The Process of Wayfinding

Rochester Institute of Technology
College of Imaging Arts and Sciences
School of Design
Graduate Graphic Design Program
MFA Candidate
JinHee Kwon
Approvals

Chief Advisor:
R. Roger Remington
Date: 5-8-2000

Associate Advisor:
Bruce Ian Meader
Date: 5-8-2000

Associate Advisor:
Charles F. Lewis
Date: 5-8-2000

Chairperson:
Nancy A. Ciolek
Date: 5-8-2000

I, JinHee Kwon, hereby grant permission to the Wallace Memorial Library of RIT to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.

Signature
Date: 5-8-00
Table of Contents

<table>
<thead>
<tr>
<th>Chapter / Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approvals</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Thesis Committee Members</td>
<td>iv</td>
</tr>
<tr>
<td>Thesis Project Definition</td>
<td>1</td>
</tr>
<tr>
<td>Precedents</td>
<td>2</td>
</tr>
<tr>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>Synthesis</td>
<td>12</td>
</tr>
<tr>
<td>Ideation</td>
<td>14</td>
</tr>
<tr>
<td>Intermediate Evaluation</td>
<td>15</td>
</tr>
<tr>
<td>Implementation</td>
<td>20</td>
</tr>
<tr>
<td>Dissemination</td>
<td>35</td>
</tr>
<tr>
<td>Retrospective Evaluation</td>
<td>36</td>
</tr>
<tr>
<td>Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>40</td>
</tr>
<tr>
<td>Appendices (Index)</td>
<td>41</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>42</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>52</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>59</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>62</td>
</tr>
<tr>
<td>Bibliography</td>
<td>70</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to thank my mother who understands and encourages me to study with endless support.

Thanks to my thesis committee members R. Roger Remington, Bruce Ian Meader, and Charles F. Lewis for their direction and advice.

Thanks to Cathy Chou (instructor), Dean Woolever (NTID designer), Al Smith (Director, Division of Institutional Service), Maggie Everhart (Editor), and Craig Tesler (Empire Forster) for their support.
Thesis Committee Members

| **Chief Advisor** | R. Roger Remington
Professor, Graphic Design |
|-------------------|------------------------|
| | Office: 3404 Booth
Phone: 716.475.2658
E-mail: RRRFAD@rit.edu |

| **Associate Advisor** | Bruce Ian Meader
Associate Professor, Graphic Design |
|-----------------------|------------------------|
| | Office: 3420 Booth
Phone: 716.475.7826
E-mail: BIMFAA@rit.edu |

| **Associate Advisor** | Charles F. Lewis
Professor, Interior Design |
|-----------------------|------------------------|
| | Office: 4570 Booth
Phone: 716.475.6357
E-mail: CFLFAA@rit.edu |
Thesis Project Definition

Definition "Wayfinding is finding one's way to a destination: spatial problem-solving comprised of three interdependent processes: decision making, decision executing, and information processing." ¹

Necessity We struggle to find our destination and every building or city is not always designed with wayfinding being a fundamental consideration at the beginning of a design project. Users need to be directed and informed through space by a wayfinding system. Moreover, a well-designed wayfinding system provides users with effective and necessary information, along with satisfying four basic and essential functions: direction, information, identification and regulation.

Goal The principal goal of this thesis is to define the wayfinding system using theoretical approaches and to develop the process for signage design which means designing a system of signs. The concept of a wayfinding system derives from the combination of sign theory, information theory and systems theory. This thesis process will analyze the application of those theories to the design of signage in order to create a comprehensive wayfinding system.

Application The design application for this thesis study will include the development of an interior signage system for Rochester Institute of Technology's National Technical Institute for the Deaf (NTID). Currently, the lack of signage in this building causes difficulty in getting to specific destinations, resulting in confusion and an inefficient use of time. The primary objective is to provide the NTID building with an effective wayfinding system.

Signage Guidelines and Standards for Monroe County Facilities (May 1997)

This signage project presented Monroe County's exterior and interior signage design in a comprehensive way. The project defined old signage issues of Monroe Country, and suggested cohesive components of wayfinding. They built a standard for their signage system and identified a sequence of exterior and interior sign type. The goal of this project was to design consistent sign systems and to ensure good functional and technical application.

This Signage Guidelines and Standards for Monroe County Facilities is a meaningful precedent for this thesis topic because it presents the standard for an inclusive signing system and emphasizes the wayfinding system.

Dutch Sign Design (1995)

This book includes the Netherlands Sign Design. These sign systems are well-organized and based on architectural factors. They consider the sign design as architectural or urban environmental design, and focus on informational and technological consideration.

Dutch Sign Design is a meaningful precedent for this thesis topic because the sign systems shown presents a systematic approach for designing systems which include clear directions, useful information through color-coding, distinct typography, and advanced technical methods. This systematic approach results in sign system designs that are functionally and aesthetically sound.

The Americans with Disabilities Act
White Paper: SEGD's Clarification and Interpretation of the ADA Signage Requirements
(Second Edition, April 1993)

The Society for Environmental Graphic Design(SEGD) developed the White Paper to support the Americans with Disabilities Act(ADA) and introduced a guideline and regulations for signage requirements. The requirements introduced constraints for location, position, and typography for signage. It guides designers from all disciplines, their customers, manufactures, and facility managers.

The White Paper is a meaningful precedent for this thesis topic because it presented current guidelines and regulations for current signage.
Research

For research, there are three steps. The first step is visiting the National Technical Institute for Deaf (NTID) building in order to determine navigational difficulties. The second step is interviewing NTID faculty and staff in order to understand issues of current NTID signage system. The final step is surveying users in the NTID building.

The difficulty of wayfinding not only results from the complexity of the building but also a complicated space relationship. The result of poor wayfinding results in frustration and stress. For an effective wayfinding solution, functional efficiency and accessibility should be a reflection of the system.

Visiting the National Technical Institute for Deaf (NTID) building

The first impression of the building is of confusion and complexity. In the building, a few signs exist, but for specific or detailed information, visitors use the Visitor’s Center instead of using signs. The reason is that visitors rely on asking staff at the Visitor’s Center. Many offices and classrooms are hidden throughout the building. There are two main entrances. One is connected from the first floor, and another is connected from the second floor for dormitory users. Therefore, without identification of each floor, users can become easily confused.

To assess the difficulty of wayfinding in the NTID building, pictures were taken to document problem areas.

The matrix “The Inside of the NTID Building” shows a visual analysis of the interior of the NTID building. Moreover, this photo analysis defines the current situation of the NTID building.
The Inside of the NTID Building

<table>
<thead>
<tr>
<th>Direction</th>
<th>Information</th>
<th>Identification</th>
<th>Regulation</th>
<th>Miscellanea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interviewing the NTID Faculty and Staff

Interviewing with the NTID faculty and staff was helpful to understand the difficulty of the present NTID signage system. First, a meeting with Cathy Chou(Instructor) provided initial information regarding current issues in the NTID building. According to her, the NTID building is a very complex structure and people easily get lost inside of the building. Continued renovation work in the NTID building causes further wayfinding problems. She referred me to Dean Woolever(NTID designer) and Al Smith(Director, Division of Institutional Services).

Dean Woolever suggested the current needs for the NTID building. Interchangeable sign design, which can be updated easily, would improve accuracy of information and is necessary for finding specific locations. For instance, 1st, 2nd and 3rd floors should have supporting information for identifying the proper location. He explained the hallway(corridor) identification difficulty because many offices are located in the hallway without guided sign system.

Finally, Al Smith, who manages the NTID sign system and interior parts, knows specific details and current issues of the building. According to him, the lack of a wayfinding system results from limited budget and time. He also mentioned that problems are exacerbated by the structure of the building. Currently, colored walls were used for distinguishing each section of the building, but during renovation, all walls were painted white. Therefore, the confusion is perpetuated. His concerns included the need for directional signs, flexibility, readability for people with disabilities, color consistency for those with visual disabilities, and consideration for user groups, both newcomers and daily users.

About the National Technical Institute for the Deaf (NTID)

"NTID, one of the seven colleges of Rochester Institute of Technology(RIT), is the world's first and largest technological college for deaf students."(NTID mission 2001) The NTID provides specific education programs which are concentrated in arts and sciences curriculum to deaf students. Also, the NTID supports facilities and access services such as note-taking, and interpreting for deaf students who take a class at RIT.

The NTID building consists of three stories and the shape of the building is an exact square. The Visitor's Center, Admissions Office, and Panara Theater are located on the first floor. Most of the offices and academic classrooms and the Center for Institute Services, Center for Outreach, Center for Student Records, Center for Technical Studies, Development Office, Student Employment Office, Switzer Gallery, and Learning Center are located on the second floor. The third floor houses specific areas such as the Hearing Aid Shop, Interpreter Training Office, and Self-Instruction Lab. Many areas are hidden in the inner corridors and it is difficult to find some offices and classrooms. NTID provides a limited signage system and it needs to establish a new, logical and comprehensive wayfinding system.

1 NTID Homepage, “NTID Mission” (2000); available from http://www.rit.edu/~418www/new/ about.html; Internet
Floor plans of the building were obtained to help document some of the problems.

The existing floor plans were provided by the Institutional Services office.
Research

3rd floor plan

Many hallway (corridor) without identification sign

Complexity of building structure
Surveying real users in the NTID building

Surveys were collected from current users: students, staff, and professors in the NTID building. Each survey examinee was asked to show his/her own daily behavior pattern on the provided interior floor plans of the NTID building. As a result, frequent interior traffic patterns were determined.

Based on the survey results (Appendix 1, page 41), proposed sign locations were decided upon. The most congested areas were selected as proper places for the signs.

The proposal categorized four sections: entrance sign, lobby sign, directional sign, and stair identification. Moreover, each identified mark indicates a specific sign and location on the map.
Color Theory

Reference: *Basic Visual Concepts and Principles* by Charles Wallschlaeger and Cynthia Busic-Snyder

In Appendix 2, color variations were assessed as possibilities for sign color application. The purpose of the color study was to find appropriate colors for actual signage in the NTID building.

This color study was divided into five categories: Monochromatic Harmony, Analogous Harmony, Complementary Color Harmony, Split Color Harmony, and Triad Harmony.

First, the Monochromatic Harmony study was based on a monochromatic relationship. According to *Basic Visual Concepts and Principles*, monochromatic means the usage and variation of one hue within the color circle. Through this study, one color mixture of tints and shades shows a relationship of monochromatic color. (see Appendix 2, page 52)

Secondly, Analogous Harmony used adjacent colors in the color cycle. In this study, the analogous color scheme was divided into warm and cool colors, so each warm and cool hue was utilized in each application to determine the warm and cool hue color relationship. (see Appendix 2, page 53)

Complementary Color Harmony shows opposite color composition. A mixture of an exact amount of complementary colors' pigments results in gray or achromatic color. Also, a pattern of complementary colors causes a visual illusion of vibration. Therefore, Complementary Color Harmony is used for the purpose of contrast. On Appendix 2 page 54, Complementary Color Harmony is divided into three sections: yellow and violet, orange and blue, and red and green. (see Appendix 2, page 54)

Split Color Harmony is comprised of a primary color and two subordinate colors. The two subordinate colors are adjacent colors which are located near an opposite color of the primary color. This color study determines a contrast and an interaction among the three colors. (see Appendix 2, page 55)

Lastly, Triad Harmony consists of three hues found by rotating the triangle at the center of the color circle. The three hues have an equidistant space relationship. This harmony results in a creative color interaction. (see Appendix 2, page 57)

These five color studies show several possibilities of signage color. Through these color studies, several color choices were selected. Then, those selected color choices were analyzed by certain criteria. First, color coding should be clear and distinct between letters and background color. Secondly, color coding should be considered as an environmental factor. Presently, the color of the NTID building is red-brown, so the color of the building should be harmonized with the signage color coding. Lastly, color coding should be distinguishable at a distance. As a result, color coding was decided upon. Based on the “Pantone Process Color System Guide”, applied colors were selected. On page 22, the color coding is presented.
Synthesis

After the research phase, the current needs of the NTID building were defined, and structuring process of a wayfinding system was required. The process of structuring NTID’s wayfinding system was based on Wayfinding: People, Signs, and Architecture. (Paul Arthur and Romedi Passini 1992)

Process of Wayfinding System

1 Decision–making and Decision–executing
 • Decision making: a plan of structural decision
 • Decision to behavior: research

2 Information Processing – a process of scanning and glancing
 • Sight
 • Other sensors (hearing...)

3 Environmental Cognition (knowing & understanding)
 • Enhancing memory for building in a cityscape
 • The form of building – size, contours, complexity of shape, uniqueness of architectural style
 • Visibility and access: pedestrian access, possibility of moving around the building.
 • Use: function of building, percentage of usage of that building
 • Symbolic significance: historical and cultural meaning
 • Cognitive mapping
 • Structuring the environment in terms of routes: the points where they change direction, the angle of directional change, a measure of the distance from one point to another...
 • Recording the topographical relationship between critical elements of the explored environment directly, without relying on specific routes or decision plan

4 Spatial planning
 • Determines location of entrances & exits of a setting, location of major destination, the level of destination zone / various destination zones

5 Environmental communication
 • The design of an information system – people’s wayfinding behavior: including visual, audible, and tactile modes

continued
6 Classification of graphic information
 - Typographic
 - Hand graphic, computer graphic, photographic
 - Pictographic
 - Cartographic

7 Form of graphic information
 - Verbal information
 - Non-verbal (or pictographic) information
 - Color
 - Layout
 - Illustration on sign

8 Graphic information for decision making
 - Orientation
 - General Information

9 Graphic information for decision executing
 - Floor & room numbers
 - Landmarks
 - Location of signs
 - Placement of signs

10 Evaluation

11. Implementation

Reference
Information should be organized in a logical and effective way, and be able to direct the users to their destinations. It should identify the destination upon their arrival. Each sign location is based on specific research criteria and the kind of information is decided upon according to that criteria.

There are two considerations applied in this step. One is that signage should be informative and directional. Another is the functional use of signage.

Through the preliminary sketches, the ideas developed in a simple and clear way.
To evaluate ideation, specific criteria are applied.

The first criterion is “Applied Methods”.
(Project Development and Evaluation, Fall 991, Professor Deborah Beardslee)
These three specific matrices are based on several aspects of signage criteria and basic design principles.

The second criterion is from “Classification of Graphics Information” (Paul Arthur and Romedi Passini, 1992). This matrix presents the anatomy of graphic information and indicates which places need what kind of information. (Appendix 3, page 58)

The last criterion is comments from the thesis committee members. Through several group meetings and individual meetings, feedback and comments were given. These are organized by date. The feedback and comments were directed at further improvement of this thesis project.

In conclusion, the first criterion was for evaluating a signage style based on basic design concepts. The second criterion was for evaluating proper information in signage system. The last criterion was for evaluating a process of project.

Intermediate Evaluation

Applied Methods: Three Matrices

These methods are divided into three terms:
Analysis of signage form, Functional signage, and Efficient signage

Analysis of signage form

<table>
<thead>
<tr>
<th>Signage depends on location</th>
<th>Spatial organization</th>
<th>Linear Organization</th>
<th>Radial Organization</th>
<th>Clustered Organization</th>
<th>Grid / Lattice Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Care and Institutional Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leisure Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail and Service Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban and Temporary Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational and Cultural Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functional signage

<table>
<thead>
<tr>
<th>Sign Categories</th>
<th>Types of Graphic Sign & Symbols</th>
<th>Phonograms & Alphabet Codes</th>
<th>Nonphonetic Alphabets & Codes</th>
<th>Nonphonetic Graphic Codes & Symbols</th>
<th>Diagrams Coded Sign & Types of Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identificational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statutory (regulatory)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
Intermediate Evaluation

Efficient signage

<table>
<thead>
<tr>
<th>Impact of wayfinding Generated approaches</th>
<th>Accessibility</th>
<th>Functional efficiency</th>
<th>Safety</th>
<th>Understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deconstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition/ornamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intermediate Evaluation

Comments from the Committee members

These comments and feedback are organized simple note style based on dates.

Feb. 8. 00. Tues 2:30–3:00PM
Comments and feedback from R. Roger Remington
His feedback was that the proposed signage system should be considered as a system and based on this system, certain color formats and ideas were reflected in sketches. A grid system should be applied to the template page in order to make the signage system. The signage system should show a sequence of steps, like an airport gate.

Feb. 9. 00. Tues 3:00PM
Comments and feedback from Bruce Ian Meader
His suggestions were about the whole signage designing process. The first was making a sign schedule for NTID wayfinding system in order to build the guideline for a signage system. For instance, the guideline could be classified by size, numbers of line usage, height or width, usage of font type. Secondly, sketches should identify attributes, and tangible form. Also, the sketches should identify the location of the signage and then in accurate drawings, the best one should be selected. His major concerns were overall size, grid and proportion of signage. This signage design is considered a system. For color coding, basic color studies, value study, high or low saturate study and chrome study should be considered. The color coding also has to have systematic look.

Feb. 17. 00. Tues 2:30PM
Comments and feedback from Charles F. Lewis
He said the direction arrow was a problem and demanded showing sequence as system. Usually, the purpose of a university sign is for the convenience of the people, so the signage design should consider this point. Also, a design issue in the signage design was human scale. How to work in a given space is the most important point in the notion of scale. Exchangeable signs for summer and breaks should be considered. Using plain language is important. For instance, restroom signs are confusing, so the language use should be clear. Also, the materials used for the signage should be compatible Institute materials.

Feb. 15. 00. Tues 2:30–3:00PM
Comments and feedback from R. Roger Remington
Arrow types should be unified. Showing samples of signage and the proportions of the signage should appear in the sketches. The crucial aspect is unifying signage as one system. A color system and an experimental font type were considered for the application.

Feb. 21. 00. Tues 3:00PM
Comments and feedback from Bruce Ian Meader
He suggested making simple diagrams indicating decision points. For instance, making a simple building diagram would provide a visual aid for signage placement. All signage has to meet fundamental requirements of the American with Disabilities Act (ADA). Also, he mentioned certain criteria should be established. Mapping out the scope of
the project, a blue print will determine the level which is informational or directional or identificational. Users' traffic patterns will determine decision points. Knowing the navigator's destination is an important consideration.

Mar. 6. 00. Mon 1:00–1:30PM
Thesis Committee Meeting
In the thesis committee meeting, project progress was reported on as four subjects: position of signage (inside of the NTID building), behavior pattern (inside of the NTID building), design of signage, and type use. Comments from thesis committee members addressed scale consideration based on human factors, marking up actual size for each standard size, checking spelling, alignment and margin of letters based on the grid system, considering wall materials, color consideration, changing size of arrow mark, thinking about consistency of two diamond shapes, making simple directional signage like an entrance sign, proportion based on the grid system, making a constructive and consistent system, simplifying the signage, height consideration, and refinement.

Mar. 20. 00. Mon 4:00–5:00PM
Comments and feedback from Bruce Ian Meader
His greatest concern was the ADA issue and that the signage design should follow a logical sequence. In the thesis statement, giving a subtitle to each paragraph will identify the thesis definition. For color selection, several color combinations based on basic color theory should be tried.

Mar. 27. 00. Mon 1:00–1:30PM
Thesis Committee Meeting
For preparing the thesis show, a prototype of five posters (24 / 36 inch) were presented. Comments were to make the signs the actual size to aid the audiences, understanding, and to be careful about the background color use of the poster.
Implementation

Requirements and guidelines for implementation
Through the process, graphic information is classified and analyzed in a systematic way. The measurements of each sign are based on The Society for Environmental Graphic Design (SEGD)’s Clarification and Interpretation of the requirements of the Americans with Disabilities (ADA) Signage Requirements and the average person’s height.

The book, *Human Dimension & Interior Space* by Julius Panero and Martin Zelnik, provides measurements the stature of men and women. 95% of men and women’s height falls within the following range: men – 70.5 in (179.1cm)–72.8 in (184.9), and women – 64.9 in (164.8 cm) – 67.1 in (168.7cm). Based on these measurements, the average human height was determined, and became a guideline for establishing signage height.

The *White Paper* suggests 80” as the minimum distance between the floor and the bottom of hanging signage. Also, there should be 60” from the floor to the center of the regulatory signs. Pictograms should be within a 6” field, and for room identification, letter size cap height is 5/8” minimum and 2” maximum with all caps, tactile and Grade 2 braille.

This implementation follows the above regulations and satisfies functional and aesthetic aspects.

Graphic elements for implementation
The two diamond shapes in the signage reflect the abstract sculpture in front of the NTID building in order to maintain a familiar image of NTID.

The choice of alignment is centered for the upper part of the signage and flush left for the lower part of signage. Center alignment is to provide contrast between the NTID typography and other directional typography. Flush left alignment is for maintaining a systematic look for the signage.

Material choice for implementation
The material chosen for the NTID signage was .080' non-glare acrylic. According to Craig Tesler (Empire Forster), non-glare acrylic material is usually used for typical academic signage. Moreover, specific setting text and numbering were applied because the ADA requires specific setting method for academic interior signage. Usually, the color of materials is selected from the Pantone Color system. Also, the sign includes Grade 2 braille routed into the face based on ADA specifications. For accessibility of the sign, APCO notebar2 which is exchangeable is used. There are two ways to install the signs. The small size of sign is mounted with VHB 3M #49501 adhesive tape, and the large sign is hung on a specific screw with a rubber cap because of its weight. The budget of the sign project depends on the project. For instance, Craig Tesler said that the RIT Dormitory sign project took four years work including research for a cost of $75,000.

1 Thickness of material
2 Sign manufacture
3 Manufacture adhesive tape
Sequence of Implementation
This Implementation is divided into three sections: signage with measurements, the final signage color choice, and the thesis show poster.

First, three measurement designations were used in order to measure the signage easily: inch, cm, and foot. Each sign was designed on a specific grid system. Typefaces used were Frutiger and Palantino because of readability and aesthetic aspect. Frutiger is selected for its high readability. “Schiphol Airport Signing” used the Frutiger typeface for high clarity. The Palantino typeface is selected for its classical and academic image for the NTID. In signage design, additional technical drawings representing doors and human figures were used for scaling size between signage and environmental factors. A color bar was used for indicating the average human height, and each sign reflected human considerations.

Second, through the color study (Appendix 2, page 51-57), the final color was decided upon. After testing several color combinations, several color examples were selected by certain criteria (see page 11), and then those color examples were printed out in black and white for assessing value and contrast of colors.

Finally, the thesis show posters presented a process of wayfinding based on the process structure.

Implementation

Signage with Measurements

<table>
<thead>
<tr>
<th>use of measurements</th>
<th>Inch</th>
<th>CM</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.54</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>use of type</th>
<th>Frutiger</th>
<th>Palatino</th>
</tr>
</thead>
<tbody>
<tr>
<td>use of color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Frutiger

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Palatino

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
Implementation

Entrance Sign

<table>
<thead>
<tr>
<th>Inch</th>
<th>Centimeters</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>457.2</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>406.4</td>
<td>13.3</td>
</tr>
<tr>
<td>140</td>
<td>355.6</td>
<td>11.6</td>
</tr>
<tr>
<td>120</td>
<td>304.8</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>254</td>
<td>8.3</td>
</tr>
<tr>
<td>80</td>
<td>203.2</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>152.4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>101.6</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td>50.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- 100 inch / 254 cm
- 16 inch
- National Technical Institute for the Deaf
- 12 inch / 30.48 cm
Implementation

- Lobby sign
Implementation

→ Directional Sign

<table>
<thead>
<tr>
<th>inch</th>
<th>cm</th>
<th>feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>457.2</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>406.4</td>
<td>13.3</td>
</tr>
<tr>
<td>140</td>
<td>355.6</td>
<td>11.6</td>
</tr>
<tr>
<td>120</td>
<td>304.8</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>254</td>
<td>8.3</td>
</tr>
<tr>
<td>80</td>
<td>203.2</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>152.4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>101.6</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td>50.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

32 inch / 81.28 cm

8 inch / 20.32 cm

National Technical Institute for the Deaf

1st Floor

- Admissions Office
- Visitor's Center
- Panara Theater
- Theater Box Office
- Elevator
- Telephone
- Restroom
- Banking Machine
<table>
<thead>
<tr>
<th>inch</th>
<th>cm</th>
<th>feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>457.2</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>406.4</td>
<td>13.3</td>
</tr>
<tr>
<td>140</td>
<td>355.6</td>
<td>11.6</td>
</tr>
<tr>
<td>120</td>
<td>304.8</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>254</td>
<td>8.3</td>
</tr>
<tr>
<td>80</td>
<td>203.2</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>152.4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>101.6</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td>50.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Implementation

Elevator Lobbies

<table>
<thead>
<tr>
<th>inch</th>
<th>cm</th>
<th>feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>457.2</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>406.4</td>
<td>13.3</td>
</tr>
<tr>
<td>140</td>
<td>355.6</td>
<td>11.6</td>
</tr>
<tr>
<td>120</td>
<td>304.8</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>254</td>
<td>8.3</td>
</tr>
<tr>
<td>80</td>
<td>203.2</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>152.4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>101.6</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td>50.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Inch</td>
<td>cm</td>
<td>Feet</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>180</td>
<td>457.2</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>406.4</td>
<td>13.3</td>
</tr>
<tr>
<td>140</td>
<td>355.8</td>
<td>11.6</td>
</tr>
<tr>
<td>120</td>
<td>304.8</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>254</td>
<td>8.3</td>
</tr>
<tr>
<td>80</td>
<td>203.2</td>
<td>6.6</td>
</tr>
<tr>
<td>60</td>
<td>152.4</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>101.6</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td>50.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Implementation

Color
Implementation

Thesis show panels: A process of wayfinding
Dissemination

This proposed interior wayfinding system is an effective signage program for visitors and daily users in the NTID building.

Unified signage will be easily identified because of its own visual character. Also, color consistency and readable typography will be maintained throughout the implementation.

Second, providing clear information and proper location of signage will reduce confusion considerably. Users will be provided with clearer information with this wayfinding system.

Finally, this wayfinding system will facilitate more effective navigation, reducing wasted time and stress. Also, this approach could be applied to wayfinding systems for other universities, as well as airports, hospitals and any other public places.
First Retrospective Evaluation: an evaluation questionnaire from the thesis show

To determine implementation, an evaluation questionnaire was available during the thesis show exhibition. A total of eight people evaluated the progress of wayfinding posters which were displayed in the thesis show.

Five questions were asked for the evaluation. Most of the respondents understood the progress of the thesis. However, some respondents wondered about some aspects. One of the respondents wondered how different color variations came into play. Another respondent suggested making a 3D sign prototype.

Through these evaluation results, weaknesses and strengths of the thesis project were identified. The weakness is about color choice. The thesis show panel provided partial color coding for the NTID signage system, so it provided an unclear explanation for color choice. The strength of the project is the systematic sequence of the project based on “Process of Wayfinding System” (page 12-13).

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
Second Retrospective Evaluation: comments and feedback from thesis committee meeting

April 24, 00. Mon 12:00-1:00PM
Scale and material issues were the main concerns from the thesis committee members. For scale, making the actual size of the signage was suggested. For the material issue, meeting with experts was suggested. Based on those comments, a third retrospective evaluation was started.

Third Retrospective Evaluation: an evaluation questionnaire from thesis show
Scale is the most crucial issue of the NTID signage design, so for estimating the actual size of the NTID signage, a set of signage prototypes was made. As a result, the NTID signage was modified to the proper size. After that, modified signage prototypes were made again and applied in the NTID building.
Signage for nine areas was produced: Entrance Sign (not main), Lobby Sign, Elevator Lobby Sign, Regulatory Sign, Room Identification Sign, Corridor intersection Sign and Stair Sign. Those signage prototypes were printed in Black and White and mounted on card paper. The author’s photographs presents the applied signage prototypes in the NTID building.
Retrospective Evaluation
Romedi Passini said “Wayfinding is an act of solving spatial problems”. Simply stated, wayfinding is a process of decision-making and decision-executing to arrive at a destination. Depending on human perception, decisions and spatial behavior were decided upon. After that, cognitive behavior patterns were established. Finally, a wayfinding system was constructed.

The NTID wayfinding system is very challenging work because the wayfinding system is not only a signage design but also a total design solution which includes information design, system design, communication design, sign design, human centered design and environmental design. For establishing the wayfinding system, many issues were considered.

Interviewing the NTID managers and designers was a good start to understanding the issues of the NTID wayfinding system. Through much research, several facts were discovered. Taking pictures of the NTID building was done to analyze the problem. Structuring the process of wayfinding became a basic structure of this thesis. Theories and existing case studies were helpful in solving the problems. The thesis committee members’ comments and feedback from respondents influenced the further implementation positively.

The difficulty of this project was scale. Each sign reflected human factors. In particular, the environmental factors needed to respond to the ADA regulations.

Through this thesis project, the need and purpose of a wayfinding system has been studied and defined.

This project was started without knowing anything about signage and wayfinding. During the process, many difficulties occurred and mistakes happened and were repeated. Sometimes, it was painful to go back to the beginning of the step or start a completely new step. Helpful comments, feedback, and support improved the project. The most important aspect of this thesis project is how to present it to audiences in an understandable way, and that was the most difficult issue of the project.

Dimension The actual size of figures and forms within the visual field measured in standard units such as picas, inches or meters. The dimensions of a regular planar figure are measured according to height and width, whereas the dimensions of a regular volumetric form are measured according to height, width and depth.

Identificational signs Identificational signs are essentially labeling devices which confirm destinations or establish recognition of a particular location.

Orientational signs Orientational signs locate users in an environment.

Ornamental signs Ornamental signs embellish, enhance or beautify the appearance or general effect of an environment or its individual elements.

Sign A symbol or compositional element that represents thoughts, objects, or events.

Signage The design or use of signs and symbols.

Spatial Organization The relationship among spaces of a setting; the typology of spatial organizations is equivalent to that of circulation systems, that is: linear, central, composite, and repetitive (networks).

Statutory signs (regulatory signs) Statutory signs display rules of order, as for conduct or prohibited activity, prescribed by local regulations owners or other authorities.

Wayfinding Finding one's way to a destination; spatial problem solving comprised of three interdependent processes: decision making, decision executing, and information processing.
Index of Appendices

Appendices (Index)

Appendix 1
Survey questionnaire 1–4 .. 42

Appendix 2
Color Theory ... 52

Appendix 3
Classification of Graphic Information 59

Appendix 4
Evaluation Questionnaire 1–8 62
1. Do new commers or visitors find the visitors center easily the first time?
 Yes, we provide maps and they get personalized tours.

2. What destinations or locations do people frequently ask for?
 Flower deliveries
 Restaurant deliveries
 Other people who work here

3. When visitors came to the visitors center or other offices to ask about their destination, how do you guide them to the right place?
 Look up person they are looking for and give directions

4. Do you think current NTID signage gives enough information to newcomers or visitors?
 Yes.

5. Do you have certain rules(or behavior patterns) to guide newcomers or visitors?
 No, just try best to show them around our college
Hello. My name is JinHee Kwon from Grad Graphic Design. My thesis topic is a wayfinding system for the NTID Building.

Therefore, I'd like to have some information about your paths to work or classrooms from particular entrances and exits.

Can you use different color markers for your daily routes in "map" templates?

Thank you for your help.

Name: Kathy Ronneberg

Your position: faculty [] staff [x] student []

Location of your office or classroom (frequently using place):

LBJ 1200

Administrative
Appendix 1

Survey questionnaire 2-2
Hello. My name is JinHee Kwon from Grad Graphic Design. My thesis topic is a wayfinding system for the NTID Building.

Therefore, I'd like to have some information about your paths to work or classrooms from particular entrances and exits.

Can you use different color markers for your daily routes in “map” templates?

Thank you for your help.

Name:

Your position: faculty staff student

Location of your office or classroom (frequently using place):

- NLC
- Hearing aid shop
- Employment office
- ATM Bank machine
- Restroom
- Vending machine (3rd floor)
Survey questionnaire 3-3
Hello. My name is JinHee Kwon from Grad Graphic Design. My thesis topic is a wayfinding system for the NTID Building.

Therefore, I'd like to have some information about your paths to work or classrooms from particular entrances and exits.

Can you use different color markers for your daily routes in "map" templates?

Thank you for your help.

Name:

Your position: faculty () staff () student ()

Location of your office or classroom(frequently using place): Center for Inst. Cen...
Appendix 1

Survey questionnaire 4–2
Appendix 1

Survey questionnaire 4-3
Color consideration is based on "The Basis of Color Study" (reference: Basic Visual Concepts and Principles by Charles Wallschlaeger and Cynthia Busic-Snyder) and a color comparison is developed.

Color diagram reference: Basic Visual Concepts and Principles

Monochromatic Harmony

![National Technical Institute for the Deaf South Entry](image)

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Regular M-F 6:00AM-12:00AM</th>
<th>S-S Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

![National Technical Institute for the Deaf South Entry](image)

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Regular M-F 6:00AM-12:00AM</th>
<th>S-S Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

![National Technical Institute for the Deaf South Entry](image)

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Regular M-F 6:00AM-12:00AM</th>
<th>S-S Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

![National Technical Institute for the Deaf South Entry](image)

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Regular M-F 6:00AM-12:00AM</th>
<th>S-S Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>
Appendix 2

Analogous Harmony

National Technical Institute for the Deaf

South Entry

<table>
<thead>
<tr>
<th></th>
<th>M-F 6:00AM-12:00AM</th>
<th>S-S Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

8.63a

8.63b
Appendix 2

Complementary Color Harmony

National Technical Institute for the Deaf

South Entry
Regular M-F 6:00AM-12:00AM
S-S Closed
Break M-F 6:00AM-9:00PM
S-S Closed
Appendix 2

Split Color Harmony

National Technical Institute for the Deaf

South Entry
Regular M-F 6:00AM-12:00AM
S-S Closed
Break M-F 6:00AM-9:00PM
S-S Closed

National Technical Institute for the Deaf

South Entry
Regular M-F 6:00AM-12:00AM
S-S Closed
Break M-F 6:00AM-9:00PM
S-S Closed

National Technical Institute for the Deaf

South Entry
Regular M-F 6:00AM-12:00AM
S-S Closed
Break M-F 6:00AM-9:00PM
S-S Closed
Split Color Harmony

National Technical Institute for the Deaf

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>M-F 6:00AM-12:00AM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

National Technical Institute for the Deaf

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>M-F 6:00AM-12:00AM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>

National Technical Institute for the Deaf

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>M-F 6:00AM-12:00AM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
<tr>
<td>Break</td>
<td>M-F 6:00AM-9:00PM</td>
</tr>
<tr>
<td></td>
<td>S-S Closed</td>
</tr>
</tbody>
</table>
Appendix 2

Triad Harmony

<table>
<thead>
<tr>
<th>National Technical Institute for the Deaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Entry</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>M-F 6:00AM-12:00AM</td>
</tr>
<tr>
<td>S-S Closed</td>
</tr>
<tr>
<td>Break</td>
</tr>
<tr>
<td>M-F 6:00AM-9:00PM</td>
</tr>
<tr>
<td>S-S Closed</td>
</tr>
</tbody>
</table>
Appendix 2

Triad Harmony

<table>
<thead>
<tr>
<th>South Entry</th>
<th>Regular</th>
<th>M-F 6:00AM-12:00AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-S</td>
<td>Closed</td>
</tr>
<tr>
<td>Break</td>
<td>M-F</td>
<td>6:00AM-9:00PM</td>
</tr>
<tr>
<td></td>
<td>S-S</td>
<td>Closed</td>
</tr>
</tbody>
</table>
This specific anatomy is referenced in *Wayfinding: People, Signs, and Architecture* (Paul Arthur and Romedi Passini).
The classification explains which area needs what information and of what type.

Classification of Graphic Information

<table>
<thead>
<tr>
<th>Building zone</th>
<th>Building component</th>
<th>Information needed</th>
<th>Information type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Entrance to the Building</td>
<td>1 North Entrance: (main entrance)</td>
<td>Identification of the building by name and of the federal preference therein; identification of major departments or tenants; identification of accessibility for the mobility impaired or directions to nearest accessible entranceway</td>
<td>Orientation and general information about the setting
• building directories
• maps, floor plans, exploded view, and models...</td>
</tr>
<tr>
<td>2 Southeast Entrance</td>
<td></td>
<td>Repeat of building name; hours-of-service information</td>
<td></td>
</tr>
<tr>
<td>3 South Entrance (secondary entrance)</td>
<td></td>
<td>Identification of the building by name and of the federal preference therein; identification of major departments or tenants; identification of accessibility for the mobility impaired or directions to nearest accessible entranceway</td>
<td></td>
</tr>
<tr>
<td>4 West Entrance: (loading dock)</td>
<td></td>
<td>Repeat of building name; hours-of-service information</td>
<td></td>
</tr>
<tr>
<td>2 Main Lobby</td>
<td>1 Inside main entrance door</td>
<td>Information, reliably located, for the blind and for vision impaired visitors. Immediate apparent availability of reliable visual information</td>
<td>Orientation and general information about the setting
• building directories
• maps, floor plans, exploded view, and models...
• Directional information to destinations
• signs with arrow or plain language description involving the use of building features or landmarks.
• floor directories in elevator lobbies
• colored lines on walls or ceiling leading to destination zone</td>
</tr>
<tr>
<td></td>
<td>2 Manned reception or information desk</td>
<td>General information, orientation, and directions; directions to elevators, if they are not visible from the desk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Information center</td>
<td>General information, orientation, and directions; directions to elevators, if they are not visible from the desk</td>
<td></td>
</tr>
</tbody>
</table>
Classification of Graphic Information (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Component Description</th>
<th>Information Need</th>
<th>Information Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Communal facilities</td>
<td>1 Toilet door</td>
<td>Identification of gender; identification of accessibility; directions thereto if doors to these facilities are not visible from corridors</td>
<td>Identification of destination • signs with name or pictograph at entrance or destinations. +</td>
</tr>
<tr>
<td></td>
<td>2 Other communal facilities</td>
<td>Identification of entranceway; hours-of-service information</td>
<td>Identification of destination • signs identifying local hazard • sometimes safety colors will help to identify equipment</td>
</tr>
<tr>
<td>4 Department offices, tenants in the Building</td>
<td>1 Entranceway, generally</td>
<td>Identification of department/tenant name and suite number; hours-of-service information</td>
<td>Directional information to destinations +</td>
</tr>
<tr>
<td></td>
<td>2 Office doors or adjacent wall areas</td>
<td>Identification of office and/or function and/or occupant(s); Identification of suite number</td>
<td>Identification of destination • signs with name or pictograph at entrance or destinations. +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>Identification of local hazard • sometimes safety colors will help to identify equipment</td>
</tr>
</tbody>
</table>

Classification of Graphic Information: The Three Circulation systems

<table>
<thead>
<tr>
<th>Building zone circulation system</th>
<th>Building component</th>
<th>Information need</th>
<th>Information type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Vertical Circulation system</td>
<td>1 Main elevator lobby 1st floor</td>
<td>Identification of levels of the building served by individual elevator banks; ability to summon elevator and to determine direction of travel by departing car; level identification on both door jambs of each elevator.</td>
<td>Identification of destination • signs with name or pictograph at entrance or destinations. +</td>
</tr>
<tr>
<td></td>
<td>2 Elevator lobby other floors</td>
<td>Ability to summon elevator and to determine direction of travel of arriving car; level identification on both door jambs of each elevator; directional information to offices/tenants with identification of their suite number, emergency information with directions to nearest stairwell</td>
<td>+ Directional information to destinations • signs with arrow or plain language description involving the use of building features or landmarks. • floor directories in elevator lobbies • colored lines on walls or ceiling leading to destination zone</td>
</tr>
<tr>
<td></td>
<td>3 Stairwell doors in corridors or walls adjacent thereto</td>
<td>Identification of level; emergency information about cross-over floors</td>
<td>+</td>
</tr>
</tbody>
</table>
Classification of Graphic information: The Three Circulation systems (continued)

<table>
<thead>
<tr>
<th></th>
<th>4 Doors to adjacent walls on stairwell landings inside stairwells</th>
<th>Identification of stairs with assigned number; if any emergency information about cross-over floors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 Stairs, treads and handrails</td>
<td>Identification of top and bottom treads; identification of handrail</td>
</tr>
<tr>
<td></td>
<td>6 Ramps</td>
<td>Identification of accessibility for the mobility impaired</td>
</tr>
<tr>
<td></td>
<td>Horizontal circulation system</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 Corridor intersection</td>
<td>Directional information</td>
</tr>
<tr>
<td></td>
<td>2 Corridor</td>
<td>Identification of destination</td>
</tr>
<tr>
<td></td>
<td>3 Entrance to restricted areas or the wall areas adjacent thereto</td>
<td>Identification of destination; if door is locked, no information is required other than the suite number; if door is unlocked, identification of the potential hazard involved is necessary; identification of the suite number</td>
</tr>
<tr>
<td></td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 Throughout the building as necessary</td>
<td>Identification of destination; exit identification</td>
</tr>
</tbody>
</table>

Reference

Evaluation Questionnaire 1

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the UIU signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design)
 appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back

 How do the different color applications come into play?
 On the posters I think the titles of each step should be clearer and more dominant than the number of the step.
Evaluation Questionnaire 2

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)
 Clean, up-to-date

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)
 Much Improved!

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back

solution
for long names
includes first names
Deaf students in CIAS
use first names frequently
Women's last names change often.
Evaluation Questionnaire 3

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back

It would be more effective to use a real sign to show in reality.
Evaluation Questionnaire 4

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed NTID signage?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
Appendix 4

Evaluation Questionnaire 5

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
Evaluation Questionnaire 7

JinHee Kwon

The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) +3 +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
The Process of Wayfinding

Evaluation Questionnaire

1. Do you understand what a wayfinding system is about?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

2. Do you think this wayfinding system solution is successful?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

3. Do you think the design application (signage design) is clearer than the existed the NTID signage?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

4. Do you feel that this design application (signage design) appropriately address the wayfinding system?
 (clear) (+3) +2 +1 0 -1 -2 -3 (not at all)

5. How do you think this design application could be improved?
 feel free to write on the back
Books

BIS Publisher. *Bewegwijzering in Nederland*. Amsterdam: BIS Publisher, 1995.

Articles in Journals and Magazines

Bibliography

Electronic Documents