program Development-CBCF-441 Total Credits

This is an upper-level concentration generally requiring previous course work or experience and permission of the chair for enrollment. Courses are applicable to the professional concentration requirements for the degree in Applied Arts and Science. The program has been developed with the assistance of Rochester-area health care administrators and subject matter experts, and courses are taught by experienced professionals. For further information regarding course content and admission requirements, contact Raymond Santirocco at 475-5006.

The Management Development Program

The Management Development Program has two components: The Management Certificate and The Management Diploma. By successfully completing the Management Process (CBCE-200, 201, 202), a 12-credit course in practical supervision, management, and communication skills, students may earn the Management Certificate. To receive a Management Diploma, students must complete 16 additional credits in one of seven business/management concentrations.

The program is structured to provide a broad foundation in applied general management, and focused study in a specialized field. It is specifically designed for new supervisors, emerging managers, and those seeking supervisory and management positions; and for new and re-entering students. Both parts of the program are also appropriate for individuals with degrees in the liberal arts, sciences, or technologies, who wish to acquire new professional skills and expand their career opportunities.

Students may take one or both parts of the program; and both may be completed in one academic year. Credits earned in The Management Development Program can be applied to various degree programs. Management Certificate and Diploma courses are typically offered as part of our Weekend College and our regular schedule. For further information, call 475-5023.

Management Certificate

The first component of The Management Development Program is The Management Certificate.

The Management Certificate is earned by successfully completing CCE's unique three-quarter, 12-credit course, The Management Process (CBCE-200, 201, 202).

The Management Process focuses on: - practical applications of management theory

- management problems, solutions and ideas
- personal development as an effective manager
The Management Process offers a comprehensive, integrated study of supervisory management. Topics covered include effective motivation, decision making, team building, conflict resolution, problem solving, time and stress management, communication techniques and strategies, planning, organizing, staffing, performance appraisal, and leadership.

In this program students associate with others who have similar career aspirations, job responsibilities and challenging problems on the job. Through case studies, role-plays, simulations, and other instructional methods, students learn effective supervisory and management practices. Instruction is usually guided by a team of management specialists, rather than by a single instructor.

Credits earned in the Management Certificate program may also be applied toward appropriate degree programs.

Management Certificate Program Credit Hours

Management Process I-CBCE-200 4
Management Process II-CBCE-201 4
Management Process III-CBCE-202 4
Total 12

Management Diploma

The second component of The Management Development Program is The Management Diploma.

In the Management Diploma program, students concentrate their studies in one of seven specific areas of business and management (such as accounting or marketing) that may be immediately relevant on the job.

A Management Diploma is earned by completing 16 quarter credits in addition to, typically, a Management Certificate. However, one of the following options may be substituted for the Management Certificate:

- the Small Business Management Certificate
- three core courses and one elective course from the Customer and Consumer Service Certificate program
- three foundation courses (Organization and Management, CBCE-203; Communications, CHGL-204 or 205 or 220; and one additional business elective)
- or approved equivalents.

Courses applied toward a Management Diploma may also be counted as professional courses in appropriate degree programs.

Management Diploma Programs		
Accounting	Credit	
Mgt. Process (CBCE-200, 201,		
202) or approved alternative	12	
Financial Accounting-CBCA-201	4	
Managerial Accounting-CBCA-203	4	
Intermediate		
\quad Accounting I-CBCA-308		4
Intermediate		4
Accounting II-CBCA-309		4
	Total	28

General Management Credit Hours
Mgt. Process (CBCE-200, 201,
202) or approved alternative

12
Financial Accounting-CBCA-201 4
Managerial Accounting-CBCA-203 4
Data Processing
Principles-CBCC-321 4
Marketing-CBCG-361 4
or
1-Business Elective
Total 28

Marketing Credit Hours
Mgt. Process (CBCE-200, 201, 202) or approved alternative 12
Marketing-CBCG-361 4
Effective Selling-CBCG-210 4
Advertising Principles-CBCG-213 4
'"Business Elective 4

Personnel

Administration	Credit	Hours
Mgt. Process (CBCE-200, 201,		
202) or approved alternative	12	
Personnel		
Administration-CBCI-229	4	
Interviewing		
Techniques-CBCI-224		4
Business Law I-CBCB-301		4
1-Business Elective	4	
	Total	28

Industrial Management Credit Hours
Mgt. Process (CBCE-200, 201, 202) or approved alternative

Production Management-CBCJ-209
Fundamentals of Industrial Engineering-C BCJ-305
Industrial Engineering
Economy-CBCJ-306
Data Processing Principles-CBCC-321

Logistics and

Transportation Mgmt. Credit Hours
Mgt. Process (CBCE-200, 201,
202) or approved alternative

12
Introduction to Logistics \&
Transportation-CBCL-234
Traffic \& Transportation Law, Rates, Accounting \& Control-CBCL-239
Internationa] Logistics
\& Transportation-C BC L-241
Marketing-CBCG-361 4
Total 28

Real Estate

Management Credit Hours
Mgt. Process (CBCE-200, 201,
202) or approved alternative

Basic Real Estate
Principles-CBCM-201 4
Advanced Real Estate
Principles-CBCM-202
4
Real Estate Investment
\& Finance-CBCM-203 4
Real Estate Evaluation-CBCM-204 4 or
1-Business Elective
Total 28

Real Estate and Insurance
Two courses in real estate and two courses in principles of insurance are approved by the New York State Division of Licenses as preparation for the sales person and broker's license examinations in real estate and insurance. These courses provide an excellent foundation for a career in these fields:
CBCM-201 Basic Real Estate Principles
CBCM-202 Advanced Real Estate Principles
CBCN-271 Principles of Insurance I
CBCN-272 Principles of Insurance II

Business and Management AAS Degree Programs

Programs leading to an AAS degree in business administration are available in:

- accounting
- business administration

Programs are fully transferable to baccalaureate degree programs in RIT's College of Business.

AAS degree programs in management are offered in:

- marketing
- personnel administration
- production management
- logistics \& transportation Management programs are designed to give specialized skills in these areas, with course work being transferable to a BS degree program in RIT's College of Business.

All business and management degree programs include a core group of business courses in organization and management, accounting, data processing and business law. Approximately half of the credits in degree programs are earned through these professional courses, which may count in Management Diploma programs, as well as in AAS degrees. In addition, all business and management degree programs include a broad spectrum of courses in communication, behavioral/social sciences, humanities, math and science.

Core Requirements, All Business and Management AAS Programs

Below are the core requirements for all business and management degree programs to which professional program requirements are added.

	PROFESSIONAL COURSES	Qtr. Cr.	GENERAL EDUCAT	ION	Qtr. Cr .	MATH, STATISTICS \& SCIENCE	Qtr. Cr.				
	Financial Accounting . . CBCA-201	4	Communications".CHGL-220			Science Electives"	8				
	Managerial Accounting . CBCA-203	4	Communications". Literature.? ${ }^{\text {TM }}$.	CHGH-260	8	Math for Business . CBCH-201,202	8				
	Organization \&Mgmt(1) . CBCE-203	4		or . CHGH-260	or	Statistics. CBCH-351,352	8				
	Data Proc. Principles . . CBCC-321	4	Dyn.Comm. I*.	.CHGL-204	8						
	Principles of Marketing . CBCG-361	4	Dyn. Comm li. .	CHGL-205							
	Management Science ... CBCE-353	4			8						
	Professional Concentration		Economics	CHGS-221,222	8						
	Courses (see below)	20	Psychology.	. CHGS-211	4						
			Sociology.	. CHGS-231	4						
	Total	44		Total	24	Total	24				
In sequentially numbered courses, the lower number course is prerequisite.				Science electives may include any of the following: Comtemporary Science/Biology CTCS-221							
(1) The Management Process (CBCE-200,201,202) may be substituted for the following:				Contemporary Science/Chemistry CTCS-222							
				Contemporary Sci	ce/Ph	sics CTCS-223					
			Qtr. Cr.	Contemporary Science/Oceanus CTCS-224							
Dynamic Communications I (CHGL-204).			4	College Physics CTCP-201,202,203							
1-Business elective . .			. 4								

' These communications courses require pretest; call 475-2234 for information. Students who take CHGL-204 should also take CHGL-205. Students who take CHGL-220 should also take CHGH-260.

Professional Concentration Requirements, Business and Management AAS Programs

In addition to the core requirements, students must also complete one of the following professional concentrations.

Accounting (CBCA)		Cr. Hrs.	Production Management (CBCJ)	Cr. Hrs.	
Intermediate Accounting I.	. $\mathrm{CBCA}-308$	4	Production Management.	CBCJ-209	4
Intermediate Accounting II.	.CBCA-309	4	Fundamentals of Industrial Engineering	CBCJ-305	4
Business Law I.	. $\mathrm{CBCB}-301$	4	Industrial Engineering Economy. .	.CBCJ-306	4
Business Law II.	.CBCB-302	4	Business Law I.	.CBCB-301	4
History or Fine Arts Elective		4	Elective		4
		20			20
Business Administration (CBCE)		Cr. Hrs.	Logistics \& Transportation (CBCM)		Cr. Hrs.
History or Fine Arts Elective.		. 4	Introduction to Logistics \&		
Legal Environment of Business.	.CBCB-310	4	Transportation.	.CBCL-234	4
3-Business Electives.		. 12	Traffic \& Transportation Law Rates, Accounting \& Control. 1-Transportation \& Logistics Elective	.CBCL-239	4 .4
Marketing (CBCG)		Cr.Hrs.	Business Law I. Elective.	.CBCB-301	$\begin{array}{r} 4 \\ -4 \end{array}$
Effective Selling.	.CBCG-210	4			\wedge
Advertising Principles.	.CBCG-213	4			
Business Law I.	.CBCB-301	4			
2-Business Electives		8			
		20			
Personnel Administration (CBCI)		Cr. Hrs.			
Personnel Administration.	CBCI-229	4			
Interviewing Techniques.	. $\mathrm{CBCI}-224$	4			
Business Law I.	. $\mathrm{CBCB}-301$	4			
2-Business Electives	-	8			
		20			

Professional courses may be counted in management diploma and AAS business/management programs.

The Arts/General Education

The arts side of Business and the Arts includes courses and programs in liberal arts and humanities, behavioral and social science and communication. These are often referred to as general education courses. In the Arts we also offer programs providing credentials which take advantage of RIT's strengths within the arts and humanities. Diploma options are offered in the fine and applied arts (CHAA) and crafts (CHAC), as well as the associate in arts degree in general education (CHGE). Certificates in technical communication, public relations communications and deaf studies also are available.

General Education

General education courses serve a pivotal function within all programs of the College of Continuing Education. These courses provide the foundation upon which professional knowledge is built. The faculty introduces the basic concepts and skills of the arts, humanities, communication, and the behavioral and social sciences.
Each professional and technical program within CCE selects from general education courses essential to developing professional and personal competence. Students are then given a range of free electives to fill out personal interests.

Writing Program and Exit Test To insure that graduates of all CCE associate degree programs will be prepared to meet the writing demands of their careers. CCE instituted the following writing program in September 1984.

1. Diagnostic Test. All students planning to register for Dynamic Communications I (0236-204), or Communications 220 (0236-220) must take a 40-minute diagnostic placement test prior to registration. (Students may register for 205 without pretesting if they have credit for 204.) Results of the tests will allow us to place students in the most appropriate course for developing their written and other communication skills. Students may take the diagnostic test at their convenience in the CCE office ($\mathrm{M}-\mathrm{R}$, 8:30 a.m.-7:30 p.m. and F, 8:30 a.m.-3 p.m.) or during Open Registration (see quarterly schedule for testing times).
2. Exit Test. An exit test given prior to the last week of classes in 205 and 220 is part of the communications requirements for all associate degrees. Students who do not pass the test may work out a program with their instructors for mastering needed skills and may re-take the exit test at a later time. When the test has been passed, students will receive the grade they earned in the course.

General Education AA degree program

Ronald Hilton, Chairperson

The associate in arts (AA) is the only liberal arts degree program offered by the College of Continuing Education. Students will sample literature, arts, philosophy, history, and the other disciplines that have traditionally been at the core of a college education. At the same time, they will consider the relationship of these studies to 20th century technology and business.

After fulfilling the basic course requirements, students finish the degree by choosing one of two options: to deepen understanding of the liberal arts by adding courses in the humanities, communication, and social sciences; or to take advantage of RIT's extensive opportunities in career training by including 20 credits of study in a specific career skill. Areas of career study include;
Accounting
Advertising Design
Technical Communication
Communication
Public Relations Communications
Fine Arts
Personnel Management
General Management \& Supervision
Industrial Management
Small Business Management
Real Estate
Marketing
Deaf Studies
For more information on the career skills option contact the Division of Business and the Arts at 475-5027.

Course requirements, General Education (CHGE), AA Degree

		Qtr. Cr.		$\begin{aligned} & \text { Qtr. } \\ & \text { Cr. } \end{aligned}$
8	Humanities . . CHGH-201,202,203 Introduction to Literature CHGH-260 Introduction to Art	$\begin{array}{r} 12 \\ 4 \end{array}$	Economics . CHGS-221	4
			Psychology . CHGS-211	4
		4	Philosophy . CHGH-270	4
	CHGH-210		Electives*	20
	Introduction to Music		Career Skills Area . .	20
	Appreciation CHGH-230	4		
	Modem Europe CHGH-323			
$\mathbf{i f}_{i}^{\mathbf{f}}$		4		
	Political Science . . . CHGS-261	4		
	Contemporary Science Elective .	4		
	Science, Technology \& Humanity Elective	4		

'Students may petition the chairperson for Liberal Ms to apply courses outside the area generally regarded as general education electives. This must be a written request.

Public Relations Communications Certificates

Ronald Hilton, Chairperson

Public relations communications are vital to virtually every human endeavor. Almost every organization employs individuals, either in house or by contract through public relations agencies, who can prepare press releases, brochures, newsletters, annual reports, point of purchase promotions, and other persuasive, informative materials in a variety of media. The demand for people trained in the special skills of public relations communications will continue to grow well into the 1990s.

Underlying successful public relations communications are skills in two key areas: writing and graphic communication. CCE now offers a certificate program in each of these specialities. Both programs share a common core of courses that provide an introduction to public relations and teach widely used principles and techniques of advertising, project management, and persuasion. The professional writing program provides specialized instruction in writing marketing materials, inbound and outbound publications, corporate-level communications, and speeches and scripts. The graphic communication program (designed specifically for non-artists) focuses on understanding the components of the advertising process, the use of effective design principles in the preparation of layouts, and the combining of creative and technical skills to achieve design success.

These programs are intended for individuals who wish to enter the field of public relations or take on PR responsibilities; or who have been working in a particular aspect of public relations and who wish to upgrade or broaden their skills; and/or who have been performing PR tasks for which they have had little formed preparation. Courses in these programs were developed with the assistance of Rochester-area public relations communicators and are taught by experienced professionals.

Up to four credits may be awarded by examination or for courses taken at another college. Prerequisite for the core courses is demonstration (by examination, portfolio, or transcript) of a command of standard written English.

Courses are scheduled so that the core and one or both of the certificate options may be completed in four quarters of part-time study. Students may
earn one or both certificates, and students not wishing to take an entire certificate program may take specific individual courses. Courses may be applied toward appropriate diploma, AAS, and BS degree programs. Students must achieve a program GPA of at least 2.0 in order to be certified. For advising and further information about these courses, transfer credit, credit for college-level learning, and financial assistance, call Ronald Hilton, 475-4986.

Core Courses, Certificates
in Public Relations
Communication Credit Hours
Introduction to Public
Relations-CHGL-360
2
Psychology of
Persuasion-CHGS-320
Advertising Evaluation
\& Techniques-CBCG-214 4
Managing the Project-CHGL-332 2
Core Total 10

Certificate in Public Relations	
Communications-Professional	
Writing	Credit Hours
Core Courses	10
Writing for the	
\quad Organization I-CHGL-365	2
Writing for the	
\quad Organization II-CHGL-366	2
Promotional Writing-CHGL-331	2
Scripting and	
\quad Speech writing-CHGL-367	4
Certificate Total	
	20

Certificate in Public Relations
Communications—Graphic
Communication \quad Credit Hours
$\begin{array}{lr}\text { Communication } & \text { Credit Hours } \\ \text { Core Courses } & 10\end{array}$
Graphic Communication for
the Non-Artist I-CHAD-270
3
Graphic Communication for
the Non-Artist II-CHAD-271
3
Art for Reproduction-C H AD-2 20
3
Certificate Total 19

Advanced Public Relations Communications Certificate

A new certificate in advanced public relations communications has been developed, in part as a response to community interest. This certificate provides students who are working in a variety of communications fields-or plan towith advanced knowledge and skills, particularly writing skills, in public relations communications. It has been especially designed for graduates of the

Professional Writing Program described above, but it is open to those who can demonstrate the necessary prerequisite skills and understandings.

The new certificate equips students with more complete and professional portfolios as well as newly developed capacities to work in public relations campaigns and in a variety of media settings and capacities. It should be especially attractive to persons already working in the communications industry who desire increased versatility, upward mobility, or specific competencies. Likely students will also include those who have already undertaken or may have completed an undergraduate degree in English, journalism, business administration, marketing, or even public relations. Regardless of background, students are likely to find this more advanced certificate provides a capstone to their undergraduate public relations education.

Like its predecessor programs, this one has been prepared in close consultation with practicing professionals in the local public relations community.

Certificate in Advanced Public
Relations Communications
Credit Hours
The Public Relations Campaign-CHGL-411
The Mass Media in Public
Relations-CHGS-451
Communicating in Print and
Broadcast Media—CHGL-412
Seminar in Public Relations
Communications-CHGL-413
Total Credits 16

Up to four credits may be awarded by examination or for courses taken at another college. All courses in the program have prerequisites, which may be found in the course descriptions elsewhere in this publication.

Courses are scheduled so that the entire certificate may be completed in one calendar year. Courses may be applied toward BS degree programs. Students must achieve a program GPA of at least 2.0 in order to be certified. For advising or further information about this program, call Ronald Hilton at 475-4986.

technical
 Communication Certificates

Elizabeth Conley, Chairperson

In this age of information, all kinds of organizations, large and small, have increasing needs for individuals skilled j_{n} documenting, presenting, managing, and packaging technical and scientific information. Whether these tasks are done within the company or outside by contract, organizations involved in manufacturing, materials handling, computer products, marketing, and medical and scientific products all need professionally prepared documents, brochures, manuals, and other materials for product users, service technicians, purchasing managers, trainers, and other employees and customers.
The following sequence of courses, designed to be completed in two consecutive quarters of study, is intended to provide a strong, practical foundation in technical communication.

Certificate in Basic Technical
Communication Credit Hours
Phase I:
Technical Writing
\& Editing-CHGL-323
Research Techniques-CHGL-324
Phase II:
nstructional Design
Principles-CHGL-325
Document Design
Principles-C HGL-326
Vacticum: Designing
Manuals-CHGL-327

Up to four credits may be awarded >y examination or for courses taken at nother college. Prerequisite for the 'asic sequence is demonstration (by lamination, portfolio, or transcript) fa command of standard written English. Students must achieve a proram GPA of at least 2.0 in order to be ertified.
For those interested in further professorial development and instruction in
${ }^{\mathrm{a}}$ re specialized topics, the following
${ }^{\mathrm{e}}$ luence of courses, designed to be
${ }^{0}$ Hpleted in two quarters of study, is
"ailable.

Certificate in Advanced Technical	
Communication	Credit Hours

Phase I:
Oral Communication
Skills for Technical
Communicators-CHGL-329
Communicating
Online-CHGL-330
2
Promotional Writing-CHGL-331
Phase II:
Writing in the Sciences-CHGL-328 2
Managing the Project-CHGL-332 2
Managing Media
Presentations-C HGL-333
Total Credits

Up to four credits may be awarded by examination or for courses taken at another college. Prerequisite for the Advanced sequence is completion of the Basic sequence or the equivalent. Students must achieve a program GPA of at least 2.0 in order to be certified.

Courses in these sequences were developed with the assistance of working technical communicators and are taught by experienced professionals. For advising and further information about these courses, transfer credit and financial assistance, call Betty Conley at 475-4936.

Public Relations and Technical Communication Services

Elizabeth Conley, Chairperson
This is a new certificate program for communicators of the nineties.

Today, in the dynamic and rapidly expanding field of public relations and technical communication, professionals face an interesting and challenging spectrum of communication tasks. In addition to the research and writing competencies that have long been the standard requisites for success in the communication field, today's professional communicators-whether within organizations or as contract service suppliers-must be prepared to oversee all phases of their projects from client request through delivery of the product, be it a brochure, training manual, or video. To manage the many functions in this process, communicators must
have good interpersonal and leadership skills, administrative skills, fundamental knowledge of print and media technologies, and an understand ng of t ! current and emerging issues that affect the communication field.

The new certificate in Public Relations and Technical Communication Services will provide these special skills and competencies in four quarters of part-time study, as follows:

Certificate in Public Relations and
Technical Communication Services
Credit Hours
Creative Leadership Skills-
CHGL-393
Supervising Communication Services-CHGL-394 4
Managing the Project-
CHGL-332
2
Managing Media Presentation-CHGL-333
Coordinating Publication Production-CHGL-395
Communication Seminar-CHGL-396

Total Credits 16
Courses are offered during the evening hours for the convenience of adult, employed students. To earn the certificate, students must complete all 16 credits with a program CPA of at least 2.0. However, transfer credit and appropriate work experience will be evaluated for up to four credits in the program.

Courses may be taken individually (provided individual course prerequisites are met) or as part of the certificate program. All courses may be applied to the Applied Arts and Science degree in the College of Continuing Education.

To enter the program, students must have the Certificate in either Basic or Advanced Technical Communication or the Certificate in Public Relations Communication, Professional Writing or Graphics option; substantial work experience in either public relations or technical communication; or a relevant undergraduate degree, e.g., in journalism, corporate communication, public relations, technical communication, professional communication.

All courses in the program were developed and are taught by experienced professional communicators. For advising and further information about the program, transfer credit, and financial assistance, call Betty Conley at 475-4936.

Business and Career Communication Program

Elizabeth Conley, Chairperson

Business leaders say that a key to success is the ability to communicate successfully. A CCE certificate of achievement in business and career communication may be earned by completing three, four-credit courses designed to cover written, oral, and visual communication skills. Courses may be taken separately and may be used as elective or professional concentration courses in appropriate CCE degrees.

Business and Career Communication Certificate Program Credit Hours Professional

Presentations-C HGL-301
Discussions Skills \&
Leadership-CHGL-302
Commifnicating in
Business-CHGL-307

Deaf Studies Certificate

Ron Hilton, Chairperson

The Deaf Studies Certificate is intended primarily to achieve two pur poses: First, to permit employees and volunteers in the private and public sectors to prepare themselves to communicate more effectively with deaf clientele, students, fellow professionals, or employees in businesses, industries, schools, colleges, and hospitals; and secondly, to provide a stimulating foundation for those who wish to pursue further education in the fields of inter preting for the deaf or deaf education.

The 16 -credit curriculum is comprised of the seven courses listed below. Although a primary emphasis in the curriculum is learning both Basic Sign Language and American Sign Language, students will also deepen their understanding of the phenomenon of deafness, through courses related to the physical, psychological, social and linguistic aspects of deafness.

The courses have been designed and are largely taught by the faculty of the National Technical Institute for the Deaf.

Although substitutions of one course for another will not generally be per mitted, students will be able to challenge course content in any of the courses listed.

Rochester has the second highest population per capita of deaf and hard-of-hearing individuals in the United States, a fact which has led to extensive community and educational resources for them.

Deaf Studies

Certificate Program Credit Hours
Sign Language \& Manual
Communication
Systems I, II \& III
CHGD-211, 212, 213
American Sign
Language I \& II
CHGD-311,312
Aspects \& Issues of
Deafness I \& II
CHGD-241,242
6

Fine and Applied Arts and Crafts Diploma Programs

Eric Bellmann, Chairperson

Fine and applied arts courses are designed to contribute to the student's personal growth and cultured enrichment. Individual courses are offered or a diploma may be earned by following a program of study in crafts, fine and applied arts, advertising design, or interior design.

Options begin with introductory courses to provide students with a basic exploration of the creative process and to help them develop visual organization skills. After taking these courses, the student will be able to earn a fine and applied arts diploma by completing the requirements in any of four areas. Students may want to include printing and photography eiectives in their programs after receiving an advisor's approval. Some courses are offered only in alternate years.

Students should consult with a CCE advisor to plan their course of study and to clarify goals. The chairperson can be consulted regarding course substitution.

Students enrolled in the fine and applied arts diploma program prior to Fall 1980 may elect to follow either the previous program requirements or the new program as listed.

For more information call Eric Bellmann at 475-4977.

Graphic Arts and Photography

The arts side of Business and the Arts also offers graphic arts programs that are structured to provide students with a broad understanding of the graphic arts field, and, at the same time, allow them to select a major in design, printing, and photography. In addition, a program leading to an AAS in professional photography is available.

Printing Diploma

Linda Tolan, Adjunct Chairperson
This program utilizes the laboratories of the School of Printing Management and Sciences, which are completely equipped with the most modern printing machinery for all processes of producing the printed word, including flexography screen printing, lithography, gravure, and imaging. The printing program leads to a diploma indicating competency in specialized areas of printing as well as a practical understanding of the entire printing operation. All printing courses shown are open to students not enrolled as diploma candidates. Courses in the printing diploma (at the 200 level or higher) may be applied towards Graphic Arts degrees.

Printing Diploma Program	
Credit Hours	
Introduction to Printing	
CHGT-201, 202, 203	6
Copy Preparation-CHGT-227	3
Lithography I \& II	
CHGT-265,365	6
Offset Film Assembly	
CHGT-221, 222, 223	9
Reproduction Camerawork	
\quad CHGT-301, 302, 303	6
Human Relations	
\quad CBCE-101, 102, 103	
Printing Electives	6
	Total
	40

Photography Diploma

Andrew Davidhazy, Adjunct Chairperson

This sequence of photographic courses is designed to prepare students for the highly competitive field of professional photography. The requirements combine a thorough technical education in photography with an introduction to human relations. Because of the specific nature of the diploma, all six required courses must be completed before a diploma can be earned. Students may apply photography courses completed for the diploma towards the associate in

Fine and Applied Arts and Crafts Diploma Programs (CHAA and CHAC)

Core Requirements:	Qtr. $\mathbf{C r}$	
Basic Drawing and Media	CHAF-201,202,203	6
Basic Design.	CHAD-201,202,203	6
Introduction to Art Appreciation.	CHGH-210	4
		16

Program Requirements:
Craft (CHAC). In addition to the core requirements each
student must become familiar with three of four areas._Otr. Cr.

Core Requirements*. 16
Major craft courses. 18
Minor craft courses. 6
Third craft choice. 2
Eiectives with advisor's approval. 6

applied science degree in professional photography. Students completing the AAS in professional photography may continue their studies in the Graphic Arts bachelor degree program.

Photography Diploma Program Credit Hours

Basic Professional Photography CHGP-201, 202, 203
Color Photography
CHGP-211, 212, 213
Commercial Photography
CHGP-241, 242, 243
Portrait Photography
CHGP-231, 232, 233
Portrait Retouching
CHGP-331, 332, 333
Commercial Retouching
CHGP-321, 322, 323
Human Relations
CBCE-101, 102, 103
or
Psychology:
Introduction-C HGS-211 4 Total 52-54

AAS Program in Professional Photography
 (CHGP)

Andrew Davidhazy, Adjunct
Chairperson
The role of photography has become increasingly influential in the development of modern technology. In its multitude of applications it plays a vital
role in communication, business, medicine and education, as well as being the primary means of recording moments of the present for future enjoyment.
Although at this time competition in the fields of commercial, advertising and freelance photography is very great, there is a need for qualified technicians and specialists particularly in the fields of marketing, training, medicine, graphic arts, photofinishing, law enforcement, and others.
The degree program in professional photography provides students with a balanced education comprised of courses in science, general education and applied photography. Specific educational goals can be met through careful selection from a comprehensive list of professional electives.

Course requirements

The AAS degree is awarded after completion of all courses in Phases I and II. Transfer students seeking a degree must complete 45 credits at RIT.

The primary aim of the program is to prepare students with a broad background in photography so that they may modify general knowledge to fit their particular job specialty.

Although courses are designed to serve the needs of students with a welldefined career objective, most are also suitable for improving photographic background or providing photographic training that would help further develop job skills. After receiving the AAS degree, graduates may pursue a further degree in the BS program in graphic arts with a major in photography with complete transfer of credit. Consult with chairperson for details.

Professional electives for professional photography (CHGP) degree
CHGP-404, Architectural 405, 406 Photography
CHGP-241, Commercial
242,243 Photography
CHGP-401, Fashion Photography 402, 403
CHGP-221, Illustrative
222, 223 Photography
CHGP-351 Industrial PhotographyInstrumentation
CHGP-352 Industrial PhotographyA.V. Techniques

CHGP-353 Industrial PhotographySpecial Topics
CHGP-301, Motion Picture
302 Photography
CHGP-431, Photographic
432,433 Communication
CHGP-411 Photography of the Natural World
CHGP-231, Portrait Photography 232, 233
CHGP-321, Retouching, 322, 323 Commercial
CHGP-331, Retouching, Portrait 332, 333
CHGP-366 Dye Transfer Printing
Other courses not listed above are also acceptable. This includes topics in printing design and audio visual areas. Up to six quarter credits may be scheduled in management, quality control, electronics or other technical areas. At least 15 quarter credits must be scheduled from the professional photography area. All electives should be scheduled with the chairperson s approval.

Course requirements, Professional Photography (CHGP), AAS degree

Suggested photographic electives are listed below. All electives for degree seeking students are to be selected with advisor's approval. At least 15 quarter credits must be from the photography
These communications courses require a pretest; call 475-2234 for information. Students who take CHGL-204 should also take CHGL-205; students who take CHGL-220 should also take CHGH-260.

The Graphic Arts Degree Program (CHGT)

Eric Bellmann
Andrew Davidhazy
Linda Tolan, Chairpersons

This program is structured to provide students with an opportunity to receive a broad understanding in the graphic arts field, and, at the same time, to select a major in design, photography or printing.

The professional courses in this program are presented in a manner which provides a well-rounded practical background in printing, photography, design, and related fields as well as a concentration of study in the student's major. Classroom instruction is supplemented by related work in studios and laboratories where actual experience is gained.

Students need not take courses in the order listed, as long as all courses are completed in one phase before proceeding to the next. After successfully completing all courses in Phases I and II, students will receive an AAS degree. If students are transferring from another institution, students must complete 45 credits within CCE.

Course requirements, Graphic Arts (CHGT), AAS and BS degrees with options in design, printing or photography

		MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCATION	Qtr. Cr.	PROFESSIONAL	Qtr. Cr .
		Technical Mathematics . CTAM-201,202 or Mathematical Thought and Processes. CTAM-205 And Modern Mathematical Methods.CTAM-206	8 8		$\begin{array}{r} 8 \\ \hline 8 \\ \hline 4 \\ \hline 4 \end{array}$	Intro to Printing . . CHGT-201,202,203 Basic Professional Photography . . CHGP-201,202,203 Basic Design . . . CHAD201.202.203	$\begin{gathered} 6 \\ 12 \\ 6 \end{gathered}$
	$\begin{aligned} & \mathbb{N} \\ & \mathscr{Z} \\ & \underset{\sim}{2} \\ & \mathbf{1} \end{aligned}$	Contemporary Science. CTCS-221,222,223	12	Economics.CHGS-221	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Paper and Printing. CHGT-251Technology of Typesetting . . CHGT-237GraphicDesign . . CHAD-311,312,313Professional Electives Lithography I.CHGT-265	$\begin{array}{r} 3 \\ 3 \\ 2 \\ 6 \\ -\quad 10 \\ -\quad 3 \end{array}$
	\$	Science, Technology and Society Electives	8	Electives	20	Reproduction Camerwork . . CHGT-301,302.303	$\begin{aligned} & \mathrm{S} \\ & 3 \\ & 8 \end{aligned}$
	Phase 4			Electives	16	Estimating. CHGT-219 Imposition and Finishing . . CHGT-421 Professional Electives	$\begin{gathered} 4 \\ 2 \\ 24 \end{gathered}$

In order to meet program objectives and prerequisites of later courses, transfer students who have an associate's degree may be required to take courses within Phase I and II. In many instances, such transfer students will be granted credit within Phase III and IV for appropriate work completed by the time of transfer.
'These communications courses require pretest; call 475-2234 for information. Students who take CHGL-204 should also take CHGL-205; students who take CHGL-220 should also take CHGL260. All BS students must also satsifactorily pass a communications competency test.

Graphic Arts Certificate

Eric Bellmann, Chairperson

The certificate of achievement program in Graphic Arts is intended to provide students with foundational skills and knowledge in design, printing, and photography, so that they may better understand the interrelated nature of these fields, communicate better with others engaged in related tasks, and perform a wider variety of basic activities throughout the design-through-
production process. The program will also be of interest to individuals with access to desktop publishing equipment as well as those with specialized knowledge in one of the three fields. With the approval of the Chairperson, up to 6 credits may be awarded for related college-level learning. Credits from this program may be applied to appropriate CCE degrees and programs. The program may be completed in three quarters of study. Students may earn a certificate of achievement by achieving a program G.P.A. of 2.0 and completing all program requirements.
Graphic ArtsCertificate Program Credit HoursIntroduction to
Printing I, II \& III
CHGT-201, 202, 2036
PhotographyWorkshop I \& IICHGP-101, 1024
Color Photography Workshop CHGP-104 2
Graphic Communication
for the Non-Artist I \& IICHAD-270,2716

Science and Technology

Henry Cooke, Director
Barbara Warth, Academic Program
Assistant
This division in CCE offers a variety of technical and scientific programs of study. Included are:

- AS in engineering science, computer science
- AAS in applied science in building technology, electrical technology, electromechanical technology, manufacturing technology, mechanical technology, and computer systems
- BS in applied science in mechanical, and mechanical-industrial

Each program is carefully designed to meet the student's needs as well as the particular needs of local industry for technical personnel trained to meet the requirements of Rochester's expanding industrial community.

Courses for people on rotating work

 schedulesIf rotating work schedules make it impossible for an individual to attend regular evening classes, enrollment in certain courses is also offered during the day, and are taught by the same instructors.

Courses in this program include basic technical and general education courses which can be applied to a
diploma or AAS degree program. It is necessary to begin these course sequences in September. There are no beginning entry points in December or March for rotating work schedules.

Mathematics diagnostic examination

 In order to take any of the beginning mathematics courses, a student must take a diagnostic examination to determine the level at which he or she should start the mathematics courses. An advisor should be consulted to determine where to start the mathematics sequence. Call 475-2234 to arrange an appointment to take the math exam. There is no charge for this exam.
Degree Programs BS in Applied Science

The BS in applied science programs is designed for the individual with better than average preparation in high school mathematics and science. Students having a deficiency in mathematics may wish to strengthen their skills by taking TLDT-011, 012, 013.

An intensive core of courses in mathematics, physics, chemistry, and the basic engineering sciences is required in these programs while allowing the student to develop some depth in the interest area of choice.

After completing approximately half the courses in the BS program, students receive an AAS degree. If the student already holds an AAS degree, he or she may be able to enter a BS program with minimal loss of credit. Consult an advisor for transcript evaluation before entering these programs.

Computer Systems Associate in Applied Science Degree

Henry Cooke, Chairperson

The goal of this program is to provide students with the programming skills and the computer science fundamentals to enter careers as computer programmers in business or information systems.

Aside from programming skills, students acquire some of the mathematics necessary to move from programming as an art to programming as a science.

Prospective students are urged to see an advisor before enrolling in classes. For an advising appointment call 475-2218.

Course requirements, (CTDD), AAS Degree

[^5]
Mechanical-
 Industrial Program (CTBI)

Henry Cooke, Chairperson
The mechanical-industrial curriculum integrates management courses with
courses in engineering, science and general education in order to satisfy industry's need for qualified personnel in the manufacturing management field. Graduates of this program have a combined background in management and engineering. Students need not take courses in the order listed, as long as all courses are completed in one phase before proceeding to the next
phase. After successfully completing all courses in Phases I and II, students receive an AAS degree. In the case of transfer students seeking a degree, 45 credits of this program must be completed at RIT.

Course requirements, (CTBI), AAS and BS degrees

		MATHEMATICS AND SCIENCE	Qtr. Cr .	GENERAL EDUCATION		Qtr. Cr.	PROFESSIONAL	Qtr. Cr.
	$\begin{aligned} & \text { H} \\ & \ddot{\psi} \\ & \frac{\ddot{x}}{0} \end{aligned}$	College Algebra and CTAM-210 Trigonometry. CTAM-251,252 Calculus. CTDP-201 ComputerTechnlques CTD. Physics \ldots CTCP-301,302,303 (lec.) $306,307,308$ (lab.)	$\begin{gathered} 4 \\ 8 \\ 2 \\ 12 \\ 3 \end{gathered}$	Communications". and Literature. or Dynamic Commun. I" . . . and Dynamic Comm. II.	$\begin{aligned} & \text { CHGL-220 } \\ & \text { CHGH-260 } \\ & \text { CHGL-204 } \\ & \text { CHGL-205 } \end{aligned}$	8 or 8	Machine ShopCTIS-201,202.203 (lec.) 206,207, 208 (lab.) Crod. \& Eng. Drwg. Accounting for Engineers CBCA-207,204	$\begin{aligned} & 6 \\ & 4 \\ & 8 \end{aligned}$
	i		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Economics. Psychology	$\begin{aligned} & \text { CHGS-221 } \\ & \text { CHGS-211 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & 4 \\ & 8 \\ & \\ & 9 \\ & 3 \\ & 1 \end{aligned}$
	Phase 3	Engineering Chemistry \ldots CTCC-241,242 (lec.) Engineering Statistics . . CTAM-341,342	$\begin{aligned} & 6 \\ & 2 \\ & 8 \end{aligned}$	Psychology - Behavior in Industry.	CHGS-316	4	Data Processing.CBCC-321Electrical Engineering Principles . . . CTBE-461,462,463	$\begin{gathered} 4 \\ 12 \end{gathered}$
	8	Mathematics Elective	4	Sociology Professional Presentations "Electives	$\begin{aligned} & \text { CHGS-231 } \\ & \text { CHGL-301 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4 \\ & 12 \end{aligned}$		$\begin{gathered} 4 \\ 4 \\ 24 \end{gathered}$

[^6]
Mechanical
 Program
 (CTBM)

Henry Cooke, Chairperson
This curriculum is designed to provide the student with a sound basis in math-
ematics, science and general engineering. Courses in theory are supplemented by laboratory work to increase the understanding of industrial methods and techniques. The knowledge and skills acquired in this program apply to a wide variety of industrial assignments in mechanical design and manufacturing.

Courses need not be taken in the order listed, as long as all courses in one phase are completed before proceeding to the next phase. The AAS degree is awarded upon satisfactory completion of all courses in Phases I and II. In the case of transfer students seeking a degree, 45 credits of this program must be completed at RIT.

Course requirements, (CTBM), AAS and BS degrees

	MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCATION		$\begin{aligned} & \text { Qtr. } \\ & \mathrm{Cr} . \end{aligned}$	PROFESSIONAL	Qtr. Cr .
$\sqrt[3]{\mathrm{T} " \mathrm{I}}$		$\begin{aligned} & 4 \\ & 8 \\ & 2 \\ & 6 \\ & 2 \end{aligned}$	Communications* Dynd Dynamic Comm. I* Comm. II	$\begin{aligned} & \text { CHGL-220 } \\ & \text { CHGH-260 } \\ & \text { CHGL-204 } \\ & \text { CHGL-205 } \end{aligned}$	8 or 8	Machine Shop . CTIS-201,202,203 (lec.) 206,207,208 (lab.) Prod. \& Eng. Drwg. CTID-204	6 4
$\begin{gathered} \mathrm{N} \\ 8 \\ 1 \end{gathered}$	Calculus. Physics \ldots CTAM-305 Math Elective CTCP-301,302,303 (lec.) 306,307,308 (lab.)	$\begin{gathered} \hline 4 \\ 4 \\ 12 \\ 3 \\ 4 \end{gathered}$		CHGS-221	4	Engineering Mechanics . CTBM-341,342 Manufacturing Analysis. Strength of Materials . .	$\begin{aligned} & \hline 8 \\ & 9 \\ & 3 \\ & 1 \end{aligned}$
$\begin{gathered} \infty \\ \mathrm{s} \\ 1 \end{gathered}$	Differential Equations CTAM-306 Boundary Value Problems CTAM-318 Modem Physics CTCP-457,458 Nuclear Physics CTCP-459	$\begin{aligned} & 4 \\ & 4 \\ & 8 \\ & 4 \end{aligned}$	History or Political Science Psychology	CHGS-211	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Strength of Materials CTBM-345 Materials Technology I . . CTEF-314 Materials Technology II . . . CTEF-315 Thermodynamics. . . . ETBM-401,402 Electrical Engineering Principles . . . CTBE-461,462,463	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 8 \\ & \\ & 12 \end{aligned}$
Phase 4					$\begin{aligned} & 12 \\ & 4 \end{aligned}$	Machine Design $\quad . \quad$ CTBM-551,552,553 Fluid Mechanics Electives	$\begin{aligned} & 9 \\ & 8 \\ & 6 \end{aligned}$

[^7]
Engineering Science
 (CTSE)

Henry Cooke, Chairperson
This AS program in engineering science is designed to prepare the student to pursue a BS in engineering. The program permits orderly transfer into

RIT's College of Engineering to continue pursuit of the baccalaureate degree in engineering through completion of upper-level courses made available during the evening hours by the College of Engineering. These degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
Students with a strong high school mathematics and science background
can earn the engineering bachelors degree in two stages at RIT.

After earning the AS degree in engineering science students are eligible to apply to the College of Engineering for admission in the baccalaureate program in engineering. Students accepted in this program can complete an engineering degree through continued parttime study.

Course requirements, Engineering Science (CTSE), AS Degree

		MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCATION		Qtr. Cr.	PROFESSIONAL		Qtr. Cr.
? ${ }^{\text {U }}$	$\begin{gathered} 8 \\ \text { iF } \end{gathered}$	Calculus. \ldots CTAM-251,252,253 Physics \ldots CTCP- $301,302,303$ (lec.) $306,307,308$ (lab.)	$\begin{aligned} & 12 \\ & 12 \\ & 3 \end{aligned}$	Dynamic Comm. lı ${ }^{\text {or }}$	$\begin{aligned} & \text { CHGL-220 } \\ & \text { CHGL-204 } \\ & \text { CHGL-205 } \end{aligned}$	$\begin{gathered} 4 \\ \text { or } \\ 8 \end{gathered}$	Engineering Graphics \ldots CTID-211 Engineering Mechanics Computer Programming for Engineers \ldots CTBM- 341,342 		$\begin{aligned} & 2 \\ & 8 \\ & 4 \end{aligned}$
				Dynamic Comm. II					4
$1{ }^{\text {f }} \mathrm{E}$g o	$\begin{aligned} & \text { CM } \\ & \text { §̆ } \\ & \text { a } \end{aligned}$	Calculus CTAM-305	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 6 \\ & 2 \\ & 8 \end{aligned}$		CHGS-211 CHGS-221 CHGS-231 CHGH-260	$\begin{aligned} & \hline 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	CircuitAnalysis	$\begin{array}{r} \hline \text { CTBE-401 (lec.) } \\ 406 \text { (lab.) } \\ \text { CTEE-321 (lec.) } \\ \text { CTEE-326 (lab.) } \end{array}$	3131
		Differential Equations . . . CTAM-306		Economics					
				Literature					
		Modem Physics. . . . CTCP-457,458							

[^8]
Computer Science Associate in Science Degree

Henry Cooke, Chairman
The AS program in Computer Science is designed to prepare the student to pursue a B.S. degree in computer science. The program permits orderly
transfer into RIT's School of Computer Science and Technology to continue studying towards the baccalaureate degree offered part-time during evening hours by the School of Computer Science and Technology. Part-time B.S. degree students of the School of Computer Science and Technology must complete all of the school's requirements, including co-op.

Prospective students are urged to meet with an academic advisor before enrolling in this program. Please call 475-2218 for an advising appointment.

Course requirements, (CTDE), AS Degree, Computer Science

		MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCATION		Qtr. Cr.	PROFESSIONAL		Qtr. Cr.
	¢ \% \%	CTAM-251	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { CHGL-220 } \\ & \text { CHGL-204 } \\ & \text { CHGL-205 } \\ & \text { CHGH- } \end{aligned}$	$\begin{gathered} \hline 4 \\ \text { or } \end{gathered}$		CTDS-202	4
		$\begin{aligned} & \text { CTAM-252 } \\ & \text { CTAM-253 } \end{aligned}$					Programming 1-		
		 Discrete Mathematics. . . CTAM-265 Discrete Mathematics. . .		and Dynamic Comm. II Humanities Electivest		8	AJgorithmic Structures	CTDP-241	4
							Programming IIData Structures	CTDP-242	4
							Assembler Language	CTDP-305	4
	$\begin{aligned} & \text { N } \\ & \text { \% } \\ & \text { \% } \\ & \text { in } \end{aligned}$	Engineering Statistics . . . CTAM-341	$\begin{aligned} & \hline 4 \\ & 4 \\ & 1 \\ & 4 \\ & 1 \\ & 4 \\ & 1 \end{aligned}$	Social Science Electivest. Liberal Arts Elective	CHGS- CHGH-260 CHG?-	844	Programming III- Design and Implementation Digital Computer	CTDP-243	4
		CTCP-301							
		CTCP-306							
		CTCP-302						CTDS-315	4
		Physics Lab $\begin{array}{l}\text { CTCP-307 } \\ \\ \text { CTCP-303 }\end{array}$					Data Organization and	CTDS-325	4
		Physics Lab CTCP-308					Computer Science Elective*		4

[^9]
Associate in Applied Science programs (AAS)

Henry Cooke, Chairperson

Industrial Technnology

Associate degree programs in building technology, electrical technology, electromechanical technology, and mechanical technology are designed to allow an employed individual to develop the technical skills needed to function at the technician level and to earn the AAS degree usually required for the job title "technician." Course work is applied and practical, emphasizing laboratory experiences.
Each program contains a core of technical mathematics and physics to prepare the student for the technical courses to follow.

Candidates for this program should have completed at least two years of high school mathematics including algebra and trigonometry. Students having a deficiency in mathematics may wish to strengthen their skills by taking TLDT-011,012,013.

Several of these beginning courses are offered on a shift schedule to accommodate those working a rotating shift. A core of general education courses is required and structured to develop the student's skills in communications and interpersonal relations essential to the technician.

Courses need not be taken within any phase in the order listed, so long as all courses in one phase are completed before proceeding to the next phase. After successfully completing all courses in Phases I and II, the student will receive an AAS degree (about 5 years of two courses per term). A student transferring from another institution must complete 45 credits of this program at RIT.

Many graduates of these programs continue on to the B.S. degree in engineering technology.

Electrical Technology (CTIE)

This program is designed to prepare the student for a career at the technician level in the field of electricity and electronics.
Phase I is devoted to providing the student with the mathematics and science background necessary to master the technical courses which follow. These technical courses provide the broad practical background of electricity and electronics required of the technician in industry. Instruction is * supplemented by related work in the laboratories, where the student will gain actual work experience in handling and operating electrical equipment.

Course requirements, (CTIE), AAS degree

		MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCATION		Qtr. Cr.	PROFESSIONAL	Qtr. Cr.
	¢ \% ¢ 1		$\begin{aligned} & 8 \\ & 4 \\ & 9 \\ & 3 \end{aligned}$	Literature and ${\text { Dynamic Comm. }{ }^{*}}^{\text {a }}$	CHGL-220 CHGH-260 CHGL-204 CHGL-205	8 or 8	Elements of Electricity and Electronics.. CTIL-201,202,203(lec.) 206,207,208 (lab.)	$\begin{gathered} 4 \\ 12 \end{gathered}$
				Dynamic Comm. II				
				Psychology	CHGS-211	4	Applied Electronics . CTEE-361,362,363	12
				Economics	CHGS-221	4	366,367,368	
							Machines and Power $\left.\quad \begin{array}{r}\text { CTIL-301,302 } \\ \text { Systems. }\end{array} \quad \begin{array}{l}306,307\end{array}\right]$	8
							Computer Techniques . . . CTDP-201	2
							Digital Systems CTEE-321	3
							Digital Systems (lab). . . . CTEE-326	1
							Programmable Controllers . . CTEE-331	3
							Microprocessors	3
							Electivesf	4

\dagger All electives must be selected with advisor's approval.
' These communications courses require pretest; call475-2234 for information.

Electromechanical Technology (CTIL)

The manufacture of new and sophisticated equipment and complicated devices in which a number of electrical, electronic and mechanical principles are involved in one function or one piece of equipment, has led to the demand by industry for a new technology recognized by the composite word "electromechanical." A graduate of this dual-discipline program will be qualified to assist in design and development of new devices and to install,
operate, service and maintain complex electromechanical assemblies. A graduate could also qualify for employment in automation and numerical control systems. The curriculum has a mathematics and science base with applications in electricity, electronics and mechanics. The emphasis is on the interrelationship of electronic and

- mechanical principles in systems and devices in which these principles are interdependent.

Course requirements, (CTIL), AAS degree

		MATHEMATICS AND SCIENCE	Qtr. Cr .	GENERAL EDUCATION	Qtr. Cr.	PROFESSIONAL	Qtr. Cr.
n艺000000000	$\begin{aligned} & \overline{0} \\ & \text { ỹ } \\ & \bar{\alpha} \end{aligned}$	Technical Mathematics . CTAM-201,202 College Physics CTCP-201,202,203 (lec.) $206,207,208$ (lab.)	$\begin{aligned} & 8 \\ & 9 \\ & 3 \end{aligned}$		8 or 8		$\begin{aligned} & 4 \\ & 9 \\ & 3 \\ & 8 \end{aligned}$
	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \frac{\pi}{\alpha} \end{aligned}$			Psychology. CHGS-211 Elective	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & 6 \\ & 2 \\ & \\ & 3 \\ & 1 \\ & 3 \\ & 1 \\ & 3 \\ & \\ & 8 \\ & 3 \\ & 1 \\ & 3 \end{aligned}$

'These communications courses require pretest; call 475-2234 for information.

Building Technology (CTIJ) David Onesti, Adjunct Chairperson

This program is structured to provide the student with a broad understanding of the building industry, while majoring in architectural technology or construction technology.

The architectural technology major provides in-depth training in all aspects of architectural drawing to qualify a graduate for employment as an architectural technician. The professional courses in this major are designed to meet individual requirements.

The construction technology major provides a more general background in building construction and qualifies the student for career opportunities in the building industry.

In addition to purely technical courses relating to the building industry, the program includes courses in college mathematics and physics as well as a selection of courses in general education.

Course requirements, (CTIJ), AAS degree

[^10]
Mechanical Technology (CTIM)

This program is designed to prepare a student for a career at the technician level in the mechanical field. Phase I provides the mathematics and science background necessary to master the technical courses which follow. These technical courses in mechanics, materi-
als, design, and manufacturing procedures cover the broad principles of mechanical engineering. The program is designed to meet the needs of industry for training in design, development, test engineering, manufacturing and other branches of this broad field.

Course requirements, (CTIM), AAS degree

		MATHEMATICS AND SCIENCE	Qtr. Cr.	GENERAL EDUCAT		Qtr. Cr.	PROFESSIONAL	Qtr. Cr.
		Technical Mathematics . CTAM-201,202 Technical Calculus. \quad.CTAM-203 College Physics CTCP-201,202,203 (lec.) $206,207,208$ (lab.)	$\begin{aligned} & 8 \\ & 4 \\ & 9 \\ & 3 \end{aligned}$	Communications' and Literature	$\begin{aligned} & \text { CHGL-220 } \\ & \text { CHGH-260 } \end{aligned}$	8	Prod. \& Eng. Drwg.........CTID-204	4
							Machine Shop . . . CTIS-201,202,203 $206,207,208$ (lab.)	6
				Dynamic Comm. 1^{*} or	CHGL-204	or		
				and Dynamic Comm. II	CHGL-205	8		
	$\begin{aligned} & \text { N } \\ & \text { © } \\ & \text { © } \\ & \frac{\pi}{2} \end{aligned}$			Economics	CHGS-221	4	Manufacturing Analysis .. CTEF-201,202	6
				Psychology	CHGS-211	4	Applied Mechanics and Strength of Materials. CTEM-301,302,303	12
							Materials Technology I CTEF-314	3
							Materials Technology II CTEF-315	3
							Production Control. CTEF-391	3
							Principals of Mechanical Design. . . . CTEM-315,316,317	6
							Elective	6

- These communications courses require pretest; call 475-2234 for information.

Manufacturing Technology (CTED)

This program is designed to prepare a student for a career at the technician level in the field of manufacturing. Emphasis is on the practical aspects of process and materials courses, work measurement and design, as well as the concepts of computer numerical control. Graduates of industrial training programs may find this program offers additional growth opportunity from the vocational to the professional levels.

Lower Division Technical Electives

Mechanical/Manufacturing Electives

CTEF-203 Manufacturing Analysis
CTEF-328 Report Writing
CTEF-360 Introduction to Numerical Control

Course requirements, (CTED), AAS degree

[^11]
Diploma Programs

A diplo ${ }^{m a}$ of the Institute can be earned by completing one of four technical diploma programs. These programs are carefully planned to include the basic courses in their respective specialized fields, so that maximum benefit will accrue for a minimum expenditure of time. Enrollment in or completion of a diploma program does not preclude the possibility of later pursuing a degree program; in fact some courses are applicable to degree programs if the student should decide to pursue a degree at a later time.

Students not interested in pursuing a diploma program may register for individual courses of their choice as long as they meet any prerequisites.

Diplomas of the Institute are granted in the following programs: instrument making and experimental work; machine shop; tool and die making; turret lathe and chucker operation and set-up, computer service technology.

Machine Tool Programs

 Apprenticeship programs

 Apprenticeship programs}In cooperation with local industry, CCE offers a wide selection of courses applicable to apprenticeship programs. Applicants seeking to complete courses required in apprenticeship programs should consult with their company training director to determine courses required.

Machine shop

For tool room work, there are a number of precision machines to perform the required machining operations such as: Bridgeport vertical mills, Pratt \& Whitney jig bore, cylindrical grinders, surface grinders, electrical discharge machines (EDM), engine lathes, pantograph machine and punch presses for trying out of dies. Other active facilities in the machine shop are numerical control, computer-aided manufacturing (CAM), and heat treating labs.
When registering for the following programs, a student must register in the proper sequence. For example, when Shop Mathematics (TLDT-051) has been completed, the next course to complete would be TLDT-052, etc.

Specialized industrial training

Specialized intensive training programs may be developed on a one-time basis or as on-going programs to meet the specific needs of a given company or organization.

If seeking advanced standing in subjects in the machine shop area, a student must submit transcripts of courses taken at other schools and/or take an examination in those courses for which the student seeks credit. The examination fee is $\$ 50$ per credit. An admission card must be received before being admitted to the test. The test may be scheduled at City Center. For further information call Henry Cooke at 475-5021.

Course Requirements

	TOOL AND DIE MAKING (CTML)		INSTRUMENT MAKING AND EXP. WORK (CTMI)	
Phase 1	Mechanical Blueprint Reading. CTID-200 Machine Shop Lecture.CTIS-201,202,203 Machine Shop Lab.CTIS-206,207,208 Shop Mathematics. TLDT-051,052,053	Phase 1	Mechanical Blueprint Reading. CTID-200 Machine Shop Lecture. CTIS-201,202,203 Machine Shop Lab.CTIS-206,207,208 Shop Mathematics.	
2	Advanced Machine Shop I.CTIS-104,105,106 Shop Trigonometry.TLDT-054,055,056	2	Instrument Making I.CTIS-111,112,113 Shop Trigonometry. TLDT-054,055,056	
3	Tool \& Die Making I.CTIS-121,122,123 Heat Treatment. CTIS-161,162	3	Instrument Making II. CTIS-114,115,116 HeatTreatmentCTIS-161,162	
4	Tool \& Die Making II.CTIS-124,125,126 Human Relations.CBCE-101,102,103	4	Instrument Making.CTIS-117,118,119 Human Relations.CBCE-101,102,103	
S	Tool \& Die Making II.CTIS-127,128,129 Electives (any 3 quarters)	5	Electives (any 3 quarters)	
	MACHINE SHOP (CTMS)	Starting Classes for Mid Year		
Phase 1	Mechanical Blueprint Reading. CTID-200 Machine Shop Lecture.CTIS-201,202,203 Machine Shop Lab. CTIS-206,207,208 Shop Mathematics. TLDT-051,052,053	Winter Mach. Lec. CTIS-201 Mach. Lab. CTIS-206 MathCTIS-157 B/P CTID-200	Spring Summer B/P CTID-200 Mach. Lec. CTIS-204 Mach. Lab. CTIS-209	
2	Advanced Machine Shop I.CTIS-104,105,106 HeatTreatment. CTIS-161,162			
3	Advanced Machine Shop II.CTIS-107,108,109 Human Relations. CBCE-101,102,103			

Computer Service Technology

The advent of the "personal computer," the use of computer controlled machines in industry, and the increased use of computers in large and small business, have created a need for technicians to service this hardware. This exciting field will continue to grow, and the demand for individuals trained in the maintenance of computers and computer controlled devices will expand as new applications for computers develop.

Students in the Computer Service Technology diploma program study electricity and electronics, computer related courses dealing with hardware, microprocessors, and CPU operation, as well as work related courses in math and communications. The facilities used in the program provide opportunities for extensive experience on a variety of equipment used in the repair of computers and exposure to a sampling of the computer hardware used today.

Computer-Aided Drafting Certificate

Computer-aided drafting (CAD) is changing the role of drafters, designers, and engineering professionals. This has resulted in a need for advanced skills and knowledge in order to remain current.
The certificate is designed for individuals who have a strong drafting/ design background (individuals without this experience may enroll in the Engineering Graphics Certificate courses).
The certificate requires 20 quarter credit hours of study which may be completed in one year. For further information, contact the Drafting/ CAD/CAM department at 475-5028.

Engineering Graphics Certificate

The Engineering Graphics Certificate is designed for individuals who are interested in gaining the knowledge and skill to enter the drafting and design field. The program includes mechanical drawing, machine shop, and other technical courses. The certificate may be completed in one year of study.

Computer Service Tech. Requirements

FIRST QUARTER	COURSENUMBER	CREDIT
Dynamic Communications	0236-204	04
Introduction to Computer Operations 1	0275-237	03
SECOND QUARTER		
Technical Mathematics	0240-201	04
Introduction to Computer Operations II	0275-238	03
THIRD QUARTER		
Interpersonal Communication for Customer Service	0236-340	04
Elements of Electricity/Electronics	0264-201	03
Elements of Electricity/Electronics Lab	0264-206	01
FOURTH QUARTER		
Elements of Electricity/Electronics	0264-202	03
Elements of Electricity/Electronics Lab	0264-207	01
FIFTH QUARTER		
Digital Circuits	0275-234	04
Micro-Computer Organization	0275-240	04
SIXTH QUARTER		
Computer Systems Troubleshooting	0275-250	04
	Total	38

CAD/CAM Certificate

Fall	Qtr. Cr.	Winter	Qtr. Cr .	Spring	Qtr. Cr.
Intro to Computer Operations 1 CAIC-237	3	Intro to Computer Operations II CAIC-238	3	$\begin{aligned} & \text { CAD } \\ & \text { CTID-347 } \end{aligned}$	3
				Special Project (Indep. Study) CTID-398	2
Intro to CIM CTID-301	3	Intro to CAD CTID-345	2	CAM-CNC CTID-348	4
	6		5		9
				Total	20

Engineering Graphics Certificate

Fall Qtr.	Winter $\quad \begin{gathered}\text { Qtr. } \\ \text { Cr. }\end{gathered}$	$\begin{array}{cr}\text { Spring } & \text { Qtr. } \\ \text { Cr. }\end{array}$	Summer	Qtr. Cr.
Prod, and Eng. Dwg. CTID-204 4	Computerized Descriptive Geom. CTID-210	Manufacturing Processes CTID-215	Intro.to CAD CTID-345	2
Machine Shop Lecture CTIS-201	Machine Shop Lecture CTIS-202	Electrical/Electronics Schematic Interpretation CAIC-212	Material Selection CTID-216	2
Machine Shop Lab CTIS-206	Machine Shop Lab CTIS-207			
6	6	6		4
Total				22

College of Engineering

Paul E. Petersen, Dean

The programs offered by the College of Engineering are planned to prepare students to fit into present-day industrial and community life and to lay a foundation for graduate work in specialized fields. This is accomplished by offering curricula that are strong in fundamentals, yet lead to specialization in the junior and senior years, and maintain a balance among humanisticsocial subjects, the physical sciences, and professional courses.

Five-year programs

The college offers five five-year cooperative education programs leading to the bachelor of science degree with majors in electrical, computer, industrial, mechanical and microelectronic engineering.

Resources

The departments of Electrical, Industrial and Manufacturing and Mechanical Engineering maintain extensive laboratory facilities in the James E. Gleason Memorial Building to provide for both undergraduate and graduate instruction and research by faculty and graduate students. The Departments of Computer Engineering and Microelectronic Engineering operate laboratories in the Center for Microelectronic and Computer Engineering, a 57,000-square-foot laboratory structure containing over 10,000 square feet of clean room space for the fabrication of integrated circuits. The Institute's extensive computer facilities are augmented for students and faculty in the College of Engineering by the Gleason User Center, a four-station Calma computer for VLSI design and a new 16 -station Intergraph system for computer-aided design (CAD), plus numerous small computers and personal computers in virtually all offices and most labs. Laboratory instruction is a vital part of the college's five undergraduate curricula, and the faculty pride themselves on having integrated both the computer and real-life laboratory work in the academic program. The College of Engineering laboratory experience helps prepare the engineering student for industrial work assignments while on co-op. The industry experience, in turn, strengthens the total academic program through exposing the student to the newest and most modern of industrial computers and equipment.

Cooperative education plan

Year		Fall	Winter	Spring	Summer
1 and 2		RIT	RIT	RIT	
3 and 4	A	RIT	CO-OP	RIT	CO-OP
	B	CO-OP	RIT	CO-OP	RIT
5	A	RIT	CO-OP	RIT	
	B	CO-OP	RIT	RIT	

The cooperative plan

Students in the five-year cooperative programs attend classes during the Fall, Winter, and Spring quarters of their first and second years. Prior to the beginning of the third year, students are assigned to A and B blocks. In any given quarter, students in one block obtain cooperative employment while those in the other block attend classes. Employment arrangements are made by each student through his or her co-op coordinator in the Center for Cooperative Education and Placement. The chart illustrates the cooperative program as offered by the College of Engineering.

Academic advising
Each student is assigned an advisor upon entry into the College of Engineering. This person is available to the student for career counseling as well as academic advising.

Transfer programs
The College of Engineering at RIT has for many years admitted graduates from two-year engineering science programs at community colleges and technical institutes. The rapid integration of these transfer students into the baccalaureate programs in significant numbers has provided an added dimension and a uniqueness to the College of Engineering.

In virtually all cases, accepted graduates of the two-year engineering science programs are able to enter the regular third year program in RIT's five engineering programs.

For those students who have completed programs in electrical or electronics technology with a high scholastic average, it is possible to develop a program of eight or nine academic quarters leading to a bachelor of science degree in electrical engineering.

Orientation
The engineering programs are strongly oriented toward mathematics and the physical sciences. Emphasis is placed upon the study of these subjects in the first two years to provide a foundation for the applied sciences and for the engineering subjects which are scheduled later in the programs.

Careers

Graduates qualify for professional work in design and development of equipment and systems, research and experimental work, supervision of technical projects and managerial positions in industry. Increasing numbers of graduates continue their education for the master of science or the doctor of philosophy degrees.

Entrance requirements (BS)

Applicants for the engineering programs must be high school graduates, and must have completed elementary and intermediate algebra, plane geometry, trigonometry, and both physics and chemistry while in high school. Advanced algebra, solid geometry, and calculus, while not required, are highly desirable. The applicant's proficiency in the required entrance subjects should be high since these provide a good index of his or her ability to cope with the more advanced courses in the science programs.

All applicants are required to take entrance examinations as described in the general section of this bulletin.

Graduation requirements

The minimum requirements for the bachelor of science degree in the College of Engineering are:

1. Successful completion of all required and elective courses of the program, including the co-op requirement.
2. A program cumulative grade point average of at least 2.0 (the number of quality points must be equal to at least twice the number of quarter credit hours required).
3. A principal field grade point average of at least 2.0 as defined for the specific discipline.

Prospective students should consult the individual program descriptions for cooperative employment requirements and for additional information.

Accreditation

The programs of study leading to the bachelor of science degree in computer engineering, electrical engineering, industrial engineering, mechanical engineering and microelectronic engineering are accredited by the Accreditation Board for Engineering and Technology (ABET). The college is a member institution of the American Society for Engineering Education. All graduating seniors are eligible, and encouraged, to sit for the Intern Engineer portion of the New York State Professional Engineering examination during their final quarter in school.

Part-time students

An increasing number of students desire to pursue their engineering degree on a part-time basis while maintaining full-time employment in industry. In response to the needs of such students the College of Engineering has expanded its scheduling of classes in the upper division of the electrical engineering program so that these courses may be taken during the late afternoon and early evening as well as during the day. Students wishing to pursue parttime studies must qualify for matriculation as regular third-year engineering students through normal admission procedures. As with full-time students, part-time students are required to complete the equivalent of five quarters of approved cooperative work experience. Arrangements are made for part-time students to utilize approved portions of their regular employment to satisfy the co-op requirements. Persons wishing further information on part-time studies in electrical engineering should contact the department head.

Graduate degrees

Programs leading to the master of science degree are offered in the computer engineering, electrical engineering and mechanical engineering departments. The programs may be pursued on a part-time or full-time basis since the majority of courses are offered in the late afternoon and early evening.

In addition, the College of Engineering offers post-baccalaureate professional programs leading to the master of engineering degree. Study may be pursued in such areas as electrical engineering, manufacturing engineering, industrial engineering, mechanical engineering, engineering management, microelectronic manufacturing engineering, and systems engineering. The program is unique in that it extends the undergraduate cooperative concept to the graduate level in an industrial internship for which academic credit is granted.

Designed as a full-time program, the master of engineering degree may also be pursued on a part-time basis by engineers employed in local industry.

The College of Engineering offers jointly with the College of Science a program leading to the master of science degree in materials science and engineering.

For further information on graduate programs in the College of Engineering, request the Graduate Bulletin or contact the Associate Dean for Graduate Studies and Research, College of Engineering.

Course descriptions

For a complete oudine of courses offered at RIT, please request the Course Description Catalog from the Admissions Office.

Admission at a Glance: College of Engineering Programs

General information on RIT's admission requirements, procedures and services is included in detail on pages 176-177 of this bulletin.

Five-year cooperative programs leading to the BS degree are offered including majors in computer, electrical, industrial, mechanical and microelectronic engineering.

The programs prepare students for employment in the modern industrial world. There are extensive laboratory and experimental facilities available for student use. The programs in computer, electrical, industrial, mechanical and microelectronic engineering are accredited by the Accreditation Board for Engineering and Technology.

Electrical Engineering-Students first develop proficiency in mathematics, science, and engineering fundamentals. Fundamental electrical studies include electromagnetics, energy conversion, circuit theory, electronics, controls, and digital systems. Degree granted: BS-5 year.

Computer Engineering-This program builds upon a blend of computer science and electrical engineering and is designed to enable the graduates to intelligently incorporate computers within engineering products and processes. Degree granted: BS-5 year.

Transfer Admission with advanced standing

Program	Required High School Subjects*	Desirable Elective Subjects	Two-Year College Programs
Electrical Engineering	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	additional mathematics	Engineering Science (liberal arts with math/science option considered on individual basis) or Electrical Technology (A.A.S. Degree)
Computer Engineering	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	additional mathematics	Engineering Science (liberal arts with math/science option considered on individual basis)
Industrial Engineering	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	additional mathematics	Engineering Science (liberal arts with math/science option considered on individual basis)
Mechanical Engineering	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	additional mathematics	Engineering Science (liberal arts with math/science ' option considered on individual basis)
Microelectronic Engineering	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	additional mathematics	Engineering Science (liberal arts with math/science option considered on individual basis)

'Four years of English are required in all programs, except where state requirements differ.
A substantial number of professional and free electives are also available.

Industrial and Manufacturing

Engineering-Students learn design improvement and installation of integrated systems of people, materials, and equipment. Students also develop specialized knowledge in mathematics and physical science with methods of engineering and design. Degree granted: BS-5 year.

Mechanical Engineering-Students devote the first two years to the study of mathematics, physics, chemistry, and mechanics. By appropriately selecting courses from science, technical and free elective courses, a student can concentrate in the applied mechanics area or in the thermal fluid sciences area. Degree granted: BS-5 year.

Microelectronic Engineering-This interdisciplinary engineering curriculum combines elements of electrical engineering with chemistry, physics, imaging science and mathematics to provide an emphasis on manufacturing or process engineering as it relates to the design and fabrication of integrated circuits. Degree granted: BS-5 year.

Computer Engineering

Roy S. Czernikowski, Head

The computer engineering program focuses on the design and development of computer systems and computerintegrated systems with due consideration to such engineering factors as function, performance, cost, reliability and maintainability. The goal of the computer engineer is to build computer systems or computer-integrated systems to meet application requirements with attention to the hardware/soft ware interaction and all the aspects just mentioned.
The program prepares graduates to design and implement various engineering products with embedded computers and to undertake graduate study where sophisticated computer system design can be addressed.
The program strives to interweave and span the topics from formal specifications to heuristic algorithm development, from system architecture to computer design, from interface electronics to real-time applications, and from interprocess communications management to VLSI implementation.
As an engineering discipline, this program emphasizes the careful adoption of design methodology and the application of sophisticated engineering tools. The intensive laboratory requirements ensure the graduate of significant experience with modern facilities and up-to-date design tools.
The cooperative education program of the final three years enables the student to apply the principles and techniques of computer engineering to real industrial problems, which provides students with a stronger framework on which to build their academic courses. These co-op work periods alternate with academic quarters over the last three years of the program.

Combined B.S./M.S. Degree

Sequence in Computer Engineering
The Department of Computer Engineering also offers a combined bachelor of science and master of science degree course sequence over five calendar years. This accelerated sequence provides an excellent opportunity for outstanding undergraduate students to pursue a graduate degree in a cohesive program. Applications to this special sequence will be accepted from matriculated undergraduate computer engi-

Yr.	BS DEGREE IN COMPUTER ENGINEERING	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	EECC-200 Introduction to Computer Engineering	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	4	4
	ICSP-241 Programming I Algorithmic Structures			
	ICSP-242 Programming II Data Structures			
	EECC-250 Assembly Language Programming			
	SCHG-208 College Chemistry I	44	4	4
	SMAM-251,252,253 Calculus I, II, III			
	SMAM-305 Calculus IV	4		4
	SPSP-311,312 University Physics I, II		4	4
	SPSP-375,376 University Physics Lab I, II		1	1
	"Liberal Arts		4	0
	tPhysical Education	0	0	
2	EECC-341 Intro, to Digital Systems for Computer Engineers . . . EECC-361 Modeling of Linear Systems	4	4	4
	EEEE-351 Circuit Analysis I		2	4
	EMEM-335 Elements of Statics			
	EMEM-349 Elements of Dynamics			3
	ICSP-243 Programming III Design \& Implementation			4
	ICSP-319 Scientific Applications Programming		4	
	ICSS-325 Data Organization \& Management			
	SMAM-265 Foundations of Discrete Math			
	SMAM-306 Differential Equations	4		0
	SPSP-313 University Physics III	4		
	SPSP-377 University Physics Lab 111	1		
	SPSP-314 Modern Physics		4	
	"Liberal Arts	4		
	tPhysical Education	0	0	
3		FALL WTR.		SPG. SMR.
	EECC-452 Linear Control Systems	444		4
	EEEE-352 Circuit Analysis II			
	EEEE-441,442 Electronics I, II			444
	ICSS-440 Operating Systems			
	SMAM-351 Probability			
	"Liberal Arts	4		
4	EECC-550 Computer Organization	4		4
	EECC-553 Digital Control Systems Design			
	EECC-560 Interface \& Digital Electronics			
	EECC-561 Digital Systems Design for Computer Engineers EECC-630 Intro, to VLSI Design			$\begin{aligned} & 4 \\ & 4 \end{aligned}$
	ICSP-450 Programming Language Concepts	4		4
	"Liberal Arts	4		
5	EECC-551 Computer Architecture	4		4
	EECC-655 Projects in Computer Engineering			
	EECC-694 Data \& Computer Communications			
	'Professional Elective	4		4
	Free Elective			4
	"Liberal Arts	4		4
	"Liberal Arts (Senior Seminar)			2

'Professional electives must have a 25\% engineering design component.
"Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
neering students who have completed all the courses in the first two years of the baccalaureate program with a cumulative grade point average of at least 3.4 out of 4.0 ; at least 55 of these credits must have been earned at RIT. Continuance in this program also requires the maintenance of at least a 3.0 overall grade point average as well as at least 3.0 in the 45 quarter credits directly applicable to the master of science degree portion.

Principal field of study

For students matriculated in the interdisciplinary computer engineering program, the principal field of study is defined to be all courses taken in the College of Engineering and the School of Computer Science and Technology. Matriculated students not maintaining a 2.0 cumulative grade point average in their principal field of study are subject to academic probation and suspension according to Institute policy.

Electrical Engineering

Paul E. Petersen, Head
The cooperative five-year engineering program
The role of an engineer has been defined as "applying the laws of mathematics and principles of science to the solution of practical problems." The curriculum of the BS degree program in electrical engineering at RIT has been planned with this definition in mind.

In today's world, a tremendous diversity of interest and wide variety of talents and skills are expected of an electrical engineer by industry and graduate schools. As a consequence, the electrical engineering curriculum not only provides a basic foundation in the fundamental areas of electrical engineering, but also permits each student to pursue one or more specific areas of interest by selecting professional electives in a variety of different fields. The curriculum is flexible to allow a student's individual program to range from a high degree of specialization in one area to a broad general coverage of engineering and science.

The philosophy of the faculty of the Department of Electrical Engineering stresses the use of the laboratory in strengthening a student's knowledge of the subject. The curriculum includes a large number of courses in which the laboratory is an integral part. There is a continual effort on the part of the faculty to keep the laboratory equipment and experience up to date.

Since the ability to design is an important part of the training of an engineer, the student is presented with challenging problems of design in a number of courses.
The co-op requirement of the curriculum enhances student knowledge acquired in the classroom and the laboratory. The exposure and experience gained by the student in industry make the student keenly aware of the constraints imposed by the industrial environment on the solution of engineering problems. The co-op experience also aids the student in deciding which career path would be most challenging and rewarding in his or her case. The co-op requirement results in the production of a mature graduate with welldeveloped academic and industrial perspectives.

'One of the professional electives must be a design elective.
"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
the curriculum is devoted to the study of liberal arts throughout the five years of the program. These courses are aimed at making students more sensitive to the factors that normally surround any decision-making situation, improving their ability to communicate with others, and making their professional life more meaningful and rewarding.

The first two years of the curriculum are devoted to the mastery of the laws of mathematics and principles of science essential to the study of electrical engineering subjects. Some technical courses directly involving electrical engineering principles also are offered in the first two years in order to motivate the student in electrical engineering. The third and fourth years build upon the basic foundation laid in the first two years by focusing on the subjects that form the core of electrical engineering. Courses in circuits, electronics, linear systems, electromagnetic fields, physics of semiconductor devices, communication systems, control systems, and energy conversion are taught in these two years. The fifth and final year allows the student to specialize in an area of his or her professional interests. The professional electives may be taken from courses offered by the Department of Electrical Engineering, the other departments in the College of Engineering, or the College of Science, subject to the approval of the student's faculty advisor.

Transfer programs

The Department of Electrical Engineering actively seeks transfer students who have successfully completed an associate degree program. Those holding an associate degree in engineering science, as well as those holding an associate degree in applied science are accepted into the program, provided they meet the admission requirements in effect at the time of their application.

Transfer credits are awarded only on a course-by-course basis to all transfer students. All students are expected to complete the same course requirements as those entering the BS degree program as freshmen, either by actually completing the specific courses or by receiving transfer credits.

Transfers from two-year engineering science Graduates of the AS degree in engineering science program are usually in step with the third-year student in electrical engineering at RIT except for the following three courses: EEEE 240, Introduction to Digital Systems (4 credits); EEEE 310, Numerical Methods (2 credits); and EEEE 365, Introduction to Microcomputers (4 credits).

Transfer from two-year electrical or electronic technology

Graduates with an AAS degree in electrical or electronic technology usually require eight academic quarters of courses in addition to the five quarters of co-op in industry. The program to be followed will vary significantly from one student to another since there is a significant variation in the two-year technology programs offered by different community colleges.

Extended day schedule (for parttime evening students)

 In order to permit a person working full time in industry to earn a BS degree in electrical engineering (accredited by the Accreditation Board of Engineering and Technology), courses also are scheduled in the late afternoons and evenings. These courses are offered and taught by the faculty of the Department of Electrical Engineer ing and meet the same standards as those taught during the normal daytime hours. Students entering these programs must have an AS in engineer ing science and be employed full time in a technical position. Applicants to the extended day schedule will be evaluated in the same manner as those transferring to the full-time day schedule of the program. A student must plan to take two courses in each academic quarter. A typical schedule of courses for the extended day student is shown in the adjoining table. Variations will be necessary in individual cases depending on the transfer credits awarded at the time of entering the program.
Industrial and Manufacturing Engineering

Richard Reeve, Head

Industrial engineering differs from other branches of the engineering profession in at least two ways. First, industrial engineering education is relevant to most types of industry and commercial activity. Second, it is that major branch of engineering concerned $\mathrm{n}(\mathrm{Jt}$ only with machines, but with people as well.

Specifically, industrial engineering is concerned with the design, improvement, and installation of integrated systems of people, materials, and equipment. It draws upon specialized knowledge and skill in the mathematical and physical sciences, together with the principles and methods of engineering analysis and design.
The industrial engineering curriculum covers the principal concepts of human performance, mathematical modeling, computer programming and applications, management systems, and manufacturing processes.
The curriculum stresses the application of computers in solving the engineering problems of today. For example:

1. The undergraduate industrial engineer at RIT utilizes computer graphics in designing the layout of manufacturing plants and in the development of dynamic, animated computer simulation models.
2. The industrial engineer utilizes computers to control flexible manufacturing systems involving robots, machines, and conveyors.
3. Industrial engineers at RIT utilize the computer in conjunction with touch-sensitive devices, voice recognition systems, and robots in the analysis and design of man/machine systems.

Through the use of professional and free electives the industrial engineering student can build a strong concentration of courses in manufacturing engineering. A student within the department of industrial and manufacturing may build a concentration of manufacturing expertise involving robotics, automation, design for manufacturing, NC programming, safety, and other related areas. In addition, there are other program concentrations that would enable the industrial engineering student to build a minor concentration of study in mechanical engineering, electrical engineering, or computer science.

Careers

Some of the activities of industrial engineers include work measurement, operations research, applied statistics, human factors, plant layout, materials handling, production planning and control, manufacturing, and management consulting.

Balance rather than specialization has allowed our graduates to pursue varied paths. Examples of the diversity, along with the role that an industrial engineer might function within, are reflected through the following partial listing of industrial engineering co-op assignments.

1. Hospitals
a. improve efficiency of a patient therapy department
b. optimal patient scheduling for physicians
c. establishment of outpatient clinic staffing levels
2. Manufacturing industries
a. product life studies
b. layout of new and existing work areas
c. design and implementation of an information system
d. investigation of production processes involved in cleaning carbide dies
e. economic investigation-new versus repaired breakdown analysis
f. investigation of waiting lines in connection with a product line
g. investigation of delivery service which involved scheduling, route modification and material handling
h. assisted in setting up a production control monitoring board
i. computer programming relating to pricing policies, blending problems, and truck scheduling
j. downtime studies of various operations using time study and work sampling
k. development and computer ization of a forecasting model

Transfer programs
Transfer programs for industrial engineering students are arranged on an individual basis. This allows a student to build an industrial engineering program which best takes into account his or her previous education and work experience. Students completing an AS in engineering science normally receive credit for the first two years and start their program at RIT with the thirdyear class.

Yr.	BS DEGREE IN INDUSTRIAL ENGINEERING	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	EIEI-201 Introduction to Industrial Engineering	4	4	4
	EIEI-202 Computing for Industrial Engineers			
	SCHG-208,209 College Chemistry I, II			
	SMAM-251,252,253 Calculus I, II, III		4	
	SPSP-311,312 University Physics I, II		1	1
	SPSP-375,376 University Physics Lab I, II			
	"Liberal Arts (Core)	4	1	4
	JPhysical Education Elective	0	0	0
2	EMEM-331 Mechanics I	44	4	4
	EMEM-332 Mechanics II			
	SMAM-305 Calculus IV			
	SMAM-306 Differential Equations			
	SMAM-328 Engineering Mathematics			4
	SPSP-313 University Physics III	41	4	
	SPSP-377 University Physics Lab m			4
	EMEM-343 Materials Processing	4		
	EMEM-344 Materials Science		2	
	EIEI-301 Computer Tools for Increased Productivity			
	Science Elective			4
	"Liberal Arts (Core)		4	
	tPhysical Education Elective	0	0	0
3	EIEI-420 Work Measurement \& Analysis I	FALL WTR.		SPG. SMR.
		4444		4444
	EIEI-520 Engineering Economics			
	EIEI-401 Introduction to Operations Research I			
	SMAM-351 Probability			
	SMAM-352 Applied Statistics I			
	EIEI-415 Human Factors			
	EIEI-481 Management Theory \& Practice			
	EIEI-422 Systems \& Facilities Planning			
4	EIEI-510,511 Applied Statistics I, II	4444		4
	EIEI-402 Introduction to Operations Research II			
	EIEI-503 Simulation			
	EIEI-516 Human Factors II			444
	EIEI-630 Computer Aided Manufacturing			
	EIEI-530 Engineering Design			
	"Liberal Arts (Concentration)			
5	EIEI-560 Project Design	843		4842
	-Professional Elective			
	Liberal Arts (Concentration)			
	"Liberal Arts (Senior Seminar)			

'At least one professional elective must be selected from the following courses: EMEM-431 Thermodynamics: EMEM-415 Fluid Mechanics I; EEEE-351,352 Circuit Analysis I, II.
"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Mechanical Engineering

Charles W. Haines, Acting Head
Mechanical engineering is perhaps the most comprehensive of the engineering disciplines, and the mechanical engineer's interests encompass the design of such diverse systems as missiles, power plants, robots, and machine tools. The spectrum of professional activity for the mechanical engineering graduate runs from research through design and development to manufacturing and sales. Because of their comprehensive training and education in the areas of production and economics, mechanical engineers are often called upon to assume management positions.

The Mechanical Engineering Department is staffed to offer professional courses in the areas of thermal systems, applied mechanics, manufacturing, materials science, environmental science, systems analysis, computer-aided graphics and design, and robotics. The department's laboratories are equipped to provide extensive experimentation in these areas. For instance, they include a laser doppler anemometer for measuring fluid velocities, a sting balance for measuring drag and lift, dynamic system simulators, spectrum analyzer, and a model analysis system.

Students have an opportunity to participate in the design of an all-terrain vehicle, the minibaja, and enter the vehicle in national competitions. They also are encouraged to participate in the student chapters of professional societies such as ASME, SME, and SAE.

The 194 quarter-credit Mechanical Engineering undergraduate program provides students a broad base of academic and practical experience. To emphasize the curricular strengths, the courses have been grouped by topical areas under two major headings, liberal arts/sciences areas and mechanical engineering.

'See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education

```
Liberal Arts \& Sciences Courses
Liberal Arts
    Composition
    Literature
    Humanities 1,2
    Social Science 1,2
    Upper Division Courses 1,2,3
    Senior Seminar
    (38 credits)
Mathematics
    Calculus 1,2,3,4
    Differential Equations
    Matrices \& B.V.P.
    (24 credits)
Science
    Chemistry 1,2
    Physics 1,2,3
    Science Eiectives 1,2
    (31 credits)
Institute-wide Courses
    Free Eiectives 1,2
    (8 credits)
```

Mechanical Engineering Courses
Structures \& Motion
Statics
Engineering Mechanics
Materials Science*
Machine Design
Dynamics
Response of Dynamic Systems
(24 credits)
Manufacturing
Introduction to Graphics*
Computer-Aided Design*
Materials Processing*
Digital Circuits and Microprocessors
Design for Manufacturing
(18 credits)
Energy
Thermodynamics
Fluid Mechanics
Heat Transfer
Transport
Phenomenon
(16 credits)
Computation
Fortran
Numerical Methods
Advanced Computational
Techniques
(11 credits)
Laboratory
Engineering Mechanics
Response of Dynamic System
Thermodynamics
Fluid/Heat Transfer
(4 credits)
Design/Theory
Technical Eiectives 1,2,3
Senior Design Project 1,2
(20 credits)
'Laboratory is part of course

Each of the listed technical eiectives offered by the department includes one significant design project. Students may enroll in any three of the following courses. For convenience they have been grouped by interest areas.

Technical Eiectives
Solid Body Mechanics
EMEM-672 Dynamics of Machinery
EMEM-694 Stress Analysis
EMEM-658 Engineering Vibrations
EMEM-615 Robotics
EMEM-620 Optimal Design
Thermal-Fluid Science
EMEM-635 Heat Transfer II
EMEM-652 Turbomachinery
EMEM-660 Refrigeration and Air Conditioning
EMEM-633 Energy Conversion Systems

Aerospace
EMEM-560 Introduction to Aerospace Engineering
EMEM-671 Aerospace Structures
EMEM-675 Aerodynamics
EMEM-678 Propulsion
EMEM-682 Flight Dynamics
Free Elective Courses
EMEM-637 Laser Engineering
EMEM-643 Control Systems
EMEM-650 Gas Dynamics
EMEM-651 Viscous Flows
EMEM-669 Introduction to Water Pollution
EMEM-680 Advanced Thermodynamics
EMEM-685 Advanced Strength of Materials
EMEM-687 Engineering Economy
EMEM-690 Environment and the Engineer
Graduate Courses and courses from other colleges

The writing policy of the Mechanical Engineering Department requires that during the third year, all mechanical engineering students take the Test of Standard Written English (TSWE).
Those receiving a scaled score of 50 or above will be certified as having satisfied the program's writing competency requirements. Those receiving a scaled score below 50 must take and pass the College of Liberal Arts course, College Writing I (0502-301), in order to satisfy competency requirements. This course is defined as an overload.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions Office.

Transfer programs
The Mechanical Engineering Department at RIT has a long-standing tradition of admitting graduates from twoyear community college programs in engineering science and in engineering technology. The addition of significant numbers of transfer students to our regular undergraduate students provides RIT's engineering program with a unique academic atmosphere.

The AS graduate in engineering science with above average scholastic achievement can generally anticipate entering the BS program in mechanical engineering as a regular third-year student. It may be necessary to adjust a few courses in our program to accommodate differences in the programs of preparation in the first two years, since transfer credits are granted on the basis of a course-by-course evaluation.

The AAS graduate in mechanical technology who has demonstrated outstanding achievement should seriously consider transfer to a BS program in mechanical engineering as one alternative for continuing formal education. The exact number of transfer credits that he or she may qualify for varies widely, and therefore the student should contact the department head.

Combined five-year BS/MS degree sequence
In addition to the bachelor of science and master of science degree programs described under the section entitled "College of Engineering," a combined BS/MS degree sequence is also available for the mechanical engineering student. A student enrolled in this sequence is required to successfully complete a minimum of 227 quarter credit hours. After completing this requirement the student is awarded the BS and MS degrees simultaneously. A student may apply for admission to this sequence in the spring quarter of his/ her sophomore year. Admission into the sequence is based on the student's cumulative grade point average, which must be at least 3.0, two letters of recommendation from the faculty, and a personal interview by a departmental committee. All students in the sequence are required to maintain a cumulative grade point average of at least 3.0. Further information regarding this sequence can be obtained from Professor Charles Haines, (716) 475-2029, in the Department of Mechanical Engineering or from the department office, (716) 475-2162.

A transfer student may apply to the program while completing his/her last semester at a community college. This applicant would have to meet the requirements stated above.

Microelectronic Engineering

Lynn Fuller, Director

The College of Engineering is proud to offer an undergraduate degree program in microelectronic engineering. This program is the only one of its type in the United States that leads to the bachelor of science degree in microelectronic engineering. Offered in conjunction with the College of Graphic Arts and Photography and the College of Science, the ABET accredited fiveyear program emphasizes all aspects of microelectronic engineering. It provides the broad disciplinary background in optics, chemistry, device physics, computer science, electrical engineering, photographic science, and statistics necessary for entry into the microelectronic industry.

Students participate in the required co-op portion of the program after completion of their second year of school. Microelectronic engineering coop students work for all of the major manufacturers of integrated circuits across the United States. Upon completion of the program the student will be well-prepared to enter the industry immediately or go on to advanced work in graduate school.

Students in the program will have hands-on experience in the design and processing of integrated circuits, the vital component in almost every advanced electronic product manufactured today. The undergraduate laboratories at RIT for microelectronic engineering are among the best in the nation.

As the nationwide shortage of microelectronic engineers continues to grow, RIT graduates will provide a valuable resource to the microelectronic industry in the United States. For the student, this program offers an unparalleled opportunity to prepare for professional challenge and success in one of the leading areas of engineering of our time.

"Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

College of Fine and Applied Arts

peter Giopulos, Acting Dean

The College of Fine and Applied Arts offers programs in the arts and crafts through curricula in the School of Art and Design and the School for American Craftsmen. Concentrations, or majors, in the School of Art and Design are given in graphic design, industrial design, interior design, painting, packaging design, printmaking, paintingillustration, printmaking-illustration, and medical illustration. In the School for American Craftsmen concentrations are given in ceramics and ceramic sculpture, glass, metalcrafts and jewelry, weaving and textile design and woodworking and furniture design.

The studies in the two schools of the college express a common educational ideal; the conviction that technical competence provides the most satisfactory foundation for the expression of creative invention. However, the mastery of techniques is seen as a means, not an end; the end of education in the arts is the exercise of creative imagination. E:

Resources

The equipment and the studios of the School of Art and Design are superior. A comprehensive art library of source material and an outstanding collection of slides are available for reference; and instructional films and other visual aids are utilized. Exhibitions, held in the Bevier Gallery, feature the work of contemporary painters, designers, and graphic artists, as well as work by faculty and students. Exhibition space in the Bevier Gallery extends the classroom into the public arena. In this gallery the focus is to bring attention to excellence in ideas, concepts, and aesthetic endeavors through the arts, crafts, and design expressions. Openings are planned for students to meet the artists. The Student Honors Show hangs through the summer and the opening of classes in September. Professional designers, painters, photographers, and graphic arts personalities are invited to lecture and give demonstrations. Rochester industry and commerce often sponsor pilot programs which are carried on under faculty supervision.

An added resource is the community of Rochester itself, with its many opportunities for educational, cultural, and social enrichment. Exhibitions, programs in the performing arts, and lectures are available to provide extracurricular learning for the interested student.

The resources of the School for American Craftsmen available for the student are exceptional; excellent equipment and facilities and a unique and challenging program combine learning and doing.

The faculty in the College of Fine and Applied Arts are productive in the fields in which they teach, and the honors and prizes they have won are a reflection of the prestige they enjoy as artists, designers and craftspeople. They have been broadly educated in the United States, and are well acquainted with contemporary practice in their art, design or craft. While the teaching staff is composed of professionals able to practice their discipline with distinction, they are, as well, interested and sympathetic teachers and counselors.

The Computer Centers, available for student use, are equipped with Apple, IBM, Artronics, Autographies, Digital and Genigraphics terminals. Photo darkrooms also support the assigned problems. The Craft Village provides additional support for blacksmithing, sculpture, glassblowing and ceramic firing needs.

The Wallace Memorial Library is particularly strong in the extensive list of contemporary periodicals in design, arts and crafts available for study and research.
The hearing-impaired student receives assistance through the educational support team within the college.

Cooperative education

Recognizing the importance of cooperative education to the overall academic program, the college has initiated an optional summer co-op for sophomores and juniors. Co-op experience provides firsthand knowledge of the forces influencing the fields of art, design and craft, and allows the practice of new skills in work settings. It also gives students an opportunity to earn an income to help meet educational costs. The student is responsible for finding the co-op job and for performing productively. Co-op students evaluate career goals before making employment decisions, gain professional experience for their resumes and enhance quality placement after graduation. As an option, a co-op experience usually follows the sophomore and junior years, the student being gainfully employed during the two summers.

Accreditation

The programs of study offered in the College of Fine and Applied Arts are fully accredited: courses of study have been approved by the New York State Department of Education, the Middle States Association of Colleges and Secondary Schools, and the National Association of Schools of Art and Design.

Plan of education

The programs in the College of Fine and Applied Arts are two and four years in length and lead to the associate in applied science and the bachelor of fine arts degrees. The packaging design program is four years and leads to the bachelor of science degree. Students attend school for three quarters, each eleven weeks in length, during the school year. Advanced study at the graduate level is offered leading to the master of fine arts and the master of science for teachers degrees. The former may be earned normally in two years, the latter in one. The MST may be earned in programs carried during regular and summer studies, depending on admission and department offerings. Among the programs offered for the master of science for teachers degree is a concentration in art education designed for those holding the bachelor of fine arts degree (or a bachelor of arts degree with an art major) which leads to the graduate degree and permanent certification to teach in the public schools of the State of New York. This is a September start.

Those interested in graduate study should request a copy of the Graduate Bulletin, which describes the degrees offered, the programs of study, and the procedures governing admission.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions Office.

Advising

Peers, faculty, support staff and administration all contribute to effective advising. Students are urged to participate and take on the responsibility of obtaining good advising. Many resources are provided. Self advising information is available through a variety of sources: RIT bulletin, program outline as printed in the Viewbook, CFAA Handbook for undergraduate and graduate students, grade reports, transcripts and a log sheet that records completed courses and requirements.

It is recommended that each student select an advisor and develop a working relationship for program and career advising. Questions about degree requirements and the selection of an advisor should be directed to the associate dean for graduate studies and to the assistant dean for undergraduate studies.

Transfer program

The College of Fine and Applied Arts offers a summer transfer program for art and design majors. Successful completion of this program qualifies students for second-year standing in the following options: graphic design, packaging design, industrial design, interior design, painting, printmaking, painting-illustration, printmakingillustration, or medical illustration. Designed especially, though not exclusively, for graduates of community colleges, this transfer program is open to students with:

1. good academic standing at another college;
2. one or two years of college, with a heavy emphasis in studio art (minimum of 12 semester or 18 quarter credit hours);
.3. presentation of an acceptable art portfolio demonstrating strength in one or more areas.
3. dependent on previous education, credit evaluation and portfolio review some students may qualify for thirdyear standing after summer school study in selected programs. This review is arranged through the assistant dean.

Articulation

Transfer credit is evaluated on an individual basis through the admission process. The strength of the portfolio and academic transcripts is reviewed to determine the equivalent standing in the RIT program. Students from design schools follow specific procedures for application and should contact their director of education for complete information about transferring.

Summer session

The College of Fine and Applied Arts offers a program of summer study in both the School of Art and Design and the School for American Craftsmen that is arranged for designers, teachers, and craftspeople. Both basic and advanced workshops are given as well as graduate courses. Those interested should write the director of the summer session for information.

Junior year abroad

The School for American Craftsmen, in cooperation with the Scandinavian Seminars, offers a junior year abroad in the field of the crafts. This permits certain well-qualified students to spend their third year of study in one of the Scandinavian countries, after which they return for a fourth year of study at RIT. Full credit for the year of satisfactory study overseas will be granted toward the BFA degree if arrangements are made prior to departure. Information on the junior year abroad program can be obtained by writing the dean, College of Fine and Applied Arts.

Policy regarding student work

The College of Fine and Applied Arts reserves the right to retain student work for educational use or exhibition for a period of time not to exceed one and one-half quarters beyond the year the object has been made. The college also reserves the right to select an example or examples for its permanent collection. In such cases, where work is selected for the permanent collection the material cost only will be paid by the college. It is an honor to have one's work in the permanent collection of the College of Fine and Applied Arts.

Attendance regulations

The programs of the college utilize studio and shop experiences as an essential part of the educational program; therefore it is imperative that the student regularly attend all classes unless specifically excused for special projects or activities by the instructor. Failure to attend classes, and to complete assignments, will be taken into consideration in grading.

Professional approach

Educational programs in the College of Fine and Applied Arts are related to the kinds of art services which the society needs, and based on teaching projects which can be made realistic and meaningful to the student. The programs duplicate, as far as possible, those found in the working situation after graduation. The courses are fulltime, instruction is largely on an individual basis, and full opportunity is given for personal development. Exhibitions, lectures, and field trips add breadth and variety to the formal programs of study.

A unique feature of the educational programs offered in the College of Fine and Applied Arts is its emphasis on the professional approach to the under standing and solution of problems. Instructional services provided by a professionally experienced and oriented faculty, plus the well-equipped shops and studios designed with the needs of professional artists, designers or craftspeople in mind, further emphasize the practical character of this program of instruction.

Students are asked to demonstrate a professional attitude and purpose, to apply themselves to the requirements of the program, to cooperate in the fulfillment of its goals, and to assume some responsibility for their educational development through independent work.

Relationship with other RIT schools

Educational facilities of a rare sort in the arts are available to the student in the School of Art and Design-the superior resources of the School of Photographic Arts and Sciences and the School of Printing Management Sciences. A program of instruction which emphasizes production, as well as design of the crafts, gives a unique character to the educational program in the School for American Craftsmen. A few programs offer cooperative education (co-op) as an option to be taken during the Summer Quarter.

The School of Arts and Design, in addition to its major concentrations, offers courses in drawing, design, and art eiectives required in the curriculum. Craft eiectives are taught by the School for American Craftsmen. Students may select, with advising and as space is available, elective courses in the college; these complement their programs and interests.

Packaging design students enroll in courses taught by the College of Applied Science and Technology, especially in the areas of production, marketing and materials.

Portfolio Guidelines for Undergraduate Applicants

The following guidelines are presented for all undergraduate students (including transfers) applying to the College of Fine and Applied Arts. Presentation of the portfolio is one of the requirements used in totally assessing the performance and academic capabilities of the applicant. The selection of the work to be included is an important consideration in determining skills, concepts, craftsmanship and design sensitivity.

1. The portfolio must contain examples of at least 10 pieces of the applicant's best work, two of which are drawings- 35 mm slides are required, displayed in an $81 / 2$ " $\times 11^{\prime \prime}$ vinyl slide protector page with identification. It is recommended that drawing be included.

For medical illustration applicants, six additional drawings of natural forms (shells, figures, animals) rendered in a single medium are required.

School for American Craftsmen applicants should submit samples of work in the area of their selected craft major.
2. All portfolio work must be submitted as slides for committee review. Original work is not accepted.
3. Slides will be returned by the College of Fine and Applied Arts only when return postage is enclosed.
4. While every precaution will be taken to ensure proper care and handling, the Institute assumes no responsibility for loss or damage to slides.
5. Identify slides by name and address.
6. Please send portfolio and all other application materials to:

Rochester Institute of Technology
 Office of Admissions
 One Lomb Memorial Drive
 P.O. Box 9887
 Rochester, New York 14623
 Telephone: (716) 475-6631
 Visits to the campus and College of Fine and Applied Arts are encouraged. Please contact the Admissions Office.

Admission at a Glance: College of Fine and Applied Arts

General information on RIT's admission require-
ments, procedures and services is detailed on
pages $176-177$ of this bulletin. pages 176-177 of this bulletin.

This college is composed of the School of Art and Design and the School for American Craftsmen, with approximately 1,000 students.

Students are urged to develop the highest technical abilities as well as personal creative expression. The faculty includes many of the nation's most outstanding and creative artists, designers * and craftsmen. Students learn by working in the studios equipped with excellent facilities. Most graduates earn their living utilizing their RIT background.

Graphic Design—Graphic design has many facets. A visual problem solver at the core, the graphic designer is concerned with achieving the highest level of information and aesthetic quality in their work. Graphic designers work for design studios, advertising, corporate design offices, government offices, magazines, industrial firms, printers, offices, museums and other organizations. Degrees granted: AAS-2 year; BFA-4 year.

Fine Arts-Students may concentrate in printmaking, painting, printmakingillustration, painting-illustration or medical illustration. They prepare as professional artists, developing perform mance levels that enable graduate degree studies in studio concentrations and careers in many of the visual arts fields or teaching. The printmakingillustration or painting-illustration students prepare for careers as studio artists or as illustrators. Medical illustrators enter research areas in hospitals, publishing and teaching institutions. Degrees granted: AAS—2 year; BFA4 year.

Industrial Design-The program prepares students for careers in the expanding profession of industrial design. Artistic talent and analytical thought are applied to the design of products. Practical design projects develop aesthetic understanding, technical abilities, design concepts, sensitivity to human needs and awareness of the social consequences of the designer's efforts. Degrees granted: AAS-2 year; BFA-4 year.

Interior Design-Functional space is defined for human use as the need for designers expands into commercial, industrial, historical and residential settings. Material specifications and historical references are studied to further enhance the practical and aesthetic client concerns. Graduates work for industry, architectural firms and design houses or may be self-employed.
Degrees granted: AAS-2 year; BFA4 year.

Packaging Design-Students study design applications for project packaging in an interdisciplinary program emphasizing design, management, packaging theory and techniques, and liberal arts. Practical application of design theory is an important component of this program. Graduates are prepared to enter corporate packaging and marketing departments and packaging consulting firms. Degree granted: BS—4 year.

Ceramics and Ceramic Sculpture-

 Graduates are self-employed as designer craftsmen, designers or technicians in industry, teachers, or administrators of craft programs. Professional competencies are developed in such areas as fabrication, chemistry and application of glazes, organization of ceramic shop for efficient production, ceramic raw materials, kiln types, fuels and construction. Degrees granted: AAS-2 year; BFA-4 year.Glass-Graduates are self-employed designer craftsmen, designers or technicians in industry, teachers, or administrators of craft programs. Professional competencies are developed in organization and construction of the glass studio, functions and care of tools, analysis of glass as a material, glass fabrication, glass design, engraving, cold-working techniques, mixing of batch glass, color and fuming techniques. Degrees granted: AAS—2 year; BFA-4 year.

Metalcrafts and Jewelry-Graduates are self-employed designer craftsmen, designers or technicians in industry, teachers or administrators of craft programs. Professional competencies are developed in use of equipment, metalcrafts, techniques and production in various metals, raising, forging, forming, planishing, enameling, design of jewelry, flatware, holloware. Degrees granted: AAS-2 year; BFA-4 year.

Freshman Admission Requirements
Transfer Admission with junior standing

Program ${ }^{1}$	Required High School Subjects*	Desirable Elective Subjects	Two-Year College Programs
Graphic Design	1 year any mathematics; 1 year any science	Art courses; portfolio of original artwork required.	Art, design for commercial art. Admissions and class standing determined in part by evaluation of required portfolio. Where student lacks sufficient art credit, a summer transfer program is offered at RIT.
Fine Arts painting, printmaking medical-illustration painting-illustration printmaking-illustration	1 year any mathematics 1 year any science; 2 years science for medical-illustration	Art courses; portfolio of original artwork required; examples of natural forms for medical illustration.	Art or commercial art. Admission and class standing determined in part by evaluation of required portfolio. Where a student lacks sufficient art credit, a summer transfer program is offered at RIT. Space in medical illustration is limited at admission time, and a special portfolio is required.
Industrial Design	1 year any mathematics; 1 year any science	Art courses; geometry, mechanical drawing; portfolio of original artwork required.	Art or commercial art. Admission and class standing determined in part by evaluation of required portfolio. Where student lacks sufficient art credit, a summer transfer program is offered at RIT.
Interior Design	1 year any mathematics; 1 year any science	Art courses; geometry, mechanical drawing; portfolio of original artwork required.	Art or commercial art. Admission and class standing determined in part by evaluation of required portfolio. Where student lacks sufficient art credit, a summer transfer program is offered at RIT.
Packaging Design	1 year science; 3 years mathematics	Art courses; chemistry, physics; algebra; geometry; mechanical drawing; portfolio of original artwork required	Art, design, or commercial art, and chemistry algebra, physics, biology. Admission and class standing determined in part by evaluation of required portfolio. Where student lacks sufficient art credit, a summer transfer program is offered at RIT.
Ceramics and Ceramic Sculpture	1 year any mathematics; 1 year any science	Art or industrial courses; portfolio of original ceramics work required.	Transfer as a junior is uncommon, as comparable programs are not generally available at other colleges, but with additional summer study, acceleration is possible.
Glass	1 year any mathematics; 1 year any science	Art or industrial courses; portfolio of original glass or ceramic work required.	Transfer as a junior is uncommon, as comparable programs are not generally available at other colleges, but with additional summer study, acceleration is possible.
Metalcrafts and Jewelry	1 year any mathematics; 1 year any science	Art or industrial courses; portfolio of original metals work required.	Transfer as a junior is uncommon, as comparable programs are not generally available at other colleges but with additional summer study, acceleration is possible.
Weaving and Textile Design	1 year any mathematics; 1 year any science	Art or industrial courses; portfolio of original textiles work required.	Transfer as a junior is uncommon, as comparable programs are not generally available at other colleges, but with additional summer study, acceleration is possible.
Woodworking and Furniture Design	1 year any mathematics; 1 year any science	Art or industrial courses; portfolio of original wood work required.	Transfer as a junior is uncommon, as comparable programs are not generally available at other colleges, but with additional summer study, acceleration is possible.

'About one-third of the courses in each program consist of eiectives in social science, literature and humanities.
"Four years of English are required in all programs (except where state requirements differ).

Weaving and Textile DesignGraduates are self-employed designer craftsmen, designers or technicians in industry, teachers, or administrators of craft programs. Professional competencies are developed in such areas as fabric design, analysis of equipment and problems, pattern drafting, analysis of fibers, use of eight to ten harness looms, techniques of weaving, design within price range and use. Degrees granted: AAS-2 year; BFA-4 year.

Woodworking and Furniture

Design—Graduates are self-employed designer craftsmen, designers or technicians in industry, teachers, or administrators of craft programs. Professional competencies are developed in such areas as functions and care of woodworking tools, wood as a material, techniques of wood fabrication, design layout, construction analysis, veneering, and finishing, estimating, and production. Degrees granted: AAS-2 year; AOS-2 year; BFA-4 year.

Double Crafts Major-The double crafts major enables the student to study for two years each in two differ ent craft disciplines. Requests for this option may be made either when first applying to RIT or after successfully completing two years in one major concentration. A portfolio reflecting both craft majors is required. Degrees granted: AAS-2 year; BFA-4 year.

School of Art and Design

The objectives of the programs are to prepare students for a wide variety of positions in which art is related to commerce and industry. Students are prepared to accept major responsibility for the creation and execution of projects in graphic, industrial, interior, and packaging design; painting; printmaking; painting-illustration; print-making-illustration; and medical illustration.

The educational objectives of the School of Art and Design are to encourage imagination, creative ability, and a sense of artistic discrimination; to develop the skills essential to professional competence; to relate the various arts and to assist students in finding the means to enjoy them; and to cooperate with the College of Liberal Arts in helping students grow culturally and socially; and to inspire them to make their maximum contributions as creative artists and citizens. Aesthetic and applied concepts are brought together.

Programs

Major concentrations are offered in graphic design, industrial design, interior design, packaging design and the fine arts (painting, printmaking, painting-illustration, printmakingillustration, medical illustration). Electives may be pursued, beginning in the second year, in painting, printmaking, industrial design, interior design, graphic design and the crafts. The first year forms the foundation preparation for the major concentration, with courses required in drawing and twoand three-dimensional design. Graphic design is a program that deals with systematic thinking, strong visual fundamentals, aesthetic/informational requirements, problem solving and methodology. New communications technologies such as computer graphics are utilized. The industrial design program prepares students for careers in the expanding product design fields. Artistic talent and analytic thought are applied to the design process. Interior design students study three-dimensional concepts as they relate to space, function and aesthetic resolution. Practiced design projects develop aesthetic understanding, technical abilities, sensitivity to human needs and awareness of the social consequence of the designer's effort. Packaging design is an interdisciplinary program that emphasizes design, management, packaging theory and techniques. The practical application of design theory is also an important component of the program.

Yr.	GRAPHIC DESIGN, PAINTING, PRINTMAKING, INDUSTRIAL DESIGN INTERIOR DESIGN, PAINTING-ILLUSTRATION, PRINTMAKINGILLUSTRATION MAJORS	Qtr. Credit Hours		
1	FADF-231,232,233 Two Dimensional Design	FALL	WTR.	SPG.
		3	3	3
	FADF-241,242,243 Three-Dimensional Design	3	3	3
	FADF-205,206,207 Creative Sources	2	2	2
	FADF-210,211,212 Drawing	4	4	4
	'Liberal Arts	4	4	4
	-Physical Education Elective	0	0	0
$2 \dagger$	FSCF-225,226,227 Art and Civilization	3	3	3
	'Liberal Arts	4	4	4
	-Physical Education Elective	0	0	0
	"Electives (must have two studios each quarter-one which must be the core in which you are going to major "'FADC-301,302,303 Introduction to Graphic Design	4	4	4
	-"FADU-301,302,303 Introduction to Industrial Design	4	4	4
	-"FADI-301,302,303 Introduction to Interior Design	4	4	4
	'"FADP-301,302,303 Introduction to Fine Arts	4	4	4
	See Note Below			
3	FSCF-380 Contemporary Art (one quarter required; offered every quarter)	3		
	\#Art History Electives (select two)		3	3
	"Liberal Arts	4	4	4
	Major (one) FADR-401, 402,403 Printmaking			
	FADR-404,405,406 Printmaking-illustration			
	FADC-401,402,403 Graphic Design	6	6	6
	FADP-401, 402,403 Painting			
	FADP-404,405,406 Painting-Illustration			
	FADU-401,402,403 Industrial Design			
	FADI-401,402,403 Interior Design	3		
	"Electives (one quarter)		3	3
4	'Liberal Arts	4	4	4
	Major (one) FADR-501, 502,503 Printmaking			
	FADR-504, 505, 506 Printmaking-illustration			
	FADC-501,502,503 Graphic Design			
	FADP-501,502,503 Painting	9	9	9
	FADP-504,505,506 Painting-Illustration			
	FADU-501,502,503 Industrial Design			
	FADI-501,502,503 Interior Design			
	"Electives (one per quarter)	3	3	3

tUpon completion of the second yeer, the associate in applied science degree is awarded.
"Additional intercollege studio courses are available by recommendation of the academic advisor and administrator. Electives en registered on a space available basis and subject to change without prior notic. Consult the advisor when planning programs.
'"'Core Electtves-Introductory courses that are prerequisite to the respective third year major. FADC-301,302,303, required-for entrance into Graphic Design major; FADD-301,302,303 for Printmaking major. However, all three CORE Electives are available as elective choices.
OTotal of 18 quarter credits of Art History: Art and Civilization and Contemporary Art required.
tSee page 200 for policy on Physical Education.
"Seepage 116 for Liberal Arts requirements. Fine and Applied Arts students are only required to study 20 qtr. cr. of Liberal Arts Core curriculum. They are advised to select from nine courses other than fine arts.
NOTE: Beginning September 1962 students in their second year of study will select only two art courses, one will be a core prerequisite and the second course may be a core or an art elective. Core courses will be four credits each and meet for nine clock hours. Recommended program in two art core courses.

The fine arts serve the student who is interested in concentrated study in areas of painting, printmaking, paint-ing-illustration, printmaking-illustration, or medical illustration, and electives of additional art choices. Students emerging from this program are prepared as professional artists and have exploratory potentialities for later careers in teaching. An option within fine arts exists with concentration in medical illustration for a few further selected students, thus leading to work in health areas.

Medical illustration students will be taught Gross Anatomy through the University of Rochester during the Spring Quarter of the junior year. A tuition surcharge will be in effect that quarter.

The credit requirements for students admitted September 1990 in Fine Arts -Painting; Printmaking; Paintingillustration; Printmaking-illustration; Graphic Design; Industrial Design and Interior Design programs are as follows:

	Cr.
Required Major	87
Required Professional Electives	21
Open Electives	9
Liberal Arts	50
Art History	18
Creative Sources_	6

191
Freshmen Kit for art and design students is approximately $\$ 260$. There is an additional cost for supplies.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions Office.

Electives

FADC-411, Graphic Design
412, 413
FADC-511, Graphic Design
512, 513
FADC-520

FADD-320
FADD-311,
312,313
FADD-411,
412, 413
FADP-320
FADP-321,
322, 323
FADP-411
412, 413
FADP-511,
512, 513
FADR-411,
412, 413
FADR-511,
512, 513
FADS-411,
412, 413
FADP-450
FSCC-251,
252, 253
FSCG-251,
252, 253
FSCM-251,
252, 253
FSCT-251,
252, 253
FSCT-520
FSCW-251 252, 253
PPHF-207, 208
PPHG-209
PPHG-207, 208, 209
PPRT-201,
202, 203
Professional Design
Business Practices
Graphic Visualization Industrial, Interior
and Packaging Design
3-D Computer
Graphics
Color
Illustration
Drawing and
Painting
Painting
Printmaking
Printmaking
Sculpture
Drawing Problems
Ceramics I
Glass I
Metalcrafts I

Textiles I
Business Practices for Crafts

Art History: select two courses-
FSCF-300 History of Design
FSCF-310 History of Crafts
FSCF-320 History of Art Criticism
FSCF-330 Philosophy in Art
FSCF-340 Symbols and Symbol Making
FSCF-350 Asian Art
FSCF-360 18th and 19th Century Art
FSCF-370 20th Century Art
FSCF-390 Selected Topics

Yr.	MEDICAL ILLUSTRATION OPTION	Qtr. Credit Hours		
1	(CFAA portfolio and additional six drawings of natural forms, to be presented as slides, are required for admission.) FADF-231,232,233 Two Dimensional Design	FALL	WTR.	SPG.
		332440	332440	332440
	FADF-241,242,243 Three-Dimensional Design			
	FADF-205,206,207 Creative Sources			
	FADF-210,211,212 Drawing			
	-Physical Education Elective			
$2 \dagger$	FSCF-225,226,227 Art and Civilization	$\begin{aligned} & 3 \\ & 4 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$
	-Physical Education Elective			
	""FADP-311,312, 313 Medical Illustration			
	SBIG-205 General Biology			
	SBIG-231,232 Human Biology			
3		$\begin{aligned} & 8 \\ & 3 \\ & \hline \end{aligned}$	483	457
	FADP-421,422,423 Medical Illustration Applications			
	Gross Anatomy (U of R)T			
4		4	4	6
	FADP-531,532,533 Advanced Medical Illustration			
	Select One; courses may be mixed:			
	FADD-411,412,413 Industrial and Interior Design			
	FADD-320 Graphic Visualization	3	33	3
	FADC-411,412,413 Graphic Design			
	"Art Elective (one per quarter)			

"Art Electives listed on previous page.
${ }^{\prime}$."'Core courses that are prerequisite to the third year.
"'"3 quarters of Still Photography may be substituted.
fA tuition surcharge will be applied in this quarter.
' Upon successful completion of the second year, the association in applied science (fine arts-painting) degree is awarded.
fSea page 200 for policy on Physical Education.
'See page 116 for Liberal Arts requirements. Fine and Applied Arts students are required to study only 20 qtr. cr. of Liberal Arts core curriculum. They are advised to select from nine courses other than fine arts.

Yr.	PACKAGING DESIGN	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	FADF-231,232,233 Two Dimensional Design	3	3	3
	FADF-241,242,243 Three-Dimensional Design	3	3	3
	FADF-205,206,207 Creative Sources	2	2	2
	IPKG-201 Principles of Packaging	4	4	
	SMAM-204 College Algebra and Trigonometry			
	SBIG-289 Contemporary Science - Biology	40	40	4
	-Physical Education Elective			4 0
2	FSCF-225,226,227 Art and Civilization	343	3	3
	FADD-301,302, 303 Introduction to Industrial, Interior and Packaging Design		4	
	IPKG-311 Packaging Materials I		3	4
	IPKG-312 Packaging Materials II			4
	IPKG-321 Container Systems I			
	SCHG-289 Contemporary Science - Chemistry		4	
	SPSP-289 Contemporary Science - Physics		4	44
		4		
	-Physical Education Elective	0	0	0
3	FADK-401,402,403 Packaging Design II	4	4	4
	IPKG-431 Packaging Production Systems		4	
	IPKG-432 Packaging for Distribution			2
	IPKG-433 Packaging for Marketing			
	IPKG-310 Methods of Evaluation			
	ICSA-200 Survey of Computer Science	4	4	
	GLLC-520 Public Speaking			4
		4	3	
4	FADK-501, 502, 503 Packaging Design III	4	43	4
	IPKG-420 Technical Communications			
	Art History Elective	34		4

tSee page 200 for policy on Physical Education.
-Seepage 116 for Liberal Arts requirements.

School for American Craftsmen

The objectives of the programs of study of the School for American Craftsmen are to provide for creative growth, the development of professional competence, and intellectual and cultural enrichment. Students who complete the two-year program are prepared for work in the design studios and workshops of established craftspeople, or as technicians in industry. Those who complete the four-year course of study are prepared for careers as selfemployed designer-craftspeople, as designers or technicians in industry, or as teachers or administrators of crafts programs.

In order to achieve the desired occupational goals, the educational objectives seek to stimulate creative imagination and technical invention, develop knowledge of process and command of skills, foster appreciation, not only of the crafts, but the related arts. The programs strive to inspire the student to seek continual improvement through analysis and self-evaluation, and the AAS and BFA programs cooperate with the College of Liberal Arts in assisting students to develop personally and socially.

Student responsibilities
Students are responsible for the care and cleanliness of their shops and for the care and maintenance of the tools and machines with which they work. No student may use any machine until instruction in its proper use has been given, and responsibility for observing safety precautions is assumed by each student upon entering the school. Some unique supplies are provided for convenience and choice, but financial obligations must be met for successful completion of courses. Fees for kiln firings, supplies, and furnace use are student responsibilities.

Yr.	CRAFT MAJORS, DOUBLE CRAFTS MAJORS\#	Qtr. Credit Hours		
1	FADF-231,232,233 Two Dimensional Design	FALL	WTR.	SPG.
		3234	3	3
	FADF-205,206,207 Creative Sources		2	2
	FADF-261,262,263 Drawing Crafts		3	3
	Materials and Processes (one) FSCC-200 Ceramics	50	5	5
	FSCG-200 Glass			
	FSCM-200 Metalcrafts			
	FSCT-200 Textiles			
	FSCW-200 Woodworking			
	\$Physical Education Elective		0	0
2†	FSCF-225,226,227 Art and Civilization	334	3	33
	FADF-241,242,243 Three Dimensional Design		3	
			4	4
	Materials and Processes (one) FSCC-300 Ceramics	5		
	FSCG-300 Glass			
	FSCM-300 Metalcrafts		5	5
	FSCT-300 Textiles			
	FSCW-300 Woodworking			
	tPhysical Education Elective	0	0	0
3	FSCF-380 Contemporary Art (one quarter required; offered every quarter)	3	34	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
	\#\# Art History Electives (select two)			
		4		
	Materials and Processes (one) FSCC-400 Ceramics		4	4
	FSCG-400 Glass			
	FSCM-400 Metalcrafts	5	5	5
	FSCT-400 Textiles			
	FSCW-400 Woodworking			
	"Electives (one per quarter)	3	3	3
4	Techniques and Thesis (one) FSCC-500 Ceramics	4	4	6
	FSCG-500 Glass			
	FSCM-500 Metalcrafts	8	8	8
	FSCT-500 Textiles			
	"Electives (one per quarter)	3	3	3

\#Double Crafts Major The first two years are the same as a crafts major, third year FSC 300 (5 cr.), FSC 400(5 cr.); fourth year FSC 400 (5 cr .), FSC 500 (8 cr .). BFA degree totals 185 quarter credits.
t Upon satisfactory completion of the second year, the associate in applied science degree is granted.
"Additional intercollege studio courses are available by recommendation of the academic advisor and administrator. Electives are registered on a space available basis and are subject to change without prior notice. Consult the advisor when planning programs. Craft students elect in studio other than their major concentrations.
\#\#Total of 18 quarter credits of Art History: Art and Civilization and Contemporary Art are required.
tSoe page 200 for policy on Physical Education.
-See page 116 for Liberal Arts requirements. Fine and Applied Arts students are required to study only 20 qtr. cr. of Liberal Arts core curriculum. They are advised to select from nine courses other than fine arts.

Yr.	AOS WOODWORKING AND FURNITURE DESIGN	Qtr. Credit Hours		
1	FSCW-220 Materials and Processes	FALL	WTR.	SPG.
		5	5	5
	FADF-205,206,207 Creative Sources		2	2
	FADF-261,262,263 Crafts Drawing	3	3	3
	FADF-231,232,233 Two Dimensional Design	3	3	3
	FSCW-231,232,233 Technical Drawing	2	2	2
	JPhysical Education Elective	0	0	0
2	FSCW-320 Materials and Processes	7	7	7
	FADF-241,242,243 Three Dimensional Design	3	3	3
	FSCW-331,332,333 Furniture History	3	3	3
	FSCW-341,342,343 Wood Professional Practices	2	2	2

Programs of study

The School for American Craftsmen offers a full-time program of study with opportunity for concentration in one of five craft fields: ceramics and ceramic sculpture, metalcrafts and jewelry, weaving and textile design, woodworking and furniture design, and glass. After satisfactory completion of two years of study the associate in applied science degree is granted. Those with the aptitude and interest for further study may continue for two additional years. After sucessful completion of the four-year program the bachelor of fine arts is awarded. A double crafts major will study two years in each of two craft areas. A bachelor of fine arts is awarded after a total of four years of study.

A two year associate in occupational studies is also offered in woodworking and furniture design.

Course descriptions

For a complete oudine of courses
offered at RIT, please request the Course Description Catalog from the Admissions Office.

Electives

FADC-411, 412, 413 Graphic Design
FADC-511, 512, 513 Graphic Design
FADC-520 Professional Design
Business Practices (Spg. Qtr.)
FADD-320 Graphic Visualization
FADD-311, 312, 313 Industrial, Interior and Packaging Design
FADD-411, 412, 413 3-D Computer Graphics
FADP-320 Color
FADP-321, 322, 323 Illustration
FADP-411, 412, 413 Drawing and Painting
FADP-511, 512, 513 Drawing and Painting
FADR-411, 412, 413 Printmaking
FADR-511, 512, 513 Printmaking
FADS-411, 412, 413 Sculpture
FSCC-251, 252, 253 Ceramics I
FSCG-251, 252, 253 Glass I
FSCM-251, 252, 253 Metalcrafts I
FSCT-251, 252, 253 Textiles I
FSCW-251, 252, 253 Woodworking I
PPHG-207, 208, 209 Still Photography
Art History: select two courses
FSCF-300 History of Design
FSCF-310 History of Crafts
FSCF-320 History of Art Criticism
FSCF-330 Philosophy in Art
FSCF-340 Symbols and Symbol Making
FSCF-350 Asian Art
FSCF-360 18th and 19th Century Art
FSCF-370 20th Century Art
FSCF-390 Selected Topics

The credit requirements are:

	$\begin{aligned} & \text { Qtr. } \\ & \text { Cr. } \end{aligned}$
Required Craft Major	96
Required Professional Electives	12
Open Electives	6
Liberal Arts	50
Art History	18
Creative Sources	6
	188
Double Crafts credit requirements are:	
	Qtr. Cr.
Required Crafts (2) Major	93
Required Professional Electives	12
Open Electives	6
Liberal Arts	50
Art History	18
Creative Sources	6
	185

Qtr.
Cr.
96

Double Crafts credit requirements are:

Required Crafts (2) Major
Open Electives 6
Liberal Arts 50
Art History 18

Creative Sources \quad| 6 |
| ---: |

College of Graphic Arts and Photography

Dr. E.C. Mclrvine, Dean

The College of Graphic Arts and Photography encompasses the School of Photographic Arts and Sciences, the School of Printing Management and Sciences and the Center for Imaging Science.

The School of Photographic Arts and Sciences was established in 1930 with a two-year course for the training of technicians for the photographic industry. It now offers undergraduate programs leading to the bachelor of science degree in biomedical photographic communications; a BS degree in film and video; a BS degree in photographic processing and finishing management; a BS degree in technical photography and a BFA degree in professional photographic illustration with major options in advertising photography, photojournalism, or photography as a fine art. A program jointly offered with the College of Business leads to a BS degree in photographic marketing management. Graduate programs lead to an MFA degree in imaging arts with three areas of concentration: photography, computer animation and museum studies. More than 800 students are enrolled from nearly every state and many foreign countries.

In 1937 the Institute absorbed the Empire State School of Printing with the object of establishing advanced technological education in printing and the graphic arts.
The School of Printing Management and Sciences offers programs leading to a BS degree in printing with many options for specialization. The BS program in newspaper operations management provides graduates who can synthesize the new technologies into the newspaper technical department and provide long-range management planning to this important segment of the printing industry. The program in printing systems combines printing and industrial or electrical engineering, and prepares graduates for optimizing operating conditions in the complex printing establishment.

The BS degree in printing and applied computer science further expands the scope of the school's offerings. The school also offers three master of science degrees: graphic arts systems, graphic arts publishing, and printing technology. Over 400 degree candidates are enrolled in the School of Printing Management and Sciences, with students from almost every state and many foreign countries.

The Center for Imaging Science was established at RIT in 1985 in response to a growing need for highly qualified imaging scientists. However, programs in imaging science are not new to RIT. The center was created from the former photoscience program.

RIT offers the only imaging science undergraduate program in the country. Students who choose this program will study the application of physics, computer science, chemistry and mathematics to the formation, recording and perception of images. They will learn about the design of imaging systems, the evaluation of the images produced and the application of those systems to a broad range of careers in industry, business and government.

Students may concentrate in digital image processing, remote sensing, photographic chemistry, optics, image evaluation or color appearance and technology. Theory and practical applications in preparation for a career following graduation are the cornerstones of the program.

Resources

The college's many specialized laboratories and wide range of equipment make it the most complete of any degree-granting institution in the fields of photography, printing or imaging science.

Students in the School of Photographic Arts and Sciences have 190 darkrooms and 50 studios at their disposal. The School of Printing Management and Sciences has over $\$ 40$ million worth of equipment in 25 laboratories. The Center for Imaging Science is housed in a new $\$ 8.5$ million facility equipped with six classrooms, a lecture hall, 55 offices, research facilities and several laboratories including labs in photographic chemistry, digital imaging, holography, emulsion coating and optics. The Munsell Color Science Laboratory and the Remote Sensing Laboratory also are located there.

The faculty members have been carefully selected on the basis of their teaching effectiveness and ability to relate well with the students. They are also individuals who are educationally qualified and have had extensive professional experience and training in the graphic arts, photographic industries and imaging science.

The establishment of five distinguished professorships highlights this qualification of the college's teaching staff. The Paul and Louise Miller Distinguished Professorship in Newspaper Operations Management in the School of Printing Management and Sciences emphasizes the importance placed on education for persons entering the rapidly changing newspaper industry. The Melbert B. Cary, Jr. Professorship emphasizes the school's continued involvement in typography and design.

The Richard S. Hunter Professorship in Color Science was established to meet academic and industry needs for more clearly defined color measurement and specification criteria from which further knowledge might be ascertained. The Munsell Color Laboratory complements the professorship and supports efforts to further define color measurement in all areas of academic and industry endeavor. Together they have established RIT as a unique center for color science, technology and appearance in the United States. The Wiedman Chair in Medical Imaging supports research and study in this new discipline. The James E. McGhee Professorship highlights photographic processing and finishing, as well as the photographic marketing and management areas.

Rochester is the world center of research and development in photography, is a city well-known for quality printing, and is becoming a leader in the new field of imaging science. It is an ideal environment for students in photography, printing or imaging science since they have access to a faculty which is close to progress in these fields and, through guest lectures, field visits, and meetings of scientific and professional organizations, they can personally meet many of these leaders in research and development.
RIT's Wallace Memorial Library is rich in both photography and graphic arts publications, and the cooperation of the International Museum of Photography at the George Eastman House (IMP/GEH) and the library of the Kodak Research Laboratories make available one of the largest collections of reference materials for these fields to be found anywhere.
The Melbert B. Cary, Jr. Graphic Arts Collection, contains more than 8,000 volumes of rare books illustrating the past and present of fine printing.

Plan of education
The college seeks to prepare men and women to be professionally competent in their chosen areas and to have an appreciation and understanding of our cultural heritage and democratic institutions. Depending on their program, they may also take courses in business, science, computers or fine arts. Most undergraduate students will need to complete a physical education requirement to nurture the complete individual. (Refer to page 200 for particular requirements.) Although the primary concern of the college itself is with science and technology and the occupational aspects of life, it requires that every student take courses in communication, the humanities, and the social and natural sciences. These form an integrated program of liberal education in the College of Liberal Arts and require from one-quarter to one-third of the student's time.

The college operates on the quarter plan, each quarter being 11 weeks in length. Many classes are available during the summer.
Some programs of the college include a senior thesis or research project as a requirement for the bachelor's degree. This involves independent study and research on a subject chosen by the students and approved by their advisors. The thesis or project provides the student with the opportunity to make a detailed study'of particular interest. It often requires extensive reading, thus making the student more conversant with the literature and, where laboratory research is involved, the student acquires experience in the design of experiments, the conduct of research, and the writing of technical reports. A number of these reports have been presented at meetings of scientific and professional societies and printed in appropriate journals.

Course descriptions
For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions office.

Transfers
Many programs in community, junior and technical colleges prepare students for transfer into our programs. Every effort is made to accept the maximum amount of credit.

Degrees and requirements
BS, BFA, MS and MFA degrees and a Ph.D. are awarded through the college. Requirements for the bachelor's degrees are described on the following pages. Requirements for master's degrees and the Ph.D. are described in the Graduate Bulletin.

Cooperative education

Some students in the college participate in cooperative education experiences or internships. In this way students obtain practical work experience in an area related to their chosen field of interest. This work experience is part of the student's career exploration and provides not only practical experience which can be related to course work, but also an opportunity to observe and perform work directly related to the student's major. This experience should help the student develop a greater insight into his or her chosen field and provide a record of practical experience which may increase the student's opportunities for placement and more rapid career advancement upon graduation.

Admission at a Glance: College of Graphic Arts and Photography

General information on RIT's admission requirements, procedures and services is included in detail on pages 176-177 of this bulletin.

The School of Photographic Arts and Sciences, the School of Printing Management and Sciences, and the Center for Imaging Science are included in this college.

The college is internationally known for its excellence and the contributions of its graduates to the world of communication. Faculty members are experts in their fields and students work in laboratories with equipment of unsurpassed quality and variety. Students develop their creative abilities as well as technical competence.

Biomedical Photographic Communi-cations-Prepares students for a photographic career working with allied health teams in hospitals; medical, veterinary or agricultural research centers; and other health institutions. Students can qualify for entry-level employment after the second year. BS candidates will have the educational background necessary to apply for registration as a biological photographer. The professional electives offered in the third and fourth years allow flexibility with specialization achieved through professional concentration courses. Degrees granted: AAS—2 year; BS—4 year.

Film/Video—Features an introduction to the disciplines of film, video and animation with advanced work in either film or video. The curriculum emphasizes production. Short periods of outside professional experience are encouraged, usually during the summer. The program is intended to acquaint students with film, video and animation as creative media and to develop the skills of production. Degrees granted: AAS-2 year; BS4 year.

Imaging and Photographic Tech-nology-Prepares students for entry into any of a variety of positions in the field of scientific/technical photography, as distinct from providing highly specialized training for a specific posi-tion-although a sequence of six concentration electives is included in the third and fourth year. Career opportunities include both picture-making positions (such as scientific photography, photographic instrumentation, technical illustration, audiovisual production, and photographic testing) and non-picture-making positions (such as technical writing, quality control, technical representative, sales, product development and testing, applied research, laboratory supervision, and management). Two paid co-op work experiences (normally scheduled during the summer following the second and third years) are included in the BS degree program. Degrees granted: AAS-2 + years; BS—4 year.

Imaging Science-Students learn of the application of physics, chemistry, and mathematics to imaging systems; of the application of imaging and photographic processes to science and technology. Course content is comparable to that of engineering programsmathematics, physics, and chemistry of radiation-sensitive systems, optics and image formation. Degrees granted: AAS-2 year; BS-4 year.

Newspaper Operations Manage-ment-Prepares students for careers in technical management for newspaper and related industries by developing appreciation of tactics and strategies for evaluating and controlling production problems. Incorporates engineering approaches to problem solving. This leads to careers such as vice president of operations, publisher, technical quality control or technical sales and service representative. Degree granted: BS—4 year.

Photographic Processing and Finishing Management-Students develop a thorough knowledge of and familiarity with photographic laboratory production techniques and procedures, including process and product quality assurance, supervisory and training methods, controlling business and marketing functions, and a broad base in humanities. Degree granted: BS-4 year.

Printing-Prepares students for careers in printing management by developing an appreciation of aesthetic qualities of good printing and application of science and engineering in graphic arts. Theory and practice in management and communication skills are taught. Degrees granted: AAS-2 year; BS-4 year.
Printing and Applied Computer Science-Prepares students for entry positions in systems analysis, production control, engineering, marketing support, customer training, and product design. These lead to careers in production management, director of computer technology, and operations manager. Degree granted: BS—5 year.

Printing Systems—Prepares students for careers that emphasize measurement and control techniques, problem solving and optimization of operating conditions in the industrial technology environment in the printing industry. Favorable transfer credit arrangements can normally be made for students previously enrolled in engineering or math/science-based programs. Degree granted: BS-5 year.

Professional Photographic Illustra-tion-After two years of photography in the general BFA program at RIT, a student enters one of the following three major options: advertising photography, photojournalism, or fine arts photography. In these areas students learn photographic skills to solve visual communication problems. Students develop innovative and individualized responses to visual problems and are expected to become sensitive to contemporary graphic design. These lead to a broad range of career options that call for a background in aesthetics, technical skills, and the ability to solve visual problems with imagination and originality. Degrees granted: AAS-2 year; BFA-4 year.

Program	Required High School Subjects	Desirable Elective Subjects	Two-Year College Programs
Advertising Photography	2 years any mathematics 1 year any science	Art courses	Applicant must have completed an associate's degree program, or the equivalent of two years of college, with a major in photography (completion of minimum of 30 quarter credits of photography) plus completion of studio art courses (minimum of 12 quarter credits); liberal arts (24 quarter credits); and art history (9 quarter credits). The student must also complete the 10 -week intensive summer course PPHL-300, BFA Photography, with a C grade or better. The student must also make up two courses: Materials and Processes of Photography and History and Aesthetics of Photography. Portfolio required.
Biomedical Photographic Communications	2 years any mathematics, Biology	Additional mathematics and chemistry	Associate degree in biomedical photography or previous college work in audiovisual with strong emphasis in photography and biology.
Film/Video	2 years any mathematics 1 year any science	Art courses	Total of 98 quarter credits including 24 credits in liberal arts, 12 credits in science or mathematics, 8 credits in acting and stagecraft, 9 credits in film history and 45 credits equivalent to RITs PPHF-201,202,203 (Film I), PPHF-210,310 (Mat. \& Process of the Moving Image). PPHF-311,312,313 (Video I) and either animation (8 cr .) or scriptwriting (6 cr .). Portfolio required.
Fine Art Photography	1 year any mathematics and 1 year any science.	Art and art history courses, Computers Creative writing	Applicants must have completed an associate degree program, or equivalent, with 30 quarter credits (20 semesters) in photography, 12 (8 semesters) in studio arts and 24 ($\mathbf{1 6}$ semesters) in liberal arts. History and Aesthetics of Photography is a requirement which can be taken in the third year, or during summer.
Imaging and Photographic Technology	2 years any math; 1 year any science	Additional mathematics and science	Total of 96 quarter credits, including 9 quarter credits in college mathematics. 24 quarter credits in liberal arts, 24 quarter credits in black-and-white and color photography, one year of college physics and one year of college chemistry.
Imaging Science	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and/or Chemistry	Additional physics; Additional mathematics	Applicants who wish to enroll in the Imaging Science summer transfer program need the following previous course work: one year of calculus, one year of chemistry to include organic chemistry, one year of calculus-based physics and nine quarter credit hours in liberal arts. A "C" grade in the summer PIMG-220 course is necessary to enroll as an Imaging Science Sophomore in the fall quarter.
Newspaper Operations Management	Elem. Algebra; Trigonometry, or Inter. Algebra; Physics or Chemistry; one year science preferred.	Experience with school publications, graphic communications, business, art, and desktop publishing or printing courses.	Associate's degree including a wide range of courses in liberal arts, a year of college mathematics, college chemistry and physics, and courses in business, printing management, computers and others. Considered on an individual basis, students should contact the department.
Photographic Processing and Finishing Management	Elem. Algebra; Plane Geom. or Inter. Algebra; Chemistry or Physics	Additional mathematics and science	Due to a liberal selection of professional electives, transferring at the end of two years is easily accomplished for photography and business majors. Others should contact program faculty for evaluation of credit.
Photojournalism	2 years any mathematics 1 year any science	Art courses	Applicant must have completed an associate's degree program, or the equivalent of two years of college, with a major in photography (completion of minimum of 30 quarter credits of photography) plus completion of studio art courses (minimum of 12 quarter credits); liberal arts (24 quarter credits); and art history (9 quarter credits). The student must also complete the 10 -week intensive summer course PPHL-300, BFA Photography, with a C grade or better. The student must also make up two courses: Materials and Processes of Photography and History and Aesthetics of Photography. Portfolio required.
Printing	Elem. Algebra and Inter. Algebra; 1 year science; trigonometry, chemistry or physics preferred	Experience with school publications, graphic communications, business, art, and desktop publishing or printing courses.	Associate's degree including wide range of courses in liberal arts, college mathematics, college chemistry and physics, and courses in business, management, computers and printing. Considered on an individual basis; student should contact the department.
Printing and Applied Computer Science	Elem. Algebra; Inter. Algebra; Trigonometry; Plane Geometry; Physics or Chemistry	Additional mathematics and science, computers	Applicants encouraged to apply for transfer from math/science based programs in computer sceince, engineering, math/science transfer. All others considered on an individual basis.
Printing Systems	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics and Chemistry	Additional mathematics, science, computers	Applicants encouraged to apply for transfer from math/science based programs in computer science, engineering, math/science transfer. All others considered on an individual basis.

'Four years of English are required in all programs, except where state requirements differ.
t Portfolio must consist of a series of ax 10 black-and-white photographs, an 8 or 16 mm film, a video tape, or a written
work that demonstrates creativity in the English language.

School of Photographic Arts and Sciences

Elaine O'Neil, Director

The program offerings of the School of Photographic Arts and Sciences are designed to prepare students for photographic and other imaging career fields. The studies in photographic arts involve both technical and creative experiences for visual problem solving. In the science and technology divisions of the school, emphasis is placed on the physical principles of imaging, and studies cover image evaluation, unconventional imaging applications, computer applications as well as other high technology areas. All first-year BFA students in photography and students in biomedical photographic communications and technical photography are required to have their own handheld small or medium format camera and a professional light meter.

Students have the opportunity to supplement their course work with participation in internships, field trips, presentations by guest speakers, departmental student organizations and other related activities.

Degrees offered

Department of Applied Photography: BFA degree in professional photographic illustration (advertising photography and photojournalism options)—Owen Butler, chair

Department of Biomedical Photographic Communications: BS degree in biomedical photographic communica-tions-Michael Peres, chair

Department of Film/Video: BS degree in film/video-Malcolm Spaull, chair

Department of Fine Art Photography: BFA degree in professional photographic illustration, fine art photography option; MFA degree in imaging arts-Ken White, chair

Department of Imaging and Photographic Technology: BS degree in imaging and photographic technology -Andrew Davidhazy, chair

Department of Photographic Processing and Finishing Management: BS degree in photographic processing and finishing management-James Rice, chair

Graduate programs

The School of Photographic Arts and Sciences offers: MFA in imaging arts with three areas of concentration: photography, computer animation and museum studies. This degree is described in the Graduate Bulletin, available through the Admissions Office.

Summer session

The School of Photographic Arts and Sciences offers a wide selection of photographic courses in the Summer Session. These range from beginning photography courses to those requiring a substantial photographic background. For detailed information write the associate director of the School.

Memberships

The School of Photographic Arts and Sciences maintains memberships in a number of professional organizations: American Management Association, American Society of Training and Development, Association of Professional Color Laboratories, College Art Association, Biological Photographic Association, National Microfilm Association, Ophthalmic Photographic Society, Professional Photographers of America, Society of Motion Picture and Television Engineers, Society of Photographic Scientists and Engineers, Society for Photographic Education, University Film Association.

Requirements for admission

All applicants for admission must meet the general requirements for admission to the Institute. The requirements for admission to the School of Photographic Arts and Sciences vary with the program.

The Institute prefers not to be arbitrary in the establishment of admission criteria and therefore will look at all factors in combination, such as college board scores, high school records, records of achievement, letters of recommendation, and especially the student's written statement of educational objectives.

Transfer admission

Transfer credits from accredited institutions are evaluated on a course by course basis. Transfer credits for photography courses are awarded on the basis of a portfolio in addition to course work with a grade of "C" or better. The portfolio will be reviewed by the department chairperson. (Portfolio guidelines are available upon request through the Office of Admissions.)

Articulation agreements are also in effect with approximately 20 other colleges and universities. An articulation agreement specifies the number of transfer credits that are acceptable from the other institution into our photography programs.

Due to pre-requisites and scheduling conflicts, transfer students should expect to have light schedules during at least the first year of their enrollment at RIT.

Summer transfer programs

Students who meet the requirements for course work and portfolio work may be accepted into one of several summer transfer programs. The summer transfer programs are 10 -week sessions of intensive study for the purpose of bringing students to a second or third year technical level in their photography programs. Descriptions of the requirements for each program and year level are indicated below.

Second-year transfer credit requirements:

Film/Video
Normally, a total of 36 credits, including 24 acceptable credits of liberal arts, an acceptable science course (12 credits), plus two summer courses in film (18 credits) as follows:
Motion Picture Workshop I, 9 credits, 5 weeks
Motion Picture Workshop II, 9 credits, 5 weeks
These courses will substitute for:
PPHF-201, 202, 203 (15 credits)
Materials and Processes of the Moving Image PPHF-210 (2 credits)
The remaining required courses in the first year:
Creative Processes I, II, PPHF-551, 552
Play Production I, II (8 credits) must be made up during the second and third years of the program.

Imaging and Photographic Technology
Normally, a minimum of 34 credit hours of which there are 4 credits in a college algebra course; 6 credits in introductory calculus; 12 credits in liberal arts; and 12 credits of photography or a mix of photography and additional mathematics or science. The students must also complete the 10 -week intensive summer courses PPHG-200 Photography I and PPHT-210 Materials and Processes of Photography with a "C" grade or better.

Applicants may submit a transcript of college courses completed and request a transfer credit audit. Transfer credit will be given for Photography I only on the basis of an acceptable comprehensive portfolio and satisfactory completion of an appropriate college photographic course or evidence of appropriate photographic work experience.

Advertising Photography Photojournalism

Normally, a minimum of 30 quarter credits of which there are 6 credits of design, 12 credits of liberal arts, and 12 credits of photography or photography and studio art. The student must also complete the 10 -week intensive summer courses PPHG-200 Photography I, PPHL-206 Creative Problems and PPHL-207 Intro to Color Photography with a "C" grade or better.

Third-year transfer credit requirements:

Fine Art Photography

After successfully completing one year in RIT's BFA foundation program, or one year at an accredited college with an acceptable portfolio (RIT summer transfer course may be required), the student may major in fine art photography in the second, third and fourth years.

Advertising Photography Photojournalism

Normally an applicant must have completed an associate degree or equivalent of two years of college with a major in photography (completion of a minimum of 30 quarter credits of photography) plus completion of studio art courses for a minimum 12 quarter credits; liberal arts for a total of 24 quarter credits; and art history courses for a total of 9 quarter credits. The student must also complete the 10 -week intensive summer course PPHL-300 BFA Photography with a "C" grade or better. The student must make up the course Materials and Processes of Photography and History and Aesthetics of Photography. Portfolio required.

Entry into Advertising Photography or Photojournalism via the submission of a portfolio to earn transfer credits for photographic courses If a student has completed two or more years of intensive study in photography at an accredited school and has earned a 3.0 (B) average, he or she may submit a portfolio for evaluation by the BFA faculty. A list of the requirements for submission of the portfolio may be obtained from the Office of Admissions, RIT, One Lomb Memorial Drive, P.O. Box 9887, Rochester, New York 14623.

Biomedical Photographic Communications

Michael Peres, Chairperson

The biomedical photographic communications program is designed to prepare students for a photographic career working with allied health teams in hospitals; medical, veterinary or agricultural research centers; and other health institutions. The biomedical photographer can be involved in all areas of still imagery, as well as film and video.
The first-year courses introduce basic principles and theories, as well as practical experience with photographic equipment and processes. Medical and biological subject matter are included in these first-year practical experiences.
The second year continues to prepare the student with courses in photomacrography, photomicrography and other specific studies required for this career. The courses are integrated to prepare the student for an internship in a medical or scientific facility. The completion of the summer internship is required for the associate degree in biomedical photography.
The junior and senior years include electives in advanced photomacrography and photomicrography, filmmaking, television, advanced color printing, and others selected in consultation with the advisor. Flexibility is provided to allow students to explore many areas of photography. The professional concentration courses in the senior year encourage students to research a photographic area specific to their career direction.
The Biological Photographic Association, the certifying and registering professional organization in the biomedical photography field, has cooperated in the preparation of criteria and in program development. Thus the RIT program can provide the educational background to form the basis for qualifying to become a Registered Biological Photographer (RBP) after the student enters the profession.

Yr.	BIOMEDICAL PHOTOGRAPHIC COMMUNICATIONS	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	PPHB-201,202,203 Biomedical Photography I	6	6	6
	PPHT-211,212,213 Materials and Processes			
		3	3	31
	PPHB-211 Survey of Biomedical Photography			
	SCLG-301 Medical Terminology	3	4	4
	SBIG-211,212 Human Biology			
	-Liberal Arts (Core)	4	4	4
	tPhysical Education	0	0	0
$2 \dagger$	PPHB-301,302,303 Biomedical Photography II	5	5	5
	PPHT-311 Color Photography/Design			
	PPHT-312 Color Printing/Theory	3	4	
	PPHB-331,332,333 Preparation of Biomedical Visuals		3	3
	-Liberal Arts (Core)	4	4	8
	tPhysical Education	0	0	0
	TSummer Quarter Internship for 10 weeks in a medical setting			
3	ICIC-413 AV Production for Bio. Comm	4	4	4
	PPHB-401,402 Advanced Photography in Bio. Comm			
	"Professional Electives	3-4	3-4	3-4
	'"Science Electives	3-4	3-4	$3-4$4
	-Liberal Arts (Concentration)	4	4	
Summer Internship (Optional)				
4	PPHB-501,502,503 Photographic Concentration	$\begin{gathered} 4 \\ 4 \\ 3-4 \\ 4 \end{gathered}$	44$3-4$	44$3-4$
	Business Electives			
	"Professional Electives			
	-Liberal Arts (Elective)		4	$3-4$ 4
	-Liberal Arts (Senior Seminar)		2	4

tAssociate degree awarded upon successful completion of second year and the internship.
"Possible recommended professional electives:
PPHF-201 Stmcturing the Moving Image
PPHG-202 Nanative Film Production
PPRT-591,592,593 Reproduction Photography, Offset Plate Making, Offset Presswork
Electives will be made with the chair's pennission.
"'Options include:
Electron Microscopy
Medical Terminology
Computer courses
Advanced courses in the Biological Sciences
"Selected professional courses may be substituted for 4,8, or 12 credits with written permission of advisor.
'See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Film/Video

Malcolm Spaull, Chairperson

The degree program in film, video and animation is designed for students who recognize the moving image as an expressive force uniquely important to modern life. It will acquaint students with film, video and animation as creative media and develop the skills of production.

The curriculum emphasizes production and short periods of outside professional experience are encouraged, usually during the summer.

Through lectures and laboratories students develop individual skills in moving image communication and learn the aesthetic principles governing the art. Elective courses are offered to students in applied photography, photographic technology and MFA in imaging arts. Other Institute students with a basic knowledge of photography may enroll with the permission of the instructor.

Students typically produce several short films or programs, working through all phases of production: scripting, preproduction planning, budgeting, shooting, sound editing and working with a laboratory. Students combine their learning of visual and sound artistry through hands-on experience with camera and sound equipment. The film, video and animation projects are often designed by individual students. Thus a wide variety of styles and intentions are expressed in the work of the department.

\begin{tabular}{|c|c|c|c|c|}
\hline Yr. \& FILM/VIDEO \& \multicolumn{3}{|l|}{Qtr. Credit Hours}

\hline \multirow{9}{*}{1} \& \& FALL \& WTR. \& SPG.

\hline \& NQQT-200 Play Production 1 \& \multirow{3}{*}{5} \& \multirow[t]{2}{*}{4
5} \& \multirow[b]{4}{*}{4
2}

\hline \& PPHF-201,202 Film Production I, II \& \& \&

\hline \& PPHF-207 Intro, to Portable Video \& \& \multirow{4}{*}{2} \&

\hline \& PPHF-220,221 Creative Processes I, II \& \multirow{3}{*}{2} \& \&

\hline \& PPHF-210 Materials \& Processes of the Moving Image I \& \& \& 2

\hline \& Non-Photo Elective \& \& \& \multirow[t]{3}{*}{4
4
0}

\hline \& -Liberal Arts (Core) \& \multirow[t]{2}{*}{8} \& \multirow[t]{2}{*}{4
0} \&

\hline \& tPhysical Education \& \& \&

\hline \multirow{17}{*}{2} \& "Science \& \multirow[t]{17}{*}{4
4
4
2
4

4

0} \& \multirow[t]{5}{*}{4
4} \& \multirow[t]{5}{*}{4}

\hline \& PPHF-311 Portable Video Production \& \& \&

\hline \& PPHF-312 Studio \& Documentary Video \& \& \&

\hline \& PPHF-324 Introduction to Animation \& \& \&

\hline \& PPHF-310 Materials \& Processes of the Moving Image II \& \& \&

\hline \& -Liberal Arts (Core) \& \& 4 \& \multirow[t]{2}{*}{4}

\hline \& Production Emphasis \& \& \multirow{5}{*}{3} \&

\hline \& PPHF-205 Film History \& Aesthetics \& \& \& \multirow[b]{3}{*}{$$
\begin{gathered}
3 \\
3 \text { or } 4
\end{gathered}
$$}

\hline \& PPHF-434 Advanced Video \& \& \&

\hline \& Elective \& \& \&

\hline \& Writing/Directing Emphasis \& \& \&

\hline \& PPHF-321,322 Writing for Film \& Video I, II \& \& \multirow[t]{2}{*}{3} \& \multirow[t]{3}{*}{3
3}

\hline \& PPHF-350 Directing the Actor \& \& \&

\hline \& Graphics Emphasis PPHF-325 Introduction to Animation II \& \& \multirow[t]{3}{*}{4} \&

\hline \& PPHF-326 Animation Production \& \& \& \multirow[t]{2}{*}{4
3}

\hline \& PPHF-206 Film History \& Aesthetics \& \& \&

\hline \& tPhysical Education \& \& 0 \& 0

\hline \& Non-Photo Elective \& \multirow[t]{5}{*}{4
5
2
3} \& \multirow[t]{5}{*}{4} \& \multirow[t]{4}{*}{4}

\hline \& PPHF-411 Visual \& Commercial Film Production \& \& \&

\hline \& PPHF-410 Materials \& Processes of the Moving Image III \& \& \&

\hline \& PPHF-204 Film History \& Aesthetics \& \& \&

\hline \& PPHF-405 Advanced Video \& \& \& 1

\hline \& "Liberal Arts (Concentration) \& \multirow[t]{16}{*}{4} \& \multirow[t]{2}{*}{4} \& \multirow[t]{4}{*}{4}

\hline \& Production Emphasis \& \& \&

\hline \& PPHF-412 Film Planning \& Studio Operations \& \& \multirow[t]{5}{*}{5
3} \&

\hline \& PPHF-321 Writing for Film \& Video \& \& \&

\hline \& PPHF-420 Sound Recording \& \& \& \multirow[t]{3}{*}{3
4}

\hline \& PPHF-553 Film/Video Workshop \& \& \&

\hline 3 \& Writing/Directing Emphasis \& \& \&

\hline \& PPHF-412 Film Planning and Studio Operations \& \& \multirow[t]{5}{*}{5
3} \&

\hline \& PPHF-205 Film History \& Aesthetics \& \& \& \multirow{4}{*}{3
5}

\hline \& PPHF-551 Advanced Script Writing \& \& \&

\hline \& PPHF-413 Film Project with Sound \& \& \&

\hline \& Graphics Emphasis \& \& \&

\hline \& PPHF-427 Microcomputer Animation I \& \& \multirow[t]{4}{*}{4
3} \&

\hline \& PPHF-321 Writing for Film/Video \& \& \& \multirow[b]{3}{*}{$$
3 \stackrel{4}{3} 4
$$}

\hline \& PPHF-428 Microcomputer Animation II \& \& \&

\hline \& Elective \& \& \&

\hline \multirow{6}{*}{4} \& Non-Photo Elective \& \multirow[b]{3}{*}{6
$3-4$} \& \multirow[b]{2}{*}{6} \& 4

\hline \& PPHF-541,542 Senior Production I, II \& \& \&

\hline \& PPHF-543 Post-Production \& \& \& \multirow[t]{2}{*}{4}

\hline \& Electives \& \multirow[t]{3}{*}{$3-4$
4} \& \multirow[t]{3}{*}{$3-4$
4} \&

\hline \& -Liberal Arts (Electives) \& \& \& 4

\hline \& 'Liberal Arts Seminar \& \& \& 2

\hline
\end{tabular}

"Recommended Science Electives
ICSA-200Survey of Computer Science ICSP-208 Introduction to Programming ICSP-210 Program Design and Validation SBIQ-289 Contemporary Science-Biology SBIB-201,202,203 General Biology
SCHQ-289 Contemporary Science-Chemistry
SPSP-289 Contemporary Science-Physics

- Seepage 116 for Liberal Arts Requirements
tSee page 200 for policy on Physical Education.

Imaging and Photographic Technology

Andrew Davidhazy, Chairperson

The Imaging and Photographic Technology curriculum blends a traditional professional photography program with specialized education in technical, industrial, and scientific imaging applications.

It prepares students for entry into any of a variety of picture-making and non-picture-making positions by providing them with a broad background adaptable to a variety of fields rather than providing highly specialized training for a specific position. The technical skills of the studenfs are complemented by traditional course work in mathematics, computers, science, and liberal arts, including technical writing.

At the same time, however, students develop expertise in a professional or technical field of their choice by taking a sequence of six or more courses in any one of eight areas of concentration.

The picture making aspects of photography are included in all four years of the program, with a transition from a comprehensive course in black-andwhite photography through color photography and color printing, audiovisual presentations, and television production. The required technical courses include Photographic Sensitometry, Optics and Chemistry, Color Measurement, PhotomacrographyPhotomicrography, and High Speed Photography. Also available in the Department are a variety of technical and photographic eiectives such as Holography, Digital Image Processing, Scanning Electron Microscopy, Architectural Photography, Nature Photography, Dye Transfer, and Photoinstrumentation Applications.

In their last two years, students may specialize in a field of concentration such as photographic instrumentation, graphic arts, motion picture and video, still photography, audiovisual, photographic processing and finishing, business and science and engineering. While the core program completed by each graduate is similar, the actual background of the students varies with their choice of concentration area(s).

Another unique feature of the Imaging and Photographic Technology program is that graduates complete at least two required Cooperative Education work blocks prior to graduation.

[^12]Employment and co-op work experience statistics maintained by RIT's Office of Cooperative Education and Placement indicate that cooperative work experience is a definite asset to a graduate of any program.

An employment survey conducted by the School of Photographic Arts and Sciences indicates that there is a need for graduates with photographic technology backgrounds. Recent graduates of this program currently function as photographic technologists or research associates in various industrial, scientific, or business enterprises, as pho-
tographic engineers or junior engineers in a number of imaging related disciplines, as technical and sales representatives, technical illustrators, highspeed photographers, and as corporate, industrial, advertising and commercial photographers. Please contact the Department Chairperson for a comprehensive listing.

The Technical Photography Student Association promotes professionalism among students and interaction with the imaging and photographic technology industry. The association regularly invites professionals in the field to RIT for lectures and demonstrations.

Concentration electives (third and fourth years, imaging and photographic technology)

Students in the imaging and photographic technology program may pursue an area of concentration listed below. The areas consist of courses that are periodically reviewed by the department faculty. The concentrations are intended to serve as planning guides. While students may complete all six concentration electives within one area, at least three courses from any one concentration are required to constitute a major concentration area.

Photographic Instrumentation Concentration

Film/Video

Business

Graphic Arts

Photographic Processing and

 Finishing Management
Audiovisual Communications

Still Photography and Color Printing

Science and Engineering

Photographic Marketing Management

Offered jointly through the McGhee Chair by the College of Business and the College of Graphic Arts and Photography, RIT's program in photographic marketing is the only one of its kind in the country.

This rigorous program is designed to provide students with a thorough knowledge of the photographic process and a solid background in business administration with courses in economics, finance and marketing principles. The combination of work in these two disciplines prepares students for a multifaceted management-level career in photographic business. Opportunities for positions include those in customer service aspects of photofinishing and professional color laboratories and management positions with photographic manufacturers and photographic retailers. As of this printing, this program is being reviewed. For further information, including transfer requirements, contact the College of Business or the College of Graphic Arts and Photography.

Yr.	PHOTOGRAPHIC MARKETING MANAGEMENT, TYPICAL SCHEDULE	Qtr. Credit Hours			
1		FALL	WTR.	SPG.	SMR.
	SMAM-225 Algebra for Management Science	4	444	4	
	GSSE-301 Principles of Economics I				
	BBUM-201 Introduction to the Retail Industry				
	SMAM-226 Calculus for Management Science				
	GSSE- 302 Principles of Economics II				
	ICSA-200 Survey of Computer Science				
	BBUA-301 Financial Accounting				
	'Liberal Arts (lower division core)	8	40	8	
	\ddagger Physical Education				
2	PPHA-207,208,209 Still Photo I, II. III	3	34	3	
	BBUM-301 Retail Accounting and Merchandise Control BBUQ-330 Data Analysis	4			
	BBUA-302 Managerial Accounting	4	4		c
	BBUQ-334 Management Science				0
	BBUA-319 Legal Environment of Business	4			0
	BBUB-312 Career Seminar		4	2	p
	'Liberal Arts (lower division core)			4	
	'Liberal Arts (upper division concentration)	0	0		
	JPhysical Education			0	
3	PPHT-211,212,213 Materials \& Processes of Photography BBUF-441 Corporate Finance	34	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	3	$\begin{aligned} & \mathrm{C} \\ & 0 \\ & 0 \\ & \mathrm{p} \end{aligned}$
	BBUM-463 Principles of Marketing				
	BBUM-401 Retail Store Operations \& Management			4	
	BBUQ-401 Operations Management			4	
	BBUB-430 Organizational Behavior			4	
	'Liberal Arts (upper division concentration or elective) . . .	8	8		
4	BBUQ-505 Information Systems	4	4	4	
	BBUB-507 Business Environment				
	PPHT-311 Color Photography Design				
	BBUM-501 Senior Seminar in Retail Management		4		
	PPHT-312 Color Printing Theory				
	PPHM-320 Mechanics of Photographic Hardware I	4		4	
	BBUB-551 Policy \& Strategy		$\begin{aligned} & 4 \\ & 2 \end{aligned}$		
	PPHM-321 Mechanics of Photographic Hardware II PPHM-310 Survey of Production Processing \& Finishing Free Electives				
	'Liberal Arts (Senior Seminar)			2	

NOTE: Students are expected to complete co-op requirements during the junior and senior years in accordance with specific requirements for their major. General co-op guidelines for the College of Business are discussed on page 41.
"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Photographic Processing and Finishing Management

James Rice, Chairperson

This curriculum is designed to prepare individuals for management positions in the photographic processing and finishing industry. Students pursuing this course of study will learn: 1) the chemical, sensitometric and optical theory of the photographic process necessary to obtain quality results; 2) production procedures used with automated processing and finishing equipment required for large-scale operations; 3) procedures for setting up and operating a photofinishing laboratory, including training and supervising laboratory personnel and maintaining the equipment; 4) the theory and practice of process control and corrective color printing, including the use of computer programs in these areas; and 5) the business aspects of promoting and selling an economically produced quality product in a competitive market.

Students will spend considerable time in the school's fully equipped color processing and finishing laboratory to gain practical experience with production, quality control, and management techniques. They are also expected to serve a summer internship in an external photoprocessing laboratory.

The career objective of the four-year baccalaureate program is laboratory supervision and management.

As of this printing, this program is being reviewed. For further information contact the department chairperson.

Yr.	PHOTOGRAPHIC PROCESSING AND FINISHING MANAGEMENT	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	PPHT-211,212,213 Materials \& Processes	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	3	3
	SMAM-204 College Algebra and Trigonometry			
	ICSA-200 Survey of Computer Science		4	3
	PPHT-311 Color Photography/Design	4	4	
	PPHT-312 Color Printing/Theory			
	PPHM-430 Technical Writing	1		
	PPHM-204 Orientation to Production Photo Processing \& Finishing		40	8
	"Liberal Arts (Core)	4		
	tPhysical Education	0		0
2	PPHM-301 Film Processing	4	4	4
	PPHM-302 Automated Printing			
	PPHM-303 Custom and Professional Finishing		4	
	PPHM-313,314,315 Electricity and Electronics	4		4
	\# Professional Elective	4	4	4
	'Liberal Arts (Core)	4	4	4
	tPhysical Education	0	0	0
3	PPHM-401,402 Photographic Process Control	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4
	PPHM-410,411,412 Training and Supervision			
	PPHM-420 Applied Statistical Qualty Control		4	3
	SMAM-319 Data Analysis			
	BBUB-430 Organizational Behavior	4		8
	'Liberal Arts (Concentration)	4		
	Summer Internship			
4	BBUA-301 Financial Accounting	4	4	4
	BBUA-302 Managerial Accounting			
	PPHM-510 Finishing Lab Operations Management	4		
	BBUM-463 Principles of Marketing		4	
	Professional Electives	4		4
	PPHM-520 Operation, Care \& Maintenance of Photofinishing Equipment		1	1
	PPHM-501,502,503 Senior Seminar	0	0	
	'Liberal Arts (Elective)	4	4	42
	'Liberal Arts (Senior Seminar)			

'Seepage116forLiberal Arts requirements.
t See page 200 for policy on Physical Education.
\# Approval of chairman required.

Advertising Photography

Owen Butler, Chairperson Department of Applied Photography

RIT's program in advertising photography prepares students to express their creativity in the glamorous world of a commercial studio, an advertising agency or in a corporate setting. Whether the subject is a fashion model or a new automobile, RIT students have both the technical and artistic background to create the perfect picture. Graduates receive a bachelor of fine arts degree in professional photographic illustration.

Photojournalism

World events today are often etched not by words, but by photographs. RIT's photojournalism program, which leads to a bachelor of fine arts degree in professional photographic illustration, provides the education in both photographic techniques and the artistry of capturing events on film for magazines, newspapers and for independent projects. RIT graduates of this program are well-respected: alumni have won five Pulitzer Prizes in photojournalism since 1980. Although the emphasis is on photography, all students are required to take a journalism course. Students also have the opportunity to explore related disciplines, such as electronic printing and newspaper production.

Areas of concentration
Advertising photography and photojournalism are each flexible enough to provide for the student's particular needs. The first two years are common for advertising photography and photojournalism students. After the second year students plan programs that will fulfill their objectives. With an advisor, a tentative two-year program is planned for available courses that will meet the professional BFA degree requirements

Yr.	ADVERTISING PHOTOGRAPHY (BFA in Professional Photographic Illustration)	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	PPHL-201, 202,203 Applied Photo I	73	7	7
	PPHL-205,206, Creative Problems		3	
	PPHL-207 Intro, to Color			3
	FADF-221,222,223 Design for Photo I	2	2	2
	'Liberal Arts (Core)	4	4	4
	fPhysical Education	0	0	0
2	PPHL-311,312,313 Applied Photo II	5	5	5
	PPHA-301,302,303 History \& Aesthetics of Photo	3	3	3
	FADF-321,322,323 Design for Photo II	2	2	2
	PPHT-211,212,213 Materials \& Processes of Photography	3	3	3
	PPHL-315 Colloquia		1	
	-Liberal Arts (Core)	4	4	40
	tPhysical Education		0	
3	PPHL-441,442,443 Advertising Photography I	$\begin{aligned} & 5 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$	5	5434
	"Photo Eiectives		4	
	FSCF-225,226,227 Art \& Civilization		3	
	'Liberal Arts (Concentration)		4	
4	PPHL-541,542,543 Advertising Photography II	3-4	5	5$3-4$
	"Photo Eiectives		3-4	
	PPHL-461 Prof. Operations Management		4	
	"Liberal Arts (Eiectives)		4	4
	"Liberal Arts (Senior Seminar)			2

'Seepage 116 for Liberal Arts requirements.
"A list of eiectives is on next page.
tSee page 200 for policy on Physical Education.

Yr.	PHOTOJOURNALISM (BFA in Professional Photographic Illustration)	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	PPHL-201, 202,203 Applied Photo I	73		7
	PPHL-205,206, Creative Problems		73	
	PPHL-207 Intro, to Color			3
	FADF-221,222,223 Design for Photo I	2	2	2
	"Liberal Arts (Core)	4	4	4
	TPhysical Education	0	0	0
2	PPHL-311,312,313Applied Photo II	5	5	5
	PPHA-301,302,303 History \& Aesthetics of Photo	3	3	3
	FADF-321,322,323 Design for Photo II	2	2	2
	PPHT-211,212,213 Materials \& Processes of Photography	3	3	3
	PPHL-315 Colloquia		1	
	"Liberal Arts (Core)	4	4	4
	TPhysical Education	0	0	0
3	PPHL-416,417,418 Photojournalism I	$\begin{aligned} & \hline 5 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$	5	5
	"Photo Eiectives		4	4
	FSCF-225,226,227 Art \& Civilization		3	3
	"Liberal Arts (Concentration)		4	4
4	PPHL-516,517,518 Photojournalism II	5	5	5
	"Photo Eiectives	3-4	3-4	3-4
	PPHL-461 Prof. Operations Management		4	
	"Liberal Arts (Eiectives)	4	4	2
	"Liberal Arts (Senior Seminar)			

'Seepage 116 for Liberal Arts requirements.
'A list of eiectives is on next page.
tSee page 200 for policy on Physical Education

Fine Art
 Photography

Ken White, Chairperson

If your interests are in art and photography, you should consider fine art photography as your major. Our program is designed to encourage and facilitate your artistic development, sensitivity, and your uniqueness as a visual artist. Our purpose is not to train you for a specific job in photography, but rather to provide a career path that will provide you with a rich potential for growth and change, and for a lifetime of interesting and challenging work in photography and related fields. Students majoring in fine art photography receive the BFA degree in professional photographic illustration.

Career opportunities

Graduates of our fine art photography program have found careers in a variety of areas: exhibiting artists, teachers, picture editors, picture researchers, photographer's representatives, photographic archivists, museum and gallery staff, audiovisual specialists, selfemployed photographers, color printers, and film-video artists or animators. Some students choose to pursue graduate work and earn an MFA in imaging arts.

Transfer students

Students in college wishing to transfer into our program can do so if they are studying photography or related imaging arts areas such as painting, graphic design, communication arts, audio visual, film and television. Call or write the chairperson for specific information.

If you would like a personal inter view, tour, or an opportunity to visit classes and talk with some of our students, call Ken White, at (716) 475-2616.

Yr.	FINE ART PHOTOGRAPHY (BFA In Professional Photographic Illustration)	Qtr. Credit Hours		
1	PPHL-201,202,203 Applied Photo I	FALL	WTR.	SPG.
		73	73	7
	PPHL-205,206 Creative Problems			
	PPHL-207 Intro, to Color			3
	FADF-221,222,223 Design for Photo I	2	2	2
	"Liberal Arts (Core)	4	4	4
	fPhysical Education	0	0	0
	PPHA-313 Introduction to Fine Art Photography	4	4	
	PPHA-301,302,303 History \& Aesthetics of Photography	3	3	3
	PPHA-323 Photo Media Survey			3
2	ICSA-200 Survey of Computer Science	4		
	Visual Imaging Electives (or Materials \& Processes)	3	3-7	3-8
	"Liberal Arts (Core)	4	4	4
	tPhysical Education	0	0	0
	PPHA-401,402,403 Photography as a Fine Art I	4	4	4
	FSCF-225,226,227 Art \& Civilization	3	3	3
3*	PPHA 411,412,413 Contemporary Issues	2	2	2
	Visual Imaging Electives	3-4	3-4	3-4
	"Liberal Arts (Concentration)	4	4	4
	PPHA-501,502,503 Photography as a Fine Art II	4	4	4
	PPHA-525 Archival Photographies: Processing, Display \& Storage		4	
4	FSCF-380 Contemporary Art	3		
	Visual Imaging Electives	3-4	3-4	7-8
	"Liberal Arts (Electives)	4	4	4
	"Liberal Arts (Senior Seminar)			2

'Students wishing to do so can elect to take their third year oft campus in this country or abroad.
"See page 116 for Liberal Arts requirements.
tSee page200for pohcy on Physical Education.

Center for Imaging Science

Dr. Rodney Shaw, Director

Students in RIT's Center for Imaging Science program study the applications of physics, computer science, chemistry and mathematics to the formation, recording and perception of images. Design of imaging systems, the evaluation of the images they produce and the application of those systems to a broad range of careers in industry, business and government are all part of the imaging science curriculum. Concentrations include digital image processing, remote sensing, photographic chemistry, optics, and image evaluation. In addition, concentrations in color science, appearance, and technology are offered in the Munsell Color Science Laboratory within the Center for Imaging Science. Both theoretical studies and practical application of technologies are integral parts of the Imaging Science program.

The foundation for study in imaging science is grounded in the physical and mathematical sciences. Built on this background are advanced studies in imaging principles, chemistry, optics and optical instrumentation, color science and technology, photometry and radiometry, image microstructure, analysis and evaluation of imaging systems, digital image processing and remote sensing. Career opportunities exist throughout the country in areas such as aerospace technology, office information systems, information handling, microelectronics, scientific instrumentation, graphic arts, and photographic materials and systems. Graduates are employed in industrial and governmental research, marketing and technical representation.

The imaging science faculty are deeply committed professionals who divide their time between teaching and the pursuit of technological advances. Additionally, adjunct faculty members from local industry add their experience to the students' education. The center provides research support and performs contract work for industry and government. This research ensures that students are exposed to the latest developments in this rapidly expanding field.

Yr.	IMAGING SCIENCE	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	PIMG-231 Survey of Imaging Science	3	1	2
	PIMG-232 Imaging Science Seminar			
	PIMG-233 Introduction to Imaging Science			
	PIMG-241 Intro, to VAXIVMS FORTRAN	231		
	SCHG-211,212 Chemical Principles I, II		31	
	SCHG-205,206 Chemical Principles I, II Lab			
	SCHG-213 Intro, to Organic Chemistry		4	3
	SCHG-207 Intro, to Organic Chemistry Lab			1
	SPSP-311,312 University Physics			4
	SMAM-251,252,253 Calculus I, II, III	4	4	4
	"Liberal Arts (Core)	4	4	4
	-Physical Education		0	
$2 \dagger$	PIMG-351,352 Mathematics and Computation for Imaging Science I, II	4	4	4
	PIMG-361 Geometrical Optics			
	PIMG-362 Physical Optics		4	44
	PIMG-345 Interaction Between Light \& Matter			
	PIMG-365 Chemical Fundamentals of Imaging			
	SMAM-305 Calculus IV	4		
	SPSP-313 University Physics	4		
	SPSP-314 Introduction to Modern Physics		4	
	"Liberal Arts (Core)	4	4	40
	-Physical Education	0	0	
3	PIMG-461 Radiometry	4	4	34
	PIMG-462 Vision, Color \& Psychophysics			
	PIMG-463 Macroscopic Imaging Systems Analysis		4	
	PIMG-446,447 Statistics I, II			
	SPSP-431 Electronics			4
	Professional Electives	3-6	3-6	3
	"Liberal Arts (Core/Concentration)	8	4	4
4	PIMG-506 Research Practices \& Technical Communications	3	3	3
	PIMG-507,508 Sr. Project			
	PIMG-566 Imaging Systems Analysis	3		
	PIMG-567 Quantum Limitations of Imaging Processes		3	3
	PIMG-568 Advanced Imaging Systems Analysis			
	Professional Elective (selected from undergraduate elective list)	credit vanes		
	"Liberal Arts (Electives)	4	4	42
	"Liberal Arts (Senior Seminar)			

'Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
tUpon successful completion of the second year, the associate in applied science degree is awarded.

The Center for Imaging Science offers four programs leading to both undergraduate and graduate degrees: a four-year bachelor of science degree and two master of science programs for students with a bachelor's degree in science or engineering. In addition to the MS degree in imaging science, the center also offers a master of science degree in color science and a Ph.D. in imaging science.
A transfer program is available for the BS program in imaging science. Students with satisfactory credits in mathematics, chemistry and physics may transfer into the program beginning with the second year by taking a transfer program during the Summer Quarter.
Second-year entry transfer credit requirements:
Normally a minimum of 42 quarter hour credits is required to transfer into the Imaging Science BS program at this level. These should include: 8 credits of general chemistry (including lab), 4 credits of introductory organic chem-
istry, 12 credits in differential and integral calculus, 6 credits in physics, and 12 credits in liberal arts. The student also must complete the summer course, PIMG-220, Introduction to Imaging Science I, with a 'C' grade or better.

Four-year program: Bachelor of Science in Imaging Science The course content in this program is typical of science and engineering programs. The first two years contain fundamental courses in mathematics, chemistry, and physics. The student simultaneously applies these fundamentals to studies in imaging science. The imaging science core program then continues with courses in radiometry, the structure of images, color and vision, and methods of photo-engineering systems. Third- and fourthyear students select elective courses in imaging and photo-engineering, science and mathematics. A fourth-year undergraduate research project is required.

School of Printing Management and Sciences

Miles F. South worth, Director

The School of Printing Management and Sciences is the world's largest school specifically dedicated to developing managers, system engineers, sales and marketing personnel, printing production managers, and computer scientists for the newspaper, magazine, printing, packaging, publishing, and related industries. It enjoys this position of leadership because of an involved and dedicated faculty, its up-to-date programs, laboratory facilities which represent the state-of-the-art, and the great number of successful graduates. The school's facilities are unsurpassed, with a world-renowned faculty that teaches all factors in the professional education using more than $\$ 40$ million of up-to-date equipment in 25 laboratories and 125,000 square feet of physical facilities. An installation of this magnitude is possible only through the outstanding support received from the various printing equipment manufacturers and the printing industry in general. More than 70 courses in printing technology and management are offered in the school. Courses in engineering, computer science, business, mathematics, design, packaging, science and liberal arts are taken in close cooperation with other colleges at RIT.

The School of Printing Management and Sciences offers a complete array of programs that require courses in basic concepts needed in all jobs in the printing industries and allow customized study in other courses to develop individualized talents and interests. The completeness of the professional education is an important feature that differ entiates RIT's programs from those at other colleges.

Scholarship and Financial Aid Our large number of successful graduates testifies to the value of RIT's printing programs. No student who is interested in attending the School of Printing Management and Sciences should turn away without first discussing the matter with an expert in the RIT Financial Aid Office or RIT Admissions Office.

The school enjoys substantial scholarship support from alumni and industry. More than 55 scholarships are available to School of Printing Management and Sciences students through RIT's Financial Aid Office. They range in size from $\$ 100$ to full tuition. Some of these awards may be continued beyond one year depending upon the scholastic record. See the financial aid section of this catalog for further information.

The School of Printing Management and Sciences also administers a number of scholarships directly. These are awarded to entering freshmen as well as upperclassmen on the basis of previous performance.

The Education Council of the Graphic Arts Industry offers scholarships. Application should be made by high school students early in their senior year because the scholarships involve competitive examinations. If information is not available in the local high school, the candidates should write to:

Education Council of the Graphic Arts Industry
4515 Forbes Avenue
Pittsburgh, PA 15213
Students who have already completed high school should also contact the Education Council of the Graphic Arts. Many different types of scholarships are available for students pursuing further education in Graphic Arts.

In addition to scholarships and other financial aid, students frequently find part-time employment as student help in various positions throughout the campus. The School of Printing Management and Sciences employs students as laboratory assistants. These positions are filled on the basis of merit, but many of them are restricted to students needing financial aid. Also, part-time work may be available in the Rochester area in private printing firms that employ students and in such RIT affiliated organizations as the RIT Technical and Education Center of the Graphic Arts and RIT Research Cor poration. Finally, in addition to its educational benefits, students frequently take advantage of cooperative education to supplement the funds needed for college.

Cooperative Education

The cooperative work/study program is an important educational feature required in the Printing Systems Program, Printing and Applied Computer Science Program, '.nd the Printing Program, and is strongly advocated in the Newspaper Operations Management Program. Cooperative work/study enlarges and improves a college education by combining formal classroom learning with practical work experience. Its main purpose is educational but in many cases students also use it to help pay the cost of college. RIT maintains an Office of Cooperative Education and Placement to help students find a co-op job or permanent placement with the large number of firms that seek to employ students. This work/study requirement is waived for students with satisfactory prior work experience.

Transfer credits

Transfer students from other colleges and programs are encouraged by granting maximum possible transfer credit. Transfer credit can be arranged directly with individual students or through formal agreements the school has with other colleges. Contact the School of Printing Management and Sciences directly for the most up-to-date information and transfer course recommendations. Telephone 716/475-6045 for further information about transfer credit.

Printing

Prospective students should look at all four of the school's degree programs before making a choice but many will find the flexibility of the Printing degree to be most attractive. Prior to September 1979 the Printing program was the only Bachelor of Science degree program available in the School of Printing Management and Sciences. The school's international reputation was assured as the program attracted students from nearly every state in the union as well as from many other countries.

Since then the school has introduced other programs to meet important and specific industry needs (described on succeeding pages of this catalog). The printing program, however, continues
to attract 80 percent or more of the student population of the School of Printing Management and Sciences. It offers the greatest amount of flexibility in allowing students to customize their programs for the careers they seek.

This program is based on a solid foundation in technical areas important to the printing industry as well as course work in relevant management disciplines. In addition, it makes available many eiectives from the technical or management subject areas which can be chosen according to the individual's career goals. The list of required courses for this program is displayed in a box entitled "Printing."

Career Opportunities and Cooperative Education

This program leads to a wide variety of technical and management positions in printing and related industries. Among these are positions in administration and general management, production control, quality control, sales, estimating, process and plant development, graphic design, and graphic arts research. A variety of positions in commercial printing, packaging, business forms, book, newspaper and magazine publishing industries and in other industries that service the printing industries is available to graduates. Cooperative education and internship experiences are required for all printing majors. A wide range of opportunities is available. In the past, students have been employed by federal agencies, industrial organizations, commercial printers, the publishing industry and service industries for the printing trade. They have been employed in all areas of production, customer service and plant operations. There are no restrictions on geographic location as long as the position is related to the graphic arts area and approved by the school. Students have been employed all over the United States and in for eign countries. Currently, four students each quarter co-op on the Queen Elizabeth II cruise ship employed as printing specialists.

Requirements for Admission/Transfer

Admission requirements include high school graduation from a program including elementary and intermediate algebra and one year of science. Because technology is derived from mathematics and science, it is advisable for students to take as much math as they can beyond requirements as well as chemistry, physics and electronics.

Transfer students are encouraged to apply. The flexibility of the Printing program with its foundation of math, science, management and liberal arts in addition to the required printing coursework lends itself to excellent transfer from many different programs. Contact the School of Printing Management and Sciences (716/475-6045) for recommendations of course work that will maximize transfer credit.

Program of Study

The curriculum includes a broad base of core concepts courses in the first two years followed by maximum flexibility through eiectives during the last two years.

First year printing courses cover the areas of aesthetics, imaging and press. These are supplemented by three mathematics courses that cover material needed in later courses in technology and management, two courses in chemistry and four in liberal arts. The math and chemistry courses specified in the illustrative panel are minimum requirements. Students with good backgrounds in these subjects are encouraged to take higher level courses to enhance their overall education. The liberal arts program is described in greater detail in the part of this catalog devoted to the College of Liberal Arts. In general, it requires courses from a broad spectrum of specified areas in the first two years followed in the junior and senior year by a three-course specialty, three eiectives and a senior seminar.

Second year requires nine printing courses and six courses outside the school. The technology base begun in the first year is extended by concept courses in printing materials, print finishing and distribution, and electronic communications. A management foundation is provided by concept courses in financial controls, management planning (marketing and estimating), and leadership (production and human factors). Students with a strong prefer ence for taking course work in the College of Business may elect alternative courses there in place of these concepts classes. Skills courses are required in computer standard software, technical writing and research skills. All students are required to take three courses in liberal arts and two courses in college physics. They may choose a third course in either physics or economics according to their interests.

Third and fourth years involve mostly elective courses. Seven liberal arts courses and a communication course are required. Students are required to elect a seven-course printing concentration that will consume $33-45 \%$ of their elective credits.

Professional Eiectives and Printing Concentrations

During the third and fourth year of the Printing program, each student must complete 62 credits of professional eiectives. To meet this requirement, the student completes a specialized printing concentration and additional eiectives selected from the advanced printing management and technology courses.

The concentration requirement in the printing degree builds a body of indepth knowledge, a kind of expertise. Each printing concentration consists of seven related courses and allows a student to focus on a specialized career path. In addition, with faculty approval, customized concentrations may be developed. Students work closely with faculty concentration advisors.

A concentration uses less than half the elective credits available in the third and fourth years. The remaining eiectives, almost one-fourth of total degree credits, may be used to study further in a student's area of interest or sample many other available areas. Students, with department permission, take courses from other RIT colleges either as part of their concentration or as eiectives. The School of Printing Management and Sciences, however, offers more than 70 courses in the fields of printing management, aesthetics and technology.

Following is a selected list of elective courses available and a list of printing concentrations.

Printing EiectivesPrinting Management

Intro to Magazine Publishing
\& Management
Electronic Communication in the
Printing \& Publishing Industries
Computer Estimating Systems
Legal and Ethical Conduct of Printing Businesses
Marketing in Graphic Arts

Printing Eiectives-
 Printing Technology

Concepts of Design and Typography
Printing Process Concepts
Pre-Press Imaging
Electronic Composition Systems
Quality Control in the Graphic Arts

Printing Concentrations

Printing Design
Typographic Arts
Electronic Composition Systems
Book Arts
Publishing Arts
Color Reproduction
Quality Control
Flexography Process
Gravure Process
Lithographic Process
Packaging Printing
Print Finishing Management
Screen Process
Financial Accounting
Financial Management
Legal Problems in Graphic Arts
Materials Management
Printing Procedures Analysis
Printing Supervision
Production Management
Sales/Marketing
Small Business Entrepren^urship

'Required only for those students lacking Trigonometry.
"Students will be advised which option to choose, based in large part upon the student's professional career objective.
IEach student has to complete at least one printing concentration. A printing concentration consists of seven prescribed courses totaling 21 to 28 credits. The credit hours earned in printing concentration, professional and free electives must total at least 62 quarter credit
hours. (Total credits required for this program is 192.)
\%SPMS student must be Junior status or above to enroll in these courses. See your advisor for scheduling of courses,
tstudents must satisfy the Writing Competency requirement prior to graduation, either by a grade of "B" or higher
in Technical Writing II or by passing the Writing Competency test given each quarter.
'Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Printing Systems

Walter A. Campbell, Coordinator

Students interested in engineering should consider the printing systems program. Printing systems combines engineering course work with a rigorous preparation for management careers in one of America's largest high tech industries. These careers involve a mixture of high technology and human factors that many people find rewarding and exciting.

Graphic communication reproduction has experienced more changes in technology during the last two decades than during the previous two centuries. Electronics and computers have become important while the importance of chemistry and mechanics has not diminished. Computers are used in both production and management.

Although printing has long been one of America's largest industries, many printing firms are moving into other forms of communications. Those that remain independent need to consider how they fit into graphic communications systems, as well as how to use the new technologies that are available for printing.

Few industries use the variety of processes and alternative techniques that graphic communications reproduction does. Almost every printing operation can be done by hand-craft methods, machine assistance or full automation. Each technique has advantages to offer in particular circumstances. Effective managers need to understand both how and why a particular technological option fits their needs. The printing systems program educates young men and women to meet those challenges and become the shapers of the graphic reproduction industries in the coming decades.

Career Opportunities and Cooperative Education

Job prospects after graduation include not only positions in the printing engineering specialty areas but also all positions open to any other graduate of the School of Printing Management and Sciences, except for those specializing in art and design. Job prospects further include many in the general fields of electrical and industrial engineering.

Graduates of this program have started their careers in printing with above average salaries. The demand for graduates in the field of printing systems far exceeds the number of graduates from this program.

Cooperative education for at least four quarters is required.

\ddagger Professional Engineering Specialty courses are the following:

Yr	Industrial Engineering	Electrical Engineering
2	SMAM-352 Applied Statistics I	SMAM-306 Differential equations
	EIEI-202 Computing for Ind. Eng.	ICSA-220 FORTRAN for Elect. Eng.
3	EIEI-401 Operations Research I	EEEE-310 Numerical Methods
	EIEI-415 Human Factors I	EEEE-351 Circuits I
	EIEI-420 Work Measurement	EEEE-352 Circuits II
	EIEI-422 Systems \& Facilities	SMAM-328 Engineering Mathematics
	EIEI-550 Safety Engineering	SMAM-420 Complex Variables
4	EIEI-503 Simulation	EEEE-453 Signals \& Systems
	EIEI-511 Regression Analysis	EEEE-534 Intro to Communication
5	EIEI-482 Production Control	EEEE-554 Digital Signal Processing

*Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"Professional electives must include one course in each of these areas: aesthetics, printing materials, printing
finishing, imaging.
tStudents must satisfy the Writing Competency requirement prior to graduation, either by a grade of " B " or higher in Technical Writing II or by passing the Writing Competency test given each quarter.

Admission and Transfer Requirements

Students who enjoy mathematics and science courses in high school will find the printing systems program of interest. Applicants must meet admission requirements of the RIT College of Engineering as well as those of the School of Printing Management and Sciences. These include elementary and intermediate algebra, plane geometry, trigonometry, physics and chemistry. Most applicants have four years of high school math.

Transfers into this program from two-year college engineering science programs, math/science transfer programs, or comparable majors are encouraged to apply. Courses that are
acceptable for industrial engineering programs are generally acceptable for this program but students without adequate course work in printing may want to take Summer Session courses at RIT before beginning the program's third year.

Program of Study

The curriculum in Printing Systems features strong courses in printing, industrial or electrical engineering, mathematics, science and liberal arts. Printing courses provide depth and breadth in technology as well as important studies in managing and working with people. During the second year students begin either industrial engineering or electrical engineering courses.

The industrial engineering courses deal with design and installation of integrated systems of people, materials and equipment. Through these courses printing systems students become expert in understanding and using computers in both manufacturing and management, for example, in plant layout, process development, and control of manufacturing systems with robots and conveyors.

The electrical engineering sequence is selected to provide a sound education in the electronics of printing equipment and transmission systems. Printing equipment manufacturers and very large printing companies have interest in graduates with this electrical engineering background.

Newspaper Operations Management

W. Frederick Craig, Coordinator

The printing and publishing industries are undergoing dynamic changes in technology. Within the newspaper industry changes are particularly drastic, completely altering how things are accomplished. In addition, advances in technology and market penetration of related information-handling systems result in greater competition in the areas of reader interest and advertising appeal. These advances have made it imperative to alter not only the way in which a newspaper is printed and distributed but also the very method by which the information is prepared and processed-perhaps even what will be produced. The earlier distinctions between editorial, advertising and production blur as production becomes a function of advertising and editorial preparation, a direction enveloping previously distinct functions as well. These trends will result in the integration of these departments into a single entity utilizing a computer system to handle, transmit, and process information and then to control production and delivery.

This new approach requires new abilities and expertise of the people who would guide this changing industry. Graduates of the Newspaper Operations Management Program will have to compete with the existing pools of talent and expertise as the functions of production merge with those of other departments.

'See pege 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education
'"SPMS student must be junior status or above to enroll in these courses. See your advisor for scheduling of courses.
tRequired only for those students lacking Trigonometry.
tstudents must satisfy the Writing Competency requirement prior to graduation, either
by a grade of "B" or higher in Technical Writing II or by passing the Writing Competency test given each quarter.

They must be prepared in both the new technology and in the ability to guide existing manpower and management systems through potentially stormy change to a useful and profitable position in the marketplace. The revolution in this industry points to the need for a new person to deal with the technological and managerial problems of such change. This program is intended to fulfill the industry need for such people. As its name implies, the program concentrates on those courses that have been most helpful to graduates particularly interested in careers in newspaper management.

Career Opportunities
The newspaper industry is large, employing nearly 400,000 people with 1,642 daily newspapers and approximately 7,400 weeklies. Average daily circulation is $62,694,816$, and it is predicted that newspaper readership will increase between five and 10 percent by the year 2000. Technological advances will continue to revolutionize the newspaper industry. Concerns for the environment, the recycling of newsprint, the solving of people problems, telecommunications, and new laws and regulations will be highly evident.

The graduate with a BS degree in newspaper management has numerous career choices within the newspaper industry. Many young people find entry positions as production assistants, assistant business managers, technical specialists with suppliers and computer specialists. These can lead to positions of production director, director of data processing, operations director, business manager, quality control manager and publishers. All of these positions present a distinct challenge in an industry undergoing a vast technological change."

Requirements for Admission

General requirements for admission are given in the general information section of this bulletin. In addition, it is highly desirable that an applicant have a deep interest in newspaper management, which can be shown by success in working for a daily or weekly newspaper or by a general interest in the mass media.

High school graduation is a requirement for admission along with course work in elementary algebra, trigonometry, intermediate algebra, physics or chemistry. Preference is given to those applicants who have had additional work in mathematics, physics or chemistry. The entrance requirements and general program scope are similar to those in the printing program. It requires course work aimed at the newspaper industry, rather than the printing industry, in general.

Transfer students are encouraged to apply. The flexibility of the program with its foundation of math, science, management and liberal arts in addition to the required printing course work lends itself to excellent transfer from many different programs. Contact the School of Printing Management and Sciences (716/475-6045) for recommendations of course work that will maximize transfer credit.

Program of study

The Newspaper Operations Management Program is a four-year course of study leading to a bachelor of science degree. The program stresses management, engineering, sciences, computer printing technology, along with liberal arts.

Each student must take mathematics, chemistry and physics as detailed in the illustrative panel for this program. Placement will be determined through testing and a review of the student's academic background. Prepara-
tory math courses will be available if need for them exists. Students with strong science and math backgrounds are encouraged to complete high level courses in these areas to enhance their overall education.

Professional electives

Students elect courses to suit their individual interests and objectives and to meet the credit requirements of the newspaper program. Selection is subject to prerequisite requirements and availability of courses.

Printing and Applied Computer Science

Frank Cost, Coordinator

In recent years computers have become widely used in most areas of the graphic arts industry. From typesetting to management information and from inking systems to automated bindery operations, computers in the graphic arts have created a need for personnel with an in-depth knowledge of both printing and computer science. Recognizing this need, the School of Printing Management and Sciences, in cooper ation with the School of Computer Science and Information Technology, established the printing and applied computer science program for students who want to combine both fields.

Career Opportunities

A survey of employers in the graphic arts industry indicates the strong need for trained printing/computer specialists. As more and more graphic firms adopt computer technology, the need will grow for personnel who can develop and utilize equipment, interpret the graphic arts industry to the computer industry, apply computers to printing processes, manage computer systems, and work with vendors.

Graduates with a BS degree in printing and applied computer science have many career opportunities open to them. These include data processing supervisor; computer system analyst; customer training, marketing support, and sales for computer-based printing equipment manufacturers; and custom software design and development. These positions can lead to management responsibilities as production manager, director of computer technology, and operations manager-all stepping stones to top management opportunities.

The cooperative plan of study is required in the School of Printing Management and Sciences for students choosing this program.

Requirements for Admission/ Transfer

Requirements for admission are given in the general information section of this bulletin. In addition, it is highly desirable that the applicant have a great interest in printing and computers, which can be shown by success in working on a school newspaper or yearbook, by working summers in a printing plant, or by general interest in graphic communications as well as in computers and their applications. High school graduation and course work in elementary algebra, plane geometry, intermediate algebra, trigonometry, physics and/or chemistry is required. Preference is given to those who have had additional work in physics, calculus and computer usage.

Transfer students into this program from two year college computer science, computer science transfer, math/ science transfer programs or other comparable programs are encouraged to apply- Transfer students find that many of their two-year college credits are applicable toward the four-year degree.

Program of Study

The School of Printing Management and Sciences offers a four-year course leading to a Bachelor of Science degree in Printing and Applied Computer Science.

Approximately 20 percent of the course work is in computer science, 30 percent in printing technology and management, 25 percent in math/ science, and 25 percent in liberal arts.

The first-year curriculum of this program and that of the Printing Systems program are practically the same. Therefore, a student may transfer between the programs at that time with no loss of credit.

Professional Electives

Students may elect professional courses in printing or computer science and technology to complete their elective course requirement.

tSee page 116 for Liberal Arts requirements.
ttSee page 200 for policy on Physical Education.
t Students must satisfy the Writing Competency requirement prior to graduation, either by a grade of " B " or higher in Technical Writing II or by passing the Writing Competency test given each quarter.

College of Liberal Arts

Liberal Education in the Humanities and Social Sciences

Dr. William Daniels, Dean

The College of Liberal Arts provides students with a comprehensive program of liberal education which develops their potential as intellectually aware and responsible human beings. It is the foundation for the student's entire educational experience. This program of liberal education is distinguishable from the student's professional education in that its purpose is not to nurture specifically professional knowledge or skills, but rather each student's capabilities as a thinking, creating, and responsible person.
The program of the College of Liberal Arts, in which all RIT students participate, aims to accomplish the following goals:
-To develop the student's ability to think rationally, to read critically, to speak and write cogently and clearly;
-To develop the student's ability to analyze issues, to question assumptions, to investigate problems, and to seek solutions;

- To develop the student's under standing of aesthetic values and their relevance to life;
-To expand the student's intellectual horizons by acquaintance with the western heritage;
-To develop the student's awareness of how the past invariably affects the present and the future;
-To promote the student's under standing of our society and how it interrelates with and is indebted to other cultures, thereby liberating the student from a narrow provincialism;
-To acquaint the student with knowledge of the basic principles and dynamics of individual and group behavior in the many areas of human interaction;
-To develop the student's understanding of the nature of ethical values;
-To develop the student's awareness of the social, ecological, and ethical consequences of technology, and to foster a sense of responsibility to self and society;
-To develop the student's ability to bring together varied insights and methods of analysis for the purpose of better understanding complex human and social problems. These goals are fostered throughout a student's education at RIT by the Liberal Arts curriculum, which offers each student the opportunity to acquire these abilities and understandings through courses in the humanities and social sciences. In addition to regular courses a student may engage in independent studies. These are planned by both student and instructor and provide an opportunity for the student to develop initiative and imagination in a flexible program of study.
Included in the college are undergraduate degree programs in criminal justice, social work, economics, and professional and technical communication which are described later in this bulletin. The close involvement of these programs with the humanities and social sciences instruction in liberal arts is an example of what the college is endeavoring to do throughout the curriculum, that is, to demonstrate the interrelation of all fields of learning.

The college also offers the master of science degree in school psychology.

Faculty

The faculty of the College of Liberal Arts is selected from candidates with advanced study in the social sciences and humanities. These men and women are dedicated teachers, who have chosen as their professional goals the provision of rich and meaningful learning experiences for students and continuing growth in their scholarly fields.

The Liberal Arts Curriculum

The curriculum of study in the humanities and social sciences which all RIT students pursue in the College of Liberal Arts may be understood by examining the following chart. Students in the various RIT associate and baccalaureate degree programs complete this entire Liberal Arts curriculum, or a modification of it, as applicable to their particular degree programs. Academic advisors in the College of Liberal Arts and in other colleges of the Institute assist students in interpreting the Liberal Arts curriculum as it applies to their particular degree program.

The curriculum consists of fourteen courses (54 quarter credits) arranged in five groups:

1. English Composition;
2. The core curriculum of six foundation courses in the humanities and social sciences (200-300 course numbers);
3. A disciplinary or interdisciplinary concentration of three advanced courses (400 course numbers);
4. Three advanced eiectives (400 and 500 course numbers);
5. The Liberal Arts Senior Seminar and Project.

Visually, the curriculum may be represented as follows:

In addition to English Composition, the specific Core Courses are:

Literature: required
Fine Arts: one required
Fine Arts: Visual Arts
Fine Arts: Musical Arts
Fine Arts: Film Arts
History: one required
History: Modern American
History: Modern European
Philosophy; or Science, Technology
and Values: one required
Philosophy: Ethics
Philosophy: Critical Thinking
Philosophy: Selected Issues
Science, Technology, and Values

Social Sciences: two required
Introduction to Economics
American Politics, or Ideology and the Political Process
Introduction to Psychology
Foundations of Sociology, or Cultural Anthropology

Concentration

A concentration is a group of closely related advanced courses from which a student will choose three. The student's liberal education is enhanced by such a concentration in the following ways:

1. Students achieve greater depth in learning because they have, where necessary, taken the prerequisites for these courses and because they benefit from the accumulated depth of the threecourse concentration itself.
2. They achieve a kind of "minor" in an area of liberal education.
3. They are able to see cohesion among at least three of their advanced courses.
4. They are able to build on and link new learning to their core courses.
5. They can develop more judgment and understanding in an area of the RIT or college goals.

A concentration is pursued in the third, fourth or fifth year of the baccalaureate programs and can take either of the following forms:

1. Disciplinary Concentration: three related courses in a single discipline leading to an in-depth knowledge of the methods, problems and achievements of that mode of inquiry.
2. Interdisciplinary Concentration: three related courses from different disciplines each one of which speaks to some aspect of a common area, subject, or topic.
A concentration is composed of three courses chosen from the designated list of concentration courses. The limited number of courses qualifying for the concentration increases the frequency with which they will be offered and the flexibility students will have in scheduling and registration.

The Liberal Arts concentrations available to RIT baccalaureate students will be the following.

Disciplinary concentrations

Prerequisites and the specific courses qualifying for each of the following disciplinary concentrations will be determined by the Liberal Arts academic committees responsible for these areas of study. In each case, the student will choose three of the four to eight courses that qualify for the concentration.

The Disciplinary Concentrations available to students are the following:

Language Communications
Economics
American Artistic Experience
History
The Social Impacts of Science and Technology
International Relations
Literature
Philosophy
American Politics
Psychology
Social Change in a
Technological Society

Interdisciplinary concentrations

A number of interdisciplinary concentrations are clustered around the goals of the Institute and the college. These concentrations involve in-depth study of a topic or an area representing an important realm of interdisciplinary learning for educated persons. Each of these interdisciplinary concentrations will consist of a number of courses from which a student will choose three. The specific courses composing each concentration will be formulated by faculty working in close collaboration with one another so that the courses of the concentration are closely related.

The interdisciplinary concentrations now available to students are the following:

> Environmental Studies
> Perspectives on Religion
> Women's Studies
> Global Studies
> Foreign Language/Culture: Chinese, German, Japanese, Spanish
> Peace Studies
> Minority Relations in the United States

Electives

The opportunity to choose three elective courses provides students with an element of choice in planning their liberal arts program.

Senior seminar and project

The purposes of the Senior Seminar and Project are the following:

- to give senior students the opportunity to prepare papers or projects that call for analysis and synthesis and for the application of their Liberal Arts experience to major issues that may affect their professional careers;
- to provide seminars for all senior students on a general theme;
- to provide an advanced experience of problem-solving and valueclarification.
The Senior Seminar will be designed and implemented on an annual basis by a Seminar Committee of faculty selected a year in advance.

Music at RIT

The College of Liberal Arts sponsors many musical events on the RIT campus, as well as supporting several musical groups. For more information about the many musical groups and activities open to students, please contact the music faculty of the college.

Implementation of the Liberal Arts Curriculum

Academic advising

Liberal arts requirements vary within the individual degree programs on campus. Therefore, it is important that students carefully plan their liberal arts program to meet their specific degree requirements. The College of Liberal Arts Academic Advising Office, which is located on the second floor of the liberal arts building, offers assistance in the planning and selection of appropriate liberal arts courses. Staff are available on a daily basis to assist students with their specific needs.

The college also provides a course description handbook with general information about the college and specific information regarding all liberal arts courses. Academic worksheets developed for each specific degree program also are available to help in maintaining records. The handbook and worksheets are available in the College of Liberal Arts Academic Advising Office.

Additionally, those students who are enrolled in liberal arts degree programs are assigned faculty advisors through their specific departments. These advisors counsel students in their degree requirements, answer specific questions regarding field placement, and provide career counseling. Students enrolled in the College of Liberal Arts degree programs are required to seek faculty advisement on a quarterly basis. Students arrange appointments with their faculty advisors during regularly scheduled office hours.

The Liberal Arts Curriculum

English
Composition
4 credits

The Core Courses
6 foundations; 4 credits each
(200-300 course numbers)

Psychology	Economics	Political Science	Sociologyl Anthropology	Philosophy or Science, Technology and Values	History	Literature

Social Science Requirements Arts
(Each student will choose 2 of the 4 courses)

3 -course concentration with prerequisites, 4 credits each
(400 course numbers)

concentration	concentration	concentration

The concentration may be in a disciplinary or interdisciplinary area.

3 electives, 4 credits each
(400-500 course numbers)

elective	elective	elective

Part-time students and evening programs and courses
The College of Liberal Arts offers in the evenings many of the upper-division humanities and social science courses required in baccalaureate programs pursued in all colleges of RIT by parttime evening students. These courses are part of the liberal arts curriculum expected of all Institute students pursuing a bachelor's degree and are equivalent to courses required for students completing degrees under the auspices of the College of Continuing Education.

Courses are scheduled one or two nights a week, Monday through Thursday, or on Saturday mornings. Each course is 4 academic quarter credits, except the Senior Seminar, which is 2 credits.

Part-time students also are welcome to register for liberal arts courses offered during day-time hours if their schedules permit.

To register for liberal arts courses on a part-time basis it is not necessary to be enrolled in an RIT degree program. Part-time and evening students are strongly encouraged to contact the Liberal Arts Academic Advising Office (475-6987) or the Liberal Arts Scheduling Office (475-2448) for assistance in selecting and registering for courses. Both offices are located on the second floor of the College of Liberal Arts. The Academic Advising Office is open 9 a.m. to 7:30 p.m., Monday through Thursday and 9 a.m. to $3: 30$ p.m. on Friday. The Scheduling Office is open 9 a.m. to 4 p.m., Monday through Friday.

Registration

The courses of the College of Liberal Arts are available to students registered in one of the colleges of the Institute as well as to part-time non-matriculated students. Undergraduate degree programs in social work, criminal justice, economics and professional and technical communication are available to students through the College of Liberal Arts as is the technical and liberal studies option, an academic program for students who are in the process of choosing a major.
It should be noted that all courses except the Senior Seminar carry four quarter hours of cred.it. Further, all courses meet at least three scheduled class hours each week. The difference between credit hours and class hours is designed to provide for carefully planned and extensive out-of-class assignments and projects. The purpose of this plan is to provide the student

Freshman Admission Requirements
Transfer Admission with junior standing

Program	Required High School Subjects	Desirable Elective Subjects	Two-Year College Programs
Social Work	English 4 years Algebra 2 years Any Science 1 year	Social Sciences e.g. Psychology Humanities e.g. History Government Economics Languages Additional Science and Math	Junior standing is offered for an associate degree in human services or in another appropriate major. Students may be admitted without the complete high school algebra requirement fulfilled, but will be expected to finish this requirement prior to enrolling in College Algebra, SMAM-204. Holders of liberal arts or other two-year degrees also are admitted to the programs, and transfer credit is given to the fullest extent possible. Transfer students can be given credit for professional courses required in the first two years if they have had comparable course work elsewhere.
Economics	English 4 years Elem. Algebra Plane Geometry	Additional Mathematics Science courses Social Science and History courses	Students with associate degrees in business administration or a related area enter as juniors. Maximum allowable transfer credit is given to those who have taken liberal arts or other professional courses elsewhere.
Criminal Justice	English 4 years Mathematics 1 year Any Science 1 year	Social Sciences Humanities e.g. History Government Economics	Students with associate degrees in criminal justice or a related area enter as juniors. Maximum allowable transfer credit is given those who have taken liberal arts or other professional courses elsewhere.
Professional and Technical Communication	English 4 years Mathematics 2 years Science 1 year	Additional Mathematics, Science,	History, Social Science, and Communication courses

with opportunities for instructor-guided extended responsibilities beyond those normally found in a regular classroom situation.
The College of Liberal Arts will enroll students who are not currently degree candidates under the Technical and Liberal Studies Option. Individual programs will be developed for each student.
Diploma courses will not normally be used toward the completion of Liberal Arts requirements.

Summer

The College of Liberal Arts offers a number of courses each summer in language and literature, science and humanities, and social science, as well as degree program courses in criminal justice, social work, economics, and communication.

Information concerning summer courses to be offered can be obtained by contacting the college scheduling officer; by requesting the Summer Bulletin from the College of Continuing Education or the Office of Admissions, One Lomb Memorial Drive, P.O. Box 9887, Rochester, New York 14623.

College of Liberal Arts: Degree Programs

General information on RIT's admission requirements, procedures and services is included in detail on pages 176-177 of this bulletin.

The College of Liberal Arts offers bachelor of science degree programs in the following areas: social work, criminal justice, economics, and professional and technical communication, as well as the technical and liberal studies option, an academic and advising program for students who are undecided about which RIT degree program to pursue. The admission requirements for these programs are given below, and each program is described in detail on the pages that follow.

The Criminal Justice Program

Richard Lewis, Program Chairperson

The bachelor of science degree program in criminal justice offers students a broad, well-rounded education with a curriculum designed to prepare them for a wide range of careers in criminal justice, to provide continuing education for those professionals already employed in criminal justice and to offer a strong academic foundation for graduate school.

RIT's approach to the study of criminal justice combines theoretical perspectives with practical experience. As students study in the areas of crime, criminal behavior and social control mechanisms, the emphasis is on problem-solving techniques based on the rapidly growing body of research in the field, as well as students' own guided research.

The program is unique in its broad core curriculum, the scope of professional course offerings and an intensive field experience, where students blend knowledge gained in required and elective courses with a career-oriented internship.

Career planning

Upon acceptance into the Criminal Justice Program, each student is assigned a faculty advisor who assists in formulating career goals and planning a field of study in accordance with those goals.

Through core courses, students are exposed to the widest possible range of perspectives from which to view crime and the nature of criminal justice services, thus broadening their career options.

During the junior and senior year, with faculty guidance, students select professional electives in a specific area of interest from those offered within the program, within the college, or in any of eight other colleges in the Institute. Criminal justice faculty offer concentrations in criminology, law enforcement, law corrections and security. Other concentrations, planned according to individual career goals, may include courses in computer science, management, photography, liberal studies and social work. The variety of opportunities available in the expanding field of criminal justice is reflected in the broad selection of professional electives allowed by the program.

Career opportunities

The majority of criminal justice students seek employment after completion of the BS degree and are pursuing careers throughout the country in criminal justice and related fields that include the following: law enforcement (U.S. deputy marshal, U.S. secret service, and police officers and administrators on the state, county and local levels); corrections (probation and parole officers, institutional correctional officers, counselors and administrators-adult and juvenile); industrial and retail security; court administration; counselors and administrators in youth and adult service agencies; academy training officers; crime control planning; program evaluation, and research.

Some students go directly to graduate schools after graduation; others take graduate courses while employed and/ or seek advanced degrees to increase their opportunities within their chosen criminal justice area or to facilitate career change. Most often, criminal justice graduates further their education in the areas of law, administration, social work or business.

Pre-law study

The criminal justice curriculum prepares students for law school by combining a broad liberal arts background with intensive study in criminal justice practice and theory. Students work closely with a faculty advisor in selecting appropriate professional and liberal arts electives. During their senior year, pre-law students spend 10 weeks, 30 hours per week as interns working with established attorneys in the office of the district attorney, public defender, or state attorney general, a private law firm, or in any number of public or privately funded organizations dealing with litigation. Annually, the Pre-Law Association, comprised of interested students from throughout the Institute, publishes student research papers in Legal Research at RIT.

Field experience

During the senior year, students have the opportunity to choose an internship from a number of agencies and organizations in the areas of law, law enforcement, institutional and non-institutional corrections, courts, juvenile advocacy and counseling programs and security. For one quarter (10 weeks), 30 hours per week, students work under an agency field supervisor and, at the same time, attend a Field Seminar and a class in Planning and Change with
peers who are doing field placements in other agencies. Placements are individualized in accord with a student's career objectives.

The faculty

All members of the faculty in the Criminal Justice Program hold advanced degrees, have had professional experience in criminal justice, have evidenced teaching ability and are committed to continuing professional growth in their areas of expertise. Faculty offices are conveniently located, and the faculty spend many non-teaching hours in their offices with an open door policy in order to assist students with personal problems as well as academic advising.

Faculty members regularly supervise individual students who are doing well in their course work and have an interest in independent study projects. Projects may vary from one quarter credit hour to eight quarter credit hours.

The student body

Criminal justice students are admitted as freshmen or as transfer students. Many who enter as juniors hold twoyear degrees in criminal justice, but others make this career decision after one or two years in a liberal arts or other program. The criminal justice curriculum is flexible enough to accommodate transfer students from a wide variety of academic and technical programs. Maximum credit is offered for courses where the grade is "C" or higher.

Principal field of study

For students matriculated in the Criminal Justice Program, the principal field of study includes all courses offered in the Criminal Justice Program (designated as GCJC). Students not maintaining a 2.0 cumulative grade point average in the principal field of study are subject to academic probation or suspension according to Institute policy. Students must have a 2.0 cumulative average to be eligible for field experience.

Professional elective options

The following list of professional electives is illustrative of those offered periodically within the Criminal Justice Program. A student selects professional elective courses with the advice of his/ her faculty advisor.

One of the strengths of the program is that students may elect to take professional electives from other designated colleges in the Institute and are thus able to develop a concentration in a related professional area applicable to their career goal.

Professional elective options:
 Criminal Justice
 Corrections
 Constitutional Law
 Legal Rights of Convicted Offenders
 Correctional Administration
 Social Control of Deviant Behavior
 Counseling in the Criminal Justice System
 Alternatives to Incarceration
 Sentencing Process
 Criminology
 Organized Crime
 Social Control of Deviant Behavior
 White Collar Crime
 Victimless Crime
 Computer Crime
 Women and Crime

Law

Introduction to Para-Legal
Constitutional Law
Legal Rights of Convicted Offenders
Social Control of Deviant Behavior
Evidence
Court Administration
Comparative Criminal Law
Sentencing Process
Victimless Crime
Seminar in Law

Law Enforcement

Administrative Concepts of Law Enforcement
Organized Crime
Investigative Techniques
Constitutional Law
Civil Disobedience and Criminal Justice
White Collar Crime
Evidence
Police Community Relations
Victimless Crime

Security

Organized Crime
Investigative Techniques
White Collar Crime
Physical Security and Safety
Retail Security
Computer Crime
Security Management
Seminar in Security

Professional elective options:

Related professional areas

With the approval of the faculty advisor, a student may select an additional professional elective concentration from courses offered within the College of Liberal Arts or in any of the other colleges of the Institute. Many students develop special concentrations in accounting, computer science, management, or social work.

bs degree in criminal justice

Required first and second year courses

 GCJC-201 The Criminal Justice System GCJC-203 CriminologyGCJC-207 Corrections
GCJC-303 Law Enforcement in Society
GCJC-204 Public Administration
GCJC-301 Concepts of Criminal Law
GCJC-304 Judicial Process
GCJC-309 Juvenile Justice
English Composition
Literature
Fine Arts
History
1 of the following Science \& Humanities:
Science, Technology and Values
Philosophy
2 of the following Social Sciences:
Economics - Psychology
SociologylAnthropology
Political Science
2 Science
2 Mathematics
1 Computer Science
6 Physical Education Courses

- With the exception of the Liberal Arts Senior Seminar, which receives 2 quarter credit hours, and Physical Education, for which no credit Is given, courses carry 4 quarter credit hours.

The BS Degree Program in Social Work

Helen Wadsworth, Program
Chairperson

RIT's social work program, established in 1971, provides an innovative humanistic program and a strong, socially conscious faculty set against the background of one of the most technologically current educational institutions in the country, with a state-of-theart computer network available to all students.

Accredited by the Council on Social Work Education, the baccalaureate social work program prepares students for entry into beginning-level social work practice in public and private settings offering assistance to individuals, families, groups, and the community.

The education of the social worker addresses the needs of the urban and rural population; the young and the elderly; majority and minority groups; the poor; the infirm; the handicapped; the family or individual in crises; and persons with special problems such as learning disabilities, alcoholism and mental health problems. The profession is committed to change for the better and the improvement of the human experience.

Course work is organized around five areas: knowledge of social programs, policy processes and the professions; professional practice methodology and skills; professionally supervised field instruction in a social agency; a wide-ranging liberal arts education in the humanities and social sciences, particularly in the areas of human behavior and the social environment; and research and evaluation of practice.

RIT's program in social work is known for an unusually wide selection of professional courses and a full-time intensive field instruction internship.
Each social work student is assigned a faculty advisor to assist with academic planning and career guidance throughout the course of study.

We believe that social workers have a dual role in the process of social change; they direcdy serve the needs of individuals, families, groups and communities and they work on behalf of clients to effect change in policies, legislation and broad social issues.

Personal growth

The social work curriculum encourages personal growth as an essential aspect of professional growth. In various courses students learn to increase their own self-awareness, to define their values, to understand and respect the values of others, and to develop the personal and professional strengths necessary to successful practice.

Curriculum

RIT's social work program is one of the strongest in the country and is distinctive in many ways. We offer students a curriculum that emphasizes the application of course content to the primary minority subcultures confronted by social workers: Blacks, Hispanics and disabled people. Similarly, the curriculum deals with discrimination against people based on race, color, gender, age, creed, ethnic or national origin, disability, political or sexual orientation.

The social work curriculum aims to develop an understanding of society and of people's needs. Students learn how the institutions of society contribute toward resolving problems and may, sometimes, aggravate them.

Social work students take a sequence of courses that introduces them to the concepts of social work practice and teaches fundamental skills needed to work successfully with individuals, families, groups, and the community to solve problems and resolve conflict. Opportunities for "hands-on" practice are available throughout the four-year curriculum. RIT's program has a strong focus on research skills, the appropriate use of computers in analyzing data from social work practice, and exploration of the effects of information technology on social problems.

In addition, students become wellgrounded in human behavior and the social environment from psychological, sociological and biological perspectives. This gives them an understanding, on which they can base their social work practice, of how people develop and interact with their environments.

Social work program and deafness: a unique opportunity
The location of the National Technical Institute for the Deaf (NTID) at RIT provides a special opportunity for students and faculty in the social work program. Because of the close relationship with NTID, RIT's social work program offers an unsurpassed education in dealing with deafness, in preparing deaf students for social work careers, and in increasing sensitization and responsiveness of future professionals, hearing and deaf, to the needs of disabled persons.

This unique feature of our program offers both deaf and hearing students the opportunity to study the applications of social work practice to the needs of deaf persons.

Professional Electives

Elective courses available to social work students offer them knowledge about and preparation for work in the areas of: family violence, children's services, family services, alcoholism and substance abuse, services to those who are deaf, mental health, legal social work, and services to the elderly.

Career and placement focus

Like all programs at RIT, our focus is on careers. We prepare students to enter direcdy into meaningful and rewarding positions in governmental and voluntary social agencies. RIT's achievement in job placement and in preparing students for graduate education is outstanding.

Graduates of the social work program receive advanced standing at over half the graduate schools of social work in the country. This means they can complete a two-year MSW program in only one year of study.

Most graduates have found their RIT field placement experiences to be extremely helpful in making career decisions and in obtaining jobs. In addition, the resources of RIT's Center for Cooperative Education and Placement are available to all of our students. These services include career counseling, assisting with resumes, compilingjob listings, arranging oncampus interviews, mailing letters of reference, and keeping a job resource library.

The older student

Older students and those returning to study after being away from the classroom for awhile find our program especially accommodating, challenging and rewarding. Faculty advisors, many of whom have returned to school in the middle of their careers, are sensitive to the special pressures of returning students and the opportunities open to them. For example, in field placements they make every effort to match the degree of challenge with the skills of each particular student.

Transfer students

Transfer students are evaluated and given credit for previous education wherever it is most appropriate. Articulation agreements exist with several colleges.

Transfer students with two-year degrees in human services or related programs, are given credit for their studies, and can expect to complete the social work program in two years.

Field instruction

Field instruction is an important part of the program. During the senior year, students complete an internship in a social agency. Supervised by a professional social worker and supported with integrated academic courses, they learn to apply the knowledge and skills acquired in the classroom.

During two academic quarters, students spend 30 hours per week in a social agency or program. There is an option for field placements of four quarters that carry agency stipends.

RIT social work students have an <pportunity to provide direct services to clients during their field placements. Some have become involved in family support counseling, advising pregnant adolescents, helping children with emotional problems, intervening on behalf of clients in Family Court and in the attorney general's office, and working with people who abuse alcohol and other substances.

As an alternative some students have preferred to work in the planning and funding of social programs, evaluating program effectiveness and measuring the quality of services, organizing communities to bring about change in local problems, educating the public on a broad social issue, or researching a carefully coordinated social work effort.

In field placement each student is taught by a social worker in the agency and is supervised by a faculty member. Each week, students in field placement meet on campus to evaluate experiences and to assess their development of professional skills.

\#Full-time placement In a social work agency 'See page 200 for policy on Physical Education.
"We feel that a closely supervised educational experience in the field is critically important to the development of professional social workers," says Michael Stone, coordinator of Field Placement for the social work program. "Much care and attention is given each student in choosing an appropriate agency, one that will provide a challenge and will result in professional growth."

The program works with more than 100 agencies to ensure that students' internships will relate to their career goals. In recent years, students have been placed in agencies such as the following:

Alternatives for Battered Women Board of Cooperative Educational Services
Center for Youth Services
DePaul Mental Health Services
Fairport Central Schools
Family Services of Rochester
Genesee Hospital
Hillside Children's Center
Monroe County Association for the
Hearing Impaired
Monroe County Department of Social Services

Family Team

Child Protective Team
Rochester Center for Independent
Living
Rochester School for the Deaf
Saint Joseph's Villa
Substance Abuse Intervention
Services for the Deaf

Senior field placement stipends

Social work students entering their senior field instruction have the option of completing the required 20 -week placement in an agency, or of accepting a 12 -month placement which carries with it a minimum or agency stipend. The RIT Financial Aid Form must be filed prior to April 15. This program is especially attractive for minority students and all students with severely limited financial resources. Students must spend at least their junior year in the RIT social work program to qualify for this stipend.

New social work learning laboratory
Established in the fall of 1987, the Social Work Learning Laboratory provides RIT students with unique opportunities to learn intervention skills by direct observation of colleagues through two-way viewing facilities and by videotaped feedback of their own practice. The laboratory also houses IBM, Macintosh, and VT220 computers for student use. They function both as microcomputers for specialized social work software and as terminals connected to the RIT VAX/VMS network for accessing word processing, conferencing, statistical analysis, electronic mail, intracampus visual phone, and interuniversity communication programs. Students routinely submit assignments to social work courses via computer mail; consult each other about group projects; schedule appointments with faculty; type, edit and finely polish term papers; and assist social agencies in analyzing data on their services to clients. The laboratory also contains up-to-date information on all social work programs in the country at the undergraduate and graduate levels and on social work career opportunities around the country.

Bilingual opportunities

The social work curriculum offers students the flexibility of acquiring skills in a second language, if they choose. The most popular and easiest to acquire is sign language with deaf individuals since students participate in the living laboratory of integrated education during the entire time they are at RIT. Increasingly valuable as a second language for social workers is Spanish. Students can acquire proficiency in Spanish through choosing an appropriate liberal arts concentration or electives. Either of these options prepare the graduate to seek bilingual social work positions.

Graduate Education: courses and

 opportunitiesIn 1986 RIT began offering graduate social work courses at the Henrietta campus for the School of Social Work at the State University of New York at Buffalo (SUNYAB). These courses cover most of the first year of the twoyear MSW program of SUNYAB, and are designed for the student who does not have a baccalaureate preparation in social work.

BS in Economics program

pr. Michael Vernarelli, Program Chairperson

The BS in economics degree emphasizes the quantitative analytical approach to dealing with economic problems in both the private and public sectors. This emphasis provides students with marketable skills and the intellectual foundation for career growth. The main feature which distinguishes the BS in economics from other, traditional economics degrees is that our curriculum prepares students for the world of work by developing communication, computer, and management skills in addition to economic reasoning and quantitative abilities. Students in the program are involved in a wide variety of management and analytical positions both in co-op and after graduation.

Curriculum

Students take rigorous and challenging required courses which are specifically designed to develop the ability to apply economic analysis to real world problems. Required communication courses enhance the student's ability to communicate in oral and written form. The business courses which are part of the program include accounting, finance, and management science. Quantitative analytical skills are developed by a course sequence including computer science, mathematics and statistics.

Professional electives which allow students to pursue advanced study in their individual areas of interest are available through the program. Along with finance, marketing, mathematics, statistics, or computer science, are many other possibilities, limited only by the student's creativity in designing a personalized program of study.

Study environment
The economics faculty serve as mentors who are readily available to enhance students' personal and professional growth. Students in the program have the opportunity to work as research assistants for the faculty, learning about research techniques using a hands-on approach. Students working as research assistants receive a stipend.

'Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Cooperative education

Students in the economics program have the option of participating in coop at RIT and may be placed with financial institutions, brokerage houses, government offices, and large corporations. Co-op can be taken during any quarter after the sophomore year including summer.

Opportunities for graduates Graduates with a BS in economics are prepared for a wide variety of entrylevel positions in management and quantitative analysis. Students are further prepared for graduate study in economics, business or law.

Requirements for the BS in economics degree
Students earning a BS in economics will be required to complete 182 credit hours of course work. The 182 credit hours include 40 credit hours of required economics courses in the College of Liberal Arts. The 10 required economics courses constitute the student's principal field of study. Students must maintain a 2.0 average for all Institute work and a 2.0 average in the principal field of study. Those students not maintaining the minimum grade point will be subject to academic probation or suspension according to Institute policy.

Professional and Technical Communication

Dr. Diane Hope, Program
Chairperson

The BS in professional and technical communication combines education in the theory and practice of spoken, written and visual communication with extensive instruction in one of RIT's existing professional or technical programs. Students in this program develop practical communication skills grounded in sound theoretical knowledge along with a working familiarity with the central concepts and processes of a particular professional/technical field.

Graduates of the program are qualified to serve a number of different functions as communication specialists within a specific professional area. Their career opportunities are numer ous and varied. The degree also prepares students for graduate work in communication and other related fields.

Need for the program

Numerous surveys and studies highlight the importance of effective communication in the technical and specialized world of business and industry. Today, employees use communication skills more than any others in their jobs, and the use of these skills becomes more frequent and more important with increasingly responsible positions. As knowledge becomes more technical and specialized, there is a growing need to communicate this knowledge to wide and diverse audiences. As communication media make the world more interdependent, there is need for college graduates not only skilled in how to communicate but equipped with a theoretical understanding of the principles of communication and the changing contexts in which those principles can be applied.

In addition to their work in the theory and practice of communication, totalling 76 quarter credits (52 required credits and 24 elective credits), students also take 28 quarter credits in another professional or technical discipline (professional core). So far, the program includes professional core areas in business, computer science, photography, science, and printing.

An additional option is available to students with special study and career interests. Please note that approval for an Individually Designed professional core must be obtained from the academic advisor and from the program chairperson.

Their course work in the professional core gives the students sufficient familiarity with the vocabulary and methodologies of that field to communicate both with specialists within the field and with the general public about the work of specialists. Studies and discussions with employers indicate that this ability to communicate specialized knowledge to non-specialist audiences will become even more important in the future.

The program includes two quarters of cooperative education, which gives students an opportunity to apply knowledge gained in class to a work situation in business or industry. RIT's considerable experience with cooperative education indicates that cooperative education deepens the students' knowledge of their field, allows them to determine their suitability for a particular kind of position, and increases chances for an advantageous placement upon graduation.

The program combines the liberal arts education expected of RIT under graduates with a thorough education in communication and substantial exposure to a professional core. Therefore, graduates of the program will possess knowledge of practical applications that will enhance their employability and their effectiveness in their jobs.

Curriculum

The following curriculum description displays the course distribution by academic area. The chart indicates the sequence for the required courses in the program.

Required communication courses
(52 total credit hours)
Foundations of Communication
Human Communication
Effective Speaking
Conference Techniques
Writing and Thinking
Mass Communications
Persuasion
Theories of Communication
Visual Communication
Technical Writing
Professional Writing
Research Methods I and II
Senior Thesis in Communication

Other Required Courses (52 total credit hours)

Credit

 hoursProfessional Core 28
Science 8
Math
8
Computer Science
4
Statistics or Math or Science
Communication Electives (24 total
credit hours; four credit hours a course)
Liberal Arts (54 total credit hours)

Communication electives

Students in the program are required to take six communication electives, including at least one writing elective. Electives include the following:
GPTC-320 Small Group Communication
GPTC-322 Interpersonal Communication
GPTC-324 Interviewing
GPTC-332 Newswriting
GPTC-336 Creative Writing
GPTC-415 Organizational Communication
GPTC-420 Advanced Public Speaking
GPTC-425 Teleconferencing Communication Management
GPTC-432 History of English
Language
GPTC-435 Public Relations
GPTC-436 Advanced Creative Writing
GPTC-452 Uses and Effects of Mass Media
GPTC-454 Communication and Documentary Film
GPTC-515 Persuasion and Social Change
GPTC-520 Intercultural Communication
GPTC-525 Special Topics in Communication (e.g., Conflict Negotiation; Listening; Nonverbal Communication; History of Public Address; Propaganda)
GPTC-530 Advanced Technical Writing
GPTC-550 Film and Society

The Professional Core

Students in Professional and Technical Communication are required to take one professional core as part of their degree requirements. At present there are five professional core options available. Each is composed of seven courses for a total of 28 credit hours. Following is an outline of the five options. Although prerequisites are required for some of the courses, not all of them are listed here.

College of Business

Basic courses
BBUA-301 Financial Accounting
BBUB-430 Organizational Behavior (prereq.; junior status)
BBUM-463 Principles of Marketing (prereq.; junior status)
Management track
BBUB-438 Business Ethics (prereq. BBUB-430; junior status)
BBUB-455 Human Resources Management (prereq. BBUB430; junior status)
BBUB-480 Training and Development (prereq. BBUB-455; junior status)
BBUB-490 Entrepreneurship (prereq.; junior status)
Marketing track
BBUM-505 Consumer Behavior (prereq. BBUM-463; junior status)
BBUM-553 Sales Management (prereq. BBUM-463; junior status)
BBUM-555 International Marketing (prereq. BBUM-463; junior status)
BBUM-560 Marketing Communication (prereq. BBUM-463; junior status)
Finance track
BBUA-302 Managerial Accounting (prereq. BBUA-301)
GSSE-301 Principles of Economics
BBUQ-330 Data Analysis (prereq. SMAM-226; ICSA-200)
BBUF-441 Corporate Finance (prereq. BBUA-302; GSSE-301; BBUQ.-330; junior status)

General track

BBUA-319 Legal Environment of Business
BBUM-505 Consumer Behavior (prereq. BBUM-463; junior status)
BBUM-560 Marketing Communications (prereq. BBUM-463; junior status)
BBUB-455 Human Resources Management (prereq. BBUB430; junior status)
BBUB-490 Entrepreneurship (junior status)

"Co-op scheduling is flexible and can be completed whenever requirements are met.

Computer Science

Core courses
ICSS-200 Survey of Computer Science
ICSS-208 Introduction to Programming
ICSS-210 Program Design and Validation

Electives

ICSP-300 Business Applications Using COBOL
ICSP-303 Advanced Business Applications
ICSS-410 Computer Concepts and Software Systems
ICSS-411 Data Communications and Computer Networks
ICSS-483 Applied Database Management
ICSS-525 Assemblers, Interpreters, and Compilers

School of Photographic Arts and

Sciences

Imaging and Photographic Technology

Core Courses

PPHT-211, 212, 213 Material and Processes of Photography
PPHM-201, 202, 203 Basic Principles of Photography
Electives (providing prerequisites are met)
PPHT-311 Color Photography/ Design
PPHT-312 Color Printing/Theory
PPHT-341 Introduction to Photography for Publications
PPHT-425 Nature Photography
PPHT-444 Reversal Color Printing
Applied Photography
PPHL-205, 206 Creative Problems
PPHL-437, 438, 439 Visual Communications Workshop
PPHL-207 Introduction to Color
No number assigned History of
Applied Photography
No number assigned Studio Practices

```
Film/Video
    PPHF-207, 208 Introduction to
        Portable Video I and II
    PPHF-204, 205, 206 History and
        Aesthetics of the Moving Image
    PPHF-551 Introduction to Film
        Production
    (other courses will be open if not
    filled by F/V majors)
    Fine Arts Photography
    PPHA-207, 208, 209 Still
        Photography
    PPHA-313 Introduction to Fine
        Arts
    PPHA-531 Picture Researching
    PPHA-561 Semiotics and
        Photography
```


College of Science

```
The mathematics foundation and basic science sequence would depend on what option students would pursue, but students would need to take three mathematics courses (allowed for in the curriculum) and three basic science courses (the curriculum requires two). Students would also take an additional basic science sequence from the list of basic science sequences.
- Biology
SBIB-201, 202, 203 General Biology
SBIB-205, 206, 207 General Biology Laboratory
- Chemistry
SCHG-211, 212 Chemical Principles I, II
SCHG-205, 206 Chemical Principles Laboratory (SCHG-213) Introduction to Organic Chemistry
SCHG-207 Introduction to Organic Chemistry Laboratory
- Physics
SPSP-311, 312, 313 University Physics
SPSP-375, 376, 377 University Physics Laboratory
In addition students would take an additional sequence in one of these sciences.
```


- Biology

```
SBIB-304 Botany or
SBIB-340 Ecology plus
SBIB-305, 306 Physiology and Anatomy
```

- Chemistry

SCHO-231, 232, 233 Organic Chemistry
SCHO-235, 236, 237 Organic Chemistry Laboratory

- Physics

SMAM-305 Calculus
SPSP-314 Introduction to Modern Physics
SPSP-341 Foundations of Scientific Thinking

Printing

Core requirements: 12 credits
PPRM-230 Printing Process Concepts
PPRM-250 Concepts of Design and Typography
PPRM-270 Prepress Imaging Concepts
The remaining 16 credits are chosen in a printing concentration emphasizing Process, Design or Imaging.

Graduation requirements

Students earning a BS in professional and technical communication are required to complete 181-182 quarter credit hours. These hours include 54 hours of liberal education courses in the College of Liberal Arts, 52 hours of required communication courses plus 24 hours of communication electives, 28 credit hours in a professional core, 8 hours of mathematics and 8 hours of a science sequence plus an additional 4 hours of either mathematics or science or statistics as well as 4 hours in computer science. In addition two quarters of co-op must be completed. Students must meet Institute requirements in physical education.

The student's principal field of study is defined as the 14 required communication courses listed on the previous page, the six communication electives chosen from the list on the previous page, and all courses in the student's professional core.

Students in this program may not choose the language concentration to meet the requirements of their 54 hours of liberal arts curriculum.

Students must maintain a 2.0 average for all Institute work and a 2.0 average in the principal field of study.

The Technical and Liberal Studies Option

Dr. Katherine Mayberry, Program

Chairperson
Students often are attracted to RIT because of the opportunity to specialize in a career-oriented or technical program beginning with their first year of college. Most freshmen or transfer students have chosen a career area by the time they have been accepted for admission to RIT. Others, however, may be considering a technical, careeroriented education, but want an opportunity to explore several fields before making a decision about a particular career objective.

The major goal of the technical and liberal studies option is to help students formulate an educational career plan or decide on the next steps compatible with their still emerging plans. Such steps might include entering one of RIT's degree programs, applying to another college or university for a program not offered at RIT, or-possibly -deciding to prepare for a career not requiring a college degree.

In addition to sampling introductory and foundation courses in one or more of RIT's departments, full-time technical and liberal studies students enroll for liberal arts courses in the humanities, social sciences, and mathematics. They also take a one-credit seminar, Academic Fields of Study, in which they are exposed to the full array of degree programs offered by RIT.

For example, during the first quarter in the program, a student might enroll in a beginning printing course (such as Typography I or Layout and Printing Design). In order to leave other options open while earning additional college credit, the student might also register for two required liberal education courses (such as History and Introduction to the Visual Arts).

Another student may be fairly certain he or she wants to be either an accountant or a scientist, but needs further information about these fields in order to consider goals and values more thoroughly. After academic advising he or she may decide to spend a year in the technical and liberal studies option, sampling both accounting and science courses.

Depending upon available classroom space and students' academic readiness, technical and liberal studies students may sample courses in any major area represented by RIT departments, although possibilities for exploration in art, crafts, engineering and photography are very limited.

Students who select this option must, of course, meet standards and requirements of the RIT schools and colleges to which they might eventually apply. Some additional time may be necessary to complete degree requirements because the technical and liberal studies student has spent time in preliminary exploration.

Of the 12 courses that a student would take during three quarters in the technical and liberal studies option, however, at least nine would be required in any RIT baccalaureate degree program. Therefore, the maximum "loss of time," no matter what the student's final program choice, will not be too severe.
Each student will be assisted by a faculty academic advisor. The dean of the college also will work directly with any student who has special difficulties in selecting a career path and degree program.

After one academic year (one to four quarters), each student may reasonably anticipate:
-A clearer basis for making a decision regarding long-range career plans;
-Credit for courses which would most likely apply to RIT degree programs or to programs at other colleges;
-Assistance in matriculating in the curriculum of the student's choice at
RIT, provided that relevant standards and requirements are met and that space in the program is available.
By special permission a student may
enroll for portions of this program on a part-time basis.

College of Science

Dr. John D. Paliouras, Dean

Undergraduates in the College of Science receive an unusual education, one that emphasizes the applications of science and mathematics in the professional world while still providing a comprehensive liberal arts education in the humanities and social sciences. The College of Science curricula, under the direction of our faculty members, reflect modern trends in the applications of science and mathematics while preparing students for graduate study, as well as immediate employment in business, industry, and the allied health professions.

Our emphasis is on the practical aspects of science and mathematics as found in science and computer laboratories; we are career oriented. At the same time we recognize the value of the social sciences, English composition, literature, history, philosophy, and fine arts for the intellectual enrichment of our students. In addition to technical competence, many of the skills acquired through the study of these liberal arts subjects are required by employers for promotion and career advancement.

Faculty and research

The College of Science has an ideal size and philosophy to provide a quality education. We have nearly 90 faculty members in the sciences, health professions, and mathematics. All our faculty members are committed to the education of undergraduate students; most hold the Ph.D. degree. They provide a variety of faculty expertise, so a student is likely to find a faculty member with similar interests to act as a mentor and friend.

Our faculty members are dedicated teachers who also practice their professions outside of the classroom in research and other professional activities. Our undergraduate students are encouraged to work with faculty members as they pursue their research. A number of joint student-faculty research projects have resulted in publication in professional literature.

Facilities and resources

The College of Science was built in 1968. In addition to an auditorium and nine classrooms, there are 22 teaching laboratories and 16 research laboratories that provide space for laboratory course work and student research projects. Some of the facilities within the building have specialized purposes.

For example, we have a laser-optics laboratory, an animal care facility, a diagnostic imaging laboratory, a plasma etching laboratory, three greenhouses, an electronics laboratory, a nuclear magnetic resonance laboratory, and an electron microscope center. All of these facilities are used by undergraduate students.

The Chemistry Library, located on the third floor, is a favorite student study area and houses some of the chemistry library collection. The RIT Wallace Memorial Library has a large collection of books and journals in science, mathematics, and health care fields.

State-of-the-art computer facilities are available to all students at RIT. This is a valuable resource for College of Science programs that use the computer as a tool in the applications of mathematics, health-related work, and science.

Academic advising

Each student who enrolls in a College of Science program is assigned an academic advisor who provides counsel on course selection, advice about careers, and information about RIT services. Most of our faculty members serve as academic advisors. It is not unusual for a College of Science major to have several friends among the faculty who help with academic, career, and personal questions.

Undeclared major

The student who has decided upon a specific major field will indicate a choice when applying for admission to RIT and, upon admittance to the Institute, will be enrolled as a candidate for a degree in that field.

Many high school students, however, don't know which major they prefer. We encourage such students to come to RIT if they have a strong interest in science and mathematics.
A student may apply to RIT's College of Science as an Undeclared Science major without designating a specific major. The undeclared science option allows a student to postpone a definite commitment to a particular major in science or mathematics without any loss of time toward a degree. This option has been attractive to quite a few first-year students.

Below is a typical distribution of courses for the undeclared science option. The program covers a number of introductory college-level courses in science and mathematics and can be tailored to meet a student's interests. An academic advisor assists the student in selecting courses and identifying a major field of interest in which to enroll.

Prior to the end of the first year, the student should decide upon a specific major and then enroll as a candidate for a degree. Most students in our undeclared science option find the decision is easily made after only a quarter or two of course work.

Yr.	UNDECLARED SCIENCE OPTION	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	"SBIB-201,202,203 General Biology Lec	3	3	3
	SBIB-205,206,207 General Biology Lab	1	1	1
	-SCHC-251,252,253 General Chemistry Lec. I, II, III	3	3	3
	SCHA-261,262,263 Intro, to Chemical Analysis I, II, III	3	3	3
	SMAM-251,252,253 Calculus I, II, III	4	4	4
	"SPSP-311,312 University Physics I, II		4	4
	SPSP-375,376 University Physics Lab I, II		1	1
	"Liberal Arts (Core)	4	4	4
	-Physical Education Electives	0	0	0

'Any two of these three in a given quarter.
"Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.

Our graduates
The best way to evaluate college programs is to look at the success of the graduates. In recent surveys of our graduates, more than 90% responded that they are employed in a field related to their degree and more than 90% expressed satisfaction with their work.

Employers of our graduates report that they have good preparation for employment in business and industry and, because of their work experience, immediately fit into their jobs with a high degree of initiative and seriousness of purpose.

About one-fourth of our graduates enter graduate or professional school after graduation. We have found that they do exceedingly well. Many find that, because of their laboratory and co-op experience, they can move into their graduate research projects more easily than their classmates.

The cooperative plan

In our cooperative education plan (co-op), a student alternates quarters of paid work with quarters on campus in academic study for two or three years. Co-op employment experience in a student's field of study has many advantages.

Through co-op, students often gain insights that help them with classroom work. Co-op gives students a chance to find out what working in their chosen fields is really like. Acquiring practical experience that is valuable in getting a job or into graduate school after graduation is another benefit of co-op. Income from this work-study program enables students to obtain a high quality education at a cost often comparable to a public education.

Although co-op is not required in any of our programs, many students elect this five-year plan, which works as follows. RIT's school year is divided into four 11-week quarters: Fall, Winter, Spring, and Summer. Students in the five-year co-op programs in biology, biotechnology, applied mathematics, applied statistics, computational mathematics, biomedical computing, and physics programs attend classes during the fall, winter, and spring of their first two years. During the last half of the second year, the student works with the Office of Cooperative Education and Placement in obtaining a co-op position. At the beginning of the third year the student begins alternating quarters of work and study, as shown in the accompanying diagrams. Some students are on the A-block schedule and others on the B-block. Students in the

Cooperative Schedule for Five-Year Program in Biology, Biotechnology, Mathematics, Statistics, and Biomedical Computing

Year		Fall	Winter	Spring	Summer
Iand 2		RIT	RIT	RIT	Vacation
	A	RIT	Work	RIT	Work
	B	Work	RIT	Work	RIT
5	A	RIT	Work	RIT	-
	B	Work	RIT	RIT	

Cooperative Schedule for Five-Year Chemistry, Polymer Chemistry and Physics* Programs

Year		Fall	Winter	Spring	Summer
1		RIT	RIT	RIT	Vacation/Work
2,3 and 4	A	RIT	Work/RIT* *	B	Work
	A	RIT	RIT	Work	RIT
	B	Work	WIT	RIT	

'Physics majors ordinarily ere all on A-block, and 2nd year students attend classes winter quarter.
five-year chemistry, biochemistry, and polymer chemistry co-op plans follow the same kind of schedule, except that their co-op experience could start as early as the summer of the first year.

The internship plan

Students in the medical technology, nuclear medicine technology, and diagnostic medical sonography (ultrasound) programs do not participate in co-op. Instead these students spend three years on campus in academic work and then gain invaluable clinical experience during the fourth year at a clinical training site.

The transfer plan

Students with associate's degrees in a comparable program from other educational institutions normally can expect to transfer at the junior year level. Transfer credit is granted for those studies which parallel Institute courses in the curriculum for which admission is sought.

Transfer students applying for a program at RIT similar to their previous college study are expected to present an accumulative average of "C" or above. Students making significant program changes will be evaluated on the probability of their success in the new program with the grades earned in previous study only a part of the criteria.

It is also RIT policy to grant credit by examination, in lieu of course credit, for subjects that parallel the objectives and content of courses for which advanced credit is being sought. Contact the director of admissions for policy and procedures.

Graduate degrees

The College of Science offers master of science degrees in chemistry and clinical chemistry. A master of science in materials science and engineering is offered jointly by the College of Science and the College of Engineering.

Premedical studies

A student interested in entering a professional school of medicine, dentistry or veterinary science after completing a baccalaureate degree may enroll in any BS program in the College of Science and combine that program's course requirements with what we call the premedical core (see chart on next page). The premedical core is a set of courses required for admission to most medical, dental, and veterinary schools in the United States. These courses should be completed by the end of the third year or prior to the time the student expects to take the MCAT, DAT, VAT, or other admissions tests required for entrance to a professional school.

The way in which program requirements are combined with the premedical core courses varies according to the program in which a student is enrolled (see chart below). Our biology and chemistry (biochemistry option) program requirements already include the premedical core courses. Our biotechnology, chemistry, polymer chemistry, biomedical computing, medical technology, nuclear medicine technology, and diagnostic medical sonography degree programs contain some of the premedical core courses, and the remainder can be elected within the program with careful scheduling. The programs in the Mathematics and Physics departments do not contain many of the premedical core courses. A student in one of these programs (applied mathematics, computational mathematics, applied statistics, or physics) will need to take course credits beyond the number required for a degree. This could be accomplished by taking courses during one or two summers. Advanced placement credit from high school may reduce the additional time needed. Again, careful scheduling and early planning will reduce the difficulties.

Each student who is interested in Premedical Studies is assigned an academic advisor who assists the student in selecting and scheduling course work. In addition, our Premedical Advisory Committee provides counsel and guidance on how to apply to a professional school and coordinates the application process. Students graduating from the College of Science have gained admission to medical, dental, and veterinary schools throughout the country. Others have gone on to schools of podiatry, optometry, and osteopathy, and our Premedical Advisory Committee is ready to assist students with these interests as well. However, till students considering Premedical Studies should remember that acceptance at a professional school is highly competitive and is entirely the decision of that school.

We believe very strongly that all students in our program should commit themselves to developing the greatest competency possible in the discipline in which they are enrolled. It is important, therefore, that students interested in Premedical Studies realize that, while their career objectives may include a professional school after graduation, they should select a program to which they are prepared to make a sincere and major commitment as an undergraduate student. This approach will increase a student's career options upon graduation.

PREMEDICAL CORE		
Biology Chemistry	1 year 2 years	With laboratory General Chemistry, 1 year Organic Chemistry, 1 year (both years with laboratory) With laboratory
Physics	1 year English	

Note: In addition to these courses, which are required by virtually all medical schools, additional courses in mathematics, psychology/behavioral sciences, or biology may be required by specific schools. The admissions requirements of each medical school are published and may be obtained from the Premedical Advising Committee.

COMBINING YOUR PROGRAM'S REQUIREMENTS WITH THE PREMEDICAL CORE COURSES*	
If you major in:	You will need to take the courses required for your major, plus:
Applied Mathematics	
Applied Statistics	None
Biology	Elect one year of organic chemistry
Biomedical Computing	Elect one year of physics
Biotechnology	Elect one year of biology
Chemistry	None
Chemistry (Biochemistry Option)	
Computational Mathematics	Elect one year of general chemistry and
Diagnostic Medical Sonography	one year of organic chemistry
	One quarter organic chemistry lab
Medical Technology	Elect one year of organic chemistry
Nuclear Medicine Technology	Elect one year of biology
Physics	
Polymer Chemistry	

'Some rearrangement of the typical pattern of course work within a program may be necessary. "Course credits beyond the usual 12 quarters needed to complete degree requirements are necessary.
Call the College of Science, 716-475-2485, for more information.

Admission at a Glance: College of Science Programs

General information on RIT's admission requirements, procedures and services is included in
detail on pages 176-177 of this bulletin.

Undergraduate programs in the College of Science are offered in the fields listed below. Graduates of these programs receive a bachelor of science degree and are prepared for professional employment in their respective fields or entry into graduate studies.

The typical course schedules shown on the following pages illustrate the requirements for a degree. Some course variations and additional course work are usually possible. Students should consult with an academic advisor before registering for any courses.

Course descriptions

For a complete outline of courses offered at RIT, please request the Course Description Catalog from the Admissions office.

Applied Mathematics-Graduates qualify for positions in high-tech industry, governmental agencies and business, as well as for graduate study. A combination of mathematics and computer courses together with electives in math-related areas greatly enhances employment opportunities. Degree granted: AS-2 year; BS-4 or 5 years, depending on co-op.

Applied Statistics-Because American industry is very interested in quality control, reliability analysis and statistical forecasting, graduates of this program find easy entry into industrial or business environments, or into graduate study for an advanced degree. Degree granted: AS (Applied Mathe-matics)-2 year; BS—4 or 5 years, depending on co-op.

Biology-Prepares students for occupations in research laboratories, food and agriculturally related industries, the pharmaceutical industry and environmental organizations. Graduates may pursue advanced degrees in the medical professions or in biological disciplines. Degree granted: AS—2 year; BS—4 or 5 years, depending on co-op.

Biomedical Computing-Graduates are prepared for positions in medical and industrial laboratories, software companies, and hospital computer departments working with scientists, physicians, and other health professionals on clinical or medical research projects. Degree granted: BS-4 or 5 years, depending on co-op.*

Biotechnology-Graduates are prepared to work in research and industrial processes involving genetic engineering, monoclonal antibodies and industrial fermentation technologies or may pursue graduate degrees in molecular biology, genetics, microbiology, biochemistry and immunology. Degree granted: BS—4 or 5 years, depending on co-op.*

Chemistry—Graduates qualify for positions in several fields of chemistry including professional industrial work in processing and laboratory operations research and experimental work, supervision of technical projects, managerial positions and graduate study. Degree granted: AS—2 to 3 years; BS—4 or 5 years, depending on co-op.

Computational Mathematics-A strong core of nine high-level computer science courses is integrated into an applied mathematics curriculum. Graduates, who are in great demand, usually take positions which are very computer oriented. Degree granted: AS (Applied Mathematics)—2 year; BS—4 or 5 years, depending on co-op.

Diagnostic Medical Sonography (Ultrasound)—Prepares students in abdominal, obstetrical and gynecological ultrasound scanning procedures used in clinical and research settings. Baccalaureate option-three years at RIT and one year of clinical internship. Certificate option-four courses and one year of clinical internship. Degree granted: BS—4 year*; Certificate—1 $1 / 2$ year.

Medical Technology-Prepares students for employment in hospital, industrial, pharmaceutical or research laboratories. Students spend three years at RIT and one year in an approved hospital internship. Degree granted: BS—4 year.*

Nuclear Medicine Technology-

 Prepares students to use small amounts of radioactive materials in scanning and other medical procedures to assist physicians in the diagnosis and treatment of diseases. Requires three years at RIT and one year of clinical internship. Degree granted: BS—4 year.*Physics—Graduates find employment opportunities with industrial, academic, and government institutions, or pursue graduate study in physics or in such areas as biophysics, geophysics, atmospheric science, imaging science, and industrial and business administration. Degree granted: AS—2 year; BS-4 or 5 years, depending on co-op.

Polymer Chemistry-Graduates qualify for positions in industry and governmental agencies. Opportunities in this rapidly growing field are available in basic and applied research, management and graduate study in chemistry and materials science. Degree granted: AS (Chemistry)—2 to 3 years; BS-4 or 5 years, depending on co-op.
'Students in these programs may receive an AS in General Science.

Freshman Admission Requirements
Transfer Admission

Program	Required High School Subjects*	Desirable Elective Subjects	Some Recommended Course Work
Applied Ha MhtmaMch Computational khal\|haxivalilds Aooliad oiauSuCS	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Chemistry or Physics	Physics or Chemistry; additional mathsmatic8	Differential, integral, and multivariate calculus; differential equations; matrix and linear algebra; discrete mathematics; laboratory science courses; FORTRAN, PASCAL, or Modula-II and other computer science courses.
Biology	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Biology; Chemistry	Physics; additional mathematics; Computer Science	General biology and other biology courses, general chemistry, organic chemistry, calculus
Biomedical Computing	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Biology	Physics; Chemistry; additional mathematics; Computer Science	General biology, general chemistry, calculus, FORTRAN and other computer science courses, human anatomy and physiology
Biotechnology	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Biology; Chemistry	Additional mathematics; Computer Science; Physics	General biology, microbiology, genetics, general chemistry, organic chemistry, calculus
\wedge kamlahu WwiTIlouy (Bhemistrystry Option)	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Chemistry	Physics; additional mathematics	General chemistry, organic chemistry, quantitative analysis, calculus, physics (calculus-based)
Medical Technology	Bern. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Biology	Physics or Chemistry	General chemistry, general biology, general physics, mathematics, organic chemistry, human anatomy and physiology
IAIABV Ilaiilnlw nucioar MwicinB Technology	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Biology; Chemistry	Additional science and mathematics	General biology, human anatomy and physiology, general chemistry, organic chemistry, general physics, mathematics
Diagnostic Medical Sonography	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; 2 years lab science	Additional mathematics and science	General biology, human anatomy and physiology, chemistry, general physics, mathematics
Pryw	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Physics orChemistry	Chemistry or Physics; additional mathematics	Physics (calculus-based), modem physics, general chemistry, calculus, differential equations, computer programming
Polymer Chemistry	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Chemistry	Physics; additional mathematics	General chemistry, organic chemistry, quantitative analysis, calculus, general physics
Undeclared 8cience Option	Elem. Algebra; Plane Geometry; Inter. Algebra; Trigonometry; Lab science	Physics; Chemistry; Biology or additional mathematics	Not applicable

"Four years of English are required in all programs, except where state requirements differ.

Biology Program

G. Thomas Frederick, Ph.D.,Head

The Department of Biology offers programs leading to the AS and BS degrees in biology.

Graduates receiving the BS degree find rewarding positions in occupations related to the life sciences, including biomedical research laboratories, the pharmaceutical industry, food and agriculturally related industries and environmental organizations. The program also prepares students for the pursuit of degrees in the medical professions as well as graduate degrees in a variety of biological disciplines.

Requirements for the BS degree in biology

The student must meet the minimum graduation requirements of the Institute as described on page 171 of this bulletin. In addition, the program requires the successful completion of a total of 60 quarter credit hours in biology. A required core of courses comprises 45 quarter credit hours in biology (General Biology, Introduction to Co-op, General Ecology, Botany, Introductory Microbiology, Genetics, Biology Seminar, one course in zoology, one course in physiology and Biological Writing). The remaining 15 hours are selected from biology eiectives.

Additional requirements for the BS degree in biology include a minimum of six courses in chemistry including three in general analytical and three in organic chemistry. A minimum of three courses in physics, one course in computer science, three courses in mathematics including two calculus and one statistics course, and one course to introduce the student to cooperative education are also required.

For more information on AS and BS degree requirements, contact the head of the Department of Biology.

Specialization areas

In conjunction with a faculty advisor, individual student programs can be established to meet personal goals and career objectives. Because these areas are designed around the common core curriculum, the student has the added advantage of being prepared for alter nate career goals, should the situation arise. The following specialization areas are available at RIT:

Yr.	BIOLOGY, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1	SBIB-201,202,203 General Biology Lecture	FALL	WTR.	SPG.
		3	3	3
	SBIB-205,206,207 General Biology Laboratory	1	1	1
	SCHG-215,216,217 General Analytical Chemistry Lecture	4	3	3
	SCHG-225,226,227 General Analytical Chemistry Laboratory SMAM-214,215 Introduction to Calculus	1	1	2
		3	3	
	ICSA-200 Survey of Computer Science			4
	"Liberal Arts (Core)	4	4	4
	\ddagger Physical Education Eiectives	0	0	0
2	SBIB-340 General Ecology	4		
	SBIB-304 Botany	4		
	SCHO-231,232,233 Organic Chemistry Lecture	3	3	3
	SCHO-235,236,237 Organic Chemistry Laboratory	1	1	1
	SMAM-309 Statistics			4
	Biology Eiectives		4	4
	'Liberal Arts (Core)	4	8	4
	tPhysical Education Eiectives	0	0	0
$3 "$45	SBIB-350 Molecular Biology	VARIABLE QUARTERS		
			4	
	SBIB-370 Biological Writing		2	
	SBIB-404 Introductory Microbiology		5	
	SBIB-421 Genetics		4	
	SBIB-550 Biology Seminar		2	
	SPSP-211,212,213 College Physics Lecture		9	
	SPSP-271,272,273 College Physics Laboratory		3	
	Zoology Elective		4	
	Physiology Elective		4	
	Biology Elective		8	
	"Liberal Arts (Concentration)		12	
	"Liberal Arts (Eiectives)		12	
	"Liberal Arts (Senior Seminar)		2	
	Institute-wide Eiectives		15	

'See page 116 for Liberal Arts requirements.
t See page 200 for policy on Physical Education.
"Course scheduling varies

1. Biological Research. This program, which includes a variety of courses such as toxicology, radiation biology, animal surgery, histology, electron microscopy and tissue culture, leads to employment in laboratories engaged in pure and applied biological research or in clinical and medical research.
2. Pre-professional. Students interested in careers in medicine, dentistry, veterinary science, optometry and podiatry can satisfy the requirements for admission to professional schools by majoring in biology at RIT. Elective courses would include comparative anatomy, surgical techniques, histology, toxicology, radiation biology, electron microscopy, virology, antibiotics and chemotherapy, and parasitology.
3. Post-graduate. A student achieving the BS degree in biology at RIT will have the essential prerequisites for entry into most universities offering advanced degrees in biological sciences. Eiectives such as independent study and undergraduate research can further enhance preparation for graduate programs.
4. Microbiology. This is similar to the biological research program, but emphasizes microbiological aspects that lead to careers in clinical laboratories, in food and drug quality control and in wastewater and sewage treatment facilities.
5. Environmental Science. This track prepares students for careers in ecological research and management in areas such as conservation, field biology and environmental toxicology. Students may pursue terrestrial, freshwater and marine science options.
6. Medical Technology. It is possible for a student to complete a BS degree program in biology in four years and complete internship and examination requirements for medical technology certification in the fifth year. The arrangement provides the student with a variety of options: a career as a medical technologist or a research technician, or entry into graduate or professional training.

Biotechnology Program

G. Thomas Frederick, Ph.D., Head

The Department of Biology offers a program leading to the BS degree in biotechnology. This undergraduate program is one of only a few such programs in the United States.

Students learn the modern techniques and applications of genetic engineering, monoclonal antibodies, industrial fermentation, molecular biology, genetics (general, microbial and viral), plant and animal cell and tissue culture, biochemistry and cell physiology.

Graduates of the program are prepared for employment as technologists and assistant scientists in industrial and academic research laboratories in the field of biotechnology. Industries that employ biotechnologists include those involved in pharmaceuticals, agriculture, chemistry, food production and energy. The program also prepares students for entrance into advanced degree programs in biotechnology or related areas.

Requirements for the BS degree in biotechnology

The student must meet the minimum graduation requirements of the Institute as described on page 187 of this bulletin. In addition, the program requires the successful completion of 69 quarter credit hours in biology (General Biology, Introduction to Biotechnology, Tissue Culture, Plant Cell and Tissue Culture, Molecular Biology, Introductory Microbiology, Immunology, Hybridoma Techniques, Genetics, Plant Physiology, Microbial and Viral Genetics, Cell Physiology, Industrial Microbiology, Genetic Engineer ing, Topics in Biotechnology, and Biological Writing.

Additional requirements include general and analytical chemistry, organic chemistry, two courses in biochemistry, analytical chemistry separations, two courses in calculus, one in statistics and one in computer science.

For information on AS and BS degree requirements, contact the head of the Department of Biology.

[^13]
Chemistry Programs

Gerald A. Takacs, Ph.D., Head

The Department of Chemistry offers programs leading to the AS and BS degrees in chemistry, the BS degree in chemistry (biochemistry option), the BS degree in polymer chemistry, and the MS degree in chemistry.

Chemistry

The five-year cooperative program in chemistry leads to the bachelor of science degree and has been approved by the Committee on Professional Training of the American Chemical Society. The program prepares graduates for positions in the several fields of chemistry, including professional industrial work in processing and laboratory operations, research and experimental work, supervision of technical projects, and managerial positions. A substantial fraction of graduates continue their education for advanced degrees in chemistry or pursue careers in pharmacy, medicine and dentistry.
The chemistry program allows for flexibility in the type and number of chemistry and Institute-wide elective courses taken by the student. For example, it is highly recommended that students take the undergraduate chemistry research courses as Institute-wide elective credits. The program also provides students with the option of planning an elective concentration in complementary fields such as photoscience, business, graphic arts, audio visual communications, biology, criminal justice, engineering, environmental studies, packaging science, printing, computer science, physics or mathematics. Students may also elect to complete the BS degree requirements in a traditional (non-cooperative) four-year program.

"Seepage 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
SCHC-541, -542, -543, Chemistry Research may be used as Institute-wide electives and are highly recommended.

Biochemistry option

The biochemistry option is an exciting variation of the chemistry program available to students who have an interest in combining the life and health sciences with a chemistry degree. Students pursuing this option take a year of genera] biology in addition to a typical chemistry curriculum during the first two or three years. During the upper-class years, students in the biochemistry option take a substantial core of biochemistry courses, physical chemistry, chemical literature, liberal arts, and elective courses in biology, biotechnology, and clinical sciences.

Employment opportunities for chemistry graduates with the biochemistry option exist in the chemical, pharmaceutical, agricultural, forensic, and rapidly expanding biotechnological fields. Graduates also are well-prepared to enter advanced degree programs in biochemistry, medicine, dentistry, and veterinary medicine.

Yr.	CHEMISTRY BS (BIOCHEMISTRY OPTION)	Qtr. Credit Hours		
1	SCHC-200 Chemical Safety	FALL	WTR.	SPG.
		1		
	SCHC-230 Intro, to Co-op Seminar	1		
	SCHC-251,252,253 General Chemistry I, II, III	3	3	3
	SCHA-261,262,263 Intro, to Chemical Analysis	3	3	3
	SMAM-251,252,253 Calculus I, II, III	4	4	4
	SBIB-201,202,203 General Biology	3	3	3
	SBIB-205,206,207 General Biology Lab	1	1	1
	'Liberal Arts (Core)		4	4
	tPhysical Education Electives	0	0	0
2	SCHA-3111nstrumental Analysis	FALL WTR.	SPG. SMR.	
		31		31
	SCHA-318 Instrumental Analysis Lab			
	SCHA-312 Separations Techniques	4		
	SCHA-319 Separations Techniques Lab			
	SMAM-305 Calculus IV			
	SCHO-431 Organic Chemistry I			3
	SCHO-435 Preparative Organic Chemistry I Lab	4(3)		4(3)
	SPSP-311,312 (or SPSP-211,212) Physics			
	SPSP-375,376 (or SPSP-271,272) Physics Lab	14		14
	'Liberal Arts (Core)			
	tPhysical Education Electives	0		0
3	SCHP-340 Intro, to Physical Chemistry	314		4(3)
	SCHC-301 Elements of Chemical Research			
	SMAM-306 Differential Equations			
	SPSP-313 (or SPSP-211,212) Physics			
	SPSP-377 (or SPSP-273) Physics Lab			
	SCHO-432,433 Organic Chemistry II, III	32		3
	SCHO-436 Preparative Organic Chemistry II Lab			2
	SCHO-437 Systematic ID of Organic Compounds III Lab	4		
	SCHP-441 Physical Chemistry I (Thermodynamics)			3
	SCHP-445 Physical Chemistry I Lab			1
	"Liberal Arts (Core)			4
	Physical Education Electives	0		
4	SCHP-442 Physical Chemistry II (Quantum)	31		31
	SCHP-446 Physical Chemistry II Lab			
	SCHP-443 Physical Chemistry III (Kinetics)			
	SCHP-447 Physical Chemistry III Lab			
	SCHC-401 Chemical Literature	2		
	SCHB-701 Biochemistry			3
	SCHB-704 Biochemistry-Nucleic Acids	4		
	"Liberal Arts (Core)			3-4
	"Liberal Arts (Concentration)			
	ICSA-205 Computer Techniques			
5	SCHB-703 Biochemistry-Metabolism	$\begin{gathered} 3 \\ 3-5 \\ 4 \\ 2 \\ 4 \end{gathered}$		4-10
	Science Electives"			
	Liberal Arts (Electives)			
	GLAI-501 Senior Seminar			
	Liberal Arts (Concentration)			

[^14]
Polymer chemistry

Polymer science is one of the increasingly important areas of modern science. The polymer chemistry program, which is one of a handful of such programs in the nation, provides students with a solid background in the traditional areas of chemistry (general, analytical, organic, physical and inorganic) supplemented with advanced courses and intensive laboratory experiences in polymer science. It is highly recommended that students take the under graduate chemistry research courses as Institute-wide eiectives in this program. Because two-thirds of all chemists work with polymers during their professional lives, this program provides the background important for success in many industrial basic and applied research areas and also enables graduates to pur sue further education in chemistry, polymer chemistry, or materials science and engineering.

Requirements for the BS degree

The student must meet the minimum graduation requirements of the Institute as described on page 187 and in addition must complete the requirements contained in the particular program listed herein or its equivalent as determined and approved by the Department of Chemistry.
lb meet the requirements leading to the BS degree approved by the Committee on Professional Training of the Amerian Chemical Society, the student must take specifically designated courses in chemistry and related sciences and must complete a minimum of 187 quarter credit hours.

All students must meet the requirements for the Institute's writing policy, as specified by the Department of Chemistry.

Extended-Day and Part-time Studies in Chemistry

All BS degree options in chemistry and polymer chemistry Eire designed to accommodate part-time students, beyond the associate degree, during day or evening (extended-day) hours. Academic advising is available throughout and the American Chemical Society approved degree is offered at extended-day hours. This option is especially designed for transfer students who work full-time, but it is flexible to meet the needs of any part-time student.

"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
"SCHC-541, -542, -543, Chemistry Research, may be used as Institute-wide eiectives and are highly recommended.

Mathematics and Statistics Programs

George T. Georgantas, Ph.D., Head

Over the past severed years a growing demand has developed for mathematicians and statisticians with solid computer skills and broad-based quantitative backgrounds and interests. Indeed, mathematical and statistical theory is the basis for many fields of practical application, and employers need people whose education includes mathematics and any of the following: computer science, statistics, chemistry, physics, engineering, or business, to name a few.

The Department of Mathematics has established three BS degree programs in response to these long-term industry needs: applied mathematics, computational mathematics, and applied statistics. Each of these programs has been carefully designed to meet the needs of both students and their potential employers. Constant feedback from industry has enabled the department to continuously update its courses, programs and equipment in order to make sure students are well-trained in current techniques, equipment and applications. Industrial needs and trends are carefully discussed with employers in order to update the curricula, and graduates find that their RIT backgrounds seem tailor-made for their professional careers.

Employment opportunities for students in applied mathematics, computational mathematics and applied statistics are outstanding. Students typically become involved in research, consulting, or using computers to analyze complex physical problems that have been mathematically modeled, or using computers to do statistical analyses.

Examples of co-op and permanent jobs typically obtained by Department of Mathematics majors include the following:
analyst for mathematical modeling statistician
mathematical statistician demographics analyst missile reliability analyst software designer
scientific programmer
systems analyst
cryptographic mathematician manufacturing engineering consultant management science consultant
biological systems analyst
computer modeling consultant

Yr.	APPLIED MATHEMATICS, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1	SMAM-210,211 Freshman Seminar	FALL	WTR.	SPG.
		1	1	44
	SMAM-251,252,253 Calculus I, II, III			
	SMAM-305 Calculus IV			
	ICSP-241 Programming I-Algorithmic Structures	4	4	4
	ICSP-242 Programming II - Data Structures			
	ICSA-220 FORTRAN	4	4	
	Science Eiectives			4
	'Liberal Arts (Core)		0	0
	\ddagger Physical Education Eiectives			
2	SMAM-306 Differential Equations I	4	404	4
	SMAM-351 Probability			
	SMAM-352 Applied Statistics I			
	SMAM-399 Co-op Seminar			
	SMAM-265 Foundations of Discrete Mathematics			
	SMAM-338 Series Solutions for Diff. Equations, or SMAM-353 Applied Statistics II			
	SMAM-331 Matrix Algebra			
	"Liberal Arts (Core)	8	4	4
	Institute-wide Eiectives		4	4
	:fPhysical Education Eiectives	0	0	0
3		FALL WTR.		SPG. SMR.
	SMAM-437 Computer Methods in Applied Math	4		4
	SMAM-432 Linear Algebra			
	SMAM-461 Mathematical Modeling	4		
	Mathematics Elective			8
	'Liberal Arts (Core/Concentration)	4		4
4	SMAM-411,412 Real Variables I,II	4		4
	Mathematics Eiectives			
	Applications Minor	4		48
	'Liberal Arts (Concentration/Electives)			
5	SMAM-531,532 Abstract Algebra I, II	444		4442
	Applications Minor			
	'Liberal Arts (Eiectives)			
	"Liberal Arts (Senior Seminar)			

"See page 116 for Liberal Arts requirements.
tSee page 200 for policy on Physical Education.
graphics modeling consultant
simulations programmer
reliability analyst
statistical forecaster
robotics software specialist
data base programmer
data analyst
telecommunications analyst
software engineer
marketing analyst
aerospace systems analyst

Students in all three programs enjoy small classes and a low student/faculty ratio, and frequently get to know their teachers outside the classroom. Job opportunities for graduates are plentiful, and the department is proud of its outstanding record in placing students in both co-op and permanent jobs.

Applied Mathematics

The applied mathematics program focuses upon the study and solution of problems that can be effectively analyzed through the use of mathematics. Industry has a great need for individuals with this type of education. Students choose a sequence of courses from one of more than 20 application areas that provides them with the knowledge and skills necessary to collaborate on complex problems with scientists, engineers, computer specialists or other analysts. Some application minors are: applied statistics; biology; business; economics; chemistry; electrical; industrial or mechanical engineering; operations research; or imaging science.

Graduates typically are employed in scientific, engineering and business environments, applying their mathematics background in the analysis and solution of real-world problems.

Computational Mathematics
The computational mathematics program prepares students for a mathematical career that incorporates extensive skills in computer science. In this program, much emphasis is given to use of the computer as a tool in solving physical problems that have been mathematically modeled. Graduates of the program often choose positions as mathematical analysts, scientific programmers, software engineers or systems analysts. Job opportunities in private industry and government literally abound in this field!

Yr.	COMPUTATIONAL MATHEMATICS, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1	SMAM-210,211 Freshman Seminar	FALL	WTR.	SPG.
		1	1	4
	SMAM-251,252,253 Calculus I, II, III			
	SMAM-305 Calculus IV	4	4	4
	ICSP-241 Programming I- Algorithmic Structures			
	ICSP-242 Programming II - Data Structures			4
	ICSP-305 Assembly Language Programming	4	4	
	-Liberal Arts (Core)	40	4	0
	tPhysical Education Electives			
2	SMAM-306 Differential Equations I	4	440	4
	SMAM-351 Probability			
	SMAM-352 Applied Statistics I			
	SMAM-265 Foundations of Discrete Mathematics			
	SMAM-399 Co-op Seminar			
	SMAM-331 Matrix Algebra			
	ICSP-243 Programming III - Design and Implementation	4	4	
	ICSS-325 Data Organization and Management			4
	ICSA-220 FORTRAN Programming for Engineers			
	Institute-wide Elective			4
		4	4	4
	tPhysical Education Electives	0	0	0
3		FALL WTR.		SPG. SMR.
	SMAM-432 Linear Algebra	4		4
	SMAM-467 Theory of Graphs and Networks			
	SMAM-461 Mathematical Modeling	4		
	ICSS-315 Digital Computer Organization			
	Mathematics Elective			4
	Computer Science Elective	4		4
	"Liberal Arts (Core)			4
4	SMAM-411 Real Variables I	4		44
	SMAM-511,512 Numerical Analysis I, II			
	Mathematics Electives			
	Institute-wide Elective	4		8
	"Liberal Arts (Concentration)			
5	SMAM-531,532 Abstract Algebra I, II	4		4
	Mathematics Elective			
	Computer Science Elective	8		4
	"Liberal Arts (Electives)			
	"Liberal Arts (Senior Seminar)			

"See page 116 for Liberal Arts requirements. tSee page 200 for policy on Physical Education.

Applied Statistics

The applied statistics program provides the student with a solid foundation in mathematical and statistical principles, experience in the application of statistics, thorough knowledge of computers and statistical software, and the necessary skills to communicate the results of a statistical analysis. The demand for graduates with this type of preparation has been precipitated from the recognition by business, industry and government that a large number of problems can be effectively analyzed and solved through the intelligent use of statistical methodology. Graduates of the program collaborate with specialists in scientific and technical areas with mathematical and statistical analyses of problems.

Transfer programs

Transfer programs are arranged on an individual basis.

Requirements for the BS degree

The student must meet the minimum requirements of the Institute as described on page 187. In addition he or she must complete the requirements contained in one of the particular programs listed here, or its equivalent, as determined and approved by the Department of Mathematics. In conjunction with a faculty advisor, individual student programs will be established to meet particular needs, interests, and goals.

For more information on AS and BS degree requirements, contact the head of the Department of Mathematics.

Yr.	APPLIED STATISTICS, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1		FALL	WTR	SPG.
	SMAM-210,211 Freshman Seminar	1	1	4
	SMAM-251,252,253 Calculus I, II, III			
	SMAM-305 Calculus IV			
	ICSP-241 Programming I-Algorithmic Structures	4	4	4
	ICSP-242 Programming II - Data Structures			
	ICSA-220 FORTRAN	4		
	Science Eiectives		4	4
	'liberal Arts (Core)		4	
	-Physical Education Eiectives		0	0
2	SMAM-306 Differential Equations	44	404	444
	SMAM-351 Probability			
	SMAM-265 Foundations of Discrete Mathematics			
	SMAM-399 Co-op Seminar			
	SMAM-352,353 Applied Statistics I, II			
	SMAM-331 Matrix Algebra			
	SMAM-358 Statistical Quality Control			
	Institute-wide Elective		4	
	-Liberal Arts (Core)	8		4
	-Physical Education Eiectives	0	0	0
3		FALL WTR.		SPG. SMR.
	SMAM-432 Linear Algebra	4		4
	SMAM-354 Regression Analysis			
	SMAM-355 Design of Experiments			
	Mathematics Elective			4
	Institute-wide Eiectives	44		4
	'Liberal Arts (Core/Concentration)			
4	SMAM-454 Nonparametric Statistics	4		844
	Mathematics Eiectives			
	Institute-wide Elective			
	'Liberal Arts (Concentration/Electives)			
5	SMAM-451.452 Mathematical Statistics I, II	4		4
	SMAM-555 Statistics Seminar I			
	Mathematics Elective			4
	-Liberal Arts (Eiectives)	42		4
	-Liberal Arts (Senior Seminar)			

-Seepage 116 tor Liberal Arts requirements. tSee page 200 for potcy on Physical Education.

Yr.	PHYSICS, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	SPSP-200 Physics Orientation	2	4	41
	SPSP-311,312 University Physics I, II			
	SPSP-371,372 University Physics Lab I, II		1	
	SMAM-251,252,253 Calculus I, II, III	4	4	4
	SCHG-211,212 Chemical Principles I, II	31	3	
	SCHG-205,206 Chemical Principles I, II Lab		1	4
	SPSP-317 Computational Phys with FORTRAN Applications	8	4	
	'Liberal Arts (Core)			40
	-Physical Education Electives	0	0	
2	SPSP-313 University Physics III	41	4	4
	SPSP-373 University Physics Laboratory III			
	SPSP-314 Introduction to Modern Physics			
	SPSP-315 Introduction to Semiconductor Physics		4	
	SPSP-321 Introduction to Laboratory Techniques			1
	SPSP-374 Modem Physics Laboratory			
	SMAM-305 Calculus IV	4	4	4
	SMAM-306,307 Differential Equations I, II			
	Technical Elective	34	4	$\begin{gathered} 4 \\ 0 \\ (3-4) \end{gathered}$
	"Liberal Arts (Core)			
	Physical Education Electives	0		
	(Free Elective, optional)			
3	SPSP-401,402 Intermediate Mechanics	4		4
	SPSP-415 Thermal Physics			
	SPSP-431 Electronic Measurements I			4
	SPSP-480 Theoretical Physics I			4
	Liberal Arts (Concentration)	4-4		4
	"Liberal Arts (Concentration/Elective)			
4	SPSP-411,412 Electricity and Magnetism	4344		4
	SPSP-421 Experimental Physics I			
	SPSP-455 Optical Physics			
	SPSP-522 Introduction to Quantum Mechanics			4
	Institute-wide Elective			
	"Liberal Arts (Senior Seminar)			2
	"Liberal Arts (Concentration/Elective)			
5	SPSP-501 Theoretical Physics II, or SPSP-432 Computer Interfacing	441		4
	SPSP-531 Solid State Physics			
	SPSP-550 Physics Seminar			
	Physics Elective (400-500 level)	4		
	Free Elective			
	"Liberal Arts (Electives)			4$(3-4)$
	(Free Elective, optional)			

"Seepage 116 for Liberal Arts requirements.
tSee page 200 Ior policy on Physical Education.

Physics Program

Arthur Z. Kovacs, Ph.D., Head

The Department of Physics offers programs leading to the AS and BS degrees in physics.

The BS degree in physics is a fiveyear program with cooperative work experience. Graduates with this degree find employment opportunities with industrial, academic, and government agencies, or continue their education in MS or Ph.D. programs in physics or physics-related areas, such as biophysics, geophysics, atmospheric science, imaging science, and engineering.

Requirements for the BS degree in physics
The student must meet the minimum graduation requirements of the Institute as described on page 187 and in addition must complete the requirements contained in the program shown here or its equivalent as determined and approved by the Department of Physics. In conjunction with a faculty advisor, individual student programs will be established to meet particular needs, interests, and goals. A planned elective concentration in another field such as biology, chemistry, mathematics, computer science, business, or imaging science is possible.

For information on AS and BS degree requirements, contact the Head of the Department of Physics.

Allied Health Sciences Programs

John M. Waud, Ph.D., Head Kristen M. Waterstram-Rich, B.S., CNMT, Academic Coordinator

The Department of Allied Health Sciences includes programs of study in biomedical computing, medical technology, and two medical imaging technologies: diagnostic medical sonography (ultrasound) and nuclear medicine technology. Each is designed to prepare students for entry into careers in the health sciences. Graduates find employment opportunities in hospitals and clinics, in industry, and with many governmental agencies. Some continue their education in graduate and professional schools.

Biomedical Computing Program

John M. Waud, Ph.D., Acting
Program Director

RIT's biomedical computing BS degree curriculum is one of only a few similar programs in the United States. It was developed by the College of Science and the School of Computer Science because of the increasing use of computers in biomedical research and the health industry. Students receive training in the basic sciences, medical sciences and computer science with emphasis on clinical and laboratory applications. This array of courses provides graduates with the ability to communicate with medical personnel and trains them to use computers for the solution of clinical problems, laboratory analyses, medical information systems, and medical research.

Students are strongly encouraged to obtain experiential biomedical computing education by participation in the cooperative education program (coop). The program allows students to alternate quarters in school with quarters in paid employment during their last three years. Co-op allows students

Yr.	BIOMEDICAL COMPUTING, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1		FALL	WTR.	SPG.
	ICSA-200 Survey of Computer Science	4	4	4
	ICSP-241 Programming!-Algorithmic Structures			
	ICSP-242 Programming II - Data Structures			
	SCLB-201 Intro, to Biomedical Computing		1	
	SBIB-201,202,203 General Biology Lec	3	3	3
	SBIB-205,206,207 General Biology Lab	1	1	1
	SCHG-215,216,217 General \& Analytical Chemistry Lec	4	3	3
	SCHG-225,226,227 General \& Analytical Chemistry Lab	1	1	2
	"Liberal Arts (Core)	4	4	4
	tPhysical Education Electives	0	0	0
2	ICSP-243 Programming III - Design \& Implementation	4	4	4
	ICSP-305 Assembly Language Programming			
	ICSA-220 FORTRAN			
	SCLG-301 Medical Terminology	3	5	5
	SBIB-305,306 Physiology\&Anatomy			
	SMAM-251,252 Calculus 1, II	4	4	8
	"Liberal Arts (Core)	40	4	
	tPhysical Education Electives		0	0
3		FALL WTR.		SPG. SMR.
	ICSS-315 Digital Computer Organization	4		4
	ICSS-325 Data Organization \& Management			
	SMAM-309 Elementary Statistics	4		4
	SCLM-432 Biology Laboratory Techniques			4
	SPSP-311,312 University Physics	41		
	SPSP-375,376 University Physics Laboratory			
	"Liberal Arts (Concentration)	4		4
4	SPSP-331 Electricity \& Electronics	4		4
	Computer Science Electives			4
	Chemistry Electives			3
	"Liberal Arts (Concentration/Elective)	3 4		4
	Program Elective	4		
5	Program Electives	8		8
	-Liberal Arts (Electives)	4		42
	"Liberal Arts (Senior Seminar)			

-Seepage 116 for Liberal Ms requirements.
(Seepage 200 for policy on Physical Education.
the opportunity to practice new skills in real-life situations and to test their chosen field before making a lifelong commitment. The experiences they acquire not only make their education more relevant, but also make them more valuable to prospective employers.

Students consult with faculty advisors in order to tailor their academic programs to individual career goals. Upper level electives are used to prepare graduates for specialized employment opportunities within biomedical computing, for graduate school in the sciences or computer science, or for post-graduate professional school.

Requirements for the $B S$ in biomedical computing

The student must meet the minimum graduation requirements of the Institute as described on page 187 and in addition must complete the requirements contained in this program or its equivalent as determined and approved by the Department of Allied Health Sciences. Transfer students may be required to take additional course work, depending on the program they attended at their previous school. Specific requirements will be determined for each transfer student by the department.

For information on AS and BS degree requirements, contact the head of the Department of Allied Health Sciences.

Medical Technology Program

James C. Aumer, M.S., C(ASCP), Program Director

Linda Myers, B.S., MT(ASCP), Clinical Coordinator

The medical technology program prepares students for employment in hospital laboratories, industrial, medical or research laboratories and pharmaceutical companies. As medical technologists they will perform analyses which aid in the diagnosis and treatment of disease. They must be able to carry out complex test determinations, operate sophisticated instrumentation, and detect and correct errors. The program leads to a bachelor of science degree and meets all requirements of the National Accrediting Agency for Clinical Laboratory Sciences (NAACLS).

Students enrolled in the medical technology program attend classes at RIT during the fall, winter and spring quarters for three years. During the third year, students take a concentration of clinically oriented courses which will prepare them for their hospital experience. In the fall quarter of their third year they apply to hospital schools of medical technology that are approved by the Committee on Allied Health Education and Accreditation (CAHEA). They will then spend their fourth academic year at the hospital that accepts them as an intern for clinical training in medical technology. While at the hospital, the student will receive additional course work as well as practical experience in each of the laboratory areas: hematology, microbiology, chemistry, and immunohematology.

The medical technology program is affiliated with Rochester General Hospital and St. Mary's Hospital in Rochester, with Millard Fillmore Hospital in Buffalo, and with the Boston Veteran's Administration Medical Center as well as the Albany Medical Center Hospital. Students may, however, seek admission to any approved hospital for their clinical experience.

Upon successful completion of the hospital experience, the bachelor of science degree is awarded. The student is then eligible to take a national registry examination for certification as a medical technologist.

BS degree: the fourth year taken at an approved hospital for training medical technologists.
-See page 116 for liberal Arts requirements. tSee page 200 for policy on Physical Education.

Requirements for the BS degree in medical technology

The student must meet the minimum graduation requirements of the Institute as described on page 187 and in addition must complete the requirements contained in this program or its equivalent as determined and approved by the Department of Allied Health Sciences. Transfer students will be required to complete a minimum of 45 quarter credit hours on campus and to complete all program requirements before beginning the clinical training experience. Specific requirements will be determined for each transfer student by the program director.

For information on AS and BS degree requirements, contact the head of the Department of Allied Health Sciences.

Medical Imaging Technologies Nuclear Medicine Technology Program

Anna M. Wicks, B.S., CNMT, Program Director
Cheryl Waldman, B.S. CNMT, Clinical Coordinator

The program leading to the BS degree in nuclear medicine technology spans four years, the first three of which are spent on campus. The fourth year consists of clinical training at one or more approved hospitals.

Clinical training in nuclear medicine technology

Students who complete all required courses of the first three years of the program, with a minimum overall and principal field of study GPA of 2.0 , are eligible to begin clinical training in August of their fourth year. The first three weeks of training are an intensive introduction to the theory and practice of nuclear medicine technology. Classes during this time are held on the RIT campus, and laboratory sessions take place at Rochester hospitals.

Most of the training is performed in nuclear medicine departments of the program's hospital affiliates. Each student is assigned (subject to the hospital's approval) a particular combination of three hospitals and trains approximately three months in each. The teaching is done primarily by physicians and technologists on the hospital staffs. Student progress and performance is monitored by the RIT nuclear medicine technology coordinator who makes periodic visits to the hospital departments. Readings, problem assignments and project work are an integral part of the student's clinical training. Periodically during each three-month rotation, students return to the RIT campus for lectures and discussions.

The hospital training emphasizes the following areas: (a) radiation safety and protection; (b) patient positioning and nursing procedures; (c) radionuclide imaging and external monitoring; (d) nuclear medicine department administrative procedures.

The RIT nuclear medicine technology program has affiliations with the following Upstate New York hospitals: Syracuse area-Community General Hospital; Rochester area-Strong

tClinical Internships-Affiliated Hospitals
'See page 116 for Liberal Arts requirements.
"See page 200 for policy on Physical Education.

Memorial Hospital, The Genesee Hospital, Highland Hospital, Rochester General Hospital, Park-Ridge Hospital; Binghamton area-Our Lady of Lourdes Hospital, Wilson Memorial Hospital; Buffalo area-Sisters of Charity Hospital.

Requirements for the BS degree in nuclear medicine technology

The student must meet the minimum graduation requirements of the Institute as described on page 187 and in addition must complete the requirements contained in this program or its equivalent as determined and approved by the Department of Allied Health Sciences. In conjunction with a faculty advisor, individual student programs will be established to meet particular needs, interests, and goals. A planned
elective concentration in another field such as biology, chemistry, mathematics, computer science, business or general medical imaging is possible.

For information on BS degree requirements, contact the head of the Department of Allied Health Sciences.

Accreditation

The nuclear medicine technology program is accredited through the American Medical Association sponsored Committee on Allied Health Education and Accreditation. Accreditation is granted only to those programs that meet certain established qualifications and educational standards. Programs are periodically evaluated to ensure that these high standards are maintained.

Diagnostic
 Medical Sonography (Ultrasound) Program

Michael Foss, M.Ed., RDMS, Program Director
Lon E. Bailey, B.S., RDMS, Clinical Coordinator

The diagnostic medical sonography (ultrasound) program offers two options-one leading to a BS degree and the other to a certificate.

The program consists of professional preparation of sonographers with specialty training in abdominal, obstetrical and gynecological ultrasonic procedures. Depending upon their background, professional experience and career goals, graduates may pursue staff, administrative, research, or teaching positions, or continue their education toward an advanced degree.

Requirements for the BS degree in ultrasound
The student must meet the minimum graduation requirements of the Institute as described on page 187, and, in addition, must complete the curriculum requirements listed here or the equivalent as determined and approved by the Department of Allied Health Sciences. The program is a two- or four-year effort, including the one-year clinical internship. Associate degree graduates and registered or certified practitioners from a related health field can earn a BS degree by entering the last two years of the program. Additional course work may be required, depending on the program completed at a previous school.

For information on BS degree requirements, contact the Program Director.

Requirements for the certificate

 optionThe student must meet the Institute requirements as well as the specific requirements listed here. The certificate option is a one-year clinical internship that follows prerequisite course requirements. It is available to associate and baccalaureate degree graduates who are licensed or certified practitioners with two years of experience in a related health field, or the equivalent combination of education and experience.

Clinical training in ultrasound The clinical internship for both options will be conducted in a consortium of

Yr.	DIAGNOSTIC MEDICAL SONOGRAPHY, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
1	SBIB-201,202,203 General Biology Lec	FALL	WTR.	SPG.
		314	31	31
	SBIB-205,206,207 General Biology Lab			
	SMAM-204 College Algebra \& Trigonometry		3	3
	SMAM-214,215 Intro, to Calculus I, II			
	Chemistry Electives	4	4	4
	"Liberal Arts (Core)	4	4	4
	-Physical Education Electives	0	0	0
2	SPSP-211,212,213 College Physics Lec	3133	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	
	SPSP-271,272,273 College Physics Lab			3
	ICSA-205 Computer Techniques			1
	SCLG-301 Medical Terminology		5	5
	SBIB-305,306 Physiology \& Anatomy			
	SMAM-309 Elementary Statistics		B	4
	"Liberal Arts (Core)	4		4
	-Physical Education Electives	0	0	0
3	SCLG-205 Intro, to Diagnostic Medical Imaging	2	4	4
	SCLS-412 Ultrasonic Cross-Sectional Anatomy			
	SCLS-413 Ultrasound Instrumentation			
	SCLG-415 Pathophysiology			4
	SBIG-315 Medical Genetics			2
	SPSP-361 Ultrasonic Physics	5		4
	Program Electives	4	4	
	-Liberal Arts (Concentration)	4		4
4	SCLS-552 Intro, to Obstetrical Ultrasound	3337	4327	3427
	SCLS-553 Intro, to Gynecologic Ultrasound			
	SCLS-556 Abdominal Ultrasound I			
	SCLS-570 Clinical DMSI			
	SCLS-554 Advanced Obstetrical Ultrasound			
	SCLS-557 Abdominal Ultrasound II			
	SCLS-560 Seminar I			
	SCLS-571 Clinical DMS II			
	SCLS-558 Small Parts Ultrasound			
	SCLS-414 General Vascular Examination			
	SCLS-561 Seminar II			
	SCLS-572 Clinical DMS III			

Yr.	DIAGNOSTIC MEDICAL SONOGRAPHY, CERTIFICATE, TYPICAL COURSE SCHEDULE	Qtr. Credit Hours		
		FALL	WTR.	SPG.
+	SCLG-205 Intro, to Diagnostic Medical Imaging SCLS-412 Ultrasonic Cross-Sectional Anatomy SCLS-413 Ultrasound Instrumentation SCLG-415 Pathophysiology	2	4	2
4	SCLS-552 Intro, to Obstetrical Ultrasound SCLS-553 Intro, to Gynecologic Ultrasound SCLS-556 Abdominal Ultrasound I SCLS-570 Clinical DMS I SCLS-554 Advanced Obstetrical Ultrasound SCLS-557 Abdominal Ultrasound II SCLS-560 Seminar I SCLS-571 Clinical DMS II SCLS-558 Small Parts Ultrasound SCLS-414 General Vascular Examination SCLS-561 Seminar II SCLS-572 Clinical DMS III	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 7 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 7 \end{aligned}$

"Seepage 116 tor Liberal Arts requirements.
tSee page 200 lor policy on Physical Education.
affiliated hospitals in the major medical centers of Rochester, Buffalo, Syracuse and Binghamton. An intensive introduction to ultrasound will be taught during the first month of the internship. Students will then rotate through different hospital sites for their clinical training.

Both certificate and BS degree programs will allow graduates to take the national certifying exam for special-
ization in abdominal, obstetrical and gynecological ultrasound procedures.

Accreditation

The diagnostic medical sonography program is accredited by the Joint Review Committee on Education in Diagnostic Medical Sonography of the American Medical Association.

National Technical Institute for the Deaf

Dr. James J. DeCaro, Dean

The National Technical Institute for the Deaf (NTID), a college of Rochester Institute of Technology (RIT), provides deaf students with technological training that leads to meaningful employment in business, industry, government, and education. Created in 1965 by Congress and funded primarily by the U.S. Department of Education, NTID represents the world's first effort to educate large numbers of deaf students within a college campus planned principally for hearing students. NTID's location on a campus designed mainly for hearing students benefits deaf students' academic, personal, social, and communication development.

Nearly 1,100 deaf students from across the United States and several U.S. territories study and reside at RIT. Beginning this year, NTID also will admit qualified international students.

NTID provides RIT's deaf students with technical and professional training in 35 programs offered through its three schools: School of Business Careers, School of Science and Engineering Careers, and School of Visual Communications. An NTID education prepares students for technical careers in areas such as accounting, applied art, data processing, engineering technology, medical laboratory technology, medical record technology, and photo/ media technologies. NTID also provides extensive support services for deaf students studying in RIT's other eight colleges.

For hearing students, NTID offers an associate degree in educational interpreting.

Traditionally, 95 percent of NTID graduates find employment in their fields of study.

Admission Requirements

To qualify for admission to RIT through NTID, students must meet certain standards agreed upon by RIT and the U.S. Department of Education. In determining if an applicant qualifies for admission under the sponsorship of NTID, RIT considers these standards:

Special Help

Students should have attended a school or class for deaf students and/or have needed special help because of being deaf.

Hearing Loss

Students must have a hearing loss that seriously limits their chances of success in college without special support services. It generally is agreed that an average hearing loss of 70 decibels (ANSI, 1969) or greater across the 500 , 1,000 , and 2,000 hertz (Hz) range (unaided) in the better ear is a major handicap to education.

Educational Background

Students' educational backgrounds should indicate the probability that they can succeed in a program of study at NTID or one of the other colleges of RIT. Students who are admitted should have at least an overall eighth-grade achievement level or higher on standardized tests that include language, math, and reading. Examples of appropriate tests are the Stanford Achievement Test, Advanced Battery or the California Achievement Test, Advanced Battery.

A decision on an application cannot be made without appropriate achievement test scores. The tests used should be appropriate for deaf students. The Scholastic Aptitude Test (SAT) of the College Entrance Examination Board (CEEB) often is given to deaf students in public high schools. For most students, this test usually is not appropriate because deafness strongly affects language and reading development. Therefore, the reading and language level of the CEEB test often results in meaningless scores for deaf students.

Secondary Schooling

NTID's programs are designed for students who have finished a secondary educational program. Students can be considered for admission before completing a secondary program if their secondary school authorities feel that they will gain more from an NTID program than by remaining in secondary school. Age and personal/social maturity are given special consideration in such situations.

Maturity

To enter one of the academic programs of NTID or one of the other colleges of RIT, students must show they are personally and socially mature, which means they must accept responsibility for themselves and their actions and respect the rights of others. Students' personal references and performance in high school indicate maturity level.

Degrees Offered Through NTID

The academic programs offered through NTID lead to certificates, diplomas, and associate degrees from RIT.

Certificate

Certification at this level requires 45-60 credit hours of technical instruction. These programs allow students to acquire a minimum level of technical skill before entering the work force. In addition to technical courses, students are required to complete a specific number of credit hours, determined by the program of study, in general education and communication courses.

Diploma

Certification at this level requires 90-135 credit hours of technical and general instruction. Students attain a maximum level of technical competency for entry-level positions and minimum exposure in the general education field. In addition to 60-100 credit hours in technical courses, students must complete a specific number of credit hours, determined by the program of study, in general education and communication courses.

Associate in Occupational Studies Degree (AOS)
Certification at this level requires 100-140 credit hours of instruction. These programs permit students, upon completion, to enter their careers directly. In addition to satisfactorily completing technical courses, students must complete 20 credit hours in general education courses and a specific number of credit hours, determined by the program of study, in communication courses.

Associate in Applied Science Degree (AAS)
Certification at this level requires 115-118 credit hours of technical instruction. These programs permit students, upon completion, to enter their careers directly, or, in certain cases, to transfer to upper-division programs at a college of their choice. In addition to satisfactorily completing technical courses, students must complete 20 credit hours in liberal arts courses, nine credit hours in required general education courses, and approximately 20 credit hours in communication courses.

Deaf Students Enrolled in Other RIT Colleges

In addition to NTID's programs, qualified deaf students also may take classes in another RIT college or may enroll in one of the more than 250 professional programs offered through RIT's other eight colleges: Applied Science and Technology, Business, Continuing Education, Engineering, Fine and Applied Arts, Graphic Arts and Photography, Liberal Arts, and Science. This process is called cross registration.

Each RIT college has an affiliated NTID support department that provides services for deaf students, including advising, interpreting, notetaking, and tutoring. For more information regarding support services, see page 190.

Students may choose to enroll in courses taught through the other eight colleges of RIT for several reasons. Students may take selected courses at another RIT college as part of the elective requirements in their NTID programs; complete their programs of study at NTID, then continue their education at another RIT college; enter a program of another RIT college directly from high school; or transfer directly into a program in one of RIT's colleges from another postsecondary program.

Deaf students who wish to enroll in a program in one of RIT's other eight colleges must meet its admission standards. Further, deaf students supported by NTID also must meet NTID admission requirements listed on page 148 and complete the NTID Supplemental Admission Application as well as the standard RIT admission form.

General Education

Learning at NTID and the other colleges of RIT means more than gaining technical skills. NTID's Division of General Education provides students with a range of courses and experiences that help them become independent thinkers, develop personal and social skills, and better understand themselves and their places in the world. General education courses also help students develop a better understanding of their personal values and how they influence attitudes and behaviors; increase their ability for selfdirection, lifelong learning, and personal fulfillment; and enhance their skills in all modes of communication.

The division of General Education offers a variety of courses in the social sciences, humanities, and performing arts that provide a sound general education experience for students completing certificates, diplomas, and AOS degrees through NTID. The curriculum also provides preparatory courses for AAS and baccalaureate degree students completing their liberal arts requirements through RIT's College of Liberal Arts.

The division also sponsors an AAS degree in Educational Interpreting as well as an array of educational programs in areas such as wellness, deaf culture, and cross-cultural interactions; freshman year experiences; and minority student programming.

Required Courses

All deaf students enrolled in NTID's certificate, diploma, and associate degree programs are required to take three general education courses:
-Freshman Seminar helps students explore the academic and personal challenges of college life.
-The Job Search Process teaches students many skills they will need to find ajob.
-Life After College provides students with information necessary to function on and off the job.

Students pursuing an AOS degree are required to take one general education elective and Human Experience I: An Individual Life, Human Experience II: The Individual and Society, and Human Experience III: The Individual and Technology. These courses explore individual development and how the individual and society influence each other.

Writing Program

The Division of General Education offers a developmental writing course sequence, Written Communication I and II, for students who meet the NTID English requirements for entry into College of Liberal Arts courses. The NTID courses provide additional experience with writing techniques needed for success in the College of Liberal Arts course English Composition. Eligible students must meet with NTID's writing coordinator before registering for these courses.

Liberal Arts Requirements

Deaf students enrolled in AAS or baccalaureate degree programs take required courses in language and literature, behavioral and social sciences, and science and humanities through the College of Liberal Arts. Students can choose between course sections taught by NTID faculty members or course sections taught by College of Liberal Arts faculty members.

Liberal arts courses taught by NTID faculty members are designed especially for deaf students. Instructors use simultaneous communication and provide students with additional study guides and materials so that interpreters and notetakers are not needed.

Liberal arts courses taught by College of Liberal Arts faculty members include both deaf and hearing students. Support services, including academic advising, interpreting, notetaking, and tutoring, are provided to deaf students.

Deaf students are advised to earn a passing grade in English Composition before taking any additional liberal arts courses. Students studying in colleges other than NTID should consult with their program departments about required liberal arts courses.

English Composition Prerequisites Placement in English Composition is based on the NTID Liberal Arts Placement Test (LAPT). Before registering for English Composition, students must first satisfactorily complete Written Communication II.

Students seeking an AAS degree also are required to take courses in behavioral science, social science, and science and humanities.

Liberal Arts courses taught by NTID faculty members include:

Language, Literature, and
Communication
English Composition
Literature

Behavioral Science
Cultural Anthropology
General Sociology
Introduction to Psychology

Social Science
Ideology and the Political Process

Science and Humanities

History: Modern American
Fine Arts/Visual Arts

Communication Skills

Communication skills are critical for success in college, on the job, and in the community. NTID faculty members recognize the need for efficient, effective communication and therefore have established course offerings covering a range of communication styles.

Deaf students are required to take up to 32 credit hours in communication courses, including audiology, English, sign/simultaneous communication, and speech. Students may demonstrate English proficiency by achieving certain test scores or completing certain courses with passing grades. These courses are designed for students who demonstrate need for additional work in English in order to achieve their degree goals.

Pre-Technical Programs

Students who show talent and interest in certain technical programs, but do not have all the necessary skills to begin the program of study, are required to complete a pre-technical year. These pre-technical programs help students build basic skills in English, general education, mathematics, and science before beginning their technical courses. Programs that do not have pre-technical years build basic mathematics, science, and technical skills into their regular curricula.

Special Topics Courses

Students may explore topics of special interest in areas not offered through existing courses. One-five credit hours may be assigned for special topics courses.

Career Exploration

Students who are not ready to select a program following the summer orientation program may participate in Career Exploration. Students who choose Career Exploration are allowed up to three quarters to decide on a program; they must write a plan explaining what they will do each quarter.

The program includes personal counseling; decision-making classes; field trips; sampling of various programs; and interpretation of interest, aptitude, and achievement testing. Career Exploration students also take courses in communication, English, general education, and mathematics.

Transfer from Another Postsecondary School

Students enrolled in other postsecondary educational programs or colleges are encouraged to apply for admission to RIT through NTID if:
-they need support services such as interpreters or tutors to aid them in their college studies, and these ser-
vices are not available at the schools in which they are or were enrolled.
-they decide to change their programs of study to one that is not offered at the college they currently attend, but is offered by NTID or another college of RIT.
-they have completed a postsecondary program and have decided they want or need additional training. Students may pursue advanced degrees by matriculating into any of RIT's other colleges.

For information about transfer credits, see page 176 .

Costs of Attending RIT Through NTID

The total cost of attending RIT under NTID sponsorship includes tuition, room, board, and fees. Because of federal funding, tuition and room charges are less for NTID-sponsored students. Charges to NTID-sponsored students are updated each year. Fixed charges for 1990-91 follow:

Fixed Charges for NTID-Sponsored Students

Summer Vestibule Program	Fall Quarter	All Other Quarters (per quarter)	
Tuition	$\$ 556$	$\$ 1,111$	$\$ 1,111$
Room	325	649	649
Board	315	727	727
Student Fees 1		122	122
Orientation Fee 2		40	
Orientation Room and Board Charge 3	13	23	
SVP Accident/Sickness Insurance			
Accident/Sickness Insurance	$\$ 1,209$	$\$ 2,832$	$\$ 2,609$

${ }^{1}$ Student fees are required of all fulltime students. Fees include: Student Health (\$35); Student Activities (\$30); Athletic (\$5); Student Alumni Union (\$50); and NTID Activities (\$2).
Charge to cover cost of Fall Orientation Program for new students.
${ }^{3}$ Charge to cover cost of one-day orientation stay that precedes fall quarter registration for new students.

Required laboratory fees, books, and supplies will have an impact on students' costs. NTID costs for laboratory fees vary according to students' fields of study. Per-quarter laboratory fees for the 1990-91 academic year range from \$25-\$125.

The cost of books and supplies is the students' responsibility. These costs also vary depending on the program of study. Annual costs for books and supplies for the 1990-91 academic year range from $\$ 180-\$ 2,200$. The academic year includes the fall, winter, and spring quarters.

New students accepted to the Summer Vestibule Program will be charged according to the fee schedule indicated above.

Students on co-op are not charged tuition or fees for that particular quarter, and are charged room and board and residence hall fees only if they live on campus while they work.

All students are required to carry accident and sickness insurance. Students may choose coverage through RIT at a cost of $\$ 160$ for the 1990-91 year or they may waive the coverage offered through RIT if they provide evidence of other coverage. Waiver cards will be sent to all accepted students during the summer and will be available at registration.

Facilities

A modern academic/residence building complex on the RIT campus is designed to meet the specific needs of deaf students. The Lyndon Baines Johnson Building, NTID's main academic facility, houses laboratories, offices, speech and hearing areas, classrooms, and a 500-seat theater with closed-circuit television. All classrooms are designed to reduce distractionsthese rooms have no windows; colors are soft; seats are arranged in a semicircle to allow for good vision from all parts of the room; and projection equipment is located outside the classroom to reduce unnecessary noise.

In academic buildings as well as residence halls, visual emergency warning systems exist. Dorm rooms in Mark Ellingson Hall, Peter N. Peterson Hall, and Alexander Graham Bell Hall also are equipped with strobe light signals.

Television, a basic part of the college's communication network, is used for both education and entertainment. NTID's television system has four viewing channels, and TV monitors are located throughout the building. Two well-equipped studios produce class and self-instruction videotapes as well as captioning for use within the Institute and at other organizations.

Telecommunications

A relay service is available at the NTID Telecommunications Center located in Mark Ellingson Hall, room 1019. Deaf students may use this service to place long-distance in-state calls if using a calling card other than AT\&T and out-of-state calls. This service has limited operation hours.

The New York State Relay Service can be used to make calls on campus and both local and long distance calls within New York state. Long distance calls may be placed only by using an AT\&T calling card, calling collect, or using third-number billing. This service is available 24 hours every day.

Hearing Aid Shop

Staff members in the Hearing Aid Shop help with necessary hearing aid repairs, show students how to care for aids, make earmolds, and sell hearing aid parts and supplies. "Repair loaner aids" are available for students waiting for a hearing aid evaluation or for those whose hearing aids are being repaired. Students also may set up appointments for audiological assessments, hearing aid checks, and hearing aid evaluations.

Academic Counseling/ Support Services

In addition to services offered to all RIT students, NTID offers deaf students additional counseling services. Career development counselors assist students in getting along better with others, adjusting to college life, gaining self-confidence, and choosing a program of study.

NTID also has communication, general education, mathematics, and physics learning centers that provide specialized academic support for students. For more information about academic counseling services, see page 190.

Personal/Psychological Counseling

NTID's Psychological Services is part of a continuum of personal and social counseling services available at RIT. As a primary resource for mental health crisis intervention, Psychological Services faculty members are available on a 24 -hour basis. Crisis intervention services are provided during non-business hours and are provided in collaboration with other campus service providers during business hours.

Psychological Services faculty members provide psychodiagnostic assessments for students and collaborate with teachers and other counselors in inter preting results and implementing strategies for effective psychosocial functioning and academic performance. Direct counseling and psychotherapy are provided for students on a walk-in or referral basis. Some concerns that students may need help in resolving include adjustment to deafness, depression, anxiety, family conflicts, intimate relationships, and personal identity issues.

Psychological Services provides consultations on behalf of student clientele and also shares expertise about mental health and deafness both within the campus community and in the larger local and national communities. For more information, see page 194.

Cooperative Work Experience

A feature of most RIT academic programs, including those offered through NTID, is cooperative (co-op) education that stresses "learning by doing." Almost all NTID programs require a co-op work experience, which introduces students to the world of work. Co-op experiences usually occur during the summer so that students' courses of study are uninterrupted during the school year. The number of co-ops required varies from program to program within NTID.

Placement

Employment of RIT's 2,900 deaf graduates is a high priority. To help ensure that graduates obtain program-related employment, the National Center on Employment of the Deaf (NCED) assigns to each new student an advisor experienced in employment assistance in the different academic concentrations. To help prepare students for obtaining cooperative work experiences and permanent employment, NCED has developed a required course, The Job Search Process.

NCED employment advisors are in contact daily by telephone with potential employers throughout the United States. Such services have contributed to the high employment rate of deaf RIT graduates. Last year, 94 percent of graduates entering the labor force found jobs. Eighty percent of these graduates are employed in business and industry; 15 percent in government; and five percent in education.

Research

NTID faculty members conduct research to help improve the education and communication skills of deaf students on campus. Students are invited to help in research efforts; this sometimes means taking tests and being part of research studies. Researchers sometimes contact graduates to see how well their education has prepared them for work and other aspects of their lives.

Joint Educational Specialist Program

The University of Rochester and RIT jointly sponsor a graduate program designed to improve the quality of education and services available to deaf people. JESP graduates receive master's degrees and are qualified to teach at the elementary and secondary levels.

For more information, contact:
University of Rochester/ River Campus
Director, Joint Educational Specialist Program
507 Lattimore Hall—GSEHD
Rochester, NY 14627
(716) 275-4009 (Voice/TDD)

School of Business Careers

Dr. Christine M. Licata, Assistant Dean/Director

Business Careers

Dr. William J. Rudnicki, Chairperson
Employment opportunities in business and industry increase daily. Business Careers programs respond to industry's need for people skilled in operating office equipment, keeping financial records, performing clerical duties, and using computers.
Students may choose a certificate program in Business Occupations and an AOS program in Business Technology as well as diploma and AAS degree programs in Applied Accounting and Office Technologies.
Pre-Technical Program
None

Applied Accounting

This program offers a diploma and an AAS degree and provides graduates with a basic knowledge of office technologies and general and cost accounting systems. Job experience projects familiarize students with data-entry techniques, computer applications, and payroll procedures.

On-the-job Responsibilities

Use computers to maintain and reconcile various financial records, verify business records, and perform other clerical and administrative duties.

Places of Employment

Business, industry, government, and self-employment

Applied Accounting Diploma Program

Positions for Which Graduates Qualify

Accounts receivable/payable clerk, payroll clerk, general office clerk, file clerk, recordkeeping clerk, and data-entry clerk

Prerequisite

Successful completion of certificate in Business Occupations

Approximate Time

7 quarters, including 1 cooperative work experience

Applied Accounting
 AAS Degree Program

Positions for Which Graduates

 QualifyJunior accounting technician, cost accounting clerk, accounts receivable/ payable clerk, payroll clerk, general accounting clerk, and microcomputer accounting clerk

Prerequisite

Successful completion of diploma in Applied Accounting

Approximate Time

11 quarters, including 2 cooperative work experiences

Business Occupations

This certificate program combines basic business office skills with an introduction to data-entry concepts.

Places of Employment

Business, industry, government, and schools

Business Occupations
 Certificate Program

On-the-job Responsibilities

Type business communications, operate electronic calculators, maintain files, keep basic payroll records, enter and retrieve data on computer terminals, and use electronic mail and basic word processing skills on a personal computer.

Positions for Which Graduates

 QualifyGeneral office clerk, file clerk, recordkeeping clerk, data-entry clerk, and payroll records clerk

Approximate Time

6 quarters, including 1 cooperative work experience

Business Technology

This AOS degree program includes technical coursework in accounting, computers, payroll, general office skills, and word processing/information processing skills.

This is a non-transfer occupational program with primary emphasis on preparation for immediate employment.

Places of Employment

Business, industry, government, and schools

Business Technology
 AOS Degree Program

On-the-job Responsibilities
Input, manipulate, and retrieve data; use interaction software, electronic mail, and information processing skills; and use computers to mainframe and reconcile various financial records.

Yr.	BUSINESS OCCUPATIONS: CERTIFICATE	Qtr. Credit Hours			
1	Typical Course Sequence NBTP-101 Orientation to Business	FALL	WTR.	SPG.	SMR.
			3		
	NBTP-110 Business English			3	
	NBTP-111, 112, 113 Beginning Typing I, II, III	2	2	2	
	NBTP-211, 212,213 Business Procedures I, II, III	3	3	3	
	NTMM-120 Basic Mathematics	3			
	NGGE-101 Job Search Process	1			
	NGGE-100 Freshman Seminar		2		
	Communication	2	2	2	
		4	4	4	
	Physical Education			0	
	NBTP-299 Co-op Work Experience				0
	NBTP-221, 222 Advanced Typing I, II	3	3		
	NGGE-102 Life After College		1		
	NGGE-147 Law and Society	2			
2	Communication	2	2		
		4	4		
	General Education	2			
	OR Business Elective				
	General Education	(2)	2		

Positions for Which Graduates

 QualifyGeneral office clerk, clerk/typist, accounts receivable/payable clerk, payroll records clerk, word processing technician, cost accounting clerk, and microcomputer accounting clerk

Prerequisite

Appropriate English language ability as defined by AOS guidelines for English language skills

Approximate Time

11 quarters, including 2 cooperative work experiences

Office Technologies

This program offers a diploma and an AAS degree. It provides students with opportunities for developing keyboarding skills and experience in producing documents found in typical business offices. The program focuses on up-to-date word processing procedures using a variety of computer hardware and software.

On-the-job Responsibilities Input, manipulate, and retrieve data; use interactive software, electronic mail, and information processing skills such as word processing, records processing, and database; and perform other office duties.

Places of Employment Business, industry, government, and schools

Office Technologies
 Diploma Program

Positions for Which Graduates Qualify
Clerk/typist, typist, correspondence typist, accounts receivable/payable clerk, general office clerk, file clerk, recordkeeping clerk, data-entry clerk, and payroll records clerk

Prerequisite

Successful completion of certificate in Business Occupations

Approximate Time

7 quarters, including 1 cooperative work experience

Office Technologies

AAS Degree Program

Positions for Which Graduates

 QualifyWord processing technician, clerk/ typist, typist, correspondence typist, accounts receivable/payable clerk, general office clerk, file clerk, recordkeeping clerk, data-entry clerk, and payroll records clerk

Prerequisite

Successful completion of diploma in
Office Technologies

Approximate Time

11 quarters, including 2 cooperative work experiences

Computer Careers

Careers working with computers are increasing daily. Computers are an important part of business, industry, and other parts of the economy. Computer careers involve operating computers or writing programs that direct the computer to solve a problem.

Students may choose from certificate, diploma, and/or AAS degree programs in Data Processing.

Data Processing

Dr. Bruce O. Peterson, Chairperson

On-the-job Responsibilities

Certificate and diploma: Work in the computer operations area controlling computers or in a variety of operationsrelated support areas.

AAS degree: Work as a mainframe operator, full computer operator, remote operator, or basic entry-level programmer trainee. Major concentration is in computer operations.

Places of Employment

Banks, insurance companies, large stores, manufacturing companies, public utilities, government agencies, and other data processing centers

Prerequisite

Grade of C or better in all required technical courses

Data Processing
 Certificate Program

Positions for Which Graduates Qualify

Computer operations support positions such as data control, librarian, or peripheral equipment operator

Prerequisites

Successful completion of a sampling experience in the Data Processing area, either through the Summer Vestibule Program or a departmental sampling program

Students with Michigan Test scores lower than 55 or with low mathematics skills may have difficulty in this program

Yr.	DATA PROCESSING: DIPLOMA	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	
	NBTD-100 Introduction to Data Processing	2	2	3	
	NBTD-101 Introduction to Business Programming				
	NBTD-125 Data Processing Technical Communications				
	NBTD-157 Beginning Computer Operations	1			
	NBTD-158 Beginning Computer Operations Lab	1			
	NBTD-161 Business Computer Systems Facilities			2	
	NBTD-170 Utilities/JCL for Computers		2		
	NBTD-171 Computer Architecture			1	
	NBTP-101 Orientation to Business		3		
	NTMM-140,141 Fundamentals of College Mathematics I, II	3		3	
	NGGE-100 Freshman Seminar		2		
	NGGE-101 Job Search Process	1			
		2	2	2	
		4	4	4	
	NBTD-299 Co-op Work Experience				0
	NBTD-120 On-Line Processing/Programming	2			
	NBTD-162 Computer Console Operations	1			
	NBTD-230, 231 Business COBOL I, II		3	3	
	NBTD-250 Multiprogramming/Spooling for Operators			2	
	NBTD-251 Multiprogramming/Spooling for Operators Lab			1	
	NBTD-260 System Generation for Operators		1		
2	NBTD-261 System Generation for Operators Lab		2		
	NTMM-142 Fundamentals of College Mathematics III	3			
	NGGE-102 Life After College			1	
	Business Elective	3	3	2	
	Communication		2	2	
		4	4		
				3	
	Physical Education	0	0		

Approximate Time

5 quarters, including 1 cooperative work experience

Data Processing
 Diploma Program

Positions for Which Graduates Qualify

Computer operator trainee and peripheral equipment operator

Prerequisites

Successful completion of a sampling experience in the Data Processing area, either through the Summer Vestibule Program or a departmental sampling program

Students with Michigan Test scores lower than 55 or with low mathematics skills may have difficulty in this program

Approximate Time

7 quarters, including 1 cooperative work experience

Data Processing
 AAS Degree Program

Positions for Which Graduates

Qualify

Computer operator and low entry-level business programmer trainee

Prerequisites

Successful completion of a sampling experience in the Data Processing area, either through the Summer Vestibule Program or a departmental sampling program

Students with Michigan Test scores lower than 55 or with low mathematics skills may have difficulty meeting liberal arts requirements and third-year technical course requirements

Approximate Time

11 quarters, including 2 cooperative work experiences

School of Science and Engineering Careers

Dr. Marie L. Raman, Assistant Dean/Director

Applied Science/ Allied Health Careers

Frederic R. Hamil, Chairperson

Students interested in science and helping people can combine both interests in an applied science/allied health career. These careers prepare students for employment in medical or health service settings or in research.

Students may choose programs in Medical Laboratory Technology, Medical Record Technology, or Ophthalmic Optical Finishing Technology.

Medical Laboratory Technology

Beverly J. Price, MT (ASCP), Education Coordinator

Students may choose certificate or AAS degree programs to prepare for careers as histologic assistants or medical laboratory technicians.

Pre-Technical Program

More than 90 percent of students applying for Medical Laboratory Technology programs need to enroll in a pre-technical program, usually lasting three quarters. The program consists of biology, chemistry, communication, English, general education, mathematics, and physical education.

Histologic Assistant
 Certificate Program

On-the-job Responsibilities
Perform routine procedures in histology.

*Pre-Technical Requirements

Places of Employment

Hospitals and industrial, private, and research clinical laboratories

Positions for Which Graduates

Qualify
Histologic assistant

Prerequisites

MLT Biology I, II, III
MLT Chemistry I, II, III
Algebra II/A, II/B

Approximate Time

7 quarters, including pre-technical program and 1 cooperative work experience

4 quarters, including 1 cooperative work experience, but without pretechnical program

Medical Laboratory Technology
 AAS Degree Program

On-the-job Responsibilities
Perform routine medical laboratory procedures in hematology, urinalysis, microbiology, histology, clinical chemistry, bloodbanking, serology, and parasitology.

Clinical Experience

The program includes a 12-week clinical co-op experience during the summer quarter between the first and second years of the program and another affiliated experience during the winter and spring quarters of the second year. To participate in the required clinical experience sessions, students
are required to take a physical examination. This may be performed by a family physician or RIT's Student Health Center, where examinations can be performed for a small fee. Students are responsible for their own transportation to clinical experience sites.

Places of Employment

Clinical laboratories of hospitals, private clinics, physicians' offices, industrial clinical laboratories, municipal laboratories, and research clinical laboratories

Positions for Which Graduates

 QualifyMedical laboratory technician, clinical chemistry assistant, microbiology assistant, and hematology assistant

Prerequisites

MLT Biology I, II, III
MLT Chemistry I, II, III
Algebra II/A, II/B

Approximate Time

10 quarters, including pre-technical program and 1 cooperative clinical experience

7 quarters, including 1 cooperative clinical experience, but without pretechnical program

Medical Record Technology

Marilyn G. Fowler, R.R.A., Director
Students earn an AAS degree in Medical Record Technology to prepare for careers in health information services.
The medical record technician is able to organize, analyze, and technically evaluate health records; compile and utilize administrative and health statistics; code symptoms, diseases, operations, and procedures to support reimbursement systems; maintain and use health record indexes and storage and retrieval systems; and abstract and retrieve health information for evaluating and planning health care and health-related programs. A medical record technician does not have direct patient contact.

Pre-Technical Program

More than 90 percent of students entering the Medical Record Technology program need to enroll in a pretechnical program that normally is three quarters long.

Courses are determined by each student's skill level, but generally include Biology I, II, III; communication; English or liberal arts; general education; Health Care Organization and Structure; Mathematics (Fundamentals of College Mathematics); physical education; typing; and word processing.

Accreditation

The Medical Record Technology program is accredited by the American Medical Association Committee on Allied Health Education and Accreditation (CAHEA) in collaboration with the American Medical Record Association (AMRA). Graduates may take the professional accreditation examination, and when successful, will be granted certification as Accredited Record Technicians. This certification demonstrates technical knowledge and skill in the profession. Certification supports graduates in employment, promotions, and salary increases. The fee for this examination is determined yearly by AMRA.

Medical Record Technology
 AAS Degree Program

On-the-job Responsibilities
Prepare medical records for patient care evaluation studies; collect statistical data including coding of diseases, procedures, diagnostic tests, and therapeutic measures; communicate with professionals within and external to the medical field; perform manual or automated storage and retrieval of medical records; prepare and maintain specialized registries; and keep records secure and confidential.

Cooperative Work Experience

The program includes a 10 -week work experience during the summer quarter between the first and second years of the program and another work experience during the last quarter of the second year. In order to participate in the required work experience sessions, students are required to take a physical examination. This may be performed by a family physician or RIT's Student Health Center, where examinations can be performed for a small fee. Students are responsible for their own transportation to work experience sites.

Places of Employment

Acute, chronic, and mental health hospitals; specialized medical care, skilled nursing, rehabilitation, and medical clinics; Veterans Administration; research facilities; insurance companies; industry; automated health information centers; AMRA executive offices; medical record consulting firms; and medical record education facilities

Prerequisites

MRT Biology I, II, III
Fundamentals of College Mathematics
Health Care Organization and
Structure
MRT Career Exploration

Approximate Time

10 quarters, including pre-technical program and 1 cooperative work experience

7 quarters, including 1 cooperative work experience, but without pretechnical program

Ophthalmic Optical Finishing Technology

Douglas Wachter, Director

An ophthalmic optical finishing technologist makes eyeglasses prescribed by physicians and optometrists. Technologists refine lenses to prescription specifications as ordered by vision care specialists.

Students may choose from certificate, diploma, AOS, and AAS degree programs.

The Ophthalmic Optical Finishing Technology programs include an optical laboratory affiliation in Rochester during one of the academic quarters. A cooperative work experience is taken in students' home areas during the summer quarter between the first and second years in the program. Students are responsible for obtaining their own transportation to these practice sites.

Pre-Technical Program

More than 90 percent of those applying for the Ophthalmic Optical Finishing Technology programs need to enroll in a pre-technical program. The program generally is three quarters long and provides coursework in communication, English, mathematics, and physical education.

Accreditation

Ophthalmic Optical Finishing Technology programs are accredited by the Commission on Opticianry Accreditation. This accreditation recognizes the high standards of program quality provided to NTID students.

Ophthalmic Optical Finishing Technology Certificate Program

On-the-job Responsibilities
Follow vision care specialists' instructions as written on prescriptions, perform procedures requested by laboratory supervisors to prepare eyeglasses for use, and maintain laboratory and equipment according to industry (American National Standards Institute) standards.

Places of Employment

Wholesale optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates Qualify for Positions Requiring These Skills

Hand-refining, lens heat/chemical treatment, lens blocking, lens dyeing, automatic lens edging, and surfacing

Prerequisites

Fundamentals of College Mathematics
Introduction to Optical Finishing Technology I, II, III
Successful completion of a sampling experience in Ophthalmic Optical Finishing Technology, either through the Summer Vestibule Program or a departmental sampling program

Approximate Time

7 quarters, including pre-technical program and 1 cooperative work experience
4 quarters, including 1 cooperative work experience, but without pretechnical program

Ophthalmic Optical Finishing Technology Diploma Program

On-the-job Responsibilities

Follow vision care specialists' instructions as written on prescriptions, perform procedures requested by laboratory supervisors to prepare eyeglasses for use, and maintain laboratory and equipment according to industry (American National Standards Institute) standards.

Places of Employment

Wholesale optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates Qualify for Positions

Requiring These Skills
Vertometric evaluation, lay-out, handrefining, lens heat/chemical treatment, lens blocking, surfacing, lens dyeing, stockroom services, and final checking and evaluation

Prerequisites

Fundamentals of College Mathematics
Introduction to Optical Finishing Technology I, II, III
Successful completion of a sampling experience in Ophthalmic Optical Finishing Technology, either through the Summer Vestibule Program or a departmental sampling program

Approximate Time

10 quarters, including pre-technical program and 1 cooperative work experience
7 quarters, including 1 cooperative work experience, but without pretechnical program

"Pre-Technical Requirements

*Pre-Technical Requirements

Ophthalmic Optical Finishing Technology AOS Degree Program

On-the-job Responsibilities
Follow vision care specialists' instructions as written on prescriptions, perform procedures requested by laboratory supervisors to prepare eyeglasses for use, and maintain laboratory equipment according to industry (American National Standards Institute) standards.

Places of Employment

Wholesale optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates Qualify for Positions

Requiring These Skills
Vertometric evaluation, lay-out, handrefining, lens heat/chemical treatment, lens blocking, surfacing, lens dyeing, stockroom services, and final checking and evaluation

Prerequisites

Fundamentals of College Mathematics Introduction to Optical Finishing Technology I, II, III
Successful completion of a sampling experience in Ophthalmic Optical Finishing Technology, either through the Summer Vestibule Program or a departmental sampling program
Completion of NTID English course requirements, California Reading Test score higher than 7.0, and Michigan Test score higher than 55

Approximate Time

10 quarters, including pre-technical program and 1 cooperative work experience

7 quarters, including 1 cooperative work experience, but without pretechnical program

Ophthalmic Optical Finishing Technology AAS Degree Program

On-the-job Responsibilities

Follow vision care specialists' instructions as written on prescriptions, perform procedures requested by laboratory supervisors to prepare eyeglasses for use, and maintain laboratory and equipment according to industry
(American National Standards Institute) standards.

Places of Employment

Wholesale optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates Qualify for Positions Requiring These Skills

Vertometric evaluation, lay-out, handrefining, lens heat/chemical treatment, lens blocking, surfacing, lens dyeing, stockroom services, and fined checking and evaluation

Prerequisites

Fundamentals of College Mathematics Introduction to Optical Finishing Tech-
nology I, II, III
Successful completion of a sampling experience in Ophthalmic Optical Finishing Technology, either through the Summer Vestibule Program or a departmental sampling program

Completion of NTID English course requirements, California Reading Test score higher than 7.0, and Michigan Test score higher than 55

Approximate Time

10 quarters, including pre-technical program and 1 cooperative work experience

7 quarters, including 1 cooperative work experience, but without pretechnical program

Yr.	OPHTHALMIC OPTICAL FINISHING TECHNOLOGY: AAS DEGREE	Qtr. Credit Hours			
PT*	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NTMM-120 Basic Mathematics	3	3	3	
	NTMM-140, 141 Fundamentals of College Mathematics I, II				
	NTSF-105, 106,107 Introduction to OFT I, II, III	2	2	2	
	NGGE-100 Freshman Seminar	2			
		2	2	2	
		4	4	4	
			2	2	
	Physical Education	0	0	0	
	NTSF-111,112 OFT Mathematics I, II	3	3		
	NTSF-115,116 Prescription Analysis I, II	3	3		
	NTSF-117 Lens Design			3	
	NTSF-121, 122, 123 Optical Finishing				
1	NTSF-161, 162, 163 Optical				
	Terminology	3	3	3	
	NTSF-399 Individual Study Surfacing	2			
	NGGE-101 Job Search Process	1			
		2			
	English or Liberal Arts	4	4		
	NTSF-299 Co-op Work Experience				0
	NTSF-224 Optical Finishing Techniques IV	5			
	NTSF-225, 226 Lab Simulation I, II		5	5	
	NTSF-241 Management of Stockroom Procedures	4			
2	NTSF-243 Optical Finishing Inspection/Correction			3	
	NTSF-251 Optical Finishing Technology Seminar		2		
	NTSP-168 OFT Physics		3		
	NGGE-102 Life After College		1		
	Communication		2	2	
	Liberal Arts	4	4	4	

PT' Pre-Technical Requirements

Engineering Technologies
 Careers

Students selecting Engineering Technologies careers may choose one of three areas. Construction Technologies careers involve participating in the design and construction of buildings, roads, and bridges. Electromechanical Technology careers involve working with engineers and researchers to provide technical support for the design, installation, and maintenance of machines using electrical, electronic, and mechanical devices. Industrial Technologies careers involve working with systems and special equipment used in industry throughout the country.

Students may choose programs in: Construction Technologies
Architectural Drafting (Diploma)
Architectural Technology (AAS)
Civil Technology (AAS)
Electromechanical Technology
Electromechanical Technology (AAS)
Industrial Technologies
Industrial Drafting (Diploma)
Industrial Drafting Technology
(AOS, AAS)
Manufacturing Processes (Diploma)

Accreditation

The AAS programs in Architectural Technology, Civil Technology, Electromechanical Technology, and Industrial Drafting Technology are accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.

C.O.R.E. Year Experience

Most students are required to enroll in the C.O.R.E. (Career Orientation and Exploration) year sequence. This experience lasts three quarters and includes an in-depth sampling of program offerings within Engineering Technologies (Architectural Technology, Civil Technology, Electromechanical Technology, Industrial Drafting Technology, and Manufacturing Processes) as well as coursework in communication, English, general education, and mathematics.

Construction Technologies

Hugh P. Anderson, Chairperson

Construction Technologies programs teach students the skills related to the

Most students are required to enroll in the C.O.R.E. year sequence (Career Orientation and Exploration). This experience is three quarters in length and includes an in-depth sampling of program offerings within Engineering Technologies (Architectural Technology, Civil Technology, Electromechanical Technology, Industrial Drafting Technology, Manufacturing Processes) as well as coursework in communications, English, general education, and mathematics.

Yr.	C.O.R.E. YEAR EXPERIENCE	Qtr. Credit Hours			
	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NTMM-140,141,142 Fundamentals of College Mathematics I, II, III	3	3	3	
1	NGGE-100 Freshman Seminar	2			
	Career Exploration *		1	1	
		2	2	2	
	English "	4	4	4	
	General Education "*		3	3	

'Students choose at least two of the following career exploration courses: NETA-100 (Architectural Technology), NETC-100 (Civil Technology), NETI-100 (Industrial Drafting Technology), NETM-100 (Electromechanical Technology), NETT-100 (Manufacturing Processes). Students must sample a program to be admitted to it.
"Students may be required to register for more than one English course per quarter depending on their entrylevel skills.
"'Students are encouraged to start Physics after completing Fundamentals of College Mathematics I. Students may register for Technical Physics I instead of General Education.

'Students who enter this program without the C.O.R.E. year experience will need to take additional English and communication courses.
design and construction of architectural (buildings) and civil (roads, bridges, etc.) projects. Students may choose a diploma program in Architectural Drafting or an AAS degree program in Architectural or Civil Technology.

Architectural Drafting
 Diploma Program

On-the-job Responsibilities
Draw detailed plans of buildings and other structures, working from architects' and designers' notes and sketches; do lettering; make models; and know construction methods and materials.

Places of Employment

Architectural and engineering firms, building materials suppliers, construction companies, and government agencies

Position for Which Graduates Qualify

Architectural drafter

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

9 quarters, including C.O.R.E. year experience
6 quarters without C.O.R.E. year experience

Students who enter this program without the C. O. ft $£$ year experience will need to take additional English and communication courses.

'Students who enter this program without the C.O.R.E. year experience will need to take additional English and communication courses.

Architectural Technology AAS Degree Program

On-the-job Responsibilities
Work with architects and engineers to plan construction and remodeling of buildings and other structures, using preliminary drawings, design development drawings, working drawings, presentation graphics, model making, cost estimating, structural planning, and knowledge of construction methods and materials.

Places of Employment

Architectural, engineering, and construction companies; government agencies; and corporate design offices

Positions for Which Graduates

 QualifyArchitectural drafter, architectural technician, construction engineering drafter, and planning aide

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

13 quarters, including C.O.R.E. year experience and 1 cooperative work experience

10 quarters, including 1 cooperative work experience, but without
C.O.R.E. year experience

Civil Technology
 AAS Degree Program

On-the-job Responsibilities

Use a variety of skills such as drafting, surveying, materials testing and measuring, construction, inspection, report writing, and knowledge of materials and methods used in construction.

Places of Employment

Government agencies; construction companies; engineering, surveying, and architectural firms; oil and steel industries; transportation agencies; and materials testing laboratories

Positions for Which Graduates Qualify

Design assistant, materials laboratory technician, construction inspector, civil drafter, assistant surveyor, and structured drafter

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

13 quarters, including C.O.R.E. year experience and 1 cooperative work experience

10 quarters, including 1 cooperative work experience, but without
C.O.R.E. vear experience

Electromechanical Technology

Robert A. Moore, Chairperson
A variety of career options are offered through the Electromechanical Technology program. Graduates of this program work with systems and equipment used in many different industries throughout the country.

Electromechanical Technology AAS Degree Program

On-the-job Responsibilities Construct and maintain equipment; apply knowledge of mechanical, electronic, and computer principles; service test equipment; and install electromechanical equipment.

Places of Employment

Engineering and manufacturing industries, government agencies, and military laboratories

Positions for Which Graduates Qualify

Research aide, engineering technician, quality control technician, service technician, engineering aide, automated equipment technician, and field service representative

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

10 quarters, including cooperative work experience and assuming above prerequisites are satisfied at time of admission

'Students who enter this program without the C.O.R.E. year experience will need to take additional English and communication courses.

Industrial Technologies

Edward A. Maruggi,
Acting Chairperson
Programs in Industrial Technologies involve studies and applications of the systems and special equipment used in industry throughout the country. Students may choose from diploma programs in Industrial Drafting and Manufacturing Processes or associate degree programs (AOS and AAS) in Industrial Drafting Technology.

Industrial Drafting
 Diploma Program

On-the-job Responsibilities
Prepare from sketches, drawings, and specifications prepared by others detailed production drawings (manually and using computer-aided drafting equipment) for manufactured products.

Places of Employment

Manufacturing industries, engineering firms, metal-working industries, drafting shops, government agencies, and engineering research firms

Positions for Which Graduates Qualify

Mechanical, electrical, and electromechanical drafter; detailer; and CAD operator

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

10 quarters, including C.O.R.E. year experience and 1 cooperative work experience

7 quarters, including 1 cooperative work experience, but without
C.O.R.E. year experience

Industrial Drafting Technology
 AOS Degree Program

On-the-job Responsibilities

Handle normal drafting assignments using drafting standards and engineering terms; gather data and information for engineers; draw layouts of design concepts for new machines, products, and for drafters' use in drawing parts; and use computer-aided drafting equipment.

Places of Employment

Manufacturing industries, engineering firms, drafting shops, government

Yr.	INDUSTRIAL DRAFTING: DIPLOMA	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NETI-131,132 Manufacturing Processes I, II		1	1	
	NETI-141,142,143 Basic Technical Drafting I, II, III	3	3	3	
	NTMM-150, 151,152 Integrated College Mathematics I, II, III	4	4	4	
	NTSP-100,135 Technical Physics I, II NGGE-100 Freshman Seminar	2	3	3	
	NGGE-101 Job Search Process	1			
	Communication	2	2	2	
		4	4	4	
	Physical Education	0	0	0	
	NETI-299 Co-op Work Experience				0
2	NETI-151,152 Materials and Processes I, II NETI-201, 202,203 Technical Drafting I, II, III NETI-211 Supervised Study in Drafting NGGE-102 Life After College Communication		3	3	
		5	4	4	
				1	
				1	
		2	2	2	
		4	4	4	
	Physical Education	0			

Yr.	INDUSTRIAL DRAFTING TECHNOLOGY: AOS DEGREE	Qtr. Credit Hours			
	Typical Course Sequence NETI-131,132 Manufacturing Processes I, II	FALL	WTR.	SPG.	SMR.
			1	1	
	NETI-141,142,143 Basic Technical Drafting I, II, III	3	3	3	
	NTMM-150, 151, 152 Integrated College Mathematics I, II, III	4	4	4	
1	NTSP-100,135 Technical Physics I, II	3	3		
	NGGE-100 Freshman Seminar	2			
	NGGE-101 Job Search Process	1			
	Communication	2	2	2	
		4	4	4	
	Physical Education	0	0	0	
	NETI-299 Co-op Work Experience				0
	NETI-151,152 Materials and Processes I, II	3	3		
	NETI-201,202,203 Technical Drafting I, II, III	5	4	4	
	NETI-211 Supervised Study in Drafting			1	
2	NTMM-201, 202, 203 Algebra, Trigonometry, and Analytic Geometry I, II, III	3	3	3	
	NGGE-166 Human Experience I			4	
	Communication	2	2	2	
		4	4	4	
	Physical Education	0			
	NETI-299 Co-op Work Experience				0
	NETI-204, 205, 206 Technical Drafting IV, V, VI	3	3	5	
	NETI-213 Statics	4			
	NETI-214 Strength of Materials		4		
3	NETI-215 Mechanisms	4			
	NETI-221, 222 Machine Design I, II		4	4	
	NGGE-167,168 Human Experience II, III	4	4		
	NGGE-102 Life After College			1	
	Physical Education	0	0	0	

agencies, metal-working industries, and engineering research firms

Positions for Which Graduates Qualify

Mechanical, electrical, and electromechanical drafter; mechanical designer; CAD operator; and electromechanical designer

Prerequisites

Fundamentals of College Mathematics English level: Marginally Qualified

Approximate Time

14 quarters, includng C.O.R.E. year experience and 2 cooperative work experiences

11 quarters, including 2 cooperative work experiences, but without C.O.R.E. year experience

Industrial Drafting Technology AAS Degree Program

An AAS degree prepares students for the same responsibilities as an AOS degree except that the required liberal arts courses prepare students to continue toward a bachelor's degree if they so desire.

On-the-job Responsibilities

Handle normal drafting assignments using drafting standards and engineer ing terms; gather data and information for engineers; draw layouts of design concepts for new machines, products, and for drafters' use in drawing parts; and use computer-aided drafting equipment.

Yr.	MANUFACTURING PROCESSES: DIPLOMA	Qtr. Credit Hours			
1	Typical Course Sequence NETT-131,132,133 Manufacturing Processes I, II, III	FALL	WTR.	SPG.	
		4	4	4	0
	NETT-139,140 Blueprint Reading I, II	2	2		
	NETT-154 Precision Measurement			2	
	NTMM-140,141, 142 Fundamentals of College Mathematics I, II, III	3	3	3	
	NGGE-100 Freshman Seminar	2			
	NGGE-101 Job Search Process		1		
	Communication	2	2	2	
		4	4	4	
		0	0	0	
	NETT-299 Co-op Work Experience				
	NETT-101,102 Basic Drafting I, II*	2	2		
	NETT-134,135,136 Manufacturing Processes IV, V, VI	4	4	4	
	NETT-151 Industrial Materials	3			
	NETT-152 Manufacturing Analysis			3	
	NETT-153,154 Welding I, II*		2	2	
2	NETN-151, 152 Numerical Control 1, II*		4	4	
	NTMM-150,151, 152 Integrated College Mathematics I, II, III	4	4	4	
	NGGE-102 Life After College			1	
		2	2	2	
		4	4	4	
	Physical Education	0			

*Technical Electives: Students are required to take a minimum of two of the three courses offered in the winter and spring quarters.

Places of Employment

Manufacturing industries, engineering firms, drafting shops, government agencies, metal-working industries, and engineering research firms

Positions for Which Graduates

 QualifyMechanical, electrical, and electromechanical drafter; mechanical designer; CAD operator; and electromechanical designer

Prerequisites

Fundamentals of College Mathematics
English level: Marginally Qualified

Approximate Time

14 quarters, including C.O.R.E. year experience and 2 cooperative work experiences

11 quarters, including 2 cooperative work experiences, but without C.O.R.E. year experience

Manufacturing Processes Diploma Program

On-the-job Responsibilities

Set up and operate machine tools such as lathes, drill presses, and milling machines; shape metal into machine parts, following blueprints; and use special instruments to measure and check work.

Places of Employment

Manufacturing industries, metalworking industries, engineering firms, and engineering research firms

Positions for Which Graduates

Qualify

Entry-level and apprentice programs: tool and die maker, instrument maker, mold maker, pattern maker, model maker, inspector, machinist, NC operator, and NC programmer trainee

Prerequisite

Puncla.mentaJs of College Mathematics

Approximate Time

10 quarters, including C.O.R.E. year experience and 1 cooperative work experience

7 quarters, including 1 cooperative work experience, but without C.O.R.E. year experience

School of Visual Communications

Dr. Thomas G. Raco, Assistant Dean/Director

Applied Art Careers

Dr. John W. Cox, Chairperson

The art field has two major career areas: applied and fine art. Applied artists create art to be used by other individuals or companies for which they work. Fine artists create art to express themselves

Pre-Technical Program

Some students who want to enter Applied Art programs require a pretechnical program that usually lasts one quarter. Students can meet pretechnical program requirements and take core courses at the same time.

Core Program

Core courses provide basic art experience to prepare students for entry into a program. With the core experience as a basis, students may choose continued studies in either NTID's Applied Art Department or the College of Fine and Applied Arts.

Work Experience

All NTID Applied Art students gain experience with the real world of applied art during the cooperative work experience, which is part of their thirdyear coursework.

'Career Seminar I, II, III and Employment Seminar I, II, III are substitutes for Freshman Seminar, Job Search Process, and Life After College.
"See next page for Applied Art technical electives; 10 or more elective credits are required.

Yr.	APPLIED ART: AAS DEGREE	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NDAR-111,112,113 Basic Design I, II, III	2	2	2	
	NDAR-121,122, 123 Basic Drawing I, II, III	3	3	3	
	NDAR-141,142,143 Career Seminar I, II, III*	1	1	1	
	NDAR-151,152 Computer Graphic Systems I, II		2	2	
	NDAR-161,162, 163 Media and Processes I, II, III	2	2	2	
	Applied Art Elective"			2	
	Communication	2	2		
		4	4	4	
	Physical Education	0	0		
2	NDAR-231, 232, 233 Introduction to Typography I, II, III	2	2	2	
	NDAR-241, 242, 243 Art Survey I, II, III	2	2	2	
	NDAR-261, 262, 263 Traditional/Electronic Layout I, II, III	3	3	3	
	NDAR-271, 272, 273 Production Methods I, II, III	2	2	2	
	NDAR-280 Computer Illustration Methods	2		2	
	Applied Art Elective"	2	2		
	Communication				
			4	4	
	Liberal Arts				
3	NDAR-311, 312 Graphic Applications I, II	53	5	35	
	NDAR-321, 322, 323 Employment Seminar I, II, III*		3		
	NDAR-330 Graphic Applications/Portfolio Review				
	Applied Art Elective"	2	2		
	Communication	2		4	
	Liberal Arts	4	4		
	Physical Education	0			

Career Seminar I, II, III and Employment Seminar I, II, III are substitutes for Freshman Seminar, Job Search Process, and Life After College.

Applied Art

pjTID Applied Art programs prepare students for technical careers in applied art. Students may choose from diploma or AAS degree programs in Applied Art.

Applied Art
 Diploma and AAS Degree Programs

On-the-job Responsibilities
Use traditional and computer-based methods to produce drawings, layouts, and mechanical art for advertising, sales promotion, public relations, and display purposes; prepare visual materials for brochures, pamphlets, slide
I programs, instructional media, magazine and newspaper advertisements, and posters; prepare artwork for printing; use computer hardware and soft-
1 ware, typesetting equipment, photostat cameras, and other applied art studio equipment.

Places of Employment

Advertising agencies; art studios; computer graphics studios; large department stores; manufacturing, printing, and publishing firms; educational institutions; and government agencies

Positions for Which Graduates Qualify

Mechanical artist, computer graphics artist, production artist, and layout ; artist

Prerequisites

Successful completion of a sampling experience in the art area, either through the Summer Vestibule Program or the Career Exploration course offered through the department

Demonstrated skill in the following areas: communication/language, freehand drawing, mathematics, measurement, personal/social skills, program/ career information, technical media, two-dimensional design, and work habits. Each competency (skill) has certain activities associated with it. Skill is assessed according to a checklist of specific requirements provided by the department.

Approximate Time

9 quarters

Credi

Applied Art
Technical Electives
Applied Art Photography
NDAR-258
Three-Dimensional Applicatio
NDAR-267
Air Brush/Retouching
NDAR-277
Mechanical Perspective
NDAR-284
Mechanical Drawing Methods
NDAR-285
Drawing Applications
NDAR-287
Freehand Lettering
NDAR-294
Finished Lettering
NDAR-295

22

Photo/Media Technologies Careers

Jean-Guy Naud, Chairperson

People in photo/media technologies careers usually fit into two categories: those who take photographs and those who perform support functions in a photographic or media production facility. These two areas represent large segments of the industries that use photography, television, and computers as a means of communication. They involve jobs such as developing film, making prints and display transparencies, assisting in video production, making special effects slides, and preparing presentation graphics.

Students may choose from diploma and AAS degree programs in Custom Photographic Laboratory Services or Media Production.

Pre-Technical Program

The Photo/Media Technologies Department does not have a pretechnical program. Instead, it offers a common core of courses, lasting two quarters, that enables students to develop basic photographic and media skills. During the second quarter, a special course, Orientation to Photo/ Media Careers, is taught. At the completion of that course, students select one of the two options offered by the department: Custom Photographic Laboratory Services or Media Production.

Custom Photographic Laboratory Services

On-the-job Responsibilities

Work in the darkroom developing film by hand and with machines, make color and black-and-white prints, enlarge photographs, and perform custom copy services.

Places of Employment

Custom or commercial color labs and in-house industrial photographic labs

Prerequisite

Completion of Cores I and II with a
"C" average in technical courses

Custom Photographic Laboratory Services
 Diploma Program

Students concentrate on custom color printing and processing.

Positions for Which Graduates Qualify

Paper processor operator, custom color printer, custom copy camera operator, control chemical mixer, roller transport processor operator, dip and dunk processor operator, and custom color technician

Approximate Time

6 quarters, including Cores I and II

Custom Photographic
 Laboratory Services
 AAS Degree Program

Students concentrate on advanced custom color printing techniques

Positions for Which Graduates

 QualifyAll diploma positions, plus custom color print inspector/evaluator and advanced custom color printer technician

Approximate Time

10 quarters, including Cores I and II and 1 cooperative work experience

Yr.	CUSTOM PHOTOGRAPHIC LABORATORY SERVICES: DIPLOMA		tr. Cred	it Hou	
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NVPP-101 Introduction to Photo Printing	4			
	NVPP-102 Black-and-White Printing		2		
	NVPP-111 Introduction to Film Processing	2			
	NVPP-112 Rim Processing		2		
	NVPP-121 Introduction to Cameras	2			
	NVPP-122 Introduction to Copy Work		2		
	NVPP-132 Orientation to Photo/Media Careers		2		
	NVPP-142 Introduction to Advanced Photographic Studies*		2		
	NVPP-200 Basic Color Printing			4	
	NVPP-210 Mechanized Processing			2	
	NVPP-220 Print Finishing			2	
	NGGE-100 Freshman Seminar	2			
	Communication	2	2	2	
		4	4		
	Physical Education	0	0		
	NVPP-201, 202,203 Custom Lab Services 1, II, III	4	4	4	
	NVPP-211,212,213 Integrated Custom Lab 1, II, III	2	2	2	
	NVPP-221 Advanced Black-and-White Printing	2			
	NVPP-222 Introduction to Slide Duplicating		2		
2	NVPP-223 Introduction to Color Copy Work			2	
	NGGE-101 Job Search Process	1			
	NGGE-102 Life After College			1	
	Communication	§	3	2	
			\Rightarrow		
	General Education or other elective			2	

'This elective is for students who need to evaluate their interest and readiness for advanced program areas.

'This elective is for students who need to evaluate their interest and readiness for advanced program areas.

Media Production

On-the-job Responsibilities

Make slides, photographic prints, overhead transparencies, videotapes, special effects slides, and presentation graphics.

Places of Employment

Industrial training or media departments, audiovisual production houses, and school or university media centers

Prerequisite

Completion of Cores I and II with a "C" average in technical courses

Media Production Diploma Program

Students concentrate on developing basic skills in photography, slide production, darkroom techniques, videotape production, and presentation graphics using computers.

Positions for Which Graduates Qualify

Copy technician, special effects slide camera operator, media photography technician, media production technician, and television production technician

Approximate Time

6 quarters, including Cores I and II

Media Production
 AAS Degree Program

Students concentrate on all diploma skills, plus advanced skills in special effects slide production, television production, and advanced presentation graphics using computers.

Positions for Which Graduates Qualify
All diploma positions, but at a higher entrance level

Approximate Time

10 quarters, including Cores I and II and 1 cooperative work experience

-This elective is for students who need to evaluate their interest and readiness for advanced program areas.

-This elective is for students who need to evaluate their interest and readiness for advanced program areas.

Printing Production Careers

Printing is the process of using ink to transfer images to paper or other materials, including paper in such forms as books, magazines, newspapers, labels, and posters. Printing is one of the world's largest industries, with a growing demand for skilled people to operate the many complex machines. Students are taught hands-on skills incorporating modern printing technology and machinery with the opportunity to specialize in two or more career fields in printing.

Printing Production Technology

Students may choose from certificate, diploma, AOS, and AAS degree programs in Printing Production Technology.
The programs offer individualized training in four areas of offset lithography: electronic composition and paste-up, camera, film assembly and platemaking, and press and finishing.

Printing Production Technology

Certificate, Diploma, AOS, and AAS Degree Programs

On-the-job Responsibilities

 Operate computer typesetting equipment, prepare mechanical art, make film originals, operate process cameras, operate photo processing equipment, assemble films, make plates, and operate offset presses and bindery finishing machines.
Places of Employment

In-plant print shops; commercial printing plants; newspapers, book, and magazine printers; and U.S. government printing facilities

Positions for Which Graduates Qualify

Camera operator, paste-up artist, typesetter, desktop publishing operator, keyboard operator, phototypesetter operator, black-and-white stripper, spot color film assembler, process color film assembler, platemaker, duplicator operator, small press operator, and bindery/ finishing worker

Yr.	PRINTING PRODUCTION TECHNOLOGY:	Qtr. Credit Hours			
	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NVCR-141 Page Creation Methods*	5			
	NVCR-142 Fundamentals of Reproduction Photography*			5	
	NVCR-143 Basic Film Assembly/Platemaking*		5		
	NTMM-120 Basic Mathematics (depending on need)	(3)			
1	NGGE-100 Freshman Seminar	2			
		2	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	
		4	4	4	
	General Education		2	2	
	Physical Education	0	0	0	
	NVCR-144 Basic Litho Duplicator Operations*	5			
	NVCR-170 Production Printing I		2		
2	NGGE-101 Job Search Process	1			
	NGGE-102 Life After College		1		
	Communication	2	2		
		4	4		
	General Education	2			

'These are Level I required courses and are not sequential. Each may be taken during any of the first four quarters.

Yr.	PRINTING PRODUCTION TECHNOLOGY: DIPLOMA	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NVCR-141 Page Creation Methods*	5	$\begin{gathered} 5 \\ (2) \end{gathered}$	5	
	NVCR-142 Fundamentals of Reproduction Photography*	(3)			
	NVCR-143 Basic Film Assembly/Platemaking*				
	NBTP-114 Keyboarding (depending on need)				
	NTMM-120 Basic Mathematics (depending on need)			2	
	NGGE-100 Freshman Seminar	2	2		
	Communication	2			
		4	4	4	
	Physical Education	0	0	0	
2	NVCR-144 Basic Litho Duplicator Operations*	5	5	52	0
	NVCR-269 Level II Printing				
	NVCR-270 Level III Printing		2		
	NVCR-170, 269 Production Printing Lab I, II	1			
	NGGE-101 Job Search Process		2		
	Communication	2			
		4	4		
	NVCR-299 Co-op Work Experience				
3	NVCR-269 Level II Printing	5	5		
	NVCR-270 Level III Printing	1			
	NVCR-270 Production Printing Lab III				
	NGGE-102 Life After College		2		
	Communication	1			

'These are Level I required courses and are not sequential. Each may be taken during any of the first four quarters.

Prerequisite

Successful completion of a sampling experience in Printing Production Technology, either through the Summer Vestibule Program or a departmental sampling program

Approximate Time

6 quarters for certificate
9 quarters for diploma, including 1 cooperative work experience

10 quarters for AOS or AAS degree, including 1 cooperative work experience

I

Yr.	PRINTING PRODUCTION TECHNOLOGY: AOS DEGREE	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	NVCR-141 Page Creation Methods*	5	5	5	
	NVCR-142 Fundamentals of Reproduction Photography*				
	NVCR-143 Basic Film Assembly Platemaking*				
	NBTP-144 Keyboarding (depending on need)			(2)	
	NTMM-120 Basic Mathematics (depending on need)		(3)		
	NGGE-100 Freshman Seminar	2		2	
		2	4		
				4	
			2		
		0	0	0	
	NVCR-144 Basic Litho Duplicator Operations*	5	5	5	0
	NVCR-Level II Printing	1			
	NVCR-Level III Printing		2		
2	NVCR-170, 269 Production Printing I, II			2	
	NGGE-101 Job Search Process		4	4	
	NGGE-166 Human Experience I				
		4		2	
			2		
	NVCR-299 Co-op Work Experience				
	NVCR-Level II Printing	5	5	2	
	NVCR-Level III Printing	2			
3	NVCR-270, 271 Production Printing III, IV		2		
	NGGE-167,168 Human Experience II, III	4	1		
	NGGE-102 Life After College				
		2			
	Printing Elective**			10	

'These are Level I required courses and are not sequential. Each may be taken during any of the first four quarters.
"Electives may be taken during any quarter if all prerequisites have been met.

'These are Level I required courses and are not sequential. Each may be taken during any of the first four quarters.
"Electives may be taken during any quarter if all prerequisites have been met.

Pre-Baccalaureate Studies

Dr. Adele Friedman, Co-Chairperson

Dr. Rosemary Saur, Co-Chairperson

Pre-Baccalaureate Studies are available as a bridge to students accepted by NTID and interested in enrolling in another RIT college, but not yet ready to enter into a baccalaureate-level program. Students spend one year in these studies preparing for matriculation. Reasons for entering pre-baccalaureate studies include the need to further develop in either mathematics or English, indecision as to program of study, or lack of space in the chosen baccalaureate program.

Students receive no degree in prebaccalaureate studies. Rather, at an appropriate time, they are advised to apply to the program of their choice and are assisted in doing so.

Pre-Baccalaureate StudiesEngineering, Science, ana Social Work

While in a Pre-Baccalaureate Studies program, students receive academic advising as well as personal and career counseling. The academic program is flexible and is set up individually for each student. Courses are chosen to address as closely as possible the strengths and needs of individual students. Regular NTID technical and developmental courses taught by support department faculty members are supplemented by courses in the colleges of Science, Engineering, and Liberal Arts, including the social work courses indicated. This strategy enables students to develop needed skills while at the same time progressing in their chosen fields of study.

Entry Requirements

Students entering NTID during the Summer Vestibule Program must complete the prescribed sampling experience in science, engineering, or social work. Students may be accepted directly into Pre-Baccalaureate Studies if so recommended by the Career Outreach and Admissions Department or upon approval of the Social Work Support staff of the Department of Liberal Arts. Students already matriculated in an NTID program may change to PreBaccalaureate Studies upon the recommendation of their current department

'Chemistry SCHG-209 may be included in students' schedule if they are deferred from Reading and Thinking in Science and Technology during the spring quarter.
"Students judged as proficient-those having a Michigan Test score higher than 80 and a 10th grade California Achievement Test score-start the English Composition series assigned by the NTID Liberal Arts Placement Test (LAPT). Students judged as provisionally qualified take at least one quarter of NTID English.

'Students judged as proficient-those having a Michigan Test score higher than 80 and a 10th grade
California Achievement Test score-start the English Composition series assigned by the NTID Liberal Arts Placement Test (LAPT). Students judged as provisionally qualified take at least one quarter of NTID English.
"Credits shown in parentheses () are substitutes for those above without parentheses.

Yr.	PRE-BACCALAUREATE STUDIES IN SOCIAL WORK	Qtr. Credit Hours			
1	Typical Course Sequence	FALL	WTR.	SPG.	SMR.
	GSWS-212 Self Awareness in the Helping Role	3242	4	43	
	GSWS-216 Introduction to Social Welfare		4		
	GSWS-217 Community Services		3		
	NTMM-140,141,142 Fundamentals of Mathematics I, II, III				
	NGGE-100 Freshman Seminar				
	NGGE-218, 219 Written Communication I, II		4	4	
	Communication		2		
	Communication or General Education Bridging Course		4		
		$\begin{gathered} 4 \\ 2-3 \end{gathered}$			
	General Education				
	General Education Bridging Course	30	0	3	
	Physical Education				

and with the approval of a support department advisor and chairperson.

Prerequisites

Students interested in baccalaureatelevel programs must have the appropriate high school background for their area of interest. They should consult appropriate sections of this catalog for individual program requirements. High school courses should be of a level comparable to New York State Regents or college preparatory. Ideally, grades should be at the "B" level or better.

Approximate Time

Students generally take three-four quarters to matriculate in an associate or baccalaureate-level program of study.

Educational Interpreting

Gary E. Mowl, Chairperson

Educational Interpreting AAS Degree Program

On-the-job Responsibilities

Work in educational and similar settings where deaf people can use interpreting and other support services such as tutoring and notetaking.

Places of Employment

Elementary, secondary, and postsecondary educational institutions; community service organizations; vocational rehabilitation agencies; business/industry; and government agencies

Special Entrance Requirements

High school diploma or equivalent and intermediate sign language competence

A pre-AAS program may be required of students depending on skill level in sign language at application. Pre-AAS courses include Introduction to Sign Language, Sign Language I and II, and Introduction to the Deaf Community. The pre-AAS program is offered in the summer for six weeks before the fall quarter of entrance.

This is a two-year program for a typical entering freshman who has basic sign language competency.

Approximate Time

6 quarters, may be taken over a threeyear period.

Application Procedures and Admissions Services

Applying for admission

RIT accepts students on a "rolling admission" basis. This means that decisions regarding acceptance are made soon after the application and supporting documents have been received in the Office of Admissions.

Because of this policy, and because some RIT programs fill to capacity very early in the year, it is to a student's advantage to apply early.
Students applying to RIT through NTID must complete both the standard RIT and the NTID Supplemental Admission Application forms, available from NTID's Department of Career Outreach and Admissions. If deaf students want to enroll directly into one of RIT's other eight colleges, they still must complete both application forms. In addition to meeting the NTID requirements, students also must fulfill the requirements for admission to the selected college. NTID students should submit their applications in the fall of the year before they wish to attend. The date of application is the date when the Application for Undergraduate Admission has been received by NTID's Department of Career Outreach and Admissions. The NTID admission year is October 1-June 30.

The admission decision

Factors considered in the admission decision include, but are not limited to, past high school and/or college per-formance-particularly in required academic subjects-admission test scores, competitiveness of high school or previous college, and other educational experiences (military, etc.). An admission interview and recommendations from those familiar with your academic performance are often influential as well.

Students applying to RIT choose a specific program. Applicants are encouraged to indicate second and third program choices as well. For the undecided student, RIT offers a number of academic opportunities, including Technical and Liberal Studies, Undeclared Science, Undeclared Engineering, and Undeclared Business options.

Admission to RIT is competitive and based on our prediction of your likelihood of success. Admission standards vary from program to program. Each year approximately 6,000 students apply for freshman and transfer admission; about 4,800 gain admission; and

2,350 new freshmen and transfers enroll.

A $\$ 200$ non-refundable admission deposit reserves a place in your class and is credited to your first quarter tuition. (Deposit is $\$ 100$ for students applying to RIT through NTID.) The due date will be indicated with your offer of admission. For students entering in September, this is May 1, or within two weeks of acceptance, whichever is later.

How to apply

In order to complete the application procedure for admission to RIT, you need to submit the following:

1. fully completed application for admission (Students applying to RIT through NTID must complete both the RIT standard application and NTID Supplemental Admission Application forms.)
2. non-refundable $\$ 35$ application fee 3. an official high school transcript for all freshman applicants and all transfer applicants with fewer than 60 semester hours
3. official Scholastic Aptitude Test (SAT) or American College Test (ACT) results for all freshman applicants and all transfer applicants with fewer than 15 semester credit hours completed (Deaf applicants should submit results from appropriate tests.)
4. official transcripts of all completed course work and a listing of any course work in progress (and not on the transcript) or course work to be completed prior to enrolling at RIT

Early decision plan

An "early decision" plan is available to freshman candidates who identify RIT as their first choice college. Details of this plan are outlined in the under graduate application packet.

Early admission

Students occasionally complete the prescribed number and adequate distribution of high school units in three years, with the exception of fourth-year English and/or history. In such instances they may seek admission to RIT under the Early Admission Program. If admitted, they must fulfill high school senior-year requirements and first-year RIT requirements concurrently. Upon completion of the first year of study at RIT, they graduate from high school.

A letter from the high-school guidance office agreeing to the above conditions must accompany the application for admission.

Transfer credit

Because approximately 35 percent of RIT students are transfers, we have a strong commitment to attracting and providing services for them. Students who have completed studies at another accredited college before coming to RIT will be awarded transfer credit for all prior course work that is judged to be applicable to their RIT program. Usually a grade of "C" or better is required for a course to transfer.

Deaf students may transfer into an NTID program or they may qualify for transfer directly into a program in another RIT college, with NTID sponsorship. Deaf students accepted to the Summer Vestibule Program will have their transfer credit evaluated in the fall when they are accepted into a specific program.

Credit by exam

RIT grants credit for satisfactory scores on examinations covering objectives and contents parallel to the RIT courses for which students seek credit. Usually these are advanced placement (AP) or college-level examination placement (CLEP), New York State proficiency examinations or RITprepared examinations.

Academic scholarships

RIT offers academic scholarships based on merit through the annual Outstanding Freshmen Scholarship (OFS) and Outstanding Transfer Scholarship (OTS) programs. Winners are chosen on the basis of their previous academic record, recommendations, extracurricular activities and score on a scholarship exam taken at RIT.
All freshman applicants accepted by January 1 will be considered for invitation to the OFS program. Transfers must be accepted and make special application to the OTS program by March 1. Please contact the Admissions office for more details on either program.

Campus visits

Selecting the appropriate college is a difficult decision, but visiting a campus often helps students form more accurate impressions. We encourage campus visits and personal admission inter-
views because they allow students to see our outstanding facilities firsthand and get answers to questions they may have.

Although it is not required for admission, deaf students applying to RIT may take regularly scheduled tours offered at NTID (10 a.m., Monday-Friday, and 2 p.m., Monday and Thursday). Students may schedule personal interviews, although they are not required for admission.

Admissions services

RIT takes pride in the diversity of its student body-diversity that is actively promoted by the Office of Admissions in its recruitment of women, veteran, commuter, minority, adult, part-time, handicapped and international students. In addition to admissions counseling, we also direct students to various Institute resources and support services that can help with questions about the world of work or job placement. Such referral assistance gives students a better insight into the opportunities and challenges at RIT.

Whether a high school student or an experienced homemaker exploring a second career, we encourage students to seek our assistance while clarifying or reexamining personal and career goals.

To obtain answers to questions about RIT programs and procedures, contact the Admissions Office. Counselors are available to help students with questions and concerns. An appointment for an admissions interview and campus tour may be scheduled by writing RIT Admissions, Bausch \& Lomb Center, P.O. Box 9887, Rochester, N.Y. 14623 or calling (716) 475-6631, (Monday-Friday, 8:30 a.m.-4:30 p.m.).

RIT's Office of Part-time Enrollment Services (OPES) provides a centralized information and counseling service for students interested in enrolling in parttime undergraduate studies offered through the Institute's various schools and colleges. We encourage you to contact this office if you need assistance in selecting an academic program, exploring financial aid opportunities, registering for classes, or receiving information about any aspect of parttime study at RIT.

OPES staff members are available to assist you during day or evening office hours, 8:30 a.m. to 6:30 p.m., Monday through Thursday, and 8:30 a.m. to 4:30 p.m., Friday. We invite you to telephone (716) 475-2229 for enrollment information, or visit our offices located on the first floor of the Bausch \& Lomb center on campus.

Expenses and Financial Aid

Procedures and Costs

Matriculated Day College Students

Payment procedure

The quarterly pre-billing charges at RIT are computed on a quarterly basis. The Institute must receive the required payment for each quarter before registration will be allowed. Any preregistered student whose payment is not received by the due date will not be eligible to officially register until payment is received. Any non-preregistered student must attend Open Registration Day and make payment at that time. Payments sent by mail should be made by check, payable to Rochester Institute of Technology. Due dates for the 1990-91 school year are as follows: Fall Qtr.

August 16, 1990
Winter Qtr. November 14, 1990 Spring Qtr.

February 13, 1991
Summer Qtr.
May 15, 1991
The student should receive the quarterly pre-billing approximately two weeks prior to the quarterly due date. These due dates are rigid. If payment is not received by the date stated, the student must appear at the Registration Day for the quarter desired. Upon receipt of the student's payment in full, the Bursar's Office will process the payment and clear the student for registration.

Students whose college costs are paid by the G.I. Benefit Plan or their employer are required to submit the properly authorized deferment form. Quarterly pre-bills will be mailed to the student's permanent address.

A late payment fee of $\$ 50$ will be charged to all student accounts that become past due. This includes, but is not limited to, the deferred payment plan and company deferred payment plan.

Financial standing
Tuition and fees paid to the Institute cover approximately $60-70$ percent of the actual expense of a student's education. The rest of the cost is borne by the Institute through income on its endowment and from the gifts of alumni and other friends.

Students, former students and graduates are in good financial standing when their account is paid in full in the Bursar's Office. Any student whose account is not paid in full will not receive transcripts, diplomas or other forms of recognition or recommendation from the Institute.

THE INSTITUTE RESERVES

THE RIGHT TO CHANGE ITS

 PRICES AND POLICIES GOVERNING THEM WITHOUT PRIOR NOTICE.Other fees
In addition to the fees specified in the table, certain segments of students may incur other fees as follows:

New Student Room \& Board Fee$\$ 23$ charged to new students living in the residence halls.

Orientation Fee-\$40 one-time charge for new students.

Photo Facilities Fees- $\$ 74$ per quarter charged to all full-time photo students; $\$ 37$ per quarter charged to all part-time photo students.

Late Registration Fee-A late registration fee of $\$ 50$ is charged to any student who fails to register (and make the necessary financial commitment) by the designated quarterly open registration day and time.

Student sickness insurance plan A charge of $\$ 128$ is assessed Fall Quarter to all full-time RIT students who have no other medical insurance and have not signed the waiver option. Fulltime, undergraduate NTID students are charged $\$ 160$.

FEE SCHEDULE 1990-91

(MATRICULATED DAY COLLEGE STUDENTS EXCEPT NTID)

Tuition	Per Quarter	Per Qtr. Yi
Full-Time Undergraduate (12-18 Credit Hrs.)	$\$ 3,653$	$\$ 10,959$
Part-Time Undergraduate (Less than 12 Credit		
\quad Hrs.)	$\$ 260 / \mathrm{Cr} . \mathrm{Hr}$.	
Student Activities Fee (Mandatory Charge)		
\quad Full-Time Undergraduate	30	90
\quad Part-Time Undergraduate	11	33
Student Health Fee (Mandatory Charge)		
\quad Full-Time Undergraduate	35	105
Residence Hall Room Charges		2,520
\quadDouble Occupancy Single Occupancy	965	2,895
Board/Meal Plans		
20 Meals Per Week	748	2,244
Any 14 Meals Plus	727	2,181
Any 10 Meals Plus	661	1,983
(Commuter meal plans also are available)		

Additional budgeting information, books and supplies. These vary widely with the program followed and to some extent the electives chosen. Programs with minimal expenses (e.g., sciences, business) will average $\$ 250-400$; in the arts and crafts, this may be in the neighborhood of \$1,000-1,500; in photographic illustration or professional photography, a realistic allowance is $\$ 1,500$ in addition to cameras (but in photographic sciences and photo finishing, expenses are minimal).

Typical expenses

We can tell you what tuition, room and board and fees will cost, but estimates of personal expenses are up to the individual student. When estimating what you'll spend for a year at college, remember to count travel expenses, clothes, meals not counted in your board plan, and spending money. A typical full-time resident student would have the following academic year expense:

Tuition	\$10,959
Fees,	195
Room.	2,520
Board.	2,181
Books.	307
Personal \& Transportation	. 805
Total	\$16,967

As indicated in the preceding paragraphs, expenses will vary according to individual circumstances.

12-month payment plan

For the 1990-91 academic year, RIT will offer a 12 -month payment plan. This combines the elements of a prepayment/deferred payment plan. For further information regarding this plan, contact the Bursar's Office at (716) 475-6059.

Policies to remember

- Matriculated Day College students are charged the day rate for ALL courses taken (CCE, Day/Evening Division, and courses taken while on co-op).
- Students on co-op will not be charged tuition for those quarters unless they are also enrolled in classes.
- Non-matriculated and matriculated Day College/Evening Division students are charged for the type of course taken (CCE rate for CCE and Day/Evening Division courses, Day rate for Day courses, Graduate rate for Graduate courses).
- Students taking courses during Summer Quarter should refer to the Summer Quarter Bulletin for Policies \& Procedures.

Vocational Rehabilitation

1. Deaf students receiving Vocational Rehabilitation (VR) support for fees and supplies must file authorization with RIT's VR billing supervisor before registration. If authorization has not been received before registration, studens must either obtain from their VR counselors a letter of commitment stating the dollar amount that is authorized and present it to the VR billing supervisor or be prepared to pay for the charges in question. Any authorization received after student payment of charges will result in a refund to students.
2. Students must pay all uncovered charges (those charges not paid by VR) before the quarterly due date.
3. VR counselors should specify each charge that they assume on their authorization forms.
4. Clarification regarding VR authorization and/or billing procedures should be addressed to:
Rochester Institute of Technology VR Supervisor for NTID Bursar's Office George Eastman Building Post Office Box 9887 Rochester, NY 14623-0887

Refund Policies

It is the student's responsibility, not the instructor's, to assure that all paperwork and refunds are properly processed.

The acceptable reasons for withdrawal with refund during the quarter are:

For a full refund

1. Active military service: A student called to active military service during the first eight weeks of the term may receive a full tuition refund. If called after the eighth week, he may elect to complete the course by making special arrangements with both his instructor and department, or to withdraw and receive a full tuition refund. If he withdraws, he will have to repeat the courses at a later date.
2. Academic reasons: Students sometimes register before grades for the previous quarter are available. If such a student later finds that he or she is subject to academic suspension, or has failed prerequisites, the student will be given a full refund upon withdrawal.
3. If part-time students drop a course during the Official Drop Period (first 6 days of classes during the specific quarter), they may contact the Bursar's Office for a 100% refund for that course dropped. Courses dropped after the official Drop Period will not result in any tuition refund.

For a partial tuition refund

A student must officially withdraw
from all courses or take leave of absence from the Institute in order to be eligible for a partial tuition refund.

A partial refund will be made during a quarter if withdrawal/leave of absence is necessitated for one of the following reasons:

1. Illness, certified by the attending physician, causing excessive absence from classes.
2. Withdrawal for academic reason at the request of the Institute during a quarter.
3. Transfer by employer, making class attendance impossible.
4. Withdrawal for academic or personal reasons at the request of the student, approved by the student's advisor or department representative, the Institute coordinator for academic advising, and the bursar.
These partial refunds will be made according to the following withdrawal schedule and percentage of tuition reduction:

During official add/drop period (first 6 days of classes)- 100% tuition reduction

From the end of the official add/drop period through the end of the second week of classes- 70% tuition reduction

During the third week of classes60% tuition reduction

During the fourth week of classes50% tuition reduction

Fifth and subsequent weeks-no tuition reduction

NOTE: NON-ATTENDANCE does not constitute an OFFICIAL WITHDRAWAL.

A student is not "officially withdrawn" until he or she receives a copy of the withdrawal form. The date on which a withdrawal form is properly completed will be the date of "official withdrawal" used to determine the refundable amount.

If the student drops his or her course load from full-time (12 or more credits) to part-time (less than 12 credits) status during the Official Drop Period, he or she may contact the Bursar for a refund based on the differential between the full-time tuition payments and the total per-credit charge for the part-time load.

No refund will be made for classes dropped after the Official Drop Period unless the student is officially withdrawing from the Institute.
Advance deposits and fees are not refundable.
For further information regarding refund policies and specific withdrawal dates, contact the Bursar's Office.

Appeals process

An official appeals process exists for those who feel that individual circumstances warrant exceptions from published policy. The initial inquiry in this process should be made to Richard B. Schonblom, bursar. Unresolved matters will be referred for further action to William J. Welch, controller.

Room and board*
To complete a withdrawal from RIT, a resident student or a non-resident student on a meal plan must check out with Housing and/or Food Service. Refunds, when granted, are from the date of official check-out.
-Room and board policies are established by Residence Lije and Food Service.

Partial refund schedule:
Room
a. During the first week of classes90% of unused room charge
b. During the second week of classes75% of unused room charge
c. During the third week of classes60% of unused room charge
d. During the fourth week of classes50% of unused room charge
e. Fifth and subsequent weeks-no refund

Board
a. During the first four weeks- 75% of unused board charge
b. After the first four weeks- 50% of unused board charge
c. After the last two weeks-no refund

Procedures and Costs

College of Continuing

 Education (CCE) Students and Matriculated Day College/Evening Division StudentsPayment procedures
Charges at RIT are computed on a quarterly basis. The Institute must receive the required payment for each quarter before registration will be allowed. CCE and Day College/ Evening Division students will be allowed to register only after they make the appropriate financial commitment for the quarter and have no balance due from prior quarters.

CCE and Day College/Evening Division students may pay for a quarter's tuition in a single payment at the time of registration or by the partial payment plan. Partial payments are due twice a quarter: 50 percent (plus \$25 partial payment processing fee) at the time of registration, and the remaining 50 percent by the end of the fourth week of classes. (A bill will not be generated prior to the due date of remaining balance.) A $\$ 50$ late fee will be assessed for failure to pay the remaining 50 percent on time.

FEE SCHEDULE
(Matriculated CCE and Day College/ Evening Division students)
Tuition-Undergraduate
Upper Level \$176/Credit Hour (courses in 400, 500, 600 Series)
Lower Level \$161/Credit Hour (courses in 100, 200, 300 series)
Graduate $\$ 330 /$ Credit Hour

Other fees

Some courses require additional charges to cover laboratory, studio or supply fees. (Consult the registrar's quarterly schedule for those courses with additional fees.)

Late registration fee. A late registration fee of $\$ 50$ is charged to any student who fails to register (and make the necessary financial commitment by the designated quarterly open registration day and time).

Policies to remember

- Matriculated students are assessed the tuition rate associated with their program, regardless of the courses taken.
- Non-matriculated students are assessed tuition consistent with the program(s) in which their course(s) are offered.
- Students taking courses during Summer Quarter should refer to the Summer Quarter Bulletin for Policies and Procedures.

Refund policies

The student must arrange to drop or withdraw from courses in person at their college with a letter addressed to the college, otherwise he or she will not receive a tuition refund. This will not be official until the student receives his or her copy of the change in the Class Schedule form. The postmarked date of the letter to the college or the date on which the change in Class Schedule form is properly completed, is the date used to determine the refund. It is the student's responsibility (not the instructor's) to assure that the paperwork and refund are properly processed. The official drop period is the first six class days of the specific quarter. Please note that official withdrawal from courses is required even if the student is not eligible for a tuition refund. The final grade is determined by the official withdrawal.

NOTE: NON-ATTENDANCE DOES NOT CONSTITUTE AN OFFICIAL WITHDRAWAL.

Should the student find it necessary to drop or withdraw from a course, a net refund will be calculated in accordance with the quarterly payment
received, the tuition charged as outlined in the schedule below, any current quarter fees and any balance remaining from the previous quarter. A partial payment is refundable only if:

1. The student drops the applicable courses during the official add/drop period.
2. The student registers for a sequential course and later finds that he or she has failed the prerequisite course in the previous quarter. (Students generally register for the following quarter before grades for the previous quarter are available.)
3. The course is cancelled or filled.

NOTE: Tuition charges for courses
dropped (with no grade assigned) dur-
ing the official drop period (first 6 days of classes during the specified quarter)
will be credited in full.
Refunds for courses dropped with
any grade assigned will be handled according to the following schedule:
During official add/drop period
(first 6 days of classes)100% tuition refund
From the end of the official add/drop period through the end of the second week of classes- 70% tuition reduction
During the third week of classes60% tuition reduction
During the fourth week of classes50% tuition reduction
Fifth and subsequent weeksno tuition reduction
Refunds will be made by an RIT check and mailed approximately three weeks from the date on which the student reports the drop or withdrawal to the College of Continuing Education, Registration Services. Advance deposits and Institute fees are non-
refundable.

Financial Aid

We feel strongly that no qualified student should refuse to consider RIT because of cost. With this in mind, RIT offers a full range of traditional financial aid programs, and a number of innovative financing plans as well. In 1989, approximately 69.5% of our undergraduate students received financial aid awards from RIT. These students qualified for over $\$ 43$ million in financial assistance from federal, state and institutional sources. Many families also took advantage of RIT's 12-month, interest-free payment plan, and a four-year prepayment plan that guarantees participants no increase in tuition (the RIT Tuition Stabilization Plan).

Your financial need Eligibility for need-based financial aid at RIT begins with two basic requirements: enrollment in a degree program at least half time (six or more credits per quarter), and the ability to demonstrate financial need.

Financial need is the difference between the cost of an education and the amount that a student and his or her family can afford to pay toward meeting that cost. Financial aid programs are designed to supplement their contributions. Attending college with assistance does not limit the student to a less expensive school that might not offer a program reflecting his or her educational interests. Even if a student is unable to pay any of his or her expenses, it still may be possible to attend RIT. This is true because financial need is determined by subtracting the student's resources from the cost of the institution chosen to attend.

A student's financial need is determined by analysis of a Financial Aid Form (FAF) available through a high school guidance office, any college financial aid office, or the College Scholarship Service. The student's family will be asked to fill out this form, disclosing income, assets, indebtedness, family size (including other children in college) and special circumstances that affect the financial situation. The completed form is analyzed by an independent, non-profit agency that assists colleges and universities in determining financial need.

The process of applying for aid should begin during the month of January in the year the student wishes to enroll. In order to receive full consideration, it is vitally important that the Financial Aid Form is filed by March 1 each year. Applications received after March 1 receive secondary consideration because funds are limited. Therefore, students should file the form as soon afterJanuary 1 as possible. For transfer students, RIT requires a financial aid transcript from each college attended.

Types of aid

At RIT there are five general categories of financial aid: scholarships, grants, entitlements, loans, and employment. An applicant for financial aid is considered for each of these categories.

- Scholarships are generally awarded on the basis of academic record, financial need and personal recom-
mendations. RIT awards many such scholarships each year. Other typical scholarship sources are competitions, corporations, private donors, foundations, fraternal organizations, unions and local and state governments. Repayment is not necessary.

RIT offers academic scholarships based on merit through the annual Outstanding Freshman Scholarship (OFS) and Outstanding Transfer Scholarship (OTS) programs. Winners are chosen on the basis of their previous academic record, recommendations, extracurricular activities and score on a scholarship exam taken at RIT. All freshman applicants accepted by January 1, 1991, will be considered for invitation to the OFS program. Transfers must be accepted with third-year standing and make special application to the OTS program by February 1, 1991. Please contact the Admissions office for more details on either program.

- Grants are gifts of financial assistance that are awarded on the basis of demonstrated need. RIT awards institutional grants that vary from $\$ 100-\$ 7,450$ for the academic year. RIT also awards grants under the federally funded Supplemental Education Opportunity Grant (SEOG) program.
- Entitlements are a special type of grant. They are iunded by state and federal governments. Eligibility for entitlements can be based on financial need or on special characteristics of a recipient. Entitlements based on need include the federal government's Pell program and various state grant programs (for example, the New York State Tuition Assistance Program). Examples of entitlements based on special student qualifications are the G.I. Bill and vocational rehabilitation benefits. Entitlements need not be repaid.
- Loans are a lien on future earnings. The money you receive on loan is a formal financial obligation that must be repaid. You need to be aware of the interest charges, the method of payment after graduation and the effect that additional loans will have on your ability to meet all of your later financial obligations. Student loans are not repaid until after graduation or termination of study, and interest does not begin to accumulate until then.

Many students will utilize the Stafford Student Loan Program (formerly GSL) in meeting their costs. RIT also awards Perkins (National Direct) Student Loans and Income Contingent Loans (ICL). These are federal programs administered by colleges to eligible students as part of financial aid awards.

Parents are also eligible to participate in several educational loan programs designed to enhance funds available for college expenses. Parent Loans for Undergraduate Students (PLUS) for up to $\$ 4,000$ per year are available to supplement other aid programs in meeting educational costs. While this parent loan is not based on need, the amount borrowed in any year cannot exceed educational costs taking into account other financial aid received.

RIT also offers a Supplemental Education Loan Program (SELP II) through Chase Lincoln Bank designed to provide loans to families beyond amounts they would receive through existing federally subsidized programs. In the RIT Supplemental Education Loan Program, payments on principal and accrued interest commence six months after withdrawal or graduation with borrowing limits of up to $\$ 5,000$ per year for full-time study.

In addition, RIT participates in the ConSern program. This loan is primarily available to parents of RIT students attending at least half time. In certain cases, students or spouses may also borrow under this program. The maximum loan available is equal to total cost minus approved financial aid; the minimum loan is $\$ 1,500$ per year. Applications are available from the Office of Student Financial Aid.

- Employment opportunities are also available to assist RIT students in meeting college expenses. Whether or not students seek financial aid, they may choose to defray some of their expenses through student employment while attending college.
As part of a financial aid award at RIT, students may be offered employment in the College Work-Study Program. Over 3,100 students were employed on campus in 1989. The Student Employment Office also helped a number of students secure part-time employment off-campus.

Full-time salaried employment through RIT's cooperative education program can also contribute to meeting college expenses. While co-op salaries vary depending upon academic program, a typical co-op student will
earn approximately $\$ 7,000$ per year during his or her junior and senior years at RIT. Additional information about co-op can be found on page 190 .

NTID Grant-in-Aid
Federal Grant-in-Aid funds, awarded on the basis of financial need, are the primary source of financial aid for deaf students who do not have adequate financial resources from the sum of their parental and personal contributions and assistance from outside agencies to cover educational costs. To be awarded financial aid, individuals must be admitted as full-time matriculated students.

Students must re-apply for aid each year by completing the Financial Aid Form (FAF). Every effort is made to continue financial assistance to students each year, provided they remain in good academic standing and maintain satisfactory progress, file the required application by the recommended deadline, and demonstrate continued financial need.

First-year and transfer students may expect notification of financial aid awards during April or May; returning upperclass students may expect award notification during June or July.

Students are encouraged to apply for financial aid. Students and their families should not try to decide by themselves if they qualify; that decision should be left to the Student Financial Aid Office and other agencies to which students have applied. Denial of aid from one or more sources does not necessarily mean that students will be denied aid by all sources. Students are urged to pursue all available sources of financial aid.

Payment plans
The RIT Monthly Payment Plan combines the elements of a deferred payment plan and a prepayment plan to allow students and their families to finance their educational costs over a 12-month period with no interest or finance charges. Participating families would make their first payment by June 1 preceding the academic year in which it would be utilized. Fixed costs include: tuition, fees, residence hall charges and RIT meal plans. Dormitory residents will contract for the 20- or 15-meal plan. Rental charges incurred for RIT apartments or with private landlords cannot be financed through the plan. The Advance Tuition Deposit required of all new undergraduates and the Advance Housing Deposit, if applicable, will be credited against annual charges. Approved
financial aid may be deducted from student charges to reduce the amount financed.

Additional information as well as applications for the RIT program may be obtained from the Bursar's Office. Monthly payment programs are also available through a number of commercial banks and agencies, and inquiries regarding these programs should be directed to the Financial Aid Office.

RIT also offers a Tuition Stabilization Plan which guarantees no tuition increase for the equivalent of four years of undergraduate study (12 academic quarters). Tuition remains at 1990-91 rates (\$3,653/quarter) and monthly payments can be set on a four-, six- or eight-year repayment schedule. The amount financed $(\$ 43,836)$ equals four years of tuition at current rates ($\$ 10,959 \times 4=\$ 43,836$). The plan requires $\$ 43,836$ to participate; and although not required, participants may elect to obtain financing through Chase Lincoln First Bank, N.A., as a home equity loan. Interest payments are tax-deductible under the new tax code. For the 1990-91 year, this plan is available only to incoming freshmen. Applications are available from the Office of Student Financial Aid or the Bursar's office.

NTID-sponsored students may contact the NTID/VR Billing Department at (716) 475-2080, 475-5489 (Voice), or 475-2960 (TDD) for more information about payment options.

Requirements for State and Federal Aid Programs

New York State Tuition Assistance Program (TAP)
In order to receive a Tuition Assistance Program grant, an individual must be admitted as a full-time matriculated student, meet New York State residency and income requirements, must pursue the program of study in which he or she is enrolled and must make satisfactory progress toward completion of his or her program of study. The two tables on page 183 list the approved standards of satisfactory progress for the associate degree and baccalaureate degree respectively.

In addition to accruing degree credits and minimum grade point average as specified below, TAP recipients are required to:

Complete 6 credits per quarter to receive TAP payments $2-4$

Complete 9 credits per quarter to receive TAP payments 5-7

Complete 12 credits per quarter to receive TAP payments 8-12.

Completion of a course indicates meeting course requirements and receiving a letter grade of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or F .

Waiver of academic progress standards for TAP

Students who have been denied Tuition Assistance Program benefits due to failure to maintain satisfactory standards of academic progress may request a oneterm waiver of those standards. State regulations require that these waivers be granted only under extraordinary circumstances. Accordingly, waivers are normally granted for the reasons listed below. Students failing to meet satisfactory progress standards will be given the opportunity to contact an institutional representative to discuss their situation. The institutional representative will require documentation as appropriate and establish deadlines for submission of this documentation. Under the regulations established by the Commissioner of Education, the decision of the institutional representative will be final. Students, who in the judgment of the institutional representative, satisfactorily meet the criteria for the waiver may have one waiver at the undergraduate level. One waiver also may be granted at the graduate level. Those wishing to apply for waivers must do so during the quarter in which notification of TAP denial was sent.

Reasons for which a waiver may be granted include the following (decision of the institutional representative is final):
A. Verifiable physical/mental illness of the student or member of the student's immediate family during the quarter in which academic standards were not met.
B. Death of a member of the student's family during the quarter in which standards were not met.
C. For financial reasons, the student assumed an employment burden sufficient to cause unsatisfactory progress. Normally, the student must demonstrate that his or her work schedule has subsequently been reduced to allow sufficient time, in the judgment of the institutional representative, for academic pursuits.
D. Change of academic/career goals:

Students who fail to meet academic progress standards and subsequently change majors or students whose failure to meet progress standards was caused by changing major* may be considered for a waiver. The student's entire academic record will be considered with regards to probability for success in the new academic major.
E. Divorce/separation within the student's immediate family creating a demonstrable financial/emotional disruption sufficient to affect progress.
F. Transfer students failing to meet state standards in their first term of attendance at RIT may apply for waiver consideration. Applications will be evaluated on an individual basis.
G. Students may submit waiver applications for circumstances which the student feels were extenuating. Applicants must explain why circumstances were extenuating and beyond their control.
*Normally this will be the student who has attained a satisfactory grade point average but has lost degree credit hours due to changing majors.

Standards of satisfactory academic progress for the purpose of determining eligibility of Federal (Title IV) Financial Aid

Federal regulations require financial aid recipients to maintain minimum standards of satisfactory academic progress for receipt of federally sponsored aid. All students receiving federal assistance must maintain matriculated status in a degree program. Regulations require a maximum time frame for degree completion, a quantitative measurement (credits earned toward a degree), and a qualitative measurement (cumulative grade point average). The standards described below are effective for terms ending after July 1, 1987.

Full-time students who have never attended another college are allowed a maximum of six academic years (18 full-time academic quarters) to attain the bachelor's degree. Those pursuing associate degrees are allowed three academic years (9 academic quarters) for degree completion. However, deaf students pursuing associate degrees through NTID are allowed up to four academic years (12 academic quarters) for degree completion.

Grade point average is reviewed at the end of each full-time quarter or its equivalent. Minimum cumulative grade point average standards are as follows:

```
Completion of:
    First Quarter-
        Minimum Cumulative
        GPA =1.0
    Second Quarter-
        Minimum Cumulative
        GPA = 1.2
    Third Quarter-
        Minimum Cumulative
        GPA = 1.4
    Fourth Quarter-
        Minimum Cumulative
        GPA = 1.6
    Fifth Quarter-
        Minimum Cumulative
        GPA = 1.8
    Quarters 6-18-
        Minimum Cumulative
        GPA=2.0
```

Credits earned toward the degree are evaluated every three academic quarters. Aid recipients are expected to complete 30 degree credits every three academic quarters as detailed below:

```
Completion of:
    1 st Academic Year
        (3 Academic Qtrs.)-
        30 degree credits required
    2nd Academic Year
        (6 Academic Qtrs.)-
        6 0 \text { degree credits required}
    3rd Academic Year
        (9 Academic Qtrs.)-
        90 degree credits required
    4th Academic Year
        (12 Academic Qtrs.)-
        120 degree credits required
    5th Academic Year
        (15 Academic Qtrs.)-
        150 degree credits required
    6th Academic Year
        (18 Academic Qtrs.)-
        180 degree credits required
```


Additional Requirements

Transfer students

Cumulative grade point average requirements are the same as for nontransfer students [i.e., students must obtain a 2.0 GPA at the end of two academic years (six academic quarters)]. Transfer students also are expected to accumulate 30 degree credits for each three-quarter academic year. However, the maximum number of quarters allowed for full-time students to accumulate remaining degree credits may be reduced. For every 10 credits, or fraction thereof, granted as transfer credit by RIT, the maximum number of quarters allowed to accumulate remaining degree credits is reduced by one. A student transferring from another college and granted 30 transfer credits, would have 15 rather than 18
quarters to accumulate remaining degree credits; the same student transferring to an associate degree program would be allowed six rather than nine quarters to complete the degree.

Part-time students
Students registering for 6 to 11.5 credits per quarter and receiving federal financial assistance must meet the same grade point average requirements as full-time students (i.e., attainment of a 2.0 GPA after six academic quarters.) The established time frame for parttime students is 12 academic years (36 half-time quarters) for completion of bachelor's degree requirements. Associate degree candidates are allowed six academic years (18 half-time quarters) for degree completion. At the end of each three-quarter academic year, 15 credits must be accumulated toward the degree. Quarters in which a student is registered for less than six credit hours will be counted on a pro-rated basis toward the maximum time frame.

All students
Students should be aware that eligibility to receive certain forms of federal assistance may expire in less than the equivalent of six academic years.

For students first receiving the Pell Grant after July 1, 1987, there is a maximum of five academic years of eligibility. In addition to annual limits, both the Perkins (National Direct) Loan and Stafford/Guaranteed Student Loan also have cumulative undergraduate limits of \$9,000 (Perkins) and \$17,250 (Stafford/GSL).

These standards apply to federally sponsored assistance programs: Stafford/GSL, Supplemental Loans for Students, Parent Loan for Undergraduate Students (PLUS), Pell Grant, Supplemental Educational Opportunity Grant (SEOG), Perkins Loans (NDSL), Income Contingent Loans, and College Work-Study. Requirements for the New York Tuition Assistance Program (TAP), other state scholar ships, and Institute-sponsored programs may vary somewhat from these standards.

Notification and appeal Students whose academic progress is not in compliance with federal requirements will be notified of the deficiency and advised of the appeal process. Copies of the policy are available upon request.

Student responsibilities Recipients of financial aid from the Institute are responsible for reporting any significant changes in their financial situation during the year to the director of Financial Aid, who will review and may revise the applicant's financial aid accordingly. Financial aid recipients are also expected to assist in financing their education.

You should begin the process of applying for aid during the month of January. In order to receive full consideration, it is recommended that your FAF be received at the College Scholarship Service by March 1, prior to the fall quarter of your entrance. Applications received after March 1 are considered as long as funds remain available. We suggest you file your FAF as soon after January 1 as possible.

Standard of Satisfactory Progress for the Purpose of Determining Eligibility for New York State Student Aid

Baccalaureate Degree - Quarter System

Before being certified for this payment	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th
a student must have accrued at least this many credits	0	3	9	20	32	44	56	68	80	92	104	116	132	148	164
with at least this grade point average	0	.50	.75	1.00	1.20	1.30	1.40	1.50	1.60	1.65	1.70	1.75	1.80	1.85	1.90

'Only students in the HEOP program at RIT are eligible for more than 12 quarters of undergraduate awards.

Standard of Satisfactory Progress for the Purpose of Determining Eligibility for New York State Student Aid

Associate Degree - Quarter System

Before being certified for this payment	1st	2nd	3rd	4th	5th	6th	7th	8th	9th
a student must have accrued at least this many credits	0	3	9	20	32	44	56	68	80
with at least this grade point average	0	.50	.75	1.00	1.20	1.30	1.40	1.60	1.80

Undergraduate Financial Aid at a Glance

Scholarship/Grant

Eligibility		Amounts	Where to apply
Regents College Scholarship (New York State)	New York State residents who plan to attend college full-time and qualify through an examination in the senior year of high school.	\$250 per year	N.Y.S. Higher Education Services Corp., 99 Washington Ave., Albany, N.Y. 12255
Regents Award for Children of Deceased Police Officers. Firefighters, Corrections Officers	Residents of New York State who are children of certain deceased policemen, firefighters, corrections officers.	\$450 per year	N.Y.S. Higher Education Services Corp., 99 Washington Ave., Albany, N.Y. 12255
Tuition Assistance Program (New York State)	New York State residents who show ability to pursue full-time programs and meet state income requirements	$\$ 350$ to $\$ 3,650$ per year for first time recipients 1989-90.	N.Y.S. Higher Education Services Corp., 99 Washington Ave., Albany, N.Y. 12255
Regents Awards for Children of Deceased and Disabled Veterans (New York State)	New York State residents who are children of certain deceased and disabled veterans, and are enrolled full-time	\$450 per year	N.Y.S. Higher Education Services Corp., 99 Washington Ave., Albany, N.Y., 12255
Pell Grant (Federal)	Undergraduate students who are pursuing their first bachelor's degree, in financial need, attending post secondary institutions on at least a half-time basis	\$195 to \$2,300 per year	File Financial Aid Form (FAF) requesting submission to Pell Grant or file separate Pell Grant application.
Supplemental Educational Opportunity Grants (Federal)'	Students of academic promise who are accepted for college study, are in exceptional financial need, and are pursuing their first bachelor's degree	$\$ 100$ to $\$ 4,000$ per year for full-time students	Through RIT by use of the Financial Aid Form. File FAF between Jan. 1 and Mar. 1 each year."
War Orphans Educational Assistance (Federal)	Children of certain deceased or disabled veterans.	Up to \$220 per month	Veterans Administration
ROTC	Students enrolling in ROTC and who are academically qualified	Tuition, fees, books, and monthly stipend	RIT Department of Military Science
Veterans Benefits	Veterans	Amounts per month vary upon full-time/part-time status and number of dependents	RIT Veteran Affairs Office
RIT Scholarships and Grants	Financial need and satisfactory academic progress	Amounts vary	File Financial Aid Form between Jan. 1 and Mar. 1 of each year."
Higher Education Opportunity Program (HEOP)	Economically and academically disadvantaged residents of New York State	Amounts vary	Director of HEOP at RIT
SSI/SSD (Federal)	Determined by student's income, resources, and degree of disability	Amounts vary	Social Security Administration
NTID Grant-In-Aid	College students who meet federally established need requirements due to insufficient support from outside sources	Minimum award is \$ 100 ; maximum award varies.	File the Financial Aid Form (FAF)
Private Scholarships	Varies	Amounts vary	High school guidance offices and public libraries department
Other State Grants	Eligibility varies	Amounts vary	Consult your state's education department
Loans			
Guaranteed Student Loan (GSL)	Must be at least a half-time matriculated student	Undergraduates - up to \$2,625 for freshmen and sophomores and $\$ 4,000$ for upperclassmen. Cumulative maximum of $\$ 17,250$.	Through RIT by use of the Financial Aid Form
Supplemental Loans for Students (SLS)	All students except dependent undergraduates. Must be enrolled at least half-time and matriculated.	\$4,000 per year maximum	Local Lenders (it is recommended that the student apply for Guaranteed Student Loan first.)
Parent Loan for Undergraduate Students (PLUS)	Parent with a dependent who is full-time student	\$4,000 per year for each dependent who is a full-time student	Local Lenders
Perkins Loans (formerly) National Direct Student Loans (NDSL)	College students who meet financial need requirements established by Federal government	Upt to $\$ 4,500$ for first two years of undergraduate study. Maximum of $\$ 9,000$ for four and five years of undergrad. study	Through RIT by use of the Financial Aid Form. File FAF Jan. 1 and Mar. 1 each year."
RIT Supplemental Education Loan Program (SELP-II)	Full-time, undergraduate, matriculated RIT students. Eligibility to borrow may be affected by receipt of funds from other aid programs. Credit evaluation is necessary. Parents may also apply.	Minimum of $\$ 1,000$ per year up to a maximum of $\$ 5,000$ per year	RIT Financial Aid Office
ConSem	Undergraduate and graduate students attending RIT at least half-time. Parents may also apply.	Minimum $\$ 1,500$; maximum is the amount equal to total cost minus aid.	Financial Aid Office
Employment			
College Work-Study Program (Federal)	College students in full- and part-time degree programs who meet financial need requirements established by Federal government.	Varies, depending on hours and wage rate. Wages range from \$3.75 to \$4.35	Through RIT by use of the Financial Aid Form. File FAF between Jan. 1 and Mar. 1 each year."
Other on-campus part-time work	Considerable variation in kinds of positions, hours, and wages	SameasforCWSP	Consult other RIT publications and RIT Student Employment Office.

NOTE: For first priority consideration, the FAF must be received in Princeton, New Jersey, by March 1 each year. To assure timely receipt, it is recommended that the document be mailed by February 20 each year.

Academic Policies

 and Student Standards
Registration and Student Records

Office of the Registrar

The Office of the Registrar operates the systems in which courses are scheduled, students register and student academic records are maintained.

The scheduling process

The development of the quarterly course and exam schedule is coordinated by the Registrar's Office in conjunction with the academic departments. The goal is to produce schedules that provide:
(1) effective utilization of resources (e.g., classrooms, instructors, time)
(2) equitable accessibility to courses and
(3) ample opportunity for normal progress toward degrees.
In short, course and examination schedules are directed at fulfilling curricular requirements while accommodating student interests.

Registration

To be officially registered at RIT, a student must be academically eligible, properly scheduled for courses, and have made the required financial commitment. All students are encouraged to seek academic advising before selecting courses.
There are several opportunities to register each quarter and the earlier a student registers the better chance he or she has of obtaining the classes desired. Early Registration begins approximately 10 weeks before the quarter begins and lasts for several weeks. During this period, students may register via the Telephone Registration System or by mailing or bringing their course requests to the Office of the Registrar. Some restrictions apply. Students who fail to make their financial commitments by the "Tuition Due Date" risk being dropped from their courses. Consult the quarterly Schedule of Courses for specific dates and procedures.

Open registration

Open registration occurs just prior to the start of the quarter and is the last opportunity to finalize course schedules and/or make financial commitments before the academic term begins. Matriculated students who elect to register for their courses and/or elect to make financial commitment after this date will be assessed a $\$ 50$ late fee.

Drop/Add period

Students may initiate changes to their course schedules by dropping and/or adding courses during the first six days of the quarter (Saturdays, Sundays, and holidays excluded). All changes must be approved by the academic unit offering the course and must be recorded with the Office of the Registrar.

Non-matriculated student registration

Many of the courses offered by RIT are available to students who have not been admitted into a particular academic program. While non-matriculated students are eligible to participate in any of the registration periods above, some courses may be reserved for matriculated students during the earlier registration periods. These students are strongly encouraged to seek the advice of the colleges offering the desired courses before registration is attempted. Non-matriculated students are not assessed a late fee, but are expected to be properly registered by the end of the Drop/Add period.

Auditing a course

Courses that are taken on an audit basis will not count towards a student's residency requirements; may not be used to repeat a previously taken course; and do not satisfy degree requirements. A grade of " Z " will be assigned and the student need not take exams. Permission to audit a course must accompany the registration and any changes between credit and audit must be accomplished by the end of the Drop/Add period.

Course withdrawal
With the permission of the instructor, a student may withdraw from a course at any time from the end of the Drop/Add period until the end of the eighth week of the quarter. A grade of " W " will be recorded on the official record. Tuition refund policies are described on pages 178-179.

Student records

Confidentiality of records: In accordance with the Family Education Rights and Privacy Act of 1974 (commonly known as the Buckley Amendment), RIT students have the right to inspect, review, and challenge the accuracy of official educational records.
RIT policy ensures that only proper use is made of such records. Therefore, with the exception of copies made for internal use (e.g., those provided to departments for advising functions), in most cases, no copy of a student's permanent record (transcript) or nonpublic information from student records will be released to anyone without the student's written consent. If an employer, for example, requests a transcript, he or she will have to obtain a written request from the student. For more detailed information concerning the act, see the Facts booklet.
At the time of registration, but not later than 14 days after the beginning of a term, students may request the Office of the Registrar, in writing, not to release directory information per taining to them. "Directory information" includes the following: a student's name, date and place of birth, major field of study, participation records in official RIT activities and sports, weight and height if a member of an athletic team, dates of attendance at RIT, degrees and awards received.

Transcripts: A transcript of a student's official academic record is maintained in the Office of the Registrar. It contains a detailed statement of the scholastic record.

All requests for transcripts must be in written form. Each transcript request should include full name or names used, social security number, and dates of attendance to assure proper identification of the record requested. There is a charge for each copy. Transcripts can usually be obtained by a student within 48 hours after the request is submitted. During exam week and the week following exams, it may take longer to prepare a complete transcript.

No partial transcript will be issued. No transcript will be issued to a student who is indebted to the Institute.
Transcripts issued directly to stu-
dents are stamped "This official transcript issued directly to the student."
Transcripts from colleges other than RIT that have been received in support of admission application and/or transfer credit evaluation, will not be re-issued by the RIT Office of the Registrar.

Grade reports: Grade reports are prepared after the completion of each quarter. For Fall and Winter quarters, day college undergraduate students will receive their grade reports through their department mail folders. Grade reports for other students and other academic terms will be mailed directly to the students' permanent address.

Change of name, address or social security number: It is the obligation of every student to notify the Office of the Registrar of any changes in name, address, or social security number. Failure to do so can cause serious delay in handling student records.

Student retention

Based on a summary of the most recent cohort survival statistics, RIT's student retention rate is 51.4 percent for students entering at the first-year level and graduating four to five years later (the period between entry and graduation depending upon a student's particular program of study).

Excluding part-time and non-degree students in the College of Continuing Education and NTID, 79 percent of first-year, full-time day students register for their second year; and 86 percent of third-year students continue through graduation (fourth or fifth year depending upon the program).

RIT is currently developing a comprehensive study of the progress of students, which would include factors to predict retention for all student populations such as those on cooperative
education work blocks and the large number of part-time and non-degree students.

The statistics reported herein have been computed in a manner consistent with data reported to the State Education Department through the Institute's Office of Institutional Research.

Academic Standards and Regulations

RIT stresses programs that lead to a high level of technical and professional competence. Programs of study are offered leading to degrees at the associate, bachelor's, master's, and doctoral levels. Certificate, diploma and associate degree programs are offered by the College of Continuing Education (see page 52) and the National Technical Institute for the Deaf (see page 148).

Graduate degree programs

Programs leading to graduate degrees are fully described in the separate Graduate Bulletin, available from the Admissions office.

Grading system

Grades representing students' progress in each of the courses for which they are registered are given on a grade report form at the end of each quarter of attendance. The letter grades are as follows:

A	Excellent
B	Good
C	Satisfactory
D	Minimum passing
E	Conditional Failure
F	Failure
I	Incomplete
R	Registered
S	Satisfactory
W	Withdrawn
X	Credit by Examination
Z	Audit

An incomplete or temporary grade of "I" is given when a professor observes that a student is unable to fulfill the requirements of a course. The professor is required to inform the student of an extended due date for completion of the course requirements, which is not to exceed two quarters. If the registrar does not receive a "change of grade" form from the professor by the end of the second quarter due date, the incomplete grade changes to a failing grade, and the student is charged full tuition.

A grade of " W" will be assigned in courses from which a student withdraws after the second week of classes or if a student withdraws from all courses in a given quarter. A student can change from credit to audit or from audit to credit status for a course only during the first six days of classes.

An " X " grade indicates successful completion of an external or Institute examination, provided such examination covers or parallels the objectives and content of the indicated course. Credit must be assigned in advance of any credit received through registration for the indicated course.

For exact policy and procedural statements on the above see the Educational Policy and Procedures Manual available in the Student Affairs Office or on reserve in the Wallace Memorial Library.

Grade point average

Each course has credit hour value based upon the number of hours per week in class, laboratory or studio, and the amount of outside work expected of the student.

Each letter grade yields quality points per hour as follows:

$$
\begin{aligned}
& \text { A-4 quality points } \\
& \mathrm{B}-3 \text { quality points } \\
& \mathrm{C}-2 \text { quality points } \\
& \mathrm{D}-1 \text { quality point }
\end{aligned}
$$

E and F count as 0 in computing grade point average (GPA). R, W, Z, S, X and I grades are not used in computing GPA.

The grade point average is computed by the following formula:
Qp^ Total quality points earned Total quality hours

Dean's list

By action of the college concerned, matriculated undergraduate students will be placed on the Dean's List if their program quarterly GPA is at least equal to a 3.40 ; they do not have any grades of "Incomplete," "F," "E," or "D" (including physical education, orientation classes and any other noncredit, but required, courses); they have registered for, and completed, at least 12 credit hours per quarter; they are not on probation due to a low cumulative GPA in their principal field of study.

Exception: Matriculated undergraduate students who are primarily parttime students may qualify for the Spring Quarter Dean's List if in the
preceding three quarters they have taken 18 hours of credit with a program yearly cumulative GPA of at least 3.40, or in the preceding three quarters plus summer quarter, summer evening or day session have completed 24 credit hours with at least a 3.40 program yearly cumulative GPA. In both cases this must be accomplished without grades of "Incomplete," "F," "E," or "D," and without being placed on probation due to a low cumulative GPA in the principal field of study.

Academic probation and suspension policy
Matriculated undergraduate full-time and part-time students will be placed on probation or suspended from the Institute according to the criteria enumerated herein. All actions are taken at the end of the quarter. However, a student may petition the dean of the college for reconsideration of probation or suspension should the removal of an incomplete grade (I) raise the appropriate grade point average above those stated below. Each matriculated student will generate three different grade point averages. The Institute average reflects all course work completed at RIT. The Program average reflects course work completed at RIT applicable to graduation in a student's current academic program. The current academic program refers to the Institute and college degree course requirements specified by the degree granting college and noted in the Institute catalog. The third average, in the Principal Field of Study, reflects course work completed in a student's specialized field of study.

1. Any student whose program Quarterly Grade Point Average falls below 2.0* or whose Cumulative Grade Point Average in the principal field of study** (based upon at least 20 credit hours attempted in the principal field at RIT) falls below 2.0 will be placed on probation.
2. Any student who has been placed on probation according to (1) above is removedfrom probation for achievement of both a 2.0 Program Quarterly Grade Point Average and a 2.0 Cumulative Grade Point Average in the Principal Field of study, based upon at least 20 credit hours attempted in the principal field at RIT.
3. Any student who is on probation according to (1) and who is not removed from probation in the two succeeding periods of study in which credit is earned, will be suspended from RIT for a period of not less than one quarter.
4. Any student who has been placed on probation after having been removed from probation and whose Program Cumulative Grade Point

Average is below 2.0 will be suspended. Any student who has been placed on probation after having been removed from probation and whose program Cumulative Grade Point Average is 2.0 or above will be granted one quarter to be removed from probation or he or she will be suspended from RIT.
5. Any student whose Program Quarterly Grade Point Average falls below 1.0 will be suspended from RIT.
6. Any student who has been readmitted to his or her original program, after being suspended, and then goes on probation will be suspended from RIT.
7. A suspended student may not enroll in any academic course at the Institute while on suspension. When there is evidence that the student's scholastic problems are the result of inappropriate program choice, or other extenuating circumstances, the suspension may be waived or the student may be admitted to another program or allowed to take courses on a nonmatriculated basis if it is approved by the dean of the college in which the enrollment is requested.

In evaluating the request for waiver of suspension, the dean may seek the recommendation of the Counseling Center as to the appropriateness of the program for the career goals of the student under consideration.
8. A student may apply to the Office of Admissions for re-admission at the end of his suspension. His re-admission must be approved by the dean of the college he wishes to attend upon his return (this may be his original college or another).

Disciplinary probation

Students are expected to conduct themselves at all times in such a way as to reflect credit on themselves and the Institute. Any student guilty of flagrant violation of good conduct may be warned, placed on probation or, in serious cases, dismissed from the Institute.

A student dismissed from RIT may not enroll in any courses. Disciplinary suspensions are imposed and may be waived only by the assistant vice president for Student Affairs (Judicial Affairs).
*"C" Average

* * The principal field of study is generally defined to be all eolirxes within the eollege offering the academic program. The packaging science and printing systems programs, and programs offered through the College of Continuing Education and NTID do not hair principal field of study statistics calculated.

Class attendance and other rules Students are expected to fulfill the attendance requirements of their individual classes. Rules and regulations relating to conduct in residence halls and use of general campus facilities are issued directly by the appropriate offices of the Institute and published in the student handbook.

It is the responsibility of all students to attend their scheduled classes regularly and punctually in order to promote their progress and to maintain conditions conducive to effective learning.

Absences for whatever reason do not relieve students of responsibility for fulfilling normal requirements in any course. In particular it is the student's responsibility to make individual arrangements in advance of missing class due to personal obligations such as religious holidays, job interviews, athletic contests, etc., in order that they may meet their obligations without penalty for missing class.

Attendance at class meetings on Saturdays, or at times other than the regularly scheduled meetings, may be required. The Institute reserves the right to alter any of its courses at any time.

What You'll Need for Graduation

The following general requirements apply to students who are candidates for an undergraduate degree:

Certificates and diplomas

1. Satisfactorily meet the program requirements of the college.
2. Full payment of all financial obligations.

Associate and baccalaureate degrees

1. Successfully complete all required courses of the Institute and college including cooperative employment where applicable.
2. Full payment of all financial obligations.
3. A minimum of 45 quarter credit hours must be successfully completed in residence at the Institute in the college granting the degree (inclusive of service courses). If the student has successfully completed 45 credit hours in residence he or she may petition the dean to study 15 quarter credit hours in absentia in the final year of the degree; a minimum 30 of the 45 quarter hours are to be completed in residence.
4. A program grade point average of at least 2.0 .
5. Minimum number of quarter credit hours as required by that college, but in no case shall this be less than 90 quarter credit hours for the associate degree and 180 quarter credit hours for the baccalaureate degree.
6. Physical education requirements as published in the Official Bulletin.
7. Demonstrate competence in writing skills as established in the Institute's writing policies.

Writing policy

RIT's writing policy is meant to insure that each graduate develops sufficient skill in the use of the English language to function as an educated member of society and to meet any special demands for written communications likely to be expected in his or her intended career.

Students must demonstrate that they have the writing skills needed for successful entry into their chosen careers. At least three academic quarters before the student's anticipated completion of baccalaureate degree requirements, the department faculty will determine whether the student has met departmental writing standards. A full description of these standards and certification procedures are available from each department. Students whose writing does not meet standards will have to take remedial measures recommended by the department.

Students must meet the departmental writing standards before they can graduate. The nature and standards of departmental writing requirements will be consistent with Institute policy and will be reviewed by the Institute Writing Committee.

For the master's degree
See separate Graduate Bulletin, available from the Admissions office.

Certification for degree

Upon completion of the stipulated requirements, a student's academic department certifies him or her for a degree. After graduation, a statement verifying that a degree has been awarded will be posted to the academic transcript. Diplomas will be mailed to the graduate's permanent home address approximately six-to-eight weeks following the end of the quarter in which he or she was certified.

Commencement

RIT confers degrees and other academic awards at the end of each quarter. Formal commencement ceremonies are held at the end of the Spring Quarter. Graduates who have received their degrees at the end of the Fall or Winter
quarter are invited to attend the Spring Commencement ceremonies. Students who will be completing their requirements at the end of the Spring or Summer quarter are expected to attend Commencement.

Institute Standards For Student Conduct

RIT's educational mission

It is the mission of RIT "to prepare men and women for living and working in a democratic and technological society" by offering curricula that "meet the need for technological and other specialized knowledge and skills within the broader framework of humanistic values. ${ }^{11}$ To achieve its mission, the Institute establishes guidelines that provide for the orderly conduct of its instructional and campus life activities. As an educational community, it strives for a campus environment that is free from coercive, exploitive behavior by its members. Moreover, it sets high standards that challenge students to develop values that will enhance their lives professionally and will enable them to contribute constructively to society.

Historically, RIT has aspired to the goal of teaching students for the "making of a living and the living of a life, not as two distinct processes, but as one. ${ }^{2}$ This goal includes the emotional, physical, spiritual and social development of students. Because the Institute prepares its students for leadership in their careers and in community life, it has set standards of personal development and academic excellence that go well beyond the standards of the larger society. Moreover, the faculty and staff are expected to set examples for students in the pursuit of their personal and academic development. Although RIT acknowledges and respects the diversity of values and lifestyles of its faculty, staff and students, each member of the RIT community has the responsibility of observing the standards of campus life that are important to the pursuit of the Institute's mission.

[^15]Principles underlying Institute conduct policies

1. Students are expected to assume responsibility for their own conduct and also to have concern for the behavior of others. Such responsibility includes efforts to encourage positive behavior and to prevent or correct conduct by others that is detrimental.
2. The Institute places high priority on self-regulation by its members and intends that campus life will provide opportunities for students to exercise individual responsibility.
3. The Institute acknowledges the diversity of backgrounds, lifestyles and personal moral values of those who comprise the Institute community, and respects the right of individuals to hold values that differ from those expressed by the Institute. However, in their activities and duties as students, they are expected to observe Institute policies and standards.
4. Moreover, the Institute has legitimate concern for personal behavior beyond the impact the behavior has on the rights and freedoms of others. When an individual's pattern of behavior is self-destructive, interferes with the achievements of one's educational objectives, or adversely affects the quality of life on campus, the Institute may intervene to correct or prevent such behavior.
5. The Institute values and safeguards the personal privacy of its members. Rooms in campus housing will not be entered by Institute personnel without either the permission of the residents or the authorization of the vice president for Student Affairs unless a legal search warrant has been obtained. Exceptions are made in emergency situations such as imminent harm to individuals or serious damage to the Institute property and for reasons of health and safety. The Institute adheres to the provisions of the Buckley Amendment regarding the privacy of student records.
6. The conduct of students at events held off-campus which are sponsored by RIT organizations must adhere to the same standards and policies as events held on campus, and infractions are subject to Institute action.
7. For students living in campus housing, campus life standards have special significance. The residence hall environment is highly interpersonal, and the behavior of every individual in some way usually influences the quality of residence life for others. Therefore, standards and policies for residence life are stated explicitly and are communicated to students through residence halls publications.

Summary of conduct policies In keeping with the prior principles listed, the following broad areas of conduct for students are enunciated. Although they are not all-inclusive, they indicate in general terms the standards of student concern that are important to the desired quality of campus life and to the educational mission of RIT. More explicit conduct policies are contained within the residence halls' "Terms of Occupancy" and other official Institute documents.

Human rights and dignity The Institute expects all students to practice high regard for the human dignity of other people. It seeks to prevent all types of discrimination on the basis of race, sex, religion, age, handicap and national origin. Attempts are made to resolve conflicts between individuals and groups with differing backgrounds and views through discussion and clarification of values and attitudes. However, repeated disregard for the rights and dignity of others will result in disciplinary action in accordance with Institute policies and procedures.

Personal conduct
Through its policies, the Institute requires conduct that contributes positively to the personal welfare of students, enhances the quality of the campus living environment and respects the rights of others. Conduct that infringes upon the rights of others or endangers any individual will not be permitted. The sanctions associated with student misconduct are outlined in Institute policies, and actions are taken in accordance with the RIT Judicial Process. The following statements on sexual behavior, alcohol and drug use, appropriate study environments, safety, and student regard for property are a further expansion of the Institute's position on the personal conduct of students.

Policy on racial harassment Racial harassment is antithetical to the multicultural educational community RIT wishes to maintain. The Institute will not tolerate racial harassment in any form and will investigate all complaints of harassment that are brought to the attention of the administration.

Racial harassment is regarded as a serious conduct matter, and the Institute judicial system will fully enforce the Institute's policy prohibiting harassment. Judicial action against students found guilty of harassment may include suspension from the Institute. Similarly, any RIT employee found guilty of racial harassment VYill be subject to disciplinary action that may include termination of employment.

Sexual behavior and harassment The Institute acknowledges that an individual student's sexual attitudes and values are a matter of personal choice. However, responsible sexual behaviors, no less than in other areas of human interaction, must take into account the dignity, privacy and rights of others. Sexual harassment is not tolerated. Moreover, no individual should be subjected to exploitive actions. Unacceptable behaviors and living arrangements are further defined within the "Terms of Occupancy" for the various Institute housing units.

Alcohol and drug use Individual students will be held responsible for their behavior even though their judgment may be impaired because of the use of alcohol or other drugs. Registration procedures for all RIT events set forth the responsibilities and procedures to be followed by the sponsoring group at an activity where alcohol is served. No student should feel pressured to consume alcohol or other drugs.

Institute policies on drug and alcohol use conform to the laws of the State of New York. The Institute is not a haven from the law, and both New York State law and Institute policy will be enforced. Those students who evidence problems with alcohol or drugs will be offered, and, if necessary, required to avail themselves of counseling or other appropriate treatment. Even though individual students may be receiving such assistance, they will be held accountable for their behaviors through established Institute judicial procedures.

Study environment
Students need a campus environment that is conducive to studying. This is especially important in those facilities that are designated primarily for study. In the residence halls, each separate living unit must establish in writing the policies it will maintain to provide adequate study conditions according to the basic standards established by the Institute.

Religious holidays
In regard to attending classes during religious holidays, the Institute calendar cannot accommodate fairly the wide variety of religious holidays observed by RIT students. Institute policy states that it is the responsibility of students to attend scheduled classes. Faculty members are requested to make every effort to accommodate the religious convictions of students.

If a student wishes not to attend classes in observance of a religious holiday, it is the responsibility of that student to confer with his or her instructors in order to meet class attendance expectations.

Safety

Safety is of critical importance at all places on the campus, but it is particularly important in the residence halls because the carelessness of one individual can threaten the lives of hundreds of others. Willful violations of safety, such as causing false fire alarms, will result in immediate action according to judicial procedures. Safety inspections of individual rooms and group living areas will be conducted periodically by authorized Institute personnel.

Student regard for property Students are expected to exercise appropriate care of Institute property and regard for the property of others. A student-developed property damage policy in the residence halls holds accountable those students responsible for damage.

Academic Services

Career and Academic Advising

Career and academic advising helps students plan and carry out a sound program of study at RIT. Because of its importance, several specialized sources for this planning are available.

Advising systems will vary within academic majors depending on the unique needs of each program. Advising is available to all students whether from an assigned advisor or a centralized office within the college. Whatever the system, students will be assisted in developing their curriculum plans, determining the requirements for graduation, and interpreting academic needs. It is the student's responsibility, however, to seek out advising and take an active role in the maintenance of academic records. When a specific advisor is assigned to a student, he or she is a specialist in his or her career field.

When students wish to re-examine their choice of academic major, or have questions about the appropriateness of a transfer to a new major, the Counseling Center is available for clarifying educational and vocational plans.

The Office for Cooperative Education and Placement is another resource of the Institute, particularly in fulfilling cooperative education requirements in a student's major field and securing initial employment at the end of his or her program at RIT.

The support services at RIT are directed to meet career and academic needs. For assistance in finding the appropriate office, call the coordinator of academic advising at 475-6682.

Support Services For Deaf Students

In addition to having access to all other RIT advising services, deaf students are provided a personal/career counselor trained in theory and techniques, career development, communication, and deafness. Career development counselors assist students with problems such as getting along better with others, adjusting to college life, gaining self-confidence, and choosing a program of study. Counselors also help students plan their educational programs and are available to talk with
students about personal and social problems. Counselors utilize a variety of strategies in working with students, including individual counseling sessions, career planning seminars, special groups, assessment, and consultation with faculty members and various resource people.
Each RIT college has an affiliated NTID support services department that has resource faculty who provide educational support services to deaf students in the college. Services may include:

- workshops, seminars, and courses on study skills, cooperative work experiences and employment preparation, communication, and college issues
- career and personal counseling
- maintaining liaison with faculty members of other RIT colleges
- preparing deaf students for matriculation at other RIT colleges
- interpreting, notetaking, tutoring, and other support services
- teaching courses using simultaneous communication and other instructional techniques that maximize students' learning
- working with employment specialists and employers to provide career advisement to students seeking employment
- helping deaf students assess their communication needs in the classroom, e.g., using an FM auditory unit, speech skills for class participation, or interpreters to voice ideas.

Cooperative Education and Placement

RIT's particular philosophy is called career education-and the Office for Cooperative Education and Placement supports the Institute's commitment to preparing students for "the making of a living and the living of a life." RIT made a commitment to career education as early as the 1880s and began the Cooperative Education Program in 1912.

Since 1912, RIT has developed one of the world's strongest co-op programs. It is the fourth oldest and fifth largest cooperative education program in the world today. Last year alone over 1,300 employing companies across the U.S. participated in the program, hiring students to gain career experiences as a part of their RIT curriculum.

Those 1,300 employers join the Institute and the student in a three-way partnership that leads to career awareness and experience that can't be matched. Co-op gives the student and the employer an opportunity to look each other over; it gives the student an opportunity to try out personal and professional abilities in a different environment. Many students relocate in order to take advantage of the best coop opportunities.

The Office for Cooperative Education and Placement provides counselors for each student from the beginning of the co-op program right through career entry upon graduation. The office takes pride in being ready to give students an edge over the competition when they graduate. Individual career counseling and job search seminars are provided as well as resource materials for career and job research, job listings from co-op and career employers, reference and credential service, and an excellent oncampus interview program. The Cooperative Education and Placement staff spends considerable time developing opportunities with employers nationwide for students in co-op programs and for graduates. Services remain available to alumni for a lifetime.

A center for information about the employment of RIT students, the office communicates with business, industry and government to keep an eye on the needs of students and employers. Information is synthesized and made available through many formats to students and their academic advisors as well as Institute planners. The linkages among the students, alumni and employers enhance RIT's ability to provide a quality education firmly rooted in the dedication to preparation for career success.

Wallace Memorial Library

Information comes in many forms other than printed pages bound between two covers. When a student wants to research a topic at RIT's Wallace Memorial Library, he or she will not only find a variety of print and nonprint forms such as books, compact disks, microfilm, microfiche and magazines in which to locate information, but also a unique on-line computer catalog. Individual terminals allow for
access of authors, title and subjects of over 250,000 records. Access is also available remotely from office, home, or lab.

In addition the library offers computerized searching of information from commercial data bases specializing in a broad spectrum of subject areas, as well as an electronic reference service available by calling 610WMLREF on the VAX mail network. Inter-library Loan assists in providing access to virtually all publicly available material.

To help in the use of all these resources, reference librarians are on duty during the week and on weekends. Located throughout the three floors are more than 700 study stations including individual carrels and group study rooms.

During the year student work in art and photography is exhibited in display gallery areas. Outstanding student work is also permanently displayed within the building as a result of Purchase Prizes awarded annually. Several lounge areas are located throughout the facility.

The library contains a special collection of materials on deafness to serve NTID and to support research in deafness.

A special Collections area houses the archives, rare books, faculty writings and RIT theses. A separate Chemistry Library in the Chester R. Carlson Memorial Building houses selected science material.

For library hours, call 475-2046 (voice); for Reference Desk, call 475-2564 (voice) and 475-2563 (TDD); for Circulation Desk, call 475-2562 (voice) and 475-2962 (TDD).

Information Systems and Computing

Information Systems and Computing (ISC) provides computing services on VAX/VMS and VAX/ULTRIX (UNIX) systems and various microcomputers to students regardless of their majors. Students in selected courses can use an IBM VM/CMS system. These services are provided at no cost to students. Many RIT colleges also have computing facilities available to students in their programs.

Students use computers for course assignments, developing computer literacy, writing reports, analyzing statistics, manipulating numbers and data using electronic spreadsheet software, producing graphs, and performing many other functions. Students also
can send electronic messages to professors and other students at RIT, and throughout the world via the Internet and BITNET networks.

A VAX/VMS computer account is available to each registered student whether or not specific computer use is required in the student's program. The account remains active as long as the student is registered and in good standing. ISC publishes the Computer Use Code of Conduct which provides guidelines on the use of computers at RIT.

Computer accounts and the files stored in those accounts are the property of RIT. ISC and departments that student accounts are associated with have the right to review and delete accounts and files. Normally, accounts are deleted only if the student leaves RIT. ISC will take action against people who abuse the privilege of using RIT's computers.

The Ross Microcomputer Lab and the VAX/VMS systems are used to support the Institute computer literacy program, which is available to many students. The Booth Microcomputer Lab with Apple Macintoshes, and Image Writer and LaserWriter printers, is available to students in the College of Liberal Arts Freshman Writing Program and the College of Fine and Applied Arts foundation courses. Other students may use the Booth Lab if it is not scheduled for those programs.

Central computer systems can be accessed via telephone or terminals in the User Computing Centers (UCC) located in the James E. Gleason Memorial Building (9), Max Lowenthal Memorial Building (12), Microelectronics/Computer Engineering Building (17), Lewis P. Ross Memorial Building (10), and Grace Watson Hall (25).
UCC and Microcomputer Lab employees assist students using the computer systems. Professional software specialists in the Academic Computing and User Services department also are available for consultation or presentation of free seminars. Documentation is available in the UCCs and labs, and can be purchased from ISC Academic Computing and User Services or Campus Connections' Textbook department. The monthly ISC Newsletter, and on-line HELP and NEWS also provide information on using ISC systems.

Questions and comments regarding ISC services and policies can be made to Academic Computing and User Services staff in the Lewis P. Ross Memorial Building (10), room A291, or by calling (716) 475-6929. VAX/VMS
computer accounts can be obtained from that office. Questions regarding use of computing facilities provided by RIT colleges should be made to the specific college.

Instructional Media Services

Instructional Media Services provides television and audiovisual support services to faculty, students, and staff. These services include a campus-wide cable television network, satellite teleconferencing, and delivering media to classrooms. IMS also provides a Media Resource Center, which houses the RIT media collections and an extensive art slide library. Many faculty members place materials on reserve in the MRC for students to study, such as videotapes, films, and audiotapes.

IMS staff members assist faculty and students in finding and preparing media for classroom presentations, club meetings, or personal use. The color laser copier is a popular tool used by many photographers and artists at RIT. Others find the photo and graphic design services of IMS helpful in preparing for presentations and lectures. Audiovisual and television equipment such as slide projectors, videoplayers, overhead projectors, telephone conferencing equipment is available for instruction and other campus events from IMS.

RIT instruction extends beyond the campus classrooms. Courses are delivered to distant sites by a variety of techniques, including offerings on local cable and broadcast television, videotapes, computer and audio conferencing, and use of an interactive electronic writing system called a telewriter. Workshops and lectures that originate at RIT are delivered by satellite to audiences throughout the United States, Mexico, and Canada. IMS supports these efforts with equipment and production of materials.

IMS offices and the Media Resource Center are located on the lower level of Wallace Memorial Library. More than 60 students work in IMS, assisting with video production, photography, graphic design, and office routine. Individuals are invited to drop in and explore these resources. The offices are open from 7:30 a.m. to 9:30 p.m., Monday through Thursday; 7:30 a.m. to 5 p.m., Friday and Saturday.

Learning Development Center

The Learning Development Center, an academic support unit at RIT, offers students, faculty, staff, and the community a variety of services. The College Skills Program offers courses in reading, writing, math, and study skills as well as a math and writing lab open on a drop-in basis. The English Language Center offers full and part-time English language study for international students with courses in pronunciation, conversation, reading, writing, grammar, and vocabulary. The College Restoration Program assists students who are on probation or suspension while The College Anticipation Program is for students who need additional preparation before matriculating into a college program. The Learning Assessment Program offers individual assessment for RIT students who are experiencing academic difficulties. For more information about these programs, see the program descriptions beginning on this page.

In addition to these programs, NTID has communication, general education, mathematics, and physics learning centers that provide specialized academic support for deaf students.

Communication learning centers include the Self-Instruction Lab, where students can practice skills they have learned in listening, speaking, and sign/ simultaneous communication; Telecommunications Lab, where students can practice their telephone skills; English Learning Center (ELC), which has reading and writing labs that allow students to practice their skills independently. The ELC includes the Compu-ter-Assisted Language Learning Lab, which helps students improve reading and writing skills using interactive computer software.

The General Education Learning Center (GELC) supports deaf students in their general education and liberal arts core courses. Skilled peer tutors, working closely with faculty members, provide students with feedback related to their reading and writing assignments. Reference books and computers also are available for assistance with assignments. The GELC sponsors evening enrichment programs in language arts, study skills, and social and political awareness.

The Mathematics Learning Center provides tutoring assistance to students enrolled in mathematics classes.

The Physics Learning Center (PLC) offers a variety of physics courses in a classroom setting. A laboratory experience is a part of each course. Tutors supplement classroom and laboratory experiences. Students enrolled in applied science, engineering, and other NTID technical programs as well as deaf students studying in one of RIT's other colleges use PLC services. PLC courses assist students who plan to enroll in courses offered through the colleges of Science and Engineering.

College Skills Program

The College Skills Program is the LDC unit devoted to providing academic assistance for students enrolled at RIT. It offers workshops, classes, and labs for instruction in reading, writing, mathematics, and study skills.

The College Skills Program has services for all levels of students, from freshmen to graduates. In addition to basic skill development, it offers courses that teach students how to improve study techniques and how to assess and make the most of their individual learning abilities.

Reading and Writing Department: Courses offered include Efficient Reading, Analytical Reading and Writing, Speed Reading, Writing Skills, Vocabulary, and Persuasive Presentations. The Writing Lab provides individualized instruction to improve students' abilities to complete college writing assignments. Individual or small group instruction in reading is available by appointment.

Mathematics Department: An individualized math course using diagnostic testing and carefully prepared review material is offered. The Math Lab offers free tutoring in most math courses as well as "math-related" areas such as biology, chemistry, physics, computer science, statistics, and accounting. A workshop, "How to Study Math," is also offered. Review courses for the GRE and GMAT exams are offered in both the math and verbal areas.

Study Skills Department: The focus of this department is on the development of good study skills to promote academic success. Diagnostic evaluation, individual instruction and mentoring and "tailor-made" courses for various RIT groups are available. A series of mini-workshops, the "Lunch ' n ' Learning Series," is offered each quarter. Topics covered include time management, listening \& notetaking, text reading, test taking \& preparation, test anxiety reduction, and memory improvement.

College Skills Program services are free to RIT students with the exception of the GRE and GMAT Review Courses. For more information concerning these services, contact the Learning Development Center at (716) 475-6682.

The English Language Center: English to Speakers of Other Languages

The English Language Center offers both full- and part-time study of English to non-native speakers. Class offerings include: conversation, grammar, writing, vocabulary, reading, presentation skills, business communication, and TOEFL preparation.

Full-time program

The intensive English Language Program consists of 20 hours of class instruction and 5 hours of language lab per week at beginning, intermediate, and advanced levels. This intensive study program meets the immigration requirements for the Certificate of Eligibility 1-20. There is a fee for this program.

Before a course of study can be selected, students are tested to determine their levels of English proficiency and to diagnose their specific language needs.

Part-time program and

 individualized instruction In addition to the full-time program, students may register for one or more ESOL courses. Arrangements also may be made for individualized language instruction. Pronunciation and conversation, as well as grammar, writing, reading, and vocabulary may be studied in this manner. There is a fee for instruction, but students enrolled for 12 academic credits at RIT receive a reduced rate.For more information about the English Language Center's program offerings, visit the English Language Center (GEM 2321) or call 475-6684.

Foreign language instruction

The English Language Center offers a program in which international students teach their native languages. The international student meets with a trained language instructor who assists in curriculum development and provides language teaching methodology. The international student then instructs in his or her native tongue. Language, culture and customs can all be part of this program. For more information about learning a new language or teaching your native language, call the English Language Center at 475-6684 or pick up an application at the office (GEM-2321).

Translation services

Translation Services provides quick and efficient translation of documents, reports, letters, and manuals for RIT students, faculty, and staff as well as businesses in the Rochester area. For a fee, documents of all types, general to technical, can be translated. For more information, contact the English Language Center at 475-6684.

College
 Restoration
 Program

The College Restoration Program is a full time specialized program of instruction, with matriculated status, for students who have experienced academic difficulty and suspension from a college.

A course of action can be recom' mended only after the reason for academic difficulty has been established. If it is determined after an interview and diagnostic and achievement tests have been administered that CRP can be helpful, a very structured program including one or two content courses, LDC instruction, and counseling is arranged.

The student meets regularly with an LDC faculty mentor to clarify directions and goals, to discuss relationships between the skills courses and to review progress.

The entire program is designed to strengthen the student's self-confidence. Successful completion of this program could qualify students for readmission to the college or department of their choice or for entrance into another educational program.

Although the College Restoration Program does not guarantee a participant readmission to his or her former college or status as a transfer student at another school, the center does provide recommendations and resumes of student achievement in the program to colleges upon request of the student.
For more information contact the Learning Development Center (716) 475-6682.

College Anticipation Program

The College Anticipation Program is designed for the college-bound high school graduate who desires further skill development before matriculating in a full college program.

Applicants are interviewed and diagnostic and achievement tests are administered. Once the educational diagnosis has been analyzed, and it has been determined that the College Anticipation Program is appropriate for the student, an individualized program is designed.

The program runs for one RIT academic quarter and generally includes a content course, LDC instruction and academic counseling. The work is based on a system of established deadlines and immediate evaluation of progress.
Participation in the program cannot guarantee that a student will be admitted to the college or university of his or her choice, however, professional resumes of student achievement in the program are sent to colleges upon request of the student.

During the summer the center runs a special five-week College Anticipation Program for high school graduates entering college the next fall. Students in the summer program take a credit course from the RIT College of Liberal Arts and a block of LDC reading, writing, math and study skills courses. The LDC instructors incorporate the Liberal Arts course reading, writing and study assignments in their "learning-how-to-learn" courses.

For more information contact the Learning Development Center (716) 475-6682.

Learning Assessment Program

The Learning Assessment Program includes a team of diagnosticians who offer individual learning assessments to RIT students. The assessment process (which ranges from one to six, onehour sessions) combines clinical interviewing and testing to discover cognitive and affective factors that may facilitate or interfere with academic performance.

Cognitive factors examined may include learning style, level of skill development, learning strategies as well as content knowledge.

Some factors that may relate to academic performance include appropriate choice of major, and students' perception of themselves as learners as well as their perception of the quality of their environmental, social and personal lives at RIT.

Results of an assessment enable a diagnostician and a student to discover how these factors affect the student's performance, and the diagnostician can then direct the student to appropriate services at the Institute. Students are often referred to this program by advisors or instructors, but need not be referred to take advantage of the services.

Students may contact the Learning Assessment Program through the Learning Development Center (716)475-5513.

Counseling Center

The Counseling Center, located in Grace Watson Hall, offers a variety of services to RIT students. These services include:

- Personal/Psychological Counseling
- Career Counseling
- Career Walk-In Center
- Career Resource Center
- DISCOVER (a computerized guidance system)
- IMPACT: Alcohol/Drug Assessment, Referral and Educational Services
- Developmental Programs and Groups
- Testing
- REACT: Rape Education and Counseling Team
- Consultation

Counseling Center hours

Counseling Center hours are 8 a.m. to 5 p.m., Monday, Tuesday, Thursday; 8 a.m. to 8 p.m., Wednesday; and 8:30 a.m. to $4: 30$ p.m., Friday. Services are confidential and free. For more information about services, please call 475-2261.

Personal/psychological counseling

Individual and group counseling are available for students who could benefit from meeting with a counselor to explore, for example, more effective ways of dealing with conflict and stress, managing feelings and emotions, developing satisfying relationships, communicating with others, or coping with personal crises.

Career counseling

Counselors can assist students in making thorough appraisals of their interests, abilities, and personality traits so that they can use this information in developing educational and vocational plans. Tests of aptitude, interest, and personality may be used in this assessment process.

Career Walk-In Center

Walk-in assistance is available to students with informational needs related to occupations, colleges, graduate schools, and selection of RIT courses/ majors. Appropriate referrals may be made to other Counseling Center services, campus departments or offcampus resources. Call 475-2261 for hours of operation.

Career resource center

Located in the reception area of the Counseling Center is a Career Resource Center which contains occupational information on a variety of careers, vocational and educational reference books, and college catalogs on microfiche.

DISCOVER

DISCOVER is a career guidance system that uses a computer to help users learn more about:

- the career planning and decisionmaking process
- themselves, especially their interests, abilities, and work-related values
- careers that may be appropriate based on interests, abilities, and/or values
- the world of work, including descriptions of over 40 occupations
- graduate and professional school opportunities

Developmental programs and groups

The Counseling Center staff offers groups each quarter that assist students in their development. These groups offer a supportive environment in which to explore a variety of issues that typically affect the lives of studentssuch as forming relationships, handling loss, managing stress, clarifying values, and choosing careers.

In addition, Counseling Center staff members will present special programs to student groups and organizations. Presentations include communication skills, team building, leadership development, and goal setting. Individuals should contact the Counseling Center at least three weeks in advance of program date.

Testing

The Counseling Center administers a number of psychological tests and inter est inventories as part of the counseling process for some individuals. In addition, the Counseling Center administers a number of national tests.
Advance credit exams (CLEP) are also given.

Rape Education and Counseling Team (REACT)

REACT, jointly administered by the Counseling Center and the Department of Campus Safety, provides assistance to members of the RIT community who are victims of sexual assault (e.g., rape, attempted rape, sexual abuse, physical or verbal harassment, etc.). It is a confidential service staffed by specially trained volunteer counselors drawn from RIT's faculty and staff.

IMPACT

Alcohol \& Drug Education \& Prevention program: Individual assessment and referral services are available for persons having concerns about their (or other's) use or abuse of alcohol or other drugs. Educational workshops are also available. Student groups and organizations should contact the IMPACT office at 475-7081 three weeks in advance of scheduling the program.

Consultation

Staff members of the Counseling Center will provide consultation services to interested student groups and organizations in a number of areas within their scope and expertise.

NTID Psychological Services

NTID Psychological Services provides confidential mental health counseling and assessment to all deaf students requesting assistance. Psychological Services staff members work closely with RIT Student Health Services, the RIT Counseling Center, and RIT's Office of Residence Life.

Some concerns that students may need help in resolving include adjustment to deafness, depression, anxiety, family conflicts, intimate relationships, and sexual and personal identity matters. Workshops, discussion groups, and group counseling experiences on topics such as stress management, dating/relationships, and assertiveness training also are offered to assist students' mental health growth and development.

Psychological testing and assessment are available to students whose personal/social problems affect their academic performance. Consultation often is done with faculty and staff members so that students are assisted in planning remedial programs that emphasize their academic as well as personal needs.

A 24-hour emergency crisis inter vention service for students experiencing mental or emotional trauma is provided in conjunction with Campus Safety and NTID Interpreting Services.

Special Services

Higher Education Opportunity
 Program

The Higher Education Opportunity Program is a New York State- and Institute-funded service that qualifies students for additional financial and academic support for up to five full years, not including co-op. This supplemental assistance is available for students who need extra time to complete their academic requirements. While both New York State and the Institute provide financial support, HEOP students must also qualify for TAP and PELL, and be personally responsible for loan and college work study contributions. The HEOP program is dedicated to each individual student's academic success and personal growth.

To qualify, a student must meet strict academic and financial guidelines set by New York State Education Department prior to attending college. Any student who has taken college courses following high school graduation, matriculated or not, is ineligible. Students must have graduated from high school or the equivalent, and they must be New York State residents. Transfers are eligible if they are coming from a like program at another institution in the State: HEOP, EOP, SEEK, or College Discovery. Transfers must apply to and be accepted by both the HEOP office and the Admissions office for entrance. Space in the program is limited.

Services for all students include personal, academic, financial, and career counseling. Tutoring is available in all subjects, and the HEOP staff act as campus resources and advocates. Students accepted as freshmen must attend a six-week summer program prior to fall entrance. They live on campus and attend a selection of skills building classes carefully designed to facilitate their entry into standard RIT courses.
Throughout its 18 years on the RIT campus, HEOP has been applauded for its high graduation rate. Inquiries in regard to the program should be directed to (716) 475-2221.

Office of Special Services

Pursuing a college education is a major challenge. The goal of the Office of Special Services is to provide the necessary academic and personal support that will enable students who qualify to fully realize their potential and to successfully complete their college career.

The Office of Special Services is a federally funded program that has been hosted at RIT for 13 years. Presently, there are four components that make up the office. Each has a distinct purpose while remaining integrally linked with the others.

The Academic component has developed a full complement of services including tutoring, math mentoring, advisement and skills development, which assist students with academic concerns, enable them to understand and refine their learning process, and to use academic resources more effectively. The academic staff help students develop success strategies and experience positive responses to academic endeavors.

The Counseling component works to bring students into the program and provides the appropriate personal support that enables them to direct their energies into positive pursuits. Understanding that each student brings a unique set of circumstances to the learning environment, a counselor assists the student in understanding all that is available to him or her and how to access the assistance each may need. A counselor also is available to work with students on areas of general concern.

The Programming component provides complementary experiences that enhance the student's academic and personal perspectives by drawing on RIT and other community resources. When used effectively, this component can provide the student with new opportunities for personal and professional growth.

The Disabled Student component deals with a broad range of issues faced by students with disabilities. The staff provides services related to academic and physical accessibility, and works to raise the awareness of the RIT community.

The ultimate purpose of the Office of Special Services is to help students meet their unique challenges and become a part of the larger community. We work to make systems work. We often serve as a bridge between the learning community that we create and RIT. The success we pursue is the development of the student as a whole person, able to negotiate the environment using his or her resources.

For further information, contact the office at (716) 475-2832 or 2833. The office is located in the RITreat in the Student Alumni Union. Eligibility for the program is determined by financial aid, physical or learning disability and first generation college status. Any fulltime, undergraduate student who is a United States citizen and meets one of the eligibility requirements may become a member of Special Services.

International Student Affairs

The Office of International Student Affairs is the resource center for all hearing and deaf international students on visas and for those members of the campus community seeking crosscultural learning. The office provides assistance with immigration regulations and travel documents, helps international students adjust to the academic and cultural expectations in the U.S. and provides cross-cultural programming for international students and the campus at large. The staff works closely with RITISA, the international student organization and International House, which is a special interest house in the residence halls for both international and American undergraduates and serves as a liaison with off-campus groups which seek to extend friendship to international students. The office is located on the second floor of the George Eastman Memorial Building. The phone numbers are 475-6943 and 475-6876.

International student emergency loan fund

This fund is administered by the Inter national Student Affairs office and its purpose is to provide emergency assistance to international students on visas. The loans may not exceed \$200 and must be repaid within two months. Students must have a good record of payment with the Bursar's office and no unpaid previous loans from the fund to be eligible for a loan. This loan and the International Student Scholarship fund are supervised by the International Student Scholarship Committee. Fur ther information regarding loans or scholarships can be obtained from the International Student Affairs office.

Veterans' Affairs

Active service persons, reservists, members of the National Guard, veter ans and their dependents begin their educational programs in RIT's Office of Veterans' Affairs (OVA). We know that the transition from the military to a successful civilian career is dependent upon proper preparation, and education is the key to this transition process.
"Our veterans realize the value of education and they undoubtedly try harder," says Gene Clark, director of Veterans' Affairs. "They have proven that a student's level of maturity and interest in self-development are key factors in achieving his or her goals." Veterans attending college usually have the added responsibility of a family, the added financial pressures of maintaining a home and often work at a fulltime job. Because of these demands, veterans attending college need several types of assistance. "Our veterans are dependent on our ability to service their needs," says Clark. "They come to the OVA for counseling, information, assistance with problems, tuition deferments, or just to say hello. Our OVA staff members are veterans too, so veterans helping veterans is an impor tant aspect of our services."

The OVA staff is comprised of a director, program secretary, peer counselors, and VA work-study students, who are available to handle inquiries and assist veterans with VA-related and college-related information. The OVA is conveniently located on the lower level of the College-Alumni Union and
is easily accessible for both day and evening students. The office is open from 8 a.m. to 8 p.m., Monday through Thursday, and until 4:30 p.m. on Friday. Students may visit the office or telephone (716) 475-6642 to speak with an OVA counselor.

Veterans are important to the RIT community. They bring unique experiences and expertise to the campus. Consequently, the Office of Veterans' Affairs is very interested in helping veterans become successful students at RIT. Veterans who are planning on attending college should consider the difference that a campus Veterans' Affairs Office can make. Students coming from schools unable to assist a veteran population's needs find RIT a model place to begin and continue their education.
"Benefit programs are often seen as complex, confusing and problem related, but successful contact with our veterans has proven that VA problems can be effectively dealt with before they have a negative impact," maintains Clark. "We are concerned that many veterans, as well as the dependents of deceased and disabled veterans, are not utilizing their benefits. Benefit payment rates have recently increased and the length of eligibility extended to 10 years for program completion. We encourage veterans and their family members to contact us if we can provide assistance as they explore the many educational opportunities available to them at RIT."

Complementary Education

Viewed as a valuable dimension of the student's education at RIT, Complementary Education formally recognizes and encourages important experiences that happen outside the classroom that complete and enhance the traditional academic activities of the Institute. Its essential aim is to further the personal development of students. It will supplement their curricula in four broad content areas: personal and social development, learning skills development, civic competence, and leisure and avocational skills.

Complementary Education is multifaceted. The Complementary Education Grants Program makes funds available to students, faculty and staff who want to develop unique kinds of experiences. These projects are cooperatively planned and facilitated by students and faculty.

Some specific programs that make up the total Complementary Education concept include the Community Services Program, which provides students with opportunities to volunteer in campus-organized community projects as well as in non-profit agencies in Rochester; the Group Development Program, which offers student groups an opportunity to look at their selfawareness, communication skills and group dynamics; the Outdoor Education Program, which offers an intriguing way to learn decision making and group interaction skills using the outdoors as a classroom; and the Leadership Program, which emphasizes an in-depth look at individual leadership strengths. Participants have an opportunity to examine their own skills, receive feedback, and develop selfesteem. Each of these activities offers formal learning before the event takes place and evaluation and processing of the experience. Students will have the chance to expand their learning environment. These programs also serve to increase the interaction of hearing and deaf students.

In addition to these programs, the staff in Complementary Education has been involved in the development and facilitation of Freshman Seminar courses created to assist new students in their adjustment to college life. These required experiences focus on awareness and appreciation of diversity; the development of communication skills; an increased knowledge of academic and student life services; as well as an opportunity for increased knowledge of self and academic and career options.

Campus Life

What happens in the classroom is one part of a college education. But what happens outside the classroom can be just as important.

The Division of Student Affairs at RIT coordinates many services provided to students during their years at college.

The division includes Physical Education, Intercollegiate Athletics, Residence Life, Student Health Service, Student Activities, International Student Affairs, College-Alumni Union, Religious Activities and the Chaplaincy, Counseling Center, Higher Education Opportunity Program (HEOP), Orientation and Special Programs, Upward Bound, Special Services, Judicial Affairs and Horton Child Care Center.

Life on campus is a living, as well as a learning, experience. Students, with the counseling of trained resident staff, have their own governing organizations and develop social programs. A wide variety of athletic, social and professional activities is available for all students.

Student Housing

The residence halls

The Department of Residence Life provides a living environment for approximately 3,500 students in residence halls. Part of the Division of Student Affairs, the department has as its primary goal the development of a residential setting consistent with the overall educational philosophy of the Institute.

RIT recognizes the significant effect the on-campus living environment has on the social, academic, educational and overall development of the student. The aim of the Residence Life Department is to create a positive environment to promote this development.

All first-year students are required to live in the residence halls, except those who live with their families within a 30 mile radius of RIT. All sophomore students are required to live in either RIT residence halls or apartments. Resident students enrolled in cooperative programs are charged only for the period of occupancy. Each student is required to sign a Room and Board Request and Assignment Form, which is included in the housing information mailing. All students are required to live in residence halls for the full academic year (fall, winter, spring).

RIT realizes that the student body is not homogeneous and that students have diverse interests, backgrounds, experiences, needs and maturity. In recognition of this, a variety of living options is available. Many residence areas are coeducational; men and women live on the same floor. Many Greek organizations (fraternities and sororities) have their own houses. There are also academic houses in art, computer science, engineering and photography; International House for both international and American students; Unity House, which emphasizes the development of black culture; and Community Service Clubhouse where members volunteer their time to groups on and off campus.

Most residence hall units have double rooms only, although some units do include a limited number of single rooms. These single rooms are not available to entering students. During Fall Quarter most entering students may be assigned to triple rooms (a double room which has three students living in it). We immediately start detripling (making these double rooms again) as quickly as possible.

All corridors and rooms are carpeted. Bed, desks, chair, dressers, closets and window covering are provided depending on the number of students in a room. Each corridor in the unit has its own bathroom, equipped with showers. Suites are available, composed of three bedrooms connected to a common bathroom, only in the Ellingson/ Peterson/Bell area. Each house has its own lounge furnished with a TV. Coinoperated laundry facilities are available.

Several residence halls are equipped with visual emergency warning systems for deaf students. The Intercom facility and the 24-hour desk in Mark Ellingson Hall provide students with TDD (telecommunication device for the deaf) and interpreter-assisted telephone services. Several public pay phones equipped with TDDs also are available throughout the RIT campus. A limited lending system for portable TDDs is available.

Each student is furnished with information on residence hall living by the Department of Residence Life.

All residence hall students must participate in one of the Institute board plans. The charges for residence and meals are included in the section on student expenses.

Apartment housing

RIT's Apartment Life program is one of the nation's largest universityoperated apartment systems, with approximately 2,800 students residing in nearly 1,000 individual townhouse and apartment units. Apartment housing is available to all upperclass students in the four Institute-owned and operated apartment complexes. Sophomore students are required to reside on campus in either residence halls or an RIT apartment, except those who live with their families within a 30 mile radius of RIT. While single students comprise the majority of apartment residents, a mixture of graduate and undergraduate students, single and married students and faculty/staff can be found in each apartment complex. Contracts run September through August, but residents are permitted to leave for co-op employment and summer without penalty. All apartments are equipped with refrigerator and stove but are otherwise unfurnished. Furniture, however, may be leased from local rental companies. All Institute apartments are located less than a mile and a half from the center of campus and are serviced by RIT's shuttle bus system. A brochure describing the four complexes-Colony Manor, Perkins Green, Riverknoll and Racquet Club—is available from the Office of Apartment Life, Kate Gleason Hall, P.O. Box 9887, Rochester, N.Y., 14623;(716) 475-6920.

The Housing Connection

A service of the Department of Apartment Life, The Housing Connection is designed to meet the general housing needs of the RIT community. The center provides free referrals for students looking for Institute or off-campus housing accommodations in the Rochester area. In addition, the center offers the only on-campus clearinghouse for apartment residents in need of additional roommates, providing a continual updated listing of available roommates and their specific interests.

Located on the first floor of Kate Gleason Hall (room 1060), The Housing Connection provides free maps, information pamphlets, and telephones for users of this service. A trained staff member will assist you in your research for housing or roommates. For more information, stop in or call 475-2575.

New Student Orientation

Each year, RIT provides freshman and transfer students with summer and fall orientation programs designed to help them make the adjustment to life in a new environment. These programs are developed for both students and parents and address the academic, social, emotional and intellectual issues involved in beginning college or changing from one college to another.

Three Summer Orientation programs are offered, one specifically for transfers in June, and two for freshmen in mid-July. Summer programs concentrate on registration for classes, academic information, support services provided by the Institute, housing information and the opportunity to meet other new students. The fall program continues the academic information process and concentrates on promoting student interaction and community development. While the summer programs are not required, students are strongly urged to attend both the summer and fall programs to derive the greatest benefit.

During the fall Orientation, new students receive a copy of The Source, the official new student handbook of RIT. This important publication contains valuable information on Institute services and programs.

All students are encouraged to live in the RIT residence halls during the summer programs. This live-in experience is designed to allow all students to sample on-campus living regardless of their long-range housing plans.
Parents' orientation is offered only during the summer programs. There is a small parent orientation fee to support the program.

All new, full-time, day, matriculated students are assessed a program fee to cover program development costs.

The Office of Orientation and Special Programs is located on the A-level of the Student Alumni Union, and is open 8:30 a.m.-4:30 p.m., Monday through Friday. The phone number for Orientation is (716) 475-2508.

Student Clubs and Organizations

Student Directorate

The Student Directorate is the governing body for students. It represents the student population by working with
RIT administration, faculty and staff to communicate the needs and desires of the student body and to communicate the decisions of the administration to the students. It pulls together the student body to formulate and express student opinion and the Student Hearing Board, which provides for the self-discipline of the student body.

All full-time and part-time under graduate and graduate students are members of the Student Directorate when they pay the Student Activities Fee. All other students may become members of the Student Directorate if they wish to participate in studentsponsored activities by paying the Student Activities Fee.

NTID Student Congress

The NTID Student Congress (NSC) is an organization of and for deaf students. NSC helps interested students communicate their needs, ideas, and concerns about campus life to faculty members, administrators, and other student organizations within RIT; provides opportunities for developing new leadership skills; and encourages student activities on campus and integration by providing deaf students with opportunities to interact with hearing students socially, academically, athletically, and culturally. NSC is divided into six areas: academic, athletic, cultural, legal and organizational, public relations, and social affairs.

Off Campus Student Association OCSA is the representative student government for all RIT students who do not reside in a residence hall. The Off Campus Student Association, formed in 1978, is composed of offcampus students who live with their parents, the four RIT-operated apartment complexes or off RIT campus apartments. Through the council, a standing Housing Committee has been set up to deal with the varied housing problems that RIT students may face. The council is the voice of the offcampus students to the administration.

OCSA also has many student committees that work on programming for the off-campus student and provide
needed services such as lockers, a satellite office and off-campus survival booklets. The OCSA lounge, located in the RITreat, Student Alumni Union, is a place for the off-campus student to relax. OCSA also publishes a newsletter that contains beneficial offcampus news.

If you are interested in getting involved, stop in at the OCSA office or call 475-6680 for more information.

The College Activities Board

The College Activities Board, which is composed of students, staff advisors, and a student activities staff representative, is responsible for providing a balanced program of activities that reflect and enhance the special social, cultural, recreational and educational needs of the campus community. If you are interested in getting involved, stop by the office, CAU-A251, or call -2509.

The Black Awareness

Coordinating Committee
The Black Awareness Coordinating Committee is organized to foster an awareness of the role of black men and women in the toted society and to create a greater understanding among black students at RIT. Each year the committee sponsors various social and cultured programs designed to achieve these objectives.

Student professional associations A number of national technical associations have student affiliate chapters on campus. Frequently sponsored by parent chapters in Rochester, these societies play an important part in Institute life by bringing together students who have common interests in special subjects. The associations serve a professional and social purpose.

Student publications

RIT students produce some of the most professional collegiate publications in the country.

The Reporter is published by students weekly, except during examinations and holidays, and serves as the student news magazine. Tichmila, the student yearbook, contains a student-edited pictorial and written description of student life at the Institute during the year. The Reporter and Tichmila have consistently won state and national awards.

A monthly calendar listing campus activities, "The CalendaRIT," is distributed to all academic buildings, the Student Alumni Union, Wallace Memorial Library, and Grace Watson Dining Hall.

These publications draw their talented staffs-artists, photographers, writers, managers and printers-from the entire student body.

Publications produced by deaf students include Rolling Bricks, a literary/ art magazine; Eagle Eye, a newspaper published several times each quarter; and NTIDLife, the college's yearbook.

Student Alumni Union

The Student Alumni Union, a primary focal point at the main entrance to the academic plaza, is designed specifically to service events sponsored by and for the entire campus communitystudents, faculty, and administrative groups, alumni and guests. A staff is available to assist and advise the various individuals and groups in planning and coordinating their activities. In addition, a complete information service is located in the main foyer.

The three-level facility, the center of cocurricular activities, features the 507 -seat Ingle Auditorium; a complete gameroom for bowling, billiards, foosball, and electronic games; a unisex hairstyling salon \& tanning booth; a candy and tobacco counter; three separate dining areas comprised of the main cafeteria, the Ritskeller, and the Clark Dining Room; meeting rooms and lounges. The offices housed also include Special Services, Student Affairs, Orientation, Complementary Education, the Black Awareness Coordinating Committee, the Office of Minority Student Affairs, Food Services, Veterans' Affairs, College Activities Board, Student Activities, Student Directorate, WITR radio station, RITV, Techmila, Reporter, Off-Campus Student Association, and other student organization offices.

The RITreat
The RITreat is more than just a lounge. Through the efforts of the Student Life Advisory Board and several other student groups and individuals, the RITreat is a dedicated student area. The following resources can be found in the RITreat:

- Clubs and organizations space
- Copiers/typewriters/word processors
- Stamp machine
- Shuttle bus and RTS monitor
- Special Services
- Office of Minority Student Affairs
- Student conference room
- Student Directorate office
- Mailfolder for SD clubs, organizations
- Off-Campus Student Association
- Study tables/lounge area
- TV lounge
- Meeting room on 2nd floor

Social events

Major social events on the activities calendar include Fall Weekend, Spring Weekend, Parents Weekend, and Winter Weekend.

Other dances, parties, speakers and events are sponsored by other organizations such as the College Activities Board, the Residence Hall Association, the Greek Council, and various special interest clubs. Students can also get involved with departmental and professional associations such as Alpha Chi Sigma, Delta Lambda Epsilon, Delta Sigma Pi and Sigma Pi Sigma. Greek Council consists of members of three national sororities and thirteen national fraternities which offer social activities and promote high scholastic and social standards among members.

Performing arts

The Department of Student Activities and the Creative Arts Committee supports a variety of activities.

- The RIT Singers is open to all RIT students, faculty, and staff-no auditions necessary! Classical and popular music, produces joint concerts with RIT Philharmonia and Jazz Ensemble. Performs on campus for award ceremonies, Parents Weekend, Holiday Concert, and more. Jointly produces the bi-annual popular musical with Philharmonia. Participates in Rochester's Intercollegiate Choral Festival.
- The RIT Thursday Afternoon Consort is selected through auditions; this small chamber ensemble performs madrigals and other small ensemble music of the Renaissance and Baroque periods. Players of "old" instruments are also welcome.
- The RIT Men's Octet, selected through auditions, is an ensemble of eight singers, comprised of four tenors and four basses.
- The RIT Philharmonia is open to all RIT students, faculty and staff and musicians from the surrounding area. No audition necessary! Classical and 20th century masterworks by Beethoven, Handel, Bach, Schubert, and more.
- The RIT Woodwind Quintet is selected through auditions; this ensemble of five musicians (flute, oboe, clarinet, horn, bassoon) performs music from the standard woodwind quintet literature. Performances are for special events both on and off-campus.
- The RIT Brass is selected through auditions and is a small ensemble of brass instrument players (trumpets, horns, trombones, baritones, tubas). It performs a variety of music from the Renaissance period to the 20th century. Performances are both oncampus and in Rochester.
- The RIT Gospel Ensemble is open to all RIT students, faculty and staff. Black spirituals, modern gospel songs, interdenominational anthems and hymns are the specialty of the RIT Gospel Ensemble. They perform frequently on campus, including bi-weekly performances at the Interdenominational Gospel Worship Services in the Interfaith Chapel, and an anniversary concert.
- The RIT Jazz Ensemble, selected through auditions, is a spirited ensemble of jazz musicians. The group consists of trumpets, trombones, sax, piano, drums, bass, and guitar. Repertoire includes traditional big band music of Count Basie, Duke Ellington, and Woody Herman, as well as contemporary music of such groups as Spyro Gyra. Major concerts are held quarterly with periodic special appearances in the Ritskeller.
- The RIT Musical is featured every other year. The RIT Performing Arts Program launches a major popular musical for the enjoyment of the RIT community. Members of each of the major performing arts groups-RIT Philharmonia, RIT Singers and Jazz Ensemble-participate in the production. Open auditions are also held for all RIT students, faculty, and staff. NTID's Department of Performing
Arts also supports a variety of activities that offer students training and experiences in theater, music, and dance.
- The department presents three plays during the year. These use deaf and hearing actors working together and are performed in both sign language and voice.
- Guest artists are invited to perform in the Robert F. Panara Theatre. For example, the National Theatre of the Deaf typically performs each year.
- The NTID Lab Theater offers experimental, new, or unusual productions.
- Sunshine Too is an outreach company of three deaf and three hearing per formers who provide entertainment and information about RIT and deafness. The group travels throughout the country from September to May presenting shows and workshops for schools, alumni groups, special RIT groups, and the general public.
- The RIT Dance Company includes deaf and hearing dancers who per form at least one concert each year. The company rehearses throughout the year.
- NTID's Music Combo is composed of deaf music students who perform contemporary music at RIT and community events.
- RIT Tiger Band combines RIT and NTID students, faculty, and staff and community members who perform a variety of music at various sporting events, ceremonies, dedications, and student activities.
- RIT Tiger Band Auxiliary Squad members are recruited from the RIT student body to perform flag, rifle, and drum line routines with the RIT Tiger Band.
- RIT Time Stompers perform music of the 1890s-1940s, Dixieland jazz, and danceband styles. The group performs at various events including receptions, dinner parties, and ceremonies.
- RIT Trombone Choir and RIT Flute Choir ensembles perform at various events such as receptions, dinner par ties, and ceremonies.

Religious Activities

Although RIT has no formal religious affiliation, it has recognized the importance of religion in educating the whole person by establishing Campus Ministries as a department within the Division of Student Affairs. Campus Ministries welcomes and encourages all religious denominations to join together to serve the needs of individual faiths as well as all the members of the RIT community with their religious, ethical and personal concerns. All religious activities at RIT are sign language interpreted for deaf individuals.

RIT's Interfaith Center, on the east side of the Student Alumni Union, is the focal point for the diverse religious traditions within the Institute community.
The center's two levels offer areas for worship, reflection, lectures, and meetings. Administered by Campus Ministries, the center also houses offices for the department's director and for each campus minister. The offices are open from 8:30 a.m. to 9 p.m., Monday through Thursday, and Friday from 8:30 a.m. to 6 p.m., to accommodate evening activities. Saturday and Sunday hours for the center are determined
by scheduled activities. Campus ministers may be contacted at 475-2135 (Voice/TDD) or by coming to the center during regular hours.

Various religious traditions have assigned campus ministers to the Institute to serve the needs of students, faculty and staff of their particular faiths. Campus ministers offer opportunities for worship, personal counseling, religious study, social services and dialogue to the entire Institute community. The ministers are available at the Interfaith Center to discuss options for campus activities and to assist in developing programs. There are also student organizations recognized as religious clubs by the RIT Student Directorate. Although not directly affiliated with the Department of Campus Ministries, these religious clubs adhere to the same Institute guidelines for religious activities.

Physical Education

Rochester Institute of Technology recognizes the need for physical fitness and recreation in today's society. To meet this demand, the Institute offers an exceptional program of courses designed to aid the student in developing and maintaining fitness, acquiring physical skills in a variety of lifetime activities and providing principles and elements for utilizing free time in an enjoyable and constructive manner.

The PE requirement is built on the premise that the attainment of good health and fitness are basic elements in the pursuit of excellence in many aspects of campus life. The learning experiences provided through the physical education curriculum are an integral part of the total educational experiences at RIT.

Institute's PE Policy

Baccalaureate Degree-All candidates for the baccalaureate degree entering as first or second year students must successfully complete six quarters, or the equivalent of two years, of physical education. This requirement is normally met during the first and second years at RIT, but may be completed at any time during succeeding academic quarters.

Those entering as third or fourth year students must successfully complete three quarters of physical education unless they have completed the equivalent of three quarters or more of physical education or earned a baccalaureate degree at another Institution.

Associate Degree-All candidates for the associate degree are required to successfully complete three quarters, or the equivalent of one year, of physical education. This is normally met during the first year at RIT, but may be completed at any time during succeeding academic quarters.

Transfer Credit-One semester of credit at another school equals one quarter of RIT credit; two semesters equal three quarters. Credit for independent activity may be granted if completed within one year before matriculation at RIT and approved by the Physical Education Department. Students who have met requirements may enroll in Physical Education on an elective basis.

Exceptions

Permanent Medical Excuse-This will be granted only by the RIT Student Health Service. One copy of the medical excuse should be filed with the Physical Education Department and the other copy taken to the student's department. Medical excuses from your family physician will not be accepted. Intercollegiate Athletics-Students participating in the Institute's intercollegiate athletic programs will be granted physical education credit for the season of participation.
Veterans-Students who have completed six months or more of active military duty are not required to par ticipate in the physical education program, but may voluntarily enroll in any course on a space available basis. Age-Students who are 25 or older at the date of matriculation are exempt from the physical education requirements but may voluntarily enroll in any courses on a space available basis.

In the event a student is unable to fulfill the requirement for either a baccalaureate or associate degree due to extenuating circumstances, the student's academic advisor must be consulted.

Physical Education Classes

Physical education courses are offered during all academic quarters, including summer. More than 60 courses are available during the year. Not all courses are offered every quarter. Registration for Physical Education classes will coincide with the dates and times for the academic departments. A nominal fee is charged in some courses requiring specialized instruction and/or facilities.
The following classes are offered as selections in the Physical Education Department.

Cardiovascular and strength activities

Aerobic Dance, Army Conditioning Drills, Conditioning, Jogging, Judo, Karate, Kung Fu, *ROTC, Swimming for Fitness, Weight Training, Yoga and
Tai Chi, *Red Barn Ropes
Recreation and sports activities Aquathenics, Archery, Badminton, Ballroom Dance, Basketball Officiating, Billiards, Bowling, Canoeing, Cross Country Skiing, Dance Performance I \& II, Night Club Dancing, Diving, English Horseback, Fencing, Fishing, Frisbee, Golf, Hunting, Ice Skating, Juggling, Modern Dance, Outdoor Experiential Education, Racquetball, *Scuba Diving, SelfDefense/Women, "Skiing (downhill), Swimming, Tennis, Water Polo, Western Horseback, *Rock Climbing, **Skeet and Trap

Team activities

Basketball, Ice Hockey, Lacrosse, Soccer, Softball, Volleyball, Wallyball

Life support and safety programs

 CPR \& First Aid, Life Guarding, Water Safety Instruction, Health/ Mind-Body Connection
Intramural Activities

An extensive program of intramural activities is offered at RIT. Under the direction of the Department of Physical Education, Recreation and Intramurals, activities include co-rec, men's and women's teams in basketball, volleyball, softball, ice hockey, flag football, soccer, innertube water polo, bowling, tennis and golf.

Recreation

RIT offers some of the finest recreational facilities available in colleges today. Indoor facilities feature two gymnasiums, ice rink (with running surface around upper level), swimming pool, air support structure with three multipurpose courts, physical fitness and weight training center, recreational equipment room, wrestling room and game room (bowlingj video games, billiards). Outdoor facilities include 12 tennis courts, an all-weather track and numerous athletic fields. The equipment cage provides quality equipment for recreation, physical education instruction and intramural needs and
interests. Services offered include: general information center, issuance of guest passes, equipment loan-outs and lost and found. The Recreation Department also provides a series of health education and exercise programs throughout the year.

Intercollegiate Athletics

For eight decades, intercollegiate athletics has developed a tradition of excellence at RIT. The Institute's heritage in competitive athletics is a rich one. It has grown to become highly successful and widely recognized on the regional and national levels.

In the past 10 years, RIT has won more than 50 percent of its contests. Some of the men's team accomplishments have come in soccer (eight straight NCAA appearances and runnerup honors in 1988), cross country (four consecutive Eastern College Athletic Conference crowns), hockey (two national championships and three ECAC titles), and lacrosse (four Independent College Athletic Conference crowns in the last five years).

Women's teams have also excelled. Volleyball boasts two straight ICAC crowns and its first NCAA playoff appearance in 1989. Women's tennis is $86-20$ since 1980, and women's hockey won its first ECAC title in 1989.
Each year more than 350 athletes take part in 20 varsity sports offered at the Institute. Fall competition features men's cross country, men's and women's soccer, women's volleyball, and women's tennis. Winter sports include men's and women's basketball, swimming, hockey, indoor track, and wrestling. Spring competition includes baseball, men's and women's track, lacrosse, softball, and men's tennis.

A National Collegiate Athletic Association (NCAA) Division III member institution, RIT competes against schools in the Northeast with similar academic and intercollegiate athletic philosophies. Known as the Tigers, RIT is also a member of the Eastern College Athletic Conference, Independent College Athletic Conference (ICAC), and New York State Women's Collegiate Athletic Association (NYSWCAA).

Since 1970, RIT has been a member of the ICAC, which also includes Alfred University, Clarkson University, Hartwick College, Hobart and William Smith Colleges, Ithaca College, Rensselaer Polytechnic Institute, and St. Lawrence University.

ICAC men's and women's soccer champions receive automatic berths in the post-season NCAAs, and the conference is consistently well-represented in numerous national championships.

Support Services for Deaf Students in Physical Education and Athletics

 NTID's Physical Education and Athletics Support Team provides support services for deaf students on intercollegiate teams and those involved in physical education classes and intramural activities. It also provides direct instruction in physical education courses and ongoing in-service instruction, both formal and informal, to physical education teachers and athletic coaches regarding deafness and deaf/hearing interaction.
Student Health Service

Student Health Service provides primary level medical care on an outpatient basis. The staff includes physicians, medical nurse practitioners, registered nurses, and an interpreter for the deaf. Some specialtiespsychiatry, gynecology-are available on campus by appointments. In addition, Student Health Service provides health education programs.

Student Health Service is located on the second floor of the Administration Building. Students are seen on a walkin basis (Monday through Friday, 8:30 a.m. to 4 p.m.; to $4: 30$ p.m. for emergencies). Appointments for followup treatment are arranged when necessary. A registered nurse is on duty in Nathaniel Rochester Hall in the evening(4:30 to 10:30 p.m.; to 11 p.m. for emergencies). On Saturday and Sunday, a medical provider is available from 10 a.m. to 3:30 p.m. (to 4 p.m. for emergencies) in Nathaniel Rochester Hall.

For emergency transportation, the RIT Ambulance is available. The unit can be reached through Campus Safety at 475-3333.

A Student Health fee per quarter is mandatory for all full-time undergraduate students. All other students may pay either the quarterly fee or a fee-for-service. Some laboratory work ordered through Student Health Service is not covered by this fee; there is a nominal charge for this service. Prescription medicines may be obtained from local pharmacies. The health fee does not include prescription medications.

The Institute requires students to maintain health insurance coverage as long as enrolled as a student at RIT. Students may obtain coverage either through RIT or their personal coverage.

Questions about Student Health Service or health insurance should be directed to the office (475-2255).

Health Records

Medical records are confidential. Information will not be released without the written consent of the student. Exceptions to this rule are made only when required by the public health laws of New York State.

Additional Resources

Campus Stores

RIT operates two campus stores in the main campus.

The main store, Campus Connections, is located on the west side of the Student Alumni Union. It consists of two selling floors and is divided into eleven departments.

1ST	Clothing and Accessories
FLOOR:	General Reading and
	Reference Books
	Gifts and RIT Insignia
	Shop
	Stationery
	Print, Poster and Framing
	Shop
	Supplies-school, office,
	art, engineering
	Home Accessories
2ND	Photography and
FLOOR:	Electronics
	Products for the
	hearing impaired
	Computers-
	hardware, software,
	accessories, computer
	furniture
	Course books-textbooks,
	study guides, etc.
	Sporting apparel and
	equipment, tickets for
	RIT hockey games

Store hours are:
Monday through Thursday, 8:30
a.m. to 8:30 p.m.; Friday, 8:30 a.m. to 4:30 p.m.; Saturday, 11 a.m. to 4 p.m.

Campus Connections accepts cash, checks, and charge cards (VISA, MasterCard) for payment. Certain students may have arrangements with a government agency to pay for some of their books and supplies; this is handled at our service counter on the first floor.

The Candy Counter in the lobby of the Student Alumni Union is where candy, tobacco products, notions, sundries, magazines, daily newspapers, snack items and tickets for most campus events are sold. Film for processing can also be dropped off there.

For current information about store hours and special sales, call Campus Connections Info Line at 475-6033.

Campus Safety Department

The Campus Safety Department is a professional security agency that serves and protects the college community 24 hours a day, seven days a week. RIT does not assume liability for lost or stolen personal effects of students, faculty or staff. Students are encouraged to maintain an insurance policy on their own through a family insurance program.

The Campus Safety Department, located in the Grace Watson Dining Office, Building 25, offers a variety of services including: preventative safety measures; criminal investigations; lost and found property services; motorist assists; emergency family notification; and emergency assistance related to injury, illness, motor vehicle accidents and occurrence of fire. The department also offers educational and awareness programs that include: fire safety; alcohol/drug awareness; personal safety; crime prevention; and sexual assault.

There is a campus-wide network of courtesy phones, which automatically dial to campus safety to lend assistance.

You can contact the Campus Safety Department at these numbers:
General Information 475-2853
Parking Information 475-2074
Escort Service 475-2853
Lost and Found 475-2074
Emergency
475-3333
TDD (General or Emergency) 475-6654

Vehicle Parking and Registration
All New York State motor vehicle traffic laws are in effect on the RIT campus. RIT vehicle regulations supplement state laws. All drivers on RIT properties must make themselves aware of and abide by these regulations. These regulations require that all vehicles operated on the RIT campus by students, faculty and staff must be registered with the Campus Safety Department.

Failure to register a vehicle parked on campus will result in a fine. There are fines for other infractions of regulations as well. Fines are payable at the Bursar's Office in the George Eastman Memorial Building.

Questions regarding parking regulations should be addressed to the Parking Information Office at 475-2074.

RIT Ambulance

RIT Ambulance is a New York State certified volunteer ambulance service that operates in and around RIT's Henrietta Campus. The organization is an auxiliary of the Student Health Service. Its primary territory includes the main campus, Riverknoll, Perkin's Green, Colony Manor and Racquet Club apartment complexes and the Hilton Inn.

Any student, faculty or staff member of RIT who is at least 18 years of age is eligible to join RIT Ambulance. Although most members eventually become certified emergency medical technicians, minimum requirements are a valid certification in CPR, a valid driver's license with a good driving record, and a sincere interest in ambulance work.

Applications may be obtained and submitted through Student Health Service on the second floor of the George Eastman Memorial Building (administration building). To obtain more information a message may be left at Student Health Service, 475-2255.

Endowed Professorships

College of Business

J. Warren McClure Professorship in Marketing
Established: 1977
Donor: $\begin{aligned} & \text { Mr. and Mrs. J. Warren } \\ & \\ & \text { McClure }\end{aligned}$
Purpose: To perpetuate Mr. McClure's professional interest in the field of marketing
Held by: Dr. Eugene H. Fram

College of Continuing Education

Frederick H. Minett Professorship in Continuing Education
Established: 1972
Donor: Mr. Minett by bequest
Purpose: To provide a permanent memorial for Mr. Minett and to recognize his interest in students who obtain their education through the evening division
Held by: Dr. John D. Hromi

Paul A. Miller Distinguished
 Professorship in Continuing Education Established: 1978
 Donor: RIT Board of Trustees
 Purpose: To honor Dr. Miller on the occasion of his retirement as president of the Institute and to give lasting recognition to his standing as an acknowledged authority in the field of continuing education
 Held by: Dr. Edward Schilling
 College of Applied Science \& Technology

Russell C. McCarthy Chair
Established: 1979
Donors: Mr. Fred Gordon, Mr. Lucius Gordon, Mixing Equipment Company and General Railway Signal Company, units of General Signal Corporation, and other friends of Mr. McCarthy
Purpose: To honor Mr. McCarthy as manager of the Industrial Management Council for 20 years and for his role as a champion of and authority on industry and business. Mr. McCarthy served RIT as a trustee and honorary trustee since 1947
Held by: Professor James Forman

College of Engineering

James E. Gleason Professorship in Mechanical Engineering
Established: 1967
Donor: Estate of James E. Gleason
Purpose: To provide a permanent memorial for Mr. Gleason, who served as a trustee of RIT from 1930 until 1964, and to strengthen RIT in the field in which he received his education
Held by: Dr. Richard G. Budynas, P.E.

College of Fine \& Applied Arts

Charlotte Fredericks Mowris Professorship in Contemporary Crafts
Established: 1976
Donor: Mrs. Charles F. Mowris
Purpose: To perpetuate interest in the School for American Craftsmen through the work of faculty and students as talented craftsmen
Held by: Albert Paley

College of Graphic Arts 8c Photography

Melbert B. Cary Jr. Professorship in Graphic Arts
Established: 1969
Donor: Mary Flagler Cary Charitable Trust
Purpose: To provide a permanent memorial for Mr. Cary as a former president of the American Institute of Graphic Arts and to perpetuate his interest in the field
Held by: Professor Mark F. Guldin
Richard S. Hunter Professorship in Color Science, Appearance, and Technology Established: 1983
Donors: Mr. and Mrs. Richard S. Hunter
Purpose: To enable RIT to increase its research and educational efforts in the areas of color science, technology, and appearance science in order to benefit the industry and science of color
Held by: Dr. Roy S. Berns
James E. McGhee Professorship in

Photographic Management

Established: 1967
Donor: Master Photodealers and Finishers Association and friends of Mr, McGhee
Purpose: To provide a permanent memorial for Mr. McGhee, a former vice president of Eastman Kodak Company and lifelong friend of the photofinishing industry
Held by: Professor James E. Rice
Paul and Louise Miller Distinguished Professorship in Newspaper Operations

Management

Established: 1979
Donor: Frank E. Gannett Newspaper Foundation

Purpose: To honor the former chairman of the board of the Gannett Company and to perpetuate his interest in good management practices in the newspaper industry
Held by: Professor W. Frederick Craig
Frederick and Anna B. Wiedman
Professorship in Medical Imaging
Established: 1985
Donor: Frederick Wiedman Jr.
Purpose: To establish a permanent memorial to Frederick and Anna B. Wiedman, lifelong residents of Rochester and longtime friends of RIT
Held by: Dr. Joseph P. Hornak

College of Liberal Arts

Caroline Werner Gannett Professorship in the Humanities
Established: 1974
Donor: Mrs. Frank E. Gannett
Purpose: To perpetuate Mrs. Gannett's lifelong interest in education, especially those fields of study that have a humanistic perspective
Held by:

Arthur J. Gosnell Professorship in

Economics

Established: 1987
Donor: Family and friends of Arthur J. Gosnell
Purpose: To perpetuate the memory of Arthur J. Gosnell through recognition of the importance of good teaching in economics and by facilitating research into public policy questions
Held by: Dr. Thomas D. Hopkins
Ezra A. Hale Professorship in
Applied Ethics
Established: 1989
Donors: William B. and Patricia F. Hale and Lawyers Co-operative Publishing Company
Purpose: To establish a permanent memorial to a long-time and valued friend of RIT, Ezra A. Hale, and to provide instruction in applied ethics in keeping with his beliefs in sportsman-like conduct, fair play, and honesty.
Held by: Dr. Wade L. Robison
William A. Kern Professorship in
Communications
Established: 1971
Donor: Rochester Telephone Corporation
Purpose: To commemorate the 100th anniversary of that company and to provide a memorial for a former president of the company and a man who served as an RIT trustee from 1959 to 1964
Held by: Dr. Bruce Austin

TRUSTEES

'Maurice I. Abrams, M.D.;
Honorary Director, American School for the Deaf, Inc.
-•James R. Alsdorf; Former Vice President \& General Counsel, Garlock Inc.
Theodore J. Altier; Retired Chairman and Treasurer, Altier and Sons Shoes, Inc.
-Burton S. August; Retired Vice President and Director, Monro Muffler and Brake, Inc.
Bruce B. Bates; Past Chairman, Board of Trustees, Rochester Institute of Technology; First Vice President, Shearson Lehman Brothers, Inc.
-George S. Beinetti; Retired Chairman of the Board and Chief Executive Officer, Rochester Telephone Corporation
John L. Blake; President, John L. Blake Associates, Inc.
W. Frank Blount; President, Network Operations Group, AT\&T Communications
Paul W. Briggs; Retired Chairman of the Board and Chief Executive Officer, Rochester Gas \& Electric Corporation
Mrs. David L. Brooke
William A. Buckingham, BUB '64;
Executive Vice President, M \& T
Bank
Colby H. Chandler; Vice Chairman, Board of
Trustees, Rochester Institute of Technology;
Chairman of the Board and Chief Executive Officer, Eastman Kodak Company
Thomas Curley, BUB '77; President, USA Today
-E. Kent Damon; Vice Chairman, Board of Trustees, Rochester Institute of Technology; Retired Vice President and Secretary, Xerox Corporation
Robert H. Downie; R.H. Downie Holdings Ltd.
-Francis E. Drake, Jr.; Retired Chairman of the Board, Rochester Gas \& Electric Corporation Mrs. James C. Duffus; Former President, Rochester Institute of Technology Women's Council
-Richard H. Eisenhart; Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman, R.H. Eisenhart, Inc.
-Walter A. Fallon; Retired
Chairman of the Board and Chief Executive Officer, Eastman Kodak Company
Mrs. Julian M. Fitch; Former
President, Rochester Institute of Technology Women's Council
-Maurice R. Forman; Honorary
Vice Chairman, Board of Trustees,
Rochester Institute of
Technology; Retired Chairman, B. Forman Company
-•Karl F. Fuchs; Retired Chairman of the Board, Alliance Tool Corporation
James S. Gleason; Chairman of the
Board, President and Chief
Executive Officer, Gleason
Corporation
-Fred H. Gordon, Jr.; Retired Chairman, Executive Committee, Mixing Equipment Co., Inc. (a unit of General Signal Corporation)
-Lucius R. Gordon; Retired
Chairman of the Board, Mixing Equipment Co., Inc. (a unit of General Signal Corporation)
Thomas H. Gosnell; Chairman, Board of Trustees, Rochester Institute of Technology; Retired Chairman of the Board and Chief Executive Officer, Lawyers Cooperative Publishing Company
Alfred M. Hallenbeck; Consultant
-Alexander D. Hargrave; Senior
Counsel, Nixon, Hargrave, Devans
\& Doyle; Retired Chairman of the
Board, Chase Lincoln First Bank, N.A.

Alan C. Hasselwander; President and Chief Executive Officer, Rochester Telephone Corporation
John E. Heselden; Retired Deputy
Chairman, Gannett Co., Inc.
John D. Hostutler; President, Industrial Management Council
Frank M. Hutchins; Past Chairman, Board of Trustees, Rochester Institute of Technology; Retired Chairman of the Board, Hutchins/ Young and Rubicam
Herbert W.Jarvis; Former President and Chief Executive Officer, Sybron Corporation
-Byron Johnson; Senior Partner, Johnson, Mullan, Brundage \& Keigher, P.C.
Thomas F. Judson, Jr.; President and Chief Executive Officer, The Pike Company
-Thomas F. Judson, Sr.; Retired Chairman of the Board, The Pike Company

Paul J. Koessler; President, Sullivan Graphics
Robert J. Kohler, Jr.; Vice President and General Manager, TRW
Avionics and Surveillance Group
John M. Lacagnina; President, RIT
National Alumni Council; President
and Chief Executive Officer, Entire, Inc.
Gary J. Lindsay; Partner, Peat, Marwick, Mitchell \& Company
Lawrence J. Matteson; Group Vice President and General Manager, Imaging and Information Systems, Eastman Kodak Company
-Russell C. McCarthy; Retired Manager, Industrial Management Council
-J. Warren McClure; President, McClure Media Marketing Motivation Co.
-C. Peter McColough; Chairman of the Board, Xerox Corporation Thomas C. McDermott; President and Chief Operating Officer, Bausch \& Lomb, Inc.
Mrs. J. Scott Miller; President, Rochester Institute of Technology
Women's Council
-Paul Miller; Former Chairman of the Board, Gannett Co. Inc
Mrs. Edward T. Mulligan
-Raymond E. Olson; Retired Vice Chairman of the Board, Sybron Corporation
James K. Picciano; Vice President
and General Manager, General
Technology Division, IBM
Corporation
Mrs. Donald W.Pulver
-Ernest I. Reveal; Retired Chairman and Chief Executive Officer, Schlegel Corp.
Jorge A. G. Rivas, PR '67;
Presidente, Lito Envases, S.A. de C.V.

Nathan J. Robfogel; Attorney, Harter Secrest \& Emery M. Richard Rose; President, Rochester Institute of Technology
Harris H. Rusitzky; Treasurer, Board of Trustees, Rochester Institute of Technology; President, Serv-Rite Food Service \& Consulting Corporation
-John E. Schubert; Former
President, Chairman and Chief Executive Officer, The Community Savings Bank

James E. Shapiro; President, DX Imaging
-F. Ritter Shumway; Honorary
Chairman, Board of Trustees,
Rochester Institute of Technology
Robert J. Strasenburgh II; Former
Chairman and President,
Strasenburgh Laboratories
Robert L. Tarnow; Chairman of the
Board, Goulds Pumps, Inc.
Bonnie P. Tucker; Professor of Law, Arizona State University
Fred T. Tucker, EL '63; Senior Vice President and General Manager, Automotive and Industrial Electronics Group, Motorola, Inc.
John L. Wehle, Jr., BUB '70;
President and Chief Executive
Officer, Genesee Brewing Company
William Whiteside, Jr.; Partner,
Fox, Rothschild, O'Brien and Frankel
-•Frederick Wiedman, Jr.;
Attorney, Wiedman, Vazzana \& Corcoran, P.C.
Thomas C. Wilmot; President and Chief Executive Officer, Wilmorite, Inc.
Wallace E. Wilson; Retired Group
Vice President, General Motors Corp.
Kenneth W. Woodward, M.D.;
Manager, Clinical and Disability Services, Xerox Corporation
Donald A. Zrebiec; Vice President, Management Resources, Xerox
Corporation
-Emeritus Member of the Board \bullet •Honorary Member of the Board

OFFICERS

jl. Richard Rose, BS, MS, Ph.D. president
Thomas R. Plough, BA, MA, Ph.D.
provost and Vice President
Academic Affairs
William E. Castle, BS, MA, Ph.D.
Vice President
Government Relations
Director, National Technical
Institute for the Deaf
William M. Dempsey, BS, MBA
Vice President
Finance and Administration
James G. Miller, BS
Vice President
Enrollment Management and Career
Services
Fred W. Smith, BA, MA, Ph.D.
Vice President
Student Affairs
Jack F. Smith, BA
Vice President
Communications
C.J. Young, BS, MS, Ed.D

Vice President
Development

OFFICE OF THE PRESIDENT

M. Richard Rose, BS, MS, Ph.D President
Andrew J. Dougherty, BS, MBA
Executive Assistant to the
President
Catherine Whittemore
Administrative Assistant to the President

DIVISION OF
 ACADEMIC AFFAIRS

Thomas R. Plough, BA, MA, Ph.D.-Provost and Vice President Jeanne Ferrara, BS, AASAdministrative Assistant to the Provost
Cynthia McGill, BS, MS, Ph.D.Assistant to the Provost Robert Desmond, BS, MS, Ph.D.-President, RIT Research Corporation; Associate Provost Reno Antonietti, BS, MLSAssociate Vice President, Academic Services and Computing Paul Kazmierski, BA, M.Ed., Ph.D.-Assistant Vice President, Student Academic Development

Office of the Assistant to the Provost

Cynthia McGill, BS, MS, Ph.D.Assistant to the Provost
Marion Kelly, BS-Coordinator Barbara Blickwede-Staff Specialist Caroline Coniglio, AAS-Executive Secretary
Doris Gordon-Secretary

Deans

Donald D. Baker, BA, M.Ed., MBA, Ed.D.
College of Continuing Education Paul Bernstein, BS, MA, Ph.D. Graduate Studies

William Daniels, BA, MA, Ph.D. College of Liberal Arts
James J. DeCaro, BS, MS, Ph.D.
National Technical Institute for the Deaf
Peter Giopulos, BFA, M.Ed., Ph.D.
College of Fine and Applied Arts
(Acting)
Edward C. Mclrvine, BS, MS, Ph.D.
College of Graphic Arts and Photography
Wiley R. McKinzie, BA, MS
College of Applied Science and Technology
John E. Paliouras, BA MA, Ph.D.
College of Science
Paul Petersen, BS, Ph.D.
College of Engineering
Richard N. Rosett, BA, MA, Ph.D.
College of Business

College of Applied Science and Technology

Wiley R. McKinzie, BA, MS—Dean; Professor
John A. Stratton, BS, MS-
Associate Dean, Professor
w. David Baker, BS, MS-Director, School of Engineering Technology; Professor
Francis M. Domoy, BS, MA, Ph D-
Director, School of Food, Hotel and
Tourism Management; Professor
David L. Olsson, BS, MS,
Ph.D.-Director, Department of
Packaging Science; Professor William Stratton, BS, MS, Ph.D.-
Director, School of Computer
Science and Information Technology

SCHOOL OF COMPUTER

SCIENCE AND
INFORMATION

TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE
John A Biles, MS, University of
Kansas-Department Chair;
Associate Professor
Rodger Baker, BM, BS, MS,
University of
Rochester-Undergraduate Program
Chair; Associate Professor
Peter G. Anderson, Ph.D.,
Massachusetts Institute of
Technology; Graduate Program
Chair—Professor
Warren Carithers, BS, MS, University
of Kansas-Associate Professor
Lawrence Coon, AB, University of
Rochester; MA,.Oakland University;
Ph.D., Ohio State University-
Associate Professor
Henry Etlinger, BS, University of Rochester; MS, Syracuse
University-Associate Professor James Heliotis, Ph.D., University of Rochester-Associate Professor Fereydoun Kazemian, BS, Queen Mary College; MS, Pittsburgh State
University; Ph.D., Kansas State University- Assistant Professor Andrew Kitchen, Ph.D., University of Rochester-Associate Professor
Donald L. Kreher, Ph.D., University of Nebraska-AssociateProfessor Michael J. Lutz, BS, St. John Fisher College; MS, SUNYat Buffalo-
Associate Professor
Peter Lutz, Ph.D., SUNYat
Buffalo-Associate Professor

Wiley R. McKinzie, BA, University of Wichita; MS, SUNY BuffaloProfessor
Rayno Niemi, BS, MS, Ph.D., Rensselaer Polytechnic Institute-

Professor

Stanislaw Radziszowski, Ph.D.,
University of Warsaw-Associate Professor
Kenneth Reek, B. Tech., MS,
Rochester Institute of Technology-
Associate Professor
Margaret Reek, B. Tech., MS,
Rochester Institute of Technology Associate Professor
Evelyn Rozanski, BS, SUNYat
Brockport; MS, Syracuse
University-Chairperson, Professor
Nan Schaller, BS, University of North
Carolina; MS, Union College-
Assistant Professor
Walter A. Wolf, BA, Wesleyan
University; MA, Ph.D., Brandeis
University -Assistant Professor

DEPARTMENT OF INFORMATION

 TECHNOLOGYGuy Johnson, BS, Pennsylvania State;
MS, Syracuse University-
Chairperson; Professor
Chris Comte, RN, BA, University of Illinois (Chicago Circle); MS,
Rochester Insutute of
Technology-Assistant Professor
Gordon Goodman, BS, SUNY
Binghamton; MS, Rochester Institute of Technology-Assistant Professor
James Hammerton, MA, Cambridge
University, MBA, New York
University—Assistant Professor
Daryl Johnson, BS, St. John Fisher
College; MS, Rochester Institute of
Technology-Instructor
Alan Kaminsky, BS, Lehigh
University; MS, University of
Michigan-Assistant Professor
Stephen Kurtz, BA, University of
Miami; MS, Rochester Institute of
Technology—Assistant Professor
Jeffrey Lasky, BBA, University of New
York; MBA, City University of New
York; MS, University of
Minnesota-Associate Professor
William Stratton, BS, MS, Hunter
College; MS, Ph.D., SUNYat
Buffalo-Director; Associate
Professor
Clinton J. Wallington, BA, University of Missouri at Kansas City; Ph.D., University of Southern CaliforniaProfessor
Michael A. Yacci, BS, Ithaca College;
MS, Rochester Institute of
Technology-Lecturer

Adjunct Faculty

Robert Berl, MS, Rochester Institute of Technology
Robert Gayvert, MS, Rochester
Institute of Technology
Albert Gregorio, MS, SUNY Buffalo
J. Doug Hanson, MS, Rochester

Institute of Technology
Edith Lawson, MS, Rochester
Institute of Technology
Bruce C. Lyon, BS, Rochester
Institute of Technology
Daniel Sorrentino, MS, Rochester
Institute of Technology
Josh Tenenburg, Ph.D., UNiversity of Rochester
Donald Wilder, MS, University of Rochester
Tom Zeng, MS, Shanghai UNiversity
of Technology

SCHOOL OF
 ENGINEERING
 TECHNOLOGY

Ronald F. Amberger, BME,
Rensselaer Polytechnic Institute; M.
Eng., Pennsylvania State University;
PE-Chairman, Mechanical
Engineering Technology; Professor
A'isha Ajay, BA, University of
Vermont; MS, Syracuse
University—Assistant Professor W. David Baker, BS, Monmouth College; MS, Rochester Institute of Technology-Director, School of Engineering Technology; Professor Walter J. Bankes, BS, Kent State
University; MS, University of
Arizona-Associate Professor
Charles L. DeRoUer, BS, ME,
Rochester Institute of
Technology-Associate Professor
Thomas J. Dingman, BSEE, MS (ET),
Rochester Institute of Technology-
Chairman, Computer Engineering
Technology; Professor
Robert H. Easton, BS, U.S. Military
Academy; MSCE, Iowa State
University; P.E.-Professor
Kevin Foley, BS, SUNY College of Environmental Science and Forestry, Syracuse University; MBA Rochester Institute of Technology-Chairman,
Civil Engineering Technology;
Associate Professor
James D. Forman, BS, Rochester
Institute of Technology; MS, Alfred
University-Russell C. McCarthy Professor

William G. Frizelle, BS, MS,
University of Rochester, P.E.-
Assistant Professor
Richard E. Garrett, BSEE, MSEE,
University of Notre Dame-Assistant Professor
Louis B. Gennaro, BS, U.S. Military
Academy; MS, Northeastern
University-Associate Professor
Joseph D. Greenfield, BEE, City
College of New York; MSEE,
Pennsylvania State-Professor
Richard A. Hultin, BSME, MSME,
Northeastern University; P.E.-
Associate Professor
Mark J. Indelicate, BEEE, Manhattan
College; MS, Polytechnic
University-Assistant Professor
William P. Johnson, BA, Kings
College; BSEE, MSEE, Syracuse
University-Assistant Professor
David G. Krispinsky, BE, MSE,
Youngstown University-Associate Professor
William C. Laraen, BS, MSCE,
Dartmouth; P.E.-Associate Professor
Robert E. Lee, BSME, MSEE, Ph.D.,
University of Rochester-Professor
Ti-Lin Liu, MS, Tsinghua
University-Assistant Professor
Carl A. Lundgren, BS, Rensselaer
Polytechnic Institute; MBA,
University of Rochester-Associate Professor
Robert E. McGrath, Jr., BCE,
Rensselaer Polytechnic Institute;
MSCE, Syracuse Univeristy; P.E.Professor
Robert A. Merrill, BS, Clarkson
College; MS, Northeastern; P.E Professor
Marit Piterman, MCE, Odessa Marine
Engineers Institute-Associate
Professor

Venkitaswamy Raju, BS, MS, Madras
University; MBA, Missouri State University; ME, Rochester Institute of Technology; Ph.D., Gujarat
University-Chairman,
Manufacturing Engineering
Technology; Associate Professor
James A Reynolds, BS, Rochester
Institute of Technology; MSEE,
Illinois-Professor
Carol A Richardson, BSEE,
University of Wyoming; MSEE,
Union-AssociateProfessor
John D. Sherrick, BEE, Clarkson;
MSEE, Worcester Polytechnic;
P.E.-Associate Professor Martin J. Siebach, BS, Rochester Institute of Technology; MSEE, Illinois; P.E.-Associate Professor John A Stratton, BS, Rochester Institute of Technology; MS, Rensselaer Polytechnic Institute;
P.E.-Associate Dean; Professor

Thomas Young, BA Hunter College; MS, New York University; MSEE, Rochester Institute of Technology-Chairman, Electrical Engineering Technology; Professor George H. Zion, BT, MS, Rochester Institute of Technology-Assistant Professor

Adjunct Faculty

John S. Abbott, BS, California Institute of Technology; Ph.D., Massachusetts Institute of Technology
Muhammad Asiam, BS, Punjab
University; MS, Tuskegee University Arthur Behringer, BS, Niagara
University; MS, Rensselaer
Polytechnic Institute
Dominic T. Bozzelli, BS, University of Notre Dame; MS, Rochester Institute of Technology; MS, SUNY Brockport
Herbert L. Bresnick, BS,
Northeastern University; MS, Rochester Institute of Technology Charles M. Buehler, BSEE, University of Wisconsin Paul H. Chalupa, BS, ME, MBA, Rochester Institute of Technology Richard Cowan, BS, Rochester Institute of Technology; MS,
Pennsylvania State University Donald Deverell, BSEE, Union College
James J. Hurney, BSEE, Carnegie Institute of Technology; MS, MBA Rochester Institute of Technology Robert H.Jones, BSEE, University of Rochester; MS, Rochester Institute of Technology; P.E. Darwin L King, BA, University of Michigan; MBA, Michigan State University
Irving Koff, BS, Empire State College
Peter Kotas, BS, Indiana Institute of Technology; ME, Rochester Institute of Technology
Vincent Leonard, BS, New York Institute of Technology; MA New York University
Lloyd Luke, BS, University of Western Ontario
Junes A Mason, Jr., BSME,
University of Notre Dame; MS,
Pennsylvania State University; P.E.
Richard S.McElwain, AAS,
Rochester Institute of Technology
Lloyd Merrill, ME, MME, Cornell
University; P.E.

Kenneth S. Morgan, BSME, MSME, Georgia Institute of Technology James Murphey, BS, Rochester Institute of Technology
Edward Napp, BET, MS, Rochester
Institute of Technology
Joseph T. Olesik, BSEE, MEEE,
Clarkson College; MSEE,
Massachusetts Institute of Technology
Susan E. Pearson, BS, Rochester Institute of Technology
Gary M. Popick, AAS, Rochester Institute of Technology
Allen J. Rushing, BSEE, University of Denver; MSEE, Ph.D., University of Missouri
Joseph F. Santoro, BS, Oswego State; MA, Ohio State University John Todd Schueckler, MS, Rensselaer Polytechnic Institute David Turner, BSME, General Motors Institute; MBA, Rochester Institute of Technology
Daniel L. Walsh, BS, ME, Rochester Institute of Technology Leo G. Walter, BSEE, MSEE, Ohio State University
Thomas K. Witt, BS, Kansas State University; MS, Rochester Institute of Technology
Ekawan Wongsawatgul, MA, Ball
State University

SCHOOL OF FOOD, HOTEL AND TOURISM MANAGEMENT

James F. Burke, BA Dartmouth College; M.Ed., Temple University; MS, Utah State University; Ph.D., University of Minnesota-Associate Professor
Barbra A Cerio, R.D., BS, MS, SUNY
Buffalo—Assistant Professor
David H. Crumb, BS, Florida State University; MBA, Michigan State University-Assistant Professor Francis M. Domoy, BS, MA, SUNY at Buffalo; Ph.D., Michigan State University-Director, School of Food, Hotel and Tourism Management; Professor
James W.Jacobs Jr., BA, Purdue
University; MS, Troy State
University-Assistant Professor;
Undergraduate Chairman
Elizabeth A Kmiecinski, RD, BS,
Ohio State University; MS, University of Kentucky-Assistant Professor Richard F. Marecki, BA MA Ph.D., SUNY Buffalo-Chairman, Graduate Studies; Professor
James A Myers, BS, Rochester Institute of Technology-Instructor Daniel W. O'Brien, BS, Niagara University; MS, Rochester Institute of Technology-Instructor
Warren G. Sackler, BA, Michigan State University; MA, New York University-Assistant Professor Edward A Steffens, BS, MBA Rochester Institute of TechnologyAssistant Professor
Edward B. Stockham, AB, Ph.D.,
University of Pennsylvania-
Associate Director; Associate Professor
Carol B. Whitlock, RD, BS, MS, Pennsylvania State University; Ph.D., University of MassachusettsAssociate Professor

PACKAGING SCIENCE

A Ray Chapman, BS, Michigan State University; MBA, Rochester Institute of Technology-Associate Professor Daniel L. Goodwin, BS, MS, Ph.D.,
Michigan State University-Professor Deanna M. Jacobs, BA, SUNY
Pittsburgh; MA, SUNYGeneseo; MS, Rochester Institute of TechnologyAssistant Professor
David L. Oisson, BS, MS, Ph.D., Michigan State University-Director, Professor
Karen L. Proctor, BS, Michigan State University; MBA, Rochester Institute of Technology-Associate Professor Fritz J. Yambrach, BS, Michigan State University; MBA, Utah State University-Associate Professor

RESERVE OFFICER TRAINING CORPS

Army ROTC
LTC Frederick F. Lash Jr., BS, MA Middlebury College-Professor Major Reynold S. Christenson, BET, Rodlester Institute of
Technology-Assistant Professor Captain Thomas G. Cole, BS, Paine College-Assistant Professor
Captain David D. Dodd, BA, Elon College-Assistant Professor Captain Jerry D. Zayas, BS, USMA
West Point-Assistant Professor Master Sergeant Danny O'Neal, AAS, Central Texas College-Chief Drill Instructor
Sergeant First Class George Gordon -Operations/Training Assistant
Staff Sergeant Cynthia Coley
N'Siegbe-Supply Specialist
Staff Sergeant Oscar H. Thompson, AAS—Administrative Asst.

Air Force ROTC
Col. William C.G. Savage, Jr.,
BA,Grove City College; MA,
Chapman College-Professor
Captain John E. Bayne, BS,
Pittsburgh State University; MA,
Central Michigan-Assistant
Professor
Captain Grant E. Wilson, BA Eastern Michigan University; MS, Oklahoma State University-Assistant Professor Captain Richard J. Winslow, BS, MA University of New HampshireAssistant Professor
Staff Sergeant Ida D. Myers-Chief, Detachment Personnel
Sergeant John B. Tool—Chief,
Detachment Administration

College of Business

Richard N. Rosett, MBA?, Ph.D., Yale
University-Dean
Bruce L. Oliver, BBA, MBA,
University of Cincinnati; Ph.D.,
University of Washington-
Professor; Associate Dean
Gary J. Bonvillian, BS, MS,
Rochester Institute of TechnologyAssistant Dean and Director of External Programs
William L. Mihal, BS, MS, Clarkson
College; Ph.D., University of Rochester-Chairman, Graduate Business Programs; Associate Professor

Joann E. Middleton, BS, MS, SUNY at Brockport-Assistant Dean for Student and Public AffairsWalter F. McCanna, BS, Marquette University; Ph.D., University of Wisconsin-Madison-Professor

DEPARTMENT OF ACCOUNTING AND FINANCE

Walter J. Woerheide, BS, Brown University; MBA, Ph.D., Washington University-Professor, Chairman James C. Galloway, BA, University of Rochester; MBA, University of Pennsylvania; DBA, University of Virginia—Assistant Professor Kenneth D. Gartrell, BA, MS, Ph.D (ABD) Kent State University; C.PA Ohio-Assistant Professor Steven C. Gold, BA, BS, Rutgers; MA, Ph.D., SUNY-Binghamton-Associate Professor
John A. Helmuth II, BA, MA, Old
Dominion University; Ph.D.,
University of South Carolina-
Associate Professor
Francis E. Kearns, BD, Harvard University; AB, Cornell University;
MBA, Ph.D., SUNY Buffalo-
Assistant Professor
Jeffrey P. Lessard, BA, BS, University of New Hampshire; MBA, Plymouth State College; MA, Ph.D., University of Arkansas-Assistant Professor Kyle Logan Mattson, D.BA, University of Kentucky, M.BA, Utah State University, M.P.A., Syracuse University -Assistant Professor AshokJ. Robin, Ph.D., M.BA, SUNY
Buffalo-Assistant Professor Jose A. Rullan, BS, Western Carolina University; MS, Rochester Institute of Technology; C.PA, New YorkAssistant Professor
Daniel D. Tessoni, BBA, St. John Fisher; MS, Clarkson College of Technology; Ph.D., Syracuse University; C.P.A., New YorkAssistant Professor
RobertJ. Warth, BS, Rochester Institute of Technology; MBA, University of Rochester; C.PA, New York-Assistant Professor

DEPARTMENT OF
 DECISION SCIENCES

George A. Johnson, BS, University of Rochester; MBA, DBA, Indiana University-Chairman; Professor Kathleen Bentley, Ph.D. in progress Syracuse University, M.BA SUNY AJbany-Assistant Professor Terry L. Dennis, BS, Clarkson College; MS, Ph.D., Purdue
University-Professor
Bernard J. Isselhardt, BA, MS,
Southern Illinois University; Ph.D., University of Iowa-Assistant Professor
Daniel A. Joseph, BS, Niagara University; MBA, McMaster University; MS, SUNY at Albany; Ph.D., SUNY at Buffalo-Associate Professor
A. Erhan Mergen, BS, Middle East Technical University, Turkey; MS, Union College; Ph.D., Union College -Associate Professor
Thomas F. Pray, BS, MS, Clarkson
College; Ph.D., Rensselaer
Polytechnic Institute-Professor

William J. Stevenson, BIE, MBA,
Ph.D., Syracuse University—Associate Professor
Paul D. VanNess, BA, MBA,
University of Michigan; MS,
Rochester Institute of
Technology—Associate Professor
Thomas A. Williams, BS, Clarkson
University; MS, Ph.D., Rensselaer
Polytechnic-InstituteProfessor

DEPARTMENT OF MANAGEMENT AND MARKETING

Robert F. Pearse, BA, Olivet College; AM, Ph.D., University of
Chicago-Chairman; Distinguished Lecturer
Dominick A. Aquila, BM, Juilliard School; MBA, New York UniversityLecturer
Robert J. Barbate, BA, LeMoyne
College; Ph.D., Michigan State
University-Associate Professor Janet C. Barnard, BS, Nazareth
College; Ed.D., University of Rochester-Assistant Professor Thomas E. Comte, BS, University of California-Davis; MBA, Columbia University; Ph.D., University of Missouri at Columbia-Associate Professor
Andrew J. DuBrin, AB, Hunter College; MS, Purdue University; Ph.D., Michigan State UniversityProfessor
Eugene H. Fram, BS, ML, University of Pittsburgh; Ed.D., SUNY Buffalo-Professor
David T. Methe, BA SUNYOneonta; MPA, Syracuse University; Ph.D., University of California at IrvineAssistant Professor
William I. Mihal, BS, MS, Clarkson
College; Ph.D., University of Rochester-Associate Professor William A. Nowlin, BS, Empire State College-SUNY; MPA SUNY Brockport; Ph.D., SUNY BuffaloAssociate Professor
Karen H. Paul, BA MA, Ph.D.,
Emory University-Professor
Dean C. Siewers, BS, Marietta College; MBA, Duke University; Ph.D., University of North Carolina-Assistant Professor Patricia Sorce, BA, Kent State University; MS, Ph.D., University of Massachusetts-Associate Professor Philip R. Tyler, BS, Rochester Institute of Technology; MBA, DBA, Michigan State University-Associate Professor

Stanley M. Widrick, BS, Clarkson College; MBA, SUNY Buffalo; Ph.D., Syracuse University-Associate Professor
Donald O. Wilson, BS, Oklahoma State University; MS, MPA, Ph.D., in progress, University of Southern California-Assistant Professor Julian E. Yudelson, BS, University of Pennsylvania; MBA, Emory University; Ph.D., Northwestern University—Associate Professor

SPECIAL APPOINTMENTS

Edward C. Mclrvine, BS, University of Minnesota; Ph.D., Cornell University-Professor M. Richard Rose, BS, Slippery Rock; MS, Westminster College; Ph.D., University of Pittsburgh-Professor

College of
 Continuing Education

Donald D. Baker, BA, Trinity College; M.Ed., MBA, Ed.D., University of Rochester-Dean; Professor Lawrence W. Belle, BA, MA, CaseWestern Reserve, Ph.D., University of Rochester-Associate Dean Lynda Rummel, BS, Oregon State; MA, SUNYGeneseo; Ph.D., Buffalo-Assistant Dean; Director, Business and the Arts; Associate Professor
Adelaide Perkins—Administrative Assistant to the Dean

ACADEMIC DIVISION

Lawrence W. Belle, BA, MA, CaseWestern Reserve, Ph.D., University of Rochester-Associate Dean Lynda Rummel, BS, Oregon State; MA, SUNYGeneseo; Ph.D., Buffalo-Assistant Dean; Director, Business and the Arts; Associate Professor
Henry F. Cooke, BEE, MS, Ohio
State-Director, Science and
Technology; Assistant Professor Victoria M. Foote, BA, Colorado
State; MA, University of Northern
Colorado-Distance Learning
Coordinator
Christine Hammer, BS, MS, SUNY
Brockport-Associate Director, CCE
Admissions and Student Services Eric L. Bellmann, BS, SUNY Buffalo, MFA, Rochester Institute of Technology-Chairperson, Fine \& Applied Arts/Crafts; Assistant

Professor

Elizabeth A. Conley, BA, Nazareth
College-Chairperson,
Communications; Lecturer
Alfred C. Haacke, BS, Massachusetts
Institute of Technology-
Chairperson, Physics and Computer Science; Associate Professor Ronald J. Hilton, BS, SUNYGeneseo, MA, University of Arkansas; Ph.D., Syracuse-Chairperson, Humanities; Professor
Elizabeth M. Paciorek, BS, SUNY
Buffalo-Chairperson,
CAD/Drafting and Machine
Tool Technology; Assistant Professor
Ronald E. Perry, B.Tech., MS, Rochester Institute of TechnologyChairperson, Computer Service Technology; Assistant Professor Daniel C. Smialek, BS, MS, Rochester Institute of Technology-
Chairperson, Business \&
Management Studies; Assistant Professor
Mario S. DiQuilio, BS, Massachusetts Institute of Technology, MS, Conesus College, Rochester Institute of
Technology-Associate Professor Andrea C. Walter, BA, Duquesne University; MA, University of Pittsburgh, Ed.D., University of Rochester-Professor

CAREER AND HUMAN RESOURCE DEVELOPMENT

Dorothy K. Paynter, BA, MS Ed., SUNY Brockport, Ed.D., Syracuse University-Director; Professor Stanley Bissell, BA, Ohio Wesleyan University; MA, University of Aukland; MS, SUNY Geneseo-Assistant Professor

CENTER FOR QUALITY AND APPLIED STATISTICS

John D. Hromi, BS, CarnegieMellon University; BEE, Clemson University; M. Litt., University of Pittsburgh; D. Engr., University of Detroit-Frederick H. Minett Distinguished Professor; Executive Director, Center for Quality and Applied Statistics
Edward G. Schilling, BA, MBA,
University of Buffalo; MS, Ph.D.
Rutgers University-Paul A. Miller Distinguished Professor; Associate Director and Chairman, Graduate Studies
Anne M. Barker, BA, Nazareth College; MS, Rochester Institute of Technology-Assistant Professor Thomas B. Barker, BS, MS, Rochester Institute of Technology -Assistant Professor
Daniel R. Lawrence, BA, BS, University of Akron; MA, Ball State University; MS, Rochester Institute of Technology; Ph.D., University of Toronto-Assistant Professor Patrick J S. McNenny, BS, U.S. Naval Academy; MS, Rochester Institute of Technology-Manager,
William W. McQuilkin, Jr., MBA Wharton School, University of Pennsylvania—Assistant Director

External Programs

Thomas K. Witt, BS, Kansas State University; MS, Rochester Institute of Technology-Acting Manager, Mason E. Wescott Statistics Laboratory
Joseph G. Voelkel, BS, Rensselaer Polytechnic Institute; MS, Northwestern University; Ph.D, University of Wisconsin-Madison -Assistant Professor
Mason E. Wescott, BS, Ph.D.,
Northwestern-Professor Emeritus, Statistics
Hubert D. Wood,BS, George Washington University; MS, University of RochesterAssistant Professor

College of Engineering

Paul E. Petersen, BS, MS,
Ph.D.-Dean; Department Head,
Electrical Engineering; Professor Charles W. Haines, AB, MS, Ph.D.Associate Dean; Professor
Raman M. Unnikrishnan, BSEE,
MSEE, Ph.D.-Associate Dean for
Graduate Studies and Graduate
Research; Professor
Margaret M. Urckfitz, AAS—Assistant to the Dean
Roy S. Czernikowski, BEE, ME, Ph.D.-Department Head, Computer Engineering; Professor
Richard Reeve, BS, MS, Ph.D.-
Department Head, Industrial Engineering; Professor
Bhalchandra V. Karlekar, BEME,
MSME, Ph.D., P.E.-Department
Head, Mechanical Engineering; Professor
Lynn F. Fuller, BS, MS, Ph.D.Director, Microelectronic
Engineering; Professor
Susan A. Hickey-Administrative Assistant to the Dean

COMPUTER
 ENGINEERING
 DEPARTMENT

George A Brown, BSEE, Vanderbilt;
MSEE, University of
Rochester-Professor
Tong-han Chang, BS, Jiao Tong
University, Shanghai; Ph.D., Chinese
Academy of Science, Peking-
Associate Professor
Roy S. Czernikowski. BEE, Catholic University of America; ME, Ph.D., Rensselaer Polytechnic
Institute-Professor
Kenneth W. Hsu, BS, National Taiwan
Normal University; MSEE, Ph.D.,
Marquette University; PE—Associate Professor
Ronald G. Matteson, Ph.D., Syracuse
University-Associate Professor
V.C.V. Pratapa Reddy, BE.M. Tech.,

Osmania University, India; Ph.D.,
Indian Institute of Technology,
Madras-Associate Professor
V.C.V. Pratapa Reddy, BE, M. Tech., Osmania University, India; Ph.D., Indi Institute of Technology,
Madras-Associate Professor

ELECTRICAL
 ENGINEERING DEPARTMENT

Joseph DeLorenzo, BS, Alabama; MS, Polytechnic Institute of Brooklyn; Ph.D., Boston University-Associate Professor
Soheil A Dianat, BSEE, Aria-Mehr University, Iran; MSEE, Ph.D., George Washington UniversityAssociate Professor
Roger E. Heintz, BSEE, Michigan Technological University; MSEE, Ph.D., Syracuse-Professor
Mark A. Hopkins, BS, Southern
Illinois University; MS, Ph.D.,
Virginia Polytechnic Institute and
State University-Assistant Professor Bernard A Logan, BS, M.Ed.,
University of Rochester-Associate Professor
Swaminathan Madhu. MA, University
of Madras; MSEE, Tennessee; Ph.D.,
Washington-Professor
Athimoottil V. Mathew, BEE,
Jadavpur University, India; M. Tech.,
Indian Institute of Technology; Ph.D.
Queens University, Canada-
Professor
Norman A. Miller, BSc, EE, London University, England-Lecturer P.R. Mukund, BS, MS, Ph.D., University of Tennessee-Assistant Professor
James E. Palmer, BS, University of Western Ontario; MSEE, University of Pennsylvania; Ph.D., Case Institute of Technology-Professor David Perlman, BS, MS,
Cornell-Associate Professor
Paul E. Petersen, BS, MS, Iowa State UNiversity; Ph.D., Michigan State University-Professor
Mysore R. Raghuveer, BSEE, Mysore
University, India; ME, Indian
Institute of Science, Bangalore,
India; Ph.D., University of Connecticut-Assistant Professor Sannesi Ramanan, Ph.D., IIT,
India-Assistant Professor
V.C.V. Pratapa Reddy, BE, M.Tech., Osmania University, India; Ph.D., Indian Institute of Technology, Madras-Associate Professor

Harvey Rhody, BSEE, University of Wisconsin; MSEE, University of
Cincinnati; Ph.D., Syracuse
University-Professor
Alton F. Riethmeier, BSEE.
Valparaiso University; MSEE,
University of Rochester-Associate Professor
Edward R Salem, BSEE,
Pennsylvania State; MSEE, Catholic University of America; Ph.D.,
Buffalo-Professor
Robert Spina, BS, Western Michigan University; MS, Rochester Institute of Technology—Visiting Instructor
David A. Sumberg, BA, Utica College of Syracuse University; MS, Ph.D., Michigan State University-Associate Professor
Fung-I Tseng, BSEE, Taiwan
University; MSEE Chiao-Tung
University, Taiwan; Ph.D., SyracuseProfessor
I. Renan Turkman, Diplome D'Ingenieur (MSEE); Docteur-
Ingenieur, Institut Nationale des
Sciences Appliques, Toulouse,
France-Associate Professor
Raman M. Unnikrishnan, BSEE,
University of Kerala, India; MSEE,
South Dakota State University; Ph.D.,
Missouri-Professor
Dr. Jayanti Venkataraman, BS, MS,
Bangalore University; Ph.D., Indian Institute of Science, Bangalore,
India-Associate Professor

INDUSTRIAL AND
 MANUFACTURING
 ENGINEERING
 DEPARTMENT

S. Cem Karacal, BS, Middle East Technical University, Turkey; MS, Ph.D., Oklahoma State University—Visiting Assistant Professor
Madhu R Nair, BS, Rochester Institute of Technology; MS, Lehigh University-Visiting Instructor Nabil Nasr, BS, Helwan University, Egypt; MS, Rutgers University; M.
Eng., Pennsylvania State University;
Ph!b., Rutgers University—Assistant Professor
Sudhakar R. Paidy, BS, Osmania
University, India; MSIE, Ph.D.,
Kansas State University-Professor Richard Reeve, BS, MS, Ph.D.,
Buffalo-Professor
Jasper E. Shealy, BS, Georgia
Institute of Technology; MS, Ph.D.,
SUNY at BufTalo-Professor
Paul H. Stiebitz, BS, ME, Rochester
Institute of Technology-Assistant
Professor
Brian K. Thorn, MS, Georgia Tech.-
Assistant Professor

MECHANICAL
 ENGINEERING
 DEPARTMENT

Nir Berzak, BS, M.Sc., Technion Israel Institute of Technology; Ph.D., Columbia University- Associate Professor
Richard G. Budynas, BME, Union College; MSME, Rochester; Ph.D., Massachusetts; P.E.GleasonProfessor

Robert A. Ellson, BME, City College of New York; MSME, Ph.D., University of Rochester, P.E.Professor
Jon Freckleton, BSME, University of Rochester; P.E.-Assistant Professor HanyA. Ghoneim, B.Sc., M.Sc., Cairo University, Egypt; Ph.D.,
Rutgers-Associate Professor
Amitabha Ghosh, B.Tech, M.Tech.,
Indian Institute of Technology,
India; Ph.D., Mississippi State
University-Associate Professor
Surendra K. Gupta, B.Tech., Indian Institute of Technology, India; MS, University of Notre Dame-Associate Professor
Charles W. Haines, AB, Earlham;
MS, Ph.D., Rensselaer Polytechnic
Institute; Mathematics and
Mechanical Engineering-Professor
Robert J. Hefner, BS, MS, Ph.D.,
Georgia Institute of Technology-
Associate Professor
Richard B. Hetnarski, MSME,
Gdansk Technical University; MS,
Warsaw University; Dr. Tech.Sci., Polish Academy of Sciences; P.E.Professor
Satish Kandlikar, BE, Marathwada
University, India; M.Tech., Ph.D.
Indian Institute of Technology-
Associate Professor
Bhalchandra V. Karlekar, BE, ME,
College of Engineering, India;
MSME, Ph.D., University of Illinois;
P.E.-Professor

Mark Kempski, BS, Purdue University; MS, Ph.D., SUNY
Buffalo-Associate Professor Chris Nilsen, BS, Rochester Institute of Technology; MSME, Worcester Polytechnic Institute; Ph.D., Michigan State; P.E.-Associate Professor
Alan H. Nye, BSME, MSME, Clarkson College; Ph.D., University of Rochester-Professor Ali Ogut, B.Ch.E., Hacettepe University, Turkey; MS, Ph.D., University of Maryland-Associate Professor
Frank Sciremammano, Jr., BS, MS,
Ph.D., University of Rochester-
Associate Professor
Robert L. Snyder, BS, Rochester
Institute of Technology; Ph.D., Iowa
State; P.E.-Professor
Joseph S. Torok, BS, University of
Akron; MS, Ph.D., Ohio State
University-Associate Professor
Panchapakesan Venkataraman,
B.Tech., Indian Institute of

Technology; MSME, Rice
University-Assistant Professor
Wayne W.Walter, BE, State
University of New York Maritime
College, Bronx; MS, Clarkson
College; Ph.D., Rensselaer
Polytechnic Institute; P.E.-
Professor

MICROELECTRONIC ENGINEERING DEPARTMENT

Lynn F. Fuller, BS, MS, Rochester Institute of Technology; Ph.D., SUNY Buffalo—Professor
Michael A. Jackson, BS, MS, SUNY Buffalo-Assistant Professor S. Cem Karacal, BS, Middle East Technical University, Turkey; MS, Ph.D., Oklahoma State University—Visiting Assistant Professor

Santosh K. Kurinec, BS, MS, Ph.D., University of Delhi, India-Associate Professor
Richard L. Lane, BS, Ph.D., Alfred
University-Analog Devices Professor Robert E. Pearson-BSEE, Rochester
Institute of Technology-Assistant Professor
Bruce W. Smith, BS, MS, Rochester
Institute of Technology-Visiting
Assistant Professor
I. Renan Turkman, Diplome d'Ingenieur (MSEE); DocteurIngenieur, Institut Nationale des Sciences Appliques, Toulouse,
France-Associate Professor

Academic Technical Associates

Vaudeen Abel-Facilities Manager, Computer Engineering Scott Blondell, AAS, Alfred State College-Facilities Manager, Microelectronic Engineering William Gallacher-Technical Associate, Industrial and Manufacturing Engineering David Hathaway-Facilities Manager, Mechanical Engineering Barbara Ryder, AAS, Onondaga
Community College-Facilities
Manager, Electrical Engineering

Adjunct Faculty

K.H. Gurubhasavaraj, Ph.D.,

Nebraska
Ti-Lin Liu, MS, Tsinghua University, Peking
Jacob Rubin, MS, New York
University and Rochester Institute of Technology
James Schueckler, BS, MS, Rochester Institute of Technology
M. Ibrahim Sezan, BS, Bogazici University, Turkey; MS, Stevens Institute of Technology; MS, Ph.D., Rensselaer Polytechnic Institute Yusheng T. Tsai, BSEE, National Cheng-Kung University, Taiwan; MSEE, National Taiwan University, Taiwan; Ph.D., Ohio State University

College of Fine and Applied Arts

Peter Giopulos, BFA, Syracuse University; M.Ed., Ph.D. Pennsylvania State University-Acting Dean; Professor
Joanne Szabla, BFA, Madonna College; MA, Catholic University of America; Ph.D., Walden UniversityActing Associate Dean; Professor Rose Marie Deorr, BS, Rochester Institute of Technology-Assistant Dean for Administrauon
Edward A. Lincoln, BA, Eisenhower College, Rochester Institute of
Technology; MS.Ed., University of
Rochester-Assistant Dean

SCHOOL OF ART AND DESIGN

Judy Battaglia, BFA, MFA, Rochester Institute of Technology-Lecturer Map- Ann Begland, BS, Ohio State
University; MFA, Kent State
University—Associate Professor

Kener E. Bond, Jr., B.Ed., SUNYBuffalo; MFA, Rochester Institute of Technology—Professor
Philip W. Bornarth, BAE, MAE, Art Institute of Chicago-Professor; Special Assistant to the Dean for Graduate Affairs
Luanda Brogden, BS, MFA,
University of Wisconsin-Assistant Professor
Nancy A. Ciolek, BFA, Indiana State
University; MFA, Indiana State
University-Assistant Professor
Douglas Cleminshaw, BSME, Case
Institute of Technology-Assistant
Professor
Robert A. Cole, BA, MS, University of
Maryland-Professor
Nancy David, BFA, Denison
University; MFA, Southern Illinois
University-Gallery Consultant
David Dickinson, Chelsea School of
Art, London, England; SKHS, Oslo,
Norway; MFA, Rochester Institute of
Technology-Professor; Chairman,
Fine Arts
Ronald Feinen-Lecturer
Elizabeth Fomin, BS, Syracuse
University—Assistant Professor
Joan Hantz, BA, Bennington College;
MM, University of Michigan-
Lecturer
Robert Heischman, BFA, Miami
University; UCFA, Ruskin School of
Art-Professor
Frederick Hellenberg, BFA,
University of Buffalo-Lecturer
Glen Hintz, BA, Lafayette College;
MS, The Medical College of
Georgia-Assistant Professor
Barbara Hodik, BS Ed., Benedictine
College; MA, New York University;
Ph.D., Pennsylvania State-Professor Robert M. Kahute, BFA, Syracuse
University; MFA, Rochester Institute
of Technology-Assistant Professor
Robert P. Keough, BFA, Rochester
Institute of Technology; MFA,
Rochester Institute of
Technology-Professor
Robert Kerr, BFA, University of
Illinois; MFA, Rochester Institute of
Technology—Professor
Heinz Klinkon, BFA, Rochester
Institute of Technology-Assistant Professor

Charles F. Lewis, B. Arch., Pratt
Institute of Technology-Lecturer
Thomas Lightfoot, BA, BFA,
University of Connecticut; MFA,
Institute Allende, San Miguel de
Allende, Gto., Mexico; MA Ed. Art,
Ed.D. Art, Columbia University,
Teachers College-Professor
Frederick Lipp, BAE, School of the
Art Institute of Chicago; MFA,
Rochester Institute of
Technology-Professor
Steve Loar, BS, Murray State
University; MA, Northern Illinois
University—AssociateProfessor
CraigJ. McArt, BID, Syracuse
University; MFA, Rochester Institute
of Technology-Professor
Bernadette Merkel, BFA, MFA,
Rochester Institute of Technology-
Professor; Chairman of Graphic
Design
Edward C. Miller, BFA, SUNY at
Buffalo; MFA, Illinois State-
Associate Professor
Robert C. Morgan, BA, University of
Redlands; Ed.M., Northeastern
University; MFA, University of
Massachusetts; Ph.D., New York
University-Professor

Gabrielle Peters, BFA, SUNY at
Geneseo; MA, University of Toronto, Canada-Part-Time Instructional Faculty
R. Roger Remington, BFA, Rochester Institute of Technology; MS,
University of Wisconsin-Professor Karen Sardisco, BS, SUNY College at Buffalo; MFA, Rochester Institute of Technology-Lecturer
Luvon Sheppard, BFA, MST,
Rochester Institute of TechnologyAssociate Professor
Joyce Shikowitz, BFA, Rhode Island School of Design; MFA, Indiana University-Associate Professor James H. Sias, BFA, MA, Michigan State University-Professor
Alan Singer, BFA, Cooper Union;
MFA, Cornell University-Assistant Professor
Bruce Sodervick, BS, Rhode Island School of Design; MFA, Indiana University-Associate Professor Michael Teres, BA, Hunter College CUNY; MA, MFA, University of Iowa-Lecturer
James E. Thomas, BS, Philadelphia College of Art; MFA, Pennsylvania State University-Professor Toby Thompson, BID, Syracuse;
MFA, Rochester Institute of Technology-Professor; Chairman of Industrial Design, Interior Design and Packaging Design
James Ver Hague, BS, Massachusetts Institute of Technology; MS, Rensselaer Polytechnic Institute; BA, MFA, SUNY at Buffalo-Professor Robert Wabnitz, Diploma, Rochester Institute of Technology; Certificate, University of Rochester-Professor Joseph A. Watson, BFA, University of Georgia; MFA, Yale UniversityProfessor
Bruce Wenger, BS, Western Michigan University; MFA, Ohio UniversityLecturer
Lawrence Williams, BFA, Kansas City Art Institute; MFA, University of
Illinois-Professor
Norman Williams, BFA, MS, Syracuse University-Associate Professor;
Chairman of Foundation Studies

SCHOOL FOR AMERICAN CRAFTSMEN

Donald G. Bujnowski, BS, SUNY at Buffalo; MA, University of Minnesota-Chair, Crafts Wendell Castle, BFA, MFA, University of Kansas-Professor; Artist-inResidence, Chair in Contemporary Crafts
Richard A. Hirsch, BS, SUNY at New Paltz; MFA, Rochester Institute of Technology—Associate Professor William A. Keyser, Jr., BS, CarnegieMellon Institute of Technology; MFA, Rochester Institute of TechnologyProfessor
Max L. Lenderman.BS, MS, Indiana State; MFA, University of KansasProfessor
Albert Paley, BFA, MFA, Tyler School of Art, Temple University-Professor; Artist-in-Residence, The Charlotte Fredericks Mowris Professor in Contemporary Craft
Robert D. Schmitz, BS, East Carolina University; MS, Alfred University; MFA, Wisconsin-Professor Douglas E. Sigler, BFA, MFA, Rochester Institute of TechnologyProfessor

Mark Stanitz, BFA, MA, Kent State University-Assistant Professor Richard Tannen, BS, Cornell University; Certificate of Mastery in Woodworking and Furniture Design, Boston University
Michael Taylor, BS, Middle
Tennessee State University; MA,
MFA, East Tennessee State
University-Associate Professor
Leonard A. Urso, BFA, MFA, SUNY at
New Paltz-Assistant Professor

College of Graphic Arts and Photography

Edward C. Mclrvine, BS, University of Minnesota; Ph.D., Cornell University-Dean
Carole A. Sack, BA, University of Michigan; Ph.D., Michigan State University-Associate Dean for Academic Affairs
Gail L. Welch, BS, MS, Rochester Institute of Technology-Director of Operations
Herbert Phillips, AAS, Rochester Institute of Technology-Director, Industry Education
John L. Kronenberg, BS—Consultant for Graphic Arts
Virginia Burchill—Administrative Assistant

CENTER FOR IMAGING SCIENCE

Rodney Shaw, BS, Leeds University; Ph.D., Cambridge UniversityDirector
Gaylene Morrill, BS, Southwestern Oklahoma University-Operations Manager
Roy S. Berns, BS, MS, University of California; Ph.D., Rensselaer Polytechnic Institute-Hunter Professor
Edward Dougherty, BS, Fairleigh Dickinson University; MS, Stevens Institute of Techology; Ph.D., Rutgers University-Associate Professor Roger L. Easton, Jr., BS, Haverford College; MS, University of Maryland; Ph.D., University of ArizonaAssistant Professor
Margaret Evans, BA, Goddard College; MFA, Rochester Institute of Technology-Coordinator of Academic Services
Mark D. Fairchild, BS, MS, Rochester Institute of Technology-Instructor Dana Marsh, BS, California State University; ME, Rochester Institute of Technology; Ph.D., University of California/Riverside—Associate Professor
Pantazis Mouroulis, B.Sc., University of Athens; Ph.D., University of Reading-Assistant Professor Zoran Ninkov, BS, University of Western Australia; M.Sc., Monash University; Ph.D., University of British Columbia-Visiting Assistant Professor
Jeff Pelz, BFA, MS, Rochester Institute of Technology-Instructor Navalgund Rao, BS, MS, BHU India; Ph.D., University of MinnesotaAssistant Professor
Harvey Rhody, BSEE, Wisconsin; MSEE, Cincinnati; Ph.D., Syracuse University-Professor
John Schott, BS, Canisius College;
MS, Ph.D., Syracuse
University-Professor

Elvin Thurston, BS, Queen Mary College, University of
London-Associate Professor Medi Vaez-Irivani, Ph.D., University College of London-Assistant Professor

Adjunct Faculty

Joseph Altman, BS, Massachusetts Institute of Technology Robert Clark, BS, Massachusetts Institute of Technology; Ph.D., University of Maryland Robert Daly, Ph.D., University of Arizona
David Farnsworth, Ph.D., University of Texas-Austin
Merle Hirsh, Ph.D., Johns Hopkins University
Robert Rolleston. Ph.D., University of Rochester
Paul Wilson, BA, MA, University of Cincinnati; Ph.D., University of Illinois

SCHOOL OF PHOTOGRAPHIC ARTS AND SCIENCES

William W.DuBois, BFA, MBA-
Acting Director, Professor
Owen Butler, BFA-Chair, Applied Photography; Associate Professor John Ciampa, BA, MA, JD-Director, American Video Institute; Associate Professor
Andrew Davidhazy, BFA, MFAChair, Imaging and Photographic Technology; Professor
Michael R. Peres, BS, BA-Chair, Biomedical Photographic
Communications; Associate Professor
James E. Rice-Chair, Photographic
Processing and Finishing
Management; McGhee Professor
Malcolm Spaull, BS, MFA-Chair,
Film and Video; Assistant Professor
Ken White, BA, MA, MFA-Chair,
Fine Art Photography; Assistant
Professor

Faculty

Patricia Ambrogi, MFA, Visual Studies Workshop-Assistant Professor
Carl Battaglia, BA, Boston College; MFA, Syracuse University-Associate Professor
Joan Boccino, BFA, Syracuse University; MFA, School of the Chicago Art Institute—Assistant Professor
Owen Butler, BFA, Rochester Institute of Technology-Associate Professor
Guenther Cartwright, BA, University of Oregon; MFA, Buffalo-Associate Professor
John Ciampa, BA, Boston University;
MA, University of Michigan; JD, Cornell University-Associate ProfessorAndrew Davidhazy, BFA, MFA, Rochester Institute of
Technology- Professor
Denis Defibaugh, BS, Rochester Institute of Technology-Assistant Professor
Steve Diehl, BS, University of Miami, Rochester Institute of TechnologyAssistant Professor
William W. DuBois, BFA, Ohio
University; M.Ed., Bowling Green State University—Associate Professor

Lothar K Engelmann, Ph.D.
University of Frankfurt-Professor Loret Falkner, MFA, Indiana University-Visiting Lecturer William S. Fischer, BS, Rochester Institute of Technology-Instructor Richard Floberg, BA, Iowa State; MS, Boston University-Associate Professor
Mark Haven, AB, Lebanon Valley College-Assistant Professor Bradley T. Hindson, BA, Rutgers University; MFA, Ohio UniversityAssociate Professor
Jack Holm, BS, Texas A\&M
University-Instructor
John E. Karpen, BS, MFA, Rochester
Institute of Technology-Professor
Robert Kayser, BS, City College of
New York; MS, Rochester Institute of
Technology—Associate Professor
Weston D. Kemp, MFA, Rochester
Institute of Technology-Professor Russell C. Kraus, BA, William
Paterson; Ed.D., University of Massachusetts-Amherst-Professor Martha Leinroth, AB, Wellesley College; MFA, Rhode Island School of Design-Assistant Professor Howard Lester, BA, MFA, University of California-Los Angeles-Assistant Professor

Howard LeVant, BS, Institute of Design, Illinois Institute of Technology; MS, Rochester Institute ofTechnology-Associate Professor Glenn Miller, BS, Rochester Institute ofTechnology-Associate Professor
J. Wesley Morningstar, BS, Rochester

Institute ofTechnology-Instructor
Douglas Nishimura, BS, MA,
McMaster University-Research
Associate/Instructor
Richard Norman, BS, Rochester Institute ofTechnology-
Lecturer/Technical Associate
Willie Osterman, BFA, Ohio
University, MFA, University of
Oregon-Assistant Professor
Michael R Peres, BS, Rochester
Institute ofTechnology; BA, Bradley
University-Assistant Professor
Will Roger Peterson, BFA, MFA,
Rochester Institute ofTechnology-
Visiting Instructor
DougRea, BS, Union College; MFA
Rochester Institute of Technology-
Associate Professor
James Reilly, BA, Franklin and
Marshall; MA, SUNY BuffaloDirector,
Image Permanence Institute
John Retallack, BFA, Rochester
Institute ofTechnology-Assistant
Professor
James E. Rice, BS, Cornell University -James E. McGhee Professor David J. Robertson, BFA, Pratt Institute; MA, Columbia University Teachers College-Professor Elliott Rubenstein, BA, MS, St. John's
University; MFA, SUNY at
Buffalo-Associate Professor
Malcolm Spaull, BS, St. Lawrence University; MFA, Rochester Institute ofTechnology-Associate Professor Nancy Stuart, BA, MS, Rochester Institute ofTechnology-Assistant Professor
Erik Timmerman, BS, University of Wisconsin; MFA, Southern
California-Associate Professor
Jeff Weiss, BS, University of
Michigan-Assistant Professor Charles C. Werberig, BFA, MS, Syracuse University-Associate Professor

Ken White, BA, Princeton University;
MA, MFA University of New
Mexico-Assistant Professor Richard D. Zakia, BS, Rochester Institute ofTechnology; Ed.D.,
University of Rochester-Professor
Thomas Zigon, BS, MS, Rochester
Institute ofTechnology-Instructor

Adjunct Faculty

Cat Ashworth, BFA, Arizona State University
Judith Berry
John Delly, MS, MBA, Roosevelt
University
David A. Engdahl, BS, M.Ed.,
University of Rochester
Garry Geer, BS, Rochester Institute ofTechnology; MFA, Syracuse University
William Klein, MSEE, Purdue University
Daniel Larkin
Hadrian Lechner, AB, Michigan State
Normal College; Ph.D., Boston
University Graduate School
Judith Levy
Arnold Lungershausen, MA, Ohio University
Charles Lysogorski, BFA, State
University College at New Paltz Keith McManus
Affie C. Peed, BS, EE, University of Kentucky
Ronald Richardson, BA, Colgate University; MFA, Rochester Institute ofTechnology
Grant Romer, BFA, Pratt Institute;
MFA, Rochester Institute of
Technology-Conservator, Photographic Collection,
International Museum of
Photography, George Eastman House
Michael Starenko, BA, Kalamazoo
College; MA, University of Chicago

SCHOOL OF PRINTING
 MANAGEMENT AND SCIENCES

Miles F. Southworth, BS, M.Ed.Director; Professor
Archibald D. Provan, BS,
M.Ed.-Administrative Coordinator;

Associate Professor
Warren Daum, BS, MS—Advisor to the Director
John Kronenberg, BS, Carnegie
Mellon-Consultant to the Dean
John C. McCracken, BS, MBA-Staff
Chairman, Management Section;
Assistant Professor
Marie Freckleton, BFA, MST-Staff
Chairman, Aesthetics Section;
Assistant Professor
Werner Rebsamen, Diploma,
Academy of Fine Ajts, Zurich.-Staff
Chairman, Press Section; Professor
Barbara Birkett, BA, MBA-
Coordinator, Graduate Program
Mark F. Guldin, BS, MS,
Ph.D.-Coordinator, Graduate Program
Joseph L. Noga, BS,
MS—Coordinator, Graduate Program; Professor
Linda Tolan, BS, MS-Coordinator
of Marketing and Recruitment
Dawn M. House, AAS-Academic
Coordinator

Faculty

Barbara Birkett, BA, Aquinas
College; MBA, Michigan; MBA Rochester Institute ofTechnologyAssistant Professor
William H. Birkett, BS, Illinois; MBA, Michigan, CMA-Associate Professor Joseph E. Brown, BS, Carnegie Mellon University; MS, Kansas
State-Professor
Walter A. Campbell, BA, Hobart;
MBA, M.Ed., University of
Rochester-Professor
Robert Y. Chung, BA, Eastern
Washington State University; MS
Rochester Institute of
Technology—Associate Professor
Frank J. Cost, BS, Eisenhower
College—Assistant Professor
W. Frederick Craig, BS, West Virginia

Institute ofTechnology; M.Ed.,
University of Rochester-Associate Professor

Hugh R. Fox, AB, Dartmouth; JD
Rutgers Law School-Assistant Professor
Clifton T. Frazier, BS, West Virginia Institute ofTechnology; M.Ed., University of Rochester-Associate Professor
Marie Freckleton, BFA, MST,
Rochester Institute ofTechnologyAssistant Professor
Mark F. Guldin, BS, Rochester Institute ofTechnology; MS, South Dakota State; Ph.D., Iowa-Melbert
B. Caryjr. Graphic Arts Professor Robert G. Hacker, BS, Illinois State; MS, South Dakota State; Ph.D., Iowa-Professor
Samuel B. Hoff, BA, MA, California State University-Assistant Professor Walter G. Home, BS, Rochester Institute ofTechnology; M.Ed.,
University of Rochester-Professor Herbert H. Johnson, BS, Rochester Institute ofTechnology-Associate Professor
John C. McCracken, BS, MBA, Rochester Institute ofTechnologyAssistant Professor
Joseph L. Noga, BS, Central Connecticut State University; MS, University of Bridgeport—Professor William A. Pakan, BS, Carnegie Institute ofTechnology; MA, Ph.D., Kent State University-Professor David P. Pankow, BA, MA, Brooklyn; MLS, Columbia-Associate Professor Archibald D. Provan, BS, Rochester Institute ofTechnology; M.Ed., University of Rochester-Associate Professor
Harry Rab, BSME, MSME, Newark College of Engineering-Associate Professor
Werner Rebsamen, Diploma, Academy of Fine Arts, ZurichProfessor
Eric Sanderson, BS, Eastern Washington University-Instructor Emery E. Schneider, BS, Southern Illinois University; M.Ed.,
Rochester-Associate Professor
Julius L. Silver, BA, Brooklyn College; Ph.D., ConnecticutProfessor
Miles Southworth, BS, University of Michigan; M.Ed., University of Rochester-Professor
Charles J. Weigand, BS, MS, SUNY at Oswego-Associate Professor

Adjunct Faculty

John Lovenheim, BA, Case Western Reserve University; MBA, Harvard University

Academic Technical Associates

David L. Dembroski-Technical Associate
Daniel Gramlich—Technical
Associate
John Kulak-Technical Associate
Kelly Laughlin-Technical Associate
Barry Lee-Technical Associate
John Marciniak-Coordinator
Technical Services

College of Liberal Arts

William J. Daniels, BA, MA, Ph.D., Dean; Professor
Glenn J. Kist, AB, MA, Ph.D.,
Associate Dean; Professor
David Murdoch, BA, MA, Ph.D.,
Assistant Dean; Professor
Paul Brule, BA, MS, Division
Chairperson, Social Science; Assistant Professor
Joseph M. Nassar, BA, MA, Ph.D.,
Division Chairperson, Language,
Literature and Communications;
Associate Professor
Edward Schell, B. Mus. Ed. MM,
Division Chairperson, Humanities; Assistant Professor
Diane Hope, BS, MA, Ph.D., Program
Chairperson, Professional and
Technical Communication; Associate Professor
Richard B. Lewis, BA, MA, Program Chairperson, Criminal Justice; Assistant Professor
Katherine Mayberry, BA, Ph.D.
Program Chairperson, Technical and Liberal Studies Option; Associate Professor
Michael J. Vernarelli, BA, MA, Ph.D., Program Chairperson, Economics; Professor
Helen Wadsworth, BS, MSW,
Program Chairperson, Social Work;
Assistant Professor
Thomas D. Hopkins, BA, MA, Ph.D.,
Arthur J. Gosnell Professor in
Economics
Bruce A. Austin, BA, MA, Ph.D.,
William A. Kern Professor in
Communications
Wade L. Robison, BA, Ph.D., Ezra A.
Hale in Applied Ethics

BEHAVIORAL SCIENCE DIVISION

Department of Psychology
John W. Adams, BA, Pennsylvania State University; MA, Ph.D.,
U.C.L.A.-Associate Professor,

Psychology
Brian P. Barry, BA, St. John fisher;
MSSc, Ph.D., Syracuse-Associate
Professor, Psychology
Kathleen C. Chen, BA, Rangoon
University, Burma; MA, Bryn Mawr
College; Ph.D., Pennsylvania State
Professor, Psychology
Virginia K. Costenbader, BA,
Dick inson College; MS,
Ph.D.,Syracuse University—Assistant
Professor, Psychology

Janet E. Farnum, BA, SUNY at
Brockport; MA, Ph.D., University of Rochester-Associate Professor, Psychology
Joseph E. Fitzpatrick, BA, MT, Ed.M
SUNY at Buffalo-Professor,
Psychology
Roger W. Harnish, BA, University of
Rochester; MS, Ph.D., Oklahoma
State University-Associate Professor, Psychology
Morton Isaacs, BA, Chicago; BS, MA,
Columbia; Ph.D., Yeshiva University Professor, Psychology
Marge S. Reading-Brown, BA,
Western College; M.Ed., Springfield
College; MA, SUNY at Pittsburgh;
Ph.D., SUNY at Albany-Assistant
Professor, Psychology

Department of Social Work

Richard Morales, BA, Michigan State
University; MA, SUNY at Brockport;
MSW, Ph.D., Syracuse
University-Associate Professor,
Social Work
Marshall L. Smith, AB, MSW,
University of Michigan; Ph.D., SUNY at Buffalo-Associate Professor, Social Work
Michael R. Stone, BA, SUNY at Geneseo; MSW, West Virginia University-Lecturer, Social Work Helen Wadsworth, BS, Gordon
College; MSW, Syracuse
University—Assistant Professor, Social Work

Department of Sociology and Anthropology

Kijana Crawford-Adeleye, BA,
Tougaloo College; MSW, Atlanta
University-Associate Professor, Sociology
Paul F. Grebinger, BS, Columbia
University; Ph.D., University of
Arizona-Professor, Anthropology
Joanne M. Jacobs, BA, University of
Rochester; MA, SUNY at Buffalo
Associate Professor, Sociology
Boris Mikolji, BA, University of Graz;
MA, Ph.D., Western
Reserve-Professor, Sociology
Murli M. Sinha, AB, Bihar University, India; MA, Patna University, India
MA, The City College of the City
University of New York; Ph.D.,
Cornell University-Professor,
Sociology

HUMANITIES DIVISION

Department of Fine Arts

Douglas R. Coffey, Diploma, Cleveland Institute of Art; BFA, Denver; MA, Western
Reserve-Professor, Fine Arts Charles D. Collins, AB, Rutgers University; MA, Ph.D., University of Iowa-Associate Professor, Fine Arts Tina Lent, BA, MA, University of California at Los Angeles-Assistant Professor, Fine Arts
Edward Schell, B.Mus.Ed.,
Westminster College; MM,
Westminster Choir
College-Assistant Professor, Fine

Arts

Charles W. Warren, AB, State
University of Iowa; MA, Ph.D., Ohio
State University-Professor, Fine Arts

Houston Wetherald, BA, Brown
University; MFA, Oberlin-Professor,
Fine Arts
Hans W. Zandvoort, MFA, Royal
Academy of Fine Arts, The
Hague-Professor, Fine Arts

Department of History

Frank Annunziata, AB, Manhattan College; MA, City College of the City University of New York; Ph.D., Ohio State University-Professor, History Richard Chu, BA, Taiwan University; MA, University of California at Berkeley; Ph.D., Columbia University-Professor, History Norman R. Coombs, BS, MS, Ph.D., Wisconsin-Professor, History Thomas Cornell, BA, Southwestern at Memphis; MS, Georgia Institute of Technology; Ph.D., Johns Hopkins University-Assistant Professor, History
Nabil M. Kavlani. BA, American University of Beirut; MA, Ph.D., Clark University-Professor, History Glenn J. Kist, AB, MA, Xavier; Ph.D., Loyola University, ChicagoProfessor, History
Richard D. Lunt, BA, Oberlin; MA, Ph.D., New Mexico-Professor, History
Salvatore Mondello, BA, MA, Ph.D., New York University—Professor, History
Pelligrino Nazzaro, BA, P. Giannone; Ph.D., University of
Naples-Professor, History Kenneth R. Nelson, AB, University of Connecticut; MA, Georgetown University; Ph.D., University of
Virginia-Professor, History

Department of Philosophy

James L. Campbell, AB, Mount St.
Mary's College; MA, Marquette
University; Ph.D., University of Notre
Dame-Professor, Philosophy
Timothy H. Engstrom, BA, MA,
Ph.D., University of Edinburgh,
Scodand-Visiting Assistant
Professor, Philosophy
Dane R. Gordon, BA, MA, University
of Cambridge; BD, University of London; MA, University of Rochester-Professor, Philosophy John Morreall, BA, St. John Fisher College; MA, Ph.D., University of Toronto-Professor, Philosophy John T. Sanders, BA, Purdue University; MA, Ph.D., Boston University-Professor, Philosophy David B. Suits, BA, Purdue University; MA, Ph.D., University of Waterloo-Associate Professor, Philosophy

Department of Science, Technology and Society

Jaye C. Melcher, BA, University of Vermont; Ph.D., University of Kansas-Assistant Professor, Science, Technology and Society
Paul A. Miller, BS, West Virginia; MA, Ph.D., Michigan State—Professor, Science, Technology and Society Robert J. Paradowsld, BS, Spring Hill College; MA, Brandeis University; Ph.D., University of
Wisconsin-Associate Professor,
Science, Technology and Society

Richard Shearman, BA, Western State
College of Colorado; MS, Eastern New Mexico University-Assistant
Professor, Science, Technology and Society
John A. White, BA, Ph.D., Cambridge
University-Professor, Science,
Technology and Society
Fred L. Wilson, BA, Murray State
University; Ph.D., University of
Kansas-Professor, Science,
Technology and Society

LANGUAGE, LITERATURE AND COMMUNICATION DIVISION

Department of Communication

Bruce A. Austin, BA, Rider College; MS, Illinois State University; Ph.D.,
Temple University-Professor,
Communications
Diane Hope, BS, SUNY at Brockport; MA, Ph.D., SUNY at
Buffalo-Professor, Communications David R. Neumann, BA, Ithaca College; MA, Ph.D., Bowling Green State University-Assistant Professor, Communications
Rudolph Pugliese, BA, SUNY at
Oneonta; MA-SUNY at
Brockport-Lecturer,
Communications
Patrick M. Scanlon, BA, SUNY at
Albany; Ph.D., University of
Rochester-Assistant Professor,

Communications

DeLann L. Williams, BA, Michigan State University; MA, Arizona State University-Lecturer,
Communications

Department of language and Literature
Sam Abrams, AB, Brooklyn College; MA, University of Illinois-Associate Professor, Literature
Arnold J, Berman, BA, Hofstra
University; MA, Ph.D., New York
University; MSW, Syracuse
University-Professor, Literature Sarah Collins, AB, Centre College;
MA, Ph.D., Indiana
University-Professor, Literature Anne Coon, BA, MA, Ph.D., SUNY at Buffalo-Associate Professor, Language
William DeRitter, BA, St. Lawrence; MA, University of
Rochester-Associate Professor, Literature
Katherine Mayberry, BA, Smith
College; MA, Ph.D., University of
Rochester-Associate Professor, Literature
Stanley D. McKenzie, BS,
Massachusetts Institute of
Technology; MA, Ph.D., University of
Rochester-Professor, Literature
David Murdoch, BA, Shurtleff
College; MA, Redlands University; Ph.D., Occidental
College-Professor, Literature
Joseph M. Nassar, BA, MA, University of Toledo; Ph.D., SUNY at
Binghamton-Associate Professor,
Literature
Thomas J. O'Brien, BS, University of
Rochester; MA, Columbia
University-Professor, Literature

Mark L. Price, BA, MA, Miami
University-Associate Professor, Literature
Sandra E. Saari, AB, Carleton College; MA, Ph.D., Occidental College-Professor, Literature
L. Robert Sanders, BA, MA, SUNY at Albany; Professor, Literature Caroline Snyder, BA, MA, Radcliffe; Ph.D., Harvard-Professor,

Literature

Sister Mary Sullivan, BA, Nazareth
College; MA, Ph.D., University of
Notre Dame-Professor, Literature
Elaine C. Thiesmeyer, AB,
Connecticut College; MA, Cornell University-Associate Professor, Literature
Wilma Wierenga, AB, Calvin College;
MA, Middlebury College, Johannes
Gutenberg University- Instructor, Language
Janet Zandy, BA, Montclair State
College; MA, University of Rochester
Lecturer, Language

Adjunct Faculty

Andrew W. Boone, BA, Stonehill College; MA, Middlebury College Susan Donovan, BA, Cornell College; MS, Nazareth College Rhona Genzel, BA, City College of New York
Peter Haggerty, BA, Wesleyan
University; MA, Rutgers University
Michael A. McMahon, AB, Rhode Island College; MS, University of Rhode Island
Janet K. Patlow, BA, Wells College;
MS, SUNY at Brockport; MA,
University of Rochester
Stephanie Polowe, BA, Wayne State University; MA, SUNY at Brockport; Ed.D., University of Rochester Katherine Schumacher, BA, Indiana
University; MA, Cornell University
Nita Speranza-Coskie, BA. Chicago
State University; M.Ed., Loyola
University of Chicago
Linda Chalmer Zemel, BA, MA,
University of Rochester

SOCIAL SCIENCE DIVISION

Department of Criminal Justice
John O. Ballard, BA, MPA, Indiana University—Associate Professor, Criminal Justice
Paul Brule, BA, Wittenberg
University; MS, Xavier University
Graduate School—Assistant
Professor, Criminal Justice
Elizabeth B. Croft, BA, MA,
University of Rochester; MA, Ph.D., SUNY at Albany-Associate Professor, Criminal Justice
John M. Klofas, BA, College of the Holy Cross; MA, Ph.D., SUNY at Albany-Associate Professor, Criminal Justice
Richard B. Lewis, BA, SUNY at
Albany; MS, Southern IllinoisAssistant Professor, Criminal Justice
John A. Murley, BA, University of
Dallas; MA, Ph.D., Claremont
Graduate School and University
Center-Associate Professor,
Criminal Justice
John M. Violanti, BA, MS, Ph.D.,
SUNY at Buffalo-Visiting Assistant
Professor, Criminal Justice

Department of Economics

Robert Biermann, BA, University of Northern Iowa-Lecturer, Economics
Constantino Dumangane, Sr., BA, MPA, Syracuse University; Ph.D., SUNY at Buffalo-Associate
Professor, Economics
Thomas D. Hopkins, BA, Oberlin College; MA, Ph.D., Yale University Professor, Economics
Bradley S. Loomis, AB, University of Miami; MS, Cornell
University-Instructor, Economics Michael J. Vernarelli, BA, University of Michigan; MA, Ph.D., SUNY at Binghamton-Professor, Economics

Department of Political Science
Louis J. Andolino, BS, Rochester
Institute of Technology; MA, Kent State University-Associate Professor, Political Science
Robert J. Brown, BS, SUNY at
Potsdam; Ph.D., Syracuse-Associate
Professor, Political Science
William J. Daniels, BA, Upper Iowa University; MA, Ph.D., University of Iowa-Professor, Political Science Louis R. Eltscher III, BA, Houghton; MA, American University-Associate Professor, Political Science
Paul H. Ferber, BA, American
University; M.Ph., Ph.D., George Washington University-Assistant Professor, Political Science
James S. Fleming, AB, Wake Forest
University; MA, Ph.D., University of
Arizona-Professor, Political Science
Hoyoung Lee, BA, Seoul National
University, Korea; MA, Ph.D.,
Maryland-Professor, Political Science

James L. Troisi, AB, Lycoming
College; MA, Ph.D., Syracuse
University-Associate Professor,
Political Science

College of Science

John D. Paliouras, BS, Alfred
University; MA, Ph.D., University of Illinois-Dean; Professor
Robert A. Clark, BS, Massachusetts Institute ofTechnology; Ph.D.,
University of Maryland-Associate Dean; Director, Center for Materials Science and Engineering; Professor Pasquale T. Saeva, BA, Niagara
University; MA, Bowling Green State University; MS, Rochester Institute of Technology—Associate Dean; Professor
Judy A. Witzel, BS, Rochester
Institute ofTechnology-Assistant
Dean for Administrauon
Marie Meyers-Administrative Assistant
Eileen D. Marron, BS, St.
Bonaventure University; MA, Colgate University-Senior Communications Coordinator
Nicolas A. Thireos, BA, Wabash College; MS, Utah State UniversitySenior Computing Specialist
G. Thomas Frederick, BS, MS, Ph.D., Ohio State University-Department Head, Biology; Professor
Gerald A. Takacs, BS, University of
Alberta; Ph.D., University of
Wisconsin-Department Head,
Chemistry; Professor
lohn M. Waud, BS, Lehigh University; MS, University of Pennsylvania; Ph.D., Lehigh UniversityDepartment Head, Clinical Sciences; Associate Professor
George T. Georgantas, AB,
University of Rochester; AM, Washington University; Ph.D., SUNY at Buffalo-Department Head,
Mathematics; Professor
Arthur Z. Kovacs, AB, Wabash College; Ph.D.; Duke UniversityDepartment Head, Physics; Professor Peter A. Cardegna, BA, Loyola College; Ph.D., Clemson UniversityProgram Director, Materials Science and Engineering; Associate Professor David A. Lamb, Operations Manager

DEPARTMENT OF BIOLOGY

Richard L. Doolittle. BA, University of Bridgeport; MS, Ph.D., University of Rochester-Associate Professor Jean A. Douthwright-Fasse, BA, Skidmore College; MS, Pennsylvania State University; MS, Ph.D., University of Rochester-Associate Professor
Irene M. Evans, AB, University of Rochester; MS, Wesleyan University; Ph.D., University of RochesterAssociate Professor
G. Thomas Frederick, BS, MS, Ph.D., Ohio State University-Professor Paul A. Haefner, BS, Franklin \& Marshall College; MS, Ph.D., University of Delaware—Professor M. Joseph Klingensmith, BS, Wheaton College; MS, Ph.D., University of Michigan-Professor Jeffrey S. Lodge, BA, University of Delaware; Ph.D., University of Mississippi-Assistant Professor
Douglas P. Merrill, BS, Ph.D., SUNY
College of Environmental Science and Forestry, Syracuse UniversityAssociate Professor
Robert H. Rothman, BA, Ph.D., University of California, Berkeley; MA, California State, San DiegoAssociate Professor
Carole A. Sack, BA, University of Michigan; Ph.D., Michigan State University-Professor
Franz K. Seischab, BS, Cornell
University; MS, SUC at Geneseo; Ph.D., SUNY College of Environmental Science and Forestry, Syracuse University-Professor Martin A. Vaughan, BS, MS, Ohio University; PhlD., Indiana State University—Assistant Professor
Nancy Wanek, BS, UNiversity of Wisconsin; MS, Ph.D., UNiversity of California-Assistant Professor

DEPARTMENT OF CHEMISTRY

Jerry M. Addud, BS, Univeriity of Rochester; Ph.D., University of Pennsylvania-Professor B. Edward Cain, BA, Harper College, SUNYat Binghamton; Ph.D., Syracuse University-Professor Anita Cheraovitx, BS, Southern Connecticut State University; Ph.D., Syracuse University-Assistant Professor
Robert A. Clark, BS, Massachusetts Institute of Technology; Ph.D.,
University of Maryland-Professor

Thomas Gennett, BA, State
University College of New York at Potsdam; Ph.D., University of Vermont-Assistant Professor Robert E. Gilman, AB, Dartmouth;
MS, Ph.D., University of MichiganProfessor
Joseph P. Hornak, BS, Utica College;
MS, Purdue University; Ph.D., University of Notre Dame-Associate Professor
David R. Harding, BS, University of
Nepal; MS, University of Iowa; Ph.D., Cambridge University-Visiting
Assistant Professor
Marvin L. Illingsworth, BS, Lafayette
College; Ph.D., University of
Massachusetts-Associate Professor
Earl Krakower, BS, McGill University;
MS, Ph.D., University of British
Columbia-Professor
Andreas Langner, BS, Ph.D., SUNY
Buffalo-Assistant Professor
Terence C. Morrill, BS, Syracuse
University; MS, San Jose State College; Ph.D., University of Colorado-Professor
John P. Neenan, BS, Wayne State University; Ph.D., University of California, Santa BarbaraAssociateProfessor
Christian G. Reinhardt, BS, Lafayette College; Ph.D., University
ofRocnester-Associate Professor
Gerald A Takacs BS, University of
Alberta; Ph.D., University of Wisconsin-Professor
Laura Ellen Tubbs, BS, Hood
College; Ph.D., University of
Rochester-Associate Professor
Kay G. Turner, BS, Bucknell
University; Ph.D., Ohio State
University-Associate Professor
Vladimir Vukonovic, BS, University of Belgrade; Ph.D., University of Munster-Distinguished Professor Emeritus

DEPARTMENT OF

MATHEMATICS
Maurino P. Bautista, BS, Ateneo de Manila University; MS, Ph.D., Purdue University-Assistant Professor Marda P. Birken, AB, Mt. Holyoke College; MS, New York UniversityAssociate Professor
Christine E. Bishop, BA, Pennsylvania State University; MS, Virginia Polytechnic Institute-Lecturer
Patricia A. CUrk, SB,SM,
Massachusetts Institute of
Technology; Ph.D., University of
Rochester-Professor
David M. Crystal, BS, MS, SUNYat
Albany-Professor
Alejandro B. Engel, BS, Universidad de Chile; Ph.D., SUNYat BuffaloAssociate Professor
David L. Farnsworth, BS, Union College; MA, Ph.D., University of Texas-Professor
Kenneth H. Farrell, BA, Southern Connecticut State University; MS, Ph.D., Syracuse University-Assistant Professor
Sally E. Fifchbeck, BA University of Rochester; MS, Rochester Institute of Technology—Assistant Professor Lester B. Fuller, BA, Houghton College; MA, University of Michigan; Ph.D., Michigan State UniversityDistinguished Professor Emeritus George T. Georgantas, AB, University of Rochester; AM, Washington University; Ph.D., SUNYat BuffaloProfessor
\{ames A. Glasenapp, BS, University of \{louston; MA SUNYat BuffaloProfessor
Marvin H. Gruber, BS, Brooklyn
College; MA, Johns Hopkins
University; MS, Rochester Institute of Technology; MA Ph.D., University of Rochester-Professor
Laxmi N. Gupta, BS, MS, Agra
University, India; MS, Rochester
Institute of Technology; Ph.D., SUNY
at Buffalo-Associate Professor
James J. Halavin, BS, Clarkson
University; MA Ph.D., SUNYat
Buffalo-Associate Professor
David S. Hart, BS, Syracuse
University; MA University of
Rochester-Assistant Professor
Rebecca E. Hill, BS, Frostburg State
College; MA West Virginia
University; MS, Rochester Institute of

Technology—Professor

Edwin T. Hoefer, BA Elmhurst
College; AM, Washington University;
Ph.D., SUNYat Buffalo—Professor
Jack W. Hollingsworth, BS, BA,
University of Kansas; MS, Ph.D.,
University of Wisconsin-Professor
Sesharadhani Kumar, BS, MS,
University of Madras; Ph.D.,
University of Delaware-Assistant Professor
Wanda S. Loiasiewicz, MS, Ph.D.,
University of Cracow, Poland-
Assistant Professor
Sophia A. Magzelakis, BS, MS, Ph.D., Old Dominion University-Assistant Professor
James E. Marengo, BA, MS,
California State University; Ph.D., Colorado State University-Assistant Professor
David J. Mathiason, BA St. Olaf
College; MS, Syracuse University; MS, Ph.D.,University of Rochester-
Associate Professor
Douglas S. Meadows, BS, Stanford
University; MS, New York University; Ph.D., Stanford University-Associate Professor
Edward A. Newburg, BS, MS, Purdue University; Ph.D., University of Illinois-Professor
Richard J. Orr, BS, John Carroll
University; MS, Case Institute of
Technology; MS, SUNYat BuffaloProfessor
John D. Paliourai, BS, Alfred
University; MA, Ph.D., University of Illinois-Professor
James C. Runyon, BEE, Cornell
University; MSEE, University of Rochester-Professor
Pasquale T. Saeva, BA Niagara
University; MS, Bowling Green State
University; MS, Rochester Institute of Technology-Professor
Harry M.Schey, BS, Northwestern University; AM, Harvard University; Ph.D., University of IllinoisProfessor
lack Tiihkoff, BS, MS, MA,
University of Rochester-Professor
Thomas C. Upson, BS, Tufts
University; MS, Rensselaer
Polytechnic Institute-Professor
Theodore W. Wilcox, BS, University
of Michigan; MS, Ph.D., University of
Washington-Associate Professor
Paul A. Wilson, BA, MA, University of Cincinnati; Ph.D., University of Illinois-Professor
James A Wiseman, BA, Ph.D., Boston
University-Associate Professor
Elmer L Young, BA, Amherst
College; MS, Ph.D., Ohio State
University-Associate Professor

DEPARTMENT OF PHYSICS

John D. Andersen, BS, SUNY at Buffalo; MA, Ph.D., University of Rochester-Assistant Professor Hrishikesh Baneijee, BS, Presidency College; MS, University College of Science; Ph.D., Institute of Nuclear Physics, Calcutta-Professor John H. Campbell, BS, Georgetown University; MS, Ph.D., University of Michigan-Assistant Professor Peter A. Cardegna, BS, Loyola College; Ph.D., Clemson UniversityAssociate Professor
Tracy A. Davis, BA, BS, Wofford College; Ph.D., Clemson UniversityAssociate Professor
F. Kingsley Elder, Jr., BS, University of North Carolina; MS, Ph.D., Yale University-Professor
Alan B. Entenberg, AB, Washington University; Ph.D., University of Rochester-Associate Professor Charles A. Hewett, BS, MS, Missouri School of Mines; Ph.D., University of Missouri-Professor
Ronald E. Jodoin, BS, Worchester Polytechnic Institute; Ph.D.,
University of Rochester-Professor James R. Kern, BS, Indiana
University of Pennsylvania; Ph.D., Clemson University-Associate Professor
Michael Kotlarchyk, BS, MS, Ph.D., Massachusetts Institute of Technology-Assistant Professor Arthur Z. Kovacs, AB, Wabash College; Ph.D., Duke UniversityProfessor
Vera W. Lindbere, BS, University of Alberta; MS, Ph.D., Case Western
Reserve University-Associate Professor
Varadaraja V. Raman, BS, St. Xavier; MS, Calcutta University; Ph.D., University of Paris-Professor
Earl H. Sexton, BS, Tufts University; MS, Massachusetts Institute of Technology; MST, Cornell University; Ph.D., SUNY at Albany-Professor
John S. Shew, BS, MS, Indiana
University; Ph.D., SUNY at AlbanyProfessor
Jerome Wagner, BS, Case Institute of Technology; MS, Ph.D., University of Wisconsin-Associate Professor Anne G. Young, BA, Brvn Mawr; MS, Ph.D., Cornell University-Associate Professor

DEPARTMENT OF ALLIED HEALTH SCIENCES

lohn M. Waud, BS, Lehigh University; MS, University of Pennsylvania; Ph.D., Lehigh University-Associate Professor
Kriiten M. Watentram-Rlch, BS,
CNMT, Rochester Institute of
Technology-Coordinator for
Academic Services

Biomedical Computing

John M. Waud, BS, Ph.D, Lehigh
University; MS, University of
Pennsylvania-Acting Program
Director; Associate Professor

Clinical Chemistry

John M. Waud, BS, Lehigh University; MS, University of Pennsylvania; Ph.D., Lehigh University-Program Director, Associate Professor James C. Aumer, BS, MS, Michigan Technological University-Associate Professor

Clinical Faculty

Richard M. Bayer, Ph.D., Rutgers
University-Rochester General
Hospital, Rochester
Nathan Hamblin, Rochester General
Hospital, Rochester
Howard N. Harrison, BS, University of California; MS, Ph.D., Cornell University-Rochester General Hospital, Rochester

Medical Technology

James C. Aumer, BS, MS, Michigan Technological University; (ASCP)Program Director; Associate Professor
Linda Myers, BS, MT (ASCP), Rochester Institute of TechnologyClinical Coordinator

Clinical Faculty

Jean M Maatta, MS, MT (ASCP),
Acting Program Director, School of Medical Technology, Albany Medical Center, Albany
Susan Cramer,
MT(ASCP)-Education Coordinator, School of Medical Technology, Millard Fillmore Hospital, Buffalo
Edward J. Hanchay, MT
(ASCP)—Program Director, School of Medical Technology;
Boston Veterans Administration
Medical Center, Boston
Robert W. Herttog.MD- Director, School of MedicalTechnology, Millard Fillmore
Hospital, Buffalo
Virginia Kotlan, MT(ASCP)Program Director, School of Medical Technology,
Daemen College, Buffalo
Bob Carpenter, MD-Director,
School of Medical Technology, St.
Mary's Hospital, Rochester
Nancy Mitchell, MS, MT
(ASCP)—Associate Program
Director, School of Medical
Technology, Rochester General
Hospital, Rochester
Arene Nikiel, MS, MT(ASCP)
SM-Education Coordinator, School of Medical Technology.
St. Mary's Hospital, Rochester
Joseph kino, MS, MT(ASCP)-
Program Director, School of Medical Technology, Rochester General Hospital, Rochester
W. A. Thomas, MD-Director, School of Medical Technology, Albany
Medical Center, Albany
Zygmunt M. Tomklewicz, MD-
Director, School of Medical
Technology, Rochester
General Hospital, Rochester

Nuclear Medicine Technology

Anna M. Wldu, BA, SUNY College of New York at Potsdam; BS, CNMT, Rochester Institute of
Technology-Program
DirectorjAssistant Professor

Robert O'Mara, MD—Medical
Director
Cheryl A Waldman, BA, SUNY at Buffalo; BS, CNMT, Rochester
Institute of Technology-
Clinical Coordinator

Clinical Faculty

Joseph Carpenter, BS, CNMTChief Technologist, Department of Nuclear Medicine, Our Lady of Lourdes Hospital, Binghamton
Cindy Cress, CNMT—Chief
Technologist, Department of Nuclear Medicine, Community
General Hospital, Syracuse
Linda Decker, BS, CNMT-Chief
Technologist, Department of Nuclear
Medicine, University of Rochester
Medical Center, Rochester
Dawn Estey, CNMT-Chief
Technologist, Department of Nuclear
Medicine, The Genesee
Hospital, Rochester
William Goldman, MD-Director,
Department of Nuclear Medicine, Community General Hospital,
Syracuse
Bennett Greenspan, BMD— Assistant
Professor of Radiology; Staff Nuclear
Medicine Physician, University of
Rochester Medical Center, Rochester
Linda HoweU, BS, CNMT-Chief
Technologist, Department of Nuclear
Medicine, Park-Ridge Hospital,
Rochester
Francis Kelley, MD—Chief of
Radiology, Department of Nuclear
Medicine, Highland
Hospital, Rochester
Robert Knack, MD—Director,
Department of Nuclear Medicine,
Our Lady of Lourdes Hospital,
Binghamton
Silviu Landman, MD—Medical Director of Nuclear Medicine, United Health Services,
Inc., Johnson City
Peter Maffetone, CNMT-Chief
Technologist, Department of Nuclear Medicine, Sisters of Charity Hospital, Buffalo
Robert O'Mara, MD—Professor of Radiology; Chairman, Division of
Radiology, University of Rochester
Medical Center, Rochester
Gretchen Rehberg, BS, MBA
CNMT-Chief Technologist,
Department of Nuclear Medicine,
Rochester General Hospital,
Rochester
W. Window Schrank, MD—Chief

Radiologist, Department of
Diagnostic Imaging, Park-
Ridge Hospital, Rochester
Barb in Sullivan, RN-Instructor for
Staff Development, St. Mary's
Hospital, Rochester
Manha Sundman, CNMT-Chief
Technologist, Department of Nuclear
Medicine, Highland Hospital,
Rochester
Herman Walllnga, MD-Director,
Division of Nuclear Medicine,
Genesee Hospital, Rochester
Paul Weiss, MD-Director, Division
of Nuclear Imaging, Department of
Diagnostic Radiology/Nuclear
Imaging, Rochester General Hospital, Rochester

George Wilson, MD—Assistant Professor of Radiology; Chief, Division of Nuclear Medicine, University of Rochester Medical Center, Rochester
Brian Wetzel, CNMT-Technical
Director, Diagnostic Imaging
Department, United Health Services, Inc., Wilson Site, Johnson City

Diagnostic Medical Sonography

r.liniral Faculty

Michael C. Foss, BA, M.Ed.,
RDMS, RVT, University of South
Florida-Program Director; Assistant Professor
Lon E. Bailey. BA, Roberts Wesleyan College; BS, RDMS, Rochester
Institute of Technology-Clinical Coordinator
Peter Gleason, MD-Medical Advisor Jean Allen, RDMS-Sonographer,
Bellevue Hospital, Schenectady
Gary Andrade, RDMS-Chief
Sonographer, Diagnostic Ultrasound,
Community General
Hospital, Syracuse
Darushe Anissi, MD-Medical
Director, Ultrasound Laboratory,
Rochester General Hospital,
Rochester
Birgit B. Armstrong, RDMS-
Sonographer, Strong Memorial
Hospital, Rochester
Joseph Augello, RDMS-Chief
Sonographer, Diagnostic Ultrasound,
United Health
Services, Binghamton
FarhadAzimi, MD-Medical
Director, Diagnostic Ultrasound, St.
Joseph's Hospital, Syracuse
Robert Benazzi, MD-Medical
Director, Diagnostic Ultrasound, St.
Mary's Hospital, Rochester
Johan P. Bonk, MD-Medical
Director, Diagnostic Ultrasound,
Community General Hospital, Syracuse
Marsha C. Brody, RDMS-Chief Sonographer, Children's Hospital, Buffalo
Lawrence Cadkin, MD-Medical
Director, Diagnostic Ultrasound,
United Health Services, Binghamton
Barbara CosteUo, BA, RDMS-
Chief Sonographer, Rochester
General Hospital, Rochester
Deborah DeLozier, MS, RDMS-
Chief Sonographer, Buffalo General
Hospital, Buffalo
Thomas Frede, MD-Bellevue
Hospital, Schenectady
Peter Gleason, MD-Medical
Director, Westside Radiology,
Rochester
John Hurley, MD-Medical Director,
Diagnostic Ultrasound, Highland
Hospital, Rochester
Kathleen T. Hryhorenko. RT,
RDMS—Chief Sonographer,
Diagnostic Ultrasound, St. Mary's
Hospital, Rochester
Kevin Kirch, RDMS-Chief
Sonographer, Diagnostic Ultrasound, St. Joseph's Hospital, Syracuse
Silviu Landman, MD-Medical
Director, Diagnostic Imaging
Laboratories, United Health Services, Johnson City
Mike McLaughlin, RT-Chief
Sonographer, Geneva General
Hospital, Geneva

Deborah Mendel, RT—Chief
Sonographer, Diagnostic Ultrasound,
Sisters of Charity
Hospital, Buffalo
Richard Moccia, MD-Director,
Diagnostic Ultrasound, Geneva
General Hospital, Geneva
Richard Munschauer, MD-
Medical Director, Diagnostic
Ultrasound, Children s
Hospital of Buffalo, Buffalo
William Newey, MD-Diagnostic
Ultrasound, Saratoga Hospital,

Saratoga

Gail Phillips, RDMS—Chief
Sonographer, Westside Radiology, Rochester
Nina Ploetz, AAS, RT, RDMS-
Sonographer, Highland Hospital,
Rochester
David Rowland, MD-Medical
Director, Diagnostic Ultrasound,
Sisters of Charity Hospital, Buffalo
Susan Russell, BS, RDMS-
Director of Ultrasound Training,
Genesee Hospital, Rochester
Kevin Rutkowski, RDMS-Chief
Sonographer, United Health
Services, Johnson City
Eileen Stadelmaier, RT, RDMS-
Children's Hospital, Buffalo
Bruce Stringer, MD-Ultrasound
Laboratory, Buffalo General
Hospital, Buffalo
Richard Tobin, MD-Director,
Diagnostic Ultrasound, Genesee
Hospital, Rochester

CENTER FOR

MATERIALS SCIENCE \&

 ENGINEERINGRobert A. Clark, Ph.D., University o'f Maryland-Director; Professor, Chemistry
Peter A. dardegna, Ph.D., Clemson
University—Program Director;
Associate Professor, Physics
Jerry M. Adduci, Ph.D., University of
Pennsylvania-Professor, Chemistry
Hrishikesh Baneijee, Ph.D.,
University of Calcutta-Professor, Physics
Tracy Davis, Ph.D., Clemson
University—Associate Professor, Physics
Alan B. Entenberg, Ph.D., University of Rochester-Associate Professor, Physics
G. Thomas Frederick, Ph.D., Ohio

State University-Professor and Head, Biology
William G. Friielle, MS, P.E.,
University of Rochester-Associate,
Professor, Mechanical Engineering
Technology
Lynn Fuller, Ph.D., University of
Buffalo-Professor and Head,
Microelectronic Engineering
Surendra K. Gupta, Ph.D., University
of Rochester-Associate Professor,
Mechanical Engineering
Roger E. Helntz, Ph.D., Syracuse University—Professor, Electrical Engineering
Charles A. Hewett, Ph.D., University
of Missouri-Professor, Physics
Marvin L. Ulinpworth, Ph.D.,
University of MassachusettsAssociate Professor, Chemistry
Michael Jackson, Ph.D., State
University of New York, Buffalo-
Assistant Professor, Microelectronic
Engineering

Ronald E. Jodoin, Ph.D., University of Rochester-Professor, Physics Bhalchandra V. Karlekar, Ph.D., P.E., University of Illinois-Professor and
Head, Mechanical Engineering
Michael Kotlarchyk, Ph.D.,
Massachusetts Institute of
Technology—Assistant Professor, Physics
Arthur Z. Kovacs, Ph.D., Duke University-Professor and Head, Physics
Andreas Langer, Ph.D., State
University of New York, Buffalo-
Assistant Professor, Chemistry
Vera W. Lindberg, Ph.D., Case Western Reserve University-
Associate Professor, Physics
Swaminathan Madhu, Ph.D.,
University of Washington-Professor, Electrical Engineering
Chris Nilsen, Ph.D., P.E., Michigan State University-Associate Professor, Mechanical Engineering
Alan H. Nye, Ph.D., University of Rochester-Associate Professor,
Mechanical Engineering
John D. Paliouras, Ph.D., University of Illinois-Dean, College of Science, and Professor, Mathematics Paul Petersen, Ph.D., Michigan State University-Professor and Head, Electrical Engineering
Harvey E. Rhody, Ph.D., Syracuse University-Professor, Electrical Engineering
Robert L. Snyder, Ph.D., P.E., Iowa
State University-Professor,
Mechanical Engineering
David A. Sumberg, Ph.D., Michigan State University-Associate Professor, Electrical Engineering
Gerald A. Takacs, Ph.D., University of Wisconsin-Professor and Head, Chemistry
I. Renan Turkman, Ph.D., University of Paris-Associate Professor, Electrical Engineering
Raman M. Unnikrishnan, Ph.D., University of Missouri-Professor, Electrical Engineering
Vladimir Vukanovic, Ph.D.,
University of
Munster—Distinguished Professor Emeritus, Chemistry
Jerome Wagner, Ph.D., University of Wisconsin-Associate Professor, Physics

Adjunct Faculty

John F. Carson, MS, Massachusetts Institute ofTechnology-Eastman Kodak Company, Rochester Dennis H. Feducke, MS, P.E., Syracuse University-IBM, Endicott George J. S. Gau, Ph.D., University of California, Berkeley-Eastman Kodak Company, Rochester Mool C. Gupta, Ph.D., Washington State University-Eastman Kodak Company, Rochester
Henry J. Gysling, Ph.D., University of Delaware-Eastman Kodak Company, Rochester J. Raymond Hensler, Ph.D., Pennsylvania State UniversityBausch and Lomb, Inc., Rochester Merle N. Hirah, Ph.D., Johns Hopkins University-Rhone Poulenc Systems
Robert Lord, MS, Syracuse
University-IBM, Endicott
Gerald F. Meyers, BS, University of Pittsburgh-Rochester Products, Rochester
J. William Sexton, BS, University of Rochester-Eastman Kodak
Company, Rochester
Tien-K uei Su, Ph.D., University of
Massachusetts-Mobil Chemical
Corporation, Macedon
E. Wayne Turnblom, Ph.D.,

Columbia University-Eastman
Kodak Company, Rochester
Edward G. Williams, MS, University of Rochester-Xerox Corporation, Rochester

National Technical Institute for the Deaf
 OFFICE OF THE VICE PRESIDENT/ DIRECTOR

William E. Castle, BS, Northern State College; MA, University of Iowa;
Ph.D., Stanford University-
Professor; Vice President for
Government Relations, RIT; Director, NTID
Robert Frisina, BA, Westminster College, Missouri; MA, Gallaudet University; Ph.D, Northwestern University-Director, International Center for Hearing and Speech Research
Janice A. Pratt, AAS, Rochester
Institute ofTechnology-
Administrative Assistant
Janis K. Smith, Diploma, Moser
College-Project Administrator Carol A. Stuckless, BS, Rochester Institute ofTechnology-Special Assistant
Wendell S. Thompson, BBA, MBA,
Rochester Institute ofTechnologyAssistant to the Vice President/ Director

DIVISION OF PLANNING AND EVALUATION

Michael S. Serve, AAS, State University of New York Agricultural and Technical College at Morrisville; BS, MBA, Rochester Institute of Technology-Director
Freddie L. Cox, BS, Rochester Institute ofTechnology - Assistant Director
Sheila Reasoner, Accounting Assistant

OFFICE FOR
 INTEGRATIVE RESEARCH

E. Ross Stuckless, BA, University of Toronto; MS, Gallaudet University; Ph.D., University of PittsburghProfessor; Director

AFFIRMATIVE ACTION

Marlene Allen, BFA, Pratt Institute; MS, University of RochesterManager

DIVISION OF PUBLIC AFFAIRS

Marcia B. Dugan, BA, Antioch College-Director

Janet Marventano, Public Affairs Specialist
Kathleen S. Smith, BA,
St. Bonaventure University-
Assistant to the Director

PUBLIC INFORMATION DEPARTMENT

Lynne C. Bohlman, BA, University of Richmond-Manager
Susan L. Cergol, BA, State University of New York College at GeneseoCoordinator, Public Information Beth M. Pessin, BS, North Dakota State University-Public Information Specialist
Kathryn Schmitz, BA, Duke
University-Senior Public
Information Specialist/Editor
Pamela L. Seabon, BA, St. John
Fisher College-Public Information Specialist
Deborah R. Waltzer, BSS,
Northwestern University-Public
Information Specialist
EDUCATIONAL OUTREACH DEPARTMENT

Robert K. Baker, BA, Trinity
College-Manager
Ella L. Ford, Coordinator, Visitor
Programs
Jane Lehmann, BS, Eastern Michigan
University; MLS, Western Michigan
University-Coordinator, Marketing Programs
Jina L. McGriff, AA, Jamestown
Community College; Certificate,
University of California at San
Francisco-Coordinator, Special
Events

OFFICE OF THE DEAN/CAREER DEVELOPMENT PROGRAMS

James J. DeCaro, BS, MS, State University of New York at Buffalo; Ph.D., Syracuse UniversityProfessor; Dean
Robert S. Dunne, BA, John Carroll University; MA, CAS, University of Rochester-Management Analyst Nancy I. Fabrize, Assistant to the Dean
Lavina Hept, SVP Program Assistant
Bruna Wells, AAS, BS, Rochester
Institute ofTechnology-Student
Information Specialist

OFFICE OF FACULTY DEVELOPMENT

Judy C. Egelston-Dodd, BS, MS, State University of New York at Albany; Ed.D., State University of New York at Buffalo-Professor, Acting

Chairperson

Larry K. Quinsland, BA, University of Wisconsin, Madison; MA, MS,
University of Wisconsin,
Milwaukee-Associate Professor;
Faculty Development Consultant

SCHOOL OF BUSINESS
 CAREERS

Christine M. Licata, BS, MS, Canisius College; Ed.D., George Washington University-Associate Professor; Assistant Dean/Director

BUSINESS CAREERS COUNSELING SERVICES DEPARTMENT

Lee H. Twyman-Arthur, BA, Indiana University; MA, Northern Illinois University-Associate Professor;
Chairperson
Delbert D. Dagel, AS, Community
College of the Finger Lakes; BS,
M.Ed., CAS, State University of New York College at Brockport-Associate Professor; Career Development Counselor
Kathy L. Davis, BS, MS, New York
State Teaching Certification, NCC,
State University of New York College
at Brockport; Certificate, Rochester
Institute ofTechnology-Assistant
Professor; Career Development
Counselor
Sara A. Kersting, BA, University of San Francisco; MS, Western Oregon State University-Assistant Professor;
Career Development Counselor
Patricia L. Lago-Avery, BS, Central
Michigan University; MS, University
of Arizona, NCC—Assistant Professor; Career Development Counselor
Toni M. Sica, BA, State University of
New York College at Fredonia; MS,
M.Ed., State University of New York

College at Brockport-Visiting
Instructor; Career Development Counselor
Solange C. Skyer, BS, Rhode Island College; MA, Gallaudet
University-Associate Professor; Career Development Counselor Geraldine Stanton, AAS, Monroe Community College; BA, Nazareth College of Rochester; MS, University of Rochester; NCC-(Assistant Professor); Visiting Career
Development Counselor

BUSINESS OCCUPATIONS

DEPARTMENT

William J. Rudnicki, AAS, University of Buffalo; BS, Ed.M., State University of New York at Buffalo; Ed. Spec, in Business, Michigan State University; Ed.D., Northeastern
University—Associate Professor; Chairperson
Mary Lou Basile, BA, LeMoyne College; MA, State University of New York at Albany-Associate Professor Sandra Broccolli Cohvell, AAS, Rochester Institute ofTechnologyTeaching Assistant
Karen K. Conner, BS, MA, Ball State University; Ed.D., State University of New York at Buffalo-Professor Karen Covert, BS, MS, Nazareth College of Rochester-Visiting Instructor
Harold E. Farneth, BA, M.Ed., Ed.D.,
University of Pittsburgh-Professor
Reed Gershwind, BS, California State University at Northridge-Lecturer
Sally E. Huttemann, BS, State
University of New York at Albany;
MA, University of Rochester-
Assistant Professor
Joan M. Inzinga, BS, MS, Central
Connecticut State University; Ph.D., University of Connecticut-Assistant Professor
Barbara J. Jurena, BS, MS, State
University of New York at
Albany-Assistant Professor

Linda F. Klafehn, BS, State University of New York, Empire State College; MS, Rochester Institute of Technology-Associate Professor Edward B. Lord, AAS, Rochester Institute ofTechnology; BA, M.Ed., University of Massachusetts,
Amherst-Assistant Professor
Vincent Ortolani, BS, Niagara University; MA, The Catholic University of America-Assistant Professor
Mary Elizabeth Parker, BS, State University of New York at Albany; M.Ed., University of VermontAssistant Professor
Daniel J. Pike, BS, MBA, Rochester Institute ofTechnology-Assistant Professor
Diane Weisskopf, BS, State University of New York at Albany; MS, Nazareth College of Rochester - Visiting Instructor
William H. Wallace, BS, United States
Military Academy; MS, State
University of New York at
Binghamton; CPA, New
York-Associate Professor

DATA PROCESSING

DEPARTMENT
Bruce O. Peterson, BA, Northland College; MA, Ph.D., New Mexico State University—Associate Professor; Chairperson
Donald H. BeU, BA, Washington University; MS, Washington State University; Certificate/Diploma, Carnegie-Mellon UniversityProfessor
Robert C. Berl, BS, Regents College, University of the State of New York;
MS, Rochester Institute of
Technology-Assistant Professor Dianne P. Bills, BA, University of Rochester; MS, Rochester Institute of Technology-Assistant Professor Karen Cummings, BS, State University of New York College at Geneseo-Visiting Instructor John Sweeney, BA, MS, Michigan State University-Assistant Professor Paul L. Taylor III, BS, Georgia Institute ofTechnology; MS, Washington University-Associate Professor
Richard A. Walton, BS, State University of New York, Empire State College; MS, Rochester Institute of
Technology-Assistant Professor

BUSINESS/COMPUTER SCIENCE

 SUPPORT DEPARTMENTJames L. Biser, BS, Manchester College; MS, Michigan State University-Assistant Professor; Acting Chairperson
Judith FeiTari, BS, Elmira College; MBA, Rochester Institute of Technology—Assistant Professor Ann M. Hewitt, BS, Nazareth College of Rochester; MA, University of Rochester-Instructor Susan Jackowiec, BS, Rochester Institute ofTechnology-Lecturer Richard D. Orlando, BS, MBA, Rochester Institute of Technology—Associate Professor Myra Bennett Pelz, BA, Douglass College; MA, New York University; MS, Rochester Institute of Technology—Assistant Professor

Michael H. Steve, BA, University of Rochester; MS, Ph.D., Florida State University—Assistant Professor; Instructional Developer

SCHOOL OF SCIENCE AND ENGINEERING CAREERS

Marie L. Raman, BS, University of Puerto Rico, Mayaguez; MS, Rochester Institute of Technology; Ed.D., University of RochesterAssociate Professor; Assistant Dean/Director
Carl A. Spoto, BA, University of Rochester; MS, State University of New York at Albany; NCC-Associate Professor; Chairperson, Counseling Services
Robb Adams, BA, Hope College; MA, Eastern Michigan University; MS, State University of New York College at Brockport—Associate Professor;
Career Development Counselor
Vernon W. Davis, BA, Temple
University; M.Ed., Gallaudet
University; NCC-Associate
Professor; Career Development Counselor
Margaret A. Hoblit, BA, San Jose State University; MS, California State University at Sacramento;
NCC-Assistant Professor; Career Development Counselor
Jane E. Mullins, BA, MA, Gallaudet
University; NCC-Associate
Professor; Career Development
Counselor

APPLIED SCIENCE/ALLIED

HEALTH DEPARTMENT
Frederic R. Hamil, AAS, State University of New York Agricultural and Technical College at Alfred; BS, State University of New York College at Fredonia; MS, State University of New York College at BrockportAssociate Professor; Chairperson Lisa Davenport, AAS, BS, MT, Rochester Institute ofTechnology; Registered Medical TechnologistVisiting Instructor
Marilyn G. Fowler, RRA, St. Francis
Hospital, Wisconsin; Certificate, School for Medical Records Librarians; BS, State University of New York, Empire State
College-Associate Professor; Medical Record Technology Program Director

Diane J. Heyden, AAS, Erie
Community College-Visiting Lecturer
Henry P. Maher, Certificate/
Diploma, LaSalette Seminary; BA, Assumption College; MS,
Northwestern University; MS,
Rochester Institute ofTechnology; Ph.D., Florida State UniversityAssociate Professor
Cynthia Mann, ART, AAS, Rochester Institute ofTechnology-Lecturer Dominic J. Peroni, AAS, Rochester Institute ofTechnology-Lecturer Beverly J. Price, AAS, State University of New York Agricultural and Technical College at Alfred; BS, MS, Rochester Institute ofTechnology; Registered Medical TechnologistAssociate Professor

Dale L. Rockwell, BA, Clark
University; BS, Gallaudet University;
BS, MLS, Rochester Institute of Technology; MA, Wesleyan University; Ph.D., University of Rochester-Associate Professor David Templeton, BA, Wittenberg University; MA, Northwestern University-Assistant Professor Douglas L Wachter, AAS, Corning Community College; BS, State University of New York College at Brockport; MS, Rochester Institute of Technology-Assistant Professor; Program Director
Edna G. Wilkinson, AAS, Rochester Institute ofTechnology; BS, State University of New York, Empire State College-Associate Professor Jonona S. Young, AAS, BS, Rochester Institute ofTechnology; MS, University of Rochester; Registered Medical Technologist-Associate Professor

CONSTRUCTION

TECHNOLOGIES DEPARTMENT
Hugh P. Anderson, B.Arch.,
Massachusetts Institute of
Technology; MS, Rochester Institute ofTechnology; AIA, Licensed Architect-Associate Professor: Chairperson
Julius J. Chiavaroli, B.Arch., MBA, University of Notre Dame; MBA, Rochester Institute ofTechnology; AIA, Licensed Architect-Associate Professor
James D.Jensen, B.Arch,, Rensselaer Polytechnic Institute; MS. Rochester Institute ofTechnology; Licensed Architect-Associate Professor Robert L. Keiffer, BSCE, Clarkson College ofTechnology; MSCE, Syracuse University; ASCE,
Professional Engineer-Associate Professor
William R. LaVigne, B.Arch,, Notre Dame University; AIA, Licensed Architect-Assistant Professor Edward J. McGee, AAS, Monroe Community College; B.Tech., MBA, Rochester Institute of TechnologyAssistant Professor
Ernest L. Paskey, BLA, State
University of New York College of Environmental Science and Forestry at Syracuse; MS, Rochester Institute ofTechnology; ASLA, Licensed Landscape Architect-Associate Professor

ELECTROMECHANICAL

TECHNOLOGY DEPARTMENT

Robert A. Moore, BS, MS, Rochester Institute ofTechnology-Associate Professor; Chairperson
David Lawrence, AAS, BET,
University of Akron; MS, Rochester Institute of Technology-Assistant Professor
Robert O. Naess, BEE, Marquette University; MS, Rochester Institute of Technology-Assistant Professor Joseph Polowe, B.Mgt.E., Rensselaer Polytechnic Institute; MS, Rochester Institute ofTechnology-Assistant Professor
Anthony E. Spiecker, AAS, BET, MS, Rochester Institute of
Technology—Assistant Professor

INDUSTRIAL TECHNOLOGIES

 DEPARTMENTEdward A. Maruggi, AAS, Rochester Institute ofTechnology; BS, Ed.M., State University of New York College at Oswego; Ph.D., University of Minnesota-Professor; Acting Chairperson
John N. Amon, AAS, Rochester Institute ofTechnology-Lecturer Eder M. Benati, AAS, Rochester Institute ofTechnology; BS, State University of New York College at Utica-Rome; MS, Rochester Institute ofTechnology-Assistant Professor Paul J. Brennan, New York State Journeyman Machinist; New York State Journeyman Toolmaker; Diploma, Rochester Institute of Technology; BA, State University of New York College at FredoniaInstructor
Raymond R. Grosshans, BS, State University of New York College at Utica-Rome; MS, Rochester Institute ofTechnology-Assistant Professor Edward P. Maruggi, AAS, BS, MS. Rochester Institute ofTechnologyVisiting Instructor
Sidney L. McQuay, AAS, Williamsport Community College; BS, MS, State University of New York College at Oswego; Ph.D., University of Connecticut-Associate Professor Ronald J. Till, BS, State University of New York College at Oswego; MS, State University of New York College at Brockport-Associate Professor

PHYSICS AND TECHNICAL MATHEMATICS DEPARTMENT

Marvin C. Sachs, BS, MA, Ed.D.,
University of Rochester-Associate Professor; Chairperson
Dorothy Baldassare, BS, MS, State
University of New York College at
Brockport-Assistant Professor
Patricia Billies, BA, Nazareth College of Rochester; MS, Rochester Institute ofTechnology-Visiting Assistant Professor
Ann Bonadio, BA, Mary Washington
College; MS, University of
Rochester-Assistant Professor Joan Carr, BA, State University of New York College at Cortland; BS, University of New HampshireAssistant Professor
Jeanne Colwell, AB, Syracuse University; MAT, University of North Carolina-Visiting Assistant Professor Vincent A. Daniele, BS, MS, State University of New York College at Cortland; Ph.D., Syracuse
University-Associate Professor Varadaraja Krishnan, BS, University of Calcutta, India; MS, University of Puerto Rico; MS, Rochester Institute ofTechnology-Assistant Professor Judith E. MacDonald, BA, State University of New York College at Geneseo; MS, University of Rochester-Visiting Assistant Professor

Yashodhara Maitra, BS, St. Xavier's College, Bombay, India; MS, University of Rochester-Visiting Assistant Professor
Robert S. Menchel, AAS, Hudson
Valley Community College; BS,
Clarkson College; MBA, Rochester Institute ofTechnology-Assistant Professor

Keith Mousley, BS, Rochester Institute of Technology; MA,
Gallaudet University-Instructor
Paul C. Peterson, BS, State University of New York College at Buffalo; M.Ed., Gallaudet University; Ph.D., Syracuse University-Associate
Professor
Victoria J. Robinson, BS, MS,
University of Illinois, UrbanaAssistant Professor
Maria Shustorovich, MS, Moscow
State Pedagogical Institute-Assistant Professor
Joan B. Stone, BS, St. Lawrence University; MS, Syracuse University; Ed.D., University of RochesterProfessor
David H. Swanson, BA, College of Wooster; M.Ed., Ph.D., Texas A\&M University-Associate Professor Robert W. Taylor, BA, University of Southern California; MA, Yale University-Associate Professor

SCIENCE AND ENGINEERING

 SUPPORT DEPARTMENTRosemary E. Saur, BA, Gustavus Adolphus College; MA, Ph.D., University of California at Santa Barbara-Associate Professor; Chairperson
Karen M. Beach, BA, Gustavus Adolphus College-Visiting Assistant Professor
Gail E. Binder, BA, Drew University; MS, University of Pennsylvania; MS, Rochester Institute of TechnologyAssociate Professor
Dominic T. Bozzelli, BS, University of Notre Dame; MS, Rochester Institute of Technology; MS, CAS, State University of New York College at
Brockport—Associate Professor
Thomas Callaghan, BS, University of Massachusetts, Amherst; BSME,
Rochester Institute of TechnologyInstructor
Warren R. Goldmann, BS, Stanford University; MS, Rochester Institute of Technology—Associate Professor James Malory, AAS, Kent State University; B.Tech., Rochester
Institute of Technology-Assistant Professor
Sharon L. Rasmussen, BA, State University of New York College at Geneseo; MS, Rochester Institute of Technology-Associate Professor Dixie H. Reber, BS, Milligan College; MS, State University of New York College at Geneseo-Visiting Assistant Professor
Glenda J. Senior, BS, University of Newcasde Upon Tyne; BS, Rochester Institute of Technology; MS,
University of Rochester-Associate Professor

SCHOOL OF VISUAL COMMUNICATIONS

Thomas G. Raco, BFA, MFA, Rochester Institute of Technology; Ed.D., University of BuffaloProfessor; Assistant Dean/Director Thomas J. Castle, AAS, State University of New York Agricultural and Technical College at Farmingdale; AAS, BFA, MFA, Rochester Institute of TechnologyAssociate Professor

VISUAL COMMUNICATIONS COUNSELING SERVICES

Gail A. Rothman, BA, State
University of New York at Albany; MSEd., State University of New York College at Brockport; Ph.D.,
University of Buffalo-Associate
Professor; Chairperson
Gregory J. Connor, BS, Syracuse University; MS, Rochester Institute of Technology-Associate Professor;
Career Development Counselor Jane D. Dreessen, AAS, Monroe Community College; BS, State University of New York College at Brockport-Career Resource Specialist
James L. Kersting, BA, MS, St. Cloud State University-Associate Professor; Career Development Counselor Sandra LeBoeuf, BA, MA, Gallaudet University; MS, Rochester Institute of Technology-Visiting Instructor; Career Development Counselor Carl M. Moore, AAS, Rochester Institute of Technology; BS, Gallaudet University; MA, New York University-Visiting Instructor; Career Development Counselor Anne Van Ginkel, BA, University of California at Santa Barbara; MS, Western Oregon State UniversityAssistant Professor; Career
Development Counselor

APPLIED ART DEPARTMENT

John W. Cox, BFA MFA, Rochester Institute of Technology; Ph.D., Syracuse University-Associate Professor; Chairperson
Paula A. Grcevic, BFA, MFA, Pratt Insdtute-Assistant Professor Michael L. Krembel, BFA, MFA, Rochester Institute of TechnologyAssociate Professor
Katherine A. Voelkl, BFA, MS, Rochester Institute of TechnologyAssistant Professor
Michael J. Voelkl, BFA, MST,
Rochester Insdtute of TechnologyAssociate Professor

PHOTO/MEDIA TECHNOLOGIES DEPARTMENT

Jean-Guy Naud, BS, MS, Rochester Institute of Technology-Professor; Chairperson
Frank C. Argento, BFA MFA, Rochester Insdtute of Technology—Associate Professor Omobowale Ayorinde, BFA, Massachusetts College of Arts; MFA, Rochester Institute of TechnologyInstructor
Michael Ferguson, BS, Rochester Institute of Technology-Lab Technician
David Hazehvood, BS, Rochester Institute of Technology—Assistant Professor
Edward Mineck, BA, University of Connecticut-Instructor
Thomas J. Policano, BS, University of Rochester; MFA, State University of New York at Buffalo-Associate Professor
Patricia A. Russotti, BPS, State
University of New York, Empire State College; MS, Ed.S., Indiana
University-Associate Professor Antonio Toscano, Diploma, Atelier Frochot, Paris, France; BFA, Museum Art School; MFA, Rochester Institute of Technology—Associate Professor

PRINTING PRODUCTION TECHNOLOGY DEPARTMENT

James M. DeMarco, Senior Technical Associate
Kenneth F. Hoffmann, BS, Seton Hall University; M.Ind.Ed., Clemson
University-Assistant Professor
Michael L. Kleper, AAS, BS, MS,
Rochester Institute of
Technology—Professor
Carl M. Palmer, AAS, BS, MS, Rochester Institute of TechnologyInstructor
Jere R. Rentzel, BS, Millersville State College; MS, Rochester Institute of Technology—Associate Professor
Harold Scharmberg, BS, State
University of New York at
Buffalo-Instructor

VISUAL COMMUNICATIONS SUPPORT DEPARTMENT

Mark J. Rosica, BA, State University of New York College at Oswego; MS,
Syracuse University; CAS, Gallaudet
University-Assistant Professor;
Chairperson
Lynne Bentley-Kemp, BFA, MFA,
Rochester Institute of TechnologyInstructor
Sidonie M. Roepke, BFA, MST, MS,
Rochester Institute of TechnologyAssistant Professor
Jack Slutzky, BA, Bradley University;
MA, University of California at Los
Angeles-Professor
Michael White, BFA, MFA, Rochester Institute of Technology-Assistant Professor

DIVISION OF COMMUNICATION PROGRAMS

Ronald Kelly, BS, M.Ed., Ph.D., University of Nebraska, LincolnAssociate Professor; Assistant
Dean/Director
Ruth M. Fromm, Administrative Assistant

AUDIOLOGY DEPARTMENT

Michael Block, BA, MS, University of South Florida, Tampa; Ph.D., Northwestern Illinois
University—Associate Professor; Chairperson
Linda B. Bement, BS, Nazareth College of Rochester; MS, Gallaudet University-Assistant Professor Melody L. Bricault, BS, MA, University of Illinois, UrbanaVisiting Instructor
Diane Castle, BA, Boston University; MA, Syracuse University; Ph.D., Stanford University-Professor Catherine Clark, BA, Bradley University, Peoria; MS, University of Louisville-Instructor
Linda G. Gottermeier, BS, Nazareth College of Rochester; MA, State University of New York College at Geneseo-Assistant Professor
Douglas J. MacKenzie, BA, State University of New York College at Oswego; MA, State University of New York College at Geneseo-Assistant Professor
Linda Palmer, BA, University of Illinois; MA, Northern Illinois
University—Assistant Professor

Lawrence C. Scott, BS, State University of New York College at Geneseo; MS, Southern Illinois University, Carbondale-Visiting Assistant Professor
Karen B. Snell, BA University of Chicago; MA, State University of New York at Buffalo; Ph.D., University of Iowa-Assistant Professor Josara Wallber, BS, Colorado State University; MS, Idaho State
University-Assistant Professor
Valerie R. Yust, BA, College of St.
Francis; MS, Gallaudet UniversityAssistant Professor

SPEECH/LANGUAGE DEPARTMENT

Marietta M. Paterson, BA, Sir George Williams University, Montreal; MS,
McGill University; Ed.D., University of Cincinnati-Assistant Professor; Chairperson
Allen A. Austin, BA, Indiana University at Bloomington; MA, University of Illinois, UrbanaAssistant Professor
Sidney M. Barefoot, AAS, State
University of New York College of Environmental Science and Forestry at Syracuse; BS, State University of New York College at Geneseo; MS, Pennsylvania State UniversityAssociate Professor
Paula Brown, BA University of Missouri, Columbia; MA, Kent State University; MS, Ph.D., University of
Rochester-Assistant Professor
John M. Conklin, AAS, Orange
County Community College; BS,
State University of New York College at Brockport; MS, State University of New York College at GeneseoAssistant Professor
Karen Dobkowski, BS, New York University; MS, Teachers College, Columbia University-Visiting Instructor

Kendra Marasco, BS, Northern Illinois University; MA, Kent State University-Visiting Instructor Nicholas A. Orlando, BS, MS, State University of New York College at Geneseo-Professor
Larry Pschirrer, BA, Rutgers
University; MA, State University of
New York College at Geneseo-
Assistant Professor
Jean McKernan Smith, BS, Nazareth
College of Rochester; MA, State
University of New York College at
Geneseo-Associate Professor
Brenda Whitehead, BS, State
University of New York College at
Geneseo; MA, Western Michigan
University-Associate Professor

SIGN COMMUNICATION
 DEPARTMENT

William J. NeweU, BA, St. Edwards
University; MA, St. Cloud State
University—Associate Professor; Chairperson
Victoria A Armour, BA, Western
Maryland College; M.Ed., Gallaudet
University-Visiting Assistant

Professor

Brenda Aron, BA Gallaudet
University-Instructor
Thelma Bohli, BS, Gallaudet
University-Visiting Instructor

Donna L. Burfield, AA, Miami-Dade Community College; BA, Florida Atlantic University; MS, University of Tennessee—Assistant Professor Keith M. Cade, BS, Rochester Institute of Technology-Instructor Barbara Ray Holcomb, AAS, Rochester Institute of Technology; BS, State University of New York College at Brockport; MS, Rochester Institute of Technology-Assistant Professor
Samuel K Holcomb, AAS, Rochester Institute of Technology-Lecturer Dominique Mallery-Ruganis, BA University of Paris, France; BS, Western Connecticut State College; MS, Nazareth College of Rochester-Assistant Professor Geoffrey Poor, AAS, Seattle Central Community College; BA, Vassar College; MS, Nazareth College of Rochester-Assistant Professor June Reeves, BS, Mississippi College; MS, Jackson State College-Visiting Assistant Professor
Dorothy M. Wilkins, AAS, Rochester Institute of Technology; BA State University of New York College at Brockport-Visiting Instructor

ENGLISH DEPARTMENT

Sybil Ishman, BA University of North Carolina at Greensboro; MA, Ph.D.,
University of North Carolina at Chapel Hill—Assistant Professor; Chairperson
Stephen Aldersley, BS, University of Surrey; MA University of Lancaster; MS, College of St. Rose-Associate Professor
Fiona Bennie, BS, Syracuse University; MS, University of Rochester-Visiting Instructor Joseph Bochner, BA City University of New York, Queens College; MA, Ph.D., University of WisconsinAssociate Professor
Margaret Brophy, BA, Nazareth College of Rochester; MS, University of Rochester-Visiting Instructor Carmella A. Chamot, AA, Rochester Institute of Technology-English Learning Center Technician Karen Christie, BS, M.Ed., Lewis and Clark College; Ed.D., University of Pittsburg-Assistant Professor Kathleen E. Crandall, BA, MA California State University at Fresno; Ph.D., Northwestern
University-Associate Professor Peter Haggerty, BA Wesleyan University; MA, Rutgers University-Assistant Professor Denise Hazelwood, BA
Elizabethtown College; MS, University of Rochester-Visiting Instructor
Joyce Horvath, BS, Ohio State University; MS, University of Rochester-Assistant Professor Edward Lichtenstein, BA, Dickinson College; MA Ph.D., University of Illinois-Assistant Professor Larry J. LoMaglio, BA St. John Fisher College; MA, University of Rochester; Ed.M., State University of New York at Buffalo—Assistant Professor
Eugene Lylak, BA, State University of New York at Buffalo; M.Ed., St. Michael's College-Associate Professor

Andrew Malcolm, Diploma, Westchester Community College; BS, MS, Rochester Institute of Technology-Associate Professor Betsy H. McDonald, BA State University of New York College at Geneseo; MA, Ph.D., State University of New York at Buffalo-Assistant Professor
Michael McMahon, AA, Roger
Williams College; BA, Rhode Island
College; MS, University of Rhode
Island-Associate Professor Elizabeth H. O'Brien, BS, Maryhurst College; MA, Gallaudet University; Ed.D., State University of New York at Buffalo-Associate Professor John-Allen Payne, AA San Diego City College; BA, California State
University; MS, San Diego State University; Ph.D., University of
Illinois-Assistant Professor
Carmel Priore-Garlock, BA, MS, Canisius College-Visiting Instructor Carol Sentiff, AAS, State University of New York at Albany-Lecturer Nora Shannon, BS, Nazareth College of Rochester; MA Canisius CollegeVisiting Assistant Professor
Paula Wollenhaupt, BS, Gallaudet University—Visiung Instructor

TECHNICAL AND INTEGRATIVE COMMUNICATION STUDIES DEPARTMENT

Bonnie Meath-Lang, BA, Nazareth College of Rochester; MA, Western Illinois University; Ed.D., University of Rochester-Professor;
Chairperson
Jacquelyn Kelly, BS, Nazareth College of Rochester; MA, State University of New York College at GeneseoAssociate Professor
Stephanie Polowe, BA Wayne State University; MA, State University of New York College at Brockport;
Ed.D., University of RochesterAssociate Professor

COMMUNICATION SUPPORT

 DEPARTMENTGeorge D. Silver, AAS, Rochester
Institute of Technology-Manager Susan Austin, BA, Indiana
University-Scheduling/Registration Technician
Shawel Beyene, BS, Rochester
Institute of Technology-Technical Associate
Cecelia A. Dorn, AS, Auburn
Community College; BS, MA, State
University of New York College at
Geneseo-Applications/ Analyst
Programmer
Stephen Knight, AAS, Wentworth
Institute of Technology; AAS,
Genesee Community College; BT,
Rochester Institute of Technology-
Systems Programmer
Bonnie Mumford, BA University of
Vermont; MA, Syracuse University-
Coordinator, Self-Instruction Lab
Beverly Newell, Scheduling/
Registration Technician
Curtis Reid, BS, Rochester Institute of Technology-Applications
Analyst/Programmer
Sam Rosenberg, BS, University of Rochester-Systems Programmer Kathy Tyson-Hearing Ad Shop Technician

RESEARCH DEPARTMENT

Robert L. Whitehead, BS, MS,
Brigham Young University; Ph.D.,
University of Oklahoma, Health
Sciences Center-Professor;
Chairperson
John A. Albertini, BA Drew
University; MS, Ph.D., Georgetown
University—Associate Professor
Gerald P. Berent, BS, University of
Virginia; Ph.D., University of North Carolina at Chapel Hill-Associate Professor
Frank Caccamise, BA St. John Fisher College; MS, Gallaudet University; Ph.D., University of WashingtonProfessor
E. William Clymer, AAS, BS, MBA,

Rochester Institute of Technology;
M.Ed., Syracuse University-

Associate Professor
Carol Lee DeFilippo, BA, Newark State College; MS, Purdue University; MS, Ph.D., Washington UniversityAssociate Professor
Susan Fischer, AB, Radcliffe College; Ph.D., Massachusetts Institute of Technology - Associate Professor Donald D.Johnson, BS, University of Illinois, Urbana; MA, Northwestern University; Ph.D., University of
Illinois, Urbana-Professor
Dale E. Metz, BS, State University of New York College at Geneseo; MS, Purdue University; Ph.D., Syracuse University—Associate Professor
Ila Parasnis, BA, MA, Nagpur University, India; MA, Ph.D., University of Rochester-Associate Professor
Vincent J. Samar, BA, MA Ph.D., University of Rochester-Associate Professor
Donald G. Sims, BA, University of Colorado; MS, Ph.D., University of Pittsburgh-Associate Professor Joanne D. Subtelny, BS, University of Pennyslvania; M.Ed., Pennsylvania State University; Ph.D., Northwestern University-Professor

DIVISION OF EDUCATIONAL SUPPORT SERVICES PROGRAMS

T. Alan Hurwitz, BS, Washington University; MS, St. Louis University; Ed.D., University of RochesterProfessor; Associate Vice President for Outreach and External Affairs; Director
Jean Bondi-Wolcott, BS, Nazareth College of Rochester; MS, Rochester Institute of Technology-
Coordinator of Outreach Operations Gerard Buckley, BS, Rochester Institute of Technology; MSW, University of Missouri, Ed.D., University of Kansas-Chairperson, Summer Exploratory Programs and Outreach Development
Mary Ann Erickson, BA, State University of New York, Empire State College-Coordinator,
Telecommunications Center
Andrew Mayer, BFA MFA Rochester Institute of TechnologyAdministrator, Office of Alumni Relations

EDUCATIONAL RESEARCH AND DEVELOPMENT DEPARTMENT

Barbara G. McKee, BA, MA,
Michigan State University; Ph.D.,
Syracuse University-Associate
Professor; Chairperson
Fred J. Dowaliby, AA Greenfield
Community College; BA MS, Ph.D.,
University of Massachusetts,
Amherst-Associate Professor;
Research Associate
Wayne M. Garrison, BA, University of
Maryland; MS, Ph.D., Purdue
University-Associate Professor;
Senior Research Associate
Janette Henderson, Licentiate,
College of Speech Therapists,
London; MA University of Essex;
Ph.D., University of Connecticut(Assistant Professor); Senior
Research Assistant
Harry G. Lang, BS, Bethany College;
MS, Rochester Institute of
Technology; Ed.D., University of
Rochester-Professor
Gary L. Long, BA, University of
Akron; MA, Ph.D., Texas Christian
University-Associate Professor;
Research Associate
Michael S. Stinson, BA, University of
California at Berkeley; MA Ph.D.,
University of Michigan-Associate
Professor; Research Associate

INTERPRETING SERVICES DEPARTMENT

Liza Orr, CSC, OIC:C; AAS,
Rochester Institute of
Technology-Director
Sheila Barden, BA, University of
Rochester- Interpreter
Robert A. Barrett, CSC; BS, Rochester Institute of TechnologyLiaison Interpreter
Marie Bernard, CSC, OIC:S/V; BS,
State University of New York at
Binghamton-Liaison Interpreter
Brenna Booth, AAS, Rochester
Institute of Technology-Associate Interpreter
Sandra Bradbury, ICTC; AAS,
Rochester Institute of TechnologyInterpreter
Jennifer Carmona, TC, AAS,
Rochester Institute of TechnologyInterpreter
Steven Chabot, BA, Wadhams Hall
State College-Associate Interpreter
Marc Clark, CSC-Liaison
Interpreter
Barbara Collins, AA, Nassau
Community College-Associate
Interpreter
Cynthia Collward, CSC; AAS,
Rochester Institute of TechnologyInterpreter
Carol M. Convertino, ICTC, OIC:C;
AAS, Rochester Institute of
Technology; BS, State University of
New York College at Brockport-
Interpreter
Terry Cordes, AAS, Rochester
Institute of Technology—Associate Interpreter
Rhonda Cunningham, CSCInterpreter
Denise Cyrkin, TC; BS, University of Wisconsin-Interpreter
William DeGroote, AAS, Rochester
Institute of Technology-Associate Interpreter
Christine Deskur, ICTC; BS, State
University of New York at
Binghamton-Interpreter

Joni Dowiing, CSC, OIC:S/V; AAS, Rochester Institute ofTechnologyInterpreter
Joy Duskin, ICFQ AAS, Gallaudet
University; BA, State University of
New York College at GeneseoInterpreter
Colleen Freeman, ICTC, OIC:C; AAS Genesee Community CollegeInterpreter
Katharine F. Gillies, CSC, OIC:Q BA, Oberlin College-Senior Interpreter Aaron Gorelick, CSC; BS,
Pennsylvania State University-

Manager

Kathy Graham, Associate Interpreter Cheryl Guarneri, BS, State University of New York College at Geneseo-
Associate Interpreter
Marlene Halford, Associate Interpreter
Michele Hochstetten, AAS, Triton
Community College; AAS
Waubonsee Community CollegeInterpreter
Jonathan Hopkins, Associate Interpreter
Jennifer Horak, AAS, Rochester
Institute ofTechnology; BA,
Pennsylvania State UniversityAssociate Interpreter
Jennifer Jess, ICTC; BS, Rochester Institute ofTechnology-Interpreter
Kristen Johnson, CT; AA, AAS,
Broome County Community College;
AAS, Rochester Institute of
Technology-Interpreter
Mary Ann Kehm, CSC, OIC:S/V; BS,
State University of New York, Empire
State College-Senior Interpreter
Leslie King, TC; AAS, Rochester Institute ofTechnology; BS, State University of New York College at Fredonia-Interpreter
Phoebe King, CT; AAS, Central Piedmont Community CollegeInterpreter
Jennifer Kirkpatrick, CSC; AAS, Rochester Institute ofTechnology Interpreter
David Krohn, CSC- Interpreter
Sarah Lambert, TC; AAS, BS,
Rochester Institute ofTechnologyInterpreter
J. Lynne Lareau, BS, Cincinnati Bible

Seminary-Associate Interpreter
Doni LaRock, ICTC, OIC:S/V; BS,
MA, State University of New York College at Brockport-Manager Miriam Lerner, CSC; AAS, Portland Community College-Interpreter Deborah Makowski, AAS, Rochester Institute ofTechnology-Associate Interpreter
Darcy Mclndoe, TC, OIC;S/V; BS, State University of New York at New Paltz-Interpreter
Cheri McKee, AAS, Rochester Institute ofTechnology-Interpreter Judy Molner, CT; BA, New England College-Interpreter Carolyn Morrison, ICTC, OIC:C; AAS, Rochester Institute of Technology; BA, Florida Bible College-Senior Interpreter Amanda Mothersell, AAS, Rochester Institute ofTechnology-Interpreter Stephen Nelson, CSC, OIC:S/V; BS, State University of New York, Empire State College-Manager
Kathleen Nyerges, CSC; AAS, Rochester Institute ofTechnology; BA, University of RochesterInterpreter
Doney Oatman, CT—Interpreter

Ekxnse Oyzon, ICTC; AAS, Rochester Institute ofTechnologyInterpreter
Linda Pain, AAS, Rochester Institute ofTechnology-Associate Interpreter Cheryl Peinkofer, AAS, Rochester Institute ofTechnology-Interpreter James Peinkofer, TC; AAS, Rochester Institute ofTechnology; BA,
Hartwick College-Interpreter
Joyce Pemberton, ICTC; BS,
University of Massachusetts,
Amherst-Interpreter
Dennis Peterson, BS, Wayne State
University-Interpreter
Liz Polinski, CSC; AAS, Iowa Western
Community College-Interpreter
Susan Quinlan, Interpreter
Valarie Randleman, TC; AAS,
Rochester Institute ofTechnologyInterpreter
Chris Rasmussen, AA, AAS, Iowa Western Community CollegeInterpreter
Meredith Ray, CSC, OIC:C; BA,
Marshall University-Liaison
Interpreter
Lorelei Reed, CSC; BS, State University of New York, Empire State College-Liaison Inteipreter Kathleen Rizzolo, ICTC; BS, Rochester Institute ofTechnologyInterpreter
Kelly Sakal, AAS, Rochester Institute ofTechnology; BS, Baylor
University-Associate Interpreter Marc Schmitz, CSC-Coordinator, In-
Service Training/Professional
Development
Susan Shaw, CSC; AAS, Mott
Community College-Interpreter
Martha Shippee, CSC; AAS,
Rochester Institute ofTechnologyInteipreter
Carol Sirkovich, AAS, Northwest Connecticut Community CollegeInterpreter
Lisa Siskin, AAS, Corning
Community College; BS, Bloomsburg
University-Associate Interpreter
John Mark Smeenk, CSC; BS, MS,
Rochester Institute of
Technologylnterpreter
Richard Smith, CSC-Interpreter
Wendy Sumner, AAS, Rochester
Institute ofTechnology-Associate Interpreter
Pam Taus, Diploma, St. Paul
Technical Institute; BS, Moorhead
State University-Interpreter
Melissa VanHall, Interpreter
W. Kip Webster, CSC; BS, Rochester

Institute ofTechnology-Manager
Edmund Wolff, ICTC; AAS,
Rochester Institute ofTechnologyInterpreter
Jo Carol Vedock, Scheduler

DIVISION OF GENERAL EDUCATION PROGRAMS

Jeffrey E. Porter, B.Ed., M.Ed., University of Virginia; Ph.D., Washington University-Associate Professor; Assistant Dean/Director Jimmie J. Wilson, BA, Texas Technical University; BCM, Southwestern Baptist Theological Seminary; MA, University of Rochester-Associate Professor; Coordinator, General Education Learning Center/Tutor and Notetaker Training
Marsha Young, MS, Pennsylvania State University; Ph.D., Wayne State University—Associate Professor; Instructional Developer

DEPARTMENT OF LIBERAL ARTS
Adele Friedman, BA, Barnard
College; Ph.D., Yale University-
Professor; Chairperson
Jeannee P. Sacken, AB, Douglass
College of Rutgers-The State
University; MA, Ph.D., University of
North Carolina at Chapel
Hill-Assistant Professor; Writing
Coordinator

LIBERAL ARTS SUPPORT

Eileen M. Biser, BA, Manchester
College; MS, Rochester Institute of
Technology-Assistant Professor
R. Greg Emerton, AS, Flint College;

BS, MA, Central Michigan University;
MBA, Rochester Institute of
Technology; Ph.D., Western
Michigan University-Associate Professor
Barbara Fox, BA, MA, University of Rochester; MFA, Rochester Institute ofTechnology—Visiting Assistant Professor
Ralph Hymes, BA, LaSalle College;
MA, Northern Illinois UniversityAssistant Professor
Richard K LeRoy, BA, College of William and Mary; MA, University of Richmond-Assistant Professor Joyce P. Lewis, BA, University of Massachusetts, Amherst; MA, Ed.D., University of Rochester-Associate Professor
Wendy L. Low, BA, MS, University of Rochester-Visiting Instructor Lorna Mittelman, BA, Reed College; MS, State University of New York College at Geneseo-(Assistant Professor); Writing Specialist, Learning Development Center Shahin Monshipour, BS, Tehran School of Social Services; MBA, Rochester Institute of TechnologyVisiting Instructor
David Oakes, BA, University of Illinois at Urbana-Champaign; MS,
University of Rochester; LL.M.,
DePaul University College of Law; JD, Georgetown University Law CenterVisiting Assistant Professor Linda A. Rubel, BA, Pennsylvania State University; MA, Ph.D., University of North Carolina at Chapel Hill-Assistant Professor Rose Marie Toscano, BS, Portland State University; MA, University of Rochester-Assistant Professor Jeanne Yamonaco, BA, MS, Nazareth College of Rochester-Visiting Instructor

GENERAL EDUCATION

 INSTRUCTIONLaurie C. Brewer, BA, Ph.D. University of Rochester-Associate Professor; Staff Chairperson Shirley Allen, BA, Gallaudet University; MA, Howard
University-Associate Professor
Gerald S. Argetsinger, BA, Brigham
Young University; MA, Ph.D.,
Bowling Green State UniversityAssociate Professor
Julie J. Cammeron, BA, Montana State College; M.Ed., Gallaudet University-.Associate Professor Simon J. Carmel, BA, Gallaudet University; MA, Ph.D., American University-Assistant Professor Barry Culhane, BA, University of Windsor; Ed.D., University of Rochester-Associate Professor

Lawrence L. Mothersell, BS, MS, State University of New York College at Geneseo; Canon Requirements,
Colgate Rochester Divinity School/ Bexley Hall/Crozer -Professor; Chaplain
Sally Taylor, BA, Blue Mountain College-Visiting Instructor

SOCIAL WORK

K Dean Santos, BA, University of
Minnesota, Minneapolis; MSW, San
Diego State University-Associate
Professor; Staff Chairperson
Florene N. Hughes, BS, Indiana State University; BSW, MS, Rochester Institute ofTechnology-Assistant Professor

HUMAN DEVELOPMENT

Eleanor D. Rosenfleld, BS, Ohio State University; MS, Indiana University-Assistant Professor, Chairperson

PHYSICAL EDUCATION AND ATHLETICS

Louann Davies, BS, MS, State
University of New York College at Brockport-Assistant Educational Specialist
Janice L. Strine, AAS, State University of New York Agricultural and Technical College at CobleskiU; BS, State University of New York, Empire State College; MS, State University of New York College at BrockportAssistant Professor

PSYCHOLOGICAL SERVICES

Teena M. Wax, BA, State University of New York at Albany; MA, University of Delaware; MSW, University of Maryland at Baltimore; Ph.D., University of Delaware-Assistant Professor; Staff Chairperson
Donna C. Rubin, BA, Rutgers-The State University; MS, Syracuse University-Assistant Professor; Mental Health Specialist/Counselor William F. Yust, BA, M.Ed., University of Rochester-Assistant Professor; Mental Health Specialist/Counselor

STUDENT LIFE

Judith Coryell, AA, Northern Arizona
University; BS, San Diego State
University; MA, California State University at Northridge; Ph.D., University of Rochester-Assistant Professor
Thomas Holcomb, BA Gallaudet University, MS, Rochester Institute of Technology; Ph.D., University of Rochester-Assistant Professor Vidri Hurwitz, BS, Rochester Institute of Technology—Visiting Instructor
MelindaJ. Hopper, BS, MS, Illinois
State University-Cross- Cultural Educator
William K. Winchester, BS, University
of Oregon; MA Gallaudet
University-Associate Professor

PERFORMING ARTS

James B. Graves, BA, MA, University of South Carolina; M.Div., Union Theological Seminary; Ph.D., University of Kansas-Associate Professor; Chairperson
Jerome Cushman, BS, MS, University of Wisconsin-Associate Professor Patrick A Graybill, BA, MS, Gallaudet University-Artist/ Teacher, Visiting Assistant Professor James Orr, Coordinator, Outreach Robert D. Pratt, BA, MA, Colorado State College; MA, University of South Dakota-Associate Professor James R. Price, BA University of Northern Colorado-Practicum Supervisor
Bonita Stubblefield, BA, State University of New York College at Geneseo; MFA, Carnegie-Mellon University-Visiting Instructor Michael Thomas, Visiting
Teacher/Artist

DEPARTMENT OF SUPPORT

 SERVICE EDUCATIONGary E. Mowl, MS, University of Tennessee-Assistant Professor; Chairperson
Joseph Avery, BSE, MSE, University of Central Arkansas-Associate Professor
Marilyn Mitchell, BA, Augustana College; MS, Rochester Institute of Technology-Assistant Professor Linda A. Siple, AS, Monroe Community College; BSW, MS, Rochester Institute of TechnologyAssistant Professor
Jeanne M. Wells, BA, MacMurray College; MS, Rochester Institute of Technology—Assistant Professor

OFFICE OF THE ASSOCIATE VICE PRESIDENT/ TECHNICAL ASSISTANCE PROGRAMS

Jack R. Clarcq, BS, State University of New York Coll ege at Brockport; MA, West Virginia University; Ed.D. Syracuse University-Professor; Associate Vice President, RIT; Director
Mahala Booher, BS, State University of New York, Empire State College-Assistant to the Associate Vice President

OFFICE OF POSTSECONDARY CAREER STUDIES AND
INSTITUTIONAL

Gerard G. Walter, BA, St. Vincent College; M.Ed., Ed.D., University of Pittsburgh—Associate Professor; Director

Susan Foster, BA, Northwestern University; BS, University of Maine; M.Ed., Bridgewater State College; Ph.D., Syracuse University-Assistant Professor; Research Associate Janet MacLeod-Gallinger, BA, State University of New York at Stonybrook; MS, Rochester Institute of Technology-Senior Research Assistant
Kenneth R. Nash, BA, Duquesne University; M.Ed., University of Pittsburgh; Ed.D., Columbia University-Associate Professor; Research Associate
William A. Welsh, BA, University of Massachusetts, Amherst; M.Ed., Springfield College; Ed.D., University of Massachusetts, Amherst(Assistant Professor); Research Analyst

DIVISION OF CAREER OPPORTUNITIES

Karen Hopkins, BA, State University of New York College at Brockport; MLS, State University of New York College at Geneseo; CAS, State University of New York College at Brockport-Director
Victoria F. Darcy, BS, Rochester Institute of Technology-Career Opportunities Advisor
Kathleen M. Martin, BA, MA,
Bowling Green State University(Assistant Professor); Senior Career Opportunities Advisor

CAREER OUTREACH AND ADMISSIONS DEPARTMENT

Dianne K Brooks, BS, Howard University; MS, Gallaudet University-Manager, Career Outreach and Enrollment Services W. Scot Atkins, BA, Rochester Institute of Technology-Career Opportunities Advisor
Shirley J. Baker, BA, State University of New York College at BrockportCareer Opportunities Advisor Thomas A. Connolly, BS, Rochester Institute ofTechnology; MS, Canisius College-Associate Professor; Senior Career Opportunities Advisor Kathie S. Finks, Visitation Specialist Howard Mann, BSW, MS, Rochester Institute ofTechnology-(Assistant Professor); Career Opportunities Advisor

Ronnie Mae Tyson, BS, Rochester Institute ofTechnology-Career Opportunities Advisor

NATIONAL CENTER ON EMPLOYMENT OF THE DEAF

Elizabeth G. Ewell, BFA, Rochester Institute ofTechnology; MS,
University of Rochester-(Assistant Professor); Associate Director, Division of Career Opportunities; Manager
Sheryl N. Eisenberg, BA, Washington
University; MA, New York
University-Career Opportunities Advisor
Anthony J. Finks, BA,
St. Bonaventure University-
(Assistant Professor); Senior Career Opportunities Advisor

Dennis J. Grange, BA, St. John Fisher College; M.Ed.. University of Georgia-(Assistant Professor); Senior Career Opportunities Advisor Linda A. Iacelli, BA, Nazareth College of Rochester; MS,
Georgetown University-Senior Career Opportunities Advisor
Angela N. Jaromin, BA, State
University of New York at Oswego-Career Opportunities Advisor

Gary A. Meyer, BS, Rochester Institute of Technology-Career Opportunities Advisor
M. Lynne Morley, AAS, State University of New York Agricultural and Technical College at Alfred; BS, MS, State University of New York at Albany-(Assistant Professor); Senior Career Opportunities Advisor Mary S. Rees, BA, Kalamazoo College; MA, University of Rochester-Senior Career Opportunities Advisor
Frances J. Richardson, BA, William Paterson College of New Jersey; MS,
Suffolk University-Career
Opportunities Advisor
Paul Seidel, BS, Cornell University;
MA, University of Rochester(Assistant Professor); Senior Career Opportunities Advisor
David B. Strom, BET, Rochester Institute ofTechnology-Career Opportunities Advisor
Mary Ellen Tait, BA, State University of New York College at BrockportEmployment Information Specialist

INSTRUCTIONAL DESIGN AND TECHNICAL SERVICES

James K. Carroll, BA, MA, Michigan State University; Ph.D., University of Oregon-Director

INSTRUCTIONAL TELEVISION AND MEDIA SERVICES DEPARTMENT
J. Christopher Pruszynski, BA, MA, Michigan State University-Associate Director, Instructional Design and Technical Services; Manager David K. Conyer, BS, Indiana University-ITV Production Coordinator
Marilyn J. Enders, BA, Elmira College; MA, American University(Assistant Professor); Senior Captioning Production Specialist Charles W. Johnstone, AAS, State University of New York Agricultural and Technical College at Alfred; BS, MS, Rochester Institute of Technology-(Assistant Professor); Media Services Coordinator Frank A. Kruppenbacher, AAS, Onondaga Community College; BA, State University of New York College at Geneseo-ITV Programming Coordinator
Robert H. Murray, AAS, Rochester Institute of Technology-
Applications Engineer
Christopher Nuccitelli, BA, New York University-(Instructor); Senior TV
Producer/Director

John E. Panara, AAS, Monroe Community College; BS, MA, State University of New York College at Brockport-(Assistant Professor); Captioning Specialist
Frank Romeo, Chief TV Engineer Peter S. Schragle, AAS, Rochester Institute ofTechnology; BA, M.Ed., University of Massachusetts, Amherst-(Assistant Professor):
Senior Captioning Specialist Debra Spatola-Laughlin, BA, Canisius College-(Instructor); TV Producer/ Director
Ruth A. Verlinde, BA, University of Michigan; MA, Michigan State University; Ed.D., Teachers College, Columbia University-(Associate Professor); ITV Captioning
Coordinator
Larry Wheeler, BA, Columbia College; MA, Loyola Marymount University-(Instructor); Senior TV Director/Videographer

INSTRUCTIONAL DESIGN AND EVALUATION DEPARTMENT

Ann Areson, BA, Allegheny College; MA, School for International Training-Associate Director, Instructional Design and Technical Services; Manager
Gerald C. Bateman Jr., BS, MSEd, State University of New York College at Geneseo; Ed.D., University of Rochester-(Assistant Professor) Instructional Developer
Mark O. Benjamin, AAS, BS, Rochester Institute ofTechnology(Instructor); Photographer Leisa Boling, AAS, BFA, Rochester Institute ofTechnology-Artist Marie Buckley, BFA, MST, Rochester Institute ofTechnologyArtist/Designer
Lynn V. Campbell, AAS, BFA, MST,
Rochester Institute of TechnologyArtist/Designer
Cathy Chou, BA, University of
Rochester-Artist/Designer James P. Cox, MS, State University of New York College at GeneseoCoordinator, Instructional Development
Robert F. Iannazzi, BS, MS, Rochester Institute ofTechnology; M. Photog.;
ASP-(Assistant Professor); Media Specialist
Thomas J. Merchant, BA, University of Toronto; MST, Rochester Institute ofTechnology-Artist/Designer Sharon Monaghan, BFA, Rochester Institute ofTechnology-Assistant Media Specialist
Sarah Perkins, Phototypographer Donna Russell, BS, State University of New York College at BrockportMedia Specialist
Jorge B. Samper, AA, Tallahassee Community College; BA, Florida State University; MS, Rochester Institute ofTechnology-(Assistant Professor); Media Specialist Marcia J. Scherer, BS, Syracuse University; MS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-(Assistant Professor); Instructional
Development and Evaluation Specialist
Bary Siegel, BS, MS, Rochester Institute ofTechnology-Media Specialist

Michael J. Spencer, AA, BFA,
Rochester Institute ofTechnology; MFA, State University of New York at Buffalo-(Assistant Professor); Photographer
Louis D. Woolever, BFA, MFA, Syracuse University-Art Director Willard Yates, Production Manager

TRAINING AND AFFIRMATIVE ACTION DEPARTMENT

Marlene S. Allen, BFA, Pratt Institute; MS, University of RochesterManager
Toan C. Beale, Project Coordinator
ane D. Bolduc, AAS, Worcester
Junior College; BA, Gallaudet
University; MS, University of Arizona;
MS, Rochester Institute of Technology—Associate Professor; Coordinator, Internship Program Gail L. Kovalik, BA, Middlebury College; MLS, State University of New York College at Geneseo-(Associate Professor); Staff Resource Center Specialist
Morton O. Nace Jr., BS, Boston
University; MS, Syracuse University; CAS, University of the South(Instructor); Training and
Development Specialist

JOINT
 EDUCATIONAL SPECIALIST PROGRAM

Judy C. Egelston-Dodd, BS, MS, State University of New York at Albany; Ed.D., State University of New York at Buffalo-Professor, Director

DIVISION OF
 MANAGEMENT SERVICES

Albert S. Smith, BS, Wake Forest University; MS, Rochester Institute of Technology-Director

ADMINISTRATIVE SERVICES DEPARTMENT

Warner H. Strong, AAS, Mohawk Valley Community College; BS, University of Rochester-Manager

INFORMATION SERVICES

 DEPARTMENTCarole L. Pepe, BS, Indiana
University of Pennsylvania; M.Ed., Pennsylvania State University; MS, Rochester Institute ofTechnologyAssociate Director, Management Services; Manager
Arthur L. Belt, BS, State University of New York College at BuffaloSoftware Specialist
Susan Dauenhauer, AOS, Bryant \& Stratton Business Institute-Office Systems Specialist
Gail D. Gabriel, AAS, Monroe Community College; BPS, State University of New York College at Brockport-Coordinator, Technical Services
Virginia M. Gosson, AAS, Rochester
Institute of Technology-
Coordinator, Document Production

Eugene Lenyk, AAS, Monroe
Community College-Computer Operations Specialist
Edmund S. Lucas, AAS, Rochester Institute ofTechnology-Software Specialist
Sharon Metevier Webster, BS, Rochester Institute ofTechnologySenior Programmer
JoEllen S. Shaffer, AAS, Monroe Community College; BS, Northern Arizona University; MS, Rochester Institute ofTechnologyCoordinator, Information Systems and User Services
David VanWey, Junior Programmer James W. Wilson, AAS, Hudson Valley
Community College; B.Tech., MS,
Rochester Institute ofTechnologySystems Administrator

THE NATIONAL ADVISORY GROUP

Frank Blount, National Advisory Group Chairperson; President, Network Operations Group, American Telephone \& Telegraph Dr. Andrew Baker, Optometrist, American Vision
Patricia S. Brown, Teacher, HearingImpaired Program, District of Columbia Public Schools
The Honorable Alfonse D'Amato, Member, U.S. Senate, New York State Maurice Forman, Retired Chairman of the Board, B. Forman Company Dr. Victor H. Galloway Alan C. Gifford, Environmental Engineer, Charles T. Main, Inc. R. Max Gould, Division Executive, CitiCash Management, Citicorp The Honorable Frank Horton, Member, U.S. House of Representatives, New York State Dr. William P. Johnson,
Superintendent, lowa School for the Deaf
Dr. James C. Marsters, Orthodontist Jonda McFarlane, Educator, Montgomery County Public Schools, Maryland
Mildred L. Oberkotter
Dr. Albert T. Pimentel, Director,
Career Education for the Deaf,
Northwestern Connecticut
Community College
Sharaine J. Rice, Director, Services
for Deaf and Hearing-Impaired
Persons, Missouri Department of Health
Frank Steenburgh, Vice President,
Systems Reprographics, Xerox Corporation
Richard M. Switzer, Executive
Director, Center for Educational and Cultural Opportunities for the Aging, New York State Education
Department
Dr. Kenneth Woodward, Manager, Clinical and Disability Services,
Xerox Corporation
HONORARY MEMBERS
The Honorable Hugh L. Carey, W.R. Grace and Company; Former Governor, New York State Nanette Fabray McDougall, Actress Dr. S. Richard Silverman, Director Emeritus, Central Institute for the Deaf

Office of the
 Associate Provost

Robert M. Desmond, BSME, Worcester Polytechnic Institute; MSME, Ph.D., University of Minnesota-Associate Provost George H. Ryan, CPA; BS,
Rochester Institute ofTechnology
-Director of Operations
Linda Lagree-Administrative
Assistant to the Associate Provost

TRAINING AND
 PROFESSIONAL
 DEVELOPMENT GROUP

Office of the Dean

Mark L. Blazey, AB, Syracuse
University; MS, Ed.D., SUNY
Albany-Dean
Eileen Benedict, AAS, Garfield
Business Institute-Program Assistant

RIT RESEARCH
 CORPORATION

Robert M. Desmond, BSME, Worcester Polytechnic Institute;
MSME, Ph.D., University of
Minnesota—President
Paul F. Swift, BS, University of
Dayton; MS, University of
Cincinnati-Vice President and Director of Graphics
George H. Ryan, CPA; BS, Rochester
Institute ofTechnology-Director of Operations
Todd Abel, BS, Rochester Institute of Technology-Software Engineer
Mark H. Britton, BS, Eastern Illinois
University-Project Manager, Xerox
Alice Bullard, BSW, Bethany
College-Tech. Education
Consultant, Xerox
John J. DeBole, BS, BA, University of Rochester-Associate Program
Manager, Federal Programs Training Center
Laurie Dennis, BS, Purdue
University; MLS, SUNY-Geneseo-
Grants Specialist
Robert Gayvert, BA, New College;
MA, University of Rochester-Sr.
Software Engineering, Intelligent Systems
Matthew N. Henrich, BA, Alfred
University; MPA, SUNY-
Brockport-Tech. Education
Consultant, Xerox
Kenneth P. Kathan, BS, Rochester
Institute ofTechnologyController
Jeanne B. Leonard!, BA, Nazareth College; MS, Rochester Institute of Technology-Project Manager,
Xerox
Sigrid Mortensen BFA, Jacksonville University-Software Engineer Milton Pearson, BS, Rochester Institute ofTechnology-Principal Imaging Scientist, Graphics Charles M. Plummer, BA, DePauw University; MS, Ph.D., Indiana University-Associate Director, Research \& Program Development Irving Pobbaravsky, BS, MS,
Rochester Institute of
Technology—Principal Imaging Scientist, Graphics

Thomas Ridley, BA, SUNY
Potsdam-Software Engineer,
Intelligent Systems
Andrea Sanrocco, BS, Rochester Institute ofTechnology-Education Specialist, Xerox
Steven P. Spiwak, AAS, Onondaga
Community College; BEET,
Rochester Institute of
Technology-Electrical Engineer
J.A. Stephen Viggiano, AB, Thomas A. Edison College; MS, Rochester

Institute ofTechnology-Sr. Imaging Scientist, Graphics
Chihwe Wang, BS, Chinese Culture
University; MS, Rochester Institute of Technology-Research Associate, Graphics
Todd Whitenack, BS, SUNY-
Brockport; MS, Rochester Institute of Technology-Associate Software Engineer

TECHNICAL \&
 EDUCATION CENTER OF THE GRAPHIC ARTS

John Peck, BA, St. John Fisher
College-Director
Helga Birth-Manager, Information Services
Ching Yih Chen, MS, Rochester
Institute ofTechnology-
Assistant to Senior Technologist
Daniel Clark-Web Press
Technologist
James Clarke—Sheetfed Press
Technologist
David Cohn, BS, Rochester Institute of Technology-Senior Technologist Chester Daniels, AAS, BS, MS, Rochester Institute ofTechnology -Senior Technologist
Mark DuPre, BA, College of the Holy
Cross; MFA, Columbia
University-Program Director
William Eisner, BS, Lehigh
University-Director, Research and Development
Zenon Elyjiw, Photo Technical School of Dresden, Germany; Master School Graphic \& Book Trades, Berlin, Germany; Technical
University of Munich-
Senior Technologist
Lisa Ford, BS, Rochester Institute of Technology-Program Director William Garno-Web Press
Technologist
Barbara Giordano, BS, Rochester
Institute ofTechnology-
Operations Manager
Robert Hacker, Jr.,-Web Press
Technologist
Val Johnson, BS, Rochester
Institute ofTechnology; Ed.M.,
University of Rochester-
Program Director
James Lawrence, AAS, Community
College of the Finger
Lakes-Seminar Coordinator
James Monteleone, BS, Rochester
Institute ofTechnology-Web Press Technologist
Hans Mortensen, BS, MS, Rochester Institute ofTechnology-Pre-Press Technologist
Ruben Soto-Web Press
Technologist
Richard Thorpe-Senior Web Press
Technologist
David Tontarski-Seminar
Coordinator, Testing Operations

PROFESSIONAL
 DEVELOPMENT DEPARTMENT

Barbara Cutrona, AAS, Erie Community College; BS, Rochester Institute of Technology-Program pirector
Qizabeth B. Frey, BS, MS, University
of Rochester-Program Director John E. Talbot, AAS, Mohawk Valley Technical Institute; BS, Rochester Institute of Technology-Program Director
Richard J. Thomas, AAS, Rochester Institute of Technology-Program Director
Marianne Yarzinsky, BS, Empire State College; MS, Rochester Institute of Technology-Program Director

OPERATIONS AND

 PROGRAM MANAGEMENT DEPARTMENTCarole Rose, BA, Roberts
Wesleyan College-Director, Program Management
Mary Lou Carlson-Coordinator, The Athenaeum
Paul J. Graziano, AAS, BS, Rochester Institute ofTechnologyInstructional Media Coordinator Nancy K. McEntee, BS, Southern Illinois University-Program Assistant
Cheryl L. Miller, BA, Ohio University-Program Assistant Roma B. Piccino-Program Assistant Diane M. Reed, AA, Rochester Institute ofTechnologyProgram Assistant
Brenda Reimherr—Program Assistant
Betsy Saxe, AAS, Rochester Institute ofTechnology-Financial Analyst Patricia J. Seischab, BS, SUNY Geneseo; MS, Rochester Institute of Technology-Senior Technical Education Specialist
Angela Spano-Program Assistant Carolyn Turner, BS, Western Liberty State College-Coordinator, Registration/Seminars \& Workshops Ellen Walsh-Coordinator, Facilities and Arrangements

MARKETING SERVICES

Deborah Bongiorno, BS, Syracuse University-Director of Marketing Services
Helen Barry, BS, SUNY
Buffalo-Graphic Designer
Charlotte McCabe, BA, Bucknell
University; MS, Boston
University-Marketing
Communications Coordinator Thomas Petronio, BA, St. John Fisher College-Editor
Sandra Richolson, BA, University of Missouri-Communications Coordinator
Richard Schmidle, BS, Syracuse
University-Editor

CENTER FOR
 INTEGRATED MANUFACTURING STUDIES

Hhalchandra V. Karlekar, Ph.D., P.E., University of Illinois-Director

QUALITY AND

PRODUCTIVITY UNIT
J. Douglas Ekings, MS, University of Rochester; BSEE, Virginia Military Institute-Manager

Academic Services and Computing

Reno Antonietti, BS, Rochester Institute ofTechnology, MLS, SUC at Geneseo-Associate Vice President (Professor)
Dottie Bush-Staff Assistant II
Susan Mee-Staff Assistant II
INFORMATION SYSTEMS AND COMPUTING

Ronald E. Stappenbeck, BS, MS, Rochester Institute ofTechnology -Director; Associate Professor Barbara T. Cuthbertson, BS, Simmons College—Administrative Assistant

Academic Computing and

 User ServicesNewton J. Munson, BSME, MSME, Clarkson University-Associate Director (Assistant Professor) Lo-yi Chung, BA, National Taiwan Univerisity; MA, Eastern Washington University; MS, Rochester Institute of Technology—Software Specialist; (Assistant Professor)
Donna C. Cullen, BA, Gordon College; MA, Northeastern University-Manager, Software Support; (Associate Professor) Christine Geith, BS, SUNY BuffaloOffice Systems Specialist Dale B. Grady, AAS, Rochester Institute ofTechnology; BA, University of California, Los Angeles; MA, Claremont Graduate SchoolSoftware Specialist; (Assistant Professor)
Christopher Haupt, BS< Rocchester Institute ofTechnology-Software Specialist; (Instructor)
Vincent Incardona, B.Tech., Rochester Institute ofTechnologySoftware Specialist; (Assistant Professor)
David Keller-Technical Associate Raymond Lance, AAS, Broome Community College-Technical Associate
Sheila Maas, AAS, State University of New York, Alfred-Office Systems Specialist
Andrew Mathews, AAS, Cayuga Community College-Facilities Coordinator
David J. Medvedeff, BS, University of Rochester-Software Specialist; (Assistant Professor)
C.R. Myers, BA, University of Rochester-Software Specialist; (Associate Professor) Dianne Parker, B.Tech., Rochester Institute ofTechnologySupervisor, Facilities Management Mark Tremblay, AAS, Rochester Institute ofTechnology-Software Specialist; (Instructor)
Robert C. Weeks, Jr., BA, SUNY
Geneseo; MS, Rochester Institute of Technology—Assistant Director for User Services

Stephen A. Wilkins, AAS, SUC at Morrisville; BSBA, Kansas State; MS, Rochester Institute ofTechnologySoftware Specialist; (Associate Professor)

Data Center Operations and Technical Support

George C. Hopkins-Associate
Director
Thomas Baily-Supervisor of
Computer Operations, Second Shift
Jenny Beaven-Systems Programmer
Edgar Buffan, BS, MS, Rochester
Institute ofTechnology-Systems
Programmer
Steven Good-Network
Administrator
Gregory Hawryschuk, AAS, Monroe
Community College; BS, MBA,
Rochester Institute ofTechnology-
Assistant Director, Technical Support
Laura Jacobs, AAS, Monroe
Community College; BS, Rochester
Institute ofTechnology-Data Base
Administrator
Carol Kephart—Data Base
Technician
Andrew W. Ludwick, BS, Rochester
Institute ofTechnology-Data Base
Technician
David Mufvihill—Systems
Programmer
Andrew Potter-Systems
Programmer
Richard Rowley-Supervisor of
Computer Operations
Guy Stappenbeck-Systems
Programmer

Systems Development

Robert R. Miller, BS, Boston College; MBA, Rochester Institute of Technology-Associate Director Ramona AkpoSani, BA, University of Vermont; MA, SUNYat PlattsburgSr. Systems Analyst
F. Donald Alo, AAS, Delhi; BS, Ithaca

College-Senior Systems Analyst
Gene Bagiio, AAS, Monroe
Community College-Programmer
Tamara Bain, BS, SUNY at
Brockport-Sr. Programmer
Paul Bufano, AAS, Morrisville-Sr.
Systems Specialist
Frances Carducci, BS, Syracuse
University; MSLS, Syracuse
University; MPA, Syracuse
University-Programmer
Sonia Herriman, BA, Nazareth
College-Sr. Programmer/Analyst
Daniel Kennedy,— Sr. Programmer/
Analyst
Peter F. Kulpa, BS, Rochester
Institute ofTechnology-Systems Manager
David B. McCandlish, BA, Johns
Hopkins; MS, University of
Rochester; MS, Rochester Institute of
Technology-Sr. Programmer
Moses Powell, AAS, Monroe
Community College; BS, University
of Rochester-Sr. Systems Analyst
Nancy Simonds, AAS, Monroe
Community College; BS, Rochester
Institute ofTechnology-Sr.
Programmer/Analyst
Timothy Smith, AAS, Monroe
Community College, BT, Rochester
Institute ofTechnology-Sr.
Programmer/Analyst

Jim Tefft, AAS, Seminole Jr. College;
BS, University of Central
Florida-Systems Manager
Wendy Thompson, AAS, Monroe
Community College-Sr. Systems Analyst
Thomas Vereecke, AAS, Monroe Community College, BT, Rochester Institute of Technology-Systems Specialist

Instructional Media Services

Joan S. Green, BS, Ohio State; M.Ed., Trenton State; MS, Rochester Institute ofTechnology-Director; (Associate Professor)
Bob Bancroft-Maintenance
Engineer, Television
Dale Boris, BFA, MFA, Rochester Institute ofTechnology-Media Specialist
Harvey B. Carapella, BFA, Rochester
Institute ofTechnology-Assistant
Director, Production (Assistant
Professor)
David M. Cronister, BFA, Rochester
Institute ofTechnology-Television
Producer/Manager; (Instructor)
Beth Dickinson-Designer
Anthony Gerardi, BFA, Rochester
Institute ofTechnology-
Photographer
Muriel Gerardi, AAS, BFA, Rochester
Institute ofTechnology-Graphics
Supervisor
Robert K. Gascon-Television
Engineering Manager
Alvm Herdklotz, AAS, Madison
Community College-Audiovisual
Engineer
Cheryl Herdklotz, BA, Nazareth
College; MLS, SUNY Geneseo; Ph.D.,
University of Wisconsin-Assistant
Director: Audiovisual Services,
(Assistant Professor)
Carol Lake-Traffic Manager,
Television
Donna Sevensma, BS, Rochester Institute ofTechnology-Television Producer/Director
Scott Sevensma, AAS, Monroe
Community College-Television
Operations Engineer
Claudia Stata, AAS, BS, Rochester
Institute ofTechnology-
Photography Supervisor
David Stone, AAS, Monroe
Community College-Assistant
Media Specialist: Audio
Steve Wunrow, BS, Rochester
Institute ofTechnology-Senior
Television Producer/Director

OFFICE OF DISTANCE LEARNING

Susan Rogers, BA, Alfred University;
MS, Alfred University—Director
(Assistant Professor)
Victoria Foote, BA, Colorado State;
MA, University of Northern
Colorado-Coordinator
Faye Feazel-Telecourse Assistant

Office of the Registrar

Daniel P. Vilenski, BS, MA, Central Michigan University; Ed.S., Michigan State University-Registrar
Richard M. Pettinger, AB, Georgetown University; MBA, Rochester Institute ofTechnologyAssociate Registrar
Victoria Aspridy, BS, SUC at Oswego; MS, SUNYat Brockport-Assistant Registrar
Patricia F. Nelson, BS, Keuka College-Assistant Registrar Peter Sarratori, BS, Rochester Institute ofTechnology-Assistant Registrar

Wallace Memorial Library

Patricia Pitkin, BA, MLS, SUNY Geneseo-Director; (Professor) Hannah Ahmed, BS, Rochester Institute ofTechnologyCoordinator of Circulation Systems Margaret Bartlett, BA, St. John Fisher College; MLS, SUNY GeneseoReference Librarian; (Assistant Professor)
Joan Bawden, BS, Rochester Institute ofTechnology-Financial Assistant Suzanne Bell, BA, University of Rochester; MLS, SUNY
Buffalo-Reference Librarian (Instructor)
Shirley Bower, BA, MLS, SUNY Geneseo-Head of Reference; (Assistant Professor)
Virginia Church, BS, Wilmington College; MLS, SUNY, BuffaloAssistant Director for Technical Services; (Assistant Professor) Linda Coppola, BA, MLS, SUNY Geneseo-Reference Librarian; (Assistant Professor)
Christine DeGolyer, AB, Cornell University; MLS, Syracuse University-Reference Librarian; (Associate Professor)
Elizabeth A. Dopp, BS, Rochester Institute ofTechnology; MLS, University of Buffalo-Coordinator of Collection Management Daila Eichvalds, BA, State University of New York at Albany; MLS, SUNYat Geneseo-Original Cataloger; (Instructor)
Margaret F. Fallon, BA, SUNYat Potsdam; MLS, SUNYat AlbanyHead of Acquisition; (Assistant Professor)
Lois A. Goodman, BA, CUNY at Brooklyn; MLS, Pratt InstituteAssistant Director for Information Services; (Associate Professor) John Kester, BA, State University of New York, College at Buffalo; MLS, State University of New York at Buffalo-Reference Librarian; (Instructor)
Lisa Ann LaLonde, BS, Rochester Institute ofTechnology; MSA, Visual Studies Workshop-Coordinator, Reserve Desk Services
Ruth B. Lunt, BA, Oberlin; MLS, SUNY Geneseo-Reference Librarian; (Associate Professor) Chandra McKenzie, BS, MS, Rochester Institute of Technology Assistant Director for Circulation Services

Jonathan J. Millis, BS, Nazareth College; BS, SUNY BrockportLibrary Programmer, Analyst Melanie Norton, BA, Alfred University; MLSL, University of Kentucky-Reference Librarian; (Assistant Professor) Barbara Polowy, AB, Clark University; MLS, Syracuse University-Reference Librarian; (Associate Professor) Laurie Santamont, BA, PotsdamCoordinator of Circulation Services Marcia Trauernicht, BA, MacMurry College; MA, WIU, Maconde; MS, University of Illinois-Cataloging Manager (Assistant Professor) Joseph S. Zoda, BS, Empire State College-Library Systems Assistant

Learning Development Center

Paul R. Kazmierski, BA, B.Ed., M.Ed., Duquesne University; Ph.D., Syracuse University-Director; (Professor)
Barbara Allardice, BA Keuka College; MA, University of Hawaii; Ph.D., Cornell UniversityClinical Supervisor, Educational Assessment and Instructional Services; (Associate Professor) Gaillard Ashley, BS, University of Northern Colorado; MS, University of Connecticut; Ph.D., Syracuse University-Chairperson, Center for Assessment and Institute Support;
(Associate Professor)
Andrew Boone, BA, Stonehill
College; MA, University of
Rochester-College Program
Writing; (Assistant Professor) Jo Cone, BS, University of Rochester; M.Ed., Temple University-Assistant Department Chairperson, English Language Center; (Assistant Professor)
Harry DePuy, BS, Manhattan College; MA, Ph.M., Columbia University-College Program Writing; (Instructor) Susan Donovan, BA, Cornell College; MS, Nazareth College-College Program Reading; (Assistant Professor)
Linda Garnkel, BS, Purdue
University; MA, SUNYat
Brockport—Staff Chairperson, Department of Institute Testing Services (Assistant Professor) Rhona Genzel, BA, City College of New York; MA, Syracuse University-Chairperson, English Language Center; (Professor) Gail Gucker, BS, MS, SUNY, Brockport-Staff Chairperson, Math Department; (Assistant Professor) Sue Heard, BS, Edinboro State College; MS, Duquesne University; Ed.D., University of Rochester-Staff Chairperson, Learning Assessment Program; (Assistant Professor) Dottle Hick*-Coordinator of Exit Interview Office and Academic Advising
Patricia Ingwen-Coordinator, Learning Assessment Program Ruth Jones, BA, Roberts Wesleyan; MA, SUNY Geneseo-College Program Math; (Assistant Professor) Susan Kurtz, BA, Hofstra University-Coordinator, Gifted Program, Educational and Instructional Services

Patricia Marx, BA, M.S.Ed., Nazareth
College-Clinical Supervisor,
Educational and Instructional
Services, Elementary Reading
Services; (Assistant Professor)
Lorna Mittelman, BA, Reed College; MS, SUNY Geneseo-College Writing Program; (Assistant Professor) Jane Munt, BA, SUC Oswego; MS, SUNY Brockport-Chairperson, Study Skills Dept.; (Assistant Professor)
Irene M. Payne, BS, MS, SUNYat
Geneseo—Associate Director; (Professor)
Patricia Sanborn, BA, SUNY
Potsdam-Reading Instructor and Diagnostic Clinician, Educational and Instructional Services
J. Wixson Smith, BS, SUNYat

Geneseo; MS, Rochester Institute of
Technology-Chairperson, College
Program; (Professor)
Mary Sollenne, BA, Bucknell
University; M.S.Ed., SUNYat
Oswego-Clinical Supervisor,
Educational and Instructional
Services, Secondary Reading, Writing
\& Study Skills; (Assistant Professor)

COMMUNICATIONS DIVISION

Jack F. Smith, BA, University of
Pittsburgh—Vice President
Bonnie Travaglini-Administrative Assistant

Communications Office

William McKee, BA, Syracuse
University-Director of
Communications
David C. Abbot, BFA, MFA,
Rochester Institute of Technology-
Director of Creative Services
Karen Beadling, BA, Antioch
College-Director of Publications
Neil Fagenbaum, BS, SUNYat
Geneseo-Director of Public Information
Sarah Breithaupt, BS, Bowling Green
State University-Advertising
Manager/Senior Communications Coordinator
Colleen Collins, BFA, Rochester
Institute of Technology-Art
Director
Gail Courmette*-Senior Production
Coordinator
Anne M. Dentlno, AS, Monroe
Community College-Associate
Director of Publications
Vincent J. Dollard, BA, St.
Bonaventure University-Associate
Director of Communications
J. Roger Dyke*-Sports Information Director
Carolyn M. Hanson-Administrative
Assistant to the Director of
Communications
Angela Holland-Production
Coordinator
Linda Kanaley-Office Systems
Specialist I
Pamela M. Kins, BFA, Rochester
Institute of Technology-Associate
Director of Creative Services
John Klnnicutt, AA-Senior
Communications Coordinator

Laurie Maynard, BS, Rochester
Institute ofTechnology-Senior Communications Coordinator Karen Miller, BA, Virginia
Polytechnic Institute-Associate
Director of Communications Dawn Perozzi-Production
Coordinator
Bruce Wang-Senior Photographer
Jeff Wasilko-Graphic Designer
A. Sue Weisler, BFA, Rochester

Institute ofTechnology-Manager of
Photography
Diane Zielinski, BA, St. Bonaventure
University—Associate Director of Communications

DEVELOPMENT
 DIVISION

C.J. Young, BS, MS, University of Buffalo; Ed.D., SUNY Buffalo-Vice President

Alumni Relations

Frank A. Cicha, BS, Rochester Institute of Technology-Director
Darlene Spafford, AAS, Rochester
Institute ofTechnology-Staff Specialist

Office of Development

Melanie Repko Barbarito, BA, University of the State of New York-Director for International Development
Michael J. CatilJaz, BA, SUNY Albany, MBA, Rochester Institute of Technology; Ed.S., SUNY AlbanySenior Development Officer Mary N. Cerniglia, BS, University of Rochester-Communications Coordinator
Kim M. Christopoulos, BS, Rochester Institute ofTechnology-Assistant to the Director of Development
Sally Counselman, BS, M.Ed.,
University of Georgia-Foundation
Relations Coordinator
Rebecca Dewey, BA, SUNY
Cortland-Assistant Director of
Annual Programs
A.L Faubert, BS, Springfield

College-Special Assistant to the Vice President
Kenneth S. Fyfe, BS, MS, SUNY
Brockport-Development Officer
Linda I. Georgiki*-Associate
Director for Development Services
John Gleaion, BA, Niagara
University; MA, Syracuse
University—Assistant Director of
Planned Giving; Associate Director of Alumni
Carolyn Haines, AB, Earlham
College; MS, Rochester Institute of
Technology-Development Officer Rosalind 81 Hawkln*-Research Assistant
Susan L. Johanaon, BA, SUNY
Oswego-Research Assistant Carolyn Kourofsky, BA, St. Lawrence University; MFA, Vermont College of Norwich University-Associate
Director of Development Systems Jennifer E. MacKenzie, BS, Rochester Institute of Technology-Director,
Annual Fund Programs

Norman Miles, BA, University of Rochester; MA, Syracuse University-Director, National Development
Margaret M. Murray-Data Systems Specialist
Dennis C. Nystrom, BS, California State University; Ed.D,, Texas A\&M University-Senior Development Officer
Francine Olivadoti, BA, SUNY
Geneseo-Assistant Director of RIT Telefund
Lucy Prytyskach, AAS, Monroe Community College-Administrative Assistant to Vice President
Marisa Psaila, BA, University of Rochester-Special Events/Donor Relations Coordinator
Richard K. Reinholtz, BS, U.S.
Military Academy at West Point; MS, Purdue University-Development Officer
Michael L. Reynolds, AB, St. Andrews Presbyterian College; Th.M., Boston University School of TheologyDirector of Major Gifts Michael Rizzolo, BS, MS, Rochester Institute ofTechnologyDevelopment Officer Jeffrey N. Rowoth, BS, Rochester Institute ofTechnology-
Development Officer James N. Snyder, AB, Dickinson College-Director of Development James L. Tennant, BA, Albion College; MA, George Washington University; Ed.D., Indiana University-Director of Planned Giving
Joan Tierney, BA, Cornell University; MS, SUNY Brockport-Development Officer
Paula R. Tormey, BS, Syracuse University-Assistant to the Vice President
Rochelle Watson, BA, University of Rochester-Writer/Researcher Susan Winchester, BA, University of Maryland-Senior Research Assistant

DIVISION OF

ENROLLMENT MANAGEMENT AND CAREER SERVICES

James G. Miller, BS, The
Pennsylvania State University-Vice President
Robert C. French, BA, Eisenhower College; MS, Syracuse UniversityDirector, Enrollment Management Support
Jean Leyland-Administrative Assistant to the Vice President

Office of Admissions

Daniel R. Shelley, BA, MS, Indiana University-Director
Joan M. Barrett, BS, Rochester Institute ofTechnology-Associate Director of Admissions Operations Susan M. Critchlow, BS, Marymount College-Admissions Counselor Diane Ellison, BS, St. John Fisher College-Assistant Director, and Coordinator of Admissions Mary H. Gilbert, BA, SUNY at Binghamton-Assistant Director George C. Hedden, BA, SUNY at Buffalo-Senior Admissions Officer

Joel Hoomans, BS, Roberts Wesleyan College-Admissions Counselor Susan S.Joseph, BA, Hope College;
MA, Michigan State UniversityAssistant Director and Coordinator of Admissions
Susan Lynch, BA, Wheaton College-Assistant Director Sheryl D. Swierzewski, BA,
Providence College-Assistant Director
Sharon Yackel, BA, Augsburg
College-Associate Director and
Coordinator of Transfer Admissions

The Office of
 Cooperative Education and Placement

Beverly Gburski, BS, State University of New York at Brockport; MS,
Rochester Institute of
Technology-Director
Emanuel Contomanolis, BS, State University of New York at Cortland; MA, Bowling Green State University-Associate Director James R. Austin, BA, St. John Fisher College; MS, Rochester Institute of Technology-Program Coordinator James T. Bondi, BS, Lycoming College; MS, Alfred UniversityProgram Coordinator
Gretchen Burruto, BA, State
University of New York at GeneseoProgram Coordinator
Louise T. Carrese, BA, Nazareth College; MS, Rochester Institute of Technology-Program Coordinator George Crowley, BS, MS, State University of New York at Brockport-Program Coordinator Alan DeBack, BA, State University of New York at Geneseo; MS, Rochester Institute ofTechnology-Assistant Director

Charles W. Dispenza, BS, MS, Cornell University-Systems Coordinator; Program Coordinator
Lois A. Foley-Administrative Assistant
Suella C. Habbersett, BA,
Muskingum College; M.Ret.,
University of Pittsburgh-Project
Coordinator, Program Coordinator
Thomas J. Hernandez, BA, MS,
University of Rochester-Program Coordinator
Susan M. Herzberg, BA, State University of New York at Fredonia; MA, Michigan State UniversityAssistant Director
Sarah Hestley, BA, Colgate
University; MS, New York University Graduate School of Business-
Program Coordinator
Karen Moses, BS, Centre College of
Kentucky; MHA, Ohio State University
Ann Elizabeth Nash, BS, Rochester Institute ofTechnology; MFA, Ohio University-Program Coordinator Anne Nowill, BS, MBA, Rochester Institute ofTechnology-Program Coordinator
A. Maria Pagani, BA, State University of New York at Cortland-Program Coordinator
Lynne Perry, BS, Rochester Institute ofTechnology
Bonita M. Salem, BS, MS, Rochester Institute ofTechnology-Assistant Director

Enrollment and Career Research

Nancy A. Neville, BA, Lehman
College of CUNY: MS, Rochester
Institute ofTechnology-Director
Martha Riley, BS, University of
Rochester-Senior Research
Assistant

Office of Financial Aid

Parvesh Singh, Jiwaji University;
MBA, University of ScrantonDirector
Martin Daniels, BS, BA, Ohio
Northern University-Assistant Director
Joseph Dengler, BS, Rochester
Institute of Technology-Sr.
Financial Aid Counselor
Molly Diem—Coordinator, Student Records
Cynthia Kohlman, BS, Rochester Institute ofTechnology-Counselor William Mack, BA, University of Buffalo-Assistant Director of
Financial Aid
Sheryl Towne, BS, SUNY
Stonybrook-Coordinator, Student
Aid Management System
Tequila Wade, BS, St. John Fisher Coll ege-Assistant Director
James Winter, BS, MS, SUNY
Albany-Senior Counselor

Part-Time Enrollment Services

Joseph T. Nairn, BA, Thiel College; M.Ed., University of VermontDirector
Pamela D. Bradley-Smith, BS, M.Ed., University of Cincinnati-Assistant Director
Irene Hawryschuk, BA, SUNY at
Brockport-Assistant Director Dianne C. Mau, BS, Rochester Institute ofTechnology; MS, SUNY
Brockport-Assistant Director
Sandra Y. White, BBA, Cleary
College; MA, University of
Detroit-Assistant Director

Veterans Affairs

Eugene F. Clark, Jr., AS, Monroe Community College-Director

FINANCE AND ADMINISTRATION DIVISION

William M. Dempsey, BS, Rider College; MBA, Pace UniversityVice President
Richard H. Lindner, BS,
Northeastern University; MBA,
University of Rochester-Associate
Vice President
Florence G. Goodwin, AAS,
Rochester Institute ofTechnologyAdministrative Assistant

Audit Services

Charles J. Crockett, BS, Northeastern University; CIA-Director

James Fisher, BS, MBA, Rochester
Institute ofTechnology; CIA-
Senior Auditor
Gina Williams, BS, Rochester
Institute of Technology -Staff
Auditor

Business Services

William H. BatcheUer-Director James C. Bingham, AAS, Morrisville;
BS, Rochester Institute of
Technology-Assistant Director
D. Candice Fischbach, BS, Rochester

Institute ofTechnology-Assistant to the Director
George Harland-Manager, Property \& Risk

APARTMENT HOUSING

Edward O. Ingerick, BS, Rochester Institute ofTechnology; Pres., Edward O. Ingerick Enterprises, Inc.-Management Agent

CAMPUS STORES
CAMPUS CONNECTIONS
John L. Roman, BS, MS, SUNY
Albany-Director
Elaine K. Hillen-Assistant to the Director
Sylvia Ball—Supplies Dept. Manager Peter Briggs, BS, Rochester Institute of Technology-Coursebook Dept. Manager
Ellen Downes, AAS, Monroe
Community College-Sportswear/
Gift Dept. Manager
Robert Laros, BS, Transylvania
University-Database and Branch
Stores Manager
Jane Ryan, AAS, BS, Rochester
Institute ofTechnology-General Reading
Dept. Manager
Vicki Struble, BA, SUNY GeneseoPhotography and Audio/Visual Dept. Manager

FOOD SERVICE

James C. Bingham, AAS, Morrisville;
BS, Rochester Institute of
Technology-Director
Craig Neal, AAS, Morrisville; BS,
Oklahoma State University, MS,
Rochester Institute ofTechnologyDirector of Residential Food Service Gary Gasper, AAS, Morrisville-
Director of Student Alumni Union
Food Services
Jennifer Buckley-Manager,
Nathaniel's/Corner Store
Barbara J. Ciccarelli, BS, SUC at
Buffalo-Production Manager,
Hettie L. Shumway Dining
Commons
Robert O. Day, AAS, Rochester Institute ofTechnology-Manager,
Hettie L. Shumway Dining Commons
Paulette F. Vangellow, AAS, Paul
Smith College; BS, Rochester
Institute ofTechnology-Production
Manager, Grace Watson Dining Hall Janet Olivieri, AAS, SUNY at DelhiManager, Grace Watson Dining Hall Lin McQuade-Johnson, BS, SUNY at Brockport-Manager, Catering and Clark Dining Room
Susan M. Long, BS, Houghton
College-Budget Coordinator/
Department Auditor

Joanne E. Mason-Assistant Manager, Meeting Planning and Catering Services
Shirley Masseth-Manager, Meeting
Planning and Catering Services
Mary Anne McQuay, AAS, Monroe Community College; BS, Buffalo State-Manager, Student Alumni Union Cafeteria
David Nowak, BS, Rochester Institute ofTechnology-Manager, Ritskeller

ICE ARENA

John Simon-Director

MAIL \& REPROGRAPHIC SERVICES

Hilliary Dunn-Manager
Catherine Ciardi, AAS, Community
College of the Finger
Lakes-Assistant Manager

POST OFFICE CONTRACT STATION

Marie Cervantes-Roberts, AAS, Monroe Community College; BS, MS, Rochester Institute ofTechnologyManager

PURCHASING

Gary B. Smith, BA, Ohio University; MA, Western Illinois UniversityDirector
Marlene Bice, AAS, Rochester Institute ofTechnologyPurchasing Agent
Deborah Bourcy, BS, Rochester Institute of Technology-Jr. Purchasing Agent
Robert Goldstein-Purchasing Agent

Campus Safety

Richard Sterling, BS, SUNY Empire
State College-Director
Lee Struble, BA, Maryville CollegeAssociate Director
Jacqueline Montione, BS, Rochester Institute ofTechnology-Assistant to the Director
Jeffrey Meredith, BS, Rochester Institute ofTechnology-Assistant Director for Parking, Special Events, and Transportation
Robert Day, AAS, Monroe
Community College-Assistant
Director for Public Safety
Christopher Denninger, AAS, Monroe
Community College-
Assistant Director for Loss Prevention
David Turkow, BS, MA, SUNY
Brockport-Senior Environmental
Health Specialist
Debra Kipler-Koch, BA, SUNY
Buffalo; MS, Rochester Institute of Technology-Environmental Health Specialist
Robert Henderson, Graduate, New York State Police AcademyInvestigator
Ronie Evans, Graduate, Rochester Police Academy-Investigator Shirley Besanceney, BS, SUNY Geneseo-Institute Parking Appeals Administrator

CONTROLLER'S OFFICE

William J. Welch, BBA, Niagara
University; CPA, New York-
Controller
David R. Moszak, AAS, Alfred State College-Assistant Controller
Marie Nitzman-Property
Administrator
Margaret McEwen-Craven, BS, SUNY
Brockport; BS, MBA, Rochester
Institute of Technology-Cash
Manager/Financial Analyst
Kerry W. Phillips, AAS, Alfred State
College, Endowment/Financial Analyst

ACCOUNTING

James C. Murphy, BS, University of Rochester-Director, Accounting/ Payroll Services
Douglas Drexel, BS, Rochester Institute ofTechnology—Staff Accountant
Katherine A. Leitch, AAS, Rochester Institute of Technology-Staff Accountant
John P. McCormick, BBA, St
Bonaventure; MBA, University of
Rochester-AccountingSupervisor Thomas M. Ricci,—Staff Accountant

PAYROLL

James C. Murphy, BS, University of Rochester-Director, Accounting/ Payroll Services
Margaret Gardner-Assistant Payroll Supervisor
Valerie A. Liotta-Payroll Supervisor

BUDGET

David B. Caiman, BS, Rochester Institute ofTechnology-Director William J. Bianchi, BS, Rochester Institute ofTechnology-Associate Director

BURSAR'S OFFICE

Richard B. Schonblom, BS, Rochester Institute ofTechnologyBursar
Rosemarie Gross-Associate Bursar Sally Luton, BS, Rochester Institute ofTechnology-Student Accounts Coordinator

Collections

Mary Beth Nally-Associate Bursar AneU Rivera-Platt, BS, Ithaca College—Student Loan Repayment Coordinator

Institutional Research and Policy Studies

John M. Whitely, BS, MBA, Rochester Institute ofTechnology-Director Robert Bowen, BA, MA, SUNY College at Brockport; MS. Ed., Ph.D., University of Rochester-Assistant Director
Alice White-Data Reports Assistant
Joan C. Dammeyer, BS, Rochester
Institute ofTechnology-Sr.
Research Assistant

Personnel

Jeanne Healy Burns, BS, LeMoyne College; MBA, Rochester Institute ofTechnology-Director, Faculty and Staff Personnel Office
O. Terry Bruce, BS, MS, Rochester Institute of Techology-Director of Personnel Systems and Services Katherine Carcari-Senior Employee Relations Administrator
Geri Curwin, BA, M.Ed., University of Massachusetts; MBA, Rochester Institute ofTechnology-Senior Employee Relations Administrator Carol Champ, BA, Nazareth College-Employee Relations Administrator

Nancy Wallace, BA, Muhlenberg
College-Benefits Specialist
Laura Benjamin, BA, California State
University at Sacramento-Senior
Benefits Specialist
James M. Papero, BS, Ed.M., University of Rochester-Employee Assistance Program Coordinator Wendy Benjamin, AAS, Alfred State College-Employment Specialist Christine Hutchinson, BS, MS, University of Rochester-Training Specialist

Physical Plant

William H. Mets, AAS, NY5U at Farmingdale; BS, University of Rochester-Director
Lodewyk Boyon, AAS, Grotius College-Director for Energy/ Operations Center
Donald G. Burkhardt, ABA,
Rochester Business Institute-
Director for Administrative Services Roy S. Demenint, Jr., BS, Clarkson College-Director for Construction and Engineering
Elizabeth Nolan Beal-Director for Telecommunications Services
Jan E. Reich, BS, Pennsylvania State University; MBA, Rochester Institute ofTechnology - Director for Operations Engineering

Office of Facilities

Planning and Utilization
J. Scott Lawson, B.Arch., Rensselaer Polytechnic Institute, RA, N.Y.S.Director
Kevin Buck, BFA, California College of Arts and Crafts-Assistant Director Kate Ostrosky, AAS, SUNY at
Alfred-Facilities Inventory
Coordinator
Anita Hogan, AAS, CCFI^-Staff Assistant

RIT Real Estate

Ventures
Eric M. Hardy, BA, Tufts University, M.Ed., Cortland State-Director Anita Hogan, AAS, CCFL-Staff Assistant

DIVISION OF GOVERNMENT AND COMMUNITY RELATIONS

William E. Castle, BS, Northern State Teacher's College; MA, University of Iowa; Ph.D., Stanford University-
Vice President, Government
Relations, RIT; Director, NTID
Deborah M. Stendardi, BA, SUNY Cordand; MPA, SUNY AlbanyDirector
Arlene M. Evangelists, BA, Nazareth College; MBA, Rochester Institute of Technology-Assistant Director
Cynthia S. Gray- Community
Relations Specialist

STUDENT AFFAIRS DIVISION

Fred W. Smith, BA, MA, Wheaton College; Ph.D., Michigan State University-Vice President H. Preston Herring, BA, West Virginia Wesleyan College; M.Ed. University of Vermont; Ph.D., Michigan State University-Associate Vice President
Elaine M. Spaull, BA, George
Washington University; MA,
Georgetown University; Ph.D., SUNY,
Buffalo-Associate Vice President for
Student Affairs and Director of
Complementary Education

Campus Ministries

Fr. James Sauers—Director; Catholic Campus Minister
Sr. Marlene Vigna, RSM—Catholic
Campus Minister
Mr. Simeon Kolko-Hillel Director
Rev. Lawrence
Mothersell-Episcopal Campus
Minister
Rev. Jeffrey Hering-Lutheran
Campus Pastor
Deacon Patrick Graybill-Catholic
Liaison to the Hearing Impaired
Rev. Daniel Childs-Campus Minister for African/American Students
Rev. Mrs. Linda Dolby-Methodist/
Protestant Campus Minister
Rabbi David Mockin-Chabad Director
Mrs. Sally Taylor-Baptist Student
Activities Director

Complementary Education

Elaine M. Spaull, BA, George
Washington University; MA,
Georgetown University; Ph.D., SUNV Buffalo-Director
Patricia Buscemi-Coordinator,
Outdoor Experiential Education Joeann M. Humbert, BA, Villa Maria College; MS, Rochester Institute of Technology-Coordinator of Community Services Projects Nancy Shapiro, BA, Immaculata College; MS, University of Rochester-Coordinator of Group Development

Counseling Center

Harry Merryman, BS, MS, Ph.D.,
i University of Oregon-Director
(Associate Professor)
Laura Cann, BA, Smith; MS, SUC at
Brockport-Assistant Director (Associate Professor)
Gaillard Ashley, BS, University of Connecticut; Ph.D., Syracuse
University-Counselor (Associate Professor)
Carolyn Buntich, BS, SUC at Brockport; MS, Nazareth CollegePsychometrist
Carolyn Berquist DeHority, BA,
Earlham College; MS, Rochester
Institute ofTechnology-Counselor;
(Assistant Professor)
Jean Donahue, AS, Empire State College-Psychometrist
Laura Fleming, BSW, SUNY
Brockport; MSW, Syracuse
University-Counselor (Assistant Professor)
Katherine Gaudreau, AB, SUNY
Albany; MA, Cornell University;
MSW, Smith College for Social
Work-Counselor
Mahlon Gebhardt, AB, Albright;
M.Ed., Lehigh University-

Counselor; (Associate Professor)
Freyda Greenberger, BS, Syracuse University-Educational Specialist Rosemary Infante, BA, SUNY, Plattsburgh; MA, MS, SUNY Albany; Ph.D., University of Texas at Austin-Counselor (Assistant Professor)
Kathleen Kane, BA, Kent State University; MS, SUC BrockportCounselor (Assistant Professor) John Mitchell, BS, Ohio State University; MS, Ph.D., University of Pittsburgh-Counselor; (Associate Professor)
Karen Pelc, BS, Nazareth College; MA, Pratt Institute-Coordinator, IMPACT (Instructor)
Patrick Walsh, BA, St. John Fisher; MS, SUNY Brockport-Counselor (Assistant Professor)

Higher Education Opportunity Program

Linda Meyer, BA, University of Rochester; MA, SUNY BrockportDirector
Arlette Miller Smith, BA, Tougaloo College; MA, Michigan State University-Assistant Director Hussain Ahmed, BS, MS, SUNY Cordand-Counselor; (Instructor) Joyce H. Smith, BA, West Liberty State College; MS, West Virginia University-Counselor Sandra Ebling, BS, MS, Fredonia State University-Academic Coordinator
Goldie D. Ross, AAS, Rochester Institute ofTechnology-Executive Secretary

Horton Child Care Center

Anne Hoenig, BA, The College of Wooster; MS Ed., Nazareth College-Director
Roberta D. Noto, BS, MS, Nazareth-Assistant Director

Lita Boudakian, BA, Queens College; MA, Southern Connecticut State College-Afternoon Coordinator Carolyn Chizk, BA, Buffalo State-Teacher
Donna Gronemeyer, BA, Luther College-Teacher
Betty Sheridan, AAS, Monroe
Community College- Teacher

International Student Affairs

Barbara Letvin, BS, Ohio State
University; MS, SUNY at
Brockport-Director
Mary Ann Campbell, BA, St. Mary's
College-Assistant Director

Department of

Intercollegiate
Athletics and
Department of
Physical Education,
Intramurals and Recreation

Louis W. Spiotti, Jr., BS, Ithaca; MS, Ed., SUNY at Brockport-Director,
Department of Intercollegiate
Athletics; Assistant Professor
Fred Bleiler, BS, MS, Ithaca
College-Director, Department of Physical Education, Intramurals and Recreation; Professor
Neil A. Kromer, BA, Eisenhower College-Associate Director, Intercollegiate Athletics
Greg Moss, BS, SUNY at OneontaAssistant Director, Physical
Education, Intramurals and

Recreation

Daryl C. Sullivan, BS, Rochester Institute ofTechnology-Associate Director, Physical Education, Intramurals and Recreation; Assistant Professor
Louis A. Alexander, Jr., BS, University of Rochester-Chairman, Independent Study for Physical Education; Assistant to Director of Athletics; Professor
John P. Buckholtz, Jr., BS, SUNY at Cortland-Assistant Professor Earl W. Fuller, BS, Waynesburg State College; M.Ed., PittsburghWrestling Coach; Professor Eric Honberg, BS, Elmira College-Head Men's Hockey Coach, Coordinator of Eligibility Janet Jones, BS, MS, SUNY at Brockport-Assistant Director, Athleics
Douglas J. May, BS, SUNY at Brockport; MS, University of North Carolina at Chapel Hill-Men's Soccer Coach; Associate Professor Robert H. McVean, BS, SUNY at Brockport-Basketball Coach; Associate Professor
Ann Nealon-Women's Tennis
Coach; Assistant Professor
Kathy Robords, BS, SUNY at
Cortland-Women's Swim Coach; Assistant Professor
Linda Salladei-Administrative Assistant, Physical Education, Intramurals and Recreation

Diman Smith, BS, MS, SUNY
Brockport-Head Trainer
Helen Smith-Professor
Peter J. Todd, BS, SUNY at
Cortland-Men's Track and Cross Country Coach; Associate Professor Guy VanArsdale, BA, Hobart-Men's Lacrosse Coach, Assistant Professor

Office of Minority Student Affairs

Michael Ayewoh, BS, Tennessee State University; MS, M.Ed., Ph.D., Pennsylvania State UniversityDirector; (Assistant Professor)

Office of Special

 ServicesMarie Giardino, BA, Nazareth College; Middlebury CollegeDirector
Jacqueline Lynch Czamanske, MS. Ed., Nazareth College of Rochester-Coordinator/
Learning Disabilities Specialist David L. Watson, BA, MA,
University of Montana-Counselor,

Orientation and Special Programs

Dawn T. Murley, BS, Rochester Institute ofTechnology-Director Cheryl H. Phillips-Assistant to the Director

Residence Life

Daniel Ambrose-Coordinator, Staff Training \& Development for Student Development
Nancy Burgess, BA, M.Ed., Alfred
University-Acting Director of Off Campus and Apartment Life
Renee Camerlengo, BA, SUNY
Oswego; M.Ed., University of Vermont-Area Complex Director Frank Ciccia, BA, D'Youville College;
MA, Buffalo State College-Area
Complex Director
Carla DiLella-Coordinator of Assignments
Geraldine Drum-Coordinator, Budget/Dept. Auditor
Anne Dohrenwend, BA, SUNY Geneseo; MS, University of Vermont-Area Complex Director Karen Ely, BA, Thiel College; MA, College of Saint Rose-Area Complex Director
Mary Every-Coordinator of Summer Conferences/Special Projects
Jane Hendriksma, BA, Calvin College; MA, Michigan State University-Assistant Director for Student Development Carol Reed, BA, Ladycliff College; M.Ed., University of Southern Maine-Assistant Director for Administrative Services
Nancy Rienzo-Administrative
Assistant, Off Campus and Apartment Life
John Weas, BA, MA, Indiana University-Director of Off Campus and Apartment Life
Lillie Williams-Coordinator of Purchasing

Student Health Service

E. Cassandra Jordan, BA, Clark

College; BS, Meharry Medical
College; MS, SUNY at GeneseoDirector
Igor Mihajlov, MD, Faculty of
Medicine, Zagreb UniversityMedical Director
Beth White—Administrative Assistant
Martin Zinaman, MD, Downstate
Medical Center-Staff Physician
Sharon Emerson, BSN, Northeastern
University-Nurse Practitioner
Julie Leonardo, BS, MS, University
of Rochester School of Nursing-
Nurse Practitioner
Marsha Robinson, BSN, University of Pittsburgh; MS, University of Rochester - Nurse Practitioner
Alice Cutaiar, RN, Highland Hospital School of Nursing; AAS, Monroe
Community College-Staff Nurse
Donna Dietz, BSN, Alfred
University -Head Nurse
Laura McGrath, BSN, SUNY,
Brockport-Staff Nurse
Deanna Turner, RN, Swedish
Covenant Hospital School of
Nursing-Staff Nurse
Manizheh Eghbali, BS, University of Arizona; MPH-Health Education Coordinator
Jill Travers-Crumb, BS, Empire State College-Interpreter

Student Activities and Union Services

Helene K. Mangiaris, BS, MS, SUC Brockport-Director Michael T. D'Arcangelo, BA, Westminster College; MA, Bowling Green State University-Assistant Director
Dorothy J. Brown, BA, Daemen College; MS, SUNY at BuffaloCoordinator of Greek Affairs/ Student Affairs
Richard Morse, AAS, CCFU-
Coordinator for Program/Building Support Services
Kelly Thompson, BS, Rochester Institute ofTechnology-Temporary
Coordinator of Campus Information
\& Reservations

EMERITUS FACULTY

Charles Arnold, Jr., Professor
Emeritus, Photographic Arts and Sciences
Bekir Arpag, Professor Emeritus,
Printing Management and Sciences
Hans J. Barschel, Professor Emeritus,
Art and Design
Edward Brabant, Professor Emeritus, Printing
Evelyn Brandon, Professor Emeritus,
Liberal Arts
Harold J. Brennan, Dean Emeritus,
College of Fine and Applied Arts
Mary E. Burnet, Professor Emeritus,
Business Administration
William Burns, Professor Emeritus,
College of Science
Henry Cassia, Associate Professor
Emeritus, College of Business
You-Keng Chiang, Professor
Emeritus, College of Business
Frank A. Clement, Professor
Emeritus, Liberal Arts

Margaret D'Ambruso, Professor
Emeritus, College of Science
Silvio DeCristofaro, Professor
Emeritus, College of Continuing Education
Stanley M. Dye, Distinguished
Lecturer Emeritus, College of
Business
Mark Ellingson, President Emeritus
David F.ngdahl, Professor Emeritus,
Photographic Arts and Sciences
Albert Erskine, Professor Emeritus,
College of Science
Dale F. Gibson, Associate Professor
Emeritus, Business
Loy Golladay, Professor Emeritus,
English, National Technical Institute
for the Deaf
Ruth E. Gutfrucht, Professor
Emeritus, Art and Design
William F. Halbleib, Professor
Emeritus, Mechanical Engineering
Frances H. Hamblin, Professor
Emeritus, Liberal Arts
A. Ronald Handy, Associate Professor

Emeritus, School of Photographic
Arts and Sciences
William J. Hayles, Professor Emeritus,
College of Science
Edwin O. Hennick, Associate
Professor Emeritus, Liberal Arts
Warren L. Hickman, Professor
Emeritus, College of Liberal Arts
Richard J. Hoerner, Professor
Emeritus, College of Science
Edwina B. Hogadone, Dean
Emeritus, College of Business
Alfred Horton, Professor Emeritus,
Printing Management and Sciences
Charles W. Hunt, Associate Professor
Emeritus, Printing
Harold Kentner, Professor Emeritus, Continuing Education
Lakshmi Mani, Professor Emeritus, Liberal Arts
Marion L'Amoreaux, Associate Professor Emeritus, Reading and Study Clinic
Alexander S. Lawson, Professor
Emeritus, Printing
Douglas Lyttle, Professor Emeritus,
Photographic Arts and Sciences
Douglas M. Marshall, Associate
Professor Emeritus, Mechanical
Engineering
Lane McCord, Associate Professor
Emeritus, College of Science
James McMillion, Jr., Professor
Emeritus, Photographic Arts and
Sciences
Herbert J. Mossien, Professor
Emeritus, College of Business
Russell A. Norton, Professor
Emeritus, College of Continuing
Education
Robert Panara, Professor Emeritus, National Technical Institute for the Deaf
Egidio Papa, Associate Professor Emeritus, Liberal Arts
Robert D. Pease, Dean Emeritus,
College of Continuing Education
Daniel Petrizzi, Professor Emeritus, Eisenhower College
James Philbin, Professor Emeritus,
College of Liberal Arts
Harold Raphael, Professor Emeritus,
Packaging Science
George W. Reed, Professor Emeritus,
Electrical Engineering
Albert D. Rickmers, Professor
Emeritus, Photographic Arts and
Sciences
Donald L. Ritchie, Professor
Emeritus, Printing

Donald C. Robinson, Department
Head Emeritus, Electrical
Engineering
Nile Root, Professor Emeritus, School
of Photographic Arts and Sciences
Nina M. Sandberg, Associate
Professor Emeritus, College of
Science
Julian Salisnjak, Professor Emeritus,
Liberal Arts
Roy I. Satre, Vice President for
Academic Affairs Emeritus
Gerhard Schumann, Professor
Emeritus, Photographic Arts and
Sciences
Norris Shea, Professor Emeritus,
Liberal Arts
Edward L. Scouten, Professor
Emeritus, English, National
Technical Institute for the Deaf
Anthony Sears, Professor Emeritus,
Printing
Donald Smith, Associate Professor
Emeritus, Photographic Arts and
Sciences
Leo F. Smith, Vice President
Emeritus, Academic Administration
Arnold Sorvari, Professor Emeritus,
Photographic Arts and Sciences
G. Hollister Spencer, Professor

Emeritus, Business Administration
Egon Stark, Professor Emeritus,
College of Science
Leslie Stroebel, Professor Emeritus,
School of Photographic Arts \&
Photography
Hector Sutherland, Professor
Emeritus, Printing
Vernon R. Titus, Professor Emeritus,
Management
Hollis N. Todd, Professor Emeritus,
Photographic Arts and Sciences
John Trauger, Professor Emeritus,
Photographic Arts and Sciences
Arden L. Travis, Professor Emeritus,
College of Business
Dr. Vladimir Vukanovic,
Distinguished Professor Emeritus,
College of Science
Watson "Jim" Walher, Professor
Emeritus, Electrical Engineering
Robert Webster, Associate Professor
Emeritus, College of Graphic Arts
and Photography
Norman J. Weinreber, Associate
Professor Emeritus, College of
Applied Science and Technology
Mason E. Wescott, Professor
Emeritus, Statistics
Helen W. Wheeler, Associate
Professor Emeritus, Reading and
Study Clinic
Dorothy Widmer, (Professor
Emeritus), Student Affairs
Edwin M. Wilson, Professor Emeritus,
Photographic Arts and Sciences
Eugene O. Wilson, Associate
Professor Emeritus, Business
Stanley H. Witmeyer, Professor
Emeritus, College of Fine and
Applied Arts

Index

AAS Program in Professional Photography.. 64
AAS Programs. 71

Academic Policies and Student Standards... 185 Academic Probation and Suspension

Policy	187
Academic Scholarships	176
Academic Services.	190
Academic Standards and Regulations.	186
Accounting and Finance, Department of	
Accounting Major	44
Accreditation	

Accreditation
Admission at a Glance:
College of Applied Science and
Technology 8
College of Business. 42
College of Engineering 78
College of Fine and Applied Arts. 89
College of Graphic Arts and Photography 97
College of Liberal Arts. 119
College of Science 133
National Technical Institute for the Deaf ... 148
Admission, Early 176
Admission Requirements, NTID 148
Admissions, general 176
Admissions Services 176,177
Advertising Photography. 106
Aerospace Studies 2-year Program 39
Aerospace Studies 4-year Program 39
Aerospace Studies, Department of 39
AFROTC 39
Air Force Reserve Officer Training Corps... 39
Air Force ROTC 39
Alcohol \& Drug Education \& Prevention Program. 194
Alcohol and Drug Use 189
Allied Health Sciences Programs. 144
Ambulance. 201, 202
American Airlines SABRE Systems. 32
American Craftsmen, School for. 93
Apartment Housing 197
Application Procedures and Admissions
Services. 176
Applied Accounting 153
Applied Art Careers 168
Applied Art Diploma and Degree Programs. 168
Applied Arts and Science Degrees 53
Applied Mathematics 140
Applied Science/Allied Health Careers 158
College of 7
Applied Science Program (BS Degree) 66
Applied Statistics. 142
Army ROTC 37
Art and Design, School of 91
Arts/General Education 59
Auditing a course. 185
Biochemistry Option. 138
Biology Program 135
Biomedical Computing Program. 144
Biomedical Photographic Communications. 101
Biotechnology Program. 136

Data Processing 156
Deaf Studies Certificate 62
Deans. 205
Dean's List 186
Decision Sciences, Department of 46
Degrees offered 3
Degrees Offered, NTID. 148
Department of Accounting and Finance 44
Department of Aerospace Studies. 39
Department of Civil Engineering Technology. 14
Department of Computer Engineering Technology. 16
Department of Computer Science 12
Department of Decision Sciences. 46
Technology 18
Department of Management and Marketing. 48
Department of Mechanical Engineering Technology. 22
Department of Military Science. 37
Department of Packaging Science. 35
Developmental Programs and Groups. 194
Diagnostic Medical Sonography
(Ultrasound) Program. 147
Disabled Student Services. 195
Disciplinary Probation. 187
DISCOVER 194
Double Crafts Majors 93
Drop/Add Period 185
Early Admission. 176
Early Decision Plan. 176
Economics Program (BS Degree) 124
Educational Interpreting. 175
Electrical Engineering. 81
Electrical Engineering Technology (BS Degree)18
Electrical Engineering Technology co-op plan 18
Electrical Engineering TechnologyDepartment18
Electrical Engineering Technology(Evening BS)19
Electrical Engineering Technology eveningcourses

Late Registration Fee (CCE) 179
Learning Assessment Program 193
Learning Development Center 192
Liberal Arts Curriculum
Liberal Arts Requirements, NTID.
Liberal Arts, College of
Liberal Education in Humanities \& Social Sciences
Library, Chemistry 191
Library, Wallace Memorial 190

Machine Shop Diploma Programs
Machine Tool Diploma Programs
Management and Marketing, Department of
Management Certificate
Management Development Program
Management Diploma
Management Major.
Manufactiris
Manufacturing Engineering Tech. evening courses
Manufacturing Engineering Tech. evening program
Manufacturing Management Major
Manufacturing Processes.
Manufacturing Technology
Marketing Major
Mathematics and Statistics Programs
Mechanical Engineering
Mechanical Engineering Technology (BS Degree)
Mechanical Engineering Technology (Evening BS)
Mechanical Engineering Technology co-op plan
Mechanical Engineering Technology Department
Mechanical Engineering Technology evening courses
Mechanical-Industrial Program.
Mechanical Program.
Mechanical Technology
Media Production.
Medical Illustration Option
Medical Imaging Technologies
Medical Laboratory Technology.
Medical Record Technology.
Medical Technology Program.
Microelectronic Engineering
Military Science 2-year Program
Military Science 4-year Program
Military Science, Department of

National Technical Institute for the Deaf	148-175
New Student Orientation	98
Newspaper Operations Management	113
Non-matriculated Student Registration	85
Notification and Appeal	183
NTID.	148-175
NTID Grant-in-Aid	181
'NTIDLife'.	199
NTID Physical Education \& Athletics	
NTID Psychological Services	194
NTID Student Congress	98
Nuclear Medicine Technology Program	146
Off Campus Student Assn	198
Office of Part-time Enrollment Services	177
Office of Special Services	195
Office Technologies	
Officers	05
Open Registration	
Ophthalmic Optical Finishing Technology	
Overview of RIT	
Packaging Design	
Packaging Science (BS Degree)Management Option	
Packaging Science (BS Degree)Printing Option	
Packaging Science (BS Degree)Technical Option	
Packaging Science, Department of	
Painting Major	
Painting-Illustration Major	
Part-time Students	
Part-time Undergraduate Programs.	
Partial (room and board) Refund.	
Partial (tuition) Refund	
Payment Plans.	
Payment Procedure	
Payment Procedures (CCE)	
Performing Arts	
Personal Conduct	
Personal/psychological counseling	
Photographic Arts and Sciences, School of . . 99	
Photographic Marketing Management	
Photographic Marketing Management Major	
Photographic Processing and Finishing Management	
Photography Diploma	
Photojournalism	
Photo/Media Technologies Careers	
Physical Education	
Physical Education Classes	
Physical Education Policy	
Physics Program	
Polymer Chemistry	
Portfolio Guidelines, Fine \& Applied Arts . . 89	
Pre-Baccalaureate Studies (NTID)	
Premedical core	
Printing	
Printing and Applied Computer Science.... 114	
Printing Diploma	
Printing Management and Sciences, School of.	
Printing Production Careers 172	
Printing Production Technology 112Printing Systems	

Printmaking Major	91
Printmaking-Illustration Major.	1
Procedures and Costs.	177
Procedures and Costs (CCE)	179
Production and Inventory Management, Center for	47
Professional and Technical Communication	. 126
Professional Photography AAS Program.	64
Public Relations \& Technical Communication Services.	61
Public Relations Communications Certificates.	60
Quality and Applied Statistics, Center for	52
Racial Harassment Policy	189
Rape Education and Counseling Team (REACT)	94
Recreation	201
Refund Policies	178
Refund Policies (CCE)	179
Registrar	185
Registration	185
Registration and Student Records.	85
Religious Activities.	200
Religious Holidays.	189
'Reporter'.	98
Required courses, NTID	149
Requirements for State and Federal Aid Programs.	181
Reserve Officers' Training Corps (ROTC)	37
Residence Halls	197
RIT at a Glance	2
RIT Today	3
RITreat	199
'Rolling Admissions'.	176
'Rolling Bricks'.	199
Room and Board	179
ROTC (Air Force)	39
ROTC (Army)	37
Safety	189
School for American Craftsmen	3
School of Art and Design	91
School of Business Careers.	152
School of Computer Science \& Information Technology.	
School of Engineering Technology.	12
School of Food, Hotel and Tourism Management	29
School of Photographic Arts and Sciences..	99
School of Printing Management and Sciences.	
School of Science and Engineering Careers.	158
School of Visual Communications.	168
Science and Engineering Careers, School of	158
Science and Technology	66
Science, College of	130
Sexual Behavior and Harassment.	189
Small Business Management Program.	55
Social Work Program (BS Degree)	122
Special Services.	195
Specialized Industrial Training	75
Sports	201
Standards of Satisfactory Academic	
Progress 182,	
Student Alumni Union	199
Student Clubs and Organizations	198

Student Directorate	198
Student Health Service	201
Student Housing	197
Student Professional Associations.	198
Student Publications.	198
Student Records.	185
Student Regard for Property	189
Student Retention.	186
Student Sickness Insurance Plan	177
Study Environment	189
Support Services for Deaf Students.	190
'Techmila',	198
Technical and Liberal Studies Option	128
Technical Communication Certificates.	61
Telecommunications Technology (BS Program)	20, 21
Telecommunications Technology co-op plan	21
Telecommunications Technology evenin courses.	22
Telecourses.	. 52
Testing,	194
Transcripts.	185
Transfer Credit	176
Transfer Students	182
Translation Services.	193
Travel Management	32
Trustees.	204
Tuition Assistance Program (TAP)	181
Twelve-month Payment Plan	178
Typical Expenses	178
Ultrasound Program.	147
Undeclared Science Option.	130
Undergraduate Programs, Full-time	4, 5
Undergraduate Programs, Part-time	6
Vehicle Parking and Registration.	202
Veterans' Affairs.	196
Visits to campus.	2, 176
Visual Communications, School of	168
Vocational Rehabilitation	178
Wallace Memorial Library.	190
Woodworking and Furniture Design (AOS Degree).	93
Writing Policy	188
Writing Program, NTID.	149

[^0]: ' Higher Education General Information Survey
 " Students in these programs receive an AS in General Science (HEGIS \#5649) upon successful completion of the first two years.
 † See also: Design (Graphic); Film/Video; Imaging \& Photographic Technology; Medical Illustration; Packaging Science (Design Option); Photographic Illustration (Professional); Printing; and Printing \& Applied Computer Science.

[^1]: - Higher Education General Information Survey
 "Students in these programs receive an AS in General Science (HEGIS 05649) upon successful completion of the first two years.
 † See also: Design (Graphic); Film/Video; Imaging A Photographic Technology; Medical Illustration; Packaging Science (Design Option); Photographic Illustration (Professional);
 Printing; and Printing \& Applied Computer Science.

[^2]: * Upper-division program only

[^3]: Graduates will have to meet a minimum of 36 quarter credits of mathematics and science (including credits transferred), and include mathematics SMAT-422or equivalent. Rearrangement of the above schedule will be allowed to meet the math/science requirements.
 'Seepage 116 for Liberal Arts requirements.
 fSee page 200 for policy on Physical Education.

[^4]: ++ These communications courses require pretest; call 475-2234 for information. Students completing BS or B. Techdegrees must also pass a communications competency test.
 'A concentration $=20$ QH (ormore) in one subject area (I.e., Computers, Communications, Business).
 "Must choose one course each from three different areas of Humanities (i.e., Fine Arts, History, Philosophy, or Science/Technoiogy and Values).
 "'Cannot be in the same area as professional concentration.
 ""Students choosing a Liberal Arts area for a professional concentration must choose their "Liberal Arts Concentration" and "Liberal Arts Electives" in other disciplinary or interdisciplinary areas in the College of Liberal Arts.

[^5]: * Students may choose from:

 CTDS-420 Data Communications Systems
 CTDS-485 Data Base Systems
 " These communications courses require a pretest, call475-2234 for information.

[^6]: In sequentially numbered courses, the lower numbered course is prerequisite.
 'These communications courses require pretest; call 475-2234 for information. Students completing BS degrees must also pass a communications competency test.
 "These electives must be selected from the areas of humanities, social sciences and language arts, subject to advisor's approval.

[^7]: * These communications courses require pretest; call 475-2234 for information. Students completing BS and B. Tech. degrees must also pass a communications competency test.
 " These electives must be selected from the areas of humanities, social sciences and language arts, subject to advisor's approval.
 In sequentially numbered courses, the lower numbered course is prerequisite.

[^8]: - These communications courses require pretest; call 475-2234 for information.

[^9]: " Students may choose from:
 CTDP-307Business Applications Programming
 CTDP-320 Computer Programming for Engineers
 \dagger Courses may not be chosen from the same discipline.
 " These communications courses require a pretest, call475-2234 for information.

[^10]: All eiectives must be selected with advisor's approval.
 *These communications courses require pretest; call 475-2234 for information.
 "Required for Architectural Technology.
 Required for Construction Technology

[^11]: "These communications courses require pretest; call475-2234 for information.

[^12]: *Waiver (with credit) by examination. Exemption (without credit) on recommendation of instmctor. "Seepage 116 for Liberal Arts requirements.
 '"Concentration course credits may vary from 3 to 5, but should total approximately 24. A minimum of 197 quarter credit hours are required for the BS degree.
 "'"Co-op experiences may be scheduled during the school year as well but this may disrupt normal course schedule. tSee page 200 for policy on Physical Education.
 NOTE: Some courses are offered more than once during school year.

[^13]: *Course scheduling varies.
 "Seepage 116 for Liberal Arts requirements.
 tSee page200 for policy on Physical Education.

[^14]: 'See page 116 for Liberal Arts requirements.
 See page200 for policy on Physical Education.
 "SCHC-S41,542,543 Chemistry Research maybe usedasScience electives and are highly recommended.

[^15]: Rochester Institute of 'technology, "1900 Master Plan " (March 1980).
 'George W. Hoke, Blazing New Trails (Rochester, N. Y., Rochester Athenaeum and Mechanics Institute, 1937), p. V.

