

2016-2017

## UNDERGRADUATE BULLETIN

Rochester Institute of Technology
2016-17
Academic Calendar
$\dagger$ The AddIDrop period is the first seven class days, excluding Saturdays, Sundays, and holidays of fall and spring semesters.

* Friday of the 12 th week of classes
** Friday of the 8 th week of classes

RIT does not discriminate. RIT promotes and values diversity within its workforce and provides equal opportunity to all qualified individuals regardless of race, color, creed, age, marital status, sex, gender, religion, sexual orientation, gender identity, gender expression, national origin, veteran status, or disability.

For Title VI, Title IX, and Section 504/Title II ADA inquiries, contact Judy Bender, Title IX/504 Officer at 585-475-4315, jebpsn@rit.edu, 5000 Eastman Hall, or go to http://www. rit.edu/fa/humanresources/Diversity/ TitleIX for more information.
©2016 Rochester Institute of Technology. All rights reserved. RIT is a registered trademark of Rochester Institute of Technology.

## No. 8

August 2016
RIT (USPS-676-870) is published 17 times annually by Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, N.Y. 14623-5603, once in March, four times in June, twice in July, six times in August, once in September, twice in October, and once in November. Periodicals postage paid at Rochester, N.Y. 146235603 and additional mailing offices. Postmaster: Send address changes to RIT, Rochester Institute of Technology, One Lomb Memorial Drive,
Rochester, N.Y. 14623-5603.
10M-P1873-8/16-COM-JSA

## Fall Semester (2161)

August 16-21
New Student Orientation

## August 22

Day, evening, and online classes begin First day of 7-day Add/Drop period $\dagger$
August 27
Saturday classes begin

## August 29

Last day of 7-day Add/Drop period $\dagger$

## August 30

First day to drop from classes with a grade of W
September 5
Labor Day (no classes);
University offices closed

## October 10

Columbus Day (no classes);
University offices open

## November 11

Last day to drop from classes with a grade of $\mathrm{W}^{*}$
November 23
No classes;
University offices open
November 24-25
Thanksgiving Holiday (no classes); University offices closed

## November 26

No Saturday classes

## November 28

Day, evening, and online classes resume

## December 3

Saturday classes resume

## December 9

Last day, evening, and online classes

## December 10

Last Saturday classes.
Dec. 12, 13, 14, 15, 16
Final exams
December 17
Residence halls close
Dec. 19 - Jan. 2
Holiday break;
University closed

Intersession (2163)

## January 3

Day, evening, and online classes begin First day of 3-day Add/Drop period $\dagger$

January 5
Last day of 3-day Add/Drop $\dagger$

## January 6

First day to drop from classes with a grade of W
January 13
Last day to drop from classes with a grade of W

## January 19

Last day of classes

## January 20

Final exams
January 21-22
Break between Intersession and spring semester

## Spring Semester (2165)

## January 18

Residence halls open

## January 23

Day, evening, and online classes begin First day of 6-day Add/Drop period $\dagger$

## January 28

Saturday classes begin

## January 30

Last day of 7-day Add/Drop period $\dagger$
January 31
First day to drop from classes with a
grade of W
March 13-17
No classes (spring break);
University offices open

## March 18

No Saturday classes

## March 20

Day, evening, and online classes resume
April 21
Last day to drop from classes with a grade of W*

May 12
Last day, evening, and online classes

## May 13

Last Saturday classes
May 15, 16, 17, 18, 19
Final exams

## May 19

Convocation and
Commencement ceremonies

## May 20

Commencement ceremonies
May 23
Final grades due
May 23-28
Break between spring semester and summer terms

## May 29

Memorial Day; University closed

## 10-week Summer Session (2168)

May 30
Day, evening, and online classes begin
First day of 7-day Add/Drop period $\dagger$
June 3
Saturday classes begin
June 6
Last day to Add/Drop classes $\dagger$
June 7
First day to drop from classes with a grade of W

## July 4

Independence Day (no classes); University closed
July 21
Last day to drop from classes with a grade of W**

## August 4

Last day, evening, and online classes

## August 5

Last Saturday classes
August 7, 8, 9, 10
Final exams
August 14
Final grades due
August 14-18
Break between summer term and fall semester

## 5-week Summer Session I (2168)

May 30
Day, evening, and online classes begin
First day of 3-day Add/Drop period $\dagger$
June 1
Last day to Add/Drop classes $\dagger$

## June 2

First day to drop from classes with a grade of W
June 23
Last day to drop from classes with a grade of W
June 30
Last day of classes (final exams held)
July 3
Final grades due

## 5-week Summer Session II (2168)

July 3
Day, evening, and online classes begin
First day of 3-day Add/Drop period $\dagger$
July 4
Independence Day (no classes); University closed

## July 6

Last day to Add/Drop classes $\dagger$
July 7
First day to drop from classes with a grade of W
July 21
Last day to drop from classes with a grade of W

## August 4

Last day, evening, and online classes

## August 5

Last Saturday classes
August 7, 8, 9, 10
Final exams

## August 14

Final grades due
August 14-18
Break between summer term and fall semester

## Rochester Institute of Technology

## About this Bulletin

The academic programs, course curricula, policies, and standards described in this Undergraduate Bulletin are in effect for students admitted to RIT during the 2016-2017 academic year. This bulletin provides students with a comprehensive source of information to use in planning their undergraduate education.

Descriptions of all undergraduate courses offered at RIT are available in the Undergraduate Course Descriptions book, which is available as a PDF at www.rit.edu/upub/archive.

The Undergraduate Bulletin does not constitute a contract between the university and its students on either a collective or individual basis. It represents RIT's best academic, social, and financial planning at the time of publication. Course and curriculum changes; modification of tuition, fees, dormitory, meal plan, or other charges; and unforeseen changes in other aspects of RIT sometimes occur after the bulletin has been printed, but before the changes can be incorporated in a later edition. Because of this, RIT does not assume a contractual obligation with its students for the contents of this Undergraduate Bulletin.

RIT does not discriminate. RIT promotes and values diversity within its workforce and provides equal opportunity to all qualified individuals regardless of race, color, creed, age, marital status, sex, gender, religion, sexual orientation, gender identity, gender expression, national origin, veteran status, or disability.

RIT Undergraduate Bulletin 2016-2017
© 2016, Rochester Institute of Technology
All rights reserved.
Produced by the Office of University Publications
Division of Enrollment Management Services and Career Services
This material was produced, in part, through an agreement between Rochester Institute of Technology and the United States Department of Education.

## Table of Contents

University CalendarAn Introduction to RIT2
Academic Programs of Study (HEGIS chart) ..... 4
RIT's Colleges and degree-granting entities ..... 6
College of Applied Science and Technology ..... 7
Saunders College of Business ..... 31
B. Thomas Golisano College of Computing and Information Sciences ..... 39
Kate Gleason College of Engineering ..... 55
College of Health Sciences and Technology ..... 80
College of Imaging Arts and Sciences ..... 91
College of Liberal Arts ..... 118
National Technical Institute for the Deaf ..... 145
College of Science ..... 185
Academic Affairs ..... 208Innovative Learning InstituteSchool of Individualized StudyUniversity Honors ProgramUniversity StudiesUniversity Writing Program
Minors ..... 213
Immersions ..... 244
Undergraduate Admission ..... 260
University Costs ..... 267
Financial Aid and Scholarships ..... 270
University Policies and Procedures ..... 283
Consumer Information ..... 292
Administration and Trustees ..... 293
Campus Directory ..... 298
Index ..... 299
Campus Map ..... inside back cover

# An Introduction to Rochester Institute of Technology 

Respected internationally as a world leader in career-oriented, technological education, Rochester Institute of Technology has been setting an innovative pace since 1829, when Colonel Nathaniel Rochester became the first president of the Rochester Athenaeum. In 1891, the Athenaeum merged with Mechanics Institute, which had been founded by a group of businessmen to instruct in "drawing and such other branches of studies as are most important for industrial pursuits." In 1944, recognizing the increasingly specialized professional nature of its programs, the university adopted the name it holds today.

A private, coeducational university in upstate New York, RIT offers academic programs that combine outstanding teaching, a strong foundation in the liberal arts and sciences, modern classroom facilities, and work experience gained through the university's cooperative education program, internships, and other opportunities.

Few universities provide RIT's variety of career-oriented studies. Our 10 colleges and degree-granting entities offer outstanding programs in business, engineering, art and design, science and mathematics, the liberal arts, photography, computing, hospitality management, and many other areas.

More than 200 programs-including such distinctive offerings as microelectronic and software engineering, imaging science, film and animation, biotechnology and molecular bioscience, physician assistant, new media, international business, telecommunications, and the programs of RIT's School for American Crafts and National Technical Institute for the Deaf (NTID)draw students from all 50 states and more than 100 countries.

As a major university, RIT offers academic opportunities that extend far beyond science and technology, including more liberal arts courses and faculty than are found at most liberal arts colleges. With a strong foundation in the humanities and social sciences, RIT graduates understand both technological developments and the larger philosophical and ethical issues presented by technology.

Approximately 15,400 undergraduate students and 3,200 graduate students attend RIT. More than 118,000 alumni can be found around the globe.

Almost one-third of our undergraduates are transfer students from two-year colleges or other four-year institutions, and adult students make up a significant portion of the total enrollment. Our full-time undergraduate student body includes more than 1,200 deaf and hard-of-hearing students who share the same residence halls and classes on campus.

RIT's cooperative education program is the fourth-oldest and one of the largest in the world. We place more than 4,300 students in co-op work positions with approximately 2,200 employers every year. In addition, more than 600 companies visit RIT to conduct employment interviews on campus.

The world in which RIT graduates live and work is composed of people from many backgrounds, lifestyles, and cultures. Therefore, RIT encourages the appreciation of diversity through a variety of liberal arts courses, campus events, and special programs, including
the annual International Banquet, Black History Month, Martin Luther King Jr. celebration, and Hispanic Heritage Week.

RIT has been recognized by U.S. News \& World Report magazine as one of the nation's leading comprehensive universities and one of America's Best College Values. Many college guidebooks have ranked RIT among the nation's top schools, including "Kaplan's Unbiased Guide to the 320 Most Interesting Colleges" and The Princeton Review's Best 379 Colleges.

## Accreditation

Rochester Institute of Technology is accredited by the Middle States Commission on Higher Education, 3624 Market Street, Philadelphia, PA 19014, (267) 284-5000. The Middle States Commission on Higher Education is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation.

## RIT's colleges and degree-granting entities

The College of Applied Science and Technology houses its programs in two schools. The School of Engineering Technology offers bachelor of science degrees in civil engineering technology; computer engineering technology; electrical engineering technology; electrical mechanical engineering technology; environmental sustainability, health and safety; manufacturing engineering technology, mechanical engineering technology; and packaging science. The School of International Hospitality and Service Innovation offers a BS degree in international hospitality and service management. A wide variety of courses are offered during the day and evening, and via online learning. Many of the college's programs are also offered as master's degrees. Certificates are offered in several areas and are especially appropriate for part-time adult students looking for convenience, quality, and practicality. All of the college's engineering technology programs have received accreditation by the Engineering Technology Accreditation Commission (ETAC) of (ABET).

Saunders College of Business offers seven majors accounting, finance, international business, management, management information systems, marketing, and new media marketing. With an emphasis on innovation, the commercialization of technology, and a global focus, these programs combine specialized courses in a major, along with courses in the liberal arts and sciences. All majors require cooperative education. The college is consistently ranked in U.S. News \& World Report's Top Undergraduate Business Programs and also is accredited by the Association to Advance Collegiate Schools of Business (AACSB International). Saunders College also awards MBA and MS degrees. An accelerated BS/ MBA option offers outstanding undergraduates the opportunity to complete both degrees in five years.

The B. Thomas Golisano College of Computing and Information Sciences is one of the largest and most comprehensive colleges in
the nation devoted to the study of computing and information sciences. Eight bachelor of science degree programs are available in computer science, computing and information technologies, computing security, game design and development, human-centered computing, new media interactive development, software engineering and web and mobile computing. In addition, the college offers a computing exploration option that enables students to explore different computing disciplines prior to selecting a major and without losing any time on their path toward graduation. The college awards BS and MS degrees in a variety of computer disciplines as well as a doctoral degree in computing and information sciences. All of the college's BS degrees require cooperative education.

The Kate Gleason College of Engineering offers BS degrees in biomedical, chemical, computer, electrical, industrial, mechanical, and microelectronic engineering. Students with a particular interest may choose to focus their technical electives in areas such as aerospace, automotive, bioengineering, clean and renewable energy, computer vision and signal processing, embedded systems and control, energy and the environment, ergonomics, Lean Six-Sigma, nanoscale circuit systems, networks and security, robotics, supply-chain management, and wireless communication. For those who need time to decide on a particular major, the college offers an engineering exploration option in the first year. Students in all engineering majors are required to participate in the cooperative education program. The college offers a number of accelerated dual degree options (combined BS/MS or BS/MEng degrees) and two doctorate degrees: the nation's only doctoral program in microsystems engineering and a doctorate program in engineering.

The College of Health Sciences and Technology was created to respond to the growing need for well-educated professionals in the health care field. The college provides a focused, interdisciplinary, and systems approach to innovative health care education with undergraduate degrees offered in the following majors: biomedical sciences, diagnostic medical sonography (ultrasound), exercise science, nutrition management, and physician assistant.

The College of Imaging Arts and Sciences includes the schools of American Crafts, Art, Design, Film and Animation, Media Sciences, and Photographic Arts and Sciences. Specialized labs and darkrooms, studios, computer facilities, photo and graphic design archives, and a broad range of high-tech equipment are provided for students. RIT is recognized as one of the nation's top-ranked universities for glass, design, media sciences, and the study of photography.

The College of Liberal Arts offers bachelor of science degrees in advertising and public relations, communication, criminal justice, digital humanities and social sciences, economics, international and global studies, journalism, museum studies, philosophy, political science, psychology, public policy, and sociology and anthropology. The college also offers five master of science degrees. Liberal Arts Exploration, a two-year undeclared option, is available for students who wish to pursue a liberal arts degree but are undecided about which major to pursue. All of the degree programs
offer opportunities for students to gain career-oriented experience through cooperative education, internships, or study abroad. The college also contributes to RIT's general education requirements, a comprehensive curriculum of liberal arts and sciences education that is the foundation for all RIT students' educational experience.

The National Technical Institute for the Deaf provides technical and professional programs for approximately 625 deaf and hard-of-hearing students enrolled in associate degree programs. The college also provides extensive educational access services for approximately 700 deaf students who are pursuing bachelor's or master's degrees or taking courses in RIT's eight mainstream colleges.

Within NTID, students may pursue either career-focused associate degree programs leading directly to employment or associate degree programs designed to facilitate seamless transition to RIT's baccalaureate programs. Students choose from a variety of associate degree options/concentrations in accounting technology, administrative support technology, applied computer technology, applied liberal arts, applied mechanical technology, business, business technology, computer aided drafting technology, computer integrated machining technology, civil technology, digital imaging technology, hospitality and service management, laboratory science technology, and mobile application development. The college also enrolls hearing students in its ASL-English interpretation programs.
The College of Science emphasizes the practical aspects of science and mathematics along with applied research opportunities for undergraduate and graduate students. The college offers a variety of degree programs in the sciences; mathematics and statistics; imaging science; biotechnology and molecular bioscience; bioinformatics; and other unique programs. A science exploration option is popular with students who want more time to decide on their major. The college's bachelor of science degree programs encourage cooperative education and the bioinformatics major requires one semester of co-op. The college awards bachelor of science, accelerated dual degree (BS/MS) options, and master of science degrees. Doctoral degrees are awarded in astrophysical sciences and technology, color science, and imaging science.

The Division of Academic Affairs includes four units: the Innovative Learning Institute (which includes RIT Online and the Teaching and Learning Studio), the School of Individualized Study, the University Studies program, and the University Writing program.

The Innovative Learning Institute encourages innovative teaching and learning projects in all RIT colleges and advances online learning at RIT. The School of Individualized Study offers degree programs, including a bachelor of science degree in applied arts and sciences, which allows students to customize their curriculum around specific career goals and objectives. The University Studies Program allows students up to one year to explore RIT's undergraduate degree programs before selecting a major.

| Undergraduate Programs of Study |  | Degree and HEGIS Code |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cert. | Diploma | AOS | AS | AAS | BFA | BS | Page \# |
| Art, Crafts, Design, and Visual Communications |  |  |  |  |  |  |  |  |  |
| 3D Digital Design | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 100 |
| Advertising and Public Relations | Liberal Arts |  |  |  |  |  |  | 0604 | 120 |
| Ceramics | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 95 |
| Design and Imaging Technology | National Technical Institute for the Deaf |  |  | 5012 |  | 5012 |  |  | 171, 172 |
| Film and Animation | Imaging Arts and Sciences |  |  |  |  |  | 1010 |  | 105 |
| Fine Arts Studio | Imaging Arts and Sciences |  |  |  | 5610 |  | 1002 |  | 98 |
| Furniture Design | Imaging Arts and Sciences |  |  | 5317 |  |  | 1009 |  | 95 |
| Glass | Imaging Arts and Sciences |  |  |  |  | 5012 | 1009 |  | 96 |
| Graphic Design | Imaging Arts and Sciences |  |  |  |  | 5012 | 1009 |  | 101 |
| Illustration | Imaging Arts and Sciences |  |  |  |  | 5610 | 1002 |  | 97 |
| Industrial Design | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 102 |
| Interior Design | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 103 |
| Media Arts and Technology | Imaging Arts and Sciences |  |  |  |  |  |  | 0605 | 108 |
| Medical Illustration | Imaging Arts and Sciences |  |  |  |  |  | 1299 |  | 99 |
| Metals and Jewelry Design | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 97 |
| Motion Picture Science | Imaging Arts and Sciences |  |  |  |  |  |  | 1010 | 107 |
| New Media Design | Imaging Arts and Sciences |  |  |  |  |  | 0605 |  | 104 |
| New Media Interactive Development | Computing and Information Sciences |  |  |  |  |  |  | 0699 | 48 |
| New Media Marketing | Business |  |  |  |  |  |  | 0509 | 36 |
| Photographic and Imaging Arts (options in Advertising Photography, Fine Art Photography, Photojournalism, Visual Media) | Imaging Arts and Sciences |  |  |  |  |  | 1011 |  | 109 |
| Photographic Sciences (options in Biomedical Photographic Communications, Imaging and Photographic Technology) | Imaging Arts and Sciences |  |  |  |  |  |  | 1217 | 113 |
| Business, Management, and Communication |  |  |  |  |  |  |  |  |  |
| Accounting Technology | National Technical Institute for the Deaf |  |  |  |  | 5002 |  |  | 157 |
| Administrative Support Technology | National Technical Institute for the Deaf |  |  |  |  | 5005 |  |  | 158 |
| Applied Technical Leadership | Applied Science and Technology |  |  |  |  |  |  | 0599 | 25 |
| Business | National Technical Institute for the Deaf |  |  |  | 5001 |  |  |  | 165 |
| Business Administration: Accounting | Business |  |  |  |  |  |  | 0502 | 33 |
| Business Administration: Finance | Business |  |  |  |  |  |  | 0504 | 33 |
| Business Administration: International Business | Business |  |  |  |  |  |  | 0513 | 34 |
| Business Administration: Management | Business |  |  |  |  |  |  | 0506 | 35 |
| Business Administration: Marketing | Business |  |  |  |  |  |  | 0509 | 35 |
| Business Technology | National Technical Institute for the Deaf |  |  | 5004 |  |  |  |  | 166 |
| Communication | Liberal Arts |  |  |  |  |  |  | 0601 | 122 |
| Economics | Liberal Arts |  |  |  |  |  |  | 2204 | 126 |
| Health Systems Administration | Health Sciences and Technology | 5299 |  |  |  |  |  |  | 87 |
| Hospitality and Service Management | National Technical Institute for the Deaf |  |  |  | 5011 |  |  |  | 174 |
| International Hospitality and Service Management | Applied Science and Technology |  |  |  |  |  |  | 0510.10 | 23 |
| Management Information Systems | Business |  |  |  |  |  |  | 0599 | 36 |
| New Media Marketing | Business |  |  |  |  |  |  | 0509 | 36 |
| Nutrition Management | Health Sciences and Technology |  |  |  |  |  |  | 1306 | 87 |
| Organizational Change and Leadership | School of Individualized Study | 5004 |  |  |  |  |  |  | 210 |
| Quality Management | School of Individualized Study | 5004 |  |  |  |  |  |  | 211 |
| Computing and Information Sciences |  |  |  |  |  |  |  |  |  |
| 3D Digital Design | Imaging Arts and Sciences |  |  |  |  |  | 1009 |  | 100 |
| Applied Computer Technology | National Technical Institute for the Deaf |  |  | 5101 | 0799 | 5101 |  |  | 159 |
| Bioinformatics* | Science |  |  |  |  |  |  | 0499 | 191 |
| Computational Mathematics* | Science |  |  |  |  |  |  | 1703 | 200 |
| Computer Science* | Computing and Information Sciences |  |  |  |  |  |  | 0701 | 41 |
| Computing and Information Technologies | Computing and Information Sciences |  |  |  |  |  |  | 0702 | 43 |
| Computing Security* | Computing and Information Sciences |  |  |  |  |  |  | 0799 | 44 |
| Game Design and Development* | Computing and Information Sciences |  |  |  |  |  |  | 0799 | 46 |
| Human-Centered Computing | Computing and Information Sciences |  |  |  |  |  |  | 0766 | 47 |
| Management Information Systems | Business |  |  |  |  |  |  | 0599 | 36 |
| Mobile Application Development | National Technical Institute for the Deaf |  |  |  |  | 5101 |  |  | 177 |
| New Media Interactive Development | Computing and Information Sciences |  |  |  |  |  |  | 0699 | 48 |
| Software Engineering* | Computing and Information Sciences |  |  |  |  |  |  | 0999 | 49 |
| Web and Mobile Computing | Computing and Information Sciences |  |  |  |  |  |  | 0699 | 52 |
| Engineering and Engineering Technology |  |  |  |  |  |  |  |  |  |
| Applied Computer Technology | National Technical Institute for the Deaf |  |  | 5101 | 0799 | 5101 |  |  | 159,160 |
| Applied Mechanical Technology | National Technical Institute for the Deaf |  |  |  |  | 5315 |  |  | 164 |
| Biomedical Engineering* | Engineering |  |  |  |  |  |  | 0905 | 58 |
| Chemical Engineering* | Engineering |  |  |  |  |  |  | 0906 | 60 |
| Civil Engineering Technology | Applied Science and Technology |  |  |  |  |  |  | 0925 | 10 |
| Civil Technology | National Technical Institute for the Deaf |  |  |  |  | 5309 |  |  | 167 |
| Computer Aided Drafting Technology | National Technical Institute for the Deaf |  |  | 5303 |  | 5303 |  |  | 168, 170 |

[^0]$\dagger$ Evening option available.
$\ddagger$ Online option available.

| Undergraduate Programs of Study |  | Degree and HEGIS Code |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cert. | Diploma | AOS | AS | AAS | BFA | BS | Page \# |
| Computer Engineering* | Engineering |  |  |  |  |  |  | 0999 | 62 |
| Computer Engineering Technology* | Applied Science and Technology |  |  |  |  |  |  | 0925 | 11 |
| Computer Integrated Machining Technology | National Technical Institute for the Deaf |  |  | 5312 |  |  |  |  | 170 |
| Electrical Engineering* | Engineering |  |  |  |  |  |  | 0909 | 64 |
| Electrical Engineering Technology | Applied Science and Technology |  |  |  |  |  |  | 0925 | 13 |
| Electrical Mechanical Engineering Technology* | Applied Science and Technology |  |  |  |  |  |  | 0925 | 14 |
| Industrial Engineering* | Engineering |  |  |  |  |  |  | 0913 | 66 |
| Integrated Electronics | Engineering | 5311 |  |  |  |  |  |  | 76 |
| Manufacturing Engineering Technology | Applied Science and Technology |  |  |  |  |  |  | 0925 | 18 |
| Mechanical Engineering* | Engineering |  |  |  |  |  |  | 0910 | 71 |
| Mechanical Engineering Technology | Applied Science and Technology |  |  |  |  |  |  | 0925 | 20 |
| Mechatronics Engineering | Engineering | 5311 |  |  |  |  |  |  | 76 |
| Microelectronic Engineering* | Engineering |  |  |  |  |  |  | 0999 | 74 |
| Packaging Science | Applied Science and Technology |  |  |  |  |  |  | 4999 | 22 |
| Software Engineering* | Computing and Information Sciences |  |  |  |  |  |  | 0999 | 49 |
| Health Sciences |  |  |  |  |  |  |  |  |  |
| Biomedical Sciences | Health Sciences and Technology |  |  |  |  |  |  | 0499 | 81 |
| Diagnostic Medical Sonography (Ultrasound) | Health Sciences and Technology | 5299 |  |  |  |  |  | 1299 | 82, 83 |
| Echocardiography (Cardiac Ultrasound) | Health Sciences and Technology | 5217 |  |  |  |  |  |  | 84 |
| Exercise Science | Health Sciences and Technology | 5299.30 |  |  |  |  |  | 1299.30 | 85,86 |
| Health Systems Administration | Health Sciences and Technology | 5299 |  |  |  |  |  |  | 87 |
| Medical Illustration | Imaging Arts and Sciences |  |  |  |  |  | 1299 |  | 99 |
| Nutrition Management | Health Sciences and Technology |  |  |  |  | 5404 |  | 1306 | 87 |
| Physician Assistant* | Health Sciences and Technology |  |  |  |  |  |  | 1299.10 | 88 |
| Multidisciplinary |  |  |  |  |  |  |  |  |  |
| Applied Arts and Sciences | School of Individualized Study |  | 5699 |  |  | 5699 |  | 4999 | 210 |
| Science, Mathematics, and Imaging Science |  |  |  |  |  |  |  |  |  |
| Applied Mathematics* | Science |  |  |  |  |  |  | 1703 | 187 |
| Applied Statistics and Actuarial Science* | Science |  |  |  |  |  |  | 1702 | 198 |
| Biochemistry | Science |  |  |  |  |  |  | 0414 | 187 |
| Bioinformatics* | Science |  |  |  |  |  |  | 0499 | 191 |
| Biology | Science |  |  |  |  |  |  | 0401 | 193 |
| Biomedical Engineering* | Engineering |  |  |  |  |  |  | 0905 | 58 |
| Biomedical Sciences | Health Sciences and Technology |  |  |  |  |  |  | 0499 | 81 |
| Biotechnology and Molecular Bioscience | Science |  |  |  |  |  |  | 0499 | 194 |
| Chemical Engineering* | Engineering |  |  |  |  |  |  | 0906 | 60 |
| Chemistry* | Science |  |  |  |  |  |  | 1905 | 188 |
| Computational Mathematics* | Science |  |  |  |  |  |  | 1703 | 200 |
| Diagnostic Medical Sonography (Ultrasound) | Health Sciences and Technology | 5299 |  |  |  |  |  | 1299 | 82,83 |
| Environmental Science* | Science |  |  |  |  |  |  | 0420 | 195 |
| Exercise Science | Health Sciences and Technology | 5299.30 |  |  |  |  |  | 1299.30 | 85,86 |
| Imaging Science | Science |  |  |  |  |  |  | 1999.20 | 190 |
| Laboratory Science Technology | National Technical Institute for the Deaf |  |  | 5407 |  | 5407 |  |  | 175, 176 |
| Photographic Sciences (options in Biomedical Photographic Communications, Imaging and Photographic Technology) | Imaging Arts and Sciences |  |  |  |  |  |  | 1217 | 113 |
| Physician Assistant* | Health Sciences and Technology |  |  |  |  |  |  | 1299.10 | 88 |
| Physics* | Science |  |  |  |  |  |  | 1902 | 201 |
| Social Sciences, Humanities, and Education |  |  |  |  |  |  |  |  |  |
| Applied Arts and Sciences | School of Individualized Study |  | 5699 |  |  | 5699 |  | 4999 | 210 |
| Applied Liberal Arts | National Technical Institute for the Deaf |  |  |  | 5699 |  |  |  | 163 |
| ASL-English Interpretation | National Technical Institute for the Deaf |  |  |  |  | 5506 |  | 1199 | 155, 156 |
| Communication* | Liberal Arts |  |  |  |  |  |  | 0601 | 122 |
| Criminal Justice* | Liberal Arts |  |  |  |  |  |  | 2105 | 123 |
| Deaf Cultural Studies-American Sign Language | National Technical Institute for the Deaf | 5506 |  |  |  |  |  |  | 178 |
| Digital Humanities and Social Sciences | Liberal Arts |  |  |  |  |  |  | 5649 | 125 |
| Environmental Science* | Science |  |  |  |  |  |  | 0420 | 195 |
| Environmental Sustainability, Health and Safety* | Applied Science and Technology |  |  |  |  |  |  | 0420 | 16 |
| International and Global Studies | Liberal Arts |  |  |  |  |  |  | 2210 | 127 |
| Journalism | Liberal Arts |  |  |  |  |  |  | 0604 | 129 |
| Museum Studies | Liberal Arts |  |  |  |  |  |  | 1099 | 130 |
| Performing Arts | National Technical Institute for the Deaf | 5610 |  |  |  |  |  |  | 178 |
| Philosophy | Liberal Arts |  |  |  |  |  |  | 1509 | 132 |
| Political Science | Liberal Arts |  |  |  |  |  |  | 2207 | 134 |
| Psychology | Liberal Arts |  |  |  |  |  |  | 2001 | 135 |
| Public Policy* | Liberal Arts |  |  |  |  |  |  | 2102 | 136 |
| Sociology and Anthropology | Liberal Arts |  |  |  |  |  |  | 2214 | 138 |

[^1]$\ddagger$ Online option available.

## Colleges of RIT

Students will choose one college as their home, where they will concentrate on an in-depth degree program (major), but their course work could draw from the strengths and interactions of all 10 of RIT's colleges and degree-granting entities.

## RIT's colleges and degree-granting entities

College of Applied Science and Technology
Saunders College of Business
B. Thomas Golisano College of Computing and Information Sciences

Kate Gleason College of Engineering
College of Health Sciences and Technology
College of Imaging Arts and Sciences
College of Liberal Arts
National Technical Institute for the Deaf
College of Science
Academic Affairs

# College of Applied Science and Technology <br> S. Manian Ramkumar, Interim Dean 

rit.edu/cast

## Programs of study

Bachelor of Science in: ..... Page
Applied Technical Leadership ..... 25
Civil Engineering Technology ..... 10
Options available in construction management,structural design, and water resources.
\# Computer Engineering Technology ..... 11Options available in audio and telecommunications.Electrical Engineering Technology13
Options available in audio and telecommunications
\# Electrical Mechanical Engineering Technology ..... 14
\# Environmental Sustainability, Health and Safety ..... 16
Options available in alternative energy, ecological principlesand conservation, environmental microbiology, andoccupational health and safety.
International Hospitality and Service Management ..... 23
Concentrations available in entertainment and eventmanagement, food and beverage management,international food marketing and distribution, andinternational hotel and resort management.
\# Manufacturing Engineering Technology ..... 18
\# Mechanical Engineering Technology ..... 20
Packaging Science ..... 22
Reserve Officer's Training Corps (ROTC):
Army ..... 26
Air Force ..... 27
\# Accelerated $\mathrm{BS} / \mathrm{MS}$ option available.

The College of Applied Science and Technology, comprised of two schools-the School of Engineering Technology and the School of International Hospitality and Service Innovation-provides programs that stress technology in a variety of environments, enhance customer satisfaction in the service sector, and improve the careers of traditional and nontraditional students. Modern technology, whether in the development, integration, or implementation stages, is a focal point in each of the college's programs. This technology
may be used to provide productive manufacturing and distribution of durable and consumable goods, the proper flow of information worldwide, the protection of the environment, or the enhancement of customer satisfaction in the service sector.

Through its dynamic program offerings, the college is committed to preparing graduates to be innovative, technologically advanced, and entrepreneurial. Degree programs are offered at the baccalaureate and master's degree levels. A number of minors are available. The college also includes the departments of military science (Army ROTC) and aerospace studies (Air Force ROTC), and the Center for Electronic Manufacturing Assembly (CEMA).

## Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

Faculty members in the college have considerable experience in their respective industrial fields, teaching experience from two- and four-year colleges, and have completed graduate programs in their various specialties. While teaching is a primary concern, they are also researchers who maintain current knowledge in their fields. They are committed to student growth and development.

## Facilities and resources

- The college's newest building supports RIT's commitment to environmentally sustainable design. It is LEED (Leadership in Energy and Environmental Design) certified and houses the department of civil engineering technology, environmental management and safety (CETEMS); the department of electrical, computer, and telecommunications engineering technology; the CETEMS Environmental Laboratory; the CETEMS Digital Design Laboratory; the CETEMS Soils Laboratory; the William G. McGowan Student Commons; the American Packaging Corporation Center for Packaging Innovation; Center for Sustainable Packaging; the William G. McGowan Center for Telecommunications, Innovation, and Collaborative Research; and the REDCOM Telecommunications Systems Laboratory.
- Another building houses the department of manufacturing and mechanical engineering technology/packaging science; administrative, advising, and faculty offices; a student project area; and mechanical systems, materials, and product innovation laboratories.
- Additional laboratories include state-of-the-art labs in CAD/ CAM systems, electronics manufacturing, instrumentation, packaging testing, and sustainability.
- Henry's, the college's student-run kitchen and restaurant, which is part of the School of International Hospitality and Service Innovation, showcases some of the most sophisticated service equipment and computing resources in the country.
- Newly remodeled food product development laboratories allow students to create menu items for classes that pertain to the growing food service industry.
- Computing information laboratories provide data that enable students to assess the supply and demand for food commodities throughout the world.


## Cooperative education

All full-time engineering technology majors and the BS programs in environmental sustainability, health and safety; packaging science; and international hospitality and service management require students to complete three semesters of cooperative education before they can be awarded a bachelor of science degree. All part-time programs also require either cooperative education or its equivalent. Students who work full time and are enrolled part time in an engineering technology program may be able to apply a portion of their full-time employment toward cooperative education. Professional responsibilities and how they pertain to each degree program must be reviewed to determine if co-op credit may be awarded.

Programs require an official approval and registration for co-op, with cooperative education listed on the student's transcript. Part-time students in the electrical and computer engineering technology programs have the same cooperative education requirements as full-time students. As part of the graduation requirement for a BS in mechanical engineering technology, electrical/mechanical engineering technology, and manufacturing engineering technology, the department requires that the work experience of all part-time and distance students must total at least 48 weeks of documented full-time work experience relevant to their major.

Co-op provides an opportunity for students to apply techniques, skills, and the latest developments in their fields in a professional environment. Students learn the day-to-day operations of an industry environment while they gain valuable experience that hones their skills and makes them more marketable upon graduation. Co-op also can provide an income that may help defray a portion of the student's educational expenses.

## Accreditation

The following degree programs are accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET (abet.org): civil engineering technology, computer engineering technology, electrical engineering technology, electrical/mechanical engineering technology, manufacturing engineering technology, and mechanical engineering technology.

## Advising

The college provides advising services to support students throughout their academic careers. A faculty adviser, co-op adviser, professional adviser, and staff in the departmental offices all participate in the student's academic experience. A faculty adviser is uniquely
prepared to offer career counseling in each student's major field of study. The Office of Career Services and Cooperative Education assigns each co-op student an adviser who assists in the placement process. In the departmental offices, all students are assured of administrative support to effectively deal with registration, records, and scheduling. Professional advisers assist in academic planning and problem solving. Each of these advisers will also help identify appropriate support services for specific student needs.

## Academic enrichment

The Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.

Minors: Students may choose from more than 90 minors to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

Study abroad: RIT encourages all students to consider a study abroad program to enhance their understanding of globalization and other cultures. Students may study full time at a variety of host schools and are able to select both major and liberal arts classes. The Study Abroad Office has information about foreign study options and opportunities. Academic advisers will work with students to schedule study abroad experiences into planning and course selection.

Professional student organizations: The college maintains memberships in the following professional organizations: American Society of Civil Engineers; Women in Technology; Institute of Electrical and Electronics Engineers; Students Innovating Technology; Institute of Packaging Professionals; Society for Manufacturing Engineers; BAJA SAE Team; American Society of Heating, Refrigerating and Air-Conditioning Engineers; and the Student Environmental Action League.

## Special opportunities

Accelerated dual degree programs: Some programs offer accelerated, five-year dual BS/MS degree options. These degrees offer students the opportunity to earn a bachelor's degree and a master's degree in less time than pursuing each degree individually. Please refer to individual programs for information on BS/MS options.

Graduate study: The College of Applied Science and Technology offers graduate programs and advanced certificates in a number of areas related to technology, the environment, facility management, service management and hospitality, human resource management, and manufacturing. For a complete list of programs and their curricula please refer to the Graduate Bulletin.

Part-time/Evening/Online options: Several of the college's programs may be completed on a part-time, evening, or online basis. Please refer to the Office of Part-time and Graduate Enrollment or the college's website for more information.

## School of Engineering Technology

RIT is a leader in the development of bachelor's and master's degrees in engineering technology, packaging science, and environmental sustainability that are designed to meet the growing needs of business and industry.

## Degree programs

The school offers the following academic majors:

- civil engineering technology
- computer engineering technology
- electrical engineering technology
- electrical mechanical engineering technology
- environmental sustainability, health and safety
- manufacturing engineering technology
- mechanical engineering technology
- mechanical technology
- packaging science

Many students choose to transfer from similar engineering technology fields to continue study in a particular engineering technology specialization typically entering as upper division students. Each major consists of a balance of professional studies, liberal arts, mathematics, and cooperative education. With the selection
of technical electives, students can tailor their major to enhance previous knowledge and work experience.

Upper division: Part-time study in the upper-division of all engineering technology majors is available during the day. Some programs offer a small selection of courses in the evenings (except civil engineering technology) and some courses are available in an online format.

The requirements for part-time study and for graduation are consistent with those for the electrical, computer, and telecommunications engineering technology full-time day programs requiring co-op experience. The part-time mechanical, electrical/mechanical, and manufacturing engineering technology programs do not require cooperative education.

Certificate programs are available during the evening and through online learning. For more information, visit the Part-time and Graduate Enrollment Services website at rit.edu/ptgrad.

## Engineering Technology, Undeclared

rit.edu/cast/mmet/undergraduate-programs/undeclared-engineering-technology-option
Rob Garrick, Undeclared Program Coordinator (585) 475-4288, rdgmet@rit.edu

## Program overview

Students interested in the fields of engineering technology or packaging science but undecided about selecting a specific major should consider the undeclared engineering technology option. Students spend up to one year exploring these majors while earning course credit that can be applied to any of the programs.

## Plan of study

During the first semester, students complete basic technical skills courses in the electrical and mechanical disciplines. They also participate in Undeclared Engineering Technology Seminar (ENGT-110), a course that explores the unique characteristics of each engineering technology discipline. After the first semester, students are expected to select a major or begin focusing their studies on a particular discipline (e.g.: civil, computer, electrical, electrical mechanical, environmental management and safety, mechanical, manufacturing, or packaging science). Students in the undeclared option will take courses at different times than the students who declared their major in their first year. However, in most cases, students will begin their third year on track with other students in their major.

## Curriculum

Undeclared engineering technology, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| Fall Semester |  |  |
| ENGT-110 | Undeclared Engineering Technology Seminar | 1 |
| EEET-111 | DC Circuits | 3 |
| EEET-112 | DC Circuits Lab | 1 |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Spring Semester |  |  |
| Choose two courses from the following majors: |  |  |
| Electrical Engineering Technology |  |  |
| Mechanical Engineering Technology |  |  |
| Electrical/Mechanical Engineering Technology |  |  |
| Computer Engineering Technology |  |  |
| Civil Engineering Technology |  |  |
| Environmental Sustainability, Health and Safety |  |  |
| Packaging Science |  |  |
|  | LAS Perspectives | 3 |
| Choose one of the following: 4 |  |  |
| MATH 171 | Calculus A |  |
| Math Sequence |  |  |
| PHYS-111 | LAS: College Physics I | 4 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Civil Engineering Technology, BS

rit.edu/cast/cetems/bs-civil-engineering-technology
Todd Dunn, Department Chair
(585) 475-2900, gtdite@rit.edu

Scott B. Wolcott, Undergraduate Coordinator
(585) 475-6647, sbwite@rit.edu

## Program overview

The civil engineering technology major prepares students for employment in the fields of civil engineering, construction management, and other closely related professions. Students learn civil engineering technology fundamentals from faculty members who have years of practical, professional, on-the-job experience. The major stresses applied engineering, where students work in various laboratory settings to learn about theory, how design parameters are determined, and how to best utilize state-of-the-art equipment and engineering software. In addition, students learn the skills necessary to pursue additional education, certification, or professional licensure. Course work and extracurricular activities are designed to broaden students' involvement in organizations within and outside their profession.

## Program goal

The goal of the civil engineering technology major is to provide an academically demanding education to meet the needs of students and employers by properly preparing them for a successful career after graduation.

## Accreditation

The civil engineering technology major is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, http://www.abet.org.

## Plan of study

The major includes two technical electives that can be used to gain additional depth or breadth in civil engineering or construction management. In addition, students may choose to utilize other electives to pursue a minor outside of the civil engineering technology major or a professional option within the major. Options are not required, but students may choose to complete an option in construction management, structural design, or water resources to gain a deeper understanding of these topics and how they impact civil engineering.

## Professional options

Students may choose to pursue one of three professional options in construction management, structural design, or water resources. Professional options consist of three courses chosen by the student.

## Construction management

The construction management option is ideal for students who have an interest in courses related to the business, management, and technical aspects related to construction.

## Structural design

The structural design option provides a focus in structural design and the use of different types of structures and materials. It also introduces related design codes.

## Water resources

The water resources option is for students who have an interest in courses related to water treatment, wastewater treatment, hydrology, and the environment.

## Curriculum

Civil engineering technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CVET-140, 141 | Materials of Construction and Lab | 3 |
|  | First Year LAS Elective | 3 |
| MATH-111 | LAS Perspective 7A: Pre-Calculus | 3 |
| PHYS-111, 112 | LAS Perspective 6: Physics I, II | 8 |
|  | LAS Perspective 1 | 3 |
| CVET-210 | Statics | 3 |
| CVET-150 | Computer Aided Design and Drafting | 2 |
| MATH-171 | LAS Perspective 7B: Calculus A | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CVET-160, 161 | Surveying and Lab | 4 |
| CVET-180, 181 | Civil Engineering Graphics and Lab | 3 |
| CVET-220 | Strength of Materials | 4 |
|  | LAS Perspective 2 | 3 |
| MATH-172 | Calculus B | 3 |
| CVET-170 | Elements of Building Construction | 3 |
| CVET-230 | Elementary Structures | 3 |
| CVET-240,241 | Elementary Soil Mechanics and Lab | 4 |
| MATH-211 | Elements of Multivariable Calculus and Differential Equations | 3 |
| CHMG-141,145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| Third Year |  |  |
| CVET-250, 251 | Hydraulics and Lab | 4 |
| CVET-300 | Land Development Computer Applications | 2 |
| CVET-332 | Structural Analysis with STAAD | 4 |
|  | LAS Perspective 3 | 3 |
| COMM-203 | Effective Technical Communication | 3 |
| ENGT-299 | Cooperative Education Preparation | 0 |
| CVET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| CVET-440 | Foundation Engineering | 3 |
|  | Structural Design Elective | 3 |
|  | Free Elective | 3 |
| CHMG-122 | Chemistry of Water and Wastewater | 3 |
|  | LAS Immersion 1,2 | 6 |
|  | Technical Elective | 3 |
| CVET-450 | Principles of Water and Wastewater Treatment | 3 |
| CVET-400,401 | Transportation Engineering and Lab | 3 |
|  | LAS Perspective 4 | 3 |
| CVET-437 | Dynamics in Civil Engineering Technology | 2 |
| CVET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| CVET-499 | Cooperative Education | Co-op |
| CVET-500 | Civil Engineering Technology Capstone (WI) | 3 |
|  | Technical Elective | 3 |
|  | Free Elective | 3 |
|  | LAS Math or Science Elective | 3 |
|  | LAS Immersion 3 | 3 |

Total Semester Credit Hours 128
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Professional options

Construction management

| CVET-461 | Construction Cost Estimating I |
| :--- | :--- |
| CVET-462 | Construction Project Management |
| CVET-464 | Construction Planning, Scheduling and Control |
| CVET-465 | Contracts and Specifications |
| CVET-505 | Sustainable Building Design and Construction |
| Structural design |  |
| CVET-431,432 | Structural Design Elective |
| CVET-433 | Structural Timber Design |
| CVET-434 | Design of Highway Bridges |
| CVET-435 | Pre-stressed Concrete |
| CVET-436 | Masonry Structures |
|  |  |
| Water resources |  |
| CVET-423 | Geospatial Information Systems for CETEMS |
| CVET-451 | Design of Water and Wastewater Treatment |
| CVET-452 | Groundwater Hydraulics |
| CVET-453 | Stormwater Management |

## Additional information

## Graduates

Our graduates can be found working in consulting engineering firms; construction and construction management companies; and government agencies at the local, regional, and national level. Initial job titles may include junior engineer, project manager, project engineer, estimator, junior structural engineer, construction inspector, project coordinator, or superintendent. Many graduates pursue advanced degrees, and a large number have gained registration in several states as professional engineers. Some manage their own consulting firms.

## Industrial Advisory Board

The Industrial Advisory Board is comprised of local and regional industry leaders from consulting, construction, and the municipal market. These advisory board members share their professional and technical expertise to enhance the engineering technology program and strengthen its development.

## Computer Engineering Technology, BS

rit.edu/cast/ectet/bs-in-computer-engineering-technology.php<br>Michael Eastman, Department Chair<br>(585) 475-7787, mgeiee@rit.edu

## Program overview

Embedded systems are at the heart of devices and systems used every day. Computer engineers design embedded systems for medical diagnostic equipment, digital cameras, missile guidance systems, anti-lock braking systems, scanners, copiers, switches, routers, and cell phones. The embedded systems designer requires knowledge of computer hardware and software.

The computer engineering technology major is designed to meet industry's ever-increasing need for engineers with an in-depth knowledge of hardware and software design and development. The curriculum bridges the gap between these two disciplines by providing a solid foundation in each and integrating them with intensive classroom and laboratory experiences.

From a software perspective, students gain a strong background in cutting-edge development with programming languages currently used in industry. Students learn industry standard approaches to application software development as well as state-of-the-art problem-solving techniques. Students learn techniques for developing applications code and firmware, and they understand and appreciate the difference. Embedded " C " and assembly language programming are performed in numerous courses.

The hardware focus of the curriculum is on digital systems design and development. From low-level gate design to high-end microprocessors and current bus standards, students gain an architectural understanding of computer systems. The curriculum includes in-depth design and analysis of combinational logic, sequential logic and state machines, micro-controller systems, microprocessor systems, and state-of-the-art computer technology. Students perform schematic entry timing analysis and FPGA development in VHDL using industry standard computeraided engineering tools.

A capstone experience in the fifth year enables students to integrate their hardware and software expertise in a semester-long project course.

The emphasis on hardware and software design, along with a solid foundation in math, science, and the liberal arts, produces graduates who are well-prepared to enter the work force as design engineers or to pursue advanced degrees. Students will gain depth of knowledge and breadth of experience that will inspire them to pursue successful careers in their chosen professional field and embark on a path of lifelong learning.

## Options

Students may elect to use the two technical electives and the two free electives to complete an option in audio or telecommunications. Each option consists of four courses.

## Cooperative education

The program requires students to complete approximately 50 weeks of cooperative education. Students may begin their co-op experience in the third year of the program. Co-ops may be completed during the academic year or during the summer. Each student is assigned a co-op adviser to assist in identifying and applying to opportunities.

## Accreditation

The computer engineering technology major is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology ABET, http://www.abet.org.

## Curriculum

Computer engineering technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
| EEET-111, 112 | DC Circuits and Lab | 4 |
| CPET-141, 142 | Digital Fundamentals and Lab | 3 |
|  | LAS Perspective 1,2 | 6 |
|  | First Year LAS Elective | 3 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
| EEET-121, 122 | AC Circuits and Lab | 4 |
| CPET-121 | Computational Problem Solving I | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-173 | Calculus C | 3 |
| EEET-211, 212 | Electronics I and Lab | 4 |
|  | LAS Perspective 3,4 | 6 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| MATH-211 | Calculus and DEQ | 3 |
| EEET-221, 222 | Electronics II and Lab | 3 |
| CPET-231 | Digital Systems Design | 2 |
| CPET-232 | Digital Systems Design Lab | 1 |
| CPET-251 | Microcontroller Systems | 3 |
| CPET-252 | Microcontroller Systems Lab | 1 |
| STAT-145 | Introduction to Statistics I | 3 |
| Third Year |  |  |
| PHYS-111 | LAS Perspective 6: College Physics I | 4 |
| EEET-331,332 | Signals Systems and Transforms and Lab | 4 |
| CPET-341, 342 | Hardware Description Language and Lab | 3 |
| CPET-321 | Computational Problem Solving II | 3 |
|  | LAS Immersion 1 | 3 |
| EEET-299 | Career Orientation | 1 |
| CPET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| CPET-481 | Networking Technologies | 3 |
| EEET-425 | Digital Signal Processing (WI) | 4 |
| EEET-421 | Design Innovation | 2 |
| EEET-422 | Design Innovation Lab | 1 |
|  | LAS Immersion 2, 3 | 6 |
|  | Technical Electives | 6 |
| MFET-436 | Engineering Economics | 3 |
| CPET-561 | Embedded Systems Design I | 4 |
| Choose one of the following: |  | 3 |
| SWEN-563 | Real Time and Embedded Systems |  |
| CPET-461 | Real Time Operating Systems |  |
| CPET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| CPET-499 | Cooperative Education | Co-op |
| CPET-563 | Embedded Systems Design II | 3 |
|  | General Education Elective | 4 |
|  | Free Electives | 6 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Options

Audio

| EEET-261 | Fundamentals of Audio Engineering |
| :--- | :--- |
| EEET-361 | Modern Audio Production |
| Choose two of the following: |  |
| CPET-435 | 3D Audio Theory and Practice |
| EEET-461 | Introduction to Acoustics |
| EEET-561 | Audio Power Amplifier |

Telecommunications

| CPET-481 | Network Technologies |
| :--- | :--- |
| EEET-311,314 | Communications Elective with Lab |
| EEET-525 | Wireless RF Systems |
| EEET-531 | Fiber Optics Technology |

## Accelerated dual degree option

The program, in conjunction with the department of computer science in the B. Thomas Golisano College of Computing and Information Sciences, offers an accelerated dual degree option that combines the bachelor's degree in computer engineering technology and a master's degree in computer science.

Computer engineering technology, BS degree/Computer science, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
| EEET-111, 112 | DC Circuits and Lab | 4 |
| CPET-141, 142 | Digital Fundamentals and Lab | 3 |
|  | LAS Perspective 1,2 | 6 |
|  | First Year LAS Elective | 3 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
| EEET-121, 122 | AC Circuits and Lab | 4 |
| CPET-121 | Computational Problem Solving I | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-173 | Calculus C | 3 |
| EEET-211, 212 | Electronics I and Lab | 4 |
| CPET-201, 202 | Microcontroller Systems and Lab | 3 |
|  | LAS Perspective 3,4 | 6 |
| CHMG-141,145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| MATH-211 | Calculus and DEQ | 3 |
| EEET-221, 222 | Electronics II and Lab | 3 |
| CPET-241, 242 | Digital Systems Design and Lab | 4 |
| STAT-251 | Probability and Statistics I | 3 |
| Third Year |  |  |
| MATH-190 | Discrete Math for Computing | 3 |
| EEET-321 | Signals Systems and Transforms | 4 |
| CPET-341,342 | Hardware Description Language and Lab |  |
| CPET-321 | Computational Problem Solving II | 3 |
|  | LAS Immersion 1 | 3 |
| EEET-299 | Career Orientation | - |
| CPET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| CSCI-262 | Introduction to Computer Science Theory | 3 |
| PHYS-111 | LAS Perspective 6: College Physics I | 4 |
| EEET-421 | Design Innovation (WI) | 3 |
|  | LAS Immersion 2 | 3 |
| MFET-436 | Engineering Economics | 3 |
| CPET-561 | Embedded Systems Design I | 4 |
| CPET-461 | Real Time Operating Systems | 3 |
| CSCI-605 | Advanced Java Programming | 3 |
| CPET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| CSCl-620 | Data Exploration and Management | 3 |
| CPET-481 | Networking Technologies | 3 |
| EEET-425 | Digital Signal Processing | 4 |
| CSCl-665 | Foundations of Algorithms | 3 |
| CPET-563 | Embedded Systems Design II | 3 |
| CSCI-720 | Data Mining | 3 |
| CSCI-622 | Secure Data Management | 3 |
|  | LAS Immersion 3 | 3 |
| Sixth Year |  |  |
| CSCI-687 | Graduate Research Seminar | 3 |
| CSCI-631 | Foundations of Computer Vision | 3 |
| Choose one of the following: |  | 3 |
| CSCI-663 | Computability |  |
| CSCI-664 | Computational Complexity |  |
| CSCI-799 | Computer Science Graduate Independent Study | 3 |
| CSCI-790 | Computer Science Thesis | 6 |

Total Semester Credit Hours 151
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.


## Electrical Engineering Technology, BS

rit.edu/cast/ectet/bs-in-electrical-engineering-technology.php
Michael Eastman, Department Chair
(585) 475-7787, mgeiee@rit.edu

## Program overview

The bachelor of science degree in electrical engineering technology is designed to meet industry's ever-increasing need for engineers with an in-depth understanding of electrical and electronics theory. The major provides students with the ability to specialize in specific areas of the discipline. Graduates work in engineering roles in a variety of industries including automotive, medical devices, power and energy, audio, telecommunications, and more.

Core courses are introduced in the first year of study to provide students with a solid foundation in circuits, analog and digital electronics, physics, calculus, and the liberal arts. The curriculum expands in later years to include fundamental courses that feature advanced study in applied differential equations, advanced circuits and electronics, transform methods, control systems, analog and digital electronics, mechanical engineering technology, and additional liberal arts courses. Elective courses enable students to choose from a wide range of course options to further enhance their program of study and prepare them for career goals and objectives. The upper division of the major provides a viable option for students who have completed their associate degree and wish to continue their education in engineering technology.

## Options

Students may elect to use the two technical electives and the two free electives to complete an option in audio or telecommunications. Each option consists of four courses.

## Cooperative education

The degree is a five-year major that requires approximately 15 months of cooperative education experience for full-time students. Students may begin their co-op experiences in the third year. Co-ops may be completed during the academic year and during the summer. A co-op adviser is assigned to each student to assist them in identifying and applying to opportunities.

## Accreditation

The electrical engineering technology major is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology ABET, http://www.abet.org.

## Curriculum

Electrical engineering technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
| EEET-111, 112 | DC Circuits and Lab | 4 |
| CPET-141, 142 | Digital Fundamentals and Lab | 3 |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year LAS Elective | 3 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
| EEET-121,122 | AC Circuits and Lab | 4 |
| CPET-121 | Computational Problem Solving I | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |


| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| Second Year |  |  |
| MATH-173 | Calculus C | 3 |
| EEET-211, 212 | Electronics I and Lab | 4 |
| CPET-231, 232 | Digital Systems Design and Lab | 3 |
|  | LAS Perspective 3, 4 | 6 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| MATH-211 | Elements of Multivariable Calculus and Differential Equations | 3 |
| EEET-221, 222 | Electronics II and Lab | 3 |
| CPET-251, 252 | Microcontroller Systems and Lab | 4 |
| EEET-241, 242 | Electrical Machines and Transformers and Lab | 3 |
| Third Year |  |  |
| PHYS-111 | LAS Perspective 6: College Physics I | 4 |
| EEET-321, 332 | Signals, Systems and Transforms and Lab | 4 |
| EEET-311, 312 | Communications Electronics and Lab | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
|  | LAS Immersion 1 | 3 |
| EEET-299 | Career Orientation | 1 |
| EEET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| EEET-425 | Digital Signal Processing (WI) | 4 |
| EEET-421, 422 | Design and Innovation and Lab | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Technical Electives | 6 |
|  | General Education Elective | 3 |
| MFET-436 | Engineering Economics | 3 |
| EEET-427 | Control Systems | 4 |
|  | Mechanical/Manufacturing Engineering Technology Elective | 3 |
| EEET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| 0609-499 | Cooperative Education | Co-op |
| EEET-431, 432 | Transmission Lines and Lab | 3 |
|  | Free Electives | 6 |
|  | LAS Elective | 4 |
| Total Semester | $t$ Hours | 128 |
| Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major. <br> * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses. |  |  |
| Options |  |  |
| Audio |  |  |
| EEET-261 | Fundamentals of Audio Engineering |  |
| EEET-361 | Modern Audio Production |  |
| Choose two of the following: |  |  |
| EEET-435 | 3D Audio Theory and Practice |  |
| EEET-461 | Introduction to Acoustics |  |
| EEET-561 | Audio Power Amplifier |  |
| Telecommunications |  |  |
| CPET-481 | Network Technologies |  |
| EEET-311 | Communications Elective with Lab |  |
| EEET-525 | Wireless RF Systems |  |
| EEET-531 | Fiber Optics Technology |  |

## Additional information

## Graduates

Graduates are well-prepared to pursue careers in a number of fields related to electrical engineering technology. They enter positions in not only design and development but related disciplines, including manufacturing, research, sales and marketing, applications engineering, and education.

## Electrical Mechanical Engineering Technology, BS

rit.edu/cast/mmet/undergraduate-programs/bs-in-electrical-mechanical-engineering-technology

## Martin Gordon, Director of Undergraduate Studies <br> (585) 475-7712 megite@rit.edu

## Program overview

With the increased complexity of products and production design, which includes the integration of electronics with mechanical and electrical components, there is a growing need for professionals who have a strong foundation in the electrical, mechanical, and manufacturing disciplines. The electrical mechanical engineering technology major prepares students for professional careers in the broad field of engineering technology, where an integration of mechanical, electrical, and manufacturing disciplines is important. Core courses cover electricity, electronics, microprocessors, mechanics, materials, thermal science, solid modeling, and manufacturing processes. In addition, students take general education courses in mathematics, physics, chemistry, communications, programming, and the liberal arts. The major provides the maximum amount of flexibility in transfer from a variety of two-year programs and from major within RIT, including program in engineering science and engineering technology.

## Goals

The goal of the major is to develop well rounded electrical/mechanical engineers as lifelong learners with the ability to adapt, grow, and succeed in a mechatronics, electromechanical engineering environment, or similar highly competitive workplace. The cooperative education experience prepares students to step into professional positions after graduation and be immediately productive in jobs that include mechatronics development, electromechanical system design and analysis, alternative energy, or system engineering.

## Accreditation

The electrical mechanical engineering technology major is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, http://www.abet.org.

## Plan of study

Students develop skills in courses that explore the fundamentals of mechanics, electrical circuits, and microprocessors, mathematics, materials technology, computer-aided engineering and design. Later, course work focuses on both mechanical and electrical analysis and design. The major includes two technical electives and two free electives.

A substantial amount of laboratory and product work is required. Teamwork, technical writing, and computer use are emphasized throughout the curriculum, which includes the presentation of team projects that are relevant to industry.

## Curriculum

Electrical mechanical engineering technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| MCET-110, 111 | Foundations of Metals and Characterization of Metals and Lab | 3 |
| EEET-111, 112 | DC Circuits and Lab | 4 |
| MCET-150 | Engineering Communications and Tolerancing | 3 |
| COMM-203 | Effective Technical Communictions | 3 |
| PHYS-111 | LAS Perspective 5: College Physics | 4 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
| MFET-120 | Manufacturing Processes | 3 |
| MATH-211 | Elements of Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| EEET-121, 122 | AC Circuits and Lab | 4 |
| EMET-290 | Mechanics for Electrical Mechanical Engineering Technology | 3 |
| EEET-225, 226 | Electronic Amplifiers and Lab | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| CPET-121 | Computational Problem Solving I | 3 |
|  | LAS Perspective 1 | 3 |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MFET-340, 341 | Automation Control Systems and Lab | 3 |
| MCET-210, 211 | Foundations of Non-Metallic Materials and Characterization of Non-Metallic Materials Lab | 3 |
| EEET-247, 248 | Microprocessors and Digital Systems and Lab | 3 |
|  | LAS Perspective 2 | 3 |
| ENGT-299 | Cooperative Education Preparation | 0 |
| EMET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| EEET-241, 242 | Electric Machines and Transformers and Lab | 3 |
| MCET-430, 530 | Thermal Fluid Systems I, II | 6 |
|  | LAS Immersion 1, 2 | 6 |
| MFET-436 | Engineering Economics | 3 |
| CHMG-131 | LAS Perspective 6: General Chemistry for Engineers | 3 |
| EMET-419 | Experimental Methods for Electrical Mechanical Engineering Technology (WI) | 3 |
| EEET-427 | Control Systems | 4 |
|  | LAS Perspective 3 | 3 |
| EMET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| EMET-499 | Cooperative Education | Co-op |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 3 | 3 |
|  | Free Electives | 6 |
|  | Technical Elective | 3 |
| Total Semester Credit Hours |  | 127 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

An accelerated dual degree option allows students to earn a BS in electrical mechanical engineering technology and an MS in manufacturing and mechanical systems integration in five years.

Electrical mechanical engineering technology, BS degree/ Manufacturing and mechanical systems integration, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| MCET-110, 111 | Foundations of Metals and Characterization of Metals Lab | 3 |
| EEET-111, 112 | DC Circuits and Lab | 4 |
| MCET-150 | Engineering Communications and Tolerancing | 3 |
| PHYS-111 | LAS Perspective 5: College Physics | 4 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
| COMM-203 | Effective Technical Communication | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
| MFET-120 | Manufacturing Processes | 3 |
| MATH-211 | Elements of Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| EEET-121, 122 | AC Circuits and Lab | 4 |
| EMET-290 | Mechanics for Electrical Mechanical Engineering Technology | 3 |
| EEET-225, 226 | Electronic Amplifiers and Lab | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| CPET-121 | Computational Problem Solving I | 3 |
|  | LAS Perspective 1 | 3 |
| EMET-299 | Co-op Preparation | 0 |
| EMET-499 | Cooperative Education | Co-op |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MCET-430 | Thermal Fluid Systems I | 3 |
| MCET-210, 211 | Foundations of Non-Metallic Materials and Lab | 3 |
| EEET-247, 248 | Microprocessors and Digital Systems and Lab | 3 |
| MFET-650 | Manufacturing and Mechanical Systems Fundamentals | 3 |
| EMET-419 | Experimental Methods (WI) | 3 |
| MCET-530 | Thermal Fluid Systems II | 3 |
|  | LAS Perspective 2 | 3 |
| ISEE-682 | Lean Six Sigma Fundamentals | 3 |
|  | Graduate Concentration Course | 3 |
| EMET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| MFET-340, 341 | Automation Control Systems and Lab | 3 |
| EEET-241, 242 | Electric Machines and Transformers and Lab | 3 |
| MFET-436 | Engineering Ergonomics | 3 |
| CHMG-131 | LAS Perspective 6: General Chemistry for Engineers | 3 |
| STAT-670 | Design of Experiments for Engineers and Scientists | 3 |
| EEET-435 | Process Control and Instrumentation | 3 |
| MCET-535 | Thermal Fluid Systems Lab | 2 |
|  | LAS Perspective 3 | 3 |
|  | LAS Immersion 1 | 3 |
|  | Graduate Concentration Course | 3 |
| GRCS-701 | Research Methods | 3 |
| EMET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
|  | Elective | 3 |
| DECS-744 | Project Management | 3 |
|  | Graduate Concentration Course | 3 |
| ACCT-706 | Cost Management | 3 |
| Choose one of the following: |  | 3 |
| MFET-788 | Thesis Prep |  |
| Elective |  |  |
| Choose one of th | wing: | 3 |
| Capstone Project |  |  |
| Thesis |  |  |
| Comprehensive Exam |  |  |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Perspective 4 | 3 |

[^2]
## Additional information

## Activities and professional organizations

Students have an opportunity to participate in regional and national design competitions such as the Society of Automotive Engineers (SAE) BAJA team, SAE Clean Snowmobile Challenge team, Formula SAE Racing and SAE Formula Electric teams. Students are also encouraged to participate in the student chapters of professional societies such as the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), the Society of Manufacturing Engineers (SME), the Society of Woman Engineers (SWE), the National Society of Black Engineers (NSBE), Society of Hispanic Professional Engineers (SHPE), and Society of Automotive Engineers (SAE).

## Part-time study

Students who are employed full time may pursue the major on a parttime basis by taking the upper-division portion of the curriculum during day or evening hours. It is recommended that students take one to two courses per semester. Students also may elect certain courses from other engineering technology majors, with department approval.

## Environmental Sustainability, Health and Safety, BS

rit.edu/cast/cetems/environmental-sustainability-health-and-safety<br>Todd Dunn, Department Chair<br>(585) 475-7213, gtdite@rit.edu<br>Josh Goldowitz, Program Coordinator<br>(585) 475-7016, jxgctp@rit.edu

## Program overview

The environmental sustainability, health and safety major prepares students to be champions of environmental sustainability as well as health and safety. Graduates help organizations produce goods and services without contaminating the environment, without subjecting the workers to hazardous conditions and chemicals, while also using less energy and fewer precious resources.

The major is focused on social responsibility for corporate activities and on organizations becoming good stewards of the products and services they make and provide. Students are prepared to work as environmental sustainability, health, and safety professionals in both industry and government. Students gain a strong foundation in science; applied environmental, health and safety science, and technology; environmental sustainability; and social responsibility.

Students are prepared to eliminate, reduce, and control the release of pollutants into the environment and to manage health and safety hazards associated with an organization's activities, products, and services. The major emphasizes globally sustainable and socially responsible approaches and prepares professionals to lead various industries toward a more sustainable and socially responsible future.

## Cooperative education

One year of cooperative education is required. Students may begin their first co-op in the spring of their third year. Co-op provides students with the opportunity to apply their skills in multiple, real-world situations before they graduate. Co-op students are especially valuable to organizations because they are well-qualified and well-prepared to take on the many interesting environmental projects organizations have difficulty completing without additional staff. Co-ops range from field research to office work, and employers range from government to industry.

## Options

Several options are available to students that provide further study in various areas of environmental sustainability, health and safety. Options are not required, however, students may choose to use elective courses to pursue one of three options to gain an expertise in a particular area.

## Alternative energy

Alternative energy resources are important components of a more environmentally sustainable future. A group of three courses and corresponding labs provide a strong background in the most promising forms of alternative energy systems.

## Occupational health and safety

Although the Environmental Protection Agency regulates the environment and the Occupational Safety \& Health Administration regulates workplaces, roughly one-third of EPA and OSHA regulations have an overlap of responsibility. Many corporations now have a strong commitment to both the environment and to worker safety, and have combined their environmental, health and safety functions into a single unit. This option provides students with an opportunity to learn more about keeping workers safe from chemical and physical hazards.

## Curriculum

Environmental sustainability, health and safety, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ESHS-100 | Environmental Sustainability Health and Safety Seminar | 3 |
|  | First Year LAS Elective | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| CHMG-111, 112 | LAS Perspective 5: General-Organic Biochemistry I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
| ESHS-150 | Principles of Environmental Sustainability Health and Safety | 3 |
| PHYS-111 | LAS Perspective 6: College Physics I and Lab | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ESHS-200 | Environmental Geology | 3 |
| ESHS-201, 251 | Environmental Monitoring and Measurement I, II | 4 |
| PHYS-112 | College Physics II and Lab | 4 |
| BIOL-101, 103 | General Biology I and Lab | 4 |
| TCOM-327 | Environmental Health and Safety Communication | 3 |
| ESHS-250 | Introduction to Hydrology | 3 |
| ESHS-310 | Solid and Hazardous Waste Management | 3 |
| BIOL-102, 104 | General Biology II and Lab | 4 |
| ESHS-320 | Occupational Safety | 3 |
| Third Year |  |  |
| ESHS-330 | Industrial Wastewater Management | 3 |
|  | LAS Perspective 3 | 3 |
| ESHS-511,512 | Occupational Health and Lab | 4 |
|  | LAS Immersion 1 | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| ESHS-299 | Cooperative Education Preparation | 0 |
| ESHS-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| ESHS-460 | Environmental Health and Safety Accident Causation and Prevention | 3 |
| ESHS-500 | Social Responsibility and Environmental Sustainability (WI) | 3 |
|  | Professional Electives | 9 |
|  | Free Elective | 3 |
|  | LAS Immersion 2, 3 | 6 |
| ESHS-480 | Environmental Health and Safety Law | 3 |
| ESHS-525 | Air Emissions Management | 3 |
| ESHS-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| ESHS-499 | Cooperative Education | Co-op |
| ESHS-515 | Corporate Environmental Health and Safety Management | 3 |
| ESHS-590 | Capstone Project | 3 |
|  | Professional Elective | 3 |
|  | LAS Perspective 4 | 3 |
|  | Free Elective | 3 |
| Total Semester Credit Hours |  | 126 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.


## Options

Alternative energy

| EEET-251 | Clean Energy Power Systems |
| :--- | :--- |
| EEET-252 | Clean Energy Power Systems Lab |
| EEET-351 | Solar Photovoltaic Applications |
| EEET-352 | Solar Photovoltaic Applic Lab |
| EEET-353 | Fuel Cell Systems |
| EEET-354 | Fuel Cell Systems Lab |

Occupational health and safety

| ESHS-225 | Construction Safety |
| :--- | :--- |
| ESHS-501 | Fire Protection |
| ESHS-530 | Mechanical and Electrical I Safeguarding |
| ESHS-550 | Project Management |
| ESHS-465 | Product Stewardship |
| ESHS-570 | EHS Risk Assessment, Management and Communication |

Surveying and geopolitical analysis

| CVET-160 | Surveying |
| :--- | :--- |
| CVET-161 | Surveying Laboratory |
| CVET-425 | GIS for CETEMS |
| ISTE-382 | Introduction to Geospatial Technologies |

## Accelerated dual degree options

Students may pursue one of two accelerated dual degree options. Students may earn both a BS and MS degree in environmental sustainability, health and safety management, or they may earn a BS in environmental sustainability, health and safety and an MS in environmental health and safety management.

Environmental health and safety management, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ESHS-100 | ESHS Seminar | 3 |
|  | First Year LAS Elective | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| CHMG-111 | LAS Perspective 5: General Organic Biochemistry I w/ lab | 4 |
|  | LAS Perspective 1, 2 | 6 |
| ESHS-150 | Principles of ESHS | 3 |
| PHYS-111 | LAS Perspective 6: College Physics I w/ lab | 4 |
| CHMG-112 | General Organic Biochemistry II w/ lab | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ESHS-200 | Environmental Geology | 3 |
| ESHS-201, 251 | Environmental Monitoring and Measurement I, II | 4 |
| PHYS-112 | College Physics II w/lab | 4 |
| BIOL-101, 103 | General Biology I and Lab | 4 |
| TCOM-327 | EHS Communication | 3 |
| ESHS-250 | Introduction to Hydrology | 3 |
| ESHS-310 | Solid and Hazardous Waste Management | 3 |
| BIOL-102, 104 | General Biology II and Lab | 4 |
| ESHS-320 | Occupational Safety | 3 |
| ESHS-299 | ESHS Cooperative Education Preparation | 0 |
| ESHS-499 | Cooperative Education | 0 |
| Third Year |  |  |
| ESHS-330 | Industrial Wastewater Management | 3 |
|  | LAS Perspective 3 | 3 |
| ESHS-511 | Occupational Health | 3 |
| ESHS-512 | Occupational Health Lab | 1 |
|  | LAS Immersion 1, 3 | 6 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | Professional Elective | 3 |
| ESHS-480 | EHS Law | 3 |
| ESHS-525 | Air Emissions Management | 3 |
|  | Professional Elective | 3 |
| ESHS-499 | Cooperative Education | 0 |
| Fourth Year |  |  |
| ESHS-460 | EHS Accident Causation and Prevention | 3 |
| ESHS-720 | EHS Management | 3 |
|  | Professional Elective | 3 |
| GRCS-701 | Research Methods | 3 |
|  | LAS Immersion 2 | 3 |
| ESHS-515 | Corporate EHS Management | 3 |
| ESHS-500 | Social Responsibility | 3 |
|  | LAS Perspective 4 | 3 |
|  | Free Electives | 6 |
| ESHS-499 | Cooperative Education | 0 |
| Fifth Year |  |  |
| ESHS-780 | EHS Internal Auditing | 3 |
|  | Professional Electives (Graduate) | 9 |
| ESHS-755 | Corporate Social Responsibility | 3 |
| ESHS-760 | Integrating EHS Management | 3 |
| ESHS-740 | EHS Systems Design | 3 |
| ESHS-797 | Graduate Project | 3 |

Total Semester Credit Hours 150

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Environmental sustainability, health and safety, BS degree/ Environmental health and safety management, MS degree (thesis option), typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ESHS-100 | ESHS Seminar | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| CHMG-111 | LAS Perspective 5: General Organic Biochemistry I w/ Lab | 4 |
| ESHS-150 | LAS Perspective 6: Principles of ESHS | 3 |
| PHYS-111 | College Physics I with Lab | 4 |
| CHMG-112 | General Organic Biochemistry II w/ Lab | 4 |
|  | LAS Perspective 1, 2 | 6 |
| Second Year |  |  |
| ESHS-200 | Environmental Geology | 3 |
| ESHS-201 | Environmental Monitoring and Measurements I | 2 |
| PHYS-112 | College Physics II with Lab | 4 |
| BIOL-101, 103 | General Biology I and Lab | 4 |
| TCOM-327 | EHS Communication | 3 |
| ESHS-250 | Introduction to Hydrology | 3 |
| ESHS-251 | Environmental Monitoring and Measurements II | 2 |
| ESHS-310 | Solid and Hazardous Waste Management | 3 |
| BIOL-102, 104 | General Biology II and Lab | 4 |
| ESHS-320 | Occupational Safety | 3 |
| ESHS-299 | ESHS Co-op Preparation | 0 |
|  | Cooperative Education | Co-op |
| Third Year |  |  |
| ESHS-330 | Industrial Wastewater Management | 3 |
| ESHS-511 | Occupational Health | 3 |
| ESHS-512 | Occupational Health Lab | 1 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| ESHS-480 | EHS Law | 3 |
| ESHS-525 | Air Emissions Management | 3 |
|  | LAS Immersion 1, 3 | 6 |
|  | LAS Perspective 3 | 3 |
|  | Professional Electives | 6 |
| Fourth Year |  |  |
| ESHS-460 | EHS Accident Causation and Prevention | 3 |
| GRCS-701 | Research Methods | 3 |
| GRCS-702 | Principles of Research Communication | 3 |
| ESHS-720 | EHS Management | 3 |
| ESHS-515 | Corporate EHS Management | 3 |
| ESHS-500 | Social Responsibility | 3 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 2 | 3 |
|  | Free Electives | 6 |
| Fifth Year |  |  |
| ESHS-780 | EHS Systems Review and Auditing | 3 |
| ESHS-755 | Corporate Social Responsibility (WI) | 3 |
| ESHS-760 | Integrating EHS Management | 3 |
| ESHS-740 | EHS Systems Design | 3 |
|  | Graduate Professional Electives | 6 |
| ESHS-788 | Thesis Planning | 3 |
| ESHS-790 | Thesis | 3 |
| Total Semester Credit Hours |  | 150 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Manufacturing Engineering Technology, BS
rit.edu/cast/mmet/undergraduate-programs/bs-in-manufacturing-engi-neering-technology
Martin Gordon, Director of Undergraduate Studies
(585) 475-7712, megite@rit.edu

## Program overview

The present shortage of qualified manufacturing engineers is between 50,000 and 100,000 . Combined with innovations in industrial productivity and technology, the demand for well-prepared manufacturing engineers is only increasing. Manufacturing engineers are retiring faster than graduates are produced, resulting in outstanding employment opportunities. The manufacturing engineering technology major prepares students to meet the demand for personnel well-versed in advanced manufacturing technologies, which include computer-aided design, computer numerical control, microprocessor controls, robotics, computer-aided manufacturing, flexible manufacturing systems, assembly automation, and electronics manufacturing.

## Goals

The goal of the major is to prepare individuals for professional employment in the fields of production systems design, development, and manufacturing. Designed to provide the skills necessary for applying emerging manufacturing technologies, the major develops well rounded manufacturing engineers who are lifelong learners with the ability to adapt, grow, and succeed in a highly competitive workplace. A cooperative education program enhances these skills by allowing students to gain valuable experience working in the manufacturing industries.

## Accreditation

The manufacturing engineering technology major is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, http://www.abet.org.

## Plan of study

The curriculum is designed with the aid and consultation of professionals in the field and emphasizes computer-integrated manufacturing and production system development. Courses cover traditional and nontraditional manufacturing processes, fundamentals of electronics and microprocessors, computer-aided design and manufacturing, computer numerical control, robotics, materials requirements planning, design for manufacturing and assembly, surface-mount electronics manufacturing and assembly, flexible manufacturing systems, quality control, engineering economics, plastics manufacturing, manufacturing management, and lean manufacturing.

## Activities and professional organizations

Students have an opportunity to participate in regional and national design competitions such as the Society of Automotive Engineers (SAE) BAJA team, SAE Clean Snowmobile Challenge team, Formula SAE Racing, and SAE Formula Electric teams. Students are also encouraged to participate in the student chapters of professional societies such as the Society of Manufacturing Engineers (SME), the Society of Woman Engineers (SWE), the National Society of Black Engineers (NSBE), Society of Hispanic Professional Engineers (SHPE), and Society of Automotive Engineers (SAE).

## Curriculum

Manufacturing engineering technology, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MFET-120 | Manufacturing Processes | 3 |
|  | LAS Perspective 1 | 3 |
| MATH-171, 172 | LAS Perspective 7A, 7B: Calculus A, B | 6 |
|  | First Year LAS Elective | 3 |
| MCET-110, 111 | Foundations of Metals and Characterization of Metals Lab | 3 |
| MCET-150 | Engineering Communications and Tolerancing | 3 |
| PHYS-111 | LAS Perspective 5: College Physics 1 | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
|  | LAS Perspective 2 | 3 |
| MATH-211 | Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| MCET-210, 211 | Foundations of Non-Metallic Materials and Characterization of Non-Metallic Materials Lab | 3 |
| MCET-221 | Strength of Materials | 4 |
| EEET-215, 216 | Circuits and Electronics and Lab | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| COMM-203 | Effective Technical Communication | 3 |
|  | LAS Perspective 3 | 3 |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MFET-340, 341 | Automation Control Systems and Lab | 3 |
| MFET-345, 346 | Electronics Manufacturing and Lab | 3 |
|  | LAS Immersion 1 | 3 |
|  | Free Elective | 3 |
| ENGT-299 | Cooperative Education Preparation | 0 |
| MFET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| MFET-420 | Quality Engineering Principles | 3 |
| MFET-445,446 | Robotics and Automation (WI) and Lab | 3 |
| MFET-436 | Engineering Economics | 3 |
| CHMG-131 | LAS Perspective 6: General Chemistry for Engineers | 3 |
|  | LAS Immersion 2, 3 | 6 |
| MFET-450 | Lean Production and Supply Chain Operations | 3 |
| MFET-460 | Integrated Design for Manufacture and Assembly | 3 |
|  | Technical Elective | 3 |
|  | LAS Perspective 4 | - |
| MFET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| MFET-499 | Cooperative Education | Co-op |
| MFET-580 | Production Systems Design | 3 |
| MFET-590 | Production Systems Development | 3 |
|  | Free Elective | 3 |
|  | LAS Elective | 3 |
|  | Technical Elective | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

An accelerated dual degree option allows students to earn a BS in manufacturing engineering technology and an MS in manufacturing and mechanical systems integration in five years.

## Manufacturing engineering technology, BS degree/Mechanical systems integration, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MFET-120 | Manufacturing Processes | 3 |
|  | LAS Perspective 1 | 3 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
| MCET-110, 111 | Foundations of Metals and Characterization of Metals Lab | 3 |
| MCET-150 | Engineering Communications and Tolerancing | 3 |
| PHYS-111 | LAS Perspective 5: College Physics 1 | 4 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
|  | LAS Perspective 2 | 3 |
| MATH-211 | Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| MCET-210, 211 | Foundations of Non-Metallic Materials and Characterization of Non-Metallic Materials Lab | 3 |
| MCET-221 | Strength of Materials | 4 |
| EEET-215, 216 | Circuits and Electronics and Lab | 3 |
| STAT-145 | Introduction to Statistics 1 | 3 |
| COMM-203 | Effective Technical Communications | 3 |
|  | LAS Perspective 3 | 3 |
| ENGT-299 | Co-op Preparation | 0 |
| MCET-499 | Cooperative Education | Co-op |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MCET-320 | Mechanical Dynamics with Applications | 3 |
|  | LAS Perspective 4 | 3 |
| MCET-430, 530 | Thermal Fluid Systems I, II | 6 |
| MFET-650 | Manufacturing and Mechanical Systems Fundamentals | 3 |
|  | LAS Immersion 1 | 3 |
|  | Concentration Course | 3 |
| CQAS-682 | Six Sigma Fundamentals | 3 |
| MCET-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| MCET-330 | Fluid Mechanics and Fluid Power | 3 |
| MCET-450 | Mechanical Analysis and Design I | 3 |
| MCET-400 | Experimental Methods | 3 |
| CQAS-670 | Designing Experiments for Process Improvement | 3 |
| CHMG-131 | LAS Perspective 5: General Chemistry for Engineers | 3 |
| MCET-550, 551 | Mechanical Analysis and Design II and Lab | 4 |
| MCET-535 | Thermal Fluid Systems Project | 2 |
|  | LAS Immersion 2 | 3 |
|  | Concentration Course | 3 |
| GRCS-701 | Research Methods | 3 |
| MFET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
|  | LAS Immersion 3 | 3 |
|  | Free Electives | 6 |
|  | Technical Elective | 3 |
| GRCS-702 | Principles of Research Communications | 3 |
| DECS-744 | Project Management | 3 |
|  | Concentration Course | 3 |
| ACCT-703 | Accounting for Decision Makers | 3 |
| Choose one of the following: |  | 3 |
| MFET-788 | Thesis Preparation |  |
| Program Elective |  |  |
| Choose one of th | wing: | 3 |
| Capstone Project or Thesis |  |  |
| Program Elective and Comprehensive Exam |  |  |
| Total Semester | it Hours | 152 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Part-time study

Students who are employed full time may pursue the major on a parttime basis by taking the upper-division portion of the curriculum during day or evening hours. It is recommended that students take one to two courses per semester. Students also may elect certain courses from other engineering technology majors, with department approval.

## Mechanical Engineering Technology, BS

rit.edu/cast/mmet/undergraduate-programs/bs-in-mechanical-engineeringtechnology
Martin Gordon, Director of Undergraduate Studies
(585) 475-7712, megite@rit.edu

## Program overview

Understanding how products and machinery work and how to design, manufacture, or use them is the focus of the mechanical engineering technology major. From consumer products to high-performance automobiles, aerospace systems, bioengineered devices, and energy technologies, mechanical engineering technology has an enormous influence on our society.

Students study the foundations of mechanics, materials, and energy; acquire technical skills such as computer-aided design and computeraided engineering; and learn how to test materials and design; and measure and manufacture components, assemblies, and systems. Through lab work and design projects students apply these principles and skills to the various fields (product and machine design, power generation, energy conservation, and manufacturing) of mechanical engineering technology. The required cooperative education requirement gives students valuable, applied industrial experience.

## Goals

The goal of the major is to develop well rounded engineers as lifelong learners with the ability to adapt, grow, and succeed in a highly competitive workplace. The cooperative education experience enables students to be well-prepared to step into professional positions after graduation and be immediately productive in jobs that include product development, machine design and analysis, alternative energy, manufacturing engineering, or systems engineering.

## Accreditation

The mechanical engineering technology major is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, http:// www.abet.org.

## Plan of study

Students develop skills in courses that explore the fundamentals of mechanics, mathematics, materials technology, and computer-aided engineering and design. Later, course work focuses on both mechanical design and applied thermofluid engineering. The major includes four technical electives and two free electives. These courses can be used to create a specialization in such areas as product design, machine design, alternative energy, advanced materials, thermal power, plastics processing, or manufacturing.

A substantial amount of laboratory and product work is required. Teamwork, technical writing, and computer use are emphasized throughout the curriculum, which includes the presentation of team projects that are relevant to industry.

## Concentrations

Students select a concentration in one of the following areas: product development, machine design and analysis, alternative energy, materials engineering, thermofluids engineering, or heating/ventilating/air conditioning (HVAC). Some students may wish to customize their own concentration based on their career objectives or personal interests.

## Curriculum

Mechanical engineering technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MFET-120 | Manufacturing Processes | 3 |
|  | LAS Perspective 1 | 3 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
| MCET-110 | Foundations of Metals | 2 |
| MCET-111 | Characterizations of Metals Lab | 1 |
| MCET-150 | Engineering Communications and Tolerancing | 3 |
| PHYS-111 | LAS Perspective 5: College Physics I | 4 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
|  | LAS Foundation 2: First Year Writing | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
|  | LAS Perspective 2,3 | 6 |
| MATH-211 | Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| MCET-210 | Foundations of Non-Metallic Materials | 2 |
| MCET-211 | Characterizations of Non-Metallic Materials Lab | 1 |
| MCET-221 | Strength of Materials | 4 |
| EEET-215 | Circuits and Electronics | 2 |
| EEET-216 | Circuits and Electronics Lab | 1 |
| STAT-145 | Introduction to Statistics I | 3 |
| COMM-203 | Effective Technical Communications | 3 |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MCET-320 | Mechanical Dynamics w/ Applications | 3 |
| CHEM-131 | LAS Perspective 5: General Chemistry for Engineers | 3 |
|  | LAS Perspective 4 | 3 |
| MCET-330 | Fluid Mechanics and Fluid Power | 3 |
| ENGT-299 | Career Seminar | 0 |
| MCET-499 | Cooperative Education | 0 |
| Fourth Year |  |  |
| MCET-450 | Mechanical Analysis and Design I | 3 |
| MCET-400 | Experimental Methods | 3 |
| MCET-430 | Thermal Fluid Systems I | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | Technical Electives | 6 |
| MCET-550 | Mechanical Analysis and Design II | 3 |
| MCET-551 | Mechanical Analysis and Design II Lab | 1 |
| MCET-530 | Thermal Fluid Systems II | 3 |
|  | LAS Perspective 6 | 3 |
| MCET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| MCET-499 | Cooperative Education | Co-op |
|  | Technical Electives | 6 |
|  | Free Electives | 6 |
|  | LAS Immersion 3 | 3 |
| MCET-535 | Thermal Fluid Systems Lab | 2 |
| Total Semester Credit Hours |  | 128 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

An accelerated dual degree option allows students to earn a BS in mechanical engineering technology and an MS in manufacturing and mechanical systems integration in five years.

Mechanical engineering technology, BS degree/Manufacturing and mechanical systems integration, MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
| MCET-101 | Fundamentals of Engineering | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MFET-120 | Manufacturing Processes | 3 |
|  | LAS Perspective 1 | 3 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
| MCET-110 | Foundations of Metals | 2 |
| MCET-111 | Characterization of Metals Lab | 1 |
| MCET-150 | Engineering Communication and Tolerancing | 3 |
| PHYS-111 | LAS Perspective 5: College Physics I | 4 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MCET-220 | Principles of Statics | 3 |
|  | LAS Perspective 2, 3 | 6 |
| MATH-211 | Multivariable Calculus and Differential Equations | 3 |
| PHYS-112 | College Physics II | 4 |
| MCET-210 | Foundations of Non-Metallic Materials | 2 |
| MCET-211 | Characterization of Non-Metallic Materials Lab | 1 |
| MCET-221 | Strength of Materials | 4 |
| EEET-215 | Circuits and Electronics | 2 |
| EEET-216 | Circuits and Electronics Lab | 1 |
| STAT-145 | Introduction to Statistics I | 3 |
| COMM-203 | Effective Technical Communications | 3 |
| EMGT-299 | Career Seminar | 0 |
| MCET-499 | Cooperative Education | Co-op |
| Third Year |  |  |
| STAT-146 | Introduction to Statistics II | 4 |
| MCET-320 | Mechanical Dynamics w/ Applications | 3 |
|  | LAS Perspective 4 | 3 |
| MCET-430 | Thermal Fluid Systems I | 3 |
| MFET-650 | Manufacturing and Mechanical Systems Fundamentals | 3 |
| MCET-530 | Thermal Fluid Systems II | 3 |
| ISEE-682 | Lean Six Sigma Fundamentals | 3 |
|  | Concentration Course | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 1 | 3 |
| MCET-499 | Cooperative Education | Co-op |


| Fourth Year |  |  |
| :---: | :---: | :---: |
| CHEM-131 | LAS Perspective 6: General Chemistry and Engineers | 3 |
| MCET-330 | Fluid Mechanics and Fluid Power | 3 |
| MCET-450 | Mechanical Analysis and Design I | 3 |
| MCET-400 | Experimental Methods | 3 |
| STAT-670 | Design of Experiments for Engineers and Scientists | 3 |
| MCET-550 | Mechanical Analysis and Design II | 3 |
| MCET-551 | Mechanical Analysis and Design II Lab | 1 |
| MCET-535 | Thermal Fluid Systems Lab | 2 |
|  | LAS Immersion 2 | 3 |
|  | Concentration Course | 3 |
| GRCS-701 | Research Methods | 3 |
| MCET-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| DECS-744 | Project Management | 3 |
|  | Concentration Course | 3 |
|  | Technical Electives | 6 |
|  | Free Elective | 3 |
|  | LAS Immersion 3 | 3 |
| ACCT-706 | Cost Management | 3 |
| Choose one of the following: |  | 3 |
| Technical Elective |  |  |
| MFET-788 | Thesis Preparation |  |
| Choose one of the following: |  | 3 |
| Capstone |  |  |
| Thesis |  |  |
| Technical Elective and Comprehensive Exam |  |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Part-time study

Students who are employed full time may pursue the major on a parttime basis by taking the upper-division portion of the curriculum during day or evening hours. It is recommended that students take one to two courses per semester. Students also may elect certain courses from other engineering technology majors, with department approval.

## Activities and professional organizations

Students have an opportunity to participate in regional and national design competitions such as the Society of Automotive Engineers (SAE) BAJA team, SAE Clean Snowmobile Challenge team, Formula SAE Racing and SAE Formula Electric teams. Students are also encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers (ASME), the Society of Manufacturing Engineers (SME), the Society of Woman Engineers (SWE), the National Society of Black Engineers (NSBE), Society of Hispanic Professional Engineers (SHPE), and Society of Automotive Engineers (SAE).

## Packaging Science, BS

rit.edu/cast/packaging/undergraduate-programs
Deanna Jacobs, Program Chair
(585) 475-6801, dmjipk@rit.edu

## Program overview

Packaging is increasingly related to total marketing concepts. It has even greater dependence on new developments in materials and processes. Therefore, the industry requires management personnel with creativity and a strong background in business, engineering, and science.

The packaging science major prepares students for employment in areas such as package development, sales, purchasing, structural design, production, research, and marketing. The major was developed as a result of a close and long-established relationship between the packaging industry and RIT. This multi-billion-dollar industry exhibits dynamic growth and provides employment for thousands of professionals with wide-ranging skills and expertise.

## Cooperative education

The packaging science major requires two blocks of cooperative education in addition to course work.

## Curriculum

Packaging science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar | 3 |
| MATH-171 | LAS Perspective 7A: Calculus | 3 |
| CHMG-131 | Chemistry for Engineers | 3 |
| PACK-101 | Introduction to Packaging | 1 |
| PACK-151 | Packaging Design I | 3 |
|  | First Year LAS Elective | 3 |
| MATH-172 | LAS Perspective 7B: Calculus |  |
| CHMG-123 | Chemistry of Materials | 3 |
|  | LAS Perspective 1 | 3 |
| PACK-152 | Packaging Design II | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 2, 3 | 6 |
| CHMG-201 | Introduction to Organic Polymer Technology | 3 |
| PHYS-111 | LAS Perspective 5: College Physics 1 | 4 |
| PACK-211 | Packaging Metals and Plastics | 3 |
| PACK-212 | Packaging Paper and Glass | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| PHYS-112 | College Physics II | 4 |
| PACK-311, 312 | Containers I, II | 6 |
|  | Cooperative Education | Co-op |
| Third Year |  |  |
|  | LAS Perspective 4 | 3 |
| MEDG-106 | LAS Perspective 6: Microbiology in Health and Disease | 3 |
| STAT-146 | Introduction to Statistics II | 4 |
| MKTG-230 | Principles of Marketing | 3 |
| PACK-421 | Packaging for Distribution | 3 |
|  | LAS Immersion 1 | 3 |
| PACK-430 | Packaging Regulations | 3 |
| PACK-422 | Dynamics and Protective Packaging | 3 |
| PACK-420 | Technical Communications | 3 |
|  | Packaging Elective | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
| PACK-470 | Food Packaging | 3 |
| Choose one of the following: |  | 3 |
| MAAT-358 | Estimating Practice |  |
| MAAT-541 | Digital Print Processes |  |
| MAAT-558 | Package Printing |  |
|  | Packaging Electives | 6 |
| PACK-481 | Packaging for Marketing and End Use | 3 |
| Choose one of the following: |  | 3 |
| DECS-310 | Operations Management |  |
| PACK-471 | Packaging Supply Chain |  |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Industry Advisory Board

The Industry Advisory Board contributes professional and technical expertise to the packaging science major, which strengthens and develops the curriculum to reflect the dynamics and growth of the industry.

## School of International Hospitality <br> and Service Innovation

rit.edu/hsm
The department of hospitality and tourism management offers a bachelor of science degree in international hospitality and service management.

## Faculty

Faculty members have outstanding academic credentials and industry experience. They serve in professional and trade associations at the national level, are frequent guest speakers, and consult in their fields of expertise: travel, food marketing, hospitality operations, nutrition, human resources, and health care, to name a few.

## Industry Advisory board

An Industry Advisory Board comprised of local, regional and national leaders contributes professional and technical expertise to undergraduate programs to strengthen their development.

## International programs in Croatia

RIT Croatia, located in Dubrovnik and Zagreb, Republic of Croatia, enrolls approximately 600 undergraduate students. The college offers associate of applied science and bachelor of science degrees in international hospitality and service management. Both campuses provide an exchange opportunity for Rochester campus students who may wish to spend a semester studying abroad. Classes are taught by a combination of RIT faculty members and European instructors.

## Facilities

Commercial equipment and laboratories enhance the educational experience of all students in our hospitality program. Henry's, a full-service, licensed restaurant, provides an excellent training environment for students, who manage the restaurant during regular dining hours, special luncheons, and dinners. The food lab is commercially equipped for developing, testing, and evaluating new food products and equipment.

Information management is a critical element in the service industry. A computer laboratory and training studio allow students to prepare for the technology they will encounter on the job. Database, spreadsheet, and numerous other types of software are used in conjunction with classroom activities.

## International Hospitality and Service Management, BS

rit.edu/cast/htm/undergraduate-programs
Karthik Namasavayam, Chair
(585) 475-2353

## Program overview

The international hospitality and service management major prepares students for a wide variety of careers in food and beverage management, hotel/resort management, travel management, food marketing and distribution, and event management.

The major offers concentrations that provide broad-based views of the service management, hospitality, and tourism disciplines through a common core of courses, which promote an understanding of the interrelationships among the food, lodging, travel, and event management industries based on the underlying concept of quality service management. This approach allows students to retain the flexibility to switch concentrations or jobs if their career goals change. All of these diverse and specialized fields require creative problem solving, technical knowledge, communication skills, and leadership. Students can customize the degree program with a variety of electives, concentrations, and minors.

RIT's international hospitality and service management major has been recognized by Forbes, Travel Weekly, Nation's Restaurant News, and Corporate Travel magazines. Our alumni come from around the United States and from more than 38 countries.

## Plan of study

The major is rigorous and challenging, providing opportunities for students to develop their full potential in a managerial environment. The curriculum is integrated, encompassing a broad base of competencies defined in partnership with faculty, students, and industry. Students take courses that build a strong concept of the industry as a whole by studying global hospitality, accounting, marketing, finance, economics, quality assessment, leadership, human resource development, food preparation, food production, food and beverage management, hotel/resort operations and development, event and venue management, and tourismrelated topics. Students select one concentration to develop a specialty in a particular area of hospitality and service management. In addition to established concentrations, students may create a custom concentration with approval. Students who enter as freshmen may also use their electives to select a second concentration or fulfill a minor with department approval. International experiences are offered for study abroad via our own program at RIT Croatia, and through short-term faculty-led international experiences in locations such as Dubai, Italy, or other countries.

## Concentrations

Students choose one concentration to further explore their career interests and goals. Some students may opt to create a customized concentration based upon their career objectives or personal interests.

## Entertainment and event management

The entertainment and event management concentration extends the hospitality educational experience to the various venues where special events, meetings, and conventions take place, such as country clubs, marinas, sports stadiums, convention centers, and casinos. Designing dynamic events and providing client satisfaction while managing risk and finances are critical skills developed through the curriculum. Students organize and execute the annual Puttin' on the RITz, a black-tie dinner event, and are often offered opportunities to participate in off-campus special events.

## Food and beverage management

A wide range of knowledge is needed to manage the daily operations of restaurants (from full-service to cafeteria, quick-service, and specialty chain operations); hotel fine dining and catering; clubs; and contract services for business, manufacturing, recreation and sports centers, education, health care, retail stores, government agencies, and food vending.

The food and beverage management concentration prepares students for management positions through a lab experience in Henry's, a fullservice, beverage-licensed restaurant located on campus and open to the public. Students learn essential principles and procedures for quality in food production and presentation, sanitation, nutrition, menu planning and merchandising, purchasing, innovative food product development, cost control, and service management. In addition, students develop competencies in problem solving and decision making through individual and team-based class projects, computerized exercises, electives, special events, and industry-related activities. Students may become certified in ServSafe Food Management or and ServSafe Alcohol Management.

A student chapter of the New York State Restaurant Association, in combination with the Student Hospitality Association, fosters the exchange of ideas between industry professionals and students. The organization supports professional growth in organizational and social skills, and offers opportunities for students to network with professionals to establish industry contacts. Students in their junior year are encouraged to attend the annual National Restaurant Association Show in Chicago.

## International hotel and resort management

This concentration prepares students for the management and operation of hotel, resort, leisure, and tourism-related enterprises. Students understand the physical characteristics of specific properties and gain the business expertise to manage and market them. Students use various simulations, technologies, and service strategies in order to familiarize themselves with the industry's best practices. Students are encouraged to attend the International Hotel and Motel Show in New York each November.

## International food marketing and distribution

This concentration prepares students for industry positions in food marketing, sales, and distribution. In particular, they gain an understanding of a variety of issues, including food service operations and food marketing, food processing and safety, product development and distribution, and packaging. Students gain an understanding of both the food service and the food manufacturing environments.

## Cooperative education

The major requires student to complete a combined 1,200 hours of practical cooperative education experience with classroom theory. In co-op placements, students are introduced to hands-on learning in the hospitality industry. Co-op is usually completed in the summer following the freshman and sophomore years and during any semester in the junior and senior years, except the final semester of the senior year, when students are required to be in residence on campus. Co-op is planned, monitored, and evaluated by the student, the co-op counselor, the faculty adviser, and the employing firm.

## Curriculum

International hospitality and service management, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| HSPT-181 | Principles of Food Hotel and Tourism Operations | 3 |
|  | Concentration Courses | 6 |


| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year LAS Elective | 3 |
| HSPT-284 | Hospitality Industry Sales and Marketing | 3 |
| MATH-101 | LAS Perspective 7A: College Algebra | 3 |
| ECON-101 | LAS Perspective 4: Principles of Microeconomics | 3 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| ACSC-010 | Year One: College Experience | 0 |
| HSPT-499 | Cooperative Education | Co-op |
| Second Year |  |  |
| ACCT-110 | Financial Accounting | 3 |
| HSPT-281 | Service Management in a Global Economy | 3 |
|  | Program Elective | 3 |
|  | LAS Perspective 3, 5 | 6 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | Concentration Course | 3 |
|  | LAS Electives | 9 |
| HSPT-499 | Cooperative Education | Co-op |
| Third Year |  |  |
| HSPT-384 | Financial Concepts For Hospitality Managers | 3 |
| HSPT-381 | Technology in Service Systems | 3 |
|  | Program Elective | 3 |
|  | Concentration Courses | 6 |
|  | LAS Immersion 1, 2 | 6 |
| HRDE-386 | Human Resources Development | 3 |
| HSPT-383 | Assessing and Improving Service Quality | 3 |
|  | LAS Elective | 3 |
| HSPT-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| HSPT-481 | Leadership Innovation in Service Industries | 3 |
|  | LAS Immersion 3 | 3 |
|  | Free Electives | 6 |
|  | LAS Electives | 9 |
| HSPT-490 | Senior Project (WI) | 3 |
|  | LAS Perspective 6 | 3 |
|  | Program Elective | 3 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Concentrations

Entertainment and event management

| HSPT-244 | Meeting and Event Management |
| :--- | :--- |
| HSPT-246 | Casino Management |
| HSPT-248 | Project Management for Events |
| HSPT-345 | Venue Management |
| Choose one of the following: |  |
| HSPT-234 | Negotiation and Conflict Resolution |
| HSPT-336 | International Risk Assessment and Hospitality Law |

Food and beverage management

| FOOD-121 | Principles of Food Production |
| :--- | :--- |
| FOOD-123 | Sanitation and Safety |
| FOOD-223 | Food and Beverage Management |
| FOOD-224 | Serving Alcohol Safely |
| FOOD-325 | Restaurant Operations |

## International food marketing and distribution

| FOOD-123 | Sanitation and Safety |
| :--- | :--- |
| FOOD-151 | International Food Distribution |
| FOOD-153 | Foods of the World |
| FOOD-251 | Commodity Market Analysis |
| FOOD-425 | Food Innovation and Development |
| PACK-301 | Food Processing, Quality and Integrity |

## International hotel and resort management

| HSPT-131 | Hotel Management Operations |
| :--- | :--- |
| HSPT-232 | Hospitality Real Estate and Facilities Management |
| HSPT-325 | International Destinations |
| HSPT-334 | International Resort Management |
| Choose one of the following: |  |
| HSPT-234 | Negotiation and Conflict Resolution |
| HSPT-336 | International Risk Assessment and Hospitality Law |

## Applied Technical Leadership, BS

## Linda Underhill, Service Systems Department Chair <br> (585) 475-7359, Imuism@rit.edu

## Program overview

The bachelor of science degree in applied technical leadership is aimed at experienced, working adult learners who have completed a technical associate degree and have work experience in their field of study. The major is focused on enhancing career advancement options for those working in a variety of fields including, but not limited to, technical/technology, public service (law enforcement, engineering technologies, fire service, etc.), and medical (CPA, LPN). This degree is only available online, enabling students to balance the demands of work and family while they complete a bachelor's degree.

## Plan of study

The major is an online upper-level degree, with students entering the program after having already completed an associate degree. The curriculum includes required courses from the departments of service systems and civil engineering technology/environmental management and safety. Additional courses in business and liberal arts are provided by Saunders College of Business, the School of Individualized Study, and the College of Liberal Arts. Students complete general education requirements as part of the bachelor of science degree and, depending on the amount of transfer credit accepted, may complete addition professional electives as needed.

## Curriculum

Applied technical leadership*, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year and Second Yeart

| Third Year |  |  |
| :--- | :--- | ---: |
| HRDE-350 | Leadership Development | 3 |
| HRDE-355 | Contemporary Problems in Applied Technical Leadership | 3 |
| COMM-203 | Effective Technical Communication | 3 |
| ACCT-110 | Financial Accounting | 3 |
| HRDE-386 | Human Resource Development | 3 |
| PUBL-101 | Foundations of Public Policy | 3 |
|  | Free Elective | 3 |
|  | LAS Elective | 6 |
|  | LAS Immersion 1,2 | 3 |
| Fourth Year |  | 3 |
| HRDE-400 | Crisis Intervention in Applied Technical Leadership | 3 |
| BUSI-409 | Core Concepts of Project Management | 3 |
| ESRQ-420 | Service Quality | 3 |
| HRDE-480 | Environmental Health and Safety Law | 3 |
|  | Senior Project (WI) | 3 |
|  | LAS Immersion 3 | 9 |
|  | Free Elective | 120 |

## Total Semester Credit Hours

## WI) Refers to a writing intensive course within the major.

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* The applied technical leadership major is an upper-level program in which students enter after completing an associate degree. This chart represents the typical sequence of courses for the final two years. Students, upon acceptance and review of their transfer credit, should meet with an academic adviser to create a plan of study that fulfills all program requirements.
† Students are required to complete an associate degree before applying for admission to the applied technical leadership major. The associate degree takes the place of the first two years of the program.


## Additional information

## Admission Requirements

To be considered for admission to the BS in applied technical leadership, candidates must fulfill the following requirements:

- Hold an associate degree from an accredited college or university.
- Have a GPA of 2.5 or higher in a technical/technology, public services, medical, or related career field. (The major is not open to students who have an earned associate degree in business and the content of any electives in the program must be non-business content.)
- Have completed required prerequisite course work (e.g., at least one lab science course, a course in mathematics and/or statistics and related liberal arts courses) before admission. Students missing required prerequisite courses must complete prerequisite course work prior to admission. This may be accomplished (with appropriate advising approvals) at any accredited community college or university, or at RIT on a non-matriculated basis. Grades must be at the C level or higher and an overall GPA of at least 2.5 is expected for these pre-requisite courses.
- Submit a current resume.
- Participate in a faculty interview (as needed).
- Applicants must currently be employed in a technical/technology, public services, medical or related career field for at least three years, or have a minimum of three years' experience in their career field within the last five years.
International applicants: This major is conducted entirely online and all instruction is in English. No courses are offered in a traditional classroom format on the RIT campus and therefore the major does not meet the typical visa and course registration requirements for international students studying in the United States.

International students outside the United States:

- All admission requirements must be met.
- As per RIT policy D2, ‘The U.S. Government expects international students to prove competency in the English language prior to their acceptance to an American college or university. In keeping with this expectation, students whose native language is not English and who's secondary or higher education was completed in a non-native English speaking country must take a test of English language proficiency. Students must achieve the following minimum scores prior to consideration for admission: 570 paper-based or 88 internet-based on the Test of English as a Foreign Language (TOEFL), or 6.5 on the International English Language Testing System (IELTS) or 62 on the Pearson Test of English-Academic.'
- Note that TOEFL, IELTS, or Pearson provide an overall score. The academic department will review individual scores received in the test sections to determine if your language skills in each area are strong enough for admission.


## Transfer credit

Entering students are required to have earned an associate degree in a technical field. Transfer credit in general education, math, lab science(s), and technical studies from the associate degree is evaluated on a course-by-course basis. It is anticipated that most students will enter with approximately third-year status depending on grades and courses taken in their associate degree. Once transfer credit has been applied, remaining course work is completed online via RIT. A bachelor of science degree requires 120 semester hours. In the applied technical leadership program, for example, a student who transfers with 60 semester hours from their associate degree would need to complete 60 semester credit hours at RIT to earn their degree.

## Department of Military Science

## Reserve Officers'Training Corps (ROTC)—ARMY

## rit.edu/armyrotc <br> LTC Christopher Otero, Professor of Military Science (585) 475-5545, cdoarm@rit.edu

The Army Reserve Officers' Training Corps prepares students for leadership in a civilian or military career. ROTC is a campus-based program that consists of classroom instruction, physical training, and practicalapplication laboratories designed to enhance organizational leadership, decision making, and problem-solving skills.

ROTC classes are open to all students with the approval of the professor of military science. No military obligation is required unless a student has received an ROTC scholarship or contract. Upon graduation, and the successful completion of Army ROTC, Cadets are commissioned as second lieutenants and may serve in the active Army, the Army Reserve, or the Army National Guard. Veterans and members of the Army Reserve or National Guard may be eligible for advanced placement in the program.

Those who enroll in Army ROTC become cadets in a dynamic and challenging program. Throughout the year, the program offers a variety of fun activities that reinforce leadership skills, teamwork, and confidence. Cadets are able to participate in events unique to the military such as Dining Out, a military dinner steeped in tradition. They also have the opportunity to participate in high-adventure training weekends on U.S. military installations, where they learn skills such as navigating with a map and compass, rappelling as part of mountaineering instruction, or completing a high ropes or confidence course. Students may join the Ranger Challenge Team, an ROTC Inter-collegiate competition that competes in military skills and physical stamina competitions with other colleges throughout the Northeast. Army ROTC has a marksmanship team and the Pershing Rifle organization. ROTC members also conduct community activities and provide color guard and drill teams to campus, community, and athletic events.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants. Army ROTC awards multi-year scholarships to assist in covering tuition, fees, books, and housing. A four-year ROTC scholarship currently covers tuition and fees, and room and board. Visit the Cadet Command website for additional information. High school students and enlisted soldiers may apply for Army ROTC scholarships by using the online application process on the Army ROTC website (armyrotc.com). Current college students can apply for campus-based scholarships through the ROTC department.

## Basic course

The Army ROTC program is a four-year program divided into two components: the Basic Course and the Advanced Course. The Basic Course occurs during the first two years of the program (normally the freshman and sophomore years) and emphasizes the development of academic and life skills to increase students' potential as future army officers or leaders in tomorrow's dynamic business environment. During the Basic Course, students learn time management and study skills, basic military organization, military customs and courtesies, small-unit leadership, and problem solving. Students register for a class (and its lab requirement)
and Army Conditioning Drills, which fulfills the wellness education credit while meeting the ROTC physical fitness requirements. Students may enroll in Basic Course classes at any time during their first two years of college. Upon completion of the Basic Course, eligible students can progress to the Advanced Course. Eligible Basic Course cadets also can compete to attend off-campus army training opportunities such as Army Airborne School or Air Assault School.

## Advanced course

The Advanced Course is for students entering their last two academic years of college (co-op excluded). The Advanced Course is similar to the Basic Course in organization and style, but its focus is more heavily on organizational leadership, decision-making, and professional skills. Although instruction in military tactics is an integral part of the Advanced Course, it is designed to serve as a vehicle for enabling cadets to apply the full range of leadership skills they are learning in the classroom. Planning, organizing, and leading others through various training activities is emphasized. Upon entering their last year in the program, Advanced Course cadets are ranked against their peers in academics, performance at the Cadet Leaders Course (the required summer program after year three), and general on-campus performance. Based on these factors, the Army makes duty placement and job selections for each cadet. Advanced Course cadets also have the opportunity to participate in a variety of off-campus Army training opportunities such as Army Airborne School, Air Assault School, Northern Warfare, and Mountain Warfare training courses. After completing Advanced Camp, cadets also may participate in the Cadet Troop Leadership Training Program, a paid, practical leadership experience where they are assigned for up to three weeks to serve as leaders in an active army unit in the United States or elsewhere around the world.

## Cadet Inital Entry Training (CIET)

The Leader's Training Course is an option for students who are considering the Army ROTC program, but have not completed the Basic Course requirements and are entering their last two academic years (co-op excluded). CIET is a 28 -day course held at Fort Knox, Kentucky, where students obtain the necessary skills and training to qualify for entry into the last two years of the Army ROTC program. Students learn basic military skills that emphasize leadership development. Those who successfully complete this course are offered the opportunity to formally contract into the Advanced Course for their last two years of college (coop excluded). Interested students should contact the Army ROTC office as soon as possible, but no later than the beginning of spring semester.

## Veterans

Qualified students with prior military service and members of the Army Reserve or National Guard who have attended Basic Training may enroll directly into the Advanced Course. However, they must have two years of academic work remaining. Those who have more than two years of academic work remaining, but wish to participate in the Army ROTC program, are encouraged to enroll in any of the Basic Course classes. Interested students should visit the department for more information.

## Cadet Leaders Course (CLC)

The Advanced Course includes attendance at the ROTC Cadet Summer Training, at Fort Knox, Kentucky, which normally occurs in the summer between the third and fourth years of college. During this course, Army ROTC cadets from across the nation gather for five weeks to demonstrate their leadership skills and potential. They are repeatedly placed in leadership positions and face problem-solving challenges that bring together
all of the classroom and practical instruction they received on campus. Participants might be assigned to lead a 120 person cadet company as they prepare for training or to plan and lead a 10 person squad on a tactical night patrol. Regardless of the task, participants have the opportunity to demonstrate their leadership potential to their army evaluators. Attendees' travel expenses are paid for and students earn a salary for participating in this challenging and greatly rewarding experience.

## Army ROTC

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| ARMY-101 | Introduction to Leadership | 2 |
| ARMY-102 | Introduction to Tactical Leadership | 2 |
| ARMY-201 | Innovative Team Leadership | 2 |
| ARMY-202 | Foundations of Tactical Leadership | 2 |
| ARMY-301 | Adaptive Team Leadership | 2 |
| ARMY-302 | Applied Team Leadership | 2 |
| ARMY-401 | Adaptive Team Leadership II | 2 |
| ARMY-402 | Leadership in a Complex World | 2 |
| ARMY-340 | Army Leadership Lab | 1 |
| WMIL-018 | Army Conditioning Drills | 0 |

Please note: Army Leadership Lab (ARMY-340), which is conducted on a weekly basis for two hours, and Army Conditioning Drills (WMIL-018) are an integral part of each course listed in the course chart.

## Department of Aerospace Studies-Air Force

## Reserve Officer's Training Corps (ROTC)Air Force

## rit.edu/afrotc

Lt Col Ann M. Gallucci, Professor of Aerospace Studies
Participation in Air Force Reserve Officers' Training Corps provides students a firsthand view of the Air Force while attending college. The program allows students to join the cadet corps and participate in varied activities, including classroom academics, leadership training, base visits, summer professional development, and physical fitness training.

Air Force ROTC classes are open to all students with the approval of the professor of aerospace studies. No military obligation is required unless a student has activated an AFROTC scholarship or contract. At graduation, with the successful completion of AFROTC, cadets are commissioned as second lieutenants and serve somewhere in the world, as full-time in the active Air Force. Veterans and members of the Air Force Reserve or Air National Guard may be eligible for advanced placement in the program.

## Characteristics

The department of aerospace studies curriculum is compatible with both four- and five-year cooperative education plans offered by most of the university's academic programs. The curriculum will develop well-rounded individuals fully prepared to enter into their chosen career fields and become future leaders in the armed forces and society. ROTC classes are open to all students with the permission of the professor of aerospace studies.

## Four-year program

The program has three distinct parts: the General Military Course, Summer Field Training, and the Professional Officer Course.

The General Military Course is for students entering the program directly from high school but not later than their sophomore, or second
year of college. As freshmen and sophomores, students will study Air Force Doctrine, Mission and Organization, the nature of conflict, and the development and evolution of air and space power.

Every cadet must complete a four-week Summer Field Training Course, offered during the summer between their sophomore and junior years. The field training curriculum includes leadership training, drill and ceremony (marching and parades), a confidence course, tactical skills and small-unit operations, and physical fitness training. Field training evaluates a student's leadership potential and qualifies the cadet for entry into the Professional Officer Course and a contract with the U.S. Air Force for a potential commission as a second lieutenant upon graduation.
The Professional Officer Course is an advanced aerospace studies curriculum conducted during their junior (third and or fourth) and senior (last) years. This curriculum prepares cadets for entry into the Air Force as second lieutenants by teaching them the fundamentals of leadership and management, ethics, staff planning and coordination, national security affairs, foreign policy and preparation for entry into active duty.

Leadership and management experience is gained through a series of leadership laboratories, conducted in both fall and spring semesters throughout their four- and or five-year college curricula. The lab is managed by the cadet corps staff with a detachment officer overseeing all activities. Practical command and staff leadership experience, drill and ceremonies, customs and courtesies, group leadership problem solving, and career decision making are all part of the curriculum.

## Other programs

Several other programs are offered to cadets. During the academic year cadets have the opportunity to attend Air Force base visits and participate in extracurricular activities such as the drill team, honor guard, or become a member of the Arnold Air Society or Silver Wings (both are community service organizations). Throughout the summer, cadets may also volunteer to attend many professional development programs such as free-fall parachute school, Space Orientation, National Reconnaissance office internships, Advanced Cyber Experience, travel to foreign countries for language immersion with project Global Officer, or shadow agents with the Air Force Office of Special Investigations.

## Wellness education requirement

The physical training course satisfies RIT's Wellness Education requirement. Students must be enrolled in AFROTC to participate in the program.

## Qualification and selection procedure

To qualify for AFROTC, students must, complete a physical exam and a fitness test, as well as maintain a high moral and ethical standard (no drug use or excessive civil involvements). Cadets must pass the Air Force Officer Qualifying Test before the end of their third year. Please contact the AFROTC office at (585) 475-5197 for complete details.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants. AFROTC offers multi-year scholarships predominantly in technical fields with some limited opportunity for positions in non-technical areas. Competition is highly selective, and the needs of the Air Force dictate which scholarships are offered yearly to college students. High school students apply online at afrotc.com for scholarships through a national board process. Every scholarship cadet and all Professional Officer Course cadets receive a tax-free stipend between \$250-\$400 monthly as well as $\$ 600$ annually for textbooks.

## Minor in military studies and leadership

Students completing the entire four-year AFROTC program may earn a minor in military studies and leadership. Refer to the Minors section of this bulletin for more information.

## Air Force ROTC, typical course sequence*

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| AERO-101, 102 | Air Force Today I, II |  |
| WMIL-006 | Air Force Leadership Lab $\dagger$ | 0 |
| WMIL-001 | Air Force Physical Training $\ddagger$ | 0 |
| Second Year |  |  |
| AERO-201, 202 | History of Air Power I, II | 1 |
| WMIL-006 | Air Force Leadership Lab $\dagger$ | 0 |
| WMIL-001 | Air Force Physical Training $\ddagger$ | 0 |
| Third Year |  |  |
| AERO-301, 302 | Air Force Leadership and Management | 3 |
| WMIL-006 | Air Force Leadership Labt | 0 |
| WMIL-001 | Air Force Physical Training $\ddagger$ | 0 |
| Fourth Year |  |  |
| AERO-401, 402 | National Security Affairs | 3 |
| WMIL-006 | Air Force Leadership Lab $\dagger$ | 0 |
| WMIL-001 | Air Force Physical Training $\ddagger$ | 0 |

NOTE: This course sequence chart is based on a typical four-year major, but junior-and senior-level academic courses can be taken in years three and five or years four and five. Five-year AFROTC students enrolled at RIT, but not taking Air Force junior- or senior-level courses, m
Leadership Lab (WMIL-006) and Air Force Physical Training (WMIL-001).
† Air Force Leadership Lab (WMIL-006) is conducted on a weekly basis for two hours.
$\ddagger$ Air Force Physical Training (WMIL-001) is an integral part of each year and must be completed to remain in the ROTC program.
S. Manian Ramkumar, BE, PSG, College of Technology-Bharathiar (India); ME, Rochester Institute of Technology; Ph.D., State University of New York at BinghamtonInterim Dean

Linda A. Tolan, BS, State University College at Geneseo; MS, Rochester Institute of Technology; Ph.D., Andrews University; NCC-Senior Associate Dean, Professor

Sean T. Bennett, BS, Clarkson University; M.Ed., State University College at Brockport; Ed.M., Harvard University; Ed.D., University of PennsylvaniaAssistant Dean for Undergraduate Academic Affairs

## School of Engineering Technology

Civil Engineering Technology
Amanda Bao, BS, MS, Tianjin
University (China); Ph.D., University of Colorado at BoulderAssistant Professor

Harry G. Cooke, BS, Northwestern University; MSCE, University of Texas; Ph.D., Virginia Polytechnic Institute; PE -Associate Professor
G. Todd Dunn, BS, Dartmouth College; MSCE, University of California; PE—Department Chair, Associate Professor

Robert H. Easton, BS, United States Military Academy; MSCE, Iowa State University; PEProfessor Emeritus

Abdullah Faruque, B.Sc., Bangladesh University of Engineering and Technology (India); M.A.Sc., Ph.D., University of Windsor (Canada); PE—Associate Professor

Frank Hanna, B.Sc., M.Sc., University of Baghdad (Iraq); Ph.D., University of Wales College of Cardiff (United Kingdom) Associate Professor

William C. Larsen, BS, MSCE, Dartmouth College; PE—Professor Emeritus

Robert E. McGrath Jr., BCE, Rensselaer Polytechnic Institute; MSCE, Syracuse University; PEProfessor Emeritus

Mark Piterman, MCE, Odessa Marine Engineers Institute (Ukraine)-Professor Emeritus

Rizk Sinada, BS, MS, Rochester Institute of Technology-Lecturer
Maureen S. Valentine, BSCE, Tufts University; MECE, Virginia Polytechnic Institute; PE—Professor
Scott B. Wolcott, BS, MS, State University of New York at Buffalo; PE-Undergraduate Program Coordinator; Professor

Teresa Wolcott, BS, State University of New York at Buffalo; MS, Rochester Institute of Technology-Senior Lecturer

## Environmental Sustainability, Health and Safety

J. Grant Esler, BS, Boston

University; MPH, University of Michigan; CIH, CPE, CSP-Lecturer

Josh Goldowitz, BS, State
University of New York at Binghamton; MS, University of Arizona-Undergraduate Program Coordinator-Professor

Lisa Greenwood, BS, Rochester Institute of Technology; MS, University of New Haven-Lecturer

John Morelli, BS, Syracuse University; MS, Ph.D., State University of New York College of Environmental Science and Forestry; PE—Professor Emeritus

Joseph M. Rosenbeck, MS, BS, Central Missouri State University; CSP—Associate Department Chair-Professor

Jennifer L. Schneider, BA, Roberts Wesleyan College; MS, University of Rochester; Ph.D., University of Massachusetts; CIH-Eugene H. Fram Chair in Applied Critical Thinking; Professor
Gretchen L. Wainwright, BS, MS, Rensselaer Polytechnic Institute; PE-Lecturer

## Facility Management

Jeffrey Rogers, BS, Virginia Polytechnic Institute and State University; MS, University of Florida; ME, Old Dominion University; Ph.D., University of Virginia; PE, CPE-Associate Professor

## Electrical, Computer, and Telecommunications Engineering Technology

w. David Baker, BSEE, Monmouth College; MS, Rochester Institute of Technology-Professor Emeritus
Miguel Bazdresch, BE, Western Institute of Technology and Higher Studies (Mexico); ME, National Polytechnic Institute (Mexico); Ph.D., National Higher School of Telecommunications (France)

Jeanne Christman, BS, Clarkson University; MS, University of Texas at Dallas-Associate Department Chair; Associate Professor

Richard C. Cliver, BS, Rochester Institute of Technology; MSEE, University of Rochester-Associate Professor

Steven A. Ciccarelli, BS, MS, Rochester Institute of TechnologyElectrical Engineering Technology Program Chair; Associate Professor

Thomas Dingman, BS, MS,
Rochester Institute of TechnologyProfessor Emeritus

Michael Eastman, BS, MS, Rochester Institute of TechnologyDepartment Chair; Professor

Greg Guarino, BS, MS, Rochester Institute of Technology; Ph.D., University of Rochester-Lecturer
Clark Hochgraf, BS, State University of New York at Buffalo; Ph.D., University of Wisconsin at Madison-Associate Professor

Mark J. Indelicato, BEEE, Manhattan College; MS, Polytechnic University-Associate Professor

William P. Johnson, BA, Kings College; BSEE, MSEE, Syracuse University; JD, University at Buffalo Law School—Professor

Sungyoung Kim, BE, Sogang University (South Korea); MM, Ph.D., McGill University (Canada)

Warren L. G. Koontz, BSEE, University of Maryland; MSEE, Massachusetts Institute of Technology; Ph.D., Purdue University-Professor Emeritus

David Krispinsky, BE, MSE, Youngstown State UniversityAssociate Professor Emeritus

Eldred L. Majors, BS, Rochester Institute of Technology-Lecturer

Drew Maywar, BS, MS, Ph.D., University of Rochester-Associate Professor

Yossi Nygate, MS, Ph.D.,
Wiezmann Institute of Science (Israel); Ph.D., Case Western Reserve University-Associate Professor

David M. Orlicki, BS, Michigan State University; MS, Rochester Institute of Technology; Ph.D., Massachusetts Institute of Technology-Senior Lecturer

Carol Richardson, BSEE,
University of Wyoming; MSEE, Union College-Professor Emerita

Jacob Schanker, BEE, MEE, City College of the City University of New York, PE-Lecturer

George H. Zion, BS, MS, Rochester Institute of Technology-Professor

## Manufacturing and Mechanical Engineering Technology

Ronald F. Amberger, BME, Rensselaer Polytechnic Institute; ME, Pennsylvania State University; PE-Professor Emeritus

Martin Anselm, BS, State University College at Geneseo; MS, Clarkson University; Ph.D., Binghamton University-Assistant Professor

Beth A. Carle, BSE, University of Pittsburgh; MS, Ph.D., University of Illinois; EIT Professional Certification-Associate Professor

Elizabeth M. Dell, BSME, General Motors Institute; MS, University of Michigan-Associate Professor

Robert D. Garrick, BSEE, GMI
Engineering and Management Institute; MBA, Rochester Institute of Technology; MS, University of Rochester; Ph.D., University of South Carolina-Acting Department Chair; Professor

Martin Gordon, BSME, MSME, MBA, State University of New York at Buffalo; PE-Undergraduate Program Director; Professor

Spencer H. Kim, BS, Hanyang University (South Korea); MS, Ph.D., University of IllinoisAssociate Professor

James H. Lee, BS, California Polytechnic State University; MS, Ph.D., Texas A\&M; PE—Graduate Program Director; Associate Professor

William Leonard, AAS, State University College at Canton; BS, MS, Rochester Institute of Technology-Associate Professor

Christopher Lewis, BS, Pennsylvania College of Technology; MS, University of Texas; Ph.D., University of Rochester-Assistant Professor

Ti-Lin Liu, MS, Tsinghua University (China)—Associate Professor

Carl A. Lundgren, BS, Rensselaer Polytechnic Institute; MBA, University of Rochester-Professor Emeritus

Michael P. Medlar, BS,
MS, Rochester Institute of Technology-Lecturer

Robert A. Merrill, BS, Clarkson College; MS, Northeastern University; PE—Professor Emeritus

Mark W. Olles, AAS, Monroe Community College; BS, Rochester Institute of Technology; Ph.D., University of Tennessee-Assistant Professor

Michael J. Parthum Sr., BS, MS, Rochester Institute of TechnologyAssociate Professor

Alan D. Raisanen, BS, Drake University; Ph.D., University of Minnesota-Assistant Professor
S. Manian Ramkumar, BE, PSG, College of Technology-Bharathiar (India); ME, Rochester Institute of Technology; Ph.D., State University of New York at BinghamtonDepartment Chair, Professor

Michael J. Slifka, AAS, Niagara County Community College; BS, MS, Rochester Institute of Technology-Senior Lecturer

John A. Stratton, BS, Rochester Institute of Technology; MS, Rensselaer Polytechnic Institute; PE-Professor Emeritus

Larry A. Villasmil, BSME,
Universidad del Tachira (Venezuela); MSME, Ph.D., Texas A\&M University—Assistant Professor

## Packaging Science

Carlos A. Diaz-Acosta, BS, MS, Universidad de los Andes (Colombia); Ph.D., Michigan State University-Assistant Professor

Changfeng Ge, BSME, MSME, Tongji University (China); Ph.D., University of Dortmund (Germany)—Professor
Daniel L. Goodwin, BS, MS, Ph.D., Michigan State UniversityProfessor Emeritus

Deanna M. Jacobs, BS, State University College at Plattsburgh; MA, State University College at Geneseo; MS, Rochester Institute of Technology-Undergraduate Program Coordinator; Professor

Daniel P. Johnson, BS, MS, Rochester Institute of TechnologyDepartment Chair; Professor
Thomas Kausch, BS, MS, Rochester Institute of Technology-Instructor

Karen L. Proctor, BS, Michigan State University; MBA, Rochester Institute of Technology-Professor

## School of International Hospitality and Service Innovation

## Department of Hospitality and Tourism Management

David H. Crumb, BS, Florida State University; MBA, Michigan State University-Professor Emeritus

Edward Ganster, BS, MS Rochester Institute of Technology-Lecturer

Jennifer DiGaetano, BS,
MS, Rochester Institute of Technology-Lecturer

Lorraine E. Hems, BS, Nazareth College of Rochester; MS, Rochester Institute of Technology; CS, CWE-Lecturer
Jerrie (Yu-chin) Hsieh, BS, National Taiwan Normal University, Taiwan; MS, Ph.D., Purdue University—Associate Professor

Muhammet Kesgin, BSc, MSc, Akdeniz University (Turkey); Ph.D., Coventry University, (United Kingdom)—Assistant Professor

Richard M. Lagiewski, BS, MS, Rochester Institute of TechnologySenior Lecturer

Carol B. Whitlock, RD,
BS, MS, Pennsylvania State University; Ph.D., University of Massachusetts-Department Chair; Professor, CDN, CFS

## Department of Service Systems

James Jacobs Jr., BA, Purdue University; MS, Troy State University; Ph.D., State University of New York at Buffalo-Senior Lecturer

Linda Underhill, RD, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Department Chair; Associate Professor

## Reserve Officer's Training Corps

## Army ROTC

Lt. Col. Dizzy B. Murphy, BS, Carnegie Mellon University; MS, University of Phoenix—Professor

SSgt Shalayne Dulan, BA,
University of Central Oklahoma-Non-Commissioned Officer-in-Charge, Administration Management

Capt. Zachariah D. Gonyea, BA
Niagara University; MA, American Military University-Assistant Professor

MSgt Veronica Williams, AA, Community College of the Air Force-Non-Commissioned Officer-in-Charge
Donald Powell, BA, State University College at Geneseo; MA, State University College at Brockport-Recruiting Operations Officer; Assistant Professor

## Air Force ROTC

Maj. Rodney Clark, BS, Texas State University; MA, American Military University-Assistant Professor

Capt. Marc Janvier, BA, St. Martin's University; MS, University of Texas El Paso-Assistant Professor

Master Sgt. Charles NelsonSenior Military Science Instructor

Lt. Col. Christopher Otero, BS,
Mercer University; MS, Central
Michigan University—Professor

## Distinguished Professorships

## Russell C. McCarthy

 Professorship in Engineering
## Technology

Established: 1979
Donor: The Russell C. McCarthy endowed chair was created in 1980 by a group of six donors to augment the creation of the RIT School of Applied Industrial Studies. The endowed chair now resides in the College of Applied Science and Technology and reports to the college dean.
Purpose: To build relationships between the college and industrial and professional communities worldwide that share the college's interests, goals, and values. Held by: Open

# Saunders College of Business 

Jacqueline Reynolds Mozrall, Dean<br>saunders.rit.edu

Programs of study

| Bachelor of Science in: | Page |
| :--- | ---: |
| Business Administration-Accounting | 33 |
| Business Administration-Finance | 33 |
| Business Administration-International Business | 34 |
| Business Administration-Management | 35 |
| Business Administration-Marketing | 35 |
| Management Information Systems | 36 |
| New Media Marketing | 36 |

Success in today's business environment requires leadership and management attuned to rapid changes in technology and increasingly vigorous global competition. Saunders College of Business offers a portfolio of comprehensive, rigorous programs of study. Our curriculum produces graduates who are able to convert managerial learning into pragmatic business applications.

To achieve these educational aims, Saunders College offers academic programs comprised of four components: business core courses, a program of study, required liberal arts courses, and cooperative education experience. The liberal arts component includes courses in the humanities, mathematics, science, and social sciences. Students are expected to display proficiency in oral and written forms of communication, and to choose a liberal arts concentration or minor.

All students in Saunders College must complete a set of required business core courses that provide a foundation for their program of study as well as an understanding of all facets of business. These courses serve as a platform for advanced study in a specific area of interest.

The required foundation courses are:
ACCT-110 Financial Accounting
ACCT-210 Management Accounting
COMM-253 Communication
DESC-310 Operations Management
ECON-101 Principles of Microeconomics
ECON-201 Principles of Macroeconomics
FINC-220 Financial Management
INTB-225 Global Business Environment

MATH-161 Applied Calculus
MGIS-101 Computer-based Analysis
MGIS-102 Business 2: Technology-enabled Launch
MGMT-101 Business 1: Ideas and Business Planning
MGMT-215 Organizational Behavior
MGMT-340 Business Ethics \& Corporate Social Responsibility
MGMT-560 Strategy and Innovation
MKTG-230 Principles of Marketing
STAT-145 Introduction to Statistics I
STAT-146 Introduction to Statistics II
MGIS-130 Information Systems and Technology
MGMT-035 Careers in Business

## Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

The college's faculty members are actively involved in applied research and many are consultants to the business community, which enables them to bring real-world experience into the classroom. More than 45 full-time teaching professionals ensure that the educational experience is dynamic and relevant. In the classroom, faculty and students engage in case studies, problem set analyses, experiential exercises, lectures, group discussions, and team presentations.

## Facilities and resources

RIT is a national leader when it comes to incorporating computer technology into the classroom. Saunders College students have access to extensive resources and utilize the same business software used by Fortune 100 companies worldwide. The college's classrooms and study areas feature the technology that has built RIT's reputation as among the most connected campuses in the country.

## Cooperative education

Cooperative education is an integral part of the college's curriculum. Students obtain paid, practical work experience in an area related to their chosen field of interest. Co-op is part of each student's career exploration and helps relate their classroom studies to the world of business.

Students are required to successfully complete one semester (or two summers) of cooperative education. These work blocks take place during the junior or senior year. While RIT and Saunders College cannot guarantee cooperative education
placement, the Office of Career Services and Cooperative Education is a valuable resource in assisting students in their co-op and job search efforts, and offers each Saunders student a dedicated career and co-op adviser.

## Accreditation

Saunders College is accredited by the nationally recognized Association to Advance Collegiate Schools of Business (AACSB International), the premier accrediting agency for schools of business in the U.S.

## Advising

The college's Student Services Office offers students dedicated academic advisers who provide administrative support to assist with course selection and registration, career guidance, student records, and course scheduling. In addition, the administrative staff provides students with information on additional support services within RIT. Students also are assigned an individual faculty adviser, who becomes an integral part of their advising network.

## Academic enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a mentor. Honors students will be selected during the admission process.

Study Abroad: RIT encourages all students to consider a study abroad program to enhance their understanding of global business and other cultures. Students may study full time at a variety of host schools and are able to select both business and liberal arts classes. The Study Abroad Office has information about foreign study options and opportunities. All business majors may request a study abroad experience to replace one of their required cooperative education work blocks.

Minors: Students may choose from more than 90 minors to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

## Special opportunities

Accelerated dual degree option: Undergraduate business students may consider the $4+1$ MBA program, an accelerated dual degree program that allows students to complete both the BS and MBA degrees in five years. Please refer to the Graduate Bulletin or the college's website for more information.

Graduate study: The college offers the following graduate degree programs: traditional MBA, MBA-accounting (which meets the New York state education requirements for CPA examination candidacy), executive MBA, online executive MBA, and MS degrees in entrepreneurship and innovative ventures, finance, and management. Please refer to the Graduate Bulletin or the college's website for more information.

## Business Exploration, Undeclared

## Program overview

For students interested in pursuing a career in business, but are uncertain as to which major best fits their personal and professional objectives, the business exploration option provides students with up to a year and a half to declare a major. During this time, students complete liberal arts and sciences courses as well as business core courses, which provide an understanding of all facets of business and serve as a foundation for advanced study in a specific area of interest. Advisers provide guidance throughout the option and assist students in selecting a major.

## Curriculum

## Business exploration, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year   <br> ACCT-110 Financial Accounting 3 <br> MGMT-101 Business 1: Ideas and Business Planning 3 <br> MGIS-101 Computer-based Analysis 1 <br> MGIS-102 Business 2: Technology-enabled Launch 3 <br> ACCT-210 Management Accounting 3 <br> ECON-101 Principles of Microeconomics 3 <br> ECON-201 Principles of Macroeconomics 3 <br> MGIS-130 Information Systems and Technology 3 <br>  First Year Writing Seminar 3 <br> STAT-145, 146 Introduction to Statistics I, Il 7 <br> ACSC-010 Year One: College Experience 0 <br>  Wellness Education* 0 <br> Total Semester Credit Hours $\mathbf{3 2}$  <br> *Please see Wellness Education Requirements for more information. Students completing bachelor's   |  |  |

* Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Business Administration-Accounting, BS

saunders.rit.edu/undergraduate/accounting/

## Program overview

The business administration-accounting major covers financial and managerial accounting disciplines while introducing students to technology, including accounting information systems, while gaining exposure to the liberal arts, science, and management. Students planning a career in public accounting may select undergraduate course work preparing them to enter RIT's MBA-accounting program. Completion of both the BS and MBA-accounting degrees satisfies the New York state CPA education requirements (see electives). Students may tailor the major to meet diverse career opportunities in commercial, government, and not-for-profit sectors.

## Plan of study

The business administration-accounting major includes four free electives. Students planning to pursue an MBA-accounting degree and a career in public accounting should consult an accounting professor or accounting academic adviser and take the following electives: Advanced Taxation (ACCT-440), Auditing (ACCT-490), Advanced Accounting (ACCT-540), and Business Law II (BLEG-300).

## Curriculum

Business administration-accounting, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MKTG-230 | Principles of Marketing | 3 |
| FINC-220 | Financial Management | 3 |
| COMM-253 | Communication | 3 |
|  | LAS Perspective 2 | 3 |
| ACCT-445 | Accounting Information Systems | 3 |
| MGMT-215 | Organizational Behavior | 3 |
| BLEG-200 | Business Law I | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| ACCT-360 | Intermediate Financial Accounting I | 3 |
| ACCT-305 | Accounting Profession | 1 |
| Third Year |  |  |
| ACCT-420 | Personal and Small Business Taxation | 3 |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
|  | LAS Perspective 4,5,6 | 9 |
|  | LAS Immersion 1,2 | 6 |
| DECS-310 | Operations Management | 3 |
| ACCT-365 | Intermediate Financial Accounting II | 3 |
|  | LAS Elective | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
|  | LAS Immersion 3 | 3 |
|  | Free Electives | 9 |
|  | LAS Electives | 9 |
| ACCT-430 | Cost Accounting (WI) | 3 |
| MGMT-560 | Strategy and Innovation | 3 |
|  | Accounting Elective | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Business Administration-Finance, BS

saunders.rit.edu/undergraduate/finance/

## Program overview

The business administration-finance major prepares students for management positions in financial, commercial, industrial, and governmental organizations. Students are taught the principles of financial decision making and build an understanding of the economic, legal, and financial environment in which they will operate. Career options exist in government, industry, service, and not-for-profit organizations. A new Business Analytics Lab, which features Bloomberg Terminals, provides the latest in finance-based technology, computing power, and software.

## Cooperative education

Majors are required to complete six months of cooperative education during the last two years of study. Co-op is the best way for students to immerse themselves in the real world and apply what they have learned in the classroom to real-world situations.

## Curriculum

Business administration-finance, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-253 | Communication | 3 |
| MGMT-035 | Careers in Business | 0 |
| MKTG-230 | Principles of Marketing | 3 |
| FINC-220 | Financial Management | 3 |
|  | LAS Perspective 2,4 | 6 |
| FINC-352 | Financial Management II | 3 |
| MGMT-215 | Organizational Behavior | 3 |
|  | Free Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
| FINC-460 | Financial Analysis and Modeling | 3 |
| FINC-362 | Intermediate Investments | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Perspective 5,6 | 6 |
| DECS-310 | Operations Management | 3 |
| FINC-420 | Finance in a Global Environment (WI) | 3 |
|  | Finance Elective | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
|  | Finance Elective | 3 |
|  | Free Electives | 9 |
|  | Immersion 3 | 3 |
|  | LAS Electives | 12 |
| MGMT-560 | Strategy and Innovation | 3 |

Total Semester Credit Hours 123

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.


## Business Administration-International <br> Business, BS

saunders.rit.edu/undergraduate/international_business/

## Program overview

Students in the business administration-international business major develop the foundation necessary to understand and conduct cross-border and global business. Proficiency in a foreign language is an integral part of the major. A co-major or a minor is chosen in one of the following areas: accounting, entrepreneurship, finance, management, management information systems, new media marketing, or marketing. This combination assures students have a well rounded foundation in business with a solid understand of the significance of cultural and geographic influences on global as well as local commerce. As part of RIT, Saunders students have access to RIT's international campuses: RIT Croatia, RIT Dubai, RIT Kosovo, and BJTU (Beijing Jiaotong University) in China. The Rochester campus shares a $2+2$ exchange program with BJTU, and a USACroatia Global Exchange program with RIT Croatia where students from both locations spend the spring semester at both campuses as a cohort.

International business positions include substantial personal and professional benefits. Overseas assignments typically bring long hours and hard work, yet the reward of upward mobility within the corporate world continues to lure young executives to global assignments.

## Plan of study

## Foreign language requirement

Fluency in a foreign language offered by RIT is a requirement of the major. Entering students with fluency in one foreign language can request to waive the requirement or they may choose to study a second foreign language.

## Cooperative education

Students are required to complete six months of cooperative education, one of which must have an international component. Many students study abroad to solidify their understanding of a foreign language and gain experience living in another culture. They follow their study abroad experience with a co-op in a multinational corporation in the United States, or in an international company overseas, to acquire comprehensive experience.

## Curriculum

Business administration-international business, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning |  |
| MGIS-101 | Computer-based Analysis |  |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting |  |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II |  |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
|  | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-253 | Communication | 3 |
| MKTG-230 | Principles of Marketing | 3 |
| FINC-220 | Financial Management | 3 |
| MGMT-035 | Careers in Business | 0 |
|  | LAS Perspective 2,4 | 6 |
| INTB-310 | Regional Business Studies | 3 |
| MGMT-215 | Organizational Behavior | 3 |
|  | Free Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
|  | Co-major Electives | 6 |
|  | LAS Perspective 5 | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Elective | 3 |
| DECS-310 | Operations Management | 3 |
|  | International Business Electives | 6 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
| INTB-550 | Global Entry and Competition Strategies (WI) | 3 |
|  | Free Elective | 3 |
|  | Co-major Electives | 6 |
|  | LAS Perspective 6 | 3 |
|  | LAS Immersion 3 | 3 |
| MGMT-560 | Strategy and Innovation |  |
|  | LAS Electives | 9 |
| Total Semeste | t Hours | 123 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Business Administration-Management, BS

http://saunders.rit.edu/undergraduate/management/

## Program overview

The business administration-management major prepares students for management careers in a variety of enterprises and organizations. Students develop the skills and concepts needed to become effective leaders and ethical decision makers. The curriculum emphasizes communication skills, emotional intelligence, and critical reasoning while providing both depth and flexibility in its offerings. Students are required to choose one of several tracks including: leadership, entrepreneurship, or supply chain management.

## Cooperative education

Students are required to complete six months of cooperative education. This can occur over one semester or two summers. Co-op allows students to practice and expand their management skills in real-world settings. These paid, full-time positions provide students with the opportunity to gain valuable job-related experience while completing their degree.

## Curriculum

Business administration-management, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-253 | Communication | 3 |
| MGMT-035 | Careers in Business | 0 |
| MKTG-230 | Principles of Marketing | 3 |
| FINC-220 | Financial Management | 3 |
|  | LAS Perspective 2,4 | 6 |
| MGMT-215 | Organizational Behavior | 3 |
|  | Free Elective | 3 |
|  | Management Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
|  | Management Elective | 3 |
| MGMT-310 | Leadership in Organizations (WI) | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Perspective 5,6 | 6 |
|  | Free Elective | 3 |
| DECS-310 | Operations Management | 3 |
| MGMT-320 | Managerial Skills | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
| Choose one of the following: |  | 3 |
| MGMT-450 | Negotiations |  |
| MGMT-380 | Human Resource Management |  |
|  | Free Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 12 |
| MGMT-560 | Strategy and Innovation | 3 |
|  | Management Elective | 3 |

Total Semester Credit Hours

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Business Administration-Marketing, BS

saunders.rit.edu/undergraduate/marketing/

## Program overview

Marketing is a critical element in the success of modern business operations. The overall process of entering markets, creating value for customers, and developing profits is the fundamental challenge for the contemporary marketing manager. These marketing basics apply to governmental agencies, not-for-profit organizations, service organizations, and for-profit firms.
In the business administration-marketing major, students learn theory and gain practical experience by creating tactically enabled strategic marketing plans. Through projects they learn to work independently and in teams to achieve organizational objectives. Students develop leadership and communication skills through classroom experiences and their work on real and simulated business challenges. Students gain proficiency in analyzing and understanding buyers, developing and delivering professional sales presentations, and designing and implementing marketing research projects. Students graduate with the ability to create and critically evaluate strategic marketing plans.

## Curriculum

Business administration-marketing, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-253 | Communication | 3 |
| MKTG-230 | Principles of Marketing | 3 |
| MGMT-035 | Careers in Business | 0 |
| FINC-220 | Financial Management | 3 |
|  | LAS Perspective 2,4 | 6 |
| MKTG-320 | Internet Marketing | 3 |
| MGMT-215 | Organizational Behavior | 3 |
|  | Free Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
| MKTG-310 | Marketing Metrics and Research | 3 |
| MKTG-365 | Marketing Analytics | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Perspective 5, 6 | 6 |
| DECS-310 | Operations Management | 3 |
|  | Marketing Electives | 6 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
| MKTG-550 | Marketing Strategy (WI) | 3 |
|  | Free Electives | 9 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 12 |
| MGMT-560 | Strategy and Innovation | 3 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Management Information Systems, BS

saunders.rit.edu/undergraduate/mis/

## Program overview

The management information systems major prepares students for careers involving leading-edge enterprise technologies and the analysis, design, and management of computer-based information systems. The curriculum provides students with the opportunity to analyze existing business processes and learn to utilize digital technologies to improve and/or design new models. As a result students are able to apply the concepts of enterprise resource planning and work with sophisticated enterprise systems to help companies achieve their goals. Students also are able to design systems that are usable, practical, and cost-effective. Major career directions for graduates include business analysis, enterprise resource planning analysis and consulting, database application development and administration, network design and administration, website development and administration, and the management of information systems projects. The major is recognized by USA Today as a top 10 MIS program.

## Curriculum

Management information systems, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-253 | Communication | 3 |
| MKTG-230 | Principles of Marketing | 3 |
| MGMT-035 | Careers in Business | 0 |
| FINC-220 | Financial Management | 3 |
|  | LAS Perspective 2,4 | 6 |
| MGIS-320 | Database Management Systems | 3 |
| MGMT-215 | Organizational Behavior | 3 |
|  | Free Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
| MGIS-330 | Systems Analysis and Design | 3 |
| MGIS-350 | Developing Business Applications | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Perspective 5,6 | 6 |
| DECS-310 | Operations Management | 3 |
|  | MGIS Electives | 6 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
| MGIS-550 | MIS Capstone (WI) | 3 |
|  | Free Electives | 9 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 12 |
| MGMT-560 | Strategy and Innovation | 3 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

New Media Marketing, BS
saunders.rit.edu/undergraduate/new_media_marketing/

## Program overview

The new media marketing major is an interdisciplinary major with a curriculum that covers marketing, imaging, graphic arts, information systems, and management. The major provides an overall assessment of the current and future state of the graphic communication industry and is designed to meet industry's need for broadly educated marketing, new media, and management professionals.

## Curriculum

New media marketing, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MGMT-101 | Business 1: Ideas and Business Planning | 3 |
| MGIS-101 | Computer-based Analysis | 1 |
| ECON-101 | LAS Perspective 3: Principles of Microeconomics | 3 |
| ACCT-210 | Management Accounting | 3 |
| STAT-145, 146 | LAS Perspective 7A, 7B: Introduction to Statistics I, II | 7 |
| MGIS-102 | Business 2: Technology-enabled Launch | 3 |
| ENGL-150 | First Year Writing Seminar | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| ACCT-110 | Financial Accounting | 3 |
| MGIS-130 | Information Systems and Technology | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MGMT-035 | Careers in Business | 0 |
| COMM-253 | Communication | 3 |
| MKTG-230 | Principles of Marketing | 3 |
| FINC-220 | Financial Management | 3 |
|  | LAS Perspective 2,4 | 6 |
|  | LAS Immersion 1 | 3 |
| MGMT-215 | Organizational Behavior | 3 |
|  | New Media Marketing Elective | 3 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | Applied Calculus | 4 |
| Third Year |  |  |
| MGMT-340 | LAS Perspective 1: Business Ethics and Corporate Social Responsibility | 3 |
| MKTG-320 | Internet Marketing (WI) | 3 |
|  | Free Electives | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Perspective 5, 6 | 6 |
| DECS-310 | Operations Management | 3 |
| MKTG-365 | Marketing Analytics | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
|  | New Media Marketing Elective | 3 |
| MKTG-410 | Search Engine Marketing and Analytics | 3 |
|  | Free Electives | 6 |
|  | LAS Electives | 12 |
| MGMT-560 | Strategy and Innovation | 3 |
| MKTG-430 | Social Media Marketing | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Jacqueline Reynolds Mozrall, BS, Rochester Institute of Technolgy; MS, North Carolina State; Ph.D., University of New York at BuffaloDean; Professor

Qiang (John) Tu, BS, MS, Xi'an Jiaotong University (China); Ph.D., University of Toledo-Associate Dean; Professor

Lisa Boice, BA, MBA, Long Island University; JD, Hofstra University School of Law-Assistant Dean for Student Services

## Accounting

William H. Dresnack, BS,
Long Island University; MS, State University of New York at Binghamton; JD, University of Buffalo-Department Chair; Professor

William T. Evans, BS, Rensselaer Polytechnic Institute; MBA, University of Rochester-Senior Lecturer

Philip C. Gelsomino, II, BS, Rochester Institute of Technology; CPA, New York-Visiting Lecturer

Roberta L. Klein, BS, State
University College at Brockport; MBA, Rochester Institute of Technology; CPA, New York-Lecturer

Qian Song, B.Sc., M.Sc., Qingdao University (China); Ph.D., Washington State UniversityAssistant Professor

Daniel D. Tessoni, BBA, St. John Fisher College; MS, Clarkson College of Technology; Ph.D., Syracuse University; CPA, New York-Assistant Professor

Ke-an Wu, BS, Jiangxi University of Finance and Economics (China); MS, Catholic University Leuven (Belgium); Ph.D., University of Oregon-Assistant Professor

Rong Yang, BS, MS, Tianjin University of Finance and Economics (China); MBA, Ph.D., Rutgers University-Associate Professor

## Decision Sciences

Victor J. Perotti, BS, MA, MS, Ph.D., The Ohio State UniversityDepartment Chair; Professor

John E. Ettlie, BS, MS, Ph.D., Northwestern UniversityBenjamin Forman Chair for Research; Professor
A. Erhan Mergen, BS, Middle East Technical University (Turkey); MS, Ph.D., Union College—Professor

William J. Stevenson, BSIE, MBA, Ph.D., Syracuse UniversityAssociate Professor

## Finance and Economics

William H. Dresnack, BS, Long Island University; MS, State University of New York at Binghamton; JD, University of Buffalo-Department Chair; Professor

Steven C. Gold, BA, BS, Rutgers University; MA, Ph.D., State University of New York at Binghamton-Professor

Chun-Kueng (Stan) Hoi, BA, MS, North Texas State University; Ph.D., Arizona State University-Professor

Archana Jain, B.Comm., M.Comm., University of Rajasthan (India); MBA, Ph.D., University of Memphis-Assistant Professor

Stephen LaGrou, BA, State University College at Geneseo; MBA, State University of New York at Buffalo; JD, City University of New York School of Law-Senior Lecturer

Ashok J. Robin, B.Comm, University of Madras (India); MBA, Ph.D., State University of New York at Buffalo-Madelon and Richard Rosett Chair for Research; Professor

Hao Zhang, BA, MA, Xiamen University (China); Ph.D., State University of New York at BuffaloAssistant Professor

## Management and International Business

Shalini Khazanchi, BS, South Gujarat University (India); MBA, University of Pune (India); Ph.D., University of CincinnatiDepartment Chair; Associate Professor

Robert J. Barbato, BA, Le Moyne College; Ph.D., Michigan State University-Professor

Richard DeMartino, BA, Roanoke College; MPA, Ph.D., University of Virginia-Simone Chair for Innovation and Entrepreneurship; Associate Professor

Clyde E. Hull, BA, Yale University; MB, MBA, Ph.D., Indiana University-Head of Accreditation and Curriculum Improvement; Associate Professor

Martin Lawlor, BA, State University of New York at Buffalo; MBA, Rochester Institute of TechnologyDirector, Online EMBA; Senior Lecturer

Ezekiel Leo, BA, University of California, Berkeley; Ph.D., University of Illinois at Urbana-Champaign-Assistant Professor
Stephen Luxmore, BA, MA, University of Guelph (Canada); Ph.D.; University of Toronto (Canada)-Senior Lecturer
dt ogilvie, BA, Oberlin College; MBA, Southern Methodist University; Ph.D., University of Texas at Austin-Distinguished Professor of Urban Entrepreneurship; Professor

Joy Olabisi, BS, Georgia Institute of Technology; MS, Ph.D., University of Michigan-Assistant Professor

Michael E. Palanski, BS, Grove
City College; MA, Covenant Theological Studies; Ph.D., Binghamton UniversityAssistant Professor

Sandra L. Rothenberg, BS, Syracuse University; MS, Ph.D., Massachusetts Institute of Technology-Director, Saunders College Institute of Business Ethics; Professor

Zhi Tang, BA, Shandorun University (China); MA, Fudon University (China); Ph.D., University of Alabama-Associate Professor

## Management Information Systems

Victor J. Perotti, BS, MA, MS, Ph.D., The Ohio State UniversityDepartment Chair; Professor
Sean William Hansen, BA, Harvard University; MBA, Ph.D., Case Western Reserve UniversityAssistant Professor

Manlu Liu, BS, Jiangsu University (China); MS, Zhejiang University; MBA, The Hong Kong University of Science \& Technology (Hong Kong); Ph.D., University of ArizonaAssistant Professor

Qiang (John) Tu, BS, MS, Xi'an Jiaotong University (China); Ph.D., University of Toledo-Associate Dean; Professor

Yang Yu, BS, MS, Ph.D., Beijing University of Aeronautics \& Astronautics (China); Ph.D., Texas Tech University-Assistant Professor

## Marketing

Victor J. Perotti, BS, MA, MS, Ph.D., The Ohio State UniversityDepartment Chair; Professor
Robert B. Boehner, BA, MA, Siena College; JD, University of North Carolina at Chapel Hill-Senior Lecturer

Adriana M. Bóveda-Lambie, BS, University of Maryland at College Park; MA, University of Texas at Austin; Ph.D., University of Rhode Island-Assistant Professor

Deborah Colton, BA, State University of New York at Buffalo; MBA, Rochester Institute of Technology; Ph.D., University of South Carolina-Associate Professor

Laurie Dwyer, BS, St. Lawrence University; MBA, Rochester Institute of Technology-Senior Lecturer

Neil Hair, BS, University of Wales (United Kingdom); MS, Sheffield Hallam University (United Kingdom); Ph.D., Cranfield University (United Kingdom) Associate Professor
V. Myles Landers, BS, Berry

College; Ph.D., The University of Alabama-Assistant Professor

Joseph C. Miller, BA, Grand Valley State University; MBA, Wayne State
University; Ph.D., Michigan State
University—Assistant Professor
Rajendran Sriramachandra
Murthy, BE, University of Madras
(India); MBA, Ph.D., Southern
Illinois University-Assistant
Professor
John D. Ward, BS, Georgia
Institute of Technology; MS, Purdue
University-Senior Lecturer

Distinguished
Professorships

## Eugene Fram Chair <br> in Critical Thinking

Established: 2012
Donor: Anonymous
Purpose: Designed to provide campus-wide leadership in cross-
disciplinary approaches to critical thinking.
Held by: Jennifer L. Schneider, CIH

## J. Warren McClure Research

## Professorship in Marketing

Established: 1977
Donor: Mr. and Mrs. J. Warren
McClure
Purpose: To perpetuate Mr.
McClure's professional interest in
the field of marketing
Held by: open
Madelon and

## Richard Rosett Chair

Established: 2000
Donor: Madelon and Richard Rosett
Purpose: To support a professorship of a nationally prominent scholar in any field of business
Held by: John Ettlie, Ph.D.

## Benjamin Forman Chair for

## Collaborative Research

Established: 2008
Donor: Maurice Foreman in honor of his father, Benjamin Forman Purpose: To support a professorship of a nationally prominent scholar in Research, Teaching, or Collaboration
Held by: Ashok Robin, Ph.D.

## Benjamin Forman Chair

## for Research

Established: 2008
Donor: Maurice Foreman in honor of his father, Benjamin Forman Purpose: To support a professorship of a nationally prominent scholar in Research, Teaching, or Collaboration
Held by: Zhi Tang, Ph.D.

## Daniel D. Tessoni Endowed Chair

 in AccountingEstablished: 2015
Donor: Friends and Alumni of Dan Tessoni and Saunders College of Business
Purpose: To honor Daniel D. Tessoni for his teaching contributions and his lifelong impact on students Held by: Daniel Tessoni, Ph.D.

# B. Thomas Golisano College of Computing and Information Sciences 

Anne R. Haake, Dean<br>rit.edu/gccis

| Programs of study |  |  |
| :--- | ---: | ---: |
|  |  |  |
| Bachelor of Science in: | Page |  |
| $\#$ | Computer Science | 41 |
|  | Computing and Information Technologies | 43 |
| $\#$ | Computing Security | 44 |
| $\#$ | Game Design and Development | 46 |
|  | Human-Centered Computing | 47 |
|  | New Media Interactive Development | 48 |
| $\#$ | Software Engineering | 49 |
|  | Web and Mobile Computing | 52 |

\# Accelerated BS/MS option available.

The B. Thomas Golisano College of Computing and Information Sciences is one of the most comprehensive computing colleges in the United States. The college offers 15 baccalaureate and master's degrees in a variety of computing disciplines, as well as a Ph.D. in computing and information sciences. With its focus on interdepartmental and intercollege cooperation, the college directs its energy and effort toward discovering new, innovative methods and research opportunities in solving complex, present-day, and future computing challenges.

The college's programs address the growing need for experts in the fields of computational science, human-computer interaction and accessibility, gaming, simulation, computing security, edutainment, management of complex information technology infrastructures, and software engineering. These programs offer the most current thinking in computing and information sciences and technology, and are supported by extensive laboratory facilities and outstanding faculty.

## Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please see the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

The college's faculty is a dedicated group of teacher-scholars performing use-inspired research with an emphasis on student involvement and career preparation. Faculty members provide leadership by implementing innovative teaching techniques while anticipating and meeting the needs of students and our industrial partners. Many have significant industrial experience in addition to outstanding academic credentials.

## Facilities

The college features more than 2,000 workstations and more than 50 classrooms, labs, and studio labs offering access to the study of every major computing platform. Labs are available to students for 16 to 18 hours a day. The college's dedicated Security Lab is isolated from the rest of the campus's networks to allow the in-depth study of viruses, firewalls, and other computer vulnerabilities. Additional labs include an Entertainment Lab for 3D modeling, game, and interactive media development; a Mobile Computing and Robotics Lab for the research and development of portable devices; and an Artificial Intelligence Lab dedicated to the understanding of human reactions and processing. Each academic program has extensive laboratories dedicated to undergraduate education. These labs contain powerful PCs and workstations as well as appropriate, up-to-date software. High-speed Internet access, along with a wireless network, is available to ensure our students have the tools necessary to complete their assignments and projects.

## Accreditation

The bachelor of science in computer science program is accredited by the Computing Accreditation Commission of ABET, http:// www.abet.org. The bachelor of science in software engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Cooperative education

All programs in the Golisano College have a cooperative education requirement. Co-op generally starts after completing two years of the program and ends so that the last semester attended is in residence. Co-ops may be one or two semesters in length and at any company that satisfies the program's requirements. Please refer to each program for specific information regarding cooperative education requirements. Academic advisers also can provide students with information concerning the co-op experience.

## Advising

As part of its commitment to student success, the Golisano College provides both academic advising and career counseling. Students
have access to their program chairperson, a faculty adviser, a full-time academic adviser, the academic advising office in the College of Liberal Arts, and program coordinators from the Office of Career Services and Cooperative Education. In addition, office staff provides support for registration and help with records and scheduling. Part-time and evening students can arrange for these services at night by appointment.

## Academic enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.
Study Abroad: RIT encourages all students to consider a study abroad program. Students may study full time at a variety of host schools and are able to select courses that fulfill requirements in their academic field of study and/or liberal arts general education requirements. The Study Abroad Office has information about foreign study options and opportunities.

Minors: RIT offers students more than 90 minors to choose from to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

## Special opportunities

Accelerated dual degree option: Some programs offer accelerated, five-year dual BS/MS degree options. These degrees offer students the opportunity to earn a bachelor's degree and a master's degree in less time than pursuing each degree individually. Please refer to individual programs, the Graduate Bulletin, or the college's website for more information.

Double majors: The college offers a number of double majors to assist students in obtaining two areas of expertise. Please refer to individual programs or the college's website for more information.

Graduate study: The college offers a doctorate program in computing and information sciences; master of science degrees in computer science, computing security, game design and development, human-computer interaction, information sciences and technologies, medical informatics, networking and systems administration, and software engineering; and advanced certificates in big data analytics, information assurance, network planning and design, and web development. Please refer to the Graduate Bulletin or the college's website for more information.

## Computing Exploration, Undeclared

## Michael Yacci, Associate Dean and Computing Exploration Coordinator <br> (585) 475-5416, mayici@rit.edu

## Program overview

The computing exploration option provides students with the opportunity to explore six of the college's undergraduate computing majorscomputer science, computing and information technologies, computing security, human-centered computing, software engineering, and web and mobile computing. Students complete courses in computer science, information security, and web development. They may also take additional courses in the other two computing majors (game design and development, new media interactive development) as they decide on which major bests fits their career goals and aspirations.

Students may stay in the exploration option for up to two semesters (one academic year). Each student has an assigned academic adviser who provides guidance on the requirements of each major, course selection, minors, and career options. All courses taken in the exploration option are accepted by the six computing majors; all credits earned are applicable to a student's chosen major and maintain the student's track toward graduation.

## Curriculum

Computing exploration, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| MATH-181, 182 Project-based Calculus I, II | 8 |
| CSCI-141, 142 Computer Science I, II | 8 |
| CSEC-101 Fundamentals of Computing Security | 3 |
| ISTE-140 Web and Mobile I | 3 |
| CINT-101 Computing Exploration Seminar | 1 |
| MATH-190 Discrete Math for Computing | 3 |
| ACSC-010 Year One: College Experience | 0 |
| ENGL-150 Writing Seminar | 3 |
| Choose one of the following: | 3 |
| SWEN-250 Personal Software Engineering |  |
| NSSA-241 Introduction to Routing and Switching |  |
| Wellness Education* | 0 |
| Total Semester Credit Hours | 32 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. * Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

## Computer Science, BS

cs.rit.edu

## Mohan Kumar, Chair

(585) 475-4583, mjk@cs.rit.edu

## Program overview

The computer science major attracts students who are interested in both the mathematical theory and technical applications of computer science. Most employers look for students who are good computer scientists but also understand the tools and techniques of mathematics, science, and industry, and are able to communicate effectively. The BS program is for the mathematically adept student who wishes to become a computing professional with knowledge of relevant applications areas. The major also attracts students transferring to RIT with an associate degree in computer science with course work in mathematics and science.

Computer science covers a wide spectrum of areas within the field of computing, ranging from the theoretical to the practical. A computer scientist can specialize in areas such as intelligent systems (i.e., artificial intelligence), computer graphics, computer theory, data management, distributed and parallel computing, systems software, or computer security. Programming is necessary, but computer scientists also must be adaptable as well as adept at problem solving and analytical reasoning, able to understand design principles, and fluent in using computers.

Students take a core of computer science courses that provide a solid foundation for advanced work. Building on this base, students explore a variety of specializations in their third, fourth, and fifth years. In addition, students develop a broad appreciation for computer applications and the affect of computers on society via program electives, general education courses, and various free electives, which can be used to complete a minor.

## Experiential education

The demands of industry and government require college graduates to master both the fundamentals and the applied aspects of their profession. To meet this requirement, two applied educational experiences are woven into the major. Students are required to complete a minimum of three terms of co-op as well as an extensive set of laboratory and smallgroup experiences, many as members of a team. These activities are typically held in a setting involving 15 to 20 students each, providing a venue for significant student-faculty interaction.

## Accreditation

The BS degree in computer science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

## Curriculum

## Computer science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ACSC-101 | Year One: College Experience | 0 |
| CSCI-141 | Computer Science I | 4 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 2, 3, 4 | 9 |
| CSCl-142 | Computer Science II | 4 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| Choose one of the following: |  | 3 |
| CSCl-262 | Introduction to Computer Science Theory |  |
| CSCI-263 | Honors Introduction to Computer Science Theory |  |
| MATH-251 | Probability and Statistics I | 3 |
|  | LAS Perspective 1, $5 \ddagger$, $6 \ddagger$ | 10 |
| CSCI-250 | Concepts of Computer Systems | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | LAS Elective $\ddagger$ | 4 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCI-251 | Concepts of Parallel and Distributed Systems | 3 |
| CSCI-320 | Principles of Data Management | 3 |
|  | CS Elective§ | 3 |
|  | LAS Elective§ | 3 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education (spring) | Co-op |
| Fourth Year |  |  |
| Choose one of the following: |  | 3 |
| CSCI-261 | Analysis of Algorithms |  |
| CSCI-264 | Honors Analysis of Algorithms |  |
|  | Free Electives | 6 |
| CSCI-471 | Professional Communications (WI) | 3 |
| CSCI-331 | Introduction to Intelligent Systems | 3 |
| CSCI-344 | Programming Language Concepts | 3 |
|  | CS Electives§ | 6 |
|  | LAS Elective $\ddagger$ | 3 |
|  | LAS Immersion 2 | 3 |
| Fifth Year |  |  |
|  | Cooperative Education (fall) | Co-op |
|  | CS Elective§ | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
|  | Free Electives | 6 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students must complete one of the following lab science sequences: (a) University Physics I, II (PHYS211, 212), (b) General and Analytical Chemistry I, II and Labs (CHMG-141, 142, 145, 146) or (c) General Biology I, II, and Labs (BIOL 101, 102, 103, 104). Students are free to choose from approved science
electives that either extend or complement their lab science selection.
§ Two computer science elective courses must come from the same CS cluster.


## Accelerated dual degree options

Accelerated dual degree options are available for outstanding undergraduate students who wish to earn both a bachelor's and a master's degree in approximately six years.

Computer science, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ACSC-101 | Year One: College Experience | 0 |
| CSCI-141 | Computer Science I | 4 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 2, 3, 4 | 9 |
| CSCI-142 | Computer Science II | 4 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| Choose one of following: |  | 3 |
| CSCI-262 | Introduction to Computer Science Theory |  |
| CSCl-263 | Honors Introduction to Computer Science Theory |  |
| MATH-251 | Probability and Statistics I | 3 |
|  | LAS Perspective $5 \ddagger$ | 4 |
|  | LAS Perspective 1 | 3 |
| CSCI-250 | Concepts of Computer Systems | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | LAS Elective $\ddagger$ | 4 |
|  | LAS Perspective $6 \ddagger$ | 3 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCI-251 | Concepts of Parallel and Distributed Systems | 3 |
| CSCI-320 | Principles of Data Management | 3 |
|  | CS Elective | 3 |
|  | LAS Elective $\dagger$ | 3 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education (spring) | Co-op |
| Fourth Year |  |  |
| Choose one of following: |  | 3 |
| CSCI-261 | Analysis of Algorithms |  |
| CSCI-264 | Honors Analysis of Algorithms |  |
| CSCI-471 | Professional Communications (WI) | 3 |
| CSCl-331 | Introduction to Intelligent Systems | 3 |
|  | Graduate Electives§ | 6 |
|  | LAS Elective $\dagger$ | 3 |
|  | LAS Immersion 2 | 3 |
| Fifth Year |  |  |
|  | Cooperative Education (fall) | Co-op |
|  | Graduate Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
|  | Free Electives | 6 |
| Sixth Year |  |  |
| CSCI-665 | Foundations of Algorithms | 3 |
|  | Cluster Courses§ | 9 |
|  | Graduate Electives** | 15 or 12 |
| Choose one of the following: |  | 3 or 6 |
| CSCI-788 | MS Project |  |
| CSCI-790 | MS Thesis |  |

## Totalsemester Credirthours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students must complete one of the following lab science sequences: (a) University Physics I, II (PHYS211, 212), (b) General and Analytical Chemistry I, II and Labs (CHMG-141, 142, 145, 146) or (c) General Biology I, II, and Labs (BIOL 101, 102, 103, 104). Students are free to choose from approved science electives that either extend or complement their lab science selection.
§ Two computer science elective courses must come from the same CS cluster.
** Students who complete the MS Project take one more graduate elective than those who complete the MS Thesis.
$\dagger \dagger$ The BS degree requires 126 semester hours; the MS degree requires 30 semester hours; students use 9 semester hours of computer science graduate electives toward both degrees.

Computer science, BS degree/Computer security, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSCI-141, 142 | Computer Science I, II | 8 |
|  | First Year LAS Elective | 3 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
|  | First Year Writing Seminar | 3 |
|  | First Year LAS Elective | 3 |
| ACSC-010 | Year One: College Experience | 0 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
|  | LAS Perspective 3,4 | 6 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| Choose one of the following: |  | 3 |
| CSCI-262 | Introduction to Computer Science |  |
| CSCI-263 | Honors Introduction to Computer Science |  |
| MATH-251 | Probability and Statistics I | 3 |
| CSCI-250 | Concepts of Computer Systems | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | LAS Perspective 1,5,6 | 10 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCI-251 | Concepts of Parallel and Distributed Systems | 3 |
| CSCl-320 | Principles of Data Management | 3 |
|  | Computer Science Elective | 3 |
|  | Science Elective $\ddagger$ | 3 |
|  | LAS Immersion I (WI) | 3 |
|  | Cooperative Education (spring) | Co-op |
| Fourth Year |  |  |
| CSCI-261 | Analysis of Algorithms | 3 |
|  | Computer Science Elective | 3 |
| CSCI-344 | Programming Language Concepts | 3 |
|  | Free Elective | 3 |
| CSCI-471 | Professional Communications (WI) | 3 |
| CSCI-331 | Introduction to Intelligent Systems | 3 |
|  | Computer Science Elective | 3 |
|  | Science Elective $\ddagger$ | 3 |
| CSCI-731 | Web Server and Application Security Audits | 3 |
|  | LAS Immersion 2 | 3 |
| Fifth Year |  |  |
|  | Computer Science Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
| CSEC-733 | Information Security Risk Management | 3 |
| CSEC-742 | Computer System Security | 3 |
| Sixth Year |  |  |
|  | Graduate Electives | 6 |
| CSEC-601 | Research Methods and Proposal Development | 3 |
| CSEC-603 | Enterprise Security | 3 |
| CSEC-604 | Cryptography and Authentication | 3 |
|  | CSEC Thesis | 6 |
| Total Semester | it Hours | 156 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.


## Additional information

## Evening program

The computer science major may be completed on a part-time basis. Degree requirements are identical to those taken by full-time students. Students are encouraged to work with an academic adviser for planning and course selection.

## Computing and Information Technologies, BS

## cit.rit.edu

## Stephen Zilora, Chair

(585) 475-7645, Steve.Zilora@rit.edu

## Program overview

Students in the computing and information technologies major are characterized by their hands-on approach to technology. They are designers and builders, but primarily they're enablers. Students approach complex problems and create custom solutions that help users meet their goals. They play an integral role in any modern organization, often working behind the scenes to deploy technology where it's needed most.

That versatility is the core principle of our major. People are interacting with computers more than ever before. With that comes a need for professionals that have the broad practical skills to facilitate those interactions across a variety of sectors. Not only do computing and information technology students learn to implement complex systems, but they become well versed in their management as well. Every day, more companies are realizing the benefits that IT professionals bring to the table.

## Plan of study

A defining aspect of the computing and information technologies curriculum is the breadth of technologies and the focus on integration. Students learn how to solve problems and find ways to make it work. Coursework prepares students to be not just technical wizards, but also communicators and facilitators, enabling them to be successful throughout their career. Building on the core courses, students can further their skills in two separate areas or establish even greater depth in a single area. Possible areas of concentration include: web administration, database, networking and communications, web development, and enterprise administration.

## Cooperative Education

The major requires students to complete two blocks of cooperative education. Students may begin their co-op requirement after completing their second year of study.

## Curriculum

## Computing and information technologies, BS degree, typical

 course sequence| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ISTE-120 | Computer Problem Solving: Information Domain I | 4 |
| NSSA-102 | Computing System Concepts | 3 |
|  | First Year Writing Seminar (WI) | 3 |
| MATH-131 | LAS Perspective 7A: Discrete Mathematics | 4 |
|  | LAS Perspective 1,3 | 6 |
| ISTE-121 | Computer Problem Solving: Information Domain II | 4 |
| ISTE-190 | Foundations of Modern Information Processing | 3 |
| MATH-161 | LAS Perspective 7B: Applied Calculus | 4 |
| COMM-203 | Effecitve Technical Communications | 3 |
|  | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NSSA-241 | Introduction to Routing and Switching | 3 |
| NSSA-220 | Task Automation with Interpretive Languages | 3 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
| NSSA-221 | System Administration I | 3 |
|  | LAS Perspective 2,5 | 7 |
| STAT-145 | Introduction to Statistics I | 3 |
| ISTE-140 | Web and Mobile I | 3 |
| ISTE-240 | Web and Mobile II | 3 |
| ISTE-099 | Second Year Seminar | 0 |
|  | LAS Elective (WI) | 3 |
|  | Wellness Education* | 0 |
|  | Cooperative Education (summer) | Co-op |


| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| Third Year |  |  |
| ISTE-260 | Designing the User Experience | 3 |
| ISTE-430 | Information Requirements Modeling | 3 |
|  | CIT Concentration Courses | 9 |
|  | LAS Perspective 4, 6 | 7 |
|  | LAS Immersion 1 | 3 |
| Fourth Year | Free Electives | 6 |
| ISTE-500, 501 | Senior Development Project I, II (WI) |  |
|  | CIT Concentration Courses | 6 |
|  | LAS Immersion 2, 3 | 9 |
|  | Free Electives | 6 |
| Total Semester Credit Hours | $\mathbf{9}$ |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Concentrations

Database applications

| Choose three of the following: |  |
| :--- | :--- |
| ISTE-330 | Database Connectivity and Access |
| ISTE-422 | Application Development Practices |
| ISTE-432 | Database Application Development |
| ISTE-434 | Data Warehousing |
| ISTE-436 | Database Management and Access |
| ISTE-438 | Contemporary Databases |

## Enterprise administration

| Required courses |  |
| :--- | :--- |
| NSSA-320 | Configuration Management |
| NSSA-322 | Systems Administration II |
| Choose one of the following: |  |
| NSSA-244 | Virtualization |
| NSSA-422 | Storage Architectures |
| NSSA-423 | Scalable Computing Architectures |
| NSSA-425 | Data Center Operations |

Networking and communications

| Required course | Network Services |
| :--- | :--- |
| NSSA-245 |  |
| Choose two of the following: | Wireless Networking |
| NSSA-242 | VoIP and Unified Communication I |
| NSSA-341 | VoIP and Unified Communication II |
| NSSA-342 | Advanced Routing and Switching |
| NSSA-441 | Network Design and Performance |
| NSSA-443 | Sensor and Ad-Hoc Networks |
| NSSA-445 |  |
| Web administration |  |
| Required course | Configuration Management |
| NSSA-320 |  |
| Choose two of the following: |  |
| NSSA-322 | System Administration II |
| NSSA-244 | Sirtualization |
| NSSA-427 |  |
| Web development |  |
| ISTE-340 | Client Programming |
| ISTE-341 | Server Programming |
| SWEN-383 | Software Design Principles and Patterns Architectures |

## Additional information

## Global Opportunities

The computing and information technologies degree is offered both in Rochester, NY and in our overseas campuses in Dubrovnik and Zagreb, Croatia. Because the exact same courses are offered in all locations, students can easily spend a semester abroad learning about other cultures without any impact on their schedule of studies. Further, in their senior year all students take a yearlong Senior Development Project course in which teams are composed of students from all our campuses. So, whether students choose to study abroad or remain in Rochester, they will be working side by side with their peers from across the world.

## Computing Security, BS

csec.rit.edu/

## Bo Yuan, Chair <br> (585) 475-4468, bo.yuan@rit.edu

## Program overview

The scope of computer networks and the span of these systems increases in organizations every day. At the same time, industry and society's dependence on these technologies is growing, as is the creation of damaging software that attacks computing systems and networks. Therefore, security has become a major concern. The result is an increased need for people and technologies that can secure and protect from attack the data assets of an organization as well as the hardware and software infrastructures that house the information.

The BS degree in computing security produces professionals who understand people and processes that impact information security. In addition to possessing state-of-the-art knowledge in the preservation of information assets, students become experts in the identification of computer security vulnerabilities. Students also understand the forensic requirements needed to prove an attack occurred, identify its origin, assess the extent of the damage or loss of information, and design strategies that ensure data can be recovered.

An important goal is to provide students with a level of specialization in computing security beyond what is provided by more general majors offered in information systems or information technology. This is accomplished by providing a foundation that includes a breadth of computing disciplines and then allows the student to focus on a particular area of security such as forensics, mobile device forensics, or network or computing system security. Favoring depth over breadth, students are allowed sufficient time to explore the issues and technologies of computer and network security.

## Plan of study

Students are required to complete 126 semester credit hours of core courses, advanced courses, and cooperative education. Core courses include a programming sequence, an ethics course, a computer networking and system administration sequence, and foundation courses in computer and network security. Advanced courses allow students to design the focus of their information security course work.

## Cooperative education

Cooperative education is a required component of the major. Co-op enables students to work in a variety of organizations, from small- or medi-um-sized businesses to large international companies or law enforcement organizations, that require computer systems or computer networks. These may be security-centric businesses (law enforcement agencies, security auditors) to users of information technology (manufacturing companies, school districts, health care). Co-ops provide real-world experience and a competitive edge when applying for jobs after graduation. Typically, the first co-op occurs during the summer following the second year. The remaining co-ops may occur during the student's third year or the following summer. Students must complete the co-op requirement prior to completing their course work.

## Advanced electives

Students complete six advanced security electives that expand students' knowledge in one of several disciplines of security, including system security, network security, forensics, malware, secure software development, database and application security, security evaluation, or theory.

## Curriculum

Computing security, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSEC-101 | Fundamentals of Computing Security | 3 |
| CSCI-141, 142 | Computer Science I, II | 8 |
| MATH-181, 182 | Project-based Calculus I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year Writing Seminar | 3 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
| NSSA-241 | Introduction to Routing and Switching | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| MATH-251 | Probability and Statistics I | 3 |
| CSCI-250 | Concepts of Computer Systems | 3 |
| NSSA-221 | System Administration | 3 |
| Choose one of the following: |  | 3 |
| MATH-241 | Linear Algebra |  |
| MATH-252 | Probability and Statistics II |  |
| PHYS-211, 212 | LAS Perspective 6: University Physics I, II | 8 |
| NSSA-245 | Network Services | 3 |
| CSEC-99 | Co-op Seminar | 0 |
|  | LAS Perspective 3, 4 | 6 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCl-462 | Introduction to Cryptography | 3 |
| CSEC-363 | Cyber Security Policy and Law | 3 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
|  | LAS Immersion 1 (WI) | 3 |
| CSEC-472 | Authentication and Security Models | 3 |
| CSEC-380 | Principles of Web Application Security | 3 |
|  | Program Electives | 6 |
|  | Free Electives | 6 |
|  | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
|  | LAS Elective $\ddagger$ | 3 |
|  | Program Electives | 12 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
| CSEC-490 | Capstone in Computing Security | 3 |
| Total Semester | t Hours | 126 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Choose one of the following philosophy courses: Introduction to Moral Issues (PHIL-102), Foundations of Moral Philosophy (PHIL-202), or Professional Ethics (PHIL-306)


## Accelerated dual degree option

Accelerated dual degree options are available for outstanding undergraduate students who wish to earn both a bachelor's and a master's degree in approximately five years.

Computing security, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSEC-101 | Fundamentals of Computing Security | 3 |
| CSCI-141, 142 | Computer Science I, II | 8 |
| MATH-181, 182 | Project-based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 6 |
|  | First Year Writing Seminar | 3 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
| NSSA-241 | Introduction to Routing and Switching | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| Choose one of the following: |  | 3 |
| MATH-241 | Linear Algebra |  |
| MATH-252 | Probability and Statistics II |  |
| CSCI-250 | Concepts of Computer Systems | 3 |
| MATH-241 | Linear Algebra | 3 |
| PHYS-211, 212 | LAS Perspective 6: University Physics I, II | 8 |
| NSSA-221 | System Administration | 3 |
| NSSA-245 | Network Services | 3 |
|  | LAS Perspective 3,4 | 6 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCI-462 | Introduction to Cryptography | 3 |
| PUBL-363 | Cyber Security Policy and Law | 3 |
|  | LAS Immersion 1 (WI) | 3 |
| CSEC-472 | Authentication and Security Models | 3 |
| CSEC-731 | Web Server and Application Security Audits | 3 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
| CSEC-380 | Principles of Web Application Security | 3 |
|  | Program Elective | 3 |
|  | Free Electives | 6 |
|  | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| CSEC-742 | Computer System Security | 3 |
| CSEC-733 | Information Security and Risk Management | 3 |
|  | Program Electives | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
| CSEC-490 | Capstone in Computing Security (WI) | 3 |
|  | LAS Electiveキ | 3 |
| Fifth Year |  |  |
| CSEC-601 | Research Methods and Proposal Development | 3 |
| CSEC-603 | Enterprise Security and Forensics | 3 |
| CSEC-604 | Cryptography and Authentication | 3 |
|  | Graduate Electives | 6 |
|  | CSEC Thesis | 6 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\neq$ Choose one of the following philosophy courses: Introduction to Moral Issues (PHIL-102), Foundations of Moral Philosophy (PHIL-202), or Professional Ethics (PHIL-306).
§ The BS degree requires 126 semester hours. The MS degree requires 30 semester hours. Students use 9 semester hours of computing security graduate electives toward both degrees.

Computing security, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSEC-101 | Fundamentals of Computing Security | 3 |
| CSCI-141, 142 | Computer Science I, II | 8 |
|  | First Year Writing Seminar | 3 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
| ACSC-010 | Year One: College Experience | 0 |
|  | LAS Perspective 1,2 | 6 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
| NSSA-241 | Introduction to Routing and Switching | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CSCI-243 | The Mechanics of Programming | 3 |
| MATH-251, 252 | Probability and Statistics I, II | 6 |
| Choose one of the following: |  | 3 |
| MATH-251 | Probability and Statistics I |  |
| MATH-252 | Probability and Statistics II |  |
| PHYS-211, 212 | LAS Perspective 5, 6: University Physics I, II | 8 |
| NSSA-245 | Network Services | 3 |
| CSCI-250 | Concepts of Computer Systems | 3 |
| NSSA-221 | System Administration I | 3 |
|  | LAS Perspective 3,4 | 6 |
| CSEC-099 | Cooperative Education Seminar | 0 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CSCI-462 | Introduction to Cryptography | 3 |
| CSEC-472 | Authentication and Security Models | 3 |
| PUBL-363 | Cyber Security Policy and Law | 3 |
| ISTE-230 | Introduction to Database and Data Mining | 3 |
|  | CSEC Electives | 6 |
|  | Free Electives | 3 |
| CSEC-380 | Principles of Web Application Security | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| CSEC-490 | Capstone in Computing Security | 3 |
| PUBL-700 | Readings in Public Policy | 3 |
| PUBL-703 | Program Evaluation and Research Design | 3 |
| PUBL-702 | Graduate Decision Analysis | 3 |
|  | CSEC Electives | 9 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
| Fifth Year |  |  |
| PUBL-701 | Policy Analysis | 3 |
|  | CSEC Elective | 3 |
|  | Public Policy Graduate Electives | 9 |
| STSO-710 | Graduate Seminar in Science Technology Policy | 3 |
| Choose one of the following: |  |  |
| Thesis |  |  |
|  | Graduate Electives |  |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Part-time study

The major is available on a part-time basis. Courses can be completed during the day and in the evening to accommodate those who work, regardless of their schedules. Please refer to the Part-time Study website for more information on this option.

## Game Design and Development, BS

igm.rit.edu

## David Schwartz, Director

(585) 475-2763, disvks@rit.edu

## Program overview

The bachelor of science in game design and development allows students to explore the entertainment technology landscape and related areas, while still pursuing a broad-based university education. The degree is intended specifically for students who aspire to hold careers within the professional games industry or a related field, such as simulation, edutainment, or visualization. This degree also provides students with a core computing education that prepares them for graduate study or employment in a number of computing fields.

## Plan of study

With an emphasis on game programming, the major exposes students to a breadth of development and design processes. Students complete a core of required course work and then pursue advanced studies that can be customized to individual interests and career goals. Students can further specialize their major by taking electives in areas such as game design, production, engines and systems, graphics programming and animation, mobile, Web, audio, and more. This depth of course work also enables students to build a robust portfolio of games and other interactive projects.

## Cooperative education

Cooperative education (co-op) is full-time, paid work experience that provides students with an opportunity to learn on the job in real-world industry setting-a definite edge when applying for jobs after graduation. Students are required to complete two blocks of co-op, which may start after their second year of study. Although students usually complete co-ops during the summer term, they may also be completed during the academic year.

## Curriculum

Game design and development, BS degree, typical course
sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| IGME-105, 106 | Game Development and Algorithmic Problem Solving I, II | 8 |
| IGME-110 | Introduction to Interactive Media | 3 |
|  | First Year Writing Seminar | 3 |
| MATH-131 | LAS Perspective 7A: Discrete Mathematics | 4 |
| IGME-119 | 2D Animation and Asset Production | 3 |
|  | LAS Perspective 1, 2 | 6 |
| PHYS-111 | LAS Perspective 6: College Physics I | 4 |
| MATH-185 | LAS Perspective 7B: Mathematics of Graphical Simulation I | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| IGME-202 | Interactive Media Development | 3 |
| IGME-219 | 3D Animation and Asset Production | 3 |
| IGME-236 | Interaction, Immersion, and the Media Interface (WI) | 3 |
|  | LAS Perspective 3, 4, 5 | 9 |
| MATH-186 | Mathematics of Graphical Simulation II | 3 |
| IGME-220 | Game Design and Development I | 3 |
| IGME-209 | Data Structures and Algorithms for Games and Simulation I | 3 |
| IGME-230 | Website Design and Implementation | 3 |
| IGME-099 | Co-op Preparation Workshop | 0 |
| IGME-499 | Cooperative Education (summer) | co-op |
| Third Year |  |  |
| IGME-320 | Game Design and Development II | 3 |
| IGME-309 | Data Structures and Algorithms for Games and Simulation II | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Electives | 6 |
| IGME-330 | Rich Media Web Application Development I | 3 |
|  | Advanced Elective | 3 |
|  | Free Electives | 6 |
| IGME-499 | Cooperative Education (summer) | co-op |
| Fourth Year |  |  |
|  | Advanced Electives | 9 |
|  | Free Electives | 9 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 9 |

Total Semester Credit Hours $\mathbf{1 2 4}$
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.


## Accelerated dual degree option

An accelerated dual degree option is available for outstanding undergraduate students who wish to earn both a bachelor's and a master's degree in game design and development in approximately five years.

Game design and development, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| IGME-105, 106 | Game Development and Algorithmic Problem Solving I, II | 8 |
| IGME-110 | Introduction to Interactive Media | 3 |
|  | First Year Writing Seminar | 3 |
| MATH-131 | LAS Perspective 7A: Discrete Mathematics | 4 |
| IGME-119 | 2D Animation and Asset Production | 3 |
|  | LAS Perspective 1,2 | 6 |
| PHYS-111 | LAS Perspective 6: College Physics I | 4 |
| MATH-185 | LAS Perspective 7B: Mathematics of Graphical Simulation I | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| IGME-202 | Interactive Media Development | 3 |
| IGME-219 | 3D Animation and Asset Production | 3 |
| IGME-236 | Interaction, Immersion, and the Media Interface (WI) | 3 |
|  | LAS Perspective 3, 4, 5 | 9 |
| MATH-186 | Mathematics of Graphical Simulation II | 3 |
| IGME-220 | Game Design and Development I | 3 |
| IGME-209 | Data Structures and Algorithms for Games and Simulation I | 3 |
| IGME-230 | Website Design and Implementation | 3 |
| IGME-499 | Cooperative Education (summer) | co-op |
| Third Year |  |  |
| IGME-320 | Game Design and Development II | 3 |
| IGME-309 | Data Structures and Algorithms for Games and Simulation II | 3 |
|  | LAS Immersion 1,2 | 6 |
|  | LAS Electives | 6 |
| IGME-330 | Rich Media Web Application Development I | 3 |
|  | Advanced Elective | 3 |
|  | Free Electives | 6 |
| IGME-499 | Cooperative Education (summer) | co-op |
| Fourth Year |  |  |
| IGME-795 | Game Industry Themes and Perspectives | 1 |
| IGME-601 | Game Development Processes | 3 |
| IGME-602 | Game Design | 3 |
| IGME-603 | Gameplay and Prototyping | 3 |
| IGME-695 | Colloquium in Game Design and Development | 1 |
|  | Advanced Electives | 6 |
|  | Free Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 9 |
| Fifth Year |  |  |
| IGME-695 | Colloquium in Game Design and Development | 1 |
| IGME-788 | Capstone Design | 3 |
|  | Advanced Electives | 9 |
|  | Free Electives | 6 |
| IGME-789 | Capstone Development | 3 |

## Total Semester Credit Hours

148Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Advanced electives

| IGME-430 | Rich Media Web Application Development II |
| :--- | :--- |
| IGME-440 | Online Virtual Worlds and Simulations |
| IGME-450 | Casual Game Development |
| IGME-451 | Systems Concepts for Games and Media |
| IGME-470 | Physical Computing and Alternative Interfaces |
| IGME-529 | Foundations of Interactive Narrative |
| IGME-540 | Foundations of Game Graphics Programming |
| IGME-550 | Foundations of Game Engine Design and Development |
| IGME-560 | Artificial Intelligence for Game Environments |
| IGME-570 | Digital Audio Production |
| IGME-571 | Interactive Game Audio |
| IGME-580 | IGM Production Studio |
| IGME-581 | Innovation and Invention |
| IGME-582 | Humanitarian Free and Open Source Software Development |
| IGME-583 | Legal/Business Aspects of FOSS |
| IGME-584 | Linux Software Development |
| IGME-585 | Project in FOSS |
| IGME-589 | Research Studio |
| IGME-590 | Undergraduate Seminar in IGM |
| IGME-599 | Independent Study |

## Human-Centered Computing, BS

## hcc.rit.edu

## Stephen Zilora, Chair

(585) 475-7645, Steve.Zilora@rit.edu

## Program overview

Fundamental to human-centered computing (HCC) is a focus on humans as individuals and in social contexts, and their behavior with technology. With roots in multiple areas of computing, arts, and social sciences, HCC blends strength from these varied disciplines to understand the way in which people use technology. Students in this major will be at the intersection of computer advancements and understanding human behavior with technology. Topics of consideration include the design, evaluation, and implementation of interactive computing systems and the understanding of ways in which such systems can transform our lives. With a blending of content from computing, psychology, and design, HCC blends core theoretical and applied human technology concepts in a contemporary interdisciplinary curricular model. Given the growing reliance on computing in our daily lives, technology no longer is the exclusive realm of tech-savvy users; industry has recognized the need to make software and devices that are usable and desirable. This major prepares students for careers in industry or graduate study, offering options to specialize in different areas of HCC depending on individual student interests in computing, design, or psychology.

## Plan of study

The HCC curriculum is unique in its foundation of psychology, design, and technology, which combines courses from three RIT colleges to ensure students develop a firm understanding of these topics. Core courses include several foundational classes in technology, cognitive science and psychology, Gestalt, color theory, and creative thinking. This is a truly interdisciplinary degree, as evidenced by the growing list of concentrations available to students: accessibility, psychology, design, front-end development, natural language processing, and instructional technology.

## Cooperative education

Students are required to complete two blocks of cooperative education, which may begin after completing their second year of study.

## Curriculum

Human-centered computing, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT |
| :--- | :--- | ---: |
| HOURS |  |  |
| First Year |  |  |
| ACSC-010 | Year One: College Experience | 0 |
|  | First Year LAS Elective | 3 |
| ISTE-120, 121 | Computer Program Solving: Information Domain I, II | 8 |
| ISTE-140, 240 | Web and Mobile I, II | 6 |
| ISTE-110 | Ethics in Computing (WI) | 3 |
| PSYC-101 | LAS Perspective 4: Introduction to Psychology | 3 |
| PSYC-223 | Cognitive Psychology | 3 |
| STAT-145 | LAS Perspective 7A: Introduction to Statistics I | 3 |
| NMDE-111 | New Media Digital Design Survey I | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PSYC-250, 251 | Research Methods I, II (WI) | 6 |
| ISTE-262 | Foundations of HCC | 3 |
| NMDE-112 | New Media Digital Design Survey II | 3 |
| STAT-146 | LAS Perspective 7B: Introduction to Statistics II | 4 |
| ISTE-264 | Prototyping and Usability Testing | 3 |
| ISTE-252 | Foundation of Mobile | 3 |
| ISTE-099 | Second Year Seminar | 0 |
|  | LAS Perspective 4,5 | 6 |
|  | Free Elective | 3 |
|  | Cooperative Education (summer) | Co-op |



Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Concentrations

## Accessibility

| ISTE-362 | Access and Assistive Technology |
| :--- | :--- |
| ISTE-462 | Research in Accessibility |
| ISTE-464 | Accessibility through Lifespan |

Design

| NMDE-201 | Design Elements II |
| :--- | :--- |
| NMDE-203 | Interactive II |
| NMDE-302 | Graphical User Interface |

Front end development

| ISTE-340 | Client Programming |
| :--- | :--- |
| ISTE-454 | Mobile Application Development I |
| ISTE-456 | Mobile Application Development II |

Instructional technology

| ISTE-392 | Fundamentals of Instructional Technology |
| :--- | :--- |
| ISTE-394 | Interactive Courseware |
| PSYC-235 | Learning and Behavior |

Natural language processing

| ENGL-351 | Language Technology |
| :--- | :--- |
| ENGL-481 | Introduction to Natural Language Processing |
| ENGL-582 | Advanced Topics in Computational Linguistics |
| Psychology |  |
| PSYC-330 | Memory and Attention |
| PSYC-331 | Language and Thought |
| PSYC-332 | Decision Making, Judgement and Problem Solving |

## Additional information

## Global Opportunities

Students in the human-centered computing degree can participate in a study abroad experience at our campuses in Dubrovnik and Zagreb, Croatia where many of their courses are regularly offered. The HCC degree is also part of our global Senior Development Project course. Students in this course work on an industry-inspired project with students from different disciplines and from our campuses in Croatia and Dubai. This global experience is a natural capstone for HCC students who focus on meeting the needs of a diverse group of people.

New Media Interactive Development, BS
igm.rit.edu
David I. Schwartz, IGM Director
(585) 475-2763, disvks@rit.edu

## Program overview

New media is an ever-changing form of digital communication that engages, immerses, and often entertains users. Whereas old media involved newspapers, radio, and television, new media has adapted digital technology for the internet, social networks, wearable computing, and more. New media development professionals develop and design software for these devices. They must possess deep and far-ranging skills along with a broad understanding of the social and economic impact of all cutting-edge new media technologies. These professionals must be consummate problem-solvers with a well-honed ability to learn emerging technologies. And finally, they must also be able to make informed, timely decisions in an arena of constant urgency and change. In the new media interactive development major, students explore a multitude of creative and technical electives, including physical computing, interfaces, web, mobile, casual games, production and more.

## Plan of study

The new media interactive development major integrates strong programming skills with math, design, and communication skills essential for creative, digital media development. All students complete general education requirements in the liberal arts and social sciences. Students customize their major through both general education electives, free electives, and program electives in areas such as advanced interactive development for the web, mobile development and alternative interfaces, physical/wearable computing, game design, game development, design and media production, interactive audio, and more. Many courses are project- and team-based, which helps students to build a robust portfolio of interactive projects.

Students also work closely with students in the new media design BFA program, housed in the College of Imaging Arts and Sciences. Students in these majors share core courses in programming and design to learn how both disciplines collaborate. In the senior year, students from both majors work together on a capstone project, which enables them to gain valuable industry experience and portfolio development.

## Cooperative education

Students are required to complete two blocks of co-op, which can occur during the academic year or during the summer. Co-ops are full-time, paid work experiences where students gain valuable, hands-on experience in industry-a definite edge when applying for jobs after graduation. Co-op may begin as early as after the second year of study.

## Curriculum

New media interactive development, BS degree, typical course
sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| IGME-101, 102 | New Media Interactive Design and Algorithmic Problem Solving I, II | 8 |
| IGME-110 | Introduction to Interactive Media | 3 |
| NMDE-111 | New Media Design Digital Survey I | 3 |
| NMDE-112 | New Media Design Digital Survey II | 3 |
|  | LAS Foundation 1: First Year Seminart | 3 |
| MATH-131 | Discrete Mathematics | 4 |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year Writing Seminar | 3 |
| MATH-185 | Mathematics of Graphical Simulation I | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| IGME-201 | New Media Interactive Design and Algorithmic Problem Solving III | 3 |
| IGME-230 | Website Design and Implementation | 3 |
| IGME-330 | Rich Media Web Application Development I | 3 |
|  | LAS Perspective 3,4,5才, 6 | 12 |
| MATH-186 | Mathematics of Graphical Simulation II | 3 |
| IGME-202 | Interactive Media Development | 3 |
| IGME-236 | Interaction, Immersion, and the Media Interface (WI) | 3 |
| IGME-099 | Co-op Preparation Workshop | 0 |
| IGME-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
|  | Advanced Program Electives | 12 |
|  | Free Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Electives | 9 |
| IGME-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| NMDE-401 | New Media Design Career Skills | 3 |
|  | Advanced Program Elective | 3 |
|  | Free Electives | 12 |
|  | LAS Immersion 3 | 3 |
| IGME-588 | New Media Team Project | 3 |
|  | LAS Electives | 6 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.


## Advanced program electives

| COURSE |  |
| :--- | :--- |
| IGME-119 | 2D Animation and Asset Production |
| IGME-219 | 3D Animation and Asset Production |
| IGME-340 | Multi-platform Media Application Development |
| IGME-430 | Rich Media Web Application Development II |
| IGME-440 | Online Virtual Worlds and Simulations |
| IGME-450 | Casual Game Development |
| IGME-470 | Physical Computing and Alternative Interfaces |
| IGME-529 | Foundations of Interactive Narrative |
| IGME-570 | Digital Audio Production |
| IGME-571 | Interactive Game Audio |
| IGME-580 | IGM Production Studio |
| IGME-581 | Innovation and Invention |
| IGME-582 | Humanitarian Free and Open Source Software Development |
| IGME-583 | Legal/Business Aspects of FOSS |
| IGME-584 | Linux Software Development |
| IGME-585 | Project in FOSS Development |
| IGME-589 | Research Studio |
| IGME-590 | Undergraduate Seminar in IGM |
| IGME-599 | Independent Study |

## Software Engineering, BS

## se.rit.edu

## Naveen Sharma, Chair

(585) 475-2472, naveen@se.rit.edu

## Program overview

As software becomes ever more common in everything from airplanes to appliances, there is an increasing demand for engineering professionals who can develop high-quality, cost-effective software systems. The BS in software engineering combines traditional computer science and engineering with specialized course work in software engineering.
Students learn principles, methods, and techniques for the construction of complex and evolving software systems. The major encompasses technical issues affecting software architecture, design, and implementation as well as process issues that address project management, planning, quality assurance, and product maintenance. Upon graduation, students are prepared for immediate employment and long-term professional growth in software development organizations.

## Accreditation

The bachelor of science in software engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Plan of study

An important component of the curriculum is complementary course work in related disciplines. As with other engineering fields, mathematics and the natural sciences are fundamental. In addition, students must complete courses in related fields of engineering, business, or science. Two engineering electives, plus a three-course sequence in an application domain, enable students to connect software engineering principles to application areas. A required course in economics or finance bridges software engineering with the realities of the business environment.

Students also complete general education courses in the liberal arts and a required ethics course helps students develop a sense of professionalism and social responsibility in the technical world.

## Electives

## Engineering electives

Students may choose engineering electives from software engineering, computer science, or programs in Kate Gleason College of Engineering. Additional rules and restrictions are listed on the department website.

## Application domain courses

An application domain is a set of three courses that expose a student to a domain area in which software engineering is often applied. There are standard predefined application domains and a student is free to suggest a student-defined domain. Example application domain areas include:

- Artificial Intelligence
- Bioinformatics
- Business Applications
- Computational Mathematics
- Computer Engineering
- Computer Security
- Economics
- Entrepreneurship
- Industrial and Systems Engineering
- Interactive Entertainment
- Public Policy
- Scientific and Engineering Computing
- Statistics
- Usability
- Student-defined domain

Senior projects
A two-course senior design sequence helps students synthesize and apply the knowledge and experience they have gained in classes and on co-op assignments to a industry-sponsored project. Organizations with challenging technical problems frequently contact faculty seeking assistance on a problem. Many of these issues find their solutions via the work of the senior project teams.

In the first course students organize themselves into teams, based on the number and complexity of the projects available. The bulk of the semester is devoted to requirements elicitation and architectural design, but also may include detailed design, prototyping, and even production, depending on the nature of the project. In addition, teams are responsible for assigning specific roles to team members and developing a project plan that includes scheduled, concrete milestones. In the second course, students work on the tactical issues of development and deployment. Teams complete the construction and integration of their project, conduct testing, and demonstrate the final outcome to faculty and the sponsoring organization.

Organizations that have sponsored senior projects include Wegmans, Paychex, Moog, Northrup Grumman Security Systems, Intel Corp., Webster Financial Group, Oracle, Nokia, IBM Thomas Watson Research, PaeTec Communications, Alstom Signaling Inc., RIT Information and Technology Services, Harris Corporation (RF Communications Division), the Air Force Research Laboratory, Excellus Blue Cross Blue Shield, Telecom Consulting Group NE Corp. (TCN), and Videk.

## Cooperative education

Students are required to complete 40 weeks of cooperative education, which typically begins in their third year of study, alternating semesters of study on campus with co-op blocks. To ensure that co-op is integrated with the curriculum, students must complete their final co-op block prior to taking Software Engineering Project I (SWEN-561).

## Curriculum

Software engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT |
| :--- | :--- | :--- |
| First Year |  |  |
| CSCI-141, 142 | Computer Science I, II |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 8 |
| SWEN-101 | Freshman Seminar | 6 |
| MATH-190 | Discrete Mathematics for Computing | 1 |
| SWEN-250 | Personal Software Engineering | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 3 |
|  | Wellness Education* | 0 |
| Second Year |  | 0 |
| PHYS-211,212 | LAS Perspective 5, 6: University Physics I, Il |  |
| CSCI-262 | Introduction to Computer Science Theory | 8 |
| COMM-253 | Communications | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
|  | LAS Perspective 3,4 | 3 |
| STAT-205 | Applied Statistics | 6 |
| SWEN-256 | Software Process and Project Management | 3 |
| SWEN-262 | Engineering of Software Subsystems | 3 |
| Third Year |  | 3 |
| SWEN-220 | Mathematical Models of Software | 3 |
| SWEN-444 | H.C. Reqts. \& Design | 3 |
|  | SWEN Process Elective | 3 |
|  | Math/Science Elective | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  | 3 |
| SWEN-440 | SW Sys. Reqts. \& Arch. (WI) | 3 |
| SWEN-331 | Engineering Secure Software | 3 |
| CMPE-240 | Engineering Fundamentals of Computer Systems | 3 |
|  | Math/Science Elective | 3 |
|  | LAS Immersion 2 | 3 |


| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| Fifth Year |  |  |
| SWEN-561,562 | Software Engineering Project I, II | 6 |
|  | Engineering Electives | 6 |
|  | Professional Elective | 3 |
|  | SWEN Design Electives | 3 |
| LAS Immersion 3 | 3 |  |
| Free Electives | 9 |  |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree options

An accelerated dual degree option is available for outstanding undergraduate students who wish to earn both a BS in software engineering and an MS degree in software engineering or computing security in approximately six years.

## Software engineering, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSCI-141 | Introduction to Computational Problem Solving | 4 |
| CSCI-142 | Computational Problem Solving with Structures | 4 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| SWEN-101 | Software Engineering Seminar | 1 |
| MATH-190 | Discrete Mathematics | 3 |
| SWEN-250 | Personal Software Engineering | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHYS-211, 212 | LAS Perspective 5, 6: University Physics I, II | 8 |
| CSCI-262 | Introduction to Computer Science Theory | 3 |
| COMM-251 | Professional Communication for Software Engineers | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
|  | LAS Perspective 2, 3 | 6 |
| STAT-205 | Applied Statistics | 3 |
| SWEN-220 | Math Models of Software Engineering | 3 |
| SWEN-262 | Engineering of Software Subsystems | 3 |
| Third Year |  |  |
| SWEN-256 | Software Process and Project Management | 3 |
| SWEN-331 | Secure Software System Development | 3 |
|  | SWEN Design Elective | 3 |
| CMPE-340 | Engineering Fundamentals of Computer Systems | 4 |
|  | LAS Perspective 4 | 3 |
|  | Cooperative Education | co-op |
| Fourth Year |  |  |
| SWEN-440 | SW Sys. Reqts. \& Arch. (WI) | 3 |
| SWEN-444 | H.C. Reqts. \& Design | 3 |
| SWEN-722 | Process Engineering | 3 |
|  | Math/Science Elective | 3 |
|  | Application Domain Elective | 3 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education | co-op |
| Fifth Year |  |  |
| SWEN-561,562 | Software Engineering Project I, II | 6 |
| SWEN-745 | Software Modeling | 3 |
|  | Engineering Electives | 6 |
|  | Application Domain Elective | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
|  | Graduate Elective | 3 |
| Sixth Year |  |  |
| SWEN-790 | Thesis | 6 |
| SWEN-772 | Software Quality Engineering | 3 |
| SWEN-755 | Software Architectures and Product Lines | 3 |
| SWEN-749 | Software Evolution and Re-engineering | 3 |
|  | Graduate Elective | 3 |
| Total Semester Credit Hours |  | 158 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Software engineering, BS degree/Computing security, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CSCI-141, 142 | Computer Science I, II | 8 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Calculus I, II | 8 |
| SWEN-101 | Freshman Seminar | 1 |
| MATH-190 | Discrete Mathematics for Computing | 3 |
| SWEN-250 | Personal Software Engineering | 3 |
|  | LAS Perspective 1 | 3 |
|  | First Year Writing Seminar | 3 |
|  | First Year LAS Elective | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHYS-211, 212 | LAS Perspective 5, 6: University Physics I, II | 8 |
| CSCI-262 | Introduction to Computer Science Theory | 3 |
| COMM-251 | Professional Communication for Software Engineers | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
| STAT-205 | Applied Statistics | 3 |
| SWEN-220 | Math Models of Software Engineering | 3 |
| SWEN-262 | Engineering of Software Subsystems | 3 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| SWEN-256 | Software Process and Project Management | 3 |
| SWEN-331 | Secure Software System Development | 3 |
| CRIM-350 | Theories of Crime and Criminality | 3 |
| CMPE-340 | Engineering Fundamentals of Computer Systems | 4 |
|  | SWEN Design Elective | 3 |
|  | LAS Perspective 4 | 3 |
|  | Cooperative Education | Co-op |
| Fourth Year |  |  |
| SWEN-440 | Software Sys. Reqts. and Arch. (WI) | 3 |
| SWEN-444 | H.C. Reqts. and Design | 3 |
|  | SWEN Process Elective | 3 |
|  | Math/Science Elective | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education | Co-op |
| Fifth Year |  |  |
| SWEN-561,562 | Software Engineering Project I, II | 6 |
| CSEC-731 | Web Server and Application Security Audits | 3 |
| CSEC-733 | Information Security and Risk Management | 3 |
| CSEC-742 | Computer System Security | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Engineering Electives | 6 |
|  | Free Elective | 3 |
| Sixth Year |  |  |
| CSEC-601 | Research Methods and Proposal Development | 3 |
| CSEC-603 | Enterprise Security | 3 |
| CSEC-604 | Cryptography and Authentication | 3 |
|  | CSEC Graduate Electives | 6 |
|  | CSEC Thesis | 6 |

## Total Semester Credit Hours

158

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Engineering electives

|  | Any software engineering (SWEN) elective course* |
| :--- | :--- |
|  | Selected engineering courses* |
| CSCl-261 | Analysis of Algorithms |
| CSCl-331 | Introduction to Intelligent Systems |
| CSCl-344 | Programming Language Concepts |
| CSCl-351 | Data Communications and Networks I |
| CSCl-352 | Operating Systems |
| CSCl-420 | Principles of Data Mining |
| CSCl-431 | Introduction to Computer Vision |
| CSCl-442 | Language Processors |
| CSCl-451 | Data Communications and Networks II |
| CSCl-454 | Parallel Computing |
| CSCl-510 | Cryptography |
| *Please see adviser for a complete list of eligible courses. |  |
|  | Software engineering design electives |


| SWEN-342 | Engineering of Concurrent and Distributed Software Systems |
| :--- | :--- |
| SWEN-343 | Engineering of Enterprise Software Systems |
| SWEN-344 | Engineering of Web-based Software Systems |
| SWEN-461 | Real Time and Embedded Systems |
| SWEN-462 | Modeling of Real Time Systems |
| SWEN-463 | Performance Engineering of Real Time and Embedded Systems |
| SWEN-467 | Hardware Software Co-design for Cryptographic Applications |
| SWEN-549 | Software Engineering Design Seminar |

## Software engineering process electives

| SWEN-350 | Software Process and Product Quality |
| :--- | :--- |
| SWEN-352 | Software Testing |
| SWEN-356 | Trends in Software Development Processes |
| SWEN-559 | Software Engineering Process Seminar |

## Additional information

## Laboratories

Equipped with the latest technology, the software engineering department's facilities include three student instructional studio labs, a specialized embedded systems lab, and a collaboration lab. In addition, freshmen are encouraged to take advantage of the department's mentoring lab. Staffed by advanced software engineering students, this lab offers new students an environment where they can learn from those who have successfully fulfilled most of the major's academic requirements.
Students enrolled in software engineering courses also can use any of the department's eleven team rooms. Equipped with a computer and projector, network connections, a meeting table, seating for six, and generous whiteboard space, these rooms support the department's commitment to teamwork, both inside and outside the classroom.

## Web and Mobile Computing, BS

wmc.rit.edu
Stephen Zilora, Chair
(585) 475-7645, Steve.Zilora@rit.edu

## Program overview

Web and mobile computing explores ubiquitous application development with a firm focus on the end user experience. Students have an interest in the technology of today (and tomorrow), but they're also interested in how people use that technology. The Web and mobile computing major is about combining people and technology to bring out the best in both.

What truly sets our graduates apart is their ability to see the world through the eyes of the user. Creating an impactful App begins with solid code and good design, but understanding user expectations is the cornerstone of that process. In the Web and mobile computing major, students learn a user-centric approach to application creation. That, coupled with a robust developer skillset, enables them to produce applications that connect with multiple users across varied environments.

The curriculum is structured with this in mind. Students learn how to integrate the back end code with the front end UI, and will be able to do it across several languages and platforms. This comprehensive knowledge enables students to impact the App design process at all levels, making them incredibly valuable to employers seeking today's application developers. Students can also specialize on one of four areas, which provides students with the knowledge they need to pursue a professional or personal aspiration.

## Plan of study

A defining aspect of the web and mobile computing curriculum is the depth of study. Students learn a wide variety of languages and platforms so that they can meet the demands of industry and the public. For example, students don't just learn about web services, they learn how to use existing web services, how to create different types of web services, and how to do it in a variety of languages. And that's just part of what they'll learn in one of their courses (ISTE-341 Server Programming). After establishing this strong foundation, students can further their skills by choosing two of the following concentrations: Web Application Development, Mobile Application Development, Geographic Information Systems, and Wearable and Ubiquitous Development.

## Cooperative education

The major requires students to complete two blocks of cooperative education. Students may begin their co-op requirement after completing their second year of study.

## Curriculum

Web and mobile computing, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ISTE-120 | Computer Problem Solving: Information Domain I | 4 |
| ISTE-190 | Foundations of Modern Information Processing | 3 |
| MATH-131 | LAS Perspective 7A: Discrete Mathematics | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| ISTE-121 | Computer Problem Solving: Information Domain II | 4 |
| ISTE-140 | Web and Mobile I | 3 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
| NMDE-111 | New Media Design Digital Survey I | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-161 | LAS Perspective 7B: Applied Calculus | 4 |
| ISTE-240 | Web and Mobile II | 3 |
| ISTE-260 | Designing the User Experience | 3 |
| ISTE-330 | Database Connectivity and Access | 3 |
|  | LAS Perspective 2, 3 | 6 |
| SWEN-383 | Software Design Principles and Patterns | 3 |
| ISTE-252 | Foundations of Mobile Design | 3 |
| ISTE-340 | Client Programming | 3 |
| NSSA-290 | Networking Essentials for Developers | 3 |
| ISTE-099 | Second Year Seminar | 0 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISTE-341 | Server Programming | 3 |
|  | LAS Perspective 4 | 3 |
|  | LAS Perspective 5才 | 4 |
|  | Free Electives | 9 |
| ISTE-422 | Application Development Practices | 3 |
|  | WMC Concentration Courses | 6 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISTE-500, 501 | Senior Development Project I (WI), II | 6 |
|  | WMC Concentration Courses | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Perspective 6 | 4 |
|  | Free Elective | 3 |
|  | LAS Electives | 6 |

Total Semester Credit Hours 126
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.
§ Students satisfy this requirement by selecting one of the following four credit options: General Biology (BIOL-101) and General Biology Lab (BIOL-103); General and Analytical Chemistry (CHMG-141) and General and Analytical Chemistry (CHMG-145); or College Physics (PHYS-111).


## Additional information

## Global Opportunities

The web and mobile computing degree is offered both in Rochester, NY and in our overseas campuses in Dubrovnik and Zagreb, Croatia. Because the exact same courses are offered in all locations, students can easily spend a semester abroad learning about other cultures without any impact on their schedule of studies. Further, in their senior year all students take a yearlong Senior Development Project course in which teams are composed of students from all our campuses. So, whether students choose to study abroad or remain in Rochester, they will be working side by side with their peers from across the world.

Anne R. Haake, BA, Colgate University; MS, Rochester Institute of Technology; MS, Ph.D., University of South CarolinaDean; Professor

Michael A. Yacci, BS, Ithaca College; MS, Rochester Institute of Technology; Ph.D., Syracuse University-Associate Dean for Academic Affairs; Professor

Pengcheng Shi, BS, Shanghai Jiao Tong University (China); MS, M.Phil, Ph.D., Yale UniversityDoctorate Program Director; Professor; Associate Dean for Research \& Scholarship

## Computer Science

Mohan Kumar, BE, Bangalore University (India); MTech, Ph.D., Indian Insitute of Science (India) Department Chair; Professor

Peter G. Anderson, BS, Ph.D., Massachusetts Institute of Technology—Professor Emeritus

Reynold Bailey, BS, Midwestern State University; MS, Ph.D., Washington UniversityAssociate Professor

Ivona Bezakova, BS, Comenius University (Slovakia); Ph.D., University of ChicagoAssociate Professor

Hans-Peter Bischof, BS, MS, University of Ulm (Germany); Ph.D., University of Osnabrück (Germany)—Graduate Program Director; Professor

Zack Butler, BS, Alfred University; Ph.D., Carnegie Mellon UniversityAssociate Professor

Warren Carithers, BS, MS,
University of Kansas-
Associate Professor
Henry Etlinger, BS, University of Rochester; MS, Syracuse University-Undergraduate Program Coordinator; Associate Professor

Matthew Fluet, BS, Harvey Mudd College; Ph.D., Cornell UniversityAssociate Professor

Roger S. Gaborski, BS, MS, State University of New York at Buffalo; Ph.D., University of Maryland-Professor

Joe Geigel, BS, Manhattan College; MS, Stevens Institute of Technology; Ph.D., George Washington University-Professor

James Heliotis, BS, Cornell University; Ph.D., University of Rochester-Professor

Edith Hemaspaandra, BS, MS, Ph.D., University of Amsterdam (Netherlands)—Professor

Chris Homan, AB, Cornell University; MS, Ph.D., University of Rochester-Associate Professor

Trudy Howles, BS, MS, Rochester Institute of Technology; Ph.D., Nova Southwestern University-Professor

Alan Kaminsky, BS, Lehigh University; MS, University of Michigan—Professor

Fereydoun Kazemian, BS, Queen Mary College; MS, Pittsburgh State University; Ph.D., Kansas State University-Associate Professor

Mineseok Kwon, BS, MS, Seoul National University (South Korea); Ph.D., Purdue UniversityAssociate Professor

Xumin Liu, BE, Dalian University (China); ME, Jinan University (China); Ph.D., Virginia Polytechnic Institute-Associate Professor

Wiley McKinzie, BA, University of Wichita; MS, State University of New York at BuffaloProfessor Emeritus

Stanislaw Radziszowski, MS,
Ph.D., University of Warsaw (Poland)—Professor

Rajendra K. Raj, BS, Indian Institute of Technology (India); MS, University of Tennessee; MS, Ph.D., University of Washington-Professor

Leonid Reznik, MS, St. Petersburg Aircraft Academy; Ph.D., St. Petersburg Polytechnic Institute—Professor

Carol Romanowski, BS, MS,
Ph.D., University of BuffaloAssociate Professor

Paul Tymann, BS, MS, Syracuse University—Professor

Walter A. Wolf, BA, Wesleyan University; MS, Rochester Institute of Technology; MA, Ph.D., Brandeis University—Professor Emeritus

Richard Zanibbi, BA, MS, Ph.D., Queens University (Canada) Associate Professor

## Computing Security

Bo Yuan, BS, MS, Shanghai Normal University (China); Ph.D., State University of New York at Binghamton-Department Chair, Associate Professor

Jayalaxmi Chakravarthy, BS, State University College at Brockport; MS, University of Albany; MS, Nova Southeastern University-Lecturer
Daryl Johnson, BS, St. John Fisher College; MS, Rochester Institute of Technology-Associate Professor

Sumita Mishra, BS, Patna
University (India); BS, Ph.D., State University of New York at BuffaloAssociate Professor

Yin Pan, BS, MS, Shanghai Normal University (China); MS, Ph.D., State University of New York at Binghamton-Professor

Chaim Sanders, BS, MS, Rochester Institute of Technology-Lecturer

William Stackpole, BS, Roberts Wesleyan College; MS, Rochester Institute of Technology-Professor

Jonathan Weissman, BS, College of Staten Island; MA, Brooklyn College-Lecturer

## Information Sciences and Technologies

Stephen Zilora, BS, University of Rochester; MS, New Jersey Institute of Technology—Department Chair; Associate Professor

Daniel Ashbrook, BS, MS, Ph.D., Georgia Institute of TechnologyAssistant Professor

Catherine I. Beaton, BA, BEd, MITE, Dalhousie University (Canada)—Associate Professor

Daniel S. Bogaard, BFA,
Indiana University; MS, Rochester Institute of TechnologyUndergraduate Program Director; Associate Professor

Charles B. Border, BA, State University College at Plattsburgh; MBA, Ph.D., State University of New York at Buffalo-Associate Professor

Michael Floeser, AAS, BS, MS, Rochester Institute of TechnologySenior Lecturer

Vicki Hanson, BA, University of Colorado; MA, Ph.D., University of Oregon-Distinguished Professor

Bruce H. Hartpence, BS,
MS, Rochester Institute of Technology—Professor

Matt Huenerfauth, MS, University of Delaware; MSc, University College Dublin (Ireland); Ph.D., University of PennsylvaniaAssociate Professor

Lawrence Hill, BS, MS, Rochester Institute of TechnologyAssociate Professor

Edward Holden, BA, State
University College at Oswego; MBA, Rochester Institute of TechnologyAssociate Professor

Jai Kang, BS, Seoul National University (South Korea); MA, Kent State University; MS, Georgia Institute of Technology; Ph.D., State University of New York at BuffaloAssociate Professor

Daniel Kennedy, BS,
MS, Rochester Institute of Technology-Lecturer

Jeffrey A. Lasky, BBA, MBA, City College of New York; MS, University of Minnesota-Professor

Jim Leone, BS, University of Cincinnati; MA, Ph.D., Johns
Hopkins University-Professor
Peter Lutz, BS, St. John Fisher College; MS, Ph.D., State University of New York at Buffalo-Professor

Sharon P. Mason, BS, Ithaca College; MS, Rochester Institute of Technology—Professor

Michael McQuaid, BFA, New York University; MBA, MS, University of Wisconsin; Ph.D., University of Arizona-Lecturer

Tae (Tom) Oh, BS, Texas Tech University; MS, Ph.D., Southern Methodist UniversityAssociate Professor

## Sylvia Perez-Hardy,

BS, MBA, Cornell UniversityAssociate Professor

Evelyn P. Rozanski, BS, State
University College at Brockport; MS, Syracuse University; Ph.D., State University of New York at BuffaloProfessor Emeritus

Nirmala Shenoy, BE, ME,
University of Madras (India);
Ph.D., University of Bremen
(Germany)—Professor
Brian Tomaszewski, BA, University at Albany; MA, State University of New York at Buffalo; Ph.D., Pennsylvania State University-Associate Professor

Ronald P. Vullo, BS, LeMoyne College; Ed.M., Ph.D., University at Buffalo-Associate Professor

Elissa M. Weeden, BS, MS, Rochester Institute of TechnologyAssociate Professor

Qi Yu, BE, Zhejiang University (China); MS, National University of Singapore (Singapore); Ph.D., Virginia Polytechnic InstituteAssociate Professor

## Interactive Games and Media

David I. Schwartz, BS, MS, Ph.D.,
University of Buffalo-Director;
Associate Professor
Jessica Bayliss, BS, California State University at Fresno; MS, Ph.D., University of Rochester-Associate Director; Associate Professor

Kevin Bierre, BA, State University College at Geneseo; MS, Cornell University and Rochester Institute of Technology-Associate Professor

John A. Biles, BA, MS, University of Kansas-Professor

Sean Boyle, BS, MS, Rochester Institute of Technology-Lecturer
Nancy Doubleday, BS, MS,
Rochester Institute of TechnologyAssociate Professor

Chris Egert, BS, MS, Rochester Institute of Technology; Ph.D., University at BuffaloAssociate Professor

Gordon Goodman, BS, State
University of New York at Binghamton; MS (computer science), MS (information technology), Rochester Institute of Technology-Professor
W. Michelle Harris, BS, Carnegie Mellon University; MPS, New York University-Associate Professor

Tona Henderson, BS, Southwest Missouri State University; MS, University of MissouriAssociate Professor

Jay Alan Jackson, BS, MS, Ph.D., Florida State UniversityAssociate Professor

Stephen Jacobs, BA,
MA, New School for Social Research-Professor

Anthony Jefferson, BS, State University College at Oswego; MS, Rochester Institute of TechnologySenior Lecturer

Elizabeth Lane Lawley, AB, MLS, University of Michigan; Ph.D., University of Alabama-Professor
Elouise Oyzon, BFA, MFA, Rochester Institute of TechnologyAssociate Professor

Andrew Phelps, BFA, Bowling
Green State University;
MS, Rochester Institute of Technology-Professor

David Simkins, BA, Earlham College; MS, Ph.D., University of Wisconsin-MadisonAssistant Professor

## Software Engineering

Naveen Sharma, MS, Indian Institutes of Sciences (India); Ph.D., Kent State University-Department Chair; Professor

Yasmine El-Glaly, BSc, Faculty of Computers and Informatics (Egypt); MSc, Ain Shams University (Egypt); Ph.D., Virginia Polytechnic Institute and State UniversityVisiting Lecturer
J. Scott Hawker, BS, MS, Texas

Tech University; Ph.D., Lehigh University-Graduate Program Director; Associate Professor

Larry Kiser, BS, Roberts Wesleyan College; MS, Rochester Institute of Technology-Lecturer

Jeffrey Jockel, BS, USNA, MS, Stevens Institute of Technology; MBA, University of BaltimoreVisiting Lecturer

Daniel Krutz, BS, St. John Fisher College, MS, Rochester Institute of Technology; Ph.D., Nova Southeastern University-Lecturer
Samuel Malachowsky, BBA, State
University of New York at Buffalo; MBA, Medaille College-Lecturer
Andrew Meneely, BA, Calvin College; Ph.D., North Carolina State University-Assistant Professor

Mehdi Mirakhorli, BS, Teacher Training University (Iran); MS, National University (Iran); Ph.D., DePaul UniversityAssistant Professor

Meiyappan Nagappan, BE, Amma University (India); MS, Ph.D., North Carolina State University-Assistant Professor

Thomas Reichlmayr, BS, MS, Rochester Institute of TechnologyAssociate Professor

James Vallino, BE, The Cooper Union; MS, University of Wisconsin; Ph.D., University of Rochester-Professor

## Computing and Information Sciences

Pengcheng Shi, BS, Shanghai Jiao Tong University (China); MS, M.Phil., Ph.D., Yale University-Doctorate Program Director; Professor; Associate Dean for Research and Scholarship
Linwei Wang, BS, Zhejiang
University (China); M.Phil., Hong
Kong University of Science and Technology (Hong Kong); Ph.D., Rochester Institute of TechnologyAssistant Professor

# Kate Gleason College of Engineering 

Doreen Edwards, Dean<br>rit.edu/kgcoe

## Programs of study

Bachelor of Science in: ..... Page
\# Biomedical Engineering ..... 58Focus areas available in biomaterials; biomedical deviceand system design; biomedical signal processing; andphysiological modeling, dynamics and control.
\# Chemical Engineering ..... 60
\# Computer Engineering ..... 62
\# Electrical Engineering ..... 64Focus areas available in clean and renewable energy,computer engineering, robotics, and wireless communication.
\# Industrial Engineering 66
\# Mechanical Engineering ..... 71
Options available in aerospace engineering, automotive engineering, bioengineering, and energy and the environment.
\# Microelectronic Engineering ..... 74
Certificates in:

| Integrated Electronics | 76 |
| :--- | :--- |
| Mechatronics Engineering | 76 |

\# Accelerated BS/MS option available.

The majors offered by the Kate Gleason College of Engineering prepare students for careers in industry or for graduate study in engineering and related fields. Students develop a strong intellectual foundation for lifelong learning through a balance of course work in the liberal arts, physical sciences, and professional studies. The college offers majors leading to a bachelor of science degree in biomedical, chemical, computer, electrical, industrial, mechanical, and microelectronic engineering. All students participate in a fiveyear program that integrates a comprehensive four-year academic major with one year of cooperative education experience. After the second year of study, students typically alternate study on campus with cooperative education.

The first two years of each major emphasize mathematics, science and introductory-level engineering fundamentals to establish a foundation for the applied sciences and engineering subjects that follow in the third, fourth, and fifth years. Students also acquire hands-on design experience in their first year. This intro-
duces, as early as possible, the creative and innovative elements of engineering practice, helps students develop a strong appreciation for their engineering discipline, and prepares them for meaningful work experience on their first co-op placement. Advanced courses, of both a fundamental and applied nature, are taught in the fourth and fifth years.

Each major has a full complement of technical and free electives so that students may tailor their educational experiences to address special interests and career goals. In particular, all majors offer the flexibility of pursuing minors in a wide range of academic disciplines, from business and foreign language to the arts. In their fifth year, all students participate in Senior Design, a distinctive element of the Kate Gleason College. This broad-based, multidisciplinary design initiative provides the opportunity for student teams from a variety of disciplines to generate creative and innovative solutions to real-world, industry-inspired engineering problems.
In addition to the foundation and engineering courses in each major, students take a variety of other courses that enhance their education. In modern society, engineering decisions are rarely made without considering the ethical and socio-economic impacts. Because the ability to communicate clearly and effectively with others is indispensable to an engineer, a significant portion of the curriculum is devoted to the liberal arts. These courses sensitize students to the factors that surround most decision-making situations, improving their ability to communicate with others, making their professional lives more meaningful, and encouraging their positive impact on society.

## Goals

The overarching goals of the engineering program are to:

- educate students to become engineering professionals who are highly marketable and able to make an immediate impact in the workplace, and
- provide graduates with the educational foundation needed to succeed in selective graduate programs across the nation.

The Kate Gleason College accomplishes these goals by:

- integrating cooperative education into the program for all students,
- providing a strong foundation in mathematics and science as well as an appropriate balance between the liberal arts and technical courses,
- establishing an appropriate balance between the engineering design and engineering science components of the program,
- incorporating a strong laboratory component that is supported by outstanding laboratory facilities, and
- having a diverse faculty committed to engineering education. Advances in engineering and technology are occurring at a rapid rate. Our career-oriented programs allow us to respond quickly to these changes, keeping our curriculum current and responsive to industry needs.


## Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

The college's faculty is dedicated to teaching, research, and professional development with an emphasis on student involvement and success. Many faculty members have significant industrial experience that enhances their ability to convey the relevance of the subject matter in multiple contexts. Over 90 percent of the faculty members hold doctoral degrees.

## Facilities and resources

The college's programs reside in a building complex that includes over 350,000 square feet of classrooms, machine shops, computerbased design capabilities, and specialized laboratories for teaching and research. Highlights include an integrated circuit design center, computer labs with industry-standard CAD software packages, more than 10,000 square feet of Class- 1000 clean-room laboratory space for the fabrication of integrated circuits, a machining and manufacturing center equipped with state-of-the-art computer numerically controlled (CNC) machinery and 3D printing equipment, and a first-in-class engineering design center to teach product development and innovation. The engineering complex offers wireless access throughout. The chemical engineering and biomedical engineering majors reside in Institute Hall, which consists of $86,000 \mathrm{sq}$. ft. of office space, classrooms, labs, and open spaces. The facility also contains dedicated teaching and research labs, computer labs, a chemical stock room, and a green data center.

## Cooperative education

RIT's cooperative education requirement enhances the knowledge students acquire in the academic setting with on-the-job experience. The exposure is invaluable in bringing the engineering discipline to life for students, providing a meaningful framework for the complex concepts that are studied in the classroom. Co-op experiences also acquaint students with the constraints imposed by the industrial environment on the solution of real-world engineering problems and help them decide which career path would be most rewarding. The Office of Career Services and Cooperative Education assists students in identifying and applying for co-op positions.

Students typically begin co-op after two years of study, at a time when their educational background qualifies them for jobs that involve meaningful engineering work. One example of how cooperative education may be integrated into the academic program is shown.

| YEAR | FALL | SPRING | SUMMER |
| :--- | :---: | :---: | :---: |
| One | RIT | RIT | -- |
| Two | RIT | RIT | -- |
| Three | Co-op | RIT | Co-op |
| Four | RIT | Co-op | Co-op |
| Five | RIT | RIT | -- |

## Accreditation

All eligible majors have received national accreditation by ABET (Accreditation Board of Engineering and Technology), which is a prerequisite for licensure as a professional engineer in many states. The biomedical engineering major has applied for its initial accreditation which is expected in summer 2016. In their final semester of study, graduating seniors in ABET approved majors are eligible to sit for the NCEES Fundamentals of Engineering (FE) section of the New York State Professional Engineering examination, which is the first step in the process for licensure as a Professional Engineer (PE).

## Advising

Each student is immediately assigned an academic adviser who is available for academic and career counseling. By the end of the first year each student is also assigned a faculty adviser as an additional resource for career advising. The college's Student Services Office also provides specialized co-curricular programs and individual counseling to meet students' needs.

## Academic enrichment

The Honors Program: The Honors Program is designed to enrich the academic and professional experiences of some of the best students who apply to RIT. Honors participants have access to distinctive courses, receive special advising within the college, and enjoy privileges such as early registration and access to special housing. Engineering students enrolled in the Honors program are eligible to participate in a unique curriculum that focuses on product innovation for a global economy and strives to educate students about how engineers become leaders who shape the future of our society. Highlights include an all-expenses-paid trip to a key industry center, which provides a first-hand exposure to industry best practices in the conceptualization, development, design, and manufacture of innovative products from both a domestic and global perspective. Travel destinations have included a variety of destinations known for their diverse portfolio of engineering companies (e.g., Seattle, San Francisco, Phoenix, Austin, Miami; and Guadalajara, Mexico). Seminars and social events with engineering faculty mentors round out the program.

Minors: RIT offers students more than 90 minors to choose from to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

Study Abroad: RIT encourages all students to consider a study abroad program. Students may study full time at a variety of host schools and are able to select both courses in their majors and/or liberal arts classes. The Study Abroad Office has information about foreign study options and opportunities. Students may choose to take advantage of a growing number of opportunities for study
abroad, co-op placement outside the United States, or collaboration with students at an international university.

Writing competency: All students are required to be proficient in writing the English language. This is accomplished through required courses in the liberal arts and through writing requirements established and monitored by individual departments. A passing grade on the college's writing test, administered in the third, fourth, or fifth year, is required for graduation.

Professional student organizations: The college maintains memberships in the following professional organizations: American Institute of Chemical Engineers, American Society of Mechanical Engineers, Biomedical Engineering Society, Engineers for a Sustainable World, Institute of Electrical and Electronic Engineers, Institute of Industrial Engineers, Microelectronic Engineering Student Association, National Society of Black Engineers, Society of Automotive Engineers, Society of Hispanic Professional Engineers, Society of Manufacturing Engineers, and Society of Women Engineers.

## Special Opportunities

Accelerated dual degree options: Many of the engineering majors offer accelerated dual degree (BS/MS, BS/ME, or BS/MBA) options. These options offer students the opportunity to earn a bachelor's degree and a master's degree in less time than pursuing each degree individually. Please refer to individual programs, the Graduate Bulletin, or the college's website for more information.

Graduate study: The college offers doctorate degrees in engineering and microsystems engineering; master of science degrees in computer engineering, electrical engineering, industrial and systems engineering, materials science and engineering (offered jointly with the College of Science), mechanical engineering, microelectronic engineering, product development, manufacturing leadership, and sustainable engineering; master of engineering degrees in engineering management, industrial and systems engineering, mechanical engineering, microelectronics manufacturing engineering, and sustainable engineering; and advanced certificates in lean six sigma, mechatronics, and vibrations. For more information regarding these graduate programs, please refer to the Graduate Bulletin or visit the college's website.

Women and minorities in engineering: The Kate Gleason College is proud of its many co-curricular programs that have helped build a strong sense of community among its students and faculty. Focused on student success, the college's Office of Student Services manages a variety of special programs to enhance the quality of the educational experience for female and minority engineering students.

Our nationally recognized Women in Engineering (WE@RIT) program is dedicated to increasing the representation of women within the engineering disciplines through outreach and community building. Current students can participate in these programs and learn valuable leadership skills, network with women engineers in the area, and have access to resources that help prepare them for success. For more information visit rit.edu/women.

## Engineering Exploration, Undeclared

rit.edu/kgcoo/student-resource/engineering-exploration
Matthew Marshall, Associate Dean of Undergraduate Programs (585) 475-7142, mmmeie@rit.edu

## Program overview

The engineering exploration option is for students who would like additional time to fully explore RIT's portfolio of engineering majors before committing to a program of study. Students may choose a major anytime during the first year.

## Plan of study

Students complete foundation courses required by all the engineering disciplines. Course work taken in the engineering exploration option will transfer into all engineering majors without any loss of credits hours.

During the fall semester, engineering exploration students take Engineering Exploration Seminar (EGEN-100). In this course, students are introduced to the curriculum of each engineering major offered by the Gleason College. Sample lab and project work is presented as well as the various career opportunities pertaining to each major. Additional career-oriented activities are available through this option, including meeting with engineering faculty and students in the different majors, observing presentations of engineering design projects, exploring engineering laboratory facilities, and one-on-one consulting with an academic adviser regarding engineering courses.

## Curriculum

Undeclared engineering, typical course sequence


## Biomedical Engineering, BS

rit.edu/kgcoe/biomedical
Steven Day, Department Head, Biomedical Engineering
(585) 475-7144, swdeme@rit.edu
(585) 475-7144, swdeme@rit.edu

## Program overview

## Educational objectives

The bachelor of science degree in biomedical engineering prepares graduates to:

- apply fundamental knowledge, skills, and tools of engineering to a wide variety of problems related to human health.
- possess a broad education and knowledge of contemporary issues relevant to the practice of the biomedical engineering profession.
- engage in lifelong learning as a means of adapting to change, refining skill level, and remaining aware of professional and societal issues.
- communicate effectively as individuals, and within and across teams.
- accept the professional and ethical responsibilities to function as a biomedical engineer in society.
- work as engineering professionals in the private or public sector.
- participate in graduate study and obtain advanced degrees, if desired

Biomedical engineers are intimately involved in the development of devices and techniques to address issues associated with the state of human health. Such development is inherently a multidisciplinary endeavor requiring expertise from a wide range of professionals, and in particular engineers from the classical disciplines such as chemical, electrical, and mechanical engineering. This is true whether in industrial, research, or clinical settings. A fully successful multidisciplinary team must have at least one member who possesses a comprehensive understanding of the highly variable and intricate nature of the biomedical system of interest. This team member must possess the quantitative and analytical engineering skills needed to precisely define the challenge that is being addressed and assess the relative effectiveness of plausible solution strategies. This crucial role can be performed effectively by a biomedical engineer expressly educated to meet those requirements and qualifications.

The BS degree in biomedical engineering delivers a focused curriculum that targets the biomedical enterprise from a highly quantitative and analytically rigorous perspective. The goal is to enable participants to compete successfully for engineering-related positions immediately upon graduation or to pursue post-graduate education in engineering, science, or medicine. Undergraduates will have the ability to contribute significantly to the development of new knowledge, understanding, and innovative solutions in the health care industry and across a wide variety of health care related research applications.

## Plan of study

Biomedical engineering is a five-year program consisting of one year of cooperative employment experience and the following course requirements: biomedical engineering core, professional technical electives, science and mathematics, liberal arts, free electives, and wellness education. The program culminates in the fifth year with a two-course multidisciplinary design sequence, a capstone design experience that integrates engineering theory, principles, and processes within a collaborative environment that bridges engineering disciplines.

## Typical areas of interest

## Biomaterials

An important feature of materials intended for biomedical applications is their compatibility with the environment in which they are employed. This presumes a solid knowledge and understanding of a wide variety of biologically compatible materials. Similarly, the dynamic behavior of the materials in response to stress, strain, and wear must often be assessed in terms of efficacy, safety, and durability. Useful and rigorous modeling, as well as the design and evaluation of material performance, requires a strong foundation in physics, chemistry, and mathematics (including statistics) along with an understanding of appropriate and accurate analysis methods. Courses for this type of work are provided in the core curriculum of the program. However, electives that provide additional expertise in this area (e.g.: material science, probability and statistics, chemistry and chemical engineering) may be obtained by selecting the biomaterials concentration.

## Biomedical device and system design

Students will develop the ability to propose and assess innovative ideas and understand the type of analysis and assessment tools that are key elements in the process of developing robust designs. Constraints on such designs are safe and efficient devices, systems, and processes for biomedical applications. This represents a need in industrial, research, and clinical environments, and includes therapeutic, rehabilitative, and research-oriented developments.

## Biomedical signal processing

Biological systems are inherently complex and are composed of processes, mechanisms, and phenomena that interact, often in parallel and across a wide range of scales and environments. The ability to determine key aspects of those systems for biomedical applications requires a rigorous and in-depth capability to detect, process, and interpret signals that can be extracted and measured, often in the midst of noise and confounding information. Producing reliable information that can be used to assess or understand those systems requires careful processing and interpretation of available signals.

## Physiological modeling, dynamics, and control

Homeostasis is fundamentally a feedback process. Generally, biological systems contain a myriad of interrelated and interacting feedback systems that are inherently non-deterministic in nature and usually have a variety of optimal or satisfactory operating points. If the goal of a therapeutic or rehabilitative system or intervention is to predict the outcome of some intended action, then it becomes essential to accurately model the behavior of the relevant characteristics of the targeted system. This type of analysis can be used to support fundamental research as well as help provide guidance to develop a new device or system. A concentration in this area builds on the core elements of the curriculum as well as an understanding, from a systems perspective, of human physiology.

## Curriculum

Biomedical engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| BIME-181 | Introduction to Biomedical Engineering I | 1 |
| CHMG-141 | General and Analytical Chemistry I | 3 |
| CHMG-145 | General and Analytical Chemistry I Lab | 1 |
| MATH-181 | Project-Based Calculus I | 4 |
|  | First Year Writing Seminar | 3 |
| BIME-182 | Introduction to Programming for Biomedical Engineering | 2 |
| CHMG-142 | General and Analytical Chemistry II | 3 |
| CHMG-146 | General and Analytical Chemistry II Lab | 1 |
| MATH-182 | Project-Based Calculus II | 4 |
| PHYS-211 | University Physics I | 4 |
|  | LAS Perspective 1 | 3 |
|  | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIME-200 | Introduction to Musculoskeletal Biomechanics | 3 |
| BIME-250 | Biosystems Process Analysis | 3 |
| BIME-391 | Biomechanics and Biomaterials Lab | 2 |
| BIOG-140 | Cell and Molecular Biology for Engineers I | 3 |
| MATH-231 | Differential Equations | 3 |
| BIME-370 | Introduction to Biomaterials Science | 3 |
| BIME-320 | Fluid Mechanics | 3 |
| BIOG-141 | Cell and Molecular Biology for Engineers II | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
|  | LAS Perspective 2 | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| BIME-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| BIME-499 | Cooperative Education (fall and summer) | Co-op |
| BIME-410 | Systems Physiology I | 3 |
| BIME-440 | Biomedical Signals and Analysis | 4 |
| STAT-251 | LAS Perspective 7A: Probability and Statistics for Engineers I | 3 |
| BIOG-142 | Biocompatibility and the Immune System | 3 |
|  | LAS Perspective 3 | 3 |
| Fourth Year |  |  |
| BIME-411 | Systems Physiology II (WI) | 3 |
| MECE-407 | Biomedical Device Engineering | 3 |
| ISEE-325 | DOE for Biomedical Engineers | 3 |
| BIME-450 | Numerical and Statistical Analysis of Complex Biosystems | 3 |
| BIME-491 | Quantitative Physiological Signal Analysis Lab | 1 |
|  | LAS Immersion 1 | 3 |
| BIME-499 | Cooperative Education (spring and summer) | Co-op |
| Fifth Year |  |  |
| BIME-497 | Multidisciplinary Senior Design I | 3 |
| BIME-460 | Dynamics and Control of Biomedical Systems | 3 |
|  | Professional Electives | 6 |
|  | Free Electives | 6 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 2, 3 | 6 |
| BIME-492 | Systems Physiology Control and Dynamics Lab | 1 |
| BIME-498 | Multidisciplinary Senior Design II | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Biomedical engineering, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIME-181 | Introduction to Biomedical Engineering | 1 |
| BIME-182 | Introduction to Programming for Biomedical Engineers | 1 |
| PHYS-211 | University Physics | 4 |
|  | First Year LAS Elective | 3 |
| $\begin{aligned} & \text { CHMG-141, 142, } \\ & 145,146 \end{aligned}$ | General and Analytical Chemistry I, II and Labs | 8 |
|  | First Year Writing Seminar | 3 |
| MATH-181, 182 | Project-based Calculus I, II | 8 |
| ACSC-010 | Year One: College Experience | 0 |
|  | LAS Perspective 1 | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIME-200 | Musculoskeletal Biomechanics | 3 |
| BIME-250 | Biosystem Process and Analysis | 3 |
| BIOG-240 | Cell and Molecular Biology for Engineers I | 3 |
| MATH-231 | Differential Equations | 3 |
| BIME-370 | Biomaterials | 3 |
| BIME-391 | Biomechanics/Biomaterials Lab | 1 |
| CHME-320 | Continuum Mechanics | 3 |
| BIOL-141 | Cellular/Molecular Biology for Engineers | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
|  | LAS Perspective 2 | 3 |
| EGEN-099 | Engineering Co-op Prep | 0 |
| BIME-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| BIME-499 | Cooperative Education (fall) | Co-op |
| BIME-410 | Systems Physiology I | 3 |
| BIME-440 | Biomedical Signals and Analysis | 3 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| BIOG-242 | Biocompatibility of the Immune System | 3 |
|  | LAS Perspective 3, 4 | 6 |
| Fourth Year |  |  |
| BIME-499 | Cooperative Education (summer) | Co-op |
| BIME-411 | Systems Physiology II | 3 |
| MECE-407 | Biomedical Device Engineering | 3 |
| STAT-252 | Probability and Statistics for Engineers II | 3 |
| BIME-450 | Analysis of Complex Biosystems | 3 |
| BIME-491 | Quantitative Physiological Signal Analysis Lab | 1 |
| STSO-740 | Science Technology Policy | 3 |
|  | LAS Immersion 3: Public Policy Elective | 3 |
|  | LAS Immersion 1: Graduate Policy Analysis | 3 |
| PUBL-702 | LAS Immersion 2: Graduate Decision Analysis | 3 |
|  | BIME Professional Elective | 3 |
|  | Public Policy Elective | 3 |
|  | Free Elective | 3 |
| Fifth Year |  |  |
| BIME-497, 498 | Multidisciplinary Design I, II | 6 |
| BIME-492 | Systems Physiology Control and Dynamics Lab | 1 |
| PUBL-703 | Evaluation and Research | 3 |
| CQAS-325 | DOE for Biomedical Engineers | 3 |
| PUBL-700 | Readings in Public Policy | 3 |
|  | Free Elective | 3 |
|  | BIME Professional Elective | 3 |
|  | Public Policy Elective | 6 |
| Choose one of the following: |  | 6 |
| Thesis Research, Thesis |  |  |
|  | Graduate Electives, Comprehensive Exam |  |

[^3]Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.


## Chemical Engineering, BS

## rit.edu/kgcoe/chemical

## Steven Weinstein, Department Head <br> (585) 475-4299, steven.weinstein@rit.edu

## Program overview

Chemical engineering applies the core scientific disciplines of chemistry, physics, biology, and mathematics to transform raw materials or chemicals into more useful or valuable forms, invariably in processes that involve chemical change. All engineers employ mathematics, physics, and engineering art to overcome technical problems in a safe and economical fashion. The chemical engineer provides the critical level of expertise needed to solve problems in which chemical specificity and change have particular relevance. They not only create new, more effective ways to manufacture chemicals, they also work collaboratively with chemists to pioneer the development of high-tech materials for specialized applications. Well-known contributions include the development and commercialization of synthetic rubber, synthetic fiber, pharmaceuticals, and plastics. Chemical engineers contribute significantly to advances in the food industry, alternative energy systems, semiconductor manufacturing, and environmental modeling and remediation. The special focus within the discipline on process engineering cultivates a systems perspective that makes chemical engineers extremely versatile and capable of handling a wide spectrum of technical problems.

Our curriculum prepares students in the traditional areas of chemical engineering while complementing and infusing these areas with insights and perspectives gleaned from faculty research areas and modern trends. The relevance of length scale in traditional and modern applications is emphasized as a key underpinning of chemical engineering analysis.

## Educational objectives

Graduates of the bachelor of science degree in chemical engineering are expected, within a few years of graduation, to have:

- demonstrated an ability to draw upon the fundamental knowledge, skills, and tools of chemical engineering to develop scale-appropriate system-based engineering solutions that satisfy constraints imposed by a global society.
- demonstrated an ability to enhance their skills through formal education and training, independent inquiry, and professional development.
- demonstrated an ability to work independently as well as collaboratively with others, and to have demonstrated leadership, accountability, initiative, and ethical and social responsibility.
- demonstrated the ability to successfully pursue graduate degrees at the master's and/or doctorate levels for those with relevant qualifications.


## Accreditation

The BS program in chemical engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/.

## Plan of study

The core curriculum of the chemical engineering major provides students with a solid foundation in engineering principles and their underlying science. Students choose professional technical electives that provide them with more depth in the chemical engineering field or breadth in other engineering disciplines. These electives may be chosen from those offered within the major, as well as from a department-approved list of engineering courses offered throughout the college. A capstone design experience in the fifth year integrates chemical engineering theory, principles, and processes in a collaborative team environment.

Mathematics and science courses, free electives, and liberal arts courses round out the curriculum.

## Cooperative education

Students are required to complete 48 weeks of cooperative education, which is full-time, paid work experience that enables students to apply what they have learned to co-op positions in companies around the country and the world. This work experience, coupled with the professional networks created by our students and alumni, often translates into jobs after graduation. Additionally, for those students who develop an interest in research and demonstrate aptitude in the classroom, a limited number of co-op opportunities are possible in which students will work alongside professors as they conduct research in the chemical engineering field.

## Electives

Professional technical elective courses offered include:

- CHME-421 Interfacial Phenomena
- CHME-422 Introduction to Applied Rheology
- CHME-431 Advanced Separation Processes
- CHME-489 Special Topics: Advanced Process Dynamics and Control
- CHME-489 Special Topics: Advanced Reactor Design
- CHME-489 Special Topics: Biochemical Engineering


## Curriculum

## Chemical engineering, BS degree, typical course sequence

COURSE SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
| CHME-181 | Chemical Engineering Insights I | 1 |
| CHMG-141 | General and Analytical Chemistry I | 3 |
| CHMG-145 | General and Analytical Chemistry Lab I | 1 |
| MATH-181 | Project-based Calculus I | 4 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| CHME-182 | Chemical Engineering Insights II | 1 |
| CHMG-142 | General and Analytical Chemistry II | 3 |
| CHMG-146 | General Chemistry Lab II | 1 |
| PHYS-211 | University Physics I | 4 |
| MATH-182 | Project-based Calculus II | 4 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHME-230 | Chemical Process Analysis | 3 |
| CHMO-231 | Organic Chemistry 1 | 3 |
| CHMO-235 | Organic Chemistry I Lab | 1 |
| MATH-231 | Differential Equations | 3 |
|  | LAS Perspective 2,3 | 6 |
| CHME-310 | Applied Thermodynamics | 3 |
| CHME-320 | Continuum Mechanics I | 3 |
| CHME-391 | Chemical Engineering Principles Lab | 2 |
| CHMI-351 | Descriptive Inorganic Chemistry | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
|  | Cooperative Education (fall and summer) | Co-op |
| CHME-330 | Mass Transfer Operations | 3 |
| CHME-321 | Continuum Mechanics II | 3 |
| CHME-301 | Analytical Tech. for Chemical Engineers I | 3 |
| CHMA-231 | Chemical Instrumental Analysis for Engineering | 3 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| CHME-350 | Multiple Scale Material Science | 3 |
| CHME-340 | Reaction Engineering | 4 |
| CHME-302 | Analytical Techniques for Chemical Engineers II | 3 |
| CHME-491 | Chemical Engineering Processes Lab (WI) | 2 |
|  | LAS Immersion 2, 3 | 6 |
|  | Cooperative Education (spring and summer) | Co-op |
| Fifth Year |  |  |
| CHME-451 | Analysis of Multi-Scale Processes | 3 |
| CHME-492 | Special Topics: Advanced Design Capstone | 3 |
| CHME-490 | Design With Constraint | 3 |
|  | Professional Technical Electives | 9 |
| PHYS-212 | University Physics II | 4 |
| CHME-401 | System Dynamics and Control | 3 |
|  | Free Electives | 6 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

A five-year accelerated, cross-disciplinary degree is available for motivated, qualified chemical engineering students who are interested in earning a BS in chemical engineering and an MS in science, technology, and public policy (offered by the College of Liberal Arts). The science, technology and public policy program emphasizes the creation and understanding of engineering, science, and technology policy. It enables students to interact with faculty members and researchers who are working on scientific developments and technological innovations that drive new public policy considerations.

Chemical engineers are ideal candidates to augment their education with in-depth knowledge of public policy. The breadth and depth of chemical engineering, as evidenced by the large range of application domains in which they play a role, provides an opportunity for chemical engineers to influence public policy over a broad range of issues of
relevance to society. Additionally, as chemical engineers are often called on to mitigate problems of societal importance such as environmental remediation, an in-depth knowledge of government regulations and their origin is often essential for engineering practice.

## Chemical engineering, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CHME-181 | Chemical Engineering Insights I | 1 |
| CHMG-141 | General and Analytical Chemistry I | 3 |
| CHMG-145 | General and Analytical Chemistry Lab I | 1 |
| MATH-181 | Project-based Calculus I | 4 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| CHME-182 | Chemical Engineering Insights II | 1 |
| CHMG-142 | General and Analytical Chemistry II | 3 |
| CHMG-146 | General and Analytical Chemistry Lab II | 1 |
| PHYS-211 | University Physics I | 4 |
| MATH-182 | Project-based Calculus II | 4 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHME-230 | Chemical Process Analysis | 3 |
| CHMO-231 | Organic Chemistry I | 3 |
| CHMO-235 | Organic Chemistry I Lab | 1 |
| MATH-231 | Differential Equations | 3 |
|  | LAS Perspective 2, 3 | 6 |
| CHME-310 | Applied Thermodynamics | 3 |
| CHME-320 | Continuum Mechanics I | 3 |
| CHME-391 | Chemical Engineering Principles Lab | 2 |
| CHMI-351 | Descriptive Inorganic Chemistry | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
|  | Cooperative Education (fall and summer) | Co-op |
| CHME-330 | Mass Transfer Operations | 3 |
| CHME-321 | Continuum Mechanics II | 3 |
| CHME-301 | Analytical Tech. for Chemical Engineers I | 3 |
| CHMA-231 | Chemical Instrumental Analysis for Engineering | 3 |
|  | LAS Perspective 4 | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| CHME-350 | Multiple Scale Material Science | 3 |
| CHME-340 | Reaction Engineering | 4 |
| CHME-302 | Analytical Techniques for Engineers II | 3 |
| CHME-491 | Chemical Engineering Processes Lab (WI) | 2 |
| PUBL-701 | Graduate Policy Analysis | 3 |
| PHYS-212 | University Physics II | 4 |
|  | LAS Immersion 1, 2 | 6 |
| PUBL-702 | Graduate Decision Analysis | 3 |
| STSO-710 | Science and Technology Policy Seminar | 3 |
|  | Free Elective | 3 |
|  | Cooperative Education (summer) | co-op |
| Fifth Year |  |  |
|  | Professional Electives | 9 |
|  | LAS Immersion 3 | 3 |
| PUBL-703 | Program Evaluation and Research Design | 3 |
| CHME-401 | System Dynamics and Control | 3 |
| CHME-451 | Analysis of Multi-scale Processes | 3 |
| CHME-492 | Advanced Design Capstone | 3 |
| CHME-490 | Design with Contraint | 3 |
| PUBL-700 | Readings in Graduate Policy | 3 |
| Choose one of the following: |  | 6 |
| Two Graduate Electives and Comprehensive Exam |  |  |
| PUBL-799 | Thesis |  |
| Total Semester Credit Hours |  | 150 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Computer Engineering, BS

## rit.edu/kgcoe/computerengineering <br> Shanchieh Jay Yang, Department Head <br> (585) 475-2987, jay.yang@rit.edu

## Program overview

The computer engineering major focuses on the design and development of computer and computer-integrated systems, with due consideration to such engineering factors as function, performance, security, sustainability and cost. Computer engineers design and build these systems to meet application requirements with attention to the hardware-software interaction. The program spans topics from formal specifications to heuristic algorithm development; from systems architecture to computer design; from interface electronics to software development, especially real-time applications; and from computer networking to integrated circuit design and implementation.

As an engineering discipline, computer engineering emphasizes the careful adoption of design methodology and the application of sophisticated engineering tools. The intensive programming and laboratory work requirements ensure significant experience with modern facilities and up-to-date design tools.

The computer engineering department focuses on educating students in software, hardware and integration of systems. Faculty have expertise and research in the following areas and students who have a similar interest may choose to take professional electives in these areas as well: high performance computing, integrated circuits and systems, embedded systems and control, networks and security, and computer vision and machine intelligence.

The cooperative education program enables students to apply the principles and techniques of computer engineering to real industrial and societal problems and provides them with a stronger framework on which to build their academic courses. These co-op work periods alternate with academic semesters throughout the last three years of the program.

The faculty members of the computer engineering department are committed to quality engineering education and student success.

## Educational objectives

The computer engineering department has established the following educational objectives for the computer engineering program, which describe the accomplishments of its graduates during the first few years following graduation:

Career focus: Graduates successfully contribute to the professional workforce typically by applying their knowledge in various areas of computer engineering related to hardware, software, and/or systems.

Graduate study: Many graduates have pursued, are pursuing, or plan to pursue graduate study in computer engineering, related disciplines, or in business.

Independent learning: Graduates are engaged in lifelong learning and stay current with advancements in their chosen field through independent learning and/or continuing education.

Professionalism: Graduates conduct themselves in a professional and ethical manner and function as responsible members of society.

## Accreditation

The BS program in computer engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Principal field of study

For students matriculated in the interdisciplinary computer engineering program, the principal field of study is defined as all courses taken in the Kate Gleason College of Engineering and the Departments of Computer Science and Software Engineering.

## Curriculum

Computer engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CMPE-110 | Introduction to Computer Engineering | 1 |
| MATH-181, 182 | Project-based Calculus I, II | 8 |
| CSCI-141, 142 | Computer Science I, II | 8 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| CMPE-160 | Digital Systems Design I | 3 |
| PHYS-211 | University Physics I | 4 |
|  | LAS Perspective 1, 2 | 6 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CMPE-250 | Assembly Language | 3 |
| MATH-190 | Discrete Math for Computing | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-212 | University Physics II | 4 |
| SWEN-261 | Introduction to Software Engineering | 3 |
|  | LAS Perspective 3 | 3 |
| CMPE-260 | Digital Systems Design II | 4 |
| EEEE-281 | Circuit I | 3 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra I | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
| CMPE-350 | Computer Organization | 3 |
| EEEE-282 | Circuit II | 3 |
| EEEE-381 | Electronics I | 3 |
| CMPE-380 | Applied Programming | 3 |
|  | LAS Perspective 4 | 3 |
| CMPE-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| CMPE-499 | Cooperative Education | Co-op |
| CMPE-460 | Interface and Digital Electronics | 4 |
| CMPE-480 | Digital Signal Processing | 3 |
| CMPE-550 | Computer Architecture (WI) | 3 |
| MATH-251 | Probability and Statistics I | 3 |
|  | LAS Immersion 1 | 3 |
| Fifth Year |  |  |
| CMPE-495, 497 | Senior Design Projects I | 3 |
| CMPE-496, 498 | Senior Design Projects II | 3 |
| CMPE-570 | Data and Communication Networks | 3 |
| CMPE-530 | Digital IC Design | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Professional Electives | 6 |
|  | Free Electives | 6 |

Total Semester Credit Hours 129
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree options

Accelerated dual degree (BS/MS) options are available to students who qualify. Students may apply in their second year of study and requirements are strict. Students usually finish these programs in five years with the addition of the summer following their course completion. A thesis or graduate project is required.

## Computer engineering, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CMPE-110 | Introduction to Computer Engineering | 1 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
| CSCI-141, 142 | Computer Science I, II | 8 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| CMPE-160 | Digital Systems Design I | 3 |
| PHYS-211 | University Physics I | 4 |
|  | LAS Perspective 1, 2 | 6 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CMPE-250 | Assembly Language | 3 |
| MATH-190 | Discret Math for Computing | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-212 | University Physics II | 4 |
| SWEN-261 | Introduction to Software Engineering | 3 |
|  | LAS Perspective 3 | 3 |
| CMPE-260 | Digital Systems Design II | 4 |
| EEEE-281 | Circuits I | 3 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra I | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| CMPE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CMPE-350 | Computer Organization | 3 |
| EEEE-282 | Circuits II | 3 |
| EEEE-381 | Electronics I | 3 |
| CMPE-380 | Applied Programming | 3 |
| MATH-251 | Probability and Statistics I | 3 |
|  | LAS Perspective 4 | 3 |
| CMPE-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| CMPE-460 | Interface and Digital Electronics | 4 |
| CMPE-480 | Digital Signal Processing | 3 |
| CMPE-550 | Computer Architecture (WI) | 3 |
| CMPE-670 | Data and Communication Networks | 3 |
| CMPE-795 | Computer Engineering Graduate Seminar | 0 |
|  | LAS Immersion 1, 2 | 6 |
| CMPE-495, 497 | Senior Design Projects I | 3 |
|  | Professional Electives | 6 |
| CMPE-630 | Digital IC Design | 3 |
|  | Restricted Core for BS/MS | 3 |
| Fifth Year |  |  |
| CMPE-496, 498 | Senior Design Projects II | 3 |
| CMPE-610 | Analytical Topics in Computer Engineering | 3 |
|  | Graduate Electives | 9 |
|  | LAS Immersion 3 | 3 |
| Choose one of the following: |  | 6 |
| CMPE-790 | Thesis |  |
| CMPE-791 | Graduate Project, Project Focus Elective |  |

## Total Semester Credit Hour

lease see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
WI) Refers to a writing intensive course within the major
*Please see Wellness Education Requirement for more information. Students completing bachelor's

Computer engineering, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CMPE-110 | Introduction to Computer Engineering | 1 |
| CSCI-141, 142 | Computer Science I, II | 8 |
| CSCI-181, 182 | Project-based Calculus I, II | 8 |
| CMPE-160 | Digital Systems Design I | 3 |
| PHYS-211 | University Physics I | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | First Year Writing Seminar | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 2, 3 | 6 |
|  | Wellness Education* |  |
| Second Year |  |  |
| CMPE-250 | Assembly Language | 3 |
| SWEN-261 | Introduction to Software Engineering | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| MATH-190 | Discrete Math | 3 |
| PHYS-212 | University Physics II | 4 |
| CMPE-260 | Digital Systems Design II | 4 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra I | 3 |
| EEEE-281 | Circuits I | 3 |
|  | LAS Perspective 1 | 3 |
| EGEN-99 | Co-op Preparation Seminar | 0 |
| CMPE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| CMPE-350 | Computer Organization | 3 |
| CMPE-380 | Applied Programming | 3 |
| EEEE-381 | Electronics I | 3 |
| EEEE-282 | Circuits II | 3 |
|  | LAS Perspective 4 | 3 |
| CMPE-499 | Cooperative Education (fall or spring) | Co-op |
| Fourth Year |  |  |
| CMPE-499 | Cooperative Education (summer) | Co-op |
| MATH-251 | Probability and Statistics | 3 |
| CMPE-480 | Digital Signal Processing | 3 |
| CMPE-550 | Computer Architecture | 3 |
| CMPE-570 | Data and Communication Networks | 3 |
| CMPE-460 | Interface and Digital Electronics | 4 |
|  | LAS Immersion I: Graduate Policy Analysis | 3 |
|  | LAS Immersion 2: Graduate Decision Analysis | 3 |
|  | Professional Elective | 3 |
|  | Free Electives | 6 |
| Fifth Year |  |  |
| CMPE-530 | Digital IC Design | 3 |
| $\begin{aligned} & \text { CMPE-495/497, } \\ & 496 / 498 \end{aligned}$ | Senior Design Projects I, II | 6 |
|  | Professional Elective | 3 |
|  | Graduate Readings in Public Policy | 3 |
|  | Graduate Electives | 6 |
|  | Graduate Seminar in Science Technology Policy | 3 |
|  | LAS Immersion 3: Graduate Elective | 3 |
|  | Seminar to Evaluate Research Design | 3 |
| Choose one of the following: |  | 6 |
| Thesis |  |  |
| Graduate Electives, Comprehensive Exam |  |  |

Total Semester Credit Hours 15
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Electrical Engineering, BS

## rit.edu/kgcoe/eme/

## Sohail Dianat, Department Head <br> (585) 475-2165, sadeee@rit.edu

## Program overview

Electrical engineering addresses the high-technology needs of business and industry by offering a rich academic program that includes analog and digital integrated circuits, digital signal processing, radiation and propagation, power electronics, control systems, communications, circuit theory, computer architecture, computer-aided design, embedded systems, solid-state devices, microelectromechanical systems (MEMs), and robotics.

The major prepares students for exciting careers within the varied electrical engineering and allied disciplines and for positions in business management. Graduates also have the foundation to pursue advanced study at the most prestigious graduate schools.

The curriculum, co-op program, and facilities are designed to accomplish the program's educational objectives. Since the ability to design is an essential part of electrical engineering, students are presented with challenging design problems in a number of courses, beginning with Freshman Practicum (EEEE-105) in the first year.

To strengthen students' applied knowledge, laboratories are an integral part of many courses. The department offers a number of classes in stu-dio-style lecture labs, where the instructor presents the lecture in a fully instrumented room that allows immediate observation and implementation of important engineering ideas. Many of our alumni report that the college's facilities are comparable to the best in the industry.

A highlight of the applied engineering experience is the senior project. Students work on a challenging project under the tutelage of an experienced faculty adviser. While experiencing the satisfaction of completing an interesting project and exploring the latest in technology, students develop engineering management and project organization skills, learn to communicate their ideas effectively within a multidisciplinary team, and present their project and ideas to a diverse audience of students, faculty, and industrial partners.

## Educational objectives

The electrical engineering faculty, in conjunction with its constituents, have established the following educational objectives. Graduates will:

- Have a strong foundation in mathematics and basic sciences, and core electrical engineering fundamental knowledge and abilities necessary for specialization in all areas of electrical engineering.
- Develop problem solving and design skills for devising and evaluating solutions to electrical engineering problems, including design of components, systems, and experiments.
- Be well-informed about present and emerging technologies significant to electrical engineering.
- Be well-prepared for graduate education.
- Embrace and foster an environment that encourages creativity and enthusiasm for life-long learning.
- Develop professional attributes that include communication skills, teamwork, ethics, and an appreciation for other disciplines, both technical and non-technical, in order to deal with the impact of technology in a global, societal, and organizational context.


## Accreditation

The BS in electrical engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Plan of study

The first two years of the curriculum are devoted to establishing a foundation in mathematics and the physical science, which is essential to the study of electrical engineering. In other courses, students learn about electrical engineering principles such as circuits and digital systems. Practicum courses introduce students to electrical engineering practice and computer-aided design (CAD) tools that are used throughout the five-year program.

In the third and fourth years, students focus on the subjects that form the core of electrical engineering. Courses in circuits, electronics, linear systems, electromagnetic fields, semiconductor devices, communication systems, control systems, and microelectromechanical systems are taught.

During the fifth year, students specialize in an area of professional interest. They complete a senior design project as part of the graduation requirements.

## Program options

Students may develop a focus area in one of four options. Students complete all the required courses for the BS in electrical engineering and choose their free and professional electives from a specified set of courses in one of the following areas.

## Clean and renewable energy option

Because of the environmental impact, it has become critical that electrical energy be developed from sources that do not pollute the atmosphere, preferably from renewable sources like wind and solar energy. It is equally important that existing electrical generation and distribution systems become more efficient. In the future, research and development in clean and renewable energy will grow at a rate much faster than other areas. Both industry and the federal government are increasing their efforts and financial investment in this area.

## Computer engineering option

The computer engineering option is ideal for students interested in designing modern computing systems. Students gain knowledge in areas ranging from C programming, object-oriented programming, assembly language, microprocessor interfacing, and logic design to data structures and computer operating systems.

## Robotics option

The robotics option provides students with the theoretical and practical skills required to design robots and robotic devices. Students study advanced programming, robotic systems, principles of robotics, advanced robotics, kinematics and dynamics of robotics manipulators, mobile robots, locomotion types, and complete experiments using various arm and mobile robots. Advanced robotics courses include the dynamics of manipulators and the dynamics of mobile robots with advanced locomotion techniques and path planning.

## Wireless communication option

The wireless communications option is ideal for those who want to incorporate the theoretical and practical skills required for understanding, designing, and evaluating wireless communication systems. Wireless communications is a critical enabling technology for many modern products and services. Examples include: mobile telephony, remote Internet access, consumer electronics, medical devices, and locationbased services. Students in the wireless communications option take an introductory course addressing wireless communications from a systems perspective. The course covers modern products and services enabled via wireless communication. In the two years that follow, students take a course sequence covering analog communication, digital data communication, and communication over wireless channels. This sequence builds
a core of knowledge in the transmission of signals to carry information wirelessly in various practical scenarios. The sequence is complemented with a course covering basic principles in communication networks and the Internet.

## Curriculum

Electrical engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
| CHMG-131 | General Chemistry for Engineers | 3 |
|  | First Year LAS Elective | 3 |
| EEEE-105 | Freshman Practicum | 1 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, 2, 3 | 9 |
| PHYS-211 | University Physics I | 4 |
| EEEE-120 | Digital Systems I | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| CMPR-271 | Computational Problem Solving for Engineers | 3 |
| EEEE-281 | Circuits I | 3 |
|  | LAS Perspective 4 | 3 |
| MATH-231 | Differential Equations | 3 |
| EEEE-260 | Semiconductor Devices | 3 |
| EEEE-282 | Circuits II | 3 |
| EEEE-220 | Digital Systems II | 3 |
|  | Restricted Science Elective | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
| MATH-381 | Complex Variables | 3 |
| EEEE-374 | Electromagnetic Fields and Transmission Lines | 4 |
| EEEE-353 | Linear Systems | 4 |
| EEEE-381 | Electronics I | 3 |
|  | LAS Immersion 1 | 3 |
|  | Cooperative Education (fall and summer) | Co-op |
| Fourth Year |  |  |
| MATH-251 | Probability and Statistics I | 3 |
| EEEE-420 | Embedded Systems Design | 3 |
| EEEE-414 | Classical Control | 3 |
| EEEE-482 | Electronics II | 4 |
|  | Free Elective | 3 |
|  | Cooperative Education (fall) | Co-op |
| Fifth Year |  |  |
| EEEE-484 | Communication Systems (WI) | 3 |
| EEEE-497 | Senior Design I | 3 |
| EEEE-483 | Mechatronics | 3 |
|  | Professional Electives | 9 |
|  | LAS Immersion 2, 3 | 6 |
| EEEE-498 | Senior Design II | 3 |
|  | Free Elective | 3 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

An accelerated dual degree (BS/MS) option requires the successful completion of at least 150 semester credit hours of undergraduate and graduate study in electrical engineering. Students focus on one of the following areas during the graduate portion of the dual degree: communication, control, digital systems, electromagnetic/microwaves, integrated electronics, MEMS, or signal and image processing. Students may apply to the BS/MS option in the second semester of their second year, providing that a minimum cumulative grade point average of 3.4 has been obtained at the end of the previous semester.

Electrical engineering, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| EEEE-105 | Freshman Practicum | 1 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
| CHMG-131 | General Chemistry for Engineers | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, 2, 3 | 9 |
| PHYS-211 | University Physics I | 4 |
| EEEE-120 | Digital Systems I | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| CMPR-271 | Computational Problem Solving for Engineers | 3 |
| EEEE-281, 282 | Circuits I, II | 6 |
|  | LAS Perspective 4 | 3 |
| MATH-231 | Differential Equations | 3 |
| EEEE-260 | Semiconductor Devices | 3 |
| EEEE-220 | Digital Systems II | 3 |
|  | Restricted Science Elective | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
|  | Cooperative Education (fall and summer) | Co-op |
| MATH-381 | Complex Variables | 3 |
| EEEE-374 | Electromagnetic Fields and Transmission Lines | 4 |
| EEEE-353 | Linear Systems | 4 |
| EEEE-381 | Electronics I | 3 |
|  | LAS Immersion I | 3 |
| Fourth Year |  |  |
| MATH-251 | Probability and Statistics I | 3 |
| EEEE-420 | Embedded Systems Design | 3 |
| EEEE-414 | Classical Control | 3 |
| EEEE-482 | Electronics II | 4 |
|  | Free Elective | 3 |
| EEEE-484 | Communication Systems (WI) | 3 |
| EEEE-483 | Mechatronics | 3 |
|  | LAS Immersion 2 | 3 |
| EEEE-602 | Random Signals and Noise | 3 |
| EEEE-707 | Engineering Analysis | 3 |
| EEEE-790 | MS Thesis | 3 |
|  | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| EEEE-497, 498 | Senior Design I, II | 6 |
|  | Professional Electives | 9 |
| EEEE-709 | Advanced Engineering Math | 3 |
|  | LAS Immersion 3 | 3 |
|  | Graduate Electives | 9 |
| EEEE-790 | MS Thesis | 3 |
|  | Free Elective | 3 |
| Total Semester Credit Hours |  | 150 |
| Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major. <br> * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses. |  |  |

## Industrial Engineering, BS

## rit.edu/kgcoe/ise/

## Scott E. Grasman, Department Head and Professor <br> (585) 475-2598, segeie@rit.edu

## Program overview

Industrial engineers design, optimize, and manage the process by which products are made and distributed across the world (i.e., global supply chain), or the way services are delivered in industries such as banking, health care, energy, or entertainment. Industrial engineers ensure that high-quality products and services are delivered in a cost-effective manner.

Industrial engineering is ideal for those who enjoy both technology and working with people. Industrial engineers frequently spend as much time interacting with other engineers and product users as they do at their desks and computers. Typical work involves developing applied models and simulations of processes to evaluate overall system efficiency.

A degree in industrial engineering offers students a significant opportunity for a flexible long-term career. Employers have consistently praised the quality of RIT's industrial engineering graduates, noting that the range of their abilities includes both strong technical knowledge and communication skills. Graduates have used their technical base as a springboard to careers in management, consulting, manufacturing, sales, health care, law, and education.

Because of the flexible nature of the major, the industrial engineering student can gain breadth of knowledge in many different areas of industrial engineering, including, but not limited to, advanced manufacturing, distribution/logistics, ergonomics/human factors, modeling/simulation, and sustainable design and development. Students may choose free and professional electives for this purpose. Faculty are committed to high-quality engineering education as well as the program's educational objectives.

The industrial engineering curriculum covers the principal concepts of engineering economics and project management, facilities planning, human performance, mathematical and simulation modeling, production control, applied statistics and quality, and contemporary manufacturing production processes that are applied to solve the challenges presented by the global environment and economy of today. The curriculum stresses the application of contemporary tools and techniques in solving engineering problems.

As described by the Institute of Industrial Engineers on the organization's website:
"Industrial engineering is about choices. Other engineering disciplines apply skills to very specific areas. IE gives practitioners the opportunity to work in a variety of businesses.

Many practitioners say that an industrial engineering education offers the best of both worlds: an education in both engineering and business.

The most distinctive aspect of industrial engineering is the flexibility it offers. Whether it's shortening a roller coaster line, streamlining an operating room, distributing products worldwide, or manufacturing superior automobiles, these challenges share the common goal of saving companies money and increasing efficiencies.

As companies adopt management philosophies of continuous productivity and quality improvement to survive in the increasingly competitive world market, the need for industrial engineers is growing. Why? Industrial engineers are the only engineering professionals trained specifically to be productivity and quality improvement specialists.

Industrial engineers figure out how to do things better. They engineer processes and systems that improve quality and productivity. They work
to eliminate waste of time, money, materials, energy and other commodities. This is why many industrial engineers end up being promoted into management positions.

Many people are misled by the term industrial engineer. It's not just about manufacturing. It also encompasses service industries, with many IEs employed in entertainment industries, shipping and logistics businesses, and health care organizations."

Industrial engineers are "big-picture" thinkers, much like systems integrators. IEs spend most of their time out in the work environment, using scientific approaches to solve today's problems while they develop solutions for the future.

## Educational objectives

Faculty from the department of industrial and systems engineering, in conjunction with its constituents, have established the following educational objectives for the industrial engineering major:

Systems integrators-Graduates will draw upon broad knowledge to develop integrated systems-based engineering solutions that include the consideration of realistic constraints within contemporary global, societal, and organizational contexts.

Lifelong learners-Graduates will develop engineering solutions using the skills and knowledge acquired through formal education and training, independent inquiry, and professional development.

Graduate education-Graduates will be well-prepared to pursue graduate degrees.

Engineering professionals-Graduates will work independently as well as collaboratively with others and demonstrate leadership, accountability, initiative, and ethical and social responsibility.

With rapidly changing work environments, students need a wellrounded education that will allow them to apply engineering principles to new situations.

## Accreditation

The BS program in industrial engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Accelerated 4+1 BS/MBA option

An accelerated $4+1$ option is available for students who wish to earn a BS in industrial engineering and a MBA. The option is offered in conjunction with Saunders College of Business and allows students to obtain both degrees in five years of study.

## Curriculum

Industrial engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | LAS Foundation 2: First Year Writing | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| ISEE-325 | Engineering Statistics and Design of Experiments | 3 |
|  | LAS Perspective 3,4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall and summer) | Co-op |
| ISEE-301 | Operations Research | 4 |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) | 4 |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals of Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory | 1 |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Applied Statistical Quality Control | 3 |
| ISEE-510 | Systems Simulation | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
|  | LAS Immersion 1 | 3 |
| ISEE-499 | Cooperative Education (spring and summer) | Co-op |
| Fifth Year |  |  |
| ISEE-561 | Linear Regression Analysis | 3 |
| ISEE-497 | Multidisciplinary Senior Design I | 3 |
|  | Professional Electives | 9 |
|  | Free Electives | 6 |
|  | LAS Immersion 2, 3 | 6 |
| ISEE-498 | Multidisciplinary Senior Design II | 3 |

Total Semester Credit Hours 12
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree options

The department offers several accelerated dual degree (BS/MS and BS/ ME ) options, where select students may complete a BS in industrial engineering and an MS or ME in a five years. The following options are available:

- BS in Industrial Engineering and an ME in Industrial and Systems Engineering
- BS in Industrial Engineering and an MS in Industrial and Systems Engineering
- BS in Industrial Engineering and an ME in Sustainable Engineering
- BS in Industrial Engineering and an MS in Sustainable Engineering
- BS in Industrial Engineering and an ME in Engineering Management

Industrial engineering, BS degree/Industrial and systems engineering, ME degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| ISEE-325 | Engineering Statistics and Design of Experiments | 3 |
|  | LAS Perspective 3,4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall) | Co-op |
| ISEE-301 | Operations Research | 4 |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) | 4 |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals in Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory | 1 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Applied Statistical Quality Control | 3 |
| ISEE-510 | Systems Simulation | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
|  | Free Electives | 6 |
|  | Professional Electives | 9 |
| ISEE-760 | Design of Experiments | 3 |
|  | LAS Immersion 1, 2 | 6 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-561 | Linear Regression Analysis | 3 |
| ISEE-771 | Engineering of Systems I | 3 |
|  | Graduate Electives | 12 |
|  | LAS Immersion 3 | 3 |
| ISEE-792 | Engineering Capstone |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses

Industrial engineering, BS degree/Industrial and systems engineering, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II |  |
|  | LAS Perspective 1,2 | 6 |
| ISEE-140 | Materials Processing |  |
| PHYS-211 | University Physics I |  |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable Calculus | 4 |
| PHYS-212 | University Physics II |  |
| STAT-251 | Probability and Statistics for Engineers I |  |
| ISEE-325 | Probability and Statistics for Engineers II | 3 |
|  | LAS Perspective 3,4 |  |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy |  |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall) | Co-op |
| ISEE-301 | Operations Research |  |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) |  |
| ISEE-323 | Facilities Planning |  |
| MECE-304 | Fundamentals in Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory |  |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Applied Statistical Quality Control |  |
| ISEE-510 | Systems Simulation |  |
| ISEE-421 | Design and Analysis of Production Systems |  |
|  | Professional Electives | 9 |
|  | Free Electives |  |
| ISEE-795, 796 | Graduate Seminar I, II |  |
| ISEE-760 | Design of Experiments |  |
|  | LAS Immersion 1,2 |  |
| \|SEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-561 | Linear Regression Analysis |  |
| ISEE-771 | Engineering of Systems I |  |
|  | Graduate Electives |  |
|  | Thesis |  |
|  | LAS Immersion 3 |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Industrial engineering, BS degree/Sustainable engineering, ME degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| ISEE-325 | Engineering Statistics and Design of Experiments | 3 |
|  | LAS Perspective 3, 4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall) | Co-op |
| ISEE-301 | Operations Research | 4 |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) | 4 |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals in Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory | 1 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Applied Statistical Quality Control | 3 |
| ISEE-510 | Systems Simulation | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
|  | Professional Electives | 9 |
|  | Free Electives | 6 |
|  | Engineering Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-561 | Linear Regression Analysis | 3 |
| ISEE-771 | Engineering of Systems I | 3 |
| ISEE-785 | Fundamentals of Sustainable Engineering | 3 |
| MECE-629 | Renewable Energy Systems | 3 |
|  | Social Context Elective | 3 |
|  | LAS Immersion 3 | 3 |
| ISEE-786 | Lifecycle Assessment | 3 |
| ISEE-787 | Design for the Environment | 3 |
|  | Technology Elective | 3 |
| ISEE-792 | Engineering Capstone | 3 |

Total Semester Credit Hours 156
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.

Industrial engineering, BS degree/Sustainable engineering, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| ISEE-325 | Engineering Statistics and Design of Experiments | 3 |
|  | LAS Perspective 3,4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall) | Co-op |
| ISEE-301 | Operations Research | 4 |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) | 4 |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals in Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory | 1 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Applied Statistical Quality Control | 3 |
| ISEE-510 | Systems Simulation | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
|  | Professional Electives | 6 |
|  | Free Electives | 6 |
| ISEE-795, 796 | Graduate Seminar I, II | 0 |
|  | Technology Elective | 3 |
|  | Social Context Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| \|SEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-561 | Linear Regression Analysis | 3 |
| \|SEE-771 | Engineering of Systems I | 3 |
| ISEE-785 | Fundamentals of Sustainable Engineering | 3 |
| MECE-629 | Renewable Energy Systems | 3 |
|  | LAS Immersion 3 | 3 |
| \|SEE-786 | Lifecycle Assessment | 3 |
| ISEE-790 | Thesis | 6 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Industrial engineering, BS degree/Engineering management, ME degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-Based Calculus I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| STAT-251 | Probability and Statistics for Engineers I | 3 |
| ISEE-325 | Engineering Statistics and Design of Experiments | 3 |
|  | LAS Perspective 3, 4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (fall) | Co-op |
| ISEE-301 | Operations Research | 4 |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) | 4 |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals in Materials Science | 2 |
| MECE-306 | Materials Science with Applications Laboratory | 1 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-560 | Statistical Quality Control | 3 |
| ISEE-510 | Systems Simulation | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
|  | Professional Electives | 9 |
|  | Free Electives | 6 |
| ISEE-760 | Design of Experiments | 3 |
|  | LAS Immersion 1, 2 | 6 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-561 | Linear Regression Analysis | 3 |
| ISEE-771 | Engineering of Systems I | 3 |
| ISEE-750 | Systems and Project Management | 3 |
| ACCT-794 | Cost Management in Technical Organizations | 3 |
|  | Engineering Management Electives | 6 |
|  | LAS Immersion 3 | 3 |
| ISEE-792 | Engineering Capstone | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Program suspended

This program has been suspended, no new students will be admitted. This change does not affect currently matriculated students.

## Industrial engineering, BS degree/Applied statistics, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
| ISEE-120 | Fundamentals of Industrial Engineering | 3 |
| CHMG-131 | General Chemistry for Engineers | 3 |
| MATH-181, 182 | Project-based Calculus I, II | 8 |
|  | LAS Foundation 1, 2 (WI) | 6 |
| ISEE-140 | Materials Processing | 3 |
| PHYS-211 | University Physics I | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ISEE-200 | Computing for Engineers | 3 |
| MATH-221 | Multivariable Calculus |  |
| PHYS-212 | University Physics II | 4 |
| CQAS-251 | Probability and Statistics for Engineers I | 3 |
| CQAS-252 | Probability and Statistics for Engineers II | 3 |
|  | LAS Perspective 3,4 | 6 |
| MECE-200 | Fundamentals of Mechanics | 4 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| ISEE-345 | Engineering Economy | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| ISEE-499 | Cooperative Education (summer) | Co-op |
| ISEE-301 | Operations Research |  |
| ISEE-350 | Engineering Management | 3 |
| ISEE-330 | Ergonomics and Human Factors (WI) |  |
| ISEE-323 | Facilities Planning | 3 |
| MECE-304 | Fundamentals in Material Science |  |
| MECE-306 | Materials Science with Applications Laboratory |  |
| Fourth Year |  |  |
| ISEE-420 | Production Control | 3 |
| ISEE-421 | Design and Analysis of Production Systems | 3 |
| ISEE-510 | Systems Simulation | 3 |
| CQAS-721, 722 | Theory of Statistics I, II | 6 |
| CQAS-741 | Regression Analysis | 3 |
| CQAS-611 | Statistical Software | 3 |
|  | Professional Elective | 3 |
| CQAS-701 | Foundations of Experimental Design | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | Free Elective | 3 |
| CQAS-795 | Graduate Seminar | 0 |
| ISEE-499 | Cooperative Education | Co-op |
| Fifth Year |  |  |
| ISEE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
| ISEE-460 | Statistical Quality Control |  |
|  | Professional Elective | 3 |
|  | Graduate Electives | 9 |
|  | LAS Immersion 3 | 3 |
|  | Free Elective |  |
| CQAS-792 | Capstone |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

## Additional information

## Facilities

The industrial and systems engineering department is located in the James E. Gleason Building and houses several state-of-the-art laboratories, including the Brinkman Machine Tools and Manufacturing Lab, the Metrology and Rapid Prototyping Lab, the Toyota Production Systems Lab, the Human Performance Lab, the Advanced Systems Integration

Lab, the Sustainable Engineering Research Group (SERG) Lab, and the Print Research and Image Systems Modeling (PRISM) Lab. Ample computing facilities reside within each of these specialized labs, as well as a dedicated PC computer lab. These labs offer an extensive library of software to support industrial engineering course work, project work, and research, including conventional word processing, spreadsheet, and presentation applications (e.g., Microsoft Office), database management (e.g., Microsoft ACCESS), data acquisition (e.g., Lab View), statistical analysis (e.g., Minitab, SAS), facilities layout (e.g., AutoCad, Factory Flow, Factory Plan, LayoutIQ), manufacturing (e.g., MasterCam Cambridge Engineering Selector Software), optimization (e.g., ILOG OPL-CPLEX, LINDO, KNITRO, AMPL, Gurobi, Mathematica), systems simulation software (e.g., Solver, Arena, Promodel), biomechanics (3DSSPP), and lifecycle assessment and costing tools (e.g., SimaPro, CES Eco-Audit).

## Careers

In order to optimize processes and systems, industrial engineers apply their knowledge in a wide range of areas, including systems simulation modeling, quality, logistics and supply chain management, ergonomics and human factors, facilities layout, production planning and control, manufacturing, management information systems, and project management. Upon graduation, our students work for a wide array of fields (ranging from manufacturing and distribution/logistics to health care, energy and other services) and companies (including Boeing, IBM, Toyota, Xerox, Intel, General Electric, Hershey, Walt Disney World, Ortho-McNeil Pharmaceutical, Lockheed Martin, and Wegmans Food Markets, to name a few.)

Balance, as well as specialization, has allowed our graduates to pursue varied paths. Examples of the diversity, along with the roles in which an industrial engineer might function, are reflected in the following list of sample industrial engineering co-op assignments.

In manufacturing industries:

- Perform product life studies
- Lay out and improve work areas
- Design production processes to improve productivity
- Investigate and analyze the cost of purchasing new vs. repairing existing equipment
- Investigate delivery service, including scheduling, route modification, and material handling
- Create computer programs to track pricing policies and truck scheduling
- Perform downtime studies of various operations using time study and work sampling
- Develop and computerize a forecasting model
- Perform ergonomic studies and evaluations of workstations and product designs
- Participate in the design process of products and processes to ensure ease of manufacture, maintenance, and remanufacture or recycling
In service industries:
- Design information systems
- Monitor safety and health programs
- Manage hazardous and toxic materials storage and disposal programs
- Manage a facility's projects to ensure they are completed on time and on budget
- Conduct cost analysis of procedures to support decision making
- Schedule operations and manage information flow
- Design supply-ordering systems
- Improve processes in a hospital
- Evaluate waiting time and space utilization in an amusement park


## Mechanical Engineering, BS

## rit.edu/kgcoe/mechanical/

Risa J. Robinson, Department Head
(585) 475-6445, rjreme@rit.edu

## Program overview

Mechanical engineering is perhaps the most comprehensive of the engineering disciplines. The mechanical engineer's interests encompass the design of automotive and aerospace systems, bioengineering devices, and energy-related technologies. The spectrum of professional activity for the mechanical engineering graduate runs from research through design and development to manufacturing and sales. Because of their comprehensive training and education, mechanical engineers often are called upon to assume management positions.

The mechanical engineering department offers professional courses in bioengineering, energy systems, applied mechanics, manufacturing, materials science, systems analysis, computer-aided graphics and design, robotics, and automotive and aerospace engineering. The department's laboratories are equipped to provide extensive experimentation in these areas. Laboratory facilities include a well-instrumented wind tunnel, a particle imaging velocimetry laser system for flow visualization, advanced heat transfer systems, robotics, a proton exchange membrane fuel cell, engine dynamometers, fluid flow loops, refrigeration systems, tensile testers, compression testers, torsion testers, hardness testers, X-ray diffractometer, atomic force microscope, dynamic system simulators, a spectrum analyzer, and a well-equipped machine shop.

## Educational objectives

The objectives of the mechanical engineering major are to prepare graduates to:

- practice mechanical engineering in support of the design of engineered systems through the application of the fundamental knowledge, skills, and tools of mechanical engineering.
- enhance their skills through formal education and training, independent inquiry, and professional development.
- work independently as well as collaboratively with others, while demonstrating the professional and ethical responsibilities of the engineering profession.
- successfully pursue graduate degrees at the master's and/or doctoral levels, should they choose.


## Plan of study

The major provides students with a broad academic base complemented by hands-on laboratory activities and cooperative education experience. Students devote their first two years to the study of mathematics, physical sciences, liberal arts, and engineering sciences, while the third and fourth years emphasize engineering science, design, and systems.

A student may then specialize by choosing appropriate technical and free elective courses in an area of interest. Each of the listed professional electives includes a significant design project. In the fifth year, each student is required to complete the capstone design courses, Senior Design I and II (MECE-497, 498).

Students complete liberal arts general education courses in the various perspectives to round out their education. During the course of their studies students must demonstrate writing competency of the English language by successfully completing a Contemporary Issues course offered by the mechanical engineering department.

## Options

Students may select a number of course options to gain specialized study in a particular discipline of mechanical engineering. Options include aerospace engineering, automotive engineering, bioengineering, and energy and environment. Participation in one of these options is not required. However, they are offered for those students who seek to pursue a career in one of these specialized fields of mechanical engineering. Students must maintain a GPA of at least 2.0 within the option sequence of courses to remain in the option.

Students may elect to complete the major without an option and instead customize their academic study in support of their career plans. The mechanical engineering major is relatively flexible and allows students to pursue options, minors, and even multiple degrees.

## Aerospace engineering

The aerospace engineering option allows for specialized study in the engineering aspects of air- and space-borne vehicles and starts with a course introducing students to the aerospace field. The sequence starts in the third year with students taking a variety of electives focused on aerospace. In addition, students are expected to work on an aerospace engineering design project in Multidisciplinary Senior Design I and II (MECE-497, 498) and to pursue co-op employment in a related field.

## Automotive engineering

The automotive engineering option offers a series of specialized professional elective courses during the fourth and fifth years that provide an introduction to vehicle power plants, dynamics, and control systems. In addition, students are expected to work on an automotive senior design in the fifth year and to pursue co-op employment in a related field.

## Bioengineering

The bioengineering option provides an introduction to engineering sciences and design based upon a foundation of biological sciences. The course sequence starts with a biological science elective, which counts as a free elective. Students are expected to work on a bioengineering design project in their fifth year and to pursue co-op employment in a related field.

## Energy and environment

This option provides students with exposure to a wide range of opportunities and careers associated with energy-intensive systems and how they relate to the environment. This option increases the number of opportunities students have for careers in the fields of building energy systems, alternative and renewable energy, and direct energy conversion. Students are expected to work on an energy systems design project in senior design and to pursue co-op employment in a related field.

## Accreditation

The BS in mechanical engineering major is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

## Activities and professional organizations

Students have an opportunity to participate in regional and national design competitions such as the Formula SAE Autosports Competition team, the SAE Aerodesign Club, and the Human-Powered Vehicle Competition team. They also are encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers, the Society of Women Engineers, the National Society of Black Engineers, the Society of Hispanic Professional Engineers, the American Institute of Aeronautics and Astronautics, and the Society of Automotive Engineers.

## Curriculum

Mechanical engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar | 3 |
| MATH-181, 182 | LAS Perspective 7B: Project-based Calculus I, II | 8 |
|  | LAS Perspective 1, 2 | 6 |
| MECE-102 | Engineering Mechanics Lab | 3 |
| MECE-104 | Engineering Design Tools | 3 |
| MECE-305, 306 | Materials Science with Applications and Lab | 4 |
|  | First Year LAS Elective | 3 |
| MECE-103 | Statics | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 3,4 | 6 |
| EEEE-281 | Circuits I | 3 |
| MECE-211 | Engineering Measurements Lab | 2 |
| MATH-219 | Multivariable Calculus | 3 |
| MECE-205 | Dynamics | 3 |
| MECE-110 | Thermodynamics I | 3 |
| MECE-210 | Fluid Mechanics I | 3 |
|  | LAS Immersion 1 | 3 |
| MATH-231 | Differential Equations | 3 |
| MECE-203, 204 | Strength of Materials I and Lab | 4 |
| EGEN-099 | Cooperative Education Preparation | 0 |
| Third Year |  |  |
| MECE-499 | Cooperative Education (fall or spring) | Co-op |
| MECE-348 | Contemporary Issues (WI) | 3 |
| MATH-326 | Boundary Value Problems | 3 |
| MECE-317 | Numerical Methods | 3 |
| PHYS-212 | University Physics II | 4 |
|  | LAS Electives | 6 |
| MECE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| MECE-499 | Cooperative Education (fall or spring) | Co-op |
| MATH-241 | Linear Algebra | 3 |
| MECE-320 | System Dynamics | 3 |
| MECE-310 | Heat Transfer I | 3 |
| MECE-301 | Engineering Applications Lab | 2 |
| MECE-3xx | ME Extended Core Elective | 3 |
| MECE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| MECE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
|  | ME Applied Electives |  |
| STAT-205 | Applied Statistics | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |

Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.


## Accelerated dual degree options

Three accelerated dual degree options are available for outstanding mechanical engineering students who wish to earn a both a bachelor's and a master's degree within approximately five years.

- A BS/MS in mechanical engineering has a strong research focus and is primarily directed toward students who plan to continue their education in the pursuit of a doctoral degree.
- A BS/ME in mechanical engineering has a strong career focus for students who plan to seek employment immediately after graduation.
- A BS in mechanical engineering and an MS in science, technology, and public policy has a public policy research focus and is designed for students interested in using their technical preparation as an engineer to help shape future policy decisions.
All students enrolled in the dual degree options are required to complete
a graduate thesis or capstone project.

The BS and MS or ME degrees are awarded simultaneously. A student may apply for admission to this options during their second year of study. A transfer student may apply after completing one semester of study at RIT. Admission is based on a cumulative grade-point average of at least 3.4, letters of recommendation from faculty, and a letter of application from the student. Students are admitted first to the BS/ME option but may change to the BS/MS option upon approval of a thesis proposal. While pursuing a dual degree option, students are required to maintain a cumulative grade-point average of at least 3.2.

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar |  |
| MATH-181, 182 | LAS Perspective 7A: Project-based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 6 |
| MECE-102 | Engineering Mechanics Lab | 3 |
| MECE-104 | Engineering Design Tools | 3 |
|  | First Year LAS Elective | 3 |
| MECE-103 | Statics | 3 |
| MECE-305, 306 | Material Science with Applications and Lab | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 3,4 | 6 |
| MATH-219 | Multivariable Calculus | 3 |
| MECE-205 | Dynamics | 3 |
| MECE-110 | Thermodynamics I | 3 |
| MECE-210 | Fluid Mechanics I |  |
| EEEE-281 | Circuits I | 3 |
| MECE-211 | Engineering Measurements Lab | 2 |
| MATH-231 | Differential Equations | 3 |
| MECE-203, 204 | Strength of Materials I and Lab | 4 |
|  | LAS Immersion 1 | 3 |
| EGEN-099 | Cooperative Education Preparation | 0 |
| Third Year |  |  |
|  | LAS Perspective 6 | 3 |
|  | Free Elective | 3 |
| MATH-326 | Boundary Value Problems | 3 |
| MATH-241 | Linear Algebra | 3 |
| MECE-348 | Contemporary Issues (WI) | 3 |
| MECE-317 | Numerical Methods | 3 |
| MECE-310 | Heat Transfer | 3 |
|  | Extended Core Elective | 3 |
| MECE-499 | Cooperative Education (fall, spring, or summer) | Co-op |
| Fourth Year |  |  |
| MECE-707 | Engineering Analysis | 3 |
| MECE-301 | Engineering Applications Lab | 2 |
| MECE-320 | System Dynamics | 3 |
| PHYS-212 | University Physics II |  |
|  | Graduate Focus Area Course | 3 |
| STAT-205 | Applied Statistics | 3 |
|  | Physical Science Elective | 3 |
|  | Graduate Electives | 6 |
| MECE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| MECE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
|  | LAS Immersion 2, 3 |  |
| MECE-709 | Advanced Engineering Mathematics | 3 |
|  | Free Elective |  |
|  | Graduate Focus Area Courses |  |
|  | Graduate Elective |  |
| MECE-790 | Thesis |  |
| Total Semester Credit Hours |  | 150 |

Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.

Mechanical engineering, BS/ME degree, typical course sequence course

SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
|  | First Year Writing Seminar | 3 |
| MATH-181, 182 | LAS Perspective 7A: Project-based Calculus I, II | 8 |
|  | LAS Perspective 1,2 | 6 |
| MECE-102 | Engineering Mechanics Lab | 3 |
| MECE-104 | Engineering Design Tools | 3 |
|  | First Year LAS Elective | 3 |
| MECE-305, 306 | Material Science with Applications and Lab | 4 |
| MECE-103 | Statics | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 3, 4 | 6 |
| MATH-219 | Multivariable Calculus | 3 |
| MECE-205 | Dynamics | 3 |
| MECE-110 | Thermodynamics I | 3 |
|  | LAS Immersion 1 | 3 |
| MECE-210 | Fluid Mechanics I | 3 |
| MATH-231 | Differential Equations | 3 |
| EEEE-281 | Circuits I | 3 |
| MECE-211 | Engineering Measurements Lab | 2 |
| MECE-203, 204 | Strength of Materials I and Lab | 4 |
| EGEN-099 | Cooperative Education Preparation | 0 |
| Third Year |  |  |
|  | Free Elective | 3 |
| MATH-326 | Boundary Value Problems | 3 |
| MECE-348 | Contemporary Issues (WI) | 3 |
| MECE-317 | Numerical Methods | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | Extended Core Elective | 3 |
| MECE-310 | Heat Transfer I | 3 |
| MECE-499 | Cooperative Education (summer, fall, spring) | Co-op |
| Fourth Year |  |  |
| MECE-707 | Engineering Alanysis | 3 |
|  | Graduate Elective | 3 |
| MECE-320 | System Dynamics | 3 |
| MECE-301 | Engineering Applications Lab | 2 |
| MECE-730 | Design Project Leadership | 3 |
| PHYS-212 | University Physics II | 4 |
| STAT-205 | Applied Statistics | 3 |
|  | Physical Science Electives | 6 |
|  | Immersion 3 | 3 |
| MECE-499 | Cooperative Education (summer) | 0 |
| Fifth Year |  |  |
| MECE-709 | Advanced Engineering Mathematics | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Elective | 3 |
| MECE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
|  | Graduate Focus Area Courses | 6 |
|  | Graduate Electives | 9 |

Total Semester Credit Hours $\mathbf{1 5 0}$
Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information.

Mechanical engineering, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar | 3 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
|  | LAS Perspective 1, 2, 3 | 9 |
| MECE-102 | Engineering Mechanics Lab | 3 |
| MECE-104 | Engineering Design Tools | 4 |
|  | First Year LAS Elective | 3 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| MECE-103 | Statics | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 4 | 3 |
| PHYS-212 | LAS Perspective 5: University Physics II | 4 |
| STAT-205 | Applied Statistics | 3 |
| MATH-241 | Linear Algebra | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| MECE-205 | Dynamics | 3 |
| MECE-110 | Thermodynamics I | 3 |
| MATH-231 | Differential Equations | 3 |
| MECE-203, 204 | Strength of Materials I and Lab | 4 |
|  | Free Elective | 3 |
| EGEN-099 | Cooperative Education Preparation | 0 |
| Third Year |  |  |
|  | Science Elective | 3 |
|  | Extended Core Elective | 3 |
| MECE-210 | Fluid Mechanics I | 3 |
| MATH-326 | Boundary Value Problems | 3 |
| EEEE-281 | Circuits I and Lab | 3 |
| MECE-211 | Fluid Mechanics I Lab | 1 |
| MECE-499 | Cooperative Education (spring or fall and summer) | Co-op |
| Fourth Year |  |  |
| MECE-317 | Numerical Methods | 3 |
| MECE-305, 306 | Material Science with Applications and Lab | 4 |
| MECE-310 | Heat Transfer I | 3 |
| MECE-301 | Engineering Applications Lab (WI) | 2 |
| PUBL-701 | Graduate Policy Analysis | 3 |
| PUBL-702 | Graduate Decision Analysis | 3 |
| STSO-710 | Science and Technology Policy Seminar | 3 |
|  | Extended Core Elective | 3 |
|  | Graduate Elective | 3 |
|  | Science Elective | 3 |
|  | Free Elective | 3 |
| MECE-499 | Cooperative Education (summer) | co-op |
| Fifth Year |  |  |
| PUBL-700 | Readings in Public Policy | 3 |
| MECE-320 | System Dynamics | 3 |
| MECE-497, 498 | Multidisciplinary Senior Design I, II | 6 |
|  | Extended Core Electives | 9 |
|  | Graduate Electives | 6 |
| PUBL-703 | Program Evaluation and Research Design | 3 |
| Choose one of the following: |  | 6 |
| PUBL-799 | Thesis |  |
| Two Graduate Electives and Comprehensive Exam |  |  |

[^4]* Please see Wellness Education Requirement for more information.


## Microelectronic Engineering, BS

## rit.edu/kgcoe/microelectronic

## Sohail Dianat, Department Head <br> (585) 475-6740, sadeee@rit.edu <br> Robert Pearson, Director, Microelectronic Engineering <br> (585) 475-2923, repemc@rit.edu

## Program overview

Semiconductor technology at the micro and nanometer scale remains a key driver for the world economy. World-wide electronics is expected to top one trillion dollars in 2016 and the semiconductor industry is a star performer in this crucial manufacturing field. The preparation and maintenance of a capable high-tech workforce is important for the nation's economic growth and long-term security.

Students are required to complete one year of cooperative education, beginning after their second year of study. Students may find co-op employment at one of the many major integrated circuits manufacturers across the United States. Upon graduation, students are well prepared to enter industry or pursue graduate school. This major also prepares students to work in emerging technologies such as nanotechnology, microelectomechanical systems, and microsystems.

With the worldwide semiconductor industry growing at an astounding pace, RIT graduates are a valuable resource to the industry. This major offers students an unparalleled opportunity to prepare for professional challenges and success in one of the leading modern areas of engineering. Faculty committed to quality engineering educations, state-of-theart laboratories, strong industrial support, co-op opportunities with national companies, and smaller class sizes make this one of the most value-added programs in the nation.

## Educational objectives

The educational objectives of the microelectronic engineering major are to produce graduates who have the following skills or characteristics:

- A sound knowledge of the fundamental scientific principles involved in the operation, design, and fabrication of integrated circuits.
- A comprehensive understanding of relevant technologies such as integrated circuit process integration and manufacturing. This includes nanolithography and the application of engineering principles to the design and development of current and future semiconductor technologies.
- A professional approach to problem solving, using analytical, academic, and communication skills effectively, with special emphasis on working in teams.
- An enthusiasm for learning and the continuous improvement of skills throughout one's career, exemplified by learning about emerging technologies and adapting to and accepting change within the field.
- A desire to achieve leadership positions in industry or academia.
- A breadth of knowledge, including the multidisciplinary nature of microelectronic engineering as well as the broad social, ethical, safety, and environmental issues within which engineering is practiced.
One of the great challenges in integrated circuit manufacturing is the need to draw on scientific principles and engineering developments from such an extraordinarily wide range of disciplines. The design of microelectronic circuits requires a sound knowledge of electronics and circuit analysis. Optical lithography tools, which print microscopic patterns on wafers, represent one of the most advanced applications of the principles of Fourier optics. Plasma etching involves some of the most complex chemistry used in manufacturing today. Ion implantation draws upon understanding from research in high-energy physics. Thin films on semi-
conductor surfaces exhibit complex mechanical and electrical behavior that stretches our understanding of basic materials properties.

Scientists and engineers who work in the semiconductor field need a broad understanding of and the ability to seek out, integrate, and use ideas from many disciplines. The major provides the broad interdisciplinary background in electrical and computer engineering, solid-state electronics, physics, chemistry, materials science, optics, and applied math and statistics necessary for success in the semiconductor industry.

## Plan of study

Students gain hands-on experience in the design, fabrication, and testing of the integrated circuits (microchips), the vital component in almost every advanced electronic product manufactured today. RIT's undergraduate microelectronics engineering laboratories, which include modern integrated circuit fabrication (clean room) and test facilities, are among the best in the nation. At present, the major is supported by a 150 mm complementary metal oxide semiconductor line equipped with diffusion; ion implantation, plasma, and chemical vapor deposition (CVD) processes; chemical mechanical planarization; and device design, modeling, and test laboratories. The microlithography facilities include a ASML i-line and GCA g-line wafer steppers, and a Perkin Elmer MEBES III electron beam mask writer.

The curriculum begins with introductory courses in microelectronic engineering and nanolithography (nanopatterning) for integrated circuits. The first two years build a solid foundation in mathematics, physics, and chemistry. The fundamentals of statistics and their applications in the design of experiments, semiconductor device physics and operation, and integrated circuit technology are covered in the second year. This prepares students for their first cooperative education experience. The third year comprises the electrical engineering course work necessary for understanding semiconductor devices and integrated circuits. The fourth and fifth years are dedicated to VLSI design, optics, nanolithography systems and materials, semiconductor processing, professional electives, and a two-course capstone senior project. In the capstone course, students propose and conduct individual research/ design projects and present their work at the Annual Microelectronic Engineering Conference, which is organized by the department and wellattended by industrial representatives.

A choice of professional electives and the senior project offer students an opportunity to build a concentration, such as advanced CMOS, VLSI chip design, analog circuit design, electronic materials science, microelectromechanical systems (MEMS), or nanotechnology within this unique interdisciplinary major. Two free elective courses allow students to develop an expertise in a related discipline.

Important issues such as the technology road map, ethics, societal impact, and global perspectives are built into the curriculum beginning with first-year courses. The major is laid out in a way that keeps students connected with their home department throughout the course of study.

## Accreditation

The BS in microelectronic engineering major is accredited by the EAC Accreditation Commission of ABET, http://www.abet.org.

## Curriculum

Microelectronic engineering, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181 | Project-Based Calculus I | 4 |
| CHMG-131 | General Chemistry for Engineering | 3 |
|  | First Year Writing Seminar | 3 |
| MCEE-101 | Introduction to Nanoelectronics | 3 |
|  | First Year LAS Elective | 3 |
| MATH-182 | Project-Based Calculus II | 4 |
| PHYS-211 | University Physics I | 4 |
| CMPR-271 | Computational Problem Solving for Engineers | 3 |
| EEEE-120 | Digital Systems I | 3 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| MCEE-205 | Statistics and DOE | 3 |
| EEEE-281 | Circuits I | 3 |
|  | LAS Perspective 2, 3 | 6 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics | 3 |
| EEEE-282 | Circuits II | 3 |
| MCEE-201 | IC Technology | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
|  | Cooperative Education (fall and summer) | Co-op |
| MCEE-320 | E\&M Fields for Microelectronics | 3 |
| MCEE-360 | Semiconductor Devices for Microelectronic Engineering | 4 |
| MCEE-502 | Semicondictor Process Integreation | 3 |
| EEEE-381 | Electronics I | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| MCEE-505 | Lithography Materials and Processes | 3 |
| EEEE-353 | Linear Systems | 4 |
| MCEE-503 | Thin Films (WI) | 3 |
| EEEE-482 | Electronics II | 4 |
|  | LAS Perspective 4 | 3 |
| MCEE-499 | Cooperative Education (spring and summer) | Co-op |
| Fifth Year |  |  |
| MCEE-495 | Senior Design I | 3 |
| MCEE-550 | CMOS Processing | 4 |
|  | Professional Electives | 6 |
|  | LAS Immersion 1, 2, 3 | 9 |
| MCEE-496 | Senior Design II | 3 |
| MCEE-515 | Nanolithography Systems | 3 |
|  | Free Elective | 3 |

Total Semester Credit Hours 129

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Accelerated dual degree option

A cross-disciplinary dual degree option is available in which students earn a BS in microelectronic engineering from the Kate Gleason College of Engineering and an MS in materials science and engineering from the College of Science. The option was inspired by trends involving the convergence of advanced materials with nanofabrication and microelectronics in modern microdevices and systems. The BS/MS option requires the 150 semester credits and includes a graduate thesis. Graduate course work is substituted for one co-op experience to make it an accelerated five-year option. A student may apply for admission in the third year with a grade-point average of at least 3.0.

Microelectronic engineering, BS degree/Materials science and engineering, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181 | Project-Based Calculus I | 4 |
| CHMG-131 | General Chemistry for Engineers | 3 |
|  | First Year Writing Seminar | 3 |
| MCEE-101 | Introduction to Nanoelectronics | 3 |
|  | First Year LAS Elective | 3 |
| MATH-182 | Project-Based Calculus II | 4 |
| PHYS-211 | University Physics I | 4 |
| CMPR-271 | Computational Problem Solving for Engineers | 3 |
| EEEE-120 | Digital Systems I | 3 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| PHYS-212 | University Physics II | 4 |
| MCEE-205 | Statistics and DOE | 3 |
| EEEE-281 | Circuits I | 3 |
|  | LAS Perspective 2, 3 | 6 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics | 3 |
| EEEE-282 | Circuits II | 3 |
| MCEE-201 | IC Technology | 3 |
| EGEN-099 | Engineering Co-op Preparation | 0 |
| Third Year |  |  |
| MCEE-499 | Cooperative Education (fall) | Co-op |
| MCEE-320 | E\&M Fields for Microelectronic Engineering | 3 |
| MCEE-360 | Semiconductor Devices for Microelectronic Engineering | 4 |
| EEEE-381 | Electronics I | 3 |
| MTSE-702 | Polymer Science | 3 |
|  | Free Elective | 3 |
| MCEE-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| MCEE-603 | Thin Films (WI) | 3 |
| MCEE-605 | Lithography Materials and Processes | 3 |
| MTSE-601 | Materials Science | 3 |
|  | MCEE or MTSE Elective | 3 |
|  | LAS Perspective 4 | 3 |
| EEEE-353 | Linear Systems | 4 |
| EEEE-482 | Electronics II | 4 |
| MCEE-502 | Semiconductor Process Integration | 3 |
| Choose one of the following: |  | 3 |
| MTSE-703 | Solid State Science |  |
| MCEE-713 | Physics of Nanostructures |  |
| MCEE-499 | Cooperative Education (summer) | Co-op |
| Fifth Year |  |  |
| MCEE-495 | Senior Design I | 3 |
|  | Professional Electives | 6 |
|  | LAS Immersion 1, 2, 3 | 9 |
| MTSE-704 | Theoretical Methods | 3 |
| MCEE-550 | CMOS Processing | 4 |
| MCEE-515 | Nanolithography Systems | 3 |
| MTSE-790 | Thesis | 6 |
| MCEE-496 | Senior Design II | 3 |
|  | Free Elective | 3 |

Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Integrated Electronics, Certificate

## Sohail Dianat, Professor

(585) 475-2165, sadeee@rit.edu

## Program overview

The certificate in integrated electronics offers a comprehensive curriculum on the design of state-of-the-art electronic circuits. Course work builds on an introductory understanding of semiconductor device physics and basic circuit theory. The design of analog and mixed-signal circuits are addressed in courses focusing on issues and trade-offs involved in widely used circuits. In addition, the certificate offers an advanced course to instill an in-depth understanding of all processes involved in designing a modern integrated circuit, including electronic design automation.

This certificate primarily targets people already active in the electrical engineering field and allows experienced technicians and physical designers to become more cross-functional and stronger contributors to multidisciplinary teams. The curriculum provides them with a path for professional growth.

At least five years of working knowledge with electronics and some college-level math and science (e.g., algebra and physics) are required for admission. Applications are reviewed by the program director. Courses in this certificate are available online.

## Curriculum

Integrated electronics, certificate, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| EEEE-285 | Introduction to Circuits Theory | 3 |
| EEEE-381 | Electronics I | 3 |
| EEEE-482 | Electronics II | 3 |
| EEEE-726 | Mixed Signal Design | 3 |
| Total Semester Credit Hours | $\mathbf{1 2}$ |  |

## Mechatronics Engineering, Certificate

rit.edu/kgcoe/mechatronics-engineering-certificate
Mark Smith, Director of Multidisciplinary Programs
(585) 475-7102, mark.smith@rit.edu

## Program overview

The online certificate in mechatronics engineering is designed for practicing mechanical and electrical engineers who aspire to become strong contributors to multidisciplinary design and product development teams working in the area of mechatronics. The certificate provides engineers with a solid foundation in the core principles of their complementary discipline and augments this foundation with focused study in mechatronics at the intersection of electrical and mechanical engineering. A significant laboratory experience completes the curriculum and facilitates the transfer of new cross-disciplinary knowledge to professional practice. Participants are positioned to drive innovation in technology and product development. The certificate consists of 9 credit hours and includes two online courses in electrical and mechanical engineering plus an on-campus integrated laboratory applications course in mechantronics.

## Curriculum

Mechatronics engineering, certificate, typical course sequence*

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year* |  |
| Choose one of the following: | 3 |
| MECE-255 Foundations of Thermal and Mechanical Systems |  |
| EEEE-255 Foundations of Circuits and Electronics |  |
| Choose one of the following: | 3 |
| MECE-515/MECE- Embedded Systems for Mechatronics 615/EEEE-515 |  |
| Choose one of the following: | 3 |
| EEEE-625/MECE-625 Lab Applications in Mechatronics |  |
| Total Semester Credit Hours | 9 |

## Additional information

## Admissions

To be considered for admission to the certificate in mechatronics engineering, candidates must hold a baccalaureate degree in engineering (preferably mechanical or electrical engineering) from an accredited institution. No transfer credit is permitted.

Doreen Edwards, BS, South Dakota School of Mines and Technology; Ph.D., Northwestern University-Dean; Professor

## Biomedical Engineering

Steven Day, BS, Ph.D., University of Virginia; Diploma, von Karman Institute for Fluid Mechanics (Belgium)—Department Head; Associate Professor

Iris Asllani, B.Sc., University of Tirana (Albania); M.Sc., Ph.D., University of WashingtonAssistant Professor

Jennifer Bailey, BS, Ph.D., Purdue University-Lecturer
Thomas Gaborski, BS, Cornell University; MS, Ph.D., University of Rochester-Assistant Professor

Behnaz Ghoraani, B.Sc., Sharif University of Technology (Iran); M.Sc., Amirkabir University of Technology (Iran); Ph.D., Ryerson University (Canada)—Assistant Professor

Blanca Lapizco-Encinas, BS, MS, Instituto Tecnologico de Sonora (Mexico); Ph.D., University of Cincinnati-Associate Professor

Cristian Linte, BS, University of Windsor (Canada); MS, Ph.D., University of Western Ontario (Canada)—Assistant Professor

Daniel B. Phillips, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Associate Professor

Cory Stiehl, BS, University of Rochester; Ph.D., University of Massachusetts, Amherst-Senior Lecturer

## Chemical Engineering

Steven J. Weinstein, BS, University of Rochester; MS, Ph.D., University of Pennsylvania-Department Head; Professor

Anju Gupta, BS, University of Mumbai (India); MS, Worcester Polytechnic Institute; Ph.D., University of Rhode IslandAssistant Professor

Karuna Koppula, B.Tech., Andhra University (India); MS, University of New Hampshire; Ph.D., Michigan State University-Lecturer

Brian J. Landi, BS, MS, Ph.D., Rochester Institute of TechnologyAssociate Professor

Reginald Rogers, BS,
Massachusetts Institute of Technology; MS, Northeastern University; Ph.D., University of Michigan-Assistant Professor

Kenneth J. Ruschak, BS, Carnegie Mellon University; Ph.D., University of Minnesota-Research Professor

Patricia Taboada-Serrano, BS, Mayor de San Andres University (Bolivia); MS, Simon Bolivar University (Venezuela); Ph.D., Georgia Institute of TechnologyAssistant Professor

Yasemin Yilmazel, BS, MS, Middle East Technical University (Turkey); Ph.D., Villanova UniversityAssistant Professor

## Computer Engineering

Shanchieh J. Yang, B.Sc., National Chiao-Tung University (Taiwan); MS, Ph.D., University of Texas at Austin-Department Head; Professor

Reza Azarderakhsh, M.Sc, Sharif University of Technology (Iran); Ph.D., The University of Western Ontario (Canada)—Assistant Professor

Louis Beato, BS, MS, Rochester Institute of Technology-Lecturer

Juan C. Cockburn, B.Sc., Universidad Nacional de Ingenieria (Peru); MS, Ph.D., University of Minnesota-Associate Professor

Amlan Ganguly, B.Sc.Tech., Indian Institute of Technology (India); MS, Ph.D., Washington State University-Associate Professor
Dhireesha Kudithipudi, B.Sc., Nagarjuna University (India); MS, Wright State University; Ph.D., University of Texas at San Antonio-Associate Professor

Andrés Kwasinski, M.Sc., Ph.D., University of Maryland at College Park-Associate Professor

Sonia Lopez Alarcon, B.Sc., Ph.D., Complutense University of Madrid (Spain)-Associate Professor

Marcin Lukowiak, M.Sc., Ph.D., Poznan University of Technology (Poland)—Associate Professor

Roy W. Melton, B.Sc, M.Sc., Ph.D., Georgia Institute of TechnologyPrincipal Lecturer

Raymond Ptucha, MS, Ph.D., Rochester Institute of TechnologyAssistant Professor

Andreas E. Savakis, B.Sc., MS, Old Dominion University; Ph.D., North Carolina State University-Professor

Muhammad E. Shaaban, BS, MS, University of Petroleum and Minerals (Saudi Arabia); Ph.D., University of Southern CaliforniaAssociate Professor

## Electrical and Microelectronic Engineering

Sohail A. Dianat, BS, Aria-Mehr University of Technology (Iran); MS, Ph.D., George Washington University-Department Head; Professor

Mustafa A. G. Abushagur, BS, Tripoli University (Libya); MS, Ph.D., California Institute of Technology—Professor

## David A. Borkholder,

BS, Rochester Institute of Technology; MS, Ph.D., Stanford University-Professor

Edward E. Brown, Jr., BS, University of Pennsylvania; MS, Ph.D., Vanderbilt UniversityAssociate Professor

William W. Destler, BS, Stevens Institute of Technology; Ph.D., Cornell University-President, RIT; Professor

Dale E. Ewbank, BS, MS, Ph.D., Rochester Institute of TechnologySenior Lecturer

Lynn F. Fuller, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Professor

Luis Carlos Herrera, BS, University of Tennessee at Martin; MS, Ph.D., The Ohio State UniversityAssistant Professor

Karl D. Hirschman, BS, MS, Rochester Institute of Technology; Ph.D., University of RochesterMicron Technology Professor; Professor

Christopher R. Hoople, BS, Union College; Ph.D., Cornell UniversitySenior Lecturer

Mark A. Hopkins, BS, Southern Illinois University; MS, Ph.D., Virginia Polytechnic Institute and State University-Professor

Michael A. Jackson, BS, MS, Ph.D., State University of New York at Buffalo-Associate Professor

Santosh K. Kurinec, BS, MS, Ph.D., University of Delhi (India)—Professor

Zhaolin Lu, B.A., Chongqing University (China), MS, Michigan Technological University, Ph.D., University of Delaware-Associate Professor

Sergey E. Lyshevski, MS,
Ph.D., Kiev Polytechnic Institute (Ukraine)—Professor

Panos P. Markopoulos, BS, MS, Technical University of Crete (Greece); Ph.D., University at Buffalo-Assistant Professor

Sildomar Monteiro, BS, University of Amazonas (Brazil); MS, Aeronautics Institute of Technology (Brazil); Ph.D., Tokyo Institute of Technology (Japan)—Assistant Professor

James E. Moon, BS, Carnegie Mellon University; MBA, University of Rochester; MS, Ph.D., University of California at Berkeley-Associate Professor

Mehran Mozaffari-Kermani, BS, Tehran University (Iran); MS, Ph.D., Western University-Assistant Professor
P. R. Mukund, BS, MS, Ph.D., University of Tennessee-Professor

Dorin Patru, BS, MS, Technical University of Cluj-Napoca (Romania); Ph.D., Washington State University-Associate Professor

Robert E. Pearson, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Director, Microelectronic Engineering Program; Associate Professor

Daniel B. Phillips, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Associate Professor

Stefan Preble, BS, Rochester Institute of Technology; Ph.D., Cornell University-Associate Professor

Ivan Puchades, BS, MS, Ph.D., Rochester Institute of TechnologyAssistant Professor

Majid Rabbani, BS, Aria-Mehr University of Technology (Iran); MS, Ph.D., University of Wisconsin-Madison-Visiting Professor

Sean L. Rommel, BS, Ph.D., University of Delaware-Associate Professor

Eli Saber, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Professor

Ferat E. Sahin, BS, Istanbul Technical University (Turkey); MS, Ph.D., Virginia Polytechnic Institute-Professor

George B. Slack, BS, Rochester Institute of Technology; MS, University of Rochester-Lecturer

Gill R. Tsouri, B.Sc., M.Sc., Ph.D., Ben-Gurion University (Israel)Associate Professor

Jayanti Venkataraman, BS, MS, Bangalore University (India); Ph.D., Indian Institute of Science (India)—Professor

Jing Zhang, BS, Huazhong University (China), Ph.D., Lehigh University-Assistant Professor

## Industrial and Systems Engineering

Scott E. Grasman, BS, MS,
Ph.D., University of MichiganDepartment Head; Professor
Ronald L. Aman, BS, MS, Ph.D., North Carolina State UniversityAssistant Professor

Robin R. Borkholder, BS, MS, State University of New York at Buffalo-Lecturer

Denis R. Cormier, BS, University of Pennsylvania; MS, State University of New York at Buffalo; Ph.D., North Carolina State University-Earl W. Brinkman Professor

Marcos Esterman, BS, MS,
Massachusetts Institute of Technology; Ph.D., Stanford University-Associate Professor

John T. Kaemmerlen, BS, ME, Rochester Institute of TechnologySenior Lecturer

Michael E. Kuhl, BS, Bradley University; MS, Ph.D., North Carolina State University-Professor

Katie McConky, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at BuffaloAssistant Professor

Matthew M. Marshall, BS, Rochester Institute of Technology; MS, Ph.D., University of MichiganAssociate Professor

Rubén A. Proaño, BS, Universidad San Francisco de Quito (Ecuador); MS, Ph.D., University of Illinois at Urbana-Champaign-Associate Professor

Rachel Silvestrini, BS,
Northwestern University; MS, Ph.D., Arizona State University-Kate Gleason Chair; Associate Professor

Brian K. Thorn, BS, Rochester Institute of Technology; MS, Ph.D., Georgia Institute of Technology-Professor

## Mechanical Engineering

Risa J. Robinson. BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Department Head; Professor

Margaret B. Bailey, BS, Pennsylvania State University; Ph.D., University of Colorado at Boulder; PE—Professor

Stephen Boedo, BA, State University of New York at Buffalo; MS, Ph.D., Cornell University-Professor

Robert Carter, BS, University of Maine; Ph.D., Cornell University-Lecturer

Agamemnon L. Crassidis, BS, MS, Ph.D., State University of New York at Buffalo-Graduate Coordinator; Professor

Steven Day, BS, Ph.D., University of Virginia-Associate Professor

Elizabeth A. DeBartolo, BS, Duke University; MS, Ph.D., Purdue University-Associate Professor

Gerald W. Fly, BS, MS,
Massachusetts Institute of Technology-Lecturer

Alfonso Fuentes-Asnar, MS, University of Murcia (Spain); Ph.D., National University of Distance Education (Spain)-Associate Professor

Hany A. Ghoneim, BS, MS, Cairo University (Egypt); Ph.D., Rutgers University-Professor
Amitabha Ghosh, B.Tech., M.Tech., Indian Institute of Technology (India); Ph.D., Mississippi State UniversityProfessor

Mario W. Gomes, BsE, Cornell University; MS, Georgia Institute of Technology; Ph.D., Cornell University-Senior Lecturer

Surendra K. Gupta, B.Tech., Indian Institute of Technology (India); MS, University of Notre Dame; Ph.D., University of Rochester-Professor
Edward C. Hensel, BS, Clarkson
University; Ph.D., New Mexico State University-Professor; PE
William A. Humphrey, BS,
MS, Case Western Reserve University-Lecturer
Patricia Iglesias Victoria, BS, Ph.D., Polytechnic University of Cartagena (Spain)—Assistant Professor

Sarilyn Ivancic, BS, MS, Ph.D., University of Rochester-Lecturer
William A. Humphrey, BS, MS, CaseWestern Reserve UniversityLecturer

Satish G. Kandlikar, BE, Marathwada University (India); M.Tech., Ph.D., Indian Institute of Technology (India)-James E. Gleason Professor

Mark H. Kempski, BS, Purdue University; MS, Ph.D., State University of New York at Buffalo—Professor

Jason R. Kolodziej, BS, MS, Ph.D., State University of New York at Buffalo-Associate Professor

Margaretha J. Lam, BS, MS, State University of New York at Buffalo; Ph.D., Virginia Polytechnic Institute and State University-Senior Lecturer

Kathleen Lamkin-Kennard, BS, Worcester Polytechnic Institute; MS, Ph.D., Drexel University-Associate Professor

Timothy P. Landschoot, BS, MS, Rochester Institute of Technology; MBA, University of RochesterPrincipal Lecturer
Kate Leipold, BS, MS, Rochester Institute of Technology-Senior Lecturer

Alexander Liberson, BS, MS, Ph.D., State University of Aerospace Technology (Moscow)-Lecturer
Rui Liu, BS, Beijing University (China); MS, Northeastern University; Ph.D., Georgia Institute of Technology-Visiting Assistant Professor

Alan H. Nye, BS, MS, Clarkson College; Ph.D., University of Rochester-Associate Department Head for Outreach; Professor

Ali Ogut, B.Ch.E., Hacettepe University (Turkey); MS, Ph.D., University of Maryland-Professor
Michael Schertzer, BS, MS, McMaster University (Canada); Ph.D., University of Toronto (Canada)—Assistant Professor

Michael Schrlau, BS, University of Pittsburgh; Ph.D., University of Pennsylvania-Assistant Professor

Robert J. Stevens, BS, Swarthmore College; MS, North Carolina State University; Ph.D., University of Virginia-Associate Professor

Benjamin Varela, BS, Institute of Technology of Juarez (Mexico); MS, Ph.D., New Mexico State University-Associate Professor
Panchapakesan Venkataraman,
B.Tech., Indian Institute of Technology (India); MS, Ph.D., Rice University-Associate Professor

Wayne W. Walter, BE, State University of New York Maritime College; MS, Clarkson College; Ph.D., Rensselaer Polytechnic Institute; PE—Professor

John D. Wellin, BS, Rochester Institute of Technology; MS, University of Rochester-Senior Lecturer

## Microsystems Engineering

Bruce W. Smith, BS, MS, Ph.D., Rochester Institute of TechnologyDirector; Intel Professor of Research and Technology; Professor
David Borkholder, BS, Rochester Institute of Technology; MS, Ph.D., Stanford University-Bausch and Lomb Professor of Microsystems Engineering

Zhaolin Lu, BS, Changqing University (China); MS, Michigan Technological University; Ph.D., University of Delaware-Associate Professor

Parsian Katal Mohseni, BS, Ph.D., McMaster University—Assistant Professor

Stefan F. Preble, BS, Rochester Institute of Technology; Ph.D., Cornell University-Associate Professor

Jiandi Wan, BS, Wuhan University (China); Ph.D., Boston UniversityAssistant Professor

## Distinguished Professorships

## James E. Gleason Professorship

 in Mechanical Engineering Established: 1967Donor: Estate of James E. Gleason Purpose: To provide a permanent memorial to Mr. James E. Gleason, who was president of Gleason Works from 1922-1947 and was awarded 36 patents for his many inventions in bevel gear design and manufacturing. James E . Gleason served on the RIT Board of Trustees for 65 years ( 1899 until 1964), including 20 years as its chairman, and was an enthusiastic supporter of the relocation of RIT to the Henrietta campus. The professorship is targeted to strengthen RIT in the field in which he received his education. Held by: Satish G. Kandlikar

Gleason Memorial Professorship in Electrical Engineering
Established: 1993
Donor: Gleason Memorial Fund Purpose: To provide support for a faculty member who will provide leadership in research and development in electrical engineering.
Held by: Eli S. Saber

## Kate Gleason Professorship

Established: 1999
Donor: Gleason Foundation
Purpose: To build upon the tradition of Kate Gleason as a role model for women in engineering by supporting the College's continuing commitment to diversity, its strategic goals and overall mission. Among her many notable achievements, Kate Gleason was the first woman admitted to study engineering at Cornell University, the first woman elected to full membership in the American Society of Mechanical Engineers, the first woman bank president in the US.
Held by: Jing Zhang and Rachel Silvestrini

## Earl W. Brinkman Professor of Machining and Manufacturing

Established: 1995
Donor: Brinkman Family Charitable Trust and an anonymous foundation Purpose: To support a professorship in engineering and create a lasting memorial to Earl W. Brinkman, an innovator and leader in the screw machine industry. Mr. Brinkman started in the industry at the age of 17 , worked his way up the ranks to become Chief Engineer of the Davenport Machine Company in Rochester, N.Y., in 1937, and became president of the company from 1996 until his retirement in 1979, after devoting 53 years to the company.
Held by: Denis R. Cormier

Bausch and Lomb Endowed Chair in Microsystems

## Engineering

Established: 2007
Donor: Bausch and Lomb
Foundation
Purpose: To support a professorship in Microsystems Engineering and aid in the development of microsystems technologies for healthcare and biomedical applications to enhance the quality of life for future generations.
Held by: David A. Borkholder

## Micron Professorship

Established: 2007
Purpose: As a global leader in the design, development, and fabrication of flash memory devices, Micron Corp. provides annual support for a faculty member, and related research and teching activities, to enhance the body of knowledge in semiconductor fabrication technologies and manufacturing.
Held by: Karl D. Hirschman

# College of Health Sciences and Technology <br> Daniel Ornt, Dean 

rit.edu/healthsciences

## Programs of study

| Bachelor of Science in: | Page |
| :--- | ---: |
| Biomedical Sciences | 81 |
| Diagnostic Medical Sonography (Ultrasound) | 82 |
| Exercise Science | 85 |
| Nutrition Management | 87 |
| Physician Assistant | 88 |


| Certificates in: |  |
| :--- | :--- |
| Diagnostic Medical Sonography (Ultrasound) | 83 |
| Echocardiography (Cardiac Ultrasound) | 84 |
| Exercise Science | 86 |
| Health Systems Administration | 87 |

\# The physician assistant program is only available as an accelerated BS/MS option.

RIT's College of Health Sciences and Technology responds to the growing need for well-educated professionals in the health care field. The United States faces a looming shortage of many types of health care professionals, including nurses, physicians, dentists, pharmacists, and allied health workers. The college, housed in the Institute of Health Sciences and Technology, serves as an independent academic and research entity designed to provide a focused, interdisciplinary, and systems approach to innovative health care education, applied/translational research, and community outreach. The institute incorporates three major thrusts: the College of Health Sciences and Technology, the Health Science Research Center, and the Health Science Community Collaboration and Outreach Center.

The college offers clinically related and biomedical research-based programs to meet both the present and future needs of the health care system. The college's faculty and staff are committed to delivering high quality educational programs. Building on a foundation of liberal arts and basic sciences, students will gain advanced knowledge in theoretical science and practical applications in experiential learning environments. These experiences prepare students to serve as practitioners, scientists, and leaders through their contributions to, and the provision of, high-quality patient care, health care service, and/or applied, translational biomedical research.

## Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

Faculty members in the college have considerable experience in their respective fields of discipline. Basic science and clinical faculty work side-by-side to provide students with a comprehensive learning experience to prepare them for their chosen healthcare-related career.

## Facilities and resources

In addition to facilities shared with the College of Science, the College of Health Sciences and Technology provides a comprehensive environment to support academic, community, and career-training programs in the emerging life and medical sciences. A new 45,000 -square-foot Clinical Health Sciences Center provides clinical and research space for the physician assistant and diagnostic medical sonography majors, the Wegmans School of Health and Nutrition, forensic clinical psychology research, and the Center for Applied Psychophysiology and Self-regulation. The College's facilities also include the Center for Bioscience Exploration and Technology, which hosts high-tech bioscience classrooms and laboratories in an anatomical studies laboratory, histopathology and forensic medicine laboratory, as well as an oral microbiology and biofilm research laboratory.

## Cooperative education and clinical internships

All students will gain advanced knowledge in theoretical science and practical applications in experiential learning environments. For some students in the college this comes primarily in the form of unpaid clinical internship rotations through medical settings designed to help students master technical standards for their degree and eventual licensure. Additional opportunities are available for students to participate in cooperative education experiences to complement disciplines offered through the curriculum.

## Accreditation

The college offers several professional programs, which are all fully accredited through national accrediting organizations. The diagnostic medical sonography program (ultrasound) is accredited by the Commission on Accreditation of Allied Health Education Programs (caahep.org) upon the recommendation of the Joint Review Committee on Education in Diagnostic Medical Sonography (JRC-DMS), 25400 U.S. Hwy 19N, Suite 158, Clearwater, FL 33763, (727) 210-2350, www.caahep.org. The physician assistant program is accredited through the Accreditation Review Commission on Education for the Physician Assistant, Inc. (ARC-PA). The nutrition management program is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics

## Advising

The college's Student Services Office offers administrative support to assist with course selection and registration, career guidance, student records, and course scheduling. In addition, the administrative staff provides students with information on additional support services within RIT. Students are assigned an individual faculty adviser, who becomes an integral part of their advising network.

## Academic enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.

Study Abroad: RIT encourages all students to consider a study abroad program to enhance their understanding of other cultures. Students may study full time at a variety of host schools. RIT's Study Abroad Office has information about foreign study options and opportunities.

Minors: RIT offers students more than 90 minors to choose from to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

## Special opportunities

Graduate study: The college offers a master of science degree in health systems administration, and a master of fine arts degree in medical illustration. Additional graduate programs in healthrelated fields and in the sciences are offered through the College of Science. Please refer to the Graduate Bulletin or the colleges' websites for more information.

## Premedical studies and pre-health professions advisory program

The premedical studies and pre-health professions advisory program is designed to provide guidance and assistance to all RIT students who are interested in continuing their education in one of the health professions; e.g., medicine, osteopathy, dentistry, optometry, podiatry, or veterinary science. Faculty members who participate in this program provide advice on the prerequisites (course selection, health-related experiences, extracurricular activities) needed for application to various health-related professional schools. In addition, they provide assistance with the application process.

## Enrollment in premedical studies/pre-health professions advisory program

The premedical studies and pre-health professions advisory program is available to students who are enrolled in one of the degree granting programs or to nonmatriculated students taking the premedical core courses or pre-professional prerequisite courses. To enroll in the program, students must contact the premedical studies and pre-health professions office in the Center for Bioscience Education and Technology (CBET).

## Biomedical Sciences, BS

rit.edu/healthsciences/undergraduate-programs/biomedical-sciences/

## Richard L. Doolittle, Program Director

(585) 475-5972, rldsbi@rit.edu

## Program overview

The biomedical sciences major prepares students for advanced study in various areas of health care (e.g. medicine, dentistry, nursing, public health), research, or for direct entry into a health care career. The diverse curriculum includes a broad array of elective courses and offers students career-relevant experiential learning opportunities where they can apply the knowledge they gain in the classroom to real-world experiences. Comprehensive academic and faculty advising is complemented by a premedical/prehealth professions advising system that together provide guidance to students in their selection of course work and in completing the requirements necessary for admission to advanced degree programs.

Employment opportunities in the biomedical sciences continue to grow and develop-driven in part by advances in biotechnology and the need for more research and better treatments for current and emerging health care and public policy challenges, including AIDS, diabetes, cancer, infectious disease, and neurological disorders. Courses and concentrations are designed to provide the knowledge base and the technical skills required in a broad spectrum of medical and health care related careers.

## Plan of study

The major's curricular requirements are flexible, consisting of a life sciences core, courses in the liberal arts, and a broad range of professional elective course options. The life sciences core is designed to provide students with a strong grounding in mathematics and science. A complement of liberal arts courses and an array of professional electives, prepare students for a particular career path-e.g., entry into graduate study, including medical/dental school-or a research position in an applied area of biomedical science. In addition, concentrations are available to focused study in pre-health professions, genetics, premedical studies, or biomedical research. In consultation with an academic adviser students may select a series of required and elective courses associated with a program concentration. Students also may choose to use elective credits to engage in undergraduate research with a faculty mentor, pursue a double major, or select a secondary field of study through a minor.

## Curriculum

Biomedical sciences, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-101, 103 | General Biology I and Lab | 4 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| BIOL-102, 104 | General Biology II and Lab | 4 |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
|  | First Year Writing Seminar | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MEDS-250, 251 | Anatomy and Physiology I, II and Labs | 8 |
|  | Chemistry Sequence Course | 7 |
| Choose one of the following: |  | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I |  |
| STAT-155 | LAS Perspective 7B: Introduction to Biostatistics |  |
|  | LAS Perspective 2, 3 | 6 |
| BIOL-201 | Cellular and Molecular Biology | 4 |
|  | Professional Elective | 3 |
| Third Year |  |  |
|  | Program Elective Requirement | 12 |
|  | Professional Electives (WI) | 12 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
|  | Program Elective Requirement | 6 |
|  | Professional Electives | 6 |
|  | Free Electives | 12 |
|  | LAS Immersion 2, 3 | 6 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Diagnostic Medical Sonography (Ultrasound), BS

rit.edu/healthsciences/undergraduate-programs/diagnostic-medical-sonography
Hamad Ghazle, Program Director
(585) 475-2241, hhgscl@rit.edu

## Program overview

Diagnostic medical sonography is a noninvasive, nontoxic diagnostic medical imaging modality in which high-frequency sound waves are used to produce images of the human body. Ultrasound is readily used to image the heart, blood flow, and abdominal organs as well as the developing fetus and male/female reproductive organs. But ultrasound has found itself beyond radiology, OB/GYN, vascular, and cardiology and is now used in areas such as emergency medicine, orthopedics, sports medicine, ophthalmology, rheumatology, pain medicine, intensive care, and beyond. The profession has grown rapidly in the last 20 years and is expected to continue to grow over the next several decades. Evaluation of the job market and a survey of employers indicate a strong demand for well-trained sonographers.

The major prepares competent, compassionate, and responsible ultrasound professionals and leaders. Skills in administration and research are emphasized in addition to the development of scanning and diagnostic abilities. Without extending the enrollment period, the program also assists and prepares students for medical, dental, veterinary, or graduate school. Students apply their theoretical knowledge and practice their skills in our dedicated ultrasound laboratory before embarking on the clinical internship portion of the program. Upon successful completion of the program's requirements, students are eligible to take a national certifying examination for abdominal, small parts, obstetrical, and gynecological ultrasound. Each candidate is also introduced to vascular ultrasound.

Graduates are prepared to pursue a variety of career options, nationally and internationally, in medical, industrial, and educational settings. Graduates can be found in a wide range of positions, including supervisory and administrative, in hospitals, clinics, private physicians' offices, teaching, research, sales, and industry. Graduates also can work as freelance sonographers or for mobile services.

## Plan of study

The BS degree is a four-year program, including a clinical internship, unless the student has transfer credit from another academic institution. Those holding associate degrees may be able to complete the BS degree in two years; additional course work may be required. Contact the program director for further information on BS degree requirements.

In addition to the bachelor of science in ultrasound, RIT also offers a certificate in diagnostic medical sonography and a certificate in echocardiography (cardiac ultrasound). Both of these options are designed to meet the growing needs of the national and international medical communities.

## Clinical internship

The clinical internship year provides hands-on experience at two or more approved medical facilities. Students can complete their clinical internships in western New York or at any approved regional or national medical ultrasound facility upon the approval of the program director. After completing the pre-internship course work, all students begin the internship by attending an intensive two-week experience on campus. During this time they enhance and polish the skills they previously learned, prepare to perform complete sonographic examinations as performed
in real clinical settings, and advance their knowledge in recognizing anatomy and disease states using equipment in the ultrasound laboratory. Students also learn about hospital, departmental, and administrative operations. After completing these requirements, candidates are assigned to a medical training site for clinical experience. At these facilities, students work side by side with sonographers, physicians, and other health care professionals to learn, develop, apply, and sharpen the necessary skills to perform general ultrasound examinations. Students' clinical progress and performance are closely monitored by the program's clinical coordinator and program director, who have regular communication and make periodic visits to the clinical internship sites. Additionally, students return to campus each month for three days of lectures, presentations, projects, and testing.

## Accreditation

The diagnostic medical sonography major is accredited by the Commission on Accreditation of Allied Health Education Programs upon the recommendation of the Joint Review Committee on Education in Diagnostic Medical Sonography (JRC-DMS), 25400 U.S. Hwy 19N, Suite 158, Clearwater, FL 33763, (727) 210-2350, www.caahep.org

## Curriculum

## Diagnostic medical sonography (general ultrasound), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-101 | General Biology | 3 |
| BIOL-103 | General Biology Lab I | 1 |
| MATH-111 | LAS Perspective 7A: Pre-Calculus | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3 | 9 |
| BIOL-102 | General Biology II | 3 |
| BIOL-104 | General Biology Lab II | 1 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics | 3 |
|  | First Year Writing Seminar | 3 |
| MEDI-130 | Computers in Medicine | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHYS-111 | LAS Perspective 5: College Physics I | 4 |
| MEDS-250 | Human Anatomy and Physiology I | 4 |
| MEDS-201 | Language of Medicine | 3 |
|  | LAS Perspective 4 | 3 |
| PHYS-112 | LAS Perspective 6: College Physics II | 4 |
| MEDS-251 | Human Anatomy and Physiology II | 4 |
| MEDS-245 | Medical Genetics | 3 |
|  | LAS Immersion 1 | 3 |
|  | Free Elective | 3 |
| Third Year |  |  |
| DMSO-312 | Human Cross Sectional Anatomy | 3 |
| DMSO-301 | Sonographic Scanning Skills and Techniques I | 3 |
| DMSO-309 | Sonography Physics and Instrumentation I | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Elective | 3 |
| DMSO-310 | Sonography Physics and Instrumentation II | 3 |
| DMSO-302 | Sonographic Scanning Skills and Techniques II | 3 |
| MEDS-415 | Pathophysiology of Organ Systems I | 3 |
| MEDS-333 | Patient Care | 2 |
| Fourth Year |  |  |
| DMSO-452 | Obstetrical Sonography I | 3 |
| DMSO-453 | Gynecological Sonography | 3 |
| DMSO-456 | Abdominal and Small Parts Sonography I | 3 |
| DMSO-570 | Clinical Sonography I | 7 |
| DMSO-414 | Sonographic Vascular Evaluation | 3 |
| DMSO-454 | Obstetrical Sonography II | 3 |
| DMSO-457 | Abdominal and Small Parts Sonography II | 3 |
| DMSO-460 | Administration and Research in Sonography (WI) | 3 |
| DMSO-571 | Clinical Sonography II | 5 |

## Total Semester Credit Hours

 degrees are required to complete two Wellness courses.
## Diagnostic Medical Sonography (Ultrasound), Certificate

rit.edu/healthsciences/undergraduate-programs/diagnostic-medical-sonog-raphy/certificate-options
Hamad Ghazle, Program Director
(585) 475-2241, hhgscl@rit.edu

## Program overview

The diagnostic medical sonography certificate is an 18-month program that include a clinical internship. The program, which focuses on various abdominal, gynecological, obstetrical, and small parts examinations including certain vascular studies, has been formulated to meet and exceed the objectives of the Joint Review Committee on Education in Diagnostic Medical Sonography. It is designed to produce competent, compassionate, and responsible ultrasound professionals and leaders. This certificate is available to all registered allied health practitioners as well as to those holding an associate or bachelor's degree in a relevant discipline. The certificate includes lectures and course work integrated with a clinical internship. Dependent on the previous degree, certain prerequisite courses may be required prior to enrollment in the program. Required prerequisite courses include a year of anatomy and physiology with laboratories and a year of college or general physics with laboratories. A medical terminology course can be very beneficial for your studies.

Graduates earning the certificate will:

- gain a thorough working knowledge of ultrasound scanning techniques;
- be skilled in the operation of ultrasound instrumentation and laboratory equipment;
- acquire the proper manner in working with patients; and
- under the guidance from faculty and professional staff, be capable of scheduling and performing the daily workload of ultrasound procedures, of evaluating new procedures where necessary, and of supervising other technical personnel.


## Plan of study

During the first academic year, students complete all the prerequisite courses required to enter the clinical internship phase of the program. Students also apply, polish, and test their clinical skills and techniques in the on-campus ultrasound scanning suite, which is equipped with a variety of ultrasound equipment. Following a required two-week pre-clinical internship orientation session, students begin their training at the first of two assigned clinical training sites.

In addition to the diagnostic medical sonography certificate, RIT also offers a bachelor of science degree and a certificate in echocardiography (cardiac ultrasound). Both of these options are designed to meet the growing needs of the national and international medical communities

## Clinical internship

The clinical internship is divided into two rotations at various medical facilities. After successfully completing the first year of course work, students are assigned to clinical training sites. At these facilities, students work side by side with sonographers, physicians, radiologists, perinatologists, and other health care professionals to learn, develop, apply, sharpen, and master the skills necessary to perform various ultrasound examinations. Each student's clinical progress and performance is closely monitored by the program's faculty. Upon completion of the program, graduates are eligible to take the national certifying examinations.

| Diagnostic medical sonography, certificate, typical course sequence |  |  |
| :---: | :---: | :---: |
| COURSE |  | SEMESTER CREDIT HOURS |
| First Year |  |  |
| DMSO-312 | Human Cross Sectional Anatomy | 3 |
| DMSO-301 | Sonographic Scanning Skills and Techniques I | 3 |
| DMSO-309 | Sonography Physics and Instrumentation I | 3 |
| DMSO-310 | Sonography Physics and Instrumentation II | 3 |
| DMSO-302 | Sonographic Scanning Skills and Techniques II | 3 |
| MEDS-415 | Pathophysiology of Organ Systems I | 3 |
| MEDS-333 | Patient Care | 2 |
| Second Year |  |  |
| DMSO-452 | Obstetrical Sonography I | 3 |
| DMSO-453 | Gynecological Sonography | 3 |
| DMSO-456 | Abdominal and Small Parts Sonography I | 3 |
| DMSO-570 | Clinical Sonography I | 7 |
| DMSO-414 | Sonographic Vascular Evaluation | 3 |
| DMSO-454 | Obstetrical Sonography II | 3 |
| DMSO-457 | Abdominal and Small Parts Sonography II | 3 |
| DMSO-460 | Administration and Research in Sonography | 3 |
| DMSO-571 | Clinical Sonography II | 5 |
| Total Semester Credit Hours |  | 53 |53

## Echocardiography (Cardiac Ultrasound), Certificate

rit.edu/healthsciences/undergraduate-programs/diagnostic-medical-sonog-raphy/certificate-options
Hamad Ghazle, Program Director
(585) 475-2241, hhgscl@rit.edu

## Program overview

The certificate in echocardiography is an eighteen-month program that includes a clinical internship. The program, which focuses on the evaluation of the heart, its valves and chambers, and associated vessels, was designed to exceed the objectives of the Joint Review Committee on Education in Diagnostic Medical Sonography of the Commission on Accreditation of Allied Health Education Programs (CAAHEP). The program produces competent, compassionate, and responsible echocardiography professionals and leaders. This certificate is available to all registered allied health practitioners as well as those holding an associate or bachelor's degree in a relevant discipline. The certificate includes lectures and course work integrated with a clinical internship. Depending on a candidate's previous course work, certain prerequisite courses such as a patient care course may be required prior to or during enrollment in the program. Contact the program director for further information on prerequisite course work and degree options.

Graduates earning the certificate will:

- gain a thorough working knowledge of echocardiography scanning techniques;
- be skilled in the operation of ultrasound instrumentation and laboratory equipment;
- acquire the proper manner in working with patients; and
- under guidance from faculty and professional staff, become capable of scheduling and performing the daily workload of ultrasound procedures, of evaluating new procedures where necessary, and of supervising other technical personnel.


## Plan of study

During the first academic year, students complete all the prerequisite courses required to enter the clinical internship phase of the program. Students also apply, polish, and test their clinical skills and techniques in the on-campus ultrasound scanning suite, which is equipped with a variety of ultrasound equipment. Following a required two-week pre-clinical internship orientation session, students begin their training at the first of two assigned clinical training sites.

In addition to the echocardiography certificate, RIT also offers a bachelor of science degree and a certificate in diagnostic medical sonography. Both of these options are designed to meet the growing needs of the national and international medical communities.

## Clinical internship

The clinical internship is divided into two rotations completed at various medical facilities. After successfully completing the first year of course work, students are assigned to a clinical training site. At these facilities, students work side by side with physicians, echocardiographers, cardiologists, and other health care professionals to learn, develop, apply, sharpen, and master the necessary skills to perform various echocardiographic examinations. Each student's clinical progress and performance is closely monitored by faculty. Upon completion of the program, graduates are eligible to take the national certifying examinations.

## Curriculum

Echocardiography, certificate, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year |  |  |
| ECHO-305 | Cardiac Anatomy and Physiology | 3 |
| ECHO-307, 308 | Echocardiographic Scanning Skills and Techniques | 2 |
| I, II |  |  |
| DMSO-309, 310 | Sonography Physics and Instrumentation I, II | 6 |
| MEDS-415 | Pathophysiology of Organ Systems I | 3 |
| ECHO-320 | Electrophysiology and Cardiac Pharmacology | 2 |
| Second Year |  |  |
| ECHO-401, 402 | Echocardiography I, II | 6 |
| ECHO-410 | Ischemic Heart Disease: Stress Echocardiography | 2 |
| ECHO-415 | Cardiac M-Mode | 2 |
| ECHO-430,431 | Congenital Heart Disease I, II | 4 |
| ECHO-465 | Echocardiography Special Procedures | 2 |
| ECHO-425 | Seminar in Echocardiography | 2 |
| ECHO-420,421 | Clinical Echocardiography I, II | 8 |
| Total Semester Credit Hours | $\mathbf{4 2}$ |  |

## Exercise Science, BS

## rit.edu/exercisescience

## William Brewer, Director of Exercise Science <br> (585) 475-2476, wsbscl@rit.edu

## Program overview

Exercise science is a growing field that scientifically addresses issues of health and fitness as well as human performance. The exercise science major provides students with a solid educational base in the biomedical sciences along with a core curriculum in exercise physiology, fitness, and kinesiology. The major offers two tracks - athletic and clinical - providing students with career driven course selection to develop the skill set needed for professional practice. The clinical track is for students interested in helping people recover from the unhealthy effects of a sedentary lifestyle and the athletic track focuses on training athletes to extend and expand their capacity to perform.

The exercise science degree requires the completion of 120 credit hours, which includes 65 credits in the liberal arts and sciences, 6 elective credits and 49 credits specifically in exercise science course work. The degree is designed to be completed in four years.

## Program tracks

The clinical track is for students interested in utilizing exercise as a therapeutic modality. Clinical exercise medicine is an emerging field that is poised to grow as the population ages. This field is designed for students who wish to become the newest practitioners in health care, providing exercise services as an integrated medical service. Clinical exercise physiologists perform fitness assessments, design exercise prescriptions, and implement therapeutic exercise programs for health promotion.

The athletic track is for students who want to raise the bar of performance for athletes at all levels. Courses utilize a scientific approach to athletic conditioning, allowing students to learn how to better train and maintain athletes. Skilled strength and conditioning specialists are in demand at all sports levels and the prevalence of private sector training facilities has never been higher. Students intent on a career training athletes will be well prepared to advise and guide athletic performers.

## Certification

Students who complete the athletic track are prepared to achieve professional certification through the National Strength and Conditioning Association as a Certified Strength and Conditioning Specialist (CSCS). The CSCS is a highly respected and sought after credential in the field of strength conditioning. Students enrolled in the clinical track are well prepared to take the American College of Sports Medicine (ACSM) Certified Exercise Physiologist exam. This certification validates the knowledge, skills and abilities of fitness and exercise practitioners.

## Curriculum

Exercise science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-101, 103 | General Biology I and Lab |  |
| BIOL-102, 104 | General Biology II and Lab |  |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
| EXSC-101 | Seminar in Exercise Science | 1 |
| MATH-161 | LAS Perspective 7A: Applied Calculus |  |
| EXSC-150 | Introduction to Exercise Science | 3 |
|  | LAS Perspective 1 | 3 |
|  | First Year Writing Seminar |  |
|  | First Year LAS Elective | 3 |
| Second Year |  |  |
| MEDS-250 | Anatomy and Physiology I and Lab |  |
| MEDS-251 | Anatomy and Physiology II and Lab |  |
| PHYS-111, 112 | College Physics I, II | 8 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics | 3 |
| EXSC-206 | Fitness Perscription | 3 |
| BIOL-201 | Cellular and Molecular Biology | 4 |
| EXSC-210 | Human Motor Development | 3 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| EXSC-350 | Exercise Physiology and Lab | 4 |
| EXSC-410 | Kinesiology and Lab |  |
| EXSC-420 | Biomechanics and Lab | 4 |
| EXSC-490 | Exercise Science Research (WI) | 3 |
|  | Professional Electives | 6 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
|  | Wellness Education* | 0 |
| Fourth Year |  |  |
|  | LAS Immersion 2, 3 | 6 |
| EXSC-270 | Group Exercise Design | 3 |
| EXSC-360 | Worksite Health Promotion | 3 |
| EXSC-320 | Coaching Healthy Behavior | 3 |
| EXSC-380 | Sports Psychology | 3 |
|  | Open Electives | 6 |
|  | Professional Elective | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Exercise Science, Certificate

rit.edu/exercisescience

## William Brewer, Program Director <br> (585) 475-2476, wsbscl@rit.edu

## Program overview

College-level knowledge and professional certification are increasingly required for those who wish to work in the fitness industry, whether fullor part-time, in an athletic club, ski resort, or sports medicine facility. Knowledge of and professional certification in fitness instruction and programming also are of increasing value to allied health professionals who wish to augment their care or practice with the ability to prescribe exercise programs that address special medical needs.

The certificate in exercise science covers the basic principles of exercise physiology, fitness assessment, the preparation of fitness programs and prescriptions, and the development of exercise prescriptions for individuals with medical or other significant limitations. Students who successfully complete all three courses are prepared to sit for professional certification examinations from the American College of Sports Medicine, American Council on Exercise, and the American Academy of Health and Fitness Professionals, as well as for certifications from the Cooper Institute for Aerobic Research, the National Academy of Sports Medicine, and a number of other recognized organizations.

## Curriculum

Exercise science, certificate, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| EXSC-205 | Sports Physiology and Life Fitness | 3 |
| EXSC-206 | Fitness Prescription | $\frac{3}{3}$ |
| EXSC-207 | Exercise for Special Populations | 3 |
| Total Semester Credit Hours | $\mathbf{9}$ |  |

## Health Systems Administration, Certificate

rit.edu/healthsciences/graduate-programs/health-systems-administration
Kristen Waterstram-Rich, Graduate Program Director
(585) 475-5117, kristen.waterstram-rich@rit.edu

## Program overview

Many students who have completed their associate degree consider entering the health care work force but require an orientation to health systems. These students do not wish to attain a bachelor's degree but rather to enhance their knowledge base about health care. Students who wish to pursue a certificate in health systems administration must have completed their associate degree with a minimum GPA of 2.0. To earn the certificate, students must attain a GPA of 2.5 or higher in the certificate courses. These courses are only available online.

## Curriculum

Health systems administration, certificate, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| HLTH-315 | Reinventing Health Care | 3 |
| HLTH-325 | Health Care Leadership | 3 |
| HLTH-327 | Finance for Health Care Professionals | 3 |
| HLTH-330 | Health Care Planning and Program Development | 3 |

Total Semester Credit Hours

## Nutrition Management, BS

rit.edu/healthsciences/undergraduate-programs/nutrition-management/
Elizabeth Kmiecinski, Director
(585) 475-2357, eakism@rit.edu

## Program overview

People are increasingly interested in the nutritional requirements for obtaining good health and a long life. Registered dietitian nutritionists (RDNs) work with people of all ages, cultures, and economic means. They learn to understand people as individuals, thereby helping their clients solve their nutritional needs. RDNs are health professionals who apply the science and art of food and nutrition.

The nutrition management major offers a challenging curriculum that prepares students to become an RDN and practice in diverse settings such as private practice; community nutrition and public health; wellness; sports fitness programs; corporations; clinical dietetics, hospital or long-term care food management facilities; research; food companies; nutrition education; restaurant consulting; writing and communication.

## Plan of study

The major leads to a BS degree that meets the educational requirements of the Academy of Nutrition and Dietetics. The pre-professional phase (years 1 and 2) involves core courses in basic sciences, food science, basic nutrition, mathematics, liberal arts, and business. The professional phase (years 3 and 4) includes practicum experiences in various upper-division courses. Three cooperative work experiences, including one position in health care food and nutrition services, is a requirement of the major. Students also have the opportunity to acquire a certificate or minor in a variety of content areas, including exercise science. To become credentialed as an RDN students also need to complete an accredited supervised practice after graduation and pass the National Registration Exam for Dietitian Nutritionists.

## Two-year transfer in nutrition management

Due to specific areas of study required by both the Accreditation Council for Education in Nutrition and Dietetics of the Academy of Nutrition and Dietetics and RIT, the amount of transferable credit and the estimated time to complete work for the BS degree must be determined by each individual's transcript. A minimum grade-point average of 3.2 and grades of A or B in all required science courses are required for admission and continuation in the major. For specific information regarding transfer admission, please refer to the Admission section of this bulletin.

## Accreditation

The nutrition management major is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics, 120 South Riverside Plaza, Suite 2000, Chicago, IL 60606-6995.

## Curriculum

Nutrition management, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FOOD-121 | Principles of Food Production | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| CHMG-111,112 | General Organic Biochemistry I, II | 8 |
| MATH-101 | LAS Perspective 7A: College Algebra | 3 |
| PSYC-101 | Introduction to Psychology | 3 |
| NUTR-215 | Contemporary Nutrition | 3 |
| MEDG-106 | Microbiology in Health and Disease | 3 |
| ECON-101 | Principles of Microeconomics | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MEDS-250 | LAS Perspective 5: Anatomy and Physiology I, Lab | 4 |
| FOOD-123 | Sanitation and Safety | 1 |
| ACCT-110 | Financial Accounting | 3 |
| SOCI-102 | Foundations of Sociology | 3 |
| MEDS-251 | LAS Perspective 6: Anatomy and Physiology II, Lab | 4 |
| FOOD-223 | Food and Beverage Management | 3 |
| NUTR-223 | Food and Beverage Management Lab | 1 |
| STAT-145 | Introduction to Statistics I | 3 |
|  | LAS Immersion 1 | 3 |
|  | LAS Perspective 1,2 | 6 |
| Third Year |  |  |
| HSPT-383 | Assessing and Improving Service Quality | 3 |
| NUTR-402 | Dietetic Environment | 3 |
| NUTR-333 | Techniques of Dietetic Education | 3 |
| MTKG-230 | Principles of Marketing | 3 |
| NUTR-554 | Life Cycle Nutrition | 4 |
| FOOD-325 | Food Innovation and Development | 3 |
| HRDE-386 | Human Resources Development | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Perspective 3 | 3 |
| Fourth Year |  |  |
| NUTR-497 | Dietetic Internship Seminar | 1 |
| NUTR-525,526 | Medical Nutrition Therapy I, II | 6 |
| NUTR-560 | Senior Project (WI) | 3 |
| NUTR-510 | Nutrition and Integrative Medicine | 1 |
|  | Free Electives | 9 |
|  | LAS Perspective 4 | 3 |
| NUTR-550 | Community Nutrition | 3 |
| HSPT-481 | Leadership in Hospitality and Service Industries | 3 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Physician Assistant, BS/MS

rit.edu/healthsciences/undergraduate-programs/physician-assistant/
Heidi Miller, Program Director
(585) 475-5945, hbmscl@rit.edu

## Program overview

The physician assistant major focuses on primary care for patients. Physician assistants provide diagnostic and therapeutic patient care in conjunction with a supervising physician. They elicit medical histories, conduct physical examinations, order laboratory and radiological testing, diagnose common illnesses, determine treatment, provide medical advice, counsel and educate patients, promote wellness and disease prevention, assist in surgery, and perform casting and suturing.

Physician assistant duties vary depending on the state and specialty in which they practice. In most states, including New York, physician assistants may prescribe medication. Examples of specialties include (but are not limited to): internal medicine, family medicine, emergency medicine, geriatrics, pediatrics, obstetrics/gynecology, psychiatry, general surgery, orthopedics, neurosurgery, and neonatology. Clinical rotations (internships) during students' last year provide the opportunity to explore these varied disciplines.

## Plan of study

The physician assistant major is offered as a BS/MS degree program, which enables students to earn both a bachelor's degree and a master's degree in five years. The curriculum is divided into the pre-professional phase (years 1 and 2), which includes course work in the basic sciences, mathematics, general education, and liberal arts; and the professional phase, (years 3, 4, and 5), which features didactic medical education and culminates in clinical rotations in which students apply their medical knowledge in a series of rotations through various disciplines of medicine.

## Clinical internship

Clinical rotations include a five-week experience in various disciplines of medicine, providing students with the opportunity to apply the basic principles of medicine to hospital-based and ambulatory patient care settings. Students are assigned to a primary preceptor (physician/physician assistant) and are exposed to a wide variety of acute and chronic medical problems. The emphasis is on data gathering, physical examination, differential diagnosis, patient management, maintenance of medical records, performance of diagnostic and therapeutic procedures, and the provision of patient education and counseling. Mandatory rotations are in the fields of inpatient medicine, family medicine, geriatrics, orthopedics, emergency medicine, OB/GYN, pediatrics, general surgery, and psychiatry. Students also select one elective rotation, which enables them to customize their experience according to their medical area of interest.

## Accreditation

The physician assistant program (professional phase) is accredited by The Accreditation Review Commission on Education for the Physician Assistant (ARC-PA).

## Curriculum

## Physician assistant, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year (Pre-professional) |  |  |
| BIOL-101, 103 | General Biology I and Lab | 4 |
| CHMG-141,145 | LAS Perspective 5: General and Analytical Chemistry <br> I and Lab | 4 |
|  | LAS Perspective 1, 2, 3 | 9 |
| BIOL-102,104 | First Year LAS Elective | 3 |
| CHMG-142,146 | General Biology II and Lab | 4 |
| MATH-161 | II and Lab | 4 |
|  | LAS-Perspectives 7A: Applied Calculus | 4 |
| ACSC-010 | First Year Writing Seminar | 4 |
|  | Year One: College Experience | 3 |


| Second Year (Pre-professional) |  |  |
| :---: | :---: | :---: |
| MEDS-250, 251 | Anatomy and Physiology I, II | 8 |
| CHMB-240 | Biochemistry for Health Sciences | 3 |
|  | LAS Perspective 4 | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 1, 2, 3 | 9 |
| PHYA-206 | Medical Microbiology | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| Third Year (Professional) |  |  |
| PHYA-405,406 | Pathophysiology I, II | 4 |
| PHYA-401,402 | History/Physical Dx I, II | 8 |
| PHYA-422,423 | Clinical Medicine I, II | 10 |
| PHYA-419 | Advanced Gross Anatomy | 2 |
| PHYA-420 | Physician Assistant Seminar | 1 |
| PHYA-415, 416 | Pharmacology I, II | 3 |
| PHYA-430 | Medical Genetics | 2 |
| Fourth Year (Professional) |  |  |
| PHYA-510 | Hospital Practice | 4 |
| PHYA-424 | Clinical Medicine III | 5 |
| PHYA-440 | Society and Behavioral Medicine (WI) | 3 |
| PHYA-417 | Pharmacology III | 2 |
| PHYA-421 | Diagnostic Imaging | 2 |
| PHYA-409 | Clinical Lab Medicine | 1 |
| PHYA-550 | Procedural Clinical Skills | 3 |
| PHYA-520 | Clinical Integration | 4 |
| PHYA-560 | Health Care Policy and Law | 2 |
| PHYA-729 | Clinical Epidemiology | 3 |
| PHYA-730 | Research Methods | 2 |
|  | Free Elective | 3 |
| PHYA-750 | Pediatrics | 4 |
| PHYA-751 | General Medicine | 4 |
| PHYA-752 | OB-GYN | 4 |
| PHYA-761 | Professional Practice I | 2 |
| PHYA-710 | Graduate Project I | 2 |


| Fifth Year (Professional) | 4 |  |
| :--- | :--- | :--- |
| PHYA-753 | Emergency Medicine | 4 |
| PHYA-754 | Surgery | 4 |
| PHYA-755 | Orthopedics | 4 |
| PHYA-762, 763 | Professional Practice II, III | 2 |
| PHYA-720 | Graduate Project II | 4 |
| PHYA-756 | Geriatrics | 4 |
| PHYA-757 | Psychiatry | 4 |
| PHYA-758 | Family Medicine | 4 |
| PHYA-759 | Elective Rotation |  |

## Total Semester Credit Hour

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Admission requirements

In addition to the university's general admission procedures, the physician assistant major requires the completion of a supplemental data packet, application, and a personal admission interview (by invitation). For more information regarding these additional admission requirements, please contact the Office of Undergraduate Admissions. It also is important to note that the minimum grade point average for acceptance into the physician assistant major is 3.0 (on the basis of a 4.0 maximum) for both high school and transfer students. In order to graduate from the major, a GPA of 3.0 or better must be maintained.

## Transfer admission

Qualified transfer students are accepted into the major, on a space available basis. Prior health care experience and/or shadowing are strongly recommended. Transcript evaluations and rendering of transfer credit are addressed at the time of admission only. Anatomy and physiology courses must be taken within the last five years prior to matriculation to be eligible for transfer. All pre-professional course work must be completed to continue on, or to be considered for entry, into the professional phase of the major. Please contact the Office of Undergraduate Admissions for information on transfer requirements.

## Advanced placement

In the pre-professional phase, advanced placement (AP) credit for liberal arts courses is evaluated and approved by the College of Liberal Arts. AP credit for calculus, statistics, and university electives is awarded, as applicable, within the major. AP credit is not accepted for biology and chemistry as course substitutions. Advanced placement or credit for experiential learning is not awarded for courses in the professional phase of the major.

## Program progression

Students are matriculated into one of the first three years, upon their acceptance into the physician assistant major. Students must complete academic requirements to progress on to the next academic year. Students must meet all program academic requirements, policies, and standards to advance from the pre-professional phase to the professional phase of the program. Once matriculated into the pre-professional phase, students are permitted to take a limited number of courses at another institution during the summer, pending program approval. It is important, however, that students take core science courses at RIT to ensure a consistent educational experience. Students are not permitted to skip class years (i.e. first to third year) once matriculated in the major.

Daniel Ornt, BA, Colgate
University; MD, University of Rochester-Dean; Vice President

## Biomedical Sciences

Cory Crane, BA (anthropology),
BA (psychology), University of Michigan; MS, Ph.D., Purdue University-Assistant Professor

Richard L. Doolittle, BA,
University of Bridgeport; MS, Ph.D., University of Rochester-Vice Dean; Program Director; Professor

Caroline Easton, BS, Rochester Institute of Technology; Ph.D. University of Connecticut-Professor

Michele Lennox, AAS, Rochester Institute of Technology-Lecturer

Douglas P. Merrill, BS, Ph.D., State University of New York College of Environmental Science and Forestry-Director, Premedical and Health Professions Advising; Professor

Robert Osgood, BS, Jackson State University; MS, Ph.D., University of Southern Mississippi-Associate Professor

Elizabeth Perry, BS, State
University College at Brockport; MS, Ph.D., University of RochesterAssistant Professor

Laurence I. Sugarman, BA
Washington University in St. Louis; PA-C, St. Louis University; MD, University of Missouri-ColumbiaResearch Professor
Bolaji N. Thomas, Ph.D., University of Lagos (Nigeria)-Associate Professor

Kristen Waterstam-Rich, BS, MS, Rochester Institute of TechnologyInterim Associate Dean; Professor

## Physician Assistant

Heidi Miller, BS, PA-C, Alderson Broaddus College; MPH, University of Rochester-Program Director; Professor

Nancy Valentage, BS, PA-C, Gannon University; MS, Rochester Institute of Technology-Associate Director; Professor

Patricia Newcomb, AB, Mount
Holyoke College; MD, Tufts University School of MedicineAcademic Coordinator; Assistant Professor

John B. Oliphant, BA, ATC, Messiah College; M.S.Ed., Elmira College; MHP, PA-C, Northeastern University-Assistant Professor

Heather Grotke, BS, Rochester Institute of Technology; MS, PA-C, Daemen College-Clinical Coordinator

## Diagnostic Medical Sonography

Hamad Ghazle, BS, APS, Rochester Institute of Technology; MS, Ed.D. University of Rochester-Program Director; Professor

BethRae King, BS, RDCS, State University of New York College at Brockport-Echocardiography Concentration Coordinator; Lecturer

## Health Systems <br> Administration

Kristen Waterstram-Rich, BS, MS,
Rochester Institute of TechnologyInterim Associate Dean; Interim Graduate Program Director; Professor

## Wegmans School of Health and Nutrition

## Exercise Science

William S. Brewer, BS, State
University College at Cortland; MS, Empire State College-Program
Director; Senior Lecturer

## Nutrition Management

Barbara A. Lohse, BS, University of Wisconsin-Eau Claire; MS, University of Wisconsin-Stout; Ph.D., University of Wisconsin-Madison-Head, Wegmans School of Health and Nutrition

Elizabeth A. Kmiecinski, BS, The Ohio State University; RD, Charleston Area Medical Center; MS, University of KentuckyProgram Director; Associate Professor

Angelina M. Maia, BS,
University of New Hampshire;
MS, RD, LD, Ph.D., University of Maine-Lecturer

Elizabeth H. Ruder, BS, Cornell University; Ph.D., Pennsylvania State University; MPH, The John Hopkins School of Public HealthAssistant Professor

# College of Imaging Arts and Sciences 

## Lorraine Justice, Dean

cias.rit.edu

## Programs of study

| Bachelor of Fine Arts in: | Page |
| :--- | ---: |
| 3D Digital Design | 100 |
| Ceramics | 95 |
| Film and Animation 105 <br> Options available in: animation and production 98 <br> Fine Arts Studio 95 <br> Furniture Design 96 <br> Glass 101 <br> Graphic Design 97 <br> Illustration 102 <br> Industrial Design 103 <br> Interior Design 99 <br> Medical Illustration 97 <br> Metals and Jewelry Design 104 <br> New Media Design 109 <br> Photographic and Imaging Arts <br> Options available in advertising photography, fine <br> art photography, photojournalism, and visual media.  l |  |

Bachelor of Science in:

| Media Arts and Technology | 108 |
| :--- | :---: |
| Motion Picture Science | 107 |
| Photographic Sciences <br> Options available in: biomedical photographic <br> communications and imaging and photographic <br> technology. | 113 |

Associate in Occupational Studies in:

The College of Imaging Arts and Sciences includes the schools of American Crafts, Art, Design, Film and Animation, Media Sciences, and Photographic Arts and Sciences. Students in most of the baccalaureate and master's degree programs complete foundation courses for fundamental studio course work and historical grounding in the visual arts.

## Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin. Admission to most majors in CIAS requires a combination of academic performance and creative visual skills that are evaluated via a portfolio review. Faculty will review each student's portfolio to evaluate creative visual skills as well as the potential for success in the student's selected program.

Portfolio review: The following undergraduate BFA programs require a portfolio of 10-20 images: 3D digital design, ceramics, fine arts studio, illustration, glass, graphic design, industrial design, interior design, medical illustration, metals and jewelry design, new media design, and furniture design.

The schools of Media Sciences, Photographic Arts and Sciences, and Film and Animation do not require a portfolio for acceptance into their undergraduate BFA or BS programs. However, a portfolio is required if students are requesting a transfer of credits to satisfy program requirements.

Guidelines for portfolio submission: Artistic disciplines require a measure of skill and dedication. Because accepted students become part of an elite learning community, they must first demonstrate a proven level of artistic talent. Your portfolio will help us evaluate your artistic skills, your artistic preferences, and your familiarity with various types of artistic media. The following guidelines should be used when preparing a portfolio for submission.

1. 10-20 Pieces: The 10-20 pieces of your best artwork that you choose to submit should demonstrate an understanding of pictorial composition, creativity/originality of ideas, drawing and design ability, a sense for the use of materials, attention to detail, and craftsmanship. The work should be from a variety of media and subject matter. We're looking for good traditional drawing skills as well as artwork relevant to your artistic interests.
2. 3 to 6 Pieces Drawn from Observation: Include a minimum of three to six drawings made by direct observation (not copied from photographs, comics, or "fantasy"). Drawings should demonstrate a full range of tonal values and a variety of line qualities.
3. Creativity and Craftsmanship The craftsmanship in a work of art is as important as the ideas presented. You can demonstrate creativity through innovative ideas and content, interesting composition, and proficient use of materials.
4. Acceptable Media Formats: Images (up to 5 MB each), Video (up to 60 MB each), Audio (up to 30 MB each) and PDFs (up to 10

MB each). You may also link to media from YouTube, Vimeo and SoundCloud.

Submitting your portfolio: Upload portfolio through SlideRoom at rit.slideroom.com. You may also mail your portfolio to the Admissions Office. If you are not submitting digitally, please mail official transcripts, recommendations, writing samples and paper test reports to Office of Undergraduate Admissions.

## 5. Special Requirements:

Medical Illustration: Include at least six drawings of natural forms such as seashells, plants, human figures, or animals, rendered in a single medium. Studies of anatomical parts such as hands and feet are also acceptable.

School for American Crafts: You are encouraged to include works done in the medium of your intended major: ceramics, glass, metals or wood. However, a portfolio that is entirely twodimensional is also acceptable. If you do not have a portfolio, but are interested in any of the Craft School programs, please contact the faculty directly to discuss alternative approaches to completing your application

## National Portfolio Days

All schools participate in open house programs hosted by RIT's Office of Undergraduate Admissions and selected National Portfolio Days. These events allow for the presentation and review of original work and, for the exceptional portfolio, a means for onsite acceptance of portfolio. For information on National Portfolio Days, please call (585) 475-7562. For dates of open houses and general admission information, call the Office of Undergraduate Admissions at (585) 475-6631.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Facilities

- Professional imaging environment for the still and moving image, including 30 fully equipped photographic studios, 20 fully equipped $\mathrm{b} / \mathrm{w}$ and color darkrooms, five photo-oriented labs, professional printing lab, graduate studios, and a one of a kind lending cage with extensive collection of cameras and related equipment.
- Image Permanence Institute, recognized world leader in the education, research, and preservation of images and cultural property.
- Extensive professional 16 mm film, digital video, and digital cinema field production equipment, including newly renovated film and animation facilities, 60 digital film editing stations, three animation labs, three stop-motion studios, two sound stages, and prop shop.
- Over a dozen specialized instructional and research labs for immersive study in Media Sciences supporting cross-disciplinary work in applied color science, 3D print materials, packaging printing, and new media publishing.
- Wallace Library, rich in photography, graphic arts publications, and contemporary periodicals in design, arts, crafts for study,
and research; ARTstor, an online image collection; and electronic reserve course materials.
- Cooperative efforts with George Eastman House International Museum of Photography and Film, with access to the museum's collections of photography, rare books, motion pictures, and technology.
- Library of the Kodak Research Laboratories.
- The Melbert B. Cary Jr. Graphic Arts Collection, containing more than 20,000 volumes of rare books and additional resources that illustrate fine printing, the history of printing, book design and illustration, papermaking, binding, and other aspects of the graphic arts.
- The Graphic Design Archives in the Wallace Library are complete and partial collections of some of the world's most influential pioneers in graphic design. The collections contain original source materials documenting the designers' working lives and include such unique items as original artwork, sketchbooks, sculptures, architectural models, reliefs, and printed samples.
- The Vignelli Center for Design Studies houses the extensive professional archive of Massimo and Lella Vignelli, and offers exhibition space and archival study classrooms for the examination of Modernist design history, theory, and criticism.
- Fully equipped studios for designing, forming, and finishing utilitarian and sculptural objects in clay, glass, metals and wood, including CNC routers and metal cutters. The recently added Sands Family Studios wing houses state-of-the-art hot glass, large-scale metal fabricating and specialized ceramic kiln areas.
- Bevier Gallery and the William Harris Gallery, the college's oncampus exhibition spaces.
- Gallery $r$ is the university's off-campus, student-managed contemporary art gallery. The gallery actively educates and encourages viewers to examine the relevance of art and cultural exposure in their own lives. Gallery $r$ is an educational laboratory presenting art to the widest possible audience and maintaining a select collection of student and alumni artwork for on-site consignment and sales.
- The college houses archives, as well as exhibition and display spaces. Exhibitions regularly feature the work of contemporary painters, designers, photographers, illustrators, graphic artists, filmmakers, and faculty, student and alumni work.
- Individual studio spaces for all seniors in the fine arts studio major.


## Cooperative education

Students may participate in cooperative education experiences or internships. Co-op allows students the opportunity to evaluate career goals before making employment decisions, develop insight into their chosen fields, gain professional experience that enhances their resumes, and increase their potential for placement and rapid career advancement after graduation. As part of the student's career exploration, co-op experiences provide an opportunity to observe and perform work directly related to the student's major.

Co-op is required in the School of Media Sciences and in the bachelor of science programs in the School of Photographic Arts and Sciences. Although co-op is not required in the BS program in film and animation or the BFA programs in the schools of Ameri-
can Crafts, Art, Design, Film and Animation, or Photographic Arts and Sciences, many students choose to co-op during the summer semester to enhance their learning while gaining valuable on-thejob experience.

For more information about cooperative education, please refer to the Office of Career Services and Cooperative Education or visit the college's website.

## Accreditation

The National Association of Schools of Art and Design (NASAD) accredits the BFA and MFA programs in the schools of American Crafts, Art, Design, Photographic Arts and Sciences, and Film and Animation. The School of Design's interior design program is accredited by the Council for Interior Design Education Accreditation.

## Advising

All majors provide expert advisement to students in multiple ways. Each CIAS student is assigned a primary faculty adviser with whom they consult on a semester basis concerning course selection, assignments, co-ops, educational challenges, and career opportunities. In addition, each school has program chairs per discipline whose primary task is to advise students, as well as the chair of the school and academic advisers in the college's Student Services Offices. While at RIT and after graduation, students can seek and receive personal and professional advisement to support their studies and career aspirations.

## Academic Enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admission process.

Study Abroad: RIT encourages all students to consider a study abroad program. Students may study full time at a variety of host schools and are able to select both courses in their majors and/or liberal arts classes. The RIT Global office has information about foreign study options and opportunities.

Minors: RIT offers students more than 90 minors to choose from to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

Professional student organizations: The college maintains memberships in the following professional organizations: Industrial Designers Society of America, ACM Siggraph, American Institute of Architects, American Institute of Graphic Arts, American Society of Interior Designers, American Society of Media Photography, Bio Communications Association, College Art Association, ICOGRADA, International Interior Design Association, International Panoramic Photographers Association, International Society for Optical Engineering, National Press Photographer Association Student Chapter, Ophthalmic Photographers Society, Photo Imaging Educators Association, Photo Marketing Association International, Society of Environmental Graphic Designers,

Society for Imaging Science and Technology, Society for Photographic Education and Society of Motion Picture and Television Engineers.

## Special Opportunities

Graduate study: The college offers master of fine art degrees in ceramics, film and animation, fine arts studio, furniture design, glass, imaging arts, industrial design, metals and jewelry design, and visual communication design; a master of science for teachers in visual arts (all grades); a master of science in print media; and advanced certificates in non-toxic printmaking and user experience design and development. Please refer to the Graduate Bulletin or the college's website for more information.

Summer course offerings: The college offers a number of summer courses. Please contact the Office of Part-time Enrollment Services or visit the college's website for more information.

## Art history electives

With the exception of students enrolled in the BFA in film and animation, all BFA students are required to take History of Western Art: Ancient to Medieval (ARTH-135) and History of Western Art: Renaissance to Modern (ARTH-136), and select one additional art history elective to broaden their understanding of the historical and aesthetic development of the visual arts. Art history electives include:

| ARTH-135* | History of Western Art: Ancient to Medieval |
| :---: | :---: |
| ARTH-136* | History of Western Art: Renaissance to Modern |
| ARTH-221 | Contemporary Design Issues |
| ARTH-311 | Art of Italy: 1250-1400 |
| ARTH-312 | Art of Italy: 1600-1750 |
| ARTH-317 | Art Florence and Rome: 15th Century |
| ARTH-318 | Art Florence and Rome: 16th Century |
| ARTH-345 $\dagger$ | History to Architecture Interior and Furniture I |
| ARTH-346 $\dagger$ | History to Architecture Interior and Furniture II |
| ARTH-364 | Art of Paris |
| ARTH-366 | 18th, 19th Century Art |
| ARTH-368 | 20th Century Art: 1900-1950 |
| ARTH-369 | 20th Century Art: Since 1950 |
| ARTH-373 | Art of the Last Decade |
| ARTH-378 | Baroque Painting in Flanders |
| ARTH-379 | Renaissance Painting in Flanders |
| ARTH-392 | Theory and Criticism of 20th Century |
| ARTH-457 | Art and Activism |
| ARTH-521 | The Image |
| ARTH-541 | Art and Architecture of Ancient Rome |
| ARTH-544 | Illuminated Manuscripts |
| ARTH-550 | Topics in Art History |
| ARTH-554 | Late Medieval Art |
| ARTH-558 | The Gothic Revival |
| ARTH-561 | Latin American Art |
| ARTH-563 | Modern Architecture |
| ARTH-566 | Early Medieval Art |
| ARTH-568 | Art and Technology: Machine Aesthetic Cyborg |
| ARTH-572 | Art of the Americas |
| ARTH-573 | Conceptual Art |
| ARTH-574 | Dada and Surrealism |
| ARTH-576 | Modernism and Realism |
| ARTH-577 | Displaying Gender |
| ARTH-578 | Edvard Munch |
| ARTH-581 | Russian Realist Art |
| ARTH-582 | Medieval Craft |
| ARTH-583 | Installation Art |
| ARTH-584 | Scandinavian Modernism |
| ARTH-586 | Studies in Material Culture |
| ARTH-587 | The Gothic Cathedral |
| ARTH-588 | Symbols and Symbol-Making |
| * This elective is required for students in majors in the schools of American Crafts, Art, Design, and Photographic Arts and Sciences (BFA majors only). <br> $\dagger$ This elective is required for interior design and furniture design majors. |  |

## Undeclared Options

## Art and Design, Undeclared

## Program overview

If students have a passion for the visual arts, but are undecided about which major to pursue, they may consider the undeclared art and design option in the College of Imaging Arts and Science. Students in the schools of American Crafts, Art, and Design begin their studies in a foundation studies program, which provides students with a broad set of introductory experiences in several areas of the visual arts. Students interested in one of the majors in the schools of Art or Design should apply for the undeclared art and design option. Admission is based, in part, on a portfolio evaluation. Portfolio guidelines can be found at admissions. rit.edu.

## Crafts, Undeclared

cias.rit.edu/schools/american-crafts
Glen Hintz, Administrative Chair
(585) 475-6114, sac@rit.edu

## Program overview

If students have a passion for the visual arts, but are undecided about which major to pursue, they may consider the undeclared crafts option in the College of Imaging Arts and Science. Students in the School of American Crafts begin their studies in the foundation studies program, which provides a broad set of introductory experiences in several areas of the visual arts. Students may then select a major within the School for American Crafts. Admission to the undeclared crafts option is based, in part, on a portfolio evaluation. Portfolio guidelines can be found at admissions.rit.edu.

## Photography, Undeclared

## Program overview

For students interested in photography but unsure which major best meets their career aspirations, the undeclared photography option provides you with an overview of the two photography degree programs and their options-photographic and imaging arts (with options in advertising photography, fine art photography, photojournalism, or visual media) or photographic sciences (with options in biomedical photographic communications, and imaging and photographic technology). Undeclared photography allows you to take up to four semesters to learn about each major while you complete general education and liberal arts courses.

## Curriculum

Photography undeclared, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| Choose one of the following: | 8 |
| PHPS-101, 102 Photography I, II (BS) |  |
| PHAR-101, 102 Photo Arts I, II (BFA) |  |
| PHPS-106 Photographic Technology I | 3 |
| PHPS-107 Photographic Technology II | 3 |
| First Year Writing Seminar | 3 |
| LAS Perspective 5, 6, or 7 | 3 |
| LAS Perspective 1 | 3 |
| Choose one of the following: | 3 |
| ARTH-135 $\quad$ LAS Perspective 2: History of Western Art: Ancient |  |
| LAS Perspective 7A |  |
| LAS Perspective 5 |  |
| Choose one of the following: | 3 |
| ARTH-136 LAS Perspective 3: History of Western Art: <br>  Renaissance to Modern |  |
| LAS Perspective 7B |  |
| LAS Perspective 6 |  |
| Choose one of the following: |  |
| FDTN-111 Drawing I (BFA) |  |
| LAS Perspective 2 (BS) |  |
| Total Semester Credit Hours | 32 |
| Please see New General Education Curriculum-Liberal Arts and Sciences (L Requirements section of this bulletin for more information. | in the Graduation |

## School for American Crafts

Programs in the School for American Crafts provide an in-depth artistic approach to crafts with a comprehensive technical education. Our international community of students creates a full spectrum of work including one-of-a-kind pieces, commissions, limited edition work, sculptural work, and work and designs produced for industry. Students are engaged in an intensive studio environment where personal expression and professionalism flourish.

## Programs of study

The school offers the following majors:

- Ceramics
- Furniture Design
- Glass
- Metals and Jewelry Design


## Studio Residency program

The School for American Crafts offers a Studio Residency program for students in ceramics, furniture design, glass, and metals and jewelry design. Residence positions are limited and are awarded after the review of all applicants' portfolios, transcripts, and references. An interview is required. Accepted residents are required to register for one independent study credit during each semester of residence.

Accepted residents are expected to be present in their assigned studio during class hours and to contribute up to 10 hours of work per week in the main studio. These work hours are coordinated and overseen by the faculty in the resident's discipline. In exchange, the school will provide workspace, access to facilities, and supportive instruction. The resident is invited to participate in the full range of studio activities.

Participants may be those seeking additional studio experience prior to undergraduate or graduate study, early career professionals, or teachers on leave who wish to work again in an academic studio environment. The faculty in each discipline make decisions concerning appropriate candidates. Inquiries about the Studio Residency program should be made by emailing sac@rit.edu.

## Ceramics, BFA

cias.rit.edu/schools/american-crafts/undergraduate-ceramics
Peter Pincus, Visiting Professor
(585) 475-6114, sac@rit.edu

Jane Shellenbarger, Assistant Professor
(585) 475-6114, sac@rit.edu

## Program overview

The ceramics major has a deep focus on intellectual development, technical skill, and practical knowledge. The ultimate goal is to create an environment where intellectual discourse and craftsmanship can thrive. The studio supports a range of fundamental topics within ceramics, such as throwing, glazing, and firing, and emphasizes personal development with individual critiques and group discussions.

The major emphasizes practical training and education in preparation for ceramics-related employment. Students learn how to operate a studio business and maintain equipment, manage galleries, teach, and interface with community projects. Students are also exposed to a wide scope of visual arts and study their cultural relevance through weekly seminars, visiting artists, trips to museums, and attendance at the National Ceramics Conference every spring.

## Curriculum

Ceramics, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II | 6 |
| FDTN-121, 122 | 2D Design I, II | 6 |
| FDTN-131, 132 | 3D Design I, II | 6 |
|  | CIAS Studio Elective $\dagger$ | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
|  | Free Elective | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ARTH-135 | LAS Perspective 3: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 4: History of Western Art: Renaissance to Modern | 3 |
| CCER-201, 202 | Ceramics Sophomore I, II | 12 |
| CGEN-201 | Crafts Drawing Practice | 3 |
| CGEN-202 | Crafts CADD Drawing | 3 |
|  | LAS Perspective 1,4 | 6 |
| Third Year |  |  |
| CCER-301, 302 | Ceramics Junior I, II | 12 |
|  | Art History Electives§ | 6 |
|  | CIAS Studio Elective $\ddagger$ | 3 |
|  | LAS Elective | 3 |
|  | LAS Immersion 1 | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| CCER-501, 502 | Ceramics Senior I, II | 12 |
| CGEN-501 | Crafts Promotional Materials (WI) | 3 |
| CGEN-502 | Crafts Business Practice | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | CIAS Studio Elective¥ | 3 |
|  | Free Elective | 3 |

## Total Semester Credit Hours

 120
## Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

 (WI) Refers to a writing intensive course within the major.* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ CIAS Studio Electives are courses designated by lab or studio contact hours in the course description.
§ Art History electives are non-studio courses offered in the colleges of Imaging Arts and Sciences or
Liberal Arts that examine the historical aspects of art, design, crafts, photography, or film.


## Furniture Design, BFA

cias.rit.edu/schools/american-crafts/undergraduate-woodworking

## Andy Buck, Professor

(585) 475-6114, sac@rit.edu

## Program overview

The furniture design major engages students in the pursuit of their creative interests while providing a comprehensive technical background in contemporary woodworking. The major focuses on technical expertise, freeing students to investigate a full range of creative expression and professional interests. A carefully-sequenced curriculum begins with a firm foundation in the use and maintenance of hand tools, proceeding on to more advanced tools and topics in construction and design.

In addition to the intensive Wood Studio, students gain experience in drawing, fundamental design issues, concept development, art history, and business practices. The major also emphasizes self-promotion, professionalism, portfolio development, gallery interactions, and studio operations. During the senior year, students culminate their work in an exhibition at an off-campus gallery. Upon graduation, students are wellprepared to transition from student to professional craftsman in this fine art field.

## Curriculum

Furniture design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II | 6 |
| FDTN-121, 122 | 2D Design I, II | 6 |
| FDTN-131, 132 | 3D Design I, II | 6 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | Studio Electives $\ddagger$ | 6 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| CWFD-201, 202 | Furniture Design Sophomore I, II | 12 |
| CGEN-201 | Crafts Drawing Practice | 3 |
| CGEN-202 | Crafts CADD Drawing | 3 |
|  | LAS Perspective 1,4 | 6 |
| Third Year |  |  |
|  | LAS Elective | 3 |
| CWFD-301, 302 | Furniture Design Junior I, II | 12 |
|  | Art History Electives** | 6 |
|  | LAS Immersion 1 | 3 |
|  | Free Electives | 6 |
| Fourth Year |  |  |
| CWFD-501, 502 | Furniture Design Senior I, II | 12 |
| CGEN-501 | Crafts Promotional Materials (WI) | 3 |
| CGEN-502 | Crafts Business Practice§ | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | CIAS Studio Elective $\ddagger$ | 3 |
|  | Free Elective |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Studio electives are courses designated by lab or studio contact hours in the course description. § CGEN-501 Crafts Business Practices satisfies the upper-level writing requirement in the major program.
${ }^{* *}$ Art history electives are non-studio courses offered in CIAS or the College of Liberal Arts that examine the historical aspects of art, design, crafts, photo, or film.


## Furniture Design, AOS

cias.rit.edu/schools/american-crafts/other-woodworking-furniture-design-aos-degree

## Andy Buck, Professor <br> (585) 475-6114, sac@rit.edu <br> David Schnuckel, Visiting Lecturer <br> (585) 475-6114, sac@rit.edu

## Program overview

As an internationally recognized school that merges art with craft, the School for American Crafts is a leader in crafts education. The school's majors provide an educational experience that balances technical expertise with aesthetic expression in the creative and practical understanding of wood, metal, clay, and glass. Educational objectives seek to stimulate creative imagination and technical invention, develop knowledge of process and command of skills, and foster appreciation not only of the crafts but also the related arts. The school's majors strive to inspire the student to seek continual improvement through analysis and self evaluation.

## Plan of study

The associate of occupational studies degree in furniture design is a highly-focused, two-year course of study. Students learn how to use and care for basic hand tools and begin to explore the technical and visual potential of wood. Over the two-year experience, increasingly sophisticated techniques and design concepts are be introduced. Students complete courses in two-dimensional design, three-dimensional design, freehand drawing, technical drawing, furniture history, and crafts business practices.

## Curriculum

Furniture Design, AOS degree, typical course sequence

| COURSE |  |  |
| :--- | :--- | ---: |
| First Year |  | SEMESTER CREDIT |
| HOURS |  |  |
| CGEN-201 | Crafts Drawing Practice | 3 |
| FDTN-111 | Drawing I | 3 |
| CWFD-201 | Furniture Design Sophomore I | 6 |
| FDTN-131 | 3D Design I | 3 |
| CGEN-202 | Crafts CADD Drawing | 3 |
| FDTN-112 | Drawing II | 3 |
| CWFD-202 | Furniture Design Sophomore II | 6 |
| FDTN-132 | 3D Design II | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| FDTN-121 | 2D Design I | 3 |
| CWFD-301 | Furniture Design Junior I | 6 |
| CGEN-501 | Crafts Promotional Materials (WI) | 3 |
| FDTN-122 | 2D Design II | 3 |
|  | Art History Electivest | 6 |
| CWFD-302 | Furniture Design Junior II | 6 |
| CGEN-502 | Crafts Business Practice $\ddagger$ | 3 |
| Total Semester Credit Hours | 60 |  |

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing Associate's
degrees are required to complete one Wellness course.
$\dagger$ Art history electives are non-studio courses offered in CIAS or COLA that examine the historical aspects
of art, design, crafts, photo or film
$\ddagger$ Crafts Business Practices (CGEN-501) satisfies the upper-level writing requirement in the major program


## Glass, BFA

## cias.rit.edu/schools/american-crafts/undergraduate-glass <br> Michael Rogers, Professor <br> (585) 475-6114, sac@rit.edu <br> David Schnuckel, Visiting Lecturer <br> (585) 475-6114, sac@rit.edu

## Program overview

The glass major focuses on comprehensive instruction, exposing students to artistic perspectives and opinions. The curriculum fosters effective artistic expression by teaching both techniques and idea realization within the field of glass. Foundations courses assist students in finding their voice and empowering them to identify a personal definition for their work. Students study the fundamentals of blowing, casting, and cold-forming. Idea generation, development, execution, and presentation are also explored. Self-promotion, gallery interaction, and business practices are especially emphasized, allowing students to pursue careers immediately after graduation.

## Curriculum

Glass, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II | 6 |
| FDTN-121 | 2D Design I | 3 |
| FDTN-131, 132 | 3D Design I, II | 6 |
| FDTN-141 | 4D Design | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 1,4 | 6 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| CGLS-201 | Glass Sophomore I | 6 |
| CGEN-201 | Crafts Drawing Practice | 3 |
| CGLS-202 | Glass Sophomore II | 6 |
| CGEN-202 | Crafts CADD Drawing | 3 |
| Third Year |  |  |
| CGLS-301, 302 | Glass Junior I, II | 12 |
|  | Art History Electives | 6 |
|  | LAS Elective | 3 |
|  | Free Electives | 6 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| CGLS-501, 502 | Glass Senior I, II | 12 |
| CGEN-501 | Crafts Promotional Materials (WI) | 3 |
| CGEN-502 | Crafts Business Practice | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Elective | 3 |
|  | CIAS Studio Elective $\ddagger$ | 3 |
| Total Semester | t Hours | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
$\ddagger$ Studio electives are courses designated by lab or studio contact hours in the course description.


## Metals and Jewelry Design, BFA

cias.rit.edu/schools/american-crafts/undergraduate-metalcrafts
Leonard Urso, Professor
(585) 475-6114, sac@rit.edu

Carlos Caballero-Perez, Professor
(585) 475-6114, sac@rit.edu

## Program overview

The metals and jewelry design major focuses on fostering a learning environment in which students are exposed to and learn about metalsmithing techniques and design. Students have the opportunity to learn about hollowware, jewelry, sculpture, and furniture within the metals environment. Distinguished faculty assist students in building skills for life after graduation, such as soldering, fabrication, stone setting, silversmithing, forging, and casting. Students also develop drawing and rendering skills in order to enhance their design ideas and artistic methods. During the final year, students culminate their studies by presenting their work in a senior exhibition. Graduates of this program develop a strong body of work, a portfolio, and a resume, which assists them in a successful transition towards achieving their professional goals and objectives.

## Curriculum

Metals and jewelry design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I | 6 |
| FDTN-121 | 2D Design I | 3 |
| FDTN-131, 132 | 3D Design I, II | 6 |
| FDTN-141 | 4D Design | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
| Second Year |  |  |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| CMTJ-201, 202 | Metals and Jewelry Design Sophomore I, II | 12 |
| CGEN-201 | Crafts Drawing Practice | 3 |
| CGEN-202 | Craft CADD Drawing | 3 |
|  | LAS Perspective 1,4 | 6 |
| Third Year |  |  |
| CMTJ-301, 302 | Metals and Jewelry Design Junior I, II | 12 |
|  | LAS Elective | 3 |
|  | Art History Electives** | 6 |
|  | Free Electives | 6 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| CMTJ-501, 502 | Metals and Jewelry Design Senior I, II | 12 |
| CGEN-501 | Crafts Promotional Materials (WI) | 3 |
| CGEN-502 | Crafts Business Practices§ | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | CIAS Studio Elective $\ddagger$ | 3 |
| Total Semester Credit Hours |  | 120 |

Clal
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Studio electives are courses designated by lab or studio contact hours in the course description § Crafts Business Practices (CGEN-502) satisfies the upper-level writing requirement in the major.
${ }^{* *}$ Art history electives are non-studio courses offered in CIAS or the College of Liberal Arts that examine the historical aspects of art, design, crafts, photo, or film and Animation.


## School of Art

School of Art educates students to be fine artists and illustrators, who contribute to their professions, communicate effectively within their disciplines, have a lifelong attitude of inquiry, and make a positive impact on society. The school's nationally recognized programs balance expression, imaginative problem solving, aesthetic understanding, critical thinking, and creativity within a studio environment. The school also seeks to encourage imagination, creative ability, and artistic discrimination; to develop the skills essential for professional competence; to relate to the various arts and help students find the means to enjoy them; and to incorporate studies in the College of Liberal Arts for social and cultural growth, inspiring students to make maximum contributions as creative artists and citizens.

## Programs of study

The school offers the following majors:

- Illustration
- Fine Arts Studio
- Medical Illustration


## Electives

Students have the opportunity to select electives that enhance their studies or allow them to pursue an area of personal or professional interest. Electives are available in the following areas: graphic design, illustration, graphic visualization, industrial design, interior design, fine arts studio, environmental design, ceramics, glass, metals, textiles, woodworking, filmmaking, photography, and imaging technology. To be eligible for these electives, students must complete the foundation program or have the permission of the instructor.

## Illustration, BFA

cias.rit.edu/schools/art/undergraduate-illustration

## William R. Finewood, Program Chair

(585) 475-7562, facpgd@rit.edu

## Program overview

The illustration major prepares students for a variety of careers within the visual communications field. The major provides an educational environment that supports the creative development of students and helps them to achieve their individual goals. Course work emphasizes traditional drawing and painting skills, the application of the latest digital media, and the use of dimensional media. Students learn conceptual skills, professional practices, and narrative story telling techniques while developing an individual style. These techniques and styles are then applied to produce illustrations suitable for advertising, publishing, editorial, and the service and gaming/entertainment industries.

## Electives

Students may select electives that enhance their studies or allow them to pursue an area of personal or professional interest. Electives are available in graphic design, illustration, graphic visualization, industrial design, interior design, fine arts studio, environmental design, ceramics, glass, metals, textiles, woodworking, film making, photography, and imaging technology. To be eligible for these electives, students must complete the foundation program or have the permission of the instructor. Additional selections are offered as special topics courses.

## Curriculum

## Illustration, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II |  |
| FDTN-121, 122 | 2D Design I, II |  |
| FDTN-131, 132 | 3D Design I, II |  |
|  | LAS Perspective 5, 6, or 7 |  |
|  | First Year Writing Seminar |  |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval |  |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern |  |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ILLS-219 | Digital Illustration I |  |
|  | LAS Perspective 1,4 |  |
|  | Art History Elective $\ddagger$ |  |
|  | Illustration Core Courses** |  |
|  | CIAS Studio Electives§ |  |
|  | Illustration Electivet† | 3 |
| Third Year |  |  |
| ILLS-313 | Illustration II | 3 |
|  | Illustration Electivest† | 12 |
|  | CIAS Studio Elective§ |  |
|  | Art History Electiveł | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| ILLS-413 | Illustration III | 3 |
| ILLS-501 | Illustration Portfolio (WI) | 3 |
|  | Illustration Electivest† | 6 |
|  | CIAS Studio Electives§ | 6 |
|  | Free Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Illustration students are required to take 6 credit hours of art history electives.
§ Studio elective courses are those designated with studio/lab contact hours listed in the course description.
** Illustration core courses include Illustration I (ILLS-213), Anatomical Illustration (ILLS-214), Digital
Illustration I (ILLS-219), and Dimensional Illustration I (ILLS 218).
$\dagger \dagger$ Please see an adviser for a complete list of illustration electives


## Fine Arts Studio, BFA

## cias.rit.edu/schools/art/undergraduate-fine-arts-studio <br> Eileen Bushnell, Program Chair <br> (585) 475-7562, efbfaa@rit.edu <br> Program overview

The fine arts studio major serves the student who is interested in a career in the fine arts across a variety of two and three-dimensional disciplines and media. Students work in painting, non-toxic printmaking, sculpture, and expanded forms to create work exploring individual directions. Technique and idea generation are taught to allow for individual creativity along with courses in business practices for the arts preparing students to enter the professional field of art.

## Electives

Students may select electives that enhance their studies or allow them to pursue an area of personal or professional interest. Studio electives are available in a wide range of areas. To be eligible for these electives, students must complete the foundation program or have the permission of the instructor. Additional selections are offered as topics courses.

## Curriculum

Fine arts studio, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II | 6 |
| FDTN-121, 122 | 2D Design I, II | 6 |
| FDTN-131, 132 | 3D Design I, II | 6 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ARTH135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| FDTN-141 | 4D Design | 3 |
| FNAS-201 | Introduction to Expanded Forms | 3 |
| FNAS-202 | Introduction to Non-Toxic Printmaking | 3 |
| FNAS-203 | Introduction to Painting | 3 |
| FNAS-204 | Introduction to Sculpture | 3 |
| FNAS-305 | Figuring Drawing | 3 |
|  | LAS Perspective 1,4 | 6 |
|  | CIAS Studio Elective§ | 3 |
|  | Free Elective | 3 |
| Third Year |  |  |
| FNAS-405 | Fine Art Drawing | 3 |
| FNAS-514 | Ideation and Series | 3 |
|  | FAS (Major) $\ddagger$ | 9 |
|  | Art History Elective§ | 3 |
|  | CIAS Studio Elective** | 3 |
|  | LAS Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| FNAS-401 | Senior Show | 3 |
| FNAS-517 | Business Practices (WI) | 3 |
|  | FAS (Major) $\dagger$ | 9 |
|  | Art History Elective§ | 3 |
|  | Free Elective | 6 |
|  | LAS Immersion 3 | 3 |
|  | CIAS Studio Elective** | 3 |

Total Semester Credit Hours
Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ FAS (Major) refers to any combination of 500 -level FNAS courses (painting, non-toxic printmaking, sculpture, or new forms). Any of the four choices may be repeated up to 4 times ( 12 credit hours) as part of the 18 credit requirement.
§ Illustration students are required to take 6 credit hours of art history electives.
** CIAS studio elective courses are those designated with studio/lab contact hours listed in the course description.


## Medical Illustration, BFA

cias.rit.edu/schools/art/undergraduate-medical-illustration
Glen Hintz, Administrative Chair
(585) 475-7562, facpgd@rit.edu

## Program overview

Combining art and science, medical illustrators provide visual support for the health science and medical instruction fields. From traditional carbon dust renderings to three-dimensional, animated digital imagery, medical illustration spans the fullest range of artistic media. Building on a foundation of drawing and design, students learn how to translate anatomical and surgical sketches into instructional illustrations, courtroom exhibitions, computer graphics, ads, and more.

The major combines the study of the visual arts with science, including gross anatomy. Through collaboration with area hospitals, students are able to draw from direct observation of operations in progress. Digital technology integrated into the studio environment enables students to create highly polished, sophisticated images and well-designed, interactive, educational media presentations that include motion graphics and sound.

## Electives

Students may select electives that enhance their studies or allow them to pursue an area of personal or professional interest. Electives are available in graphic design, new media design, 3D digital graphics, illustration, graphic visualization, industrial design, interior design, fine arts studio, environmental design, ceramics, glass, metals, textiles, woodworking, filmmaking and photography. To be eligible for these electives, students must complete the foundation program or have the permission of the instructor. Additional selections are offered as special topics courses.

## Curriculum

Medical illustration, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-111, 112 | Drawing I, II | 6 |
| FDTN-121, 122 | 2D Design I, II | 6 |
| FDTN-131, 132 | 3D Design I, II | 6 |
| MEDG-101, 103 | Human Biology I and Lab | 4 |
| MEDG-102, 104 | Human Biology II and Lab | 4 |
|  | LAS Perspectuve 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education | 0 |
| Second Year |  |  |
| ILLS-214 | Anatomic Illustration | 3 |
| ILLM-507 | Computer Applications In Medical Illustration | 3 |
|  | Illustration Electives $\ddagger$ | 6 |
| MEDS-250, 251 | Anatomy and Physiology I, II | 8 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 1,4 | 6 |
| Third Year |  |  |
| ILLM-501 | Human Gross Anatomy | 6 |
| ILLM-502 | Illustrating Human Anatomy | 3 |
| ILLM-503 | 3D Modeling Organic Forms | 3 |
| ILLM-508 | Scientific Visualization | 3 |
| ILLM-506 | 3D Animation Organic Forms | 3 |
|  | CIAS Studio Elective§ | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | Art History Elective | 3 |
| Fourth Year |  |  |
| ILLM-512 | Surgical Illustration | 3 |
| ILLM-515, 516 | Contemporary Media I, II | 6 |
| ILLM-517 | Portfolio and Business (WI) | 3 |
|  | CIAS Studio Electives§ | 6 |
|  | Art History Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | Free Elective | 3 |
|  | LAS Elective | 3 |
| Total Semester | it Hours | 124 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Illustration electives include the following: Illustration I (ILLS-213), Digital Illustration I (ILLS-219), and Zoological and Botanical Illustration (ILLS-323).
§ CIAS Studio Elective courses are those designated with studio/lab hours listed in the course description.


## School of Design

The School of Design provides quality design education and preparation for professional practice. Our internationally recognized programs educate students to be designers who make valuable contributions to their professions, communicate effectively, maintain a lifelong attitude of inquiry, and make a positive impact on society. Within the school programs, faculty, and students form an inquisitive and dynamic educational community in which creativity, critical thinking, innovative problem solving, aesthetic understanding, cross-disciplinary study, professionalism, and social responsibility are explored, cultivated, and promoted.

## Programs of study

The school offers the following majors:

- 3D Digital Design
- Graphic Design
- Industrial Design
- Interior Design
- New Media Design


## 3D Digital Design, BFA

cias.rit.edu/schools/design/undergraduate-3d-digital-graphics

## Marla Schweppe, Program Chair (585) 475-2754, mkspph@rit.edu

## Program overview

Students in the 3D digital design major learn to use 3D computer graphics in computer and video games, virtual reality, medical and scientific simulations, data visualization, models for architects and engineers, motion or broadcast graphics, instructional media accident reconstruction, and more. Traditional design skills using commercial 3D software are integrated with principles relating to time, motion, and lighting.

## Curriculum

3D digital design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| DDDD-101 | Introduction to Modeling and Motion | 3 |
| DDDD-102 | Introduction to Visual Design | 3 |
| DDDD-103 | Imaging for 3D | 3 |
| FDTN-131 | 3D Design I | 3 |
| FDTN-132 | 3D Design II | 3 |
| FDTN-141 | 4D Design | 3 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| DDDD-201 | Modeling Strategies | 3 |
| DDDD-202 | Layers and Effects | 3 |
| DDDD-203 | Scripting | 3 |
| DDDD-206 | Service Project | 3 |
| DDDD-207 | Lighting, Materials, and Rendering | 3 |
| DDDD-208 | Anatomical Figure Drawing | 3 |
| FDTN-121 | 2D Design I | 3 |
|  | LAS Perspective 1,4 | 6 |
|  | Programming Elective | 3 |
| Third Year |  |  |
| DDDD-301 | Professional Practice (WI) | 3 |
| DDDD-302 | History of Digital Graphics | 3 |
| DDDD-306 | Project Planning and Production | 3 |
|  | 3DDG Major Electives | 6 |
|  | Free Electives | 6 |
|  | LAS Immersion 1, 2 | 6 |
|  | Art History Elective $\ddagger$ | 3 |
| Fourth Year |  |  |
| DDDD-401 | Senior Thesis Testing and Documentation | 3 |
| DDDD-402 | Senior Thesis I | 3 |
| DDDD-403 | Senior Thesis II | 3 |
|  | 3DDG Major Electives | 9 |
|  | Free Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |

Total Semester Credit Hours 120
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Art history electives are non-studio courses offered in the colleges of Imaging Arts and Sciences or Liberal Arts that examine the historical aspects of art, design, crafts, photography, or film.


## Graphic Design, BFA

cias.rit.edu/schools/design/undergraduate-graphic-design
Nancy Bernardo, Program Chair
(585) 475-6378, nabfaa@rit.edu

## Program overview

Graphic designers are visual problem-solvers who use a wide variety of concepts and media to inform, direct, promote, entertain, engage, and educate specific audiences. The graphic design major prepares students to integrate design principles, methods, concepts, images, words, and ideas to creatively convey visual messages meant to produce specific responses from diverse audiences.

Graphic design students are exposed to a full range of topics throughout their curriculum, including information design, Web and interaction design, branding and identity design, design systems, exhibit and wayfinding design, user experience design, and professional practices. With a balance of history, theory, problem solving approaches, conceptual exploration, applied problem solving, human interaction, and the integration of technology, students gain the knowledge and skills needed to create innovative and effective design solutions for a wide range of media and audiences. Access to RIT's world-renowned Vignelli Center for Design Studies, the Cary Graphic Design Archive, and the Cary Library enables students to further enhance their learning and inquiry.

Alumni and guest speakers, along with opportunities for internships, co-ops, and freelance experiences further enhance the program. Additionally, interdisciplinary and collaborative projects within RIT and with outside organizations result in innovative and meaningful hands-on projects that encourage students to explore the social, ethical, and environmental impact of design. Graduates are well-prepared to pursue positions within design firms, advertising agencies, corporations, and technology companies around the world.

## Plan of study

The BFA degree in graphic design integrates major courses, studio and free electives, liberal arts, and art/design history. Aspects of business, professional practices, computer-based skills, collaborative projects, and workflow are also integrated into the curriculum.

## Studio electives

Students may select elective courses that enhance their studies or allow them to pursue an area of personal or professional interest. Elective credit can be earned through studio-based courses offered in the College of Imaging Arts and Sciences.

## Art/Design/Photo/Craft history electives

Students are required to select two visual art history electives to broaden their understanding of the historical development of the visual arts.

## Curriculum

## Graphic design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-121 | 2D Design I | 3 |
| FDTN-131 | 3D Design I | 3 |
| FDTN-111 | Drawing I | 3 |
| ARTH-135 | LAS Perspectives 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
| GRDE-106 | Elements of Graphic Design | 3 |
| GRDE-107 | Time Based Design | 3 |
| FDTN-112 | Drawing II | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| GRDE-201 | Typography | 3 |
| GRDE-202 | Design Imagery | 3 |
| GRDE-205 | History of Graphic Design (WI) | 3 |
|  | LAS Perspectives 1,4 | 6 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
| GRDE-206 | Typography and Imagery | 3 |
| GRDE-207 | Interactive Media Design | 3 |
| MAAT-383 | Design Production | 3 |
| Third Year |  |  |
| GRDE-301 | Information Design | 3 |
| GRDE-302 | Web and User Interface Design | 3 |
|  | Art History Elective§ | 3 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
|  | LAS Immersion 1, 2 | 6 |
| GRDE-306 | Professional Practices | 3 |
| GRDE-307 | Design Systems and Methodology | 3 |
| GRDE-308 | Environmental Graphic Design | 3 |
| Fourth Year |  |  |
| GRDE-421 | Branding and Identity Design | 3 |
| GRDE-411 | Senior Portfolio Development | 3 |
|  | Senior Graphic Design Electiv*** | 6 |
|  | Free Electives | 9 |
|  | LAS Immersion 3 | 3 |
| GRDE-402 | Senior Capstone Project | 3 |
|  | LAS Elective | 3 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Studio elective courses are those designated with studio/lab hours listed in the course description § Art history elective courses include Women Pioneers in Design (GRDE-323), 20th Century Editorial
Design History (GRDE-326), Graphic Design in Film (GRDE-367).
** Please see an adviser for a complete liost of graphic design electives.


## Additional information

## Portfolio requirement

A portfolio is required for admission. Please visit http://cias.rit.edu/ prospective-students/portfolio-guide/ for more information.

## Professional memberships

The School of Design maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society for Experiential Graphic Design, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, International Interior Design Association, and Rochester Advertising Federation.

## Industrial Design, BFA

cias.rit.edu/schools/design/undergraduate-industrial-design<br>Bruce Leonard, Program Chair<br>(585) 475-2954, balfaa@rit.edu

## Program overview

Industrial design involves the integration of form and function as products are designed and created by combining materials, process, computer-aided design, and human factors. Blending technical instruction with studio assignments, studies also include package, exhibit, and furniture design. Aesthetic sensitivity, technical competence, and analytical thought are developed and applied to meet the challenge of designing products for human needs.

## Plan of study

The BFA in industrial design integrates major courses, studio and open electives, the liberal arts, and art/design history. Computer skills, design perspectives, career preparation, and exposure to the related areas of publishing, photography, engineering, and information technology are integrated into the curriculum.

## Curriculum

Industrial design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-121, 122 | 2D Design I, II | 6 |
| FDTN-131, 132 | 3D Design I, II | 6 |
| FDTN-111 | Drawing I | 3 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| IDDE-102 | Design Drawing | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| IDDE-201, 202 | Sophomore ID Studio I, II | 6 |
| IDDE-206 | ID Form | 3 |
| IDDE-207 | ID Digital Drawing | 3 |
| IDDE-211 | Human Factors | 3 |
| IDDE-212 | Integrated CAD | 3 |
| IDDE-221 | History of Industrial Design | 3 |
|  | LAS Perspective 1, 4 | 6 |
|  | LAS Elective | 3 |
| Third Year |  |  |
| IDDE-301, 302 | Junior ID Studio I, II | 8 |
| IDDE-306 | Materials and Processes | 3 |
| IDDE-307 | Graphic Tactics | 3 |
| IDDE-311 | ID Career Planning (WI) | 3 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
|  | LAS Immersion 1, 2 | 6 |
|  | Art History Elective§ | 3 |
| Fourth Year |  |  |
| IDDE-406 | Professional Practice | 3 |
| IDDE-407, 408 | ID Senior Capstone I, II | 6 |
| IDDE-501, 502 | Senior ID Studio I, II | 8 |
|  | Free Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | CIAS Studio Elective $\ddagger$ | 3 |
|  | LAS Electives | 6 |
| Total Semester Credit Hours |  | 124 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
£ Studio elective courses are those designated with studio/lab hours listed in the course description § Art history electives are non-studio courses offered in CIAS or COLA that examine the historical aspects of art, design, crafts, photo or film.


## Additional information

## Professional organizations

The school maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

## Interior Design, BFA

cias.rit.edu/schools/design/undergraduate-interior-design

## Mary Golden, Program Chair

(585) 475-7893, megfaa@rit.edu

## Program overview

Interior designers, experts in space planning and interior architectural environments, enhance the way people live, work, heal, prosper and play. Interior design is a user-centered discipline; it explores the relationship between people and their physical surroundings.

RIT's comprehensive undergraduate Interior Design program is accredited by the Council for Interior Design Accreditation. The program synthesizes design history, building structure and systems, space planning and design process with a consciousness of global affairs to create unique, meaningful environments. Experienced, certified professionals promote relevant skills that allow students to address today's design issues.

Our International Interior Design Association (IIDA) Campus Center facilitates networking and interaction with industry professionals. The world-renowned Vignelli Center for Design Studies archives serve as an invaluable resource for understanding the process and product of design by the world's most acclaimed designers. Dedicated studio and lecture spaces provide students with the freedom to interact with peers and faculty one-on-one, fostering teamwork and collaboration.

We mentor students with a consciousness for global affairs and today's design challenges so that they may contribute to the profession with a deep-rooted understanding of society, culture and environment. By maximizing an array of academic and professional opportunities, our graduates are reshaping how we live in the world.

## Accreditation

The program is accredited by the Council for Interior Design Accreditation.

## Plan of study

The BFA in interior design integrates major courses, studio and open electives, the liberal arts, and art/design history. Computer skills, design perspectives, career preparation, and exposure to the related areas of publishing, photography, engineering, and information technology are integrated into the curriculum.

## Curriculum

Interior design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| FDTN-121 | 2D Design I | 3 |
| FDTN-131 | 3D Design I | 3 |
| FDTN-111 | Drawing I | 3 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 5, 6 or 7 | 3 |
| FDTN-122 | 2D Design II | 3 |
| FDTN-132 | 3D Design II | 3 |
| INDE-112 | Design Drawing I | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| INDE-201 | Introduction to Interior Design | 3 |
| INDE-202 | Design Drawing II | 3 |
| INDE-203 | Digital Graphics | 3 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
|  | LAS Perspective 1,4 | 6 |
| INDE-222 | Design Issues | 3 |
| INDE-207 | Color and Lighting | 3 |
| INDE-212 | Hospitality Design | 3 |
| Third Year |  |  |
| ARTH-345 | Introduction to Design History I | 3 |
| INDE-301 | Office Design | 3 |
| INDE-303 | Materials and Specifications | 3 |
|  | CIAS Studio Electives $\ddagger$ | 6 |
|  | LAS Immersion 1, 2 | 6 |
| ARTH-346 | Introduction to Design History II | 3 |
| INDE-302 | Retail Design | 3 |
| INDE-304 | Building Systems | 3 |
| Fourth Year |  |  |
| INDE-401 | Multi-Story/Purpose Design | 4 |
| INDE-405 | Business Practices and Career Planning (WI) | 3 |
| INDE-407 | Contract Documents | 4 |
|  | LAS Immersion 3 | 3 |
|  | Free Electives | 9 |
| INDE-402 | Special Projects | 3 |
| INDE-403 | Health Care Design | 3 |
|  | LAS Elective | 3 |
| Total Semester Credit Hours |  | 122 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Studio elective courses are those designated with studio/lab hours listed in the course description.


## Additional information

## Professional memberships

The school maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

## New Media Design, BFA

cias.rit.edu/schools/design/undergraduate-new-media-design

## Adam Smith, Program Chair <br> (585) 475-4552, aesfaa@rit.edu

## Program overview

The new media design major is an interdisciplinary program for students who are fascinated by visual design, user experience design, interactivity, motion graphics, and technology. Students learn the skills required to meet the demands of the new media, web design, and mobile app marketplaces. Courses, projects, and explorations allow students to create user centered solutions that leverage new opportunities in visual design, communication, and user experiences across a full spectrum of digital products and interfaces.

A balance of visual design foundations, information design, user interface design, user experience design, 3D modeling, motion graphics, usability research, and programming create the skilled background needed to design cutting edge interactive solutions from mobile to fully immersive digital environments. Collaborations with students from RIT's new media interactive development major (housed in the B. Thomas Golisano College of Computing and Information Sciences), as well with other majors and corporate clients provide teamwork experience and leverage the designer-programmer-client relationship. This major positions the student for a career in visual, interactive, and user experience design for the digital advertising, marketing, mobile, web application, entertainment, and corporate design.

## Plan of study

Art history electives
Students are required to complete two art history electives to broaden their understanding of the historical development of the arts.

## Curriculum

New media design, BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | LAS Perspective 5, 6, or 7 |  |
|  | LAS Perspective 1 |  |
| FDTN-121 | 2D Design I |  |
| FDTN-111, 112 | Drawing I, II |  |
| NMDE-111,112 | New Media Design Digital Survey I, II |  |
|  | First Year Writing Seminar |  |
| FDTN-141 | 4D Design |  |
| NMDE-103 | New Media Design Interactive I |  |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval |  |
| IGME-101 | NM Interactive Design and Algorithmic Problem Solving I (SMTL) |  |
| IGME-230 | Website Design and Implementation |  |
| NMDE-201 | New Media Design Elements II |  |
| NMDE-202 | New Media Design 3D |  |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
| IGME-102 | NM Interactive Design and Algorithmic Problem Solving II |  |
| NMDE-204 | New Media Design Animation |  |
| NMDE-203 | New Media Design Interactive II |  |
|  | CIAS Studio Elective | 3 |
| Third Year |  |  |
|  | LAS Perspective 4 |  |
|  | Art History Electives |  |
| NMDE-305 | New Media Design Motion Graphics |  |
| NMDE-302 | New Media Design Graphical User Interface |  |
|  | Free Electives |  |
|  | LAS Immersion 1 |  |
| NMDE-301 | New Media Design Elements III (WI) |  |
| NMDE-303 | New Media Design Interactive III | 3 |
| Fourth Year |  |  |
|  | LAS Immersion 2, 3 |  |
|  | LAS Elective |  |
| NMDE-401 | New Media Design Career Skills |  |
| NMDE-404 | New Media Design Interactive IV | 3 |
|  | Free Electives |  |
| NMDE-411 | New Media Design Team Project | 3 |
| Choose one of the following: |  |  |
| NMDE-406 | New Media Design Experimental |  |
| NMDE-408 | New Media Design Virtual Entertainment |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Professional memberships

The school maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

## School of Film and Animation

The School of Film and Animation offers more production experience than any other school in the country and, draws students from all over the world. The school recognizes the increasingly interdependent relationships among film technology, video, animation, and the computer. As a result, hands-on experience in all areas of study is essential while students specialize in their medium of choice. The School of Film and Animation offers a BFA degree in film and animation with options in animation or production and a BS degree in motion picture science.

## Programs of study

The school offers the following majors:

- Film and Animation (with options in animation and production)
- Motion Picture Science


## Film and Animation, BFA

## cias.rit.edu/film/

## Brian Larson, Program Chair, Animation <br> (585) 475-2711, bjlppr@rit.edu <br> Jack Beck, Program Chair, Production <br> (585) 475-2761, jabppr@rit.edu

## Program overview

The BFA degree program in film and animation is for students who recognize the moving image as an expressive force uniquely important to modern life. The major develops students' production skills and promotes film, video, and animation as creative media.

## Plan of study

The curriculum emphasizes production, with students beginning their first year working in 16 mm film, digital video, animation, and continues with production work in every semester. Students may choose one of two options: animation or production. The school's goal is to prepare students who are able to produce, creatively and practically, their own independent work and/or fulfill professional production responsibilities in any medium suitable to their interests and abilities.

Through lectures and laboratories, students develop individual skills in moving-image communications and learn the aesthetic principles governing the art. Technology and technique are never taught as an end in themselves but in terms of learning to use the tools necessary to achieve a creative goal in relation to the audience.

Students in the film and animation major produce several short films or animations by working through all phases of production, from scripting, production planning, and budgeting to shooting, editing, and sound design. Students further their learning of visual and sound artistry through hands-on experience with camera and sound equipment. Film, video, and animation projects are designed by individual students. A wide variety of styles and intentions is expressed in the department's work.

Utilizing research, critical thinking, creativity, and a range of prob-lem-solving principles, students are taught to address complex motion imaging work flow issues within the constraints of time, space, budget, and technology. Graduates enjoy a variety of career opportunities, from feature film and television post-production to imaging equipment design and essential motion imaging technology research and development.

## Curriculum

Film and animation (animation option), BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| SOFA-101 | Production I | 3 |
| SOFA-106 | Film Syntax | 2 |
|  | First Year Writing Seminar | 3 |
| SOFA-122 | Fundamentals of Computers and Imaging <br>  <br>  <br> Technology | 3 |
| SOFA-107 | Principles of Animation | 3 |
| SOFA-111 | Film Viewings | 1 |
| SOFA-121 | LAS Perspective 2: Animation Survey | 3 |
|  | LAS Perspective 1 | 3 |
| SOFA-227 | Animation Pre-production | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
| Choose one of the following: | Wellness Education* | 0 |
| SOFA-108 | Drawing for Animation (2D) | 3 |
| SOFA-209 | Object and Character Creation (3D) |  |

## Second Year

| Choose one of the following: |  |  |
| :--- | :--- | :--- |
| SOFA-203 | 2D Animation I: Dynamics | 3 |
| SOFA-215 | Animation I | 3 |
| SOFA-522 | Stop Motion Puppet Fundamentals | 3 |
| SOFA-205 | Basic Sound Recording | 4 |
| SOFA-228 | Animation Scriptwriting and Storyboard | 3 |
| SOFA-217 | Animation Production Workshop I | 3 |
| SOFA-224 | Tradigital Animation | 3 |
| SOFA-225 | Performance Resources for Animation |  |
| Choose one of the following: | 3D Animation II | 3 |
| SOFA-216 | Concept and Character Design (2D) | 3 |
| SOFA-218 | Advanced Stop Motion Techniques | 3 |
| SOFA-533 | History and Aesthetics of Animation |  |
| SOFA-541 | CIAS/SOFA Elective |  |


| Third Year |  |  |
| :--- | :--- | :--- |
| SOFA-518 | Business and Careers in Animation | 3 |
| SOFA-317 | Animation Production Workshop II | 3 |
|  | Free Elective | 6 |
|  | CIAS/SOFA Elective $\ddagger$ | 3 |
|  | LAS Perspective 4 | 3 |
|  | LAS Elective | 3 |
| CIAS/SOFA History and Aesthetics course $\ddagger$ | 3 |  |
| Choose one of the following: | 3 |  |
| SOFA-323 | 2D Animation II: Performance |  |
| SOFA-575 | 3D Lighting and Rendering |  |
| SOFA-582 | Alternative Frame By Frame | 1 |
| SOFA-306 | Senior Thesis Seminar |  |


| Fourth Year |  |  |
| :--- | :--- | ---: |
| SOFA-406 | Senior Thesis I | 4 |
| SOFA-407 | Senior Thesis I | 4 |
| SOFA-408 | Senior Forum | 1 |
|  | CIAS/SOFA History and Aesthetics course $\ddagger$ | 3 |
|  | Free Electives | 6 |
| LAS Immersion 2,3 | 6 |  |
| CIAS Elective§ | 3 |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please see an adviser for a complete list of CIAS/SOFA History and Aesthetics courses.
§ Please see an adviser for a complete list of SOFA electives.



## Additional information

## Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

Portfolio guidelines: Specific instructions on portfolio submission for applicants to the film and animation major are available in the college's introductory section of this bulletin or on the college website (http://cias. rit.edu/prospective-students/portfolio-guide/). Portfolio submission is optional. Only a small group of boarderline applicants' portfolios will be reviewed. The review committee is looking for work that is original in concept and content. It does not necessarily need to be motion media, but should be visual or aural. Examples include films/videos, photos, drawings, paintings, sculpture, stop-motion puppets, scripts, storyboards, and original music.

## Writing policy

The School of Film and Animation has a minimum writing requirement within each of its majors. A copy of the school's official writing competency policy may be obtained from the department or from the Office of Academic Student Services.

## Summer session

The School of Film and Animation offers a limited selection of courses during the summer term. These range from beginning courses to those requiring a substantial background. For information on summer courses, please contact the school.

## Memberships

The school maintains memberships in a number of professional organizations, including: Animation World Network, College Art Association, Rochester Audio Visual Association, Society of Motion Picture and Television Engineers, University Film and Video Association, Siggraph, and BEA.

## Motion Picture Science, BS

cias.rit.edu/schools/film-animation/undergraduate-motion-picture-science

## David Long, Program Chair

(585) 475-5724; dllppr@rit.edu

## Program overview

The BS degree in motion picture science provides a science- and engineering-based education in the fundamental imaging technologies used for the motion picture industry. By joining a core curriculum in practical filmmaking from the College of Imaging Arts and Sciences and imaging science from the College of Science, this major trains students in the art and science of feature film, television, and animation production. Topics include film and digital image capture, film scanning, digital image manipulation, color science, visual effects, and digital and traditional projection. New facilities provide students with hands-on experience on the same equipment being used in major motion picture production today.

Utilizing research, critical thinking, creativity, and a range of prob-lem-solving principles, students are taught to address complex motion imaging workflow issues within the constraints of time, space, budget, and technology. Graduates enjoy a variety of career opportunities, from feature film and television post-production to imaging equipment design and essential motion imaging technology research and development.

## Curriculum

Motion picture science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| SOFA-101, 102 | Production I, II | 6 |
| SOFA-103 | Introduction to Video and Imaging Systems | 3 |
| SOFA-111 | Film Viewings | 1 |
| IMGS-221 | Vision and Psychophysics | 3 |
| IMGS-181 | LAS First Year Elective: Innovation Freshmen Experience | 3 |
|  | First Year Writing Seminar | 3 |
| PHYS-211 | LAS Perspective 5: Physics I | 4 |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-Based Calculus I, II | 8 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHYS-212 | LAS Perspective 6: Physics II | 4 |
|  | LAS Perspective 1,2 | 6 |
| IMGS-211 | Probability and Statistics for Imaging | 3 |
| IMGS-180 | Introduction to Computing and Control | 3 |
| IMGS-261 | Linear and Fourier Methods for Imaging | 4 |
| SOFA-121 | Animation Survey | 3 |
| SOFA-202 | Production Processes | 4 |
| SOFA-205 | Basic Sound Recording | 3 |
| IMGS-351 | Fundamentals of Color Science | 3 |
| Third Year |  |  |
| IMGS-321 | Geometric Optics | 3 |
| IMGS-251 | Radiometry | 3 |
| IMGS-361, 362 | Imaging Processing and Computer Vision I, II | 6 |
| Choose one of the following: |  | 3 |
| SOFA-209 | Object and Character Creation |  |
| SOFA-531 | Digital Effects and Compositing |  |
| SOFA-311 | Image Capture and Production Technology | 3 |
| SOFA-312 | Digital Post-Production Technology (WI) | 3 |
|  | LAS Perspective 3 | 3 |
|  | LAS Immersion 1 | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| SOFA-313 | Film Projection and Digital Cinema | 3 |
| SOFA-401, 402 | Senior Project I, II | 6 |
|  | SOFA Electives $\dagger$ | 6 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
| Total Semester Credit Hours |  | 124 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
$\dagger$ Please consult adviser for list of SOFA elective courses.


## Additional information

## Professional student organizations

The School of Film and Animation maintains memberships in a number of professional organizations: Animation World Network, College Art Association, Rochester Audio Visual Association, Society of Motion Picture and Television Engineers, University Film and Video Association, Siggraph, and BEA.

## School of Media Sciences

The rapid innovation of digital technology has blurred the roles that traditionally differentiated printers, publishers, advertising agencies, graphic designers, website developers, and mail and fulfillment houses. The School of Media Science's major in media arts and technology encourages customized study in other course areas to develop and enhance the individual talents and skills of our students. The ability to tailor our program differentiates RIT from other universities. Another primary differentiating factor is the school's facilities. Students have access to more than $\$ 40$ million in state- of-the-art equipment in 17 laboratories.

## Program of study

The school offers the following major:

- Media Arts and Technology


## Media Arts and Technology, BS

cias.rit.edu/schools/media-sciences/undergraduate-media-arts-and-technology

## Michael Riordan, Program Chair <br> (585) 475-4753, michael.riordan@rit.edu

## Program overview

The media arts and technology major is a solutions-focused program where students learn how to produce, distribute, and manage content to reach audiences of all sizes through Web, print, and mobile platforms.

This major's core provides a balance of the creative, business, and technical aspects of graphic communication through immersive study focused on design, imaging, business, and the applied sciences (computer science, color science, information science, and engineering).

Elective courses allow students to customize their course of study as they develop specializations around areas of cross-media publishing, next-generation packaging, advertising and promotion, media management, business strategy, sustainability, digital materials, print and new media production, and the development of innovation applications across media.

The flexible elective structure makes the $4+1$ option attractive to many students and enables them to earn this degree and an MBA in five years through coordination with RIT's Saunders College of Business.

All students in this major are required to complete two full-time cooperative education experiences. This provides an opportunity for students to earn a salary while gaining valuable industry experience as they prepare for their career ahead. Our graduates enjoy challenging careers with media producers, publishers, advertising agencies, news organizations, packaging companies, communication departments, website developers, and more. You'll find our alum at companies ranging from Apple to AlphaGraphics, Conde Nast to Coca-Cola, and Time Inc. to Tiffany. The possibilities are limitless.

## Curriculum

Media arts and technology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MAAT-101 | Cross Media Foundations | 3 |
|  | LAS Perspective 1, 2 | 6 |
|  | LAS Electives | 3 |
| MAAT-271, 272 | Webpage Production I, II | 6 |
| MAAT-106 | Typography and Page Design | 3 |
|  | First Year Writing Seminar | 3 |
| MATH-101 | LAS Perspective 7A: College Algebra | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MAAT-206 | Print Production Workflow | 3 |
| MAAT-107 | Imaging | 3 |
| MAAT-301 | Database Publishing | 3 |
| MAAT-302 | Professional and Technical Writing | 3 |
|  | LAS Perspective 3, 4 | 6 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| STAT-146 | LAS Elective 3: Introduction to Statistics II | 4 |
|  | Free Electives | 6 |
| MAAT-010 | Cooperative Education Orientation | 0 |
|  | Cooperative Education $\ddagger$ | Co-op |
| Third Year |  |  |
| MAAT-306 | Information Architecture for Publishing | 3 |
| MAAT-307 | Finance and Accounting for Media Managers | 3 |
|  | LAS Perspective 5**, 6 | 6 |
|  | LAS Immersion 1, 2 | 6 |
|  | Program/Professional Electives | 6 |
|  | LAS Electives | 6 |
| Fourth Year |  |  |
| MAAT-401 | Team Project | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 9 |
|  | Program/Professional Electives§ | 6 |
|  | Free Electives | 9 |
| Total Semester Credit Hours |  | 121 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.
$\ddagger$ The minimum requirement for cooperative education includes a total of 20 weeks and can be broken down by the following options: (a) two summer terms, (b) one academic semester and one summer term, or (c) one academic semester and one intersession.
§ Program/Professional electives require adviser approval.
** Students will satisfy this requirement by taking either a 3 or 4 ch lab science course. It a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.


## School of Photographic Arts and Sciences

The School of Photographic Arts and Sciences prepares students for a wide range of exciting careers in photography and the ever-changing contemporary field of imaging. Image making is taught through courses investigating methods and aesthetics required in pictorial and informa-tion-based images, videos, websites and publications. In 2014, Resource Magazine, a quarterly photo and video publication for image makers worldwide, ranked RIT's photography major \#2 in it recent "15 Great College and University Photography Programs in the U.S."

## Programs of study

The School offers the following degrees and areas of study:

- Photographic and Arts (with options in fine art photography, advertising photography, photojournalism, and visual media)
- Photographic and Imaging Technologies (with options in biomedical photographic communications and imaging and photographic technologies)


# Photographic and Imaging Arts (options in Advertising Photography, Fine Art Photography, Photojournalism, Visual Media), BFA 

photography.rit.edu
Therese Mulligan, Ph.D., Administrative Chair
(585) 475-2762, mtmpph@rit.edu

## Program overview

The BFA major - with options in advertising photography, fine art photography, photojournalism, and visual media - has a rigorous curriculum designed with individual achievement in mind. It features an immersive and hands-on perspective geared towards creativity and innovation. Enrollment in photography classes begins on day one of the first year. Theoretical and experimental components lead to the development of broad-based skills required of professionals in today's ever-changing image culture, art world, and industries. With access to more than 150 unique photography, video, multimedia, web-based, and publication courses, students are challenged using real-world problems to produce successful real-world results. Graduates of the photographic and imaging arts program see a 93.4 percent job placement rate after graduation.

Photographic and imaging arts majors participate in an educational community that includes both undergraduate and graduate studies. It is a community where students have the opportunity to work and study with our highly respected and accomplished faculty in state-of-the-art facilities. The School of Imaging Arts and Sciences also offers a wide array of visiting professionals, events, and talks, including the Charles Arnold Lecture Series and the RIT Big Shot, along with non-credit bearing summer workshops.

## Options

## Advertising photography

The advertising photography option prepares students for diverse and rewarding careers in the field of visual communications. While encouraging and nurturing students' individual image-making practice, students learn to create photographs and moving media for a wide range of commercial use in today's fast changing media environment.

The option provides flexibility and specialization within the course curriculum, providing students with a broad overview of the field. Advanced courses allow students to explore a variety of commercial specializations from traditional still life and portraiture, to interdisciplinary courses that model real world team collaborations with graphic designers, new media artists, industrial designers, and computer scientists. The flexibility of the option also enables students to take elective courses from other departments across the university, in majors as diverse as graphic design, visual culture, philosophy, or fine art, in order to enrich their personal visual expression. Within the curriculum, advertising photography students study the inner workings and business aspects of the photographic and imaging industries. In an ever-growing global market, the school encourages and offers many study abroad opportunities for students.

The faculty consists of both full- and part-time professors-all of whom continue their personal photo arts practice and have extensive commercial experience as professional photographers. Students work collaboratively to conceive and execute lens-based work that is both cutting-edge and strategic. Along with conventional print-based imagery, students have the option to work in moving media, emerging and interactive technologies that have real-world application in the commercial industry. Students build a strong professional portfolio throughout their time in the program.

## Advertising photography internships

Students participate in internships with some of the nation's most respected professional photographers, advertising and design agencies, magazine publishers, photography agents, equipment rental, and production services. Working in a variety of commercial and studio environments, students have the opportunity to learn from photographers, picture editors, art directors, and other professionals. In collaboration with their professors and the Office of Career Services and Cooperative Education, students identify and apply for relevant internships, which provide real-world work experience that becomes an invaluable part of students' educational experience.

## Career opportunities in advertising photography

Advertising photography graduates work as studio photographers, editorial photographers, art directors, and picture editors. A significant number of students also become self-employed freelance photographers. Recent graduates have been hired by Saks Fifth Avenue, Conde Nast Publications, Martha Stewart Living, artist agencies, Neiman Marcus, among many others.

## Fine art photography

The fine art photography option prepares students for careers as visual artists, educators, or freelance artists. The primary goal is to nurture the artist's personal aesthetic vision through photographic expression. Studying the theoretical and practical skills needed to create thought-provoking and meaningful images develops technical, conceptual, and aesthetic abilities, and furthers students' goals as contemporary image-makers. Graduates are employed in a number of professional fine-art related institutions such as museums, archives, studios, and commercial galleries.

The interdisciplinary curriculum enables students to explore other related fields in the fine arts, including painting, drawing, sculpture, graphic design, video, film, animation, printmaking and printing, computer graphics, and web publishing. Foundation and specialized courses include digital imaging workflow, alternative processes, new media, history and aesthetics of photography, and exhibition display.

Students have the opportunity to enroll in independent projects, educational internships, or co-ops in galleries, workshops, or other art and imaging centers. Students may choose to spend a year abroad earning credit in an applicable field of their choosing. Upon graduation, students are prepared to pursue a career in a variety of fine art fields, commercial photography industries, or print and electronic media businesses.

## Fine art photography internships

Students apply for internships with some of the nation's most respected print and online galleries, museums, and workshop providers. They work behind the camera in editorial, commercial, and studio environments and have the opportunity to learn from photographers, picture editors, art directors, curators and other professionals. Students receive assistance from their professors, as well as from the Office of Career Services and Cooperative Education, in identifying and applying for internships. Internships provide real-world work experience, which is an invaluable part of our students' educational experience.

## Career opportunities in fine art photography

Graduates find careers as exhibiting artists, photo educators, picture editors, art directors, photographers' representatives, photographic archivists or curators, museum and gallery staff, multimedia specialists, self-employed photographers, custom-image printers, and film/video artists or animators. Many students choose to pursue graduate work and earn an MFA degree in the arts.

## Photojournalism

Photojournalism teaches students to produce non-fiction visual reporting that tells the stories of real-life people and events for diverse and modern media outlets including digital and print. Students learn to create and publish both still photographic reporting as well as moving and interactive media that document our diverse culture, evoking both the momentous and the everyday circumstances of contemporary life and society.

The photojournalism option allows flexibility and individual specialization where students can find their primary interest. Students take required courses in photojournalism fundamentals, picture editing, and multimedia, including sound, video-gathering, and video editing. From there, students may choose to take extra courses in an area in which they want further specialization, including picture editing, still photojournalism field-work, or multimedia storytelling.

Students contribute to the creation of special publications centered on community activity and awareness, and provide staff support to RIT's student-run magazine, The Reporter. Students also have the opportunity to travel to Washington, D.C. and New York to meet with potential employers that represent the wide spectrum where photojournalists currently work.

## Photojournalism internships

Students apply for internships with some of the nation's most respected newspapers, websites, and magazines as both photographers and editors. They work behind the camera on a variety of stories and have the opportunity to learn from photographers, editors, and other professionals in the newsroom. Students receive assistance from their professors, as well as from the Office of Career Services and Cooperative Education, in identifying and applying for internships. Internships provide real-world work experience, which is an invaluable part of students' educational experience.

## Career opportunities in photojournalism

Photojournalism graduates go to work for some of today's best digital publications, newspapers, and magazines. A significant number of students also become self-employed freelance photographers. They seek freelance assignments with news organizations, picture agencies, nonprofits, stock photo agencies, and as editorial photographers. Many graduates are employed as picture editors, website producers, content curators, and television or multimedia editors.

## National Press Photographers Association

Photojournalism students are the driving force in our National Press Photographers Associate (NPPA) student chapter. Students regularly attend activities sponsored by the NPPA, including regional and national conferences. They also publish their own website. The chapter manages a yearly contest of student work that is judged by alumni who also share their experiences in photojournalism and review student portfolios. The chapters also hosts guest speakers. The RIT student chapter was awarded the nation's top chapter by the NPPA in 2016.

## Visual media

Visual media allows students to integrate the graphic communications professions of photography, media design, and business. This option prepares students for a career as a visual media specialist or other professional positions that have a demand for photographically skilled professionals who can work effectively with graphic designers, print media specialists, and multimedia professionals.

The visual media curriculum emphasizes photographic proficiency, in both photographic and digital imaging techniques, and has two specialized focuses on media design and business (management and/ or marketing). Students also may take college-wide electives to broaden your interests.
This option is ideal for students who wish to experience various aspects of the graphics industry. Students are strongly encouraged to spend time in internships to strengthen their education and to gain hands-on experience. Upon graduation, students are diversely skilled visual media professionals who are ready to enter an exciting career in photography, media design, business management, marketing (including art directing and project management), or advertising.

## Visual media internships

Students apply for internships with some of the nation's most respected print and online photographic, graphic design firms, and printing/publishing venues. They work behind the camera or in creative collaboration in a variety of professional photo and multimedia environments, and have the opportunity to learn firsthand from photographers, picture editors, art directors, publishers, designers, and other professionals. Students receive assistance from their professors, as well as from the Office of Career Services and Cooperative Education, in identifying and applying for internships, which provide real-world work experience and is a invaluable part of students' educational experience.

## Career opportunities in visual media

Visual media graduates go to work as graphic designers, multimedia designers, picture editors, social media and app developers, web designers, and advertising project managers. Recent employers include companies such as Crate and Barrel, Zipcar, Geico, MLB.com, and organizations such as Habitat for Humanity, CURE International, and the Museum of Modern Art.

## Curriculum

## Photographic and imaging arts (advertising photography option), BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHAR-101, 102 | Photo Arts I, II | 8 |
| PHPS-106, 107 | Photo Technology I, II | 6 |
| FDTN-111 | Drawing | 3 |
|  | LAS Perspective 1 | 3 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 5, 6 or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| FDTN-121 | 2D Design I | 3 |
| FDTN-141 | 4D Design | 3 |
| PHAR-202 | Elements of Advertising Photography | 3 |
| Choose two of the following: |  | 3 |
| PHAR-201 | Elements of Fine Art Photography |  |
| PHAR-203 | Elements of Photojournalism |  |
| PHAR-204 | Elements of Visual Media |  |
| PHAR-211, 212 | Histories and Aesthetics of Photography I, II | 6 |
|  | Free Electives | 6 |
|  | LAS Perspective 4 | 3 |
|  | LAS Elective | 3 |
| Third Year |  |  |
| PHAP-301, 302 | Advertising Photography I, II | 6 |
|  | Advertising Photography Specialization Coursest | 6 |
|  | Advertising Photography Professional Electives | 6 |
|  | CIAS Elective§ | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| PHAP-403 Portfolio Development |  | 3 |
| Choose one of the following: |  | 3 |
| FINC-120 | Personal Financial Management |  |
| MGMT-150 | The World of Business |  |
| MGMT-215 | Organizational Behavior |  |
| MKTG-230 | Principles of Marketing |  |
| MKTG-370 | Advertising and Promotion Management |  |
| MKTG-489 | Seminar in Marketing |  |
|  | Imaging Core Course | 3 |
|  | Advertising Photography Specialization Course $\dagger$ | 3 |
|  | CIAS Electives§ | 9 |
|  | Free Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | Advertising Photography Professional Elective | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\dagger$ Please consult an adviser for a complete list of courses that fulfill the advertising specialization requirement.
Please consult an adviser for a complete list of courses that fulfill the professional elective requirement. § CIAS elective refers to any course in the College of Imaging Arts and Sciences.

Photographic and imaging arts (fine art photography option), BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| PHAR-101, 102 | Photo Arts I, II | 8 |
| PHPS-106, 107 | Photo Technology I, II | 6 |
| FDTN-111 | Drawing | 3 |
|  | LAS Perspective 1 | 3 |
| ARTH-135 | LAS Perspective 2: History of Western Art: Ancient <br> to Medieval |  |
| ARTH-136 | LAS Perspective 3: History of Western Art: | 3 |
|  | Renaissance to Modern |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
† Please consult an adviser for a complete list of courses that fulfill the fine art photography specialization requirement.
§ CIAS elective refers to any course in the College of Imaging Arts and Sciences.

Photographic and imaging arts (photojournalism option), BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| PHAR-101, 102 | Photo Arts I, II | 8 |
| PHPS-106, 107 | Photo Technology I, II | 6 |
| FDTN-111 | Drawing | 3 |
|  | LAS Perspective 1 | 3 |
| ARTH-135 | LSS Perspective 2: History of Western Art: Ancient |  |
|  | to Medieval | 3 |
| ARTH-136 | LAS Perspective 3: History of Western Art: |  |
|  | Renaissance to Modern |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ See adviser for a complete list of photojournalism professional electives.
§ CIAS elective refers to any course in the College of Imaging Arts and Sciences.

Photographic and imaging arts (visual media option), BFA degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHAR-101, 102 | Photo Arts I, II | 8 |
| PHPS-106, 107 | Photo Technology I, II | 6 |
| FDTN-111 | Drawing | 3 |
|  | LAS Perspective 1 | 3 |
| ARTH-135 | LAS-Perspective 2: History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | LAS-Perspective 3: History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 5, 6, or 7 | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| Choose one of the following: |  | 3 |
| PHAR-201 | Elements of Fine Art Photography |  |
| PHAR-202 | Elements of Advertising Photography |  |
| PHAR-203 | Elements: Photojournalism |  |
| PHAR-204 | Elements of Visual Media |  |
| PHAR-211, 212 | Histories and Aesthetics of Photography I, II | 6 |
| FDTN-121 | 2D Design I | 3 |
| FDTN-141 | 4D Design | 3 |
|  | LAS Perspective 4 | 3 |
|  | Free Electives | 6 |
|  | LAS Elective | 3 |
| Third Year |  |  |
| Choose one of the following (Imaging Core I, II): |  | 6 |
| Marketing $\ddagger$ |  |  |
| Manangement§ |  |  |
| Choose one of the following (Specialization I, II): |  | 6 |
| Print Media** |  |  |
| Graphic Designt† |  |  |
| CIAS Elective $\ddagger \ddagger$ |  | 3 |
| LAS Immersion 1, 2 |  | 6 |
| Visual Media Professional Electives |  | 6 |
| Free Elective |  | 3 |
| Fourth Year |  |  |
| Choose one of the following (Imaging Core III): |  | 3 |
| Marketing $\ddagger$ |  |  |
| Manangement§ |  |  |
| Choose one of the following (Specialization III): 3 |  |  |
| Print Media** |  |  |
| Graphic Designt† |  |  |
| PHVM-301 | Visual Media Career Research (WI) | 3 |
| PHVM-401 | Visual Media Capstone | 3 |
|  | CIAS Electives $\ddagger \ddagger$ | 9 |
|  | Free Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | Visual Media Professional Elective | 3 |
| Total Semeste | t Hours | 122 |
| Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major. <br> * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses. <br> $\ddagger$ Students may choose from the following marketing courses: Principles of Marketing (MKTG-230), Internet Marketing (MKTG-320), Product and Services Commercialization (MKTG-340). <br> § Students may choose from the following management courses: Organizational Behavior (MGMT-215), Managerial Skills (MGMT-320), Digital Entrepreneurship (MGMT-360). <br> ** Students may choose from the following print media courses: Foundations (MAAT-101), Type and Page Design (MATT-106), Print Production and Workflow (MAAT-206), Database Publishing (MAAT-301). <br> $\dagger \dagger$ Graphic Design sequence courses include Graphic Design (GRDE-106), Time-based Design (GRDE-107), and Typography (GRDE-201). <br> $\not \ddagger$ CIAS elective refers to any course in the College of Imaging Arts and Sciences. |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Additional information

## Accreditation

All four options of the BFA program in photographic and imaging arts, as well as the MFA program in imaging arts, are accredited by the National Association of Schools of Art and Design (NASAD).

# Photographic Sciences (options in Biomedical Photographic Communications, Imaging and Photographic Technology), BS 

photography.rit.edu/<br>Christye Sisson, Program Chair<br>(585) 475-4228, cpspph@rit.edu

## Program overview

The photographic sciences major offers immersive and flexible curriculum that prepares students for a wide variety of photographic and imaging careers. The program provides strong foundations in applied technical photography, explores modern imaging technologies and problem-solving, and focuses on preparing students for a wide range of employment opportunities in science or industry. Cooperative education is required and ables students to gain valuable career experience in their field of applied photographic practice. During the first two years, students are immersed in technical applications of scientific photography courses while also pursuing courses in laboratory sciences, such as physics or biology, all selected to complement career goals. Students are encouraged to integrate complementary studies in subjects such as imaging science, information technology, general education, or developmental biology to best prepare for exciting and new opportunities. Many recent graduates have pursued advanced degrees. Photographic sciences graduates have a 95 percent job placement rate (which includes full-time employment or the pursuit of graduate school) following graduation.

## Options

Students may complete the major without a specialization or they may choose to pursue the biomedical photographic communications option or imaging and photographic technology option to gain more indepth, specialized study in these highly desirable career paths.

## Biomedical photographic communications

The biomedical photographic communications option prepares students for photographic careers in a wide variety of environments including forensic and research laboratories, hospitals, and other biological settings such as ophthalmic (eye) clinics and veterinary research schools, or in other life science situations such as pharmaceutical companies. Foundation courses in combination with practical experiences gained with digital photographic equipment and processes, including still and moving media, desktop publishing, and digital media applications, are required. Additional courses in the life sciences prepare students for work assignments such as creating images useful for scientists or biological research. Students can specialize in light and confocal microscopy, scanning electron microscopy, desktop and web publishing, and ophthalmic imaging. Course work can be used to assist in the preparation for certification as a Certified Retinal Angiographer (CRA), administered by the Ophthalmic Photographer's Society.

## Imaging and photographic technology

The imaging and photographic technology option prepares students for imaging careers in governmental agencies, industrial, or corporate environments such as Apple Inc. or NASA. The third and fourth years allow students to build on a strong foundation of photographic technology, creating areas of specialization that include color measurement, high-speed imaging, optics and camera testing, and image analysis. Complementary courses include programming for imaging, physics, and applications of color in imaging. These courses provide hands-on exposure using modern tools and techniques. Students may choose from a variety of electives including scanning electron microscopy, high-speed
photography, and imaging science, as well as publishing and color measurement and management. Many students have also taken advantage of the imaging systems minor to complete a unique education only available at RIT.

## Cooperative education

Students are required to complete one cooperative education experience before graduation. Co-ops are paid, professional, full- or part-time positions that offer an opportunity for students to gain experience in the field. They are generally completed between the second and third academic years. The Office of Career Services and Cooperative Education assists students in identifying and applying to co-op placements. Some recent co-op placements, as well as permanent job placements, include Harvard University, the Mayo Clinic, Smithsonian, Georgetown University, Case Western Reserve University, NASA, Imatest, Carl Zeiss Microscopy, FBI, Nikon Scientific Instruments, Apple Inc., and GoPro.

## Curriculum

Photographic sciences, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHPS-101 | Photography I | 4 |
| PHPS-106 | Photographic Technology I | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 7A**, $7 \mathrm{~B}^{* *}$ | 12 |
| PHPS-102 | Photography II | 4 |
| PHPS-107 | Photographic Technology II | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHPS-201 | Scientific Photography I | 3 |
| PHPS-206 | Careers and Professional Practices | 3 |
| PHPS-211 | Advanced Principles of Photographic Technology | 3 |
|  | LAS Perspective 3,4,5tt, $6 \dagger \dagger$ | 14 |
| PHPS-202 | Scientific Photography II | 3 |
| PHPS-207 | Vision, Perception and Imaging | 3 |
| PHPS-212 | Fundamentals of Layout and Design | 3 |
| PHPS-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
|  | Imaging Core I, II | 6 |
|  | LAS Electives | 9 |
|  | LAS Immersion 1,2 | 6 |
|  | Free Elective | 3 |
|  | Specialization I, II $\dagger$ | 6 |
| Fourth Year |  |  |
|  | LAS Immersion 3 (WI) | 3 |
|  | LAS Electives | 12 |
|  | Free Elective | 3 |
|  | Professional Electives§ | 6 |
| PHPS-401 | Photographic Sciences Capstone I | 3 |
| PHPS-403 | Photographic Sciences Capstone II (WI) | 3 |
| Total Semester Credit Hours |  | 124 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information.
$\dagger$ Please consult adviser for a complete list of courses that fulfill the specialization requirement.
§ Please see an adviser for a complete list of photographic sciences electives.
${ }^{* *}$ Student choose two of the following math courses: Algebra and Trigonometry (MATH-101), PreCalculus (MATH-111), Statistics (MATH-145), or Calculus for Engineering Technology (MATH-171). $\dagger \dagger$ Students choose one of the following science sequences: Human Biology and Lab I, II (BIOL-111, 112) or College Physics I, II (PHYS-111, 112).

Photographic sciences (biomedical photographic communications option), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHPS-101 | Photography I | 4 |
| PHPS-106 | Photographic Technology I | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1,2 | 6 |
| MATH-101 | LAS Perspective 7A: College Algebra | 3 |
| MATH-145 | LAS Perspective 7B: Introduction to Statistics | 3 |
| PHPS-102 | Photography II | 4 |
| PHPS-107 | Photographic Technology II | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHPS-201 | Scientific Photography I | 3 |
| PHPS-206 | Careers and Professional Practices | 3 |
| PHPS-211 | Advanced Principles of Photographic Technology | 3 |
|  | LAS Perspective 3,4 | 6 |
| BIOM-111, 112 | LAS Perspective 5, 6: Human Biology and Lab I, II | 8 |
| PHPS-202 | Scientific Photography II | 3 |
| PHPS-207 | Vision, Perception and Imaging | 3 |
| PHPS-212 | Fundamentals of Layout and Design | 3 |
| PHPS-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| PHBM-316 | Digital Media I | 3 |
| PHBM-317 | Digital Media II | 3 |
| Choose one of the following specialization sequences: |  | 6 |
| PHBM-311,312 | Magnified Imaging Systems I, II |  |
| PHBM-321,322 | Ophthalmic Photography I, II |  |
| PHBM-326,327 | Photographic Sciences Bulletin I, II |  |
|  | LAS Electives | 9 |
|  | LAS Immersion 1, 2 | 6 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
|  | LAS Immersion 3 (WI) | 3 |
|  | LAS Electives | 12 |
|  | Free Elective | 3 |
|  | Professional Electives | 6 |
| PHPS-401 | Photographic Sciences Capstone I (WI) | 3 |
| PHPS-403 | Photographic Sciences Capstone II | 3 |

Total Semester Credit Hours ..... 124

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.
§ Photographic sciences electives might include Forensic Photography (PHPS-302), Nature and Natural Science Photography (PHPS-303), Historic Processes (PHPS-306), Surgical Photography (PHPS-307), Panoramic Photography (PHPS-311), Web Publishing (PHPS-315), Scanning Electron Microscopy (PHPS316), Underwater Digital Photography (PHPS-321), and Advanced Underwater Digital Photography (PHPS-322).

Photographic sciences (imaging and photographic technologies option), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHPS-101, 102 | Photography I, II | 8 |
| PHPS-106, 107 | Photographic Technology I, II | 6 |
|  | First-Year LAS Elective | 3 |
|  | LAS Perspective 1,2 |  |
| MATH-111 | LAS Perspective 7A: Pre-Calculus | 3 |
| MATH-171 | LAS Perspective 7B: Calculus A | 3 |
|  | First Year Writing Seminar |  |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHPS-201 | Scientific Photography I | 3 |
| PHPS-206 | Careers and Professional Practices | 3 |
| PHPS-211 | Advanced Principles of Photographic Technology | 3 |
|  | LAS Perspective 3,4 | 6 |
| PHYS-111, 112 | LAS Perspective 5, 6: College Physics I, II | 8 |
| PHPS-202 | Scientific Photography II | 3 |
| PHPS-207 | Vision, Perception and Imaging |  |
| PHPS-212 | Fundamentals of Layout and Design | 3 |
| PHPS-499 | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
| IMPT-321 | Programming for Imaging and Photo Technology | 3 |
| IMPT-322 | Digital Image Processing |  |
| Choose one of the following specialization sequences: |  |  |
| IMPT-302, 306 | Color Management Technology, e-Sensitometry |  |
| IMPT-301, 311 | Applied Color Theory, Color Management |  |
| IMPT-334, 312 | Photo Instrumentation, High Speed Photography |  |
|  | LAS Electives |  |
|  | LAS Immersion 1, 2 |  |
|  | Free Elective | 3 |
| Fourth Year |  |  |
|  | LAS Immersion 3 (WI) | 3 |
|  | LAS Electives | 12 |
|  | Free Elective |  |
|  | Professional Electives |  |
| PHPS-401 | Photographic Sciences Capstone I (WI) |  |
| PHPS-403 | Photographic Sciences Capstone II |  |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.
§ Photographic sciences electives might include Forensic Photography (PHPS-302), Nature and Natural
Science Photography (PHPS-303), Historic Processes (PHPS-306), Surgical Photography (PHPS-307),
Panoramic Photography (PHPS-311), Web Publishing (PHPS-315), Scanning Electron Microscopy (PHPS316), Underwater Digital Photography (PHPS-321), and Advanced Underwater Digital Photography (PHPS-322).


## Additional information

## Career opportunities

An employment survey of graduates indicates that 85 percent are employed within three months of graduation. Graduates are employed as ophthalmic photographers, forensic photographers, surgical photographers, photomicrographers, medical photographers, latent finger print examiners, core imaging facility managers, technical support engineers, imaging specialists, imaging engineers, public relations photographers, research associates, dermatology photographers, research photographers, and entrepreneurs.

## Photographic Sciences Student Association

The Photographic Sciences Student Association promotes professional and social interaction among students and professionals from the imaging and photographic technology industries. The association regularly invites alumni in professional imaging fields to present lectures and demonstrations.

Lorraine Justice, BFA, Edinboro University; MFA, Ph.D., The Ohio State University-Dean; Professor

Robin Cass, BFA, Rhode Island School of Design; MFA, NYSCC at Alfred University-Associate Dean of Undergraduate Studies; Professor

## School for American Crafts

Andy Buck, BA, Virginia Commonwealth University; MFA, Rhode Island School of Design-Professor

Juan Carlos Caballero-Perez,
BFA, MFA, Rochester Institute of Technology-Professor

Robin Cass, BFA, Rhode Island School of Design; MFA, State University of New York College of Ceramics at Alfred UniversityAssociate Dean of Undergraduate Studies; Professor

Wendell Castle, BFA, MFA, University of Kansas-Artist-inResidence; Chair in Contemporary Crafts; Professor

Albert Paley, BFA, MFA, Temple University-Artist-in-Residence; Charlotte Fredericks Mowris Professor in Contemporary Craft; Professor

Peter Pincus, BFA, MFA, State University of New York College of Ceramics at Alfred UniversityVisiting Assistant Professor

Michael Rogers, BA, MA, Western Illinois University; MFA, University of Illinois—Professor

Jane Shellenbarger, BFA, Kansas City Art Institute; MFA, Southern Illinois University at EdwardsvilleAssistant Professor

David Schnuckel, BFA, Anderson University; MFA, Rochester Institute of Technology-Lecturer

Leonard A. Urso, BFA, MFA, State University College at New Paltz—Professor

## School of Art

Michael Amy, BA, Vrige
Universiteit Brussel (Belgium);
MA, Ph.D., New York
University—Professor

Donald Arday, BFA, Cleveland Institute of Art; MFA, Syracuse University-Professor

Eileen Feeney Bushnell, BFA, University of Massachusetts at Amherst; MFA, Indiana State University-Program Chair, Fine Arts Studio; Associate Professor

Denton Crawford, BFA, University of South Florida; MFA, University of Georgia-Visiting Assistant Professor

Robert Dorsey, BFA, Rochester Institute of Technology; MFA, Syracuse University—Professor

William Finewood, BA, State University College at Geneseo; MFA, Syracuse UniversityProgram Chair, Illustration; Associate Professor

Craig Foster, BFA, University of Michigan; MS, Medical College of Georgia at Augusta UniversityVisiting Assistant Professor

Emily Glass, BFA, State University College at Potsdam; MFA, Kansas State University—Visiting Assistant Professor

Robert Heischman, BFA, Miami University of Ohio; UCFA, Oxford University (United Kingdom) Professor Emeritus

Glen Hintz, BA, Lafayette College; MS, The Medical College of Georgia-Administrative Chair, School for American Crafts and School of Art; Program Chair, Medical Illustration; Associate Professor

Donovan Howard, BFA, Art Center College of Design; MFA, California State University Fullerton-Visiting Assistant Professor

Elizabeth Kronfield, BFA, Bowling Green State University; MFA, University of Georgia-Graduate Director, Fine Arts Studio; Professor

Heidi Nickisher, BA, University of California at Santa Barbara; MA, California State University, Fullerton; Ph.D, University of Buffalo—Principal Lecturer

Luvon Sheppard, BFA,
MST, Rochester Institute of Technology—Professor

Alan Singer, BFA, The
Cooper Union; MFA, Cornell University—Professor

Sarah Thompson, BA, University of California at San Diego; MA, Ph.D., University of California at Santa Barbara-Associate Professor

Clifford Wun, BFA, Rhode Island School of Design; MFA, Maryland Institute College of Art-Associate Professor

## School of Design

Jason Arena, BS, University of Buffalo; MFA, Pratt InstituteAssociate Professor

Deborah Beardslee, BFA, Syracuse University; MFA, Virginia Commonwealth UniversityAssociate Professor

Nancy Bernardo, BA, Valparaiso University; MFA, The School of the Art Institute of Chicago-Assistant Professor

Peter Byrne, MFA, York University (Canada)—Administrative Chair, School of Design; Professor

Graham Carson,BFA, Indiana University of Pennsylvania; MFA, Rochester Institute of Technology-Lecturer

Nancy A. Ciolek, BFA, MFA, Indiana State University-Associate Professor

Daniel DeLuna, BFA, Ball State University; MFA, Pratt InstituteAssociate Professor

Regina Ferrari, BFA, Wayne State University; MFA, Virginia Commonwealth University-Senior Lecturer

Carol Fillip, BS, State University of New York at Buffalo; MFA, Rochester Institute of TechnologyAssociate Professor

Shaun Foster, BBA, University of Wisconsin; MFA, Rochester Institute of Technology-Associate Professor

Lorrie Frear, BFA, MFA, Rochester Institute of Technology-Associate Professor

Mary Golden, BA, M.Arch., University at Buffalo-Program Chair, Interior Design; Assistant Professor

Mitch Goldstein, BFA, Rhode
Island School of Design; MFA, Virginia Commonwealth
University-Assistant Professor
David Halbstein, BA, MA, William Patterson University-Associate Professor

Joyce Hertzson, BFA, Rhode Island School of Design; MFA, Indiana University—Professor

Chris B. Jackson, BFA, Alfred University; MFA, Rochester Institute of Technology-MFA Graduate Program Director, Visual Communication Design; Professor

Patti J. Lachance, BFA, Indiana and Purdue Universities; MFA, Rochester Institute of TechnologyAssociate Professor

Bruce Leonard, BID, Syracuse University-Program Co-Chair, Industrial Design; Lecturer

Alex Lobos, BID, Universidad Rafael Landivar (Guatemala); MFA, University of Notre DameAssociate Professor

Mindy Magyar, BS, Cornell
University; MFA, Cranbrook
Academy of Art; MBA, University of Pennsylvania-Assistant Professor

Bruce I. Meader, BFA,
MFA, Carnegie Mellon
University—Professor
Gary Molinari, BFA, Rochester Institute of Technology; MS, Nazareth College of Rochester-Lecturer

Melissa Moukperian, BS, Cornell University; MFA, Rochester Institute of Technology—Assistant Professor

Kelly Murdoch-Kitt, BA, Wake
Forest University; MGD, North
Carolina State University-Assistant Professor

Hye-Jin Nae, BA, Sung Shin Women's University (South Korea); BFA, University of Wisconsin; MFA, Rochester Institute of Technology

Marianne O'Loughlin, BA, St. Bonaventure University; BFA, MFA, Rochester Institute of TechnologyAssociate Professor

Josh Owen, BA, BFA, Cornell University; MFA, Rhode Island School of Design-Program CoChair, Industrial Design; Professor
R. Roger Remington, BFA,

Rochester Institute of Technology; MS, University of WisconsinMassimo and Lella Vignelli Distinguished Professor of Design
Stan Rickel, BID, Pratt Institute; MID, Syracuse UniversityGraduate Director, Industrial Design; Associate Professor
Alejandro Perez Sanchez, BS, Art Institute of California; MFA, Academy of Art UniversityAssistant Professor

Stephen Scherer, BFA, Bradley University-Lecturer

Heidi Schlegel, BFA, Rochester Institute of Technology; MS, University of Nebraska-LincolnAssistant Professor

Marla Schweppe, BA, University of Kansas; MA, The Ohio State University-Program Chair, 3D Digital Design; Professor

Amos Scully, BFA, Rochester Institute of Technology; MFA, California College of Arts and Crafts-Associate Professor

Kim Sherman, BS, State University College at Cortland; MFA, Rochester Institute of TechnologySenior Lecturer

Adam Smith, BFA, MFA, Rochester Institute of Technology-Program Chair, New Media Design; Associate Professor

Marissa Tirone, B.Arch., University of Kentucky; M.Arch., Cornell University-Lecturer

Tim Wood, BFA, Memphis Colege of Art; MFA, Rochester Institute of Technology-Assistant Professor

## School of Film and Animation

Ambarien Alqadar, BA, Jamia Millia University; MFA, Temple University-Assistant Professor
Cat Ashworth, BFA, Arizona State University; MFA, State University of New York at Buffalo-Associate Professor

Jack Beck, BA, Denison University; MFA, University of Iowa-Program Chair, Live Production; Associate Professor

Mari Jaye Blanchard, BFA, Massachusetts College of Art \& Design; MFA, University of Pennsylvania School of Design Assistant Professor

Adrianne Carageorge, BA, Florida State University; MFA, Ohio University-Associate Professor

Frank Deese, BA, MFA, University of California, Los AngelesAssistant Professor

Ricardo Figueroa, BS, MS,
University of Puerto Rico at
Mayaguez (Puerto Rico)-Associate Professor

Mark Foggetti, BS, Rochester Institute of Technology-Senior Lecturer

Tom Gasek, BFA, Rochester Institute of Technology; MFA, Art Institute of Boston-Graduate Director, Film and Animation; Associate Professor

Peter Kiwitt, BFA, Emerson College; MFA, American Film Institute-Associate Professor

Brian Larson, BFA, Colorado State University; MFA, Miami International University-Associate Professor

David Long, BS, University of Texas; MS, University of Rochester-Program Chair, Motion Picture Science; Associate Professor

Stephanie Maxwell, BA, University of California, Los Angeles; MFA, San Francisco Art Institute-Program Chair, Animation; Professor

Peter Murphey, BFA,
Massachusetts College of Art; MFA, The Art Institute of BostonAssistant Professor

Atia Quadri, BFA, National College of the Arts (Pakistan); MFA, Pratt Institute-Assistant Professor

Mark Reisch, BFA, Savannah College of Art and Design; Advanced Studies in Animation Certificate, AnimationMentor. com-Lecturer

David Sluberski, BA, State University College at FredoniaSenior Lecturer

Malcolm Spaull, BS, St. Lawrence University; MFA, Rochester Institute of Technology-Administrative Chair; Professor

## School of Media Sciences

Barbara Birkett, BA, Aquinas
College; MBA, University of Michigan; MBA, Rochester Institute of Technology; CPA, Maryland; Ph.D., Capella UniversityAssociate Professor

Christopher Bondy, BS, New York Institute of Technology; MS, Rochester Institute of TechnologyGannett Distinguished Professor

Shu Chang, BS, Berea College; Ph.D., University of MinnesotaMelbert B. Cary Jr. Distinguished Professor

Robert Y. Chung, BA, Eastern Washington State University; MS, Rochester Institute of Technology Roger K. Fawcett Distinguished Professor

Twyla Cummings, BS, MS, Wright State University; Ph.D., Union Institute and University-Professor

Gregory D'Amico, BA, Stony Brook University; MA, Ph.D., New York University-Administrative Chair, School of Media Sciences; Associate Professor

Robert Eller, AB, MA, University of Missouri-Gravure Research Professor

Elena Fedorovskaya, MS, Ph.D., Lomonosov Moscow State University (Russia)-Paul and Louise Miller Distinguished Professorship
Christine Heusner, BA, Elmira College; MFA, Rochester Institute of Technology-Graduate Director, Print Media; Senior Lecturer

Myrtle Jones, BA, University of Illinois; MA, New York UniversityAssistant Professor

Bruce Myers, BFA, Montclair State University; MS, Ph.D., New York University-Assistant Professor

Michael P. Riordan, BS, State University College at New Paltz; MS, Rochester Institute of TechnologyProgram Chair, Media Arts and Technology; Lecturer
Frank J. Romano, BA, City
University of New York-Professor Emeritus

## School of Photographic Arts and Sciences

Roberley Ann Bell, BFA,
University of Massachusetts at Amherst; MFA, State University of New York at Alfred-Professor

Frank Cost, BA, Eisenhower College; MS, Rochester Institute of Technology-Program Chair, Visual Media; James E. McGhee Distinguished Professor

Meredith Davenport, BFA, Rochester Institute of Technology; MFA, Hunter College-Assistant Professor

Denis Defibaugh, BS,
MS, Rochester Institute of Technology-Professor
Rachel Ferraro, BFA, Rochester Institute of Technology; MFA, Visual Studies Workshop-Lecturer

Gregory Halpern, BA, Harvard University; MFA, California College of the Arts-Associate Professor

Daniel Hughes, BFA, Rochester Institute of Technology-Visiting Assistant Professor

Angela Kelly, Diploma, Trent Polytechnic; Diploma Ed., Mary Ward College; MA, Columbia College-Professor

Ted Kinsman, BS, University of Oregon; MS, Syracuse UniversityAssistant Professor

Susan Lakin, BFA, Art Center College of Design; MFA, University of California-Program Chair, Advertising Photography; Associate Professor

Dan Larkin, BFA, Rochester Institute of Technology; MFA, Bard College-Associate Professor

Doug Manchee, BA, MA, San
Francisco State UniversityAssociate Professor

Clay Patrick McBride, BFA, MPS, School of Visual Arts-Lecturer

Susan McWhinney, BFA, MFA, California Institute of the ArtsAssistant Professor

Josh Meltzer, BA, Carleton College; MA, University of Miami-Assistant Professor

Therese Mulligan, BA, University of Missouri-Kansas City; MA, Michigan State University; Ph.D., University of New MexicoAdministrative Chair, Photographic Arts and Sciences; Professor

Laurie O'Brien, BA, San Francisco State University; MFA, California Institute of the Arts-Assistant Professor

Willie Osterman, BFA, Ohio University; MFA, University of Oregon-Program Chair, Fine Art Photography; Professor

Ahndraya Parlato, BA, Bard College; MFA, California College of the Arts-Lecturer

Michael R. Peres, BA, Bradley University; BS, MS, Rochester Institute of Technology-Associate Chair, Photographic Arts and Sciences; Professor

Jennifer Poggi, BS, Syracuse University; MA, Ohio UniversityAssistant Professor

Robert Rose, BS, Rochester Institute of Technology; ME, Intercontinental UniversityAssistant Professor

Patricia Russotti, BS, Empire
College; MS, Eds., Indiana
University-Associate Professor
Nanette Salvaggio, BS, Rochester Institute of Technology-Lecturer

Nitin Sampat, BS, University of Bombay (India); MS, Rochester Institute of Technology-Minor Coordinator, Imaging Systems; Associate Professor

Christine Shank, BFA, Miami University; MFA, Texas Women's University-Graduate Director; Imaging Arts MFA; Associate Professor

Christye Sisson, BS, MS, Rochester Institute of Technology-Program Chair, Photo Sciences; Associate Professor

William Snyder, BS, Rochester Institute of Technology-Program Chair, Photojournalism; Professor

Josh Thorson, BA, University of Minnesota-Twin Cities; MFA, Bard College; Ph.D., Rensselaer Polytechnic Institute-Assistant Professor
J. A. Stephen Viggiano, AB, Thomas Edison State College; MS, Ph.D., Rochester Institute of Technology-Assistant Professor
Ken White, BA, Princeton
University; MA, MFA, University of New Mexico-Associate Professor

Carole Woodlock, BFA, Alberta College of Arts; MFA, Concordia University-Professor

Catherine Zuromskis, BA, Harvard College; MA, University of New York at Stony Brook; MA, University of Rochester; Ph.D., University of Rochester-Assistant Professor

## Distinguished Professorships

## Ann Mowris Mulligan

 Distinguished Professorship in Contemporary CraftsEstablished: 1999
Donor: Ann Mowris Mulligan Purpose: The holder must have a distinguished record of excellent teaching, wide recognition as a renowned artist, and a demonstrated commitment to students' career development in the craft industry. Held by: Leonard Urso

## Gannett Distinguished Professor

Established: 1987
Donor: Gannett Foundation
Purpose: The distinguished professor is engaged in research and academic study to address problems in the news and information business. Held by: Christopher Bondy

## Artist-in-Residence

## Professorship

Established: 1984
Purpose: To work with apprentice woodworkers and participate in conferences and lectures at RIT. Held by: Wendell Castle

## Charlotte Fredericks Mowris Professorship in Contemporary Crafts

Established: 1973
Donor: Mrs. Charles F. Mowris Purpose: To perpetuate interest in the School for American Crafts through the work of faculty and students as talented craftspeople. Held by: Albert Paley

## Melbert B. Cary Jr. Professorship

 in Graphic ArtsEstablished: 1969
Donor: Mary Flagler Cary
Charitable Trust
Purpose: To provide a permanent memorial for Mr. Cary, a former president of the American Institute of Graphic Arts, and to perpetuate his interest in the field. Held by: Shu Chang, Ph.D.

## Gravure Research Professor

Established: 2004
Purpose: To promote gravure education in the curriculum.
Held by: Robert Eller

## James E. McGhee Professorship

 in Photographic Management Established: 1967Donor: Master Photodealers and Finishers Association and friends of Mr. McGhee
Purpose: To provide a permanent memorial for Mr. McGhee, a former vice president of Eastman Kodak Company and lifelong friend of the photofinishing industry. Held by: Frank Cost
Paul and Louise Miller Distinguished Professorship
Established: 1979
Donor: Frank E. Gannett Newspaper Foundation
Purpose: To honor the former chairman of the board of the Gannett Company and perpetuate his interest in good management practices in the News Media Industry using Cross Media distribution.
Held by: Elena Fedorovskaya, Ph.D.

Roger K. Fawcett Distinguished Professorship in Publications Color Management
Established: 1991
Donor: World Color Press, Fawcett family, and industry colleagues Purpose: The endowed chair, the only one of its kind in the nation, was established to address color quality and productivity in both the magazine and the newspaper publishing industries as well as promotion of RIT color research activities.
Held by: Open

# College of Liberal Arts 

James J. Winebrake, Dean

rit.edu/cla

## Programs of study

| Bachelor of Science i | Page |
| :---: | :---: |
| Advertising and Public Relations | 120 |
| \# Communication | 122 |
| Tracks available in: health communication; rhetoric, media and culture; and technical communication. |  |
| Criminal Justice | 123 |
| Digital Humanities and Social Sciences | 125 |
| Economics | 126 |
| International and Global Studies | 127 |
| Focus areas available by region (Africa, Asia, Europe, Latin America, the Middle East, or Indigenous Studies) or by topic (global justice, international business, peace studies, sustainable futures, or transnational gender studies). |  |
| Journalism | 129 |
| Museum Studies | 130 |
| Tracks available in: management and public history. |  |
| Philosophy | 132 |
| Specializations available in: philosophy of mind and cognitive science, philosophy of science and technology, applied ethics, philosophy of social sciences and political philosophy, philosophy of art and aesthetics, history of philosophy, and philosophy and law. |  |
| Political Science | 134 |
| Tracks available in: politics and the life sciences, digital politics and organization, and political institutions. |  |
| Psychology | 135 |
| Tracks available in: clinical psychology, cognitive psychology, social psychology, or visual perception. |  |
| \# Public Policy | 136 |
| Concentrations available in: biotechnology, computer crime policy, computer software policy, energy policy, engineering policy, environmental policy, and information and communications policy. |  |
| Sociology and Anthropology | 138 |
| Tracks available in: archaeology, cultural anthropology, sociology, and urban studies. |  |

The College of Liberal Arts plays three important roles at RIT: it offers a variety of undergraduate and graduate degree programs in the social sciences and humanities; it provides general education courses required of all students pursuing baccalaureate and associate degrees; and it creates opportunities for students and the RIT community to participate in cultural and academic experiences such as theater, music, creative writing, public speaking, and lectures.

The college offers undergraduate degree programs in advertising and public relations, communication, criminal justice, digital humanities and social sciences, economics, international and global studies, journalism, museum studies, philosophy, political science, psychology, public policy, and sociology and anthropology. Liberal Arts Exploration is a two-year undeclared option for students who are undecided about their choice of liberal arts major.

Recognizing that future leaders will work in an increasingly interconnected and complex world, the College of Liberal Arts provides students with a rigorous curriculum in the liberal arts. This curriculum is designed to help them forge comprehensive links between a major field of study and the ethical, social, cultural, and communicative demands of the contemporary world. As a result, the general education requirements for undergraduate students include introductory and upper-level courses in the humanities and the social and behavioral sciences.

The liberal arts curriculum seeks to help students develop specific kinds of knowledge, such as:

- understanding the connections among humanistic, professional, and technological studies;
- building critical awareness of the interactions among society, culture, science, and technology;
- developing awareness of and respect for diverse social and cultural perspectives;
- understanding local, national, and global forms of citizenship and community;
- acquiring knowledge and honing critical understanding of the responsibilities and rights of living in a participatory democracy;
- examining human development and behavior;
- broadening critical awareness of the interactions between society and the environment;
- creating, interpreting, and evaluating artistic expression and understanding the aesthetic dimension of other forms of expression and experience;
- understanding the nature and implications of work and career;
- thinking critically and creatively;
- reasoning through ethical and moral questions in the context of one's judgments and practice;
- demonstrating proficiency in written, oral, visual, and nonverbal forms of communication; and
- demonstrating proficiency in the analysis and interpretation of quantitative and qualitative data.


## Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

College of Liberal Arts faculty members are recruited from the top graduate schools, and nearly all have doctorate or other terminal degrees. They are dedicated to providing students with outstanding educational experiences and access to cutting-edge research.

## Cooperative education/Internships

Students in the College of Liberal Arts have the option of participating in cooperative education or internship opportunities that provide hands-on experience as well as the opportunity to further develop their skills in a chosen profession.

## Advising

Liberal arts academic advising: Upon entry into the College of Liberal Arts, each student is assigned a faculty adviser and an academic adviser. The faculty adviser helps students formulate career goals and offers support with cooperative education. The academic adviser offers support with registration and scheduling.

Liberal arts general education advising: The advising staff in the college's Office of Student Services offers support to all RIT students as they select liberal arts courses to fulfill the required general education curriculum for their degree programs. The advising staff provides guidance that is consistent with the general education policies of the university. The office also evaluates liberal arts courses as transfer credits for all RIT students.

## Academic enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.

Study Abroad: RIT encourages all students to consider a study abroad program. Students may study full time at a variety of host schools and are able to select courses that fulfill requirements in their academic field of study and/or RIT liberal arts general education requirements. RIT's Study Abroad Office has information about foreign study options and opportunities.

Minors: RIT offers students more than 90 minors to choose from to enhance their academic program or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

Research: Students have the opportunity to collaborate with faculty members on exciting research projects. Students are encouraged to work with faculty on projects and to present their
findings at the college's annual Student Research Conference, which highlights students' research findings. The college also hosts the annual Conference for Undergraduate Research in Communication. This conference invites students from all over the Northeast to showcase their research pursuits with peers from other institutions.

Professional student organizations: The college maintains memberships in the following professional organizations: Lambda Pi Eta (National Honor Society for Communication), Omicron Delta Epsilon (International Honor Society for Economics), the Public Relations Student Society of America, and Sigma Iota Rho.

## Special opportunities

Accelerated 4+1 MBA options: Some programs offer accelerated, five-year BS/MBA degree options. These degrees offer students the opportunity to earn a bachelor's degree and an MBA degree in less time than pursuing each degree individually. Please refer to individual programs, the Graduate Bulletin, or the college's website for more information.

Double majors: The college offers a number of double majors to assist students in obtaining two areas of expertise. Please refer to individual programs or the college's website for more information.

Graduate study: The college offers the following graduate degree programs: experimental psychology; communication and media technologies; criminal justice; science, technology, and public policy; and school psychology. Please refer to the Graduate Bulletin or the college's website for more information.

Part-time, evening and online options: Many of the college's programs may be completed on a part-time basis. Please refer to the Office of Graduate and Part-time Enrollment's or the college's website for more information.

Summer course offerings: The college offers a number of summer courses in English, foreign languages, science and humanities, and social sciences as well as degree program courses in the college's academic areas of study. Please contact the Liberal Arts Office of Student Services, the Offices of Part-time Enrollment Services, or visit the college's website for more information.

## Liberal Arts Exploration, Undeclared

rit.edu/cla/exploration
John S. Smithgall, Program Director
(585) 475-2444, jssgla@rit.edu

## Program overview

Liberal arts exploration is an undeclared option designed to allow students to complete required liberal arts, mathematics, and science courses while actively pursuing career exploration and receiving individualized academic advising. Students may stay in the option for up to two years (or 60 credit hours) before they must choose a major. The option offers students the flexibility and time to explore a variety of majors within the College of Liberal Arts without delaying their graduation.

## Curriculum

## Liberal arts exploration, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
| ITDL-101 | Career Exploration Seminar | 1 |
|  | LAS Perspectives | 15 |
|  | LAS Electives | 9 |
| Second Year | Wellness Education* | 0 |
|  |  | 6 |
| ISTE-105 | LAS Perspectives | 9 |
|  | LAS Immersion 1, 2, 3 | $\mathbf{9}$ |
| Total Semester Credit Hours | $\mathbf{3}$ |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. * Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

## Advertising and Public Relations, BS

rit.edu/apr

Andrea Hickerson, Department Chairperson<br>(585) 475-6129, aahgpt@rit.edu

## Program overview

The fields of advertising and public relations are rapidly changing now that the Internet and mobile devices like smart phones and tablets have influenced the way professionals create messages. Unique opportunities and exciting challenges lie ahead in the advertising and public relations field. The major combines advertising, public relations, and marketing to address the overlapping roles of communication professionals.

Students are prepared to create persuasive messages for a variety of traditional and emerging media platforms. They learn to analyze audiences, write copy, select media, and manage campaigns. The major also features a senior thesis and one semester of work experience gained through an internship and/or cooperative education.

## Plan of study

Students develop skills through a core of required communication courses, which cover communication theory, visual communication, public relations, advertising, writing, campaign planning and management, media planning, public speaking, and digital design. A professional core of four marketing courses, chosen by the student, provides a deeper understanding and appreciation of marketing. Electives and liberal arts courses complete the curriculum.

## Core courses

Students choose three core courses from the following list:

| INTB-320 | Global Marketing |
| :--- | :--- |
| MKTG-320 | Internet Marketing |
| MKTG-350 | Buyer Behavior |
| MKTG-360 | Professional Selling |
| MKTG-370 | Advertising and Promotion Management |
| MKTG-489 | Seminar in Marketing |

## Senior thesis

Students conduct original research on a subject of their choosing. Two faculty members advise students on how to investigate their topic, select a research method, implement the project, and present their findings. Students often present their research at conferences.

## Cooperative education

Students are required to complete one block of internship experience or cooperative education, giving students the opportunity to apply their classroom learning to a professional work environment. There are many opportunities, including positions with advertising agencies and public relations firms as well as businesses and nonprofit organizations. The Office of Cooperative Education and Career Services assist students in identifying and applying to internship or co-op positions.


## Additional information

## Advisers

Every student is assigned a professional academic adviser and a faculty mentor in the department of communication. The professional adviser assists with course planning and registration; the faculty mentor provides advising about career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level advertising and public relations students, are also available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective.

## Faculty

Nearly all of the department's 18 faculty members hold the highest degrees in their fields. Many have won awards for teaching, and all have been published within their areas of expertise.

## Careers

Upon graduation, students are well-qualified for positions in business, government, and the not-for-profit sectors. The major also prepares students to pursue graduate studies in a variety of fields. The department of communication offers an MS degree in communication and media technologies. Visit the program website or refer to the Graduate Bulletin for more information.

## Accelerated 4+1 MBA option

An accelerated $4+1$ MBA option is available for students who wish to earn a BS in advertising and public relations and an MBA. The program is offered in conjunction with Saunders College of Business and allows students to obtain both degrees in five years of study.

## Communication, BS

rit.edu/ptc

## Andrea Hickerson, Department Chairperson <br> (585) 475-6129, aahgpt@rit.edu

## Program overview

The communication major combines advanced education in the theory and practice of spoken, written, and technology-mediated communication with focused study in a communication track and instruction in a professional or technical program related to the selected track. This unique combination fosters an understanding of the central concepts and processes associated with the field of communication as well as a communication sub-discipline, and a working familiarity with the principles and practices of a particular professional/technical field. Graduates are qualified for a number of different functions as communication specialists within a specific professional area. Their career opportunities are numerous and varied. The degree also prepares them for graduate work in communication and related academic disciplines.

## Plan of study

Students develop skills through a core of required communication courses, which cover communication theory, visual communication, public speaking, mass communication, communication law and ethics, technology-mediated communication, and research methods. Students then focus their studies by selecting a track in technical communication, health communication, or media, rhetoric, and culture. A professional core of four courses related to the selected track may be taken from minors within the colleges of Business, Imaging Arts and Sciences, or Science. Students may also customize a concentration using courses from other RIT colleges. With approval of an academic adviser, students may design their own professional core. Electives and liberal arts courses complete the curriculum.

## Cooperative education

Students complete one semester of cooperative education. Co-op is paid, practical work experience that deepens students' knowledge of their academic fields, allows them to determine their suitability for a particular professional position, and increases their chances for employment upon graduation. Many students use the extra income earned on co-op to help offset college expenses.

There is a broad range of co-op opportunities, and there is no restriction on geographic location as long as the position is related to communication. The Office of Cooperative Education and Career Services assists students in identifying and applying to co-op and permanent positions with a large and diverse number of employers. Students have held co-ops across the United States at such organizations as Greenpeace, Bausch \& Lomb, the Rochester Memorial Art Gallery, the Chicago Hearing Society, Eastman Kodak Co., City of New York Parks \& Recreation, and the U.S. House of Representatives.

## Curriculum

## Communication, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| COMM-101 | Human Communication | 3 |
| COMM-201 | Public Speaking | 3 |
|  | LAS Perspective 1, 2, 3, 5 | 12 |
| MATH 101 | LAS Perspective 7A: College Algebra | 3 |
|  | First Year LAS Elective | 3 |
| COMM-202 | Mass Communications | 3 |
|  | First Year Writing Seminar | 3 |
|  | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| COMM-341 | Visual Communication | 3 |
| COMM-342 | Communication Law and Ethics | 3 |
|  | Free Elective | 3 |
|  | LAS Perspective 4,6§ | 6 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| Choose one of the following: |  | 3 |
| COMM-302 | Interpersonal Communication |  |
| COMM-304 | Intercultural Communication |  |
| COMM-303 | Small Group Communication |  |
| COMM-343 | Technology-Mediated Communication (WI) | 3 |
|  | Professional Core $\ddagger$ | 3 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
|  | Track Courses | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | Professional Core $\ddagger$ | 6 |
|  | Free Elective | 3 |
|  | Communication Elective | 3 |
| COMM-301 | Theories of Communication | 3 |
| COMM-401 | Quantitative Research Methods | 3 |
| COMM-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
|  | Track Courses | 6 |
|  | Professional Core $\ddagger$ | 3 |
|  | LAS Electives | 15 |
| COMM-402 | Qualitative Research Methods | 3 |
| COMM-501 | Senior Thesis in Communication | 3 |
| COMM-497 | Communication Portfolio | 0 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Professional core may be fulfilled by selecting a 300-level (or higher) course from a discipline outside the liberal arts.
§ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.


## Tracks

## Technical communication

| Required Course |  |
| :--- | :--- |
| COMM-142 | Introduction to Technical Communication |
| Electives |  |
| Choose three of the following |  |
| COMM-223 | Digital Design in Communication |
| COMM-345 | Ethics in Technical Communication |
| COMM-440 | Visual Communication of Technical Information |
| COMM-441 | Writing the Technical Manual |
| ENGL-361 | Technical Writing |

Health communication

| Required Course |  |
| :--- | :--- |
| COMM-344 | Health Communication |
| Electives |  |
| Choose three of the following |  |
| COMM-212 | Public Relations |
| COMM-221 | Public Relations Writing |
| COMM-223 | Digital Design in Communication |
| COMM-322 | Health Campaign Management and Planning |
| COMM-361 | Reporting in Specialized Fields: Health |

Rhetoric, media and culture

## Electives

Choose four of the following

| Choose four of the following |  |
| :--- | :--- |
| COMM -305 | Persuasion |
| COMM -306 | Retoric of Race Relations |
| COMM -356 | Critical Practice in Social Media |
| COMM-357 | Communication, Gender and Media |

## Additional information

## Advisers

Every student is assigned a professional academic adviser and a faculty mentor in the department of communication. The professional adviser assists with course planning and registration; the faculty mentor provides advising about career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level communication students, are also available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective.

## Faculty

Nearly all 18 faculty members in the department of communication hold the highest degrees in their fields. All have proven teaching ability and are committed to professional growth in their areas of expertise. The department also offers students the opportunity to participate in specialized course work and research with faculty members.

## Careers

Upon graduation, students are prepared for immediate employment and long-term professional growth within the broad field of communication. Graduates qualify for positions in business, government, and the not-for-profit sector, and are employed as technical editors and writers, sales and marketing coordinators, document specialists, broadcast news and segment researchers, public relations practitioners, and staff members for various federal and state government officials.

## Graduate study

The major prepares students for graduate study in law, public relations, communication, health services, and management. The department of communication offers an MS degree in communication and media technologies. Please refer to the Graduate Bulletin or the department website for more information.

## Criminal Justice, BS

## rit.edu/cla/criminaljustice <br> John McCluskey, Department Chairperson <br> (585) 475-2666, jdmgcj@rit.edu

## Program overview

The criminal justice major offers students a broad education, preparing them for a wide range of careers in federal and local criminal justice agencies. The major also provides continuing education for professionals already employed in criminal justice positions and offers a strong academic foundation for graduate or law school. The program is unique in its broad core curriculum, the scope of professional course offerings, and an intensive field experience where students blend knowledge gained in the classroom with a career-oriented internship.

RIT's approach to the study of criminal justice combines theoretical perspectives with practical experience. The emphasis within the areas of crime, criminal behavior, social control mechanisms, administration, planning, and management is on problem-solving techniques based on the growing body of research in the field as well as students' own guided research.

The Center for Public Safety Initiatives is housed in the criminal justice department and works with the Rochester Police Department and other community groups. Several students work at CPSI and gain valuable experience working with crime mapping, data gathering, and data analysis. Students work closely with faculty on various projects, including Operation IMPACT, Ceasefire and Project Safe Neighborhoods, and the Rochester Police Department. The CPSI supports the development, implementation, and evaluation of criminal justice and communitybased anti-crime and anti-violence interventions.

## Curriculum

Criminal Justice, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CRIM-100 | Seminar in Criminal Justice | 3 |
|  | Professional/Technical Elective | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3, 4, 5\# | 15 |
|  | First Year Writing Seminar | 3 |
| CRIM-110 | Introduction to Criminal Justice | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | Free Electives | 6 |
|  | Criminal Justice Electives | 6 |
|  | LAS Perspective 6, 7A, 7B | 9 |
|  | LAS Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Third Year |  |  |
| CRIM-300 | Quantitative Methods for Criminal Justice | 3 |
|  | Criminal Justice Electives | 6 |
| CRIM-350 | Theories of Crime and Criminality | 3 |
|  | LAS Electives | 9 |
|  | LAS Immersion 3 | 3 |
| CRIM-400 | Research Methods | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| CRIM-550 | Field Experience | 3 |
|  | Criminal Justice Electives | 9 |
|  | LAS Electives | 9 |
|  | Free Electives | 6 |
| CRIM-500 | Seminar in Criminal Justice and Public Policy (WI) | 3 |

Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CRIM-100 | Seminar in Criminal Justice | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3, 4, 5才 | 15 |
|  | First Year Writing Seminar | 3 |
| CRIM-110 | Introduction to Criminal Justice | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Criminal Justice Elective | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | Free Electives | 6 |
|  | Criminal Justice Electives | 6 |
|  | LAS Perspective 6, 7A, 7B | 9 |
|  | LAS Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Third Year |  |  |
| CRIM-300 | Quantitative Methods for Criminal Justice | 3 |
|  | Criminal Justice Electives | 6 |
| CRIM-350 | Theories of Crime and Criminality | 3 |
|  | LAS Electives | 9 |
|  | LAS Immersion 3 | 3 |
| CRIM-400 | Research Methods | 3 |
|  | Free Elective | 3 |
| Fourth Year |  |  |
| CRIM-550 | Field Experience | 3 |
|  | Criminal Justice Elective | 3 |
| CRIM-700 | Professional Seminar In Criminal Justice Theory | 3 |
| CRIM-703 | Advanced Criminology | 3 |
|  | LAS Electives | 9 |
|  | Free Electives | 6 |
| CRIM-500 | Seminar in Criminal Justice and Public Policy (WI) | 3 |
| Fifth Year |  |  |
| CRIM-701 | Advanced Statistics | 3 |
| CRIM-702 | Professional Seminar in Research Methods | 3 |
| CRIM-704 | Crime, Justice, and Community | 3 |
| CRIM-705 | Interventions and Change in Criminal Justice | 3 |
| CRIM-775 | Capstone in Criminal Justice | 3 |
|  | Electives | 9 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.


## Additional information

## Field experience

During their senior year, students have the opportunity to complete an internship at a number of agencies and organizations in the areas of law, law enforcement, institutional and non-institutional corrections, courts, juvenile advocacy and counseling programs, and security. For one semester, students work 25 -hours-a-week under an agency field supervisor and meet regularly with advisers and peers who are doing field placements in other agencies. Placements are individualized to fit a student's career objectives.

## Cooperative education

Students have the opportunity to participate in cooperative education and may apply for co-op employment after two semesters of full-time study. Cooperative education provides a working experience in a criminal justice-related field but does not carry academic credit hours.

## Career planning

Students are assigned a faculty adviser who assists in formulating career goals and planning a field of study to achieve professional aspirations.
Through core courses, students are exposed to the widest possible range of perspectives from which to view crime and the nature of criminal justice administration, thus broadening their career options.

## Career opportunities

Many graduates are engaged in law enforcement careers in agencies at all levels of government, including the Federal Bureau of Investigation, Secret Service, U.S. Marshals Service, Naval Intelligence Service, U.S. Customs and Border Patrol, Immigration and Naturalization Service, Centers for Disease Control, Department of the Interior, and the National Park Service, among others. The Rochester Police Department, Monroe County Sheriff's Department, and suburban departments throughout the Rochester area employ our graduates. A number have advanced in rank to positions of command, including several chiefs and deputy chiefs.

Other alumni work as correctional officers, counselors, probation officers, and parole officers; with many advancing to administrative positions. A significant number of alumni have used the program as a foundation for law school and have entered the legal profession as prosecutors, public defenders, and private practice lawyers. Many graduates serve in U.S. Attorneys General offices. Others serve the legal profession as investigators or paralegals.

Consistent with the liberal arts/social science nature of the major, some graduates have attained advanced degrees in related areas and entered teaching careers at the secondary and college levels. Others have become psychologists, social workers, drug and alcoholism counselors, youth service specialists, and victim assistance/rape crisis counselors. Many have completed advanced degrees in business, public policy, public administration, criminology, and criminal justice.

## Pre law study

The major provides a solid undergraduate foundation for students wishing to pursue law school or other law-related fields. The American Bar Association cites strong analytical and problem-solving skills, critical reading abilities, and excellent communication and research skills as crucial for law school acceptance and success, while the Law School Admission Council encourages students to gain an understanding of the forces that have shaped human experience. Students build these skills by combining a broad liberal arts background with intensive study in criminal justice. During their senior year, pre law students spend one semester, working 10 hours-a-week, as interns working with attorneys in the office of the district attorney, public defender, or state attorney general; with private law firms; or in any number of public or private organizations dealing with litigation. RIT's Pre Law Association publishes student research papers each year in Legal Research at RIT.

## Faculty

Eight full-time faculty members hold advanced degrees, have had professional experience in criminal justice, have proven teaching ability, and are committed to continuing professional growth in their areas of expertise. They spend many non-teaching hours in their offices with an open-door policy, in order to assist students with academic or personal concerns and questions. The full-time faculty members are supplemented by a strong cadre of adjunct instructors, many of whom are leading criminal justice practitioners in the region.

## Graduate study

The criminal justice department offers a master of science degree that focuses on program analysis and evaluation. Please see the Graduate Bulletin for more information.

## Digital Humanities and Social Sciences, BS

rit.edu/cla/dhss/<br>\section*{Tamar W. Carroll, Director<br><br>(585) 475-6913, tamar.carroll@rit.edu}

## Program overview

The digital humanities and social sciences major is a dynamic and interdisciplinary field of research dedicated to furthering the possibilities of computing for humanities and social sciences subjects including anthropology, art, communication, history, literature, linguistics, philosophy, and political science, among others.

The major is a collaborative degree program. Students receive a strong foundation in critical thinking, cultural awareness, and communication in the College of Liberal Arts. This major offers a traditional liberal education, which is given new impact through engagement with digital technology. Course work combines humanities and social science with computational and design curriculum from the colleges of Computing and Information Science and Imaging Arts and Sciences in areas such as human computer interaction, database management, geographic information technologies, and interactivity in new media.

## Plan of study

The digital humanities and social sciences major combines information science and technologies with the liberal arts to provide students with the integrative literacies increasingly necessary for careers in cultural institutions, government, educational institutions, and technology firms.

Students achieve both broad knowledge in digital humanities and social sciences and a specialization in an area of interest through their studies. Students benefit from experiential learning with opportunities for cooperative education or an ternship, team project-based lab courses, and a capstone project. Students are encouraged to study abroad or pursue an international co-op in order to enhance their studies.

## Eperiential education

Students are required to complete at least one cooperative education or internship experience. Students may complete this requirement during any summer following the second year, however, the requirement must be completed before the final year. The Office of Career Services and Cooperative Education assists students in identifying and applying to co-op and internship positions.

## Capstone experience

Students are required to complete a capstone experience.

## Curriculum

Digital humanities and social sciences, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ISTE-140 | Web and Mobile I | 3 |
| DHSS-101 | Computation and Culture | 3 |
| ISTE-120 | Computational Problem Solving | 4 |
|  | LAS Perspective 1, 2, 3, 4 | 12 |
|  | First Year LAS Elective | 3 |
| DHSS-102 | Industrial Origins of the Digital Age | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NMDE-111, 112 | New Media Design Digital Survey I, II | 6 |
| ISTE-240 | Web and Mobile II | 3 |
| DHSS-103 | Ethics and Emerging Digital Scholarship | 3 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
|  | LAS Perspective 5,7B | 6 |
| STAT-145 | LAS Perspective 7A: Introduction to Statistics | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | Cooperative Education (summer) | Co-op |
| Third Year |  |  |
|  | DHSS Professional Electives | 6 |
| ISTE-382 | Introduction to Geospatial Technologies | 3 |
| ENGL-xxx | Media Narrative (WI) | 3 |
|  | LAS Electives | 6 |
|  | LAS Perspective 6 | 3 |
|  | LAS Immersion 3 | 3 |
|  | DHSS Project Courses | 6 |
| Fourth Year |  |  |
|  | DHSS Professional Electives | 9 |
|  | LAS Electives | 9 |
|  | Free Electives | 6 |
| DHSS-488,490 | Capstone I, II | 6 |

Total Semester Credit Hours ..... 121

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation Requirements section of this bulletin for more information
WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
† Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.


## Economics, BS

## rit.edu/cla/economics

Jeffrey Wagner, Department Chairperson
(585) 475-5289, jeffrey.wagner@rit.edu

## Program overview

The economics major emphasizes the quantitative analytical approach to dealing with economic problems in both the public and private sectors, providing students with marketable skills and the intellectual foundation for career growth. Graduates are prepared for entry-level managerial and analytical positions in both industry and government and to pursue graduate studies in economics, business, and law.

## Plan of study

The economics curriculum develops communication, computational, and management skills in addition to economic reasoning and quantitative abilities. The major's required courses develop students' abilities to apply economic analysis to real-world problems. Liberal arts courses enhance oral and written communication skills. Business courses include accounting and finance. Quantitative analytical skills are developed by a course sequence that includes computer science, mathematics, and statistics. Free electives allow students to pursue advanced study in their individual areas of interest and/or develop a double major. Along with finance, marketing, mathematics, statistics, or computer science, there are many other possibilities. Faculty advisers help students develop professional options that assist them in attaining their career goals.

## Tracks

Students choose one of the following tracks: economic theory, environmental economics, or managerial economics.

## Cooperative education

Cooperative education is optional. Students who participate in co-op may find positions with financial and brokerage institutions, government offices, and large corporations. Co-op can be completed during any semester, including summer, after the sophomore year. The Office of Cooperative Education and Career Services assists students in identifying and applying to co-op positions.

## Capstone experience

Students are required to complete a creative capstone experience. Students may publish a paper in a refereed journal, present a paper at a professional conference or at an RIT-sponsored conference, present research at an approved exhibit at Imagine RIT: Innovation and Creativity Festival, or fulfill a comparable creative capstone requirement in the student's primary major (if economics is the secondary major).

## Curriculum

Economics, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ECON-100 | Foundational Seminar in Economics | 0 |
| ECON-101 | Principles of Microeconomics | 3 |
| MATH-171 | LAS Perspective 7A: Calculus A | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 5 $\dagger$ | 9 |
| STAT-145 | Introduction to Statistics I | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
| MATH-172 | LAS Perspective 7B: Calculus B | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ECON-402 | Intermediate Macroeconomic Theory (WI) | 3 |
|  | LAS Perspective 3,4 | 6 |
| Choose one of the following: |  | 3 |
| ECON-405 | International Trade and Finance |  |
| ECON-406 | Global Economic Issues |  |
|  | Track Courses | 6 |
| ECON-403 | Econometrics I | 3 |
|  | Free Elective | 3 |
|  | LAS Immersion 1 | 3 |
|  | LAS Elective | 3 |
| Third Year |  |  |
| ECON-401 | Intermediate Microeconomic Theory | 3 |
| ECON-404 | Mathematical Methods: Economics | 3 |
|  | Track Course | 3 |
| ISTE-105 | Web Foundations | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Free Electives | 6 |
|  | LAS Elective | 3 |
|  | LAS Perspective 6 | 3 |
| Fourth Year |  |  |
|  | Track Courses | 9 |
|  | LAS Electives | 12 |
|  | Free Electives | 6 |
| ECON-407 | Industrial Organization | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
+ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a
science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.


## Additional information

## Double major

Because of the flexibility of the economics curriculum, many students choose to pursue a double major in a secondary field of study. Even with a double major, students are able to graduate in four years.

## Accelerated 4+1 MBA option

An accelerated $4+1$ option is available for students who wish to earn a BS in economics and an MBA. The option is offered in conjunction with Saunders College of Business and allows students to obtain both degrees in five years of study.

## Academic enrichment

Economics faculty members serve as mentors and are available to enhance students' personal and professional growth. Students may work as teaching assistants for professors in economics courses or learn about research techniques as research assistants for faculty. For both of these activities, students receive a stipend. Finally, students can engage in independent or joint research with a faculty member, receiving academic credit and obtaining funding for their research needs.

## International and Global Studies, BS

## rit.edu/cla/socanthro/international-and-global-studies-bs/overview <br> Benjamin Lawrance, Program Director <br> (585) 475-4768, bnlgla@rit.edu

## Program overview

The impact of global change is dramatic and far-reaching, altering the dynamics of everyday life on a planetary scale. The international and global studies major assesses and analyzes salient issues including consumer capitalism, media culture, forms of communication, economic development, gender and health, migration, border wars, political violence, sustainable futures, and human security.

## Plan of study

The major offers a range of courses from anthropology, economics, performing arts and visual culture, history, international business, linguistics, English and global literatures, modern languages and culture studies, philosophy, political science, public policy, and sociology. The major focuses on the dynamic interplay of international and supranational processes, an approach that features an integrated analysis of globalization via the dynamics of cultural, technological, media, business, monetary, diplomatic, and information exchange. Through the holistic and humanistic analysis of globalization, students consider the consequences of global processes for human rights, ethnic conflict, health, environmental sustainability, economic justice, violence and human security, and the predicaments of democracy and civil society.

## Language proficiency

The major requires students to study a foreign language. RIT offers instruction in Arabic, Chinese, French, German, Italian, Japanese, Portuguese, Russian, and Spanish. Credits for language study earned at other universities may be approved upon review. Language certification also is available for students who are proficient in a language other than English, including American Sign Language. Students are also encouraged to explore our course offering in linguistics.

## Field specializations

The major offers specializations that allow students to choose a regional focus (African studies, Asian studies, European studies, Latin American studies, Middle Eastern studies, or Indigenous studies) or a topical focus (sustainable futures; global justice, peace, and conflict studies; international business; or transnational gender studies).

## International experience

Students are encouraged to gain a global perspective through an international experience. This can include study abroad or an international coop or internship. Study abroad opportunities are available in any part of the world, or students can study at one of RIT's global campuses in Croatia, Dubai, or Kosovo. Students may also fullfil the international requirement by completing an internship or co-op at an international company or with an organization that is engaged with global issues, human rights or international populations, including refugees and immigrants.

## Curriculum

International and global studies, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| INGS-101 | Global Studies | 3 |
| ANTH-210 | Culture and Globalization | 3 |
| ANTH-102 | Cultural Anthropology | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, 3, 7A | 9 |
|  | LAS Electives | 9 |
|  | Year One: College Experience | 0 |
| Second Year | Wellness Education* | 0 |
| POLS-330 |  |  |
|  | Human Rights in Global Perspective | 3 |
| ANTH/SOCI-302 | Modern Language Courses (intermediate level) $\ddagger$ | 6 |
|  | Qualitative Methods | 3 |
|  | Field Specialization Elective | 3 |
| STAT-145 | Globalization Concentration Electives | 6 |
| ECON-101 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | LAS Perspective 4: Microeconomics | 3 |
|  | LAS Immersion 1 | 3 |


| Choose one of the following: |  |
| :--- | :--- |
| INGS-597 | Study Abroad§ |
| INGS-598 | Internship§ |

## Third Year

| Choose one of the following: | 3 |  |
| :--- | :--- | :--- |
| ECON-201 | Principles of Macroeconomics |  |
| ECON-405 | International Trade and Finance |  |
| ECON-406 | Global Economic Issues |  |
| ECON-432 | Open Economic Macroeconomics | 3 |
| ECON-448 | Development Economics | 3 |
| ECON-449 | Comparative Economic Systems | 6 |
|  | Modern Language Course (advanced level) 1 $\ddagger$ | 3 |
|  | Globalization Concentration Elective | 3 |
| ISTE-105 | Field Specialization Electives | 6 |
|  | Advanced Study Course | 3 |

## Fourth Year

| INGS-501x | Capstone Seminar (WI) | 3 |
| :--- | :--- | ---: |
|  | Field Specialization Elective | 3 |
|  | Advanced Study Course | 3 |
| LAS Perspectives 2,6 | 6 |  |
| LAS Electives | 9 |  |
| Free Electives | 6 |  |
| Total Semester Credit Hours |  | $\mathbf{1 2 0}$ |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Modern language courses: Students without prior proficiency in a foreign language should take the beginning level language sequence as prerequisite(s) for the intermediate level in the LAS electives. § After the first year, students are required to complete an international experience by choosing either a study abroad experience or an internship or co-op. The requirement may be completed during the summer or during the academic year.
** Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.


## Accelerated dual degree option

An accelerated dual degree option is available for students who wish to earn a BS in international and global studies and an MS in science, technology and public policy.

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| INGS-101 | Global Studies |  |
| POLS-110 | American Politics | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 3,7A | 9 |
|  | First Year Writing Seminar | 3 |
| ANTH-210 | Culture and Globalization | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | LAS Electives | 6 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| POLS-330 | Human Rights in Global Perspective | 3 |
|  | Modern Language Intermediate I, II | 6 |
| SOCI-302 | Qualitative Methods | 3 |
| ECON-101 | Principles of Microeconomics | 3 |
|  | Globalization Concentration Courses | 6 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | Field Specialization Course | 3 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
| ECON-449 | Comparative Economic Systems | 3 |
| ISTE-105 | Web Foundations | 3 |
|  | Modern Language Advanced I | 3 |
|  | LAS Immersions 2, 3 | 6 |
|  | Field Specialization Electives | 6 |
|  | Globalization Concentration Course | 3 |
|  | LAS Perspective 5 | 3 |
|  | Advanced Study Option | 3 |
| Fourth Year |  |  |
| INGS-501 | Capstone Seminar (WI) | 3 |
|  | Advanced Study Option | 3 |
|  | LAS Perspective 2,6 | 6 |
|  | Field Specialization Elective | 3 |
| PUBL-700 | Readings In Public Policy | 3 |
| PUBL-701 | Graduate Policy Analysis | 3 |
| PUBL-702 | Graduate Decision Analysis | 3 |
| STSO-740 | Science, Technology and Policy | 3 |
| PUBL-703 | Program Evaluation and Research Design | 3 |
| Fifth Year |  |  |
|  | Public Policy Electives |  |
|  | LAS Elective | 3 |
|  | Free Electives | 6 |
| Choose one of the following: |  |  |
| Thesis Research |  |  |
| Graduate Electives, Comprehensive Exam |  |  |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.


## Field specializations

African studies

| ANTH-225 | Globalizing Africa |
| :--- | :--- |
| ANTH-275 | Global Islam |
| ANTH-310 | Popular Cultures in the Global South |
| ANTH-345 | Genocide and Post-conflict Justice |
| ANTH-410 | Global Cities |
| SOCI-210 | African American Culture |
| SOCI-315 | Global Exiles of War and Terror |
| FNRT-323 | Survey of African American Music |
| HIST-245 | American Slavery and Freedom |
| INGS-210/HIST-210 | Culture and Politics in Urban Africa |
| INGS-310/HIST-310 | Global Slavery and Human Trafficking |

## Asian studies

| ANTH-275 | Global Islam |
| :--- | :--- |
| HIST-160 | History of Modern East Asia |
| HIST-252 | The U.S. and Japan |
| HIST-260 | History of Pre-modern China |
| HIST-261 | History of Modern China |
| HIST-266 | History of Modern Japan |
| HIST-351 | History of Pre-modern Japan |
| HIST-365 | The Vietnam War |
| HIST-450 | Conflict in Modern East Asia |
| HIST-462 | Modern Japan in History, Fiction, and Film |
| MLST-465 | East-West Encounters |
| PHIL-311 | Samurai in Word and Image |
| POLS-350 | Langauges in Japanese Society |
| EurOpean studies | East Asian Philosophy |
| ANTH-275 | Politics of East Asia |
| ANTH-340 | Global Islam |
| ANTH-380 | Divided Europe (WI) |
| ENGL-416 | Nationalism and Identity |
| ENGL-416 | Topics in Global Literatures: Irish Literature |
| ENGL-416 | Topics in Global Literatures: Italian Literature |
| HIST-170 | Topics in Global Literatures: Russian Literature |
| HIST-270 | 20th Century Europe |
| HIST-280 | History of Modern France |
| HIST-369 | History of Modern Germany |
| INGS-310/HIST-310 | Histories of Christianity |
| MLFR-351 | Global Slavery and Human Trafficking |
| MLIT-451 | French Film and Hollywood |
| PHIL-201 | German Culture Through Film |
| PHIL-203 | Ilatian Cinema from Neorealism to the New Millennium |
| PHIL-408 | Ancient Philosophy |
| PHIL-409 | Modern Philosophy |
| Critical Social Theory |  |
| Existentialism |  |
| Medieval Philosophy |  |
| 19th Century Philosophy |  |

Global justice, peace and conflict issues

| ANTH-330 | Cultural Images of War (WI) |
| :--- | :--- |
| ANTH-345 | Genocide and Post-conflict Justice |
| HIST-251 | Modern U.S. Foreign Relations |
| HIST-351 | The Vietnam War |
| HIST-410 | Terrorism, Intelligence, and War |
| INST-470 | Science, Technology, and Empire |
| MLSP-352 | Global Slavery and Human Trafficking |
| PHIL-304 | Trauma and Survival in the First Person Narrative |
| PHIL-305 | Philosophy of Law |
| PHIL-403 | Philosophy of Peace |
| POLS-295 | Social and Political Philosophy |
| POLS-325 | Cyberpolitics |
| POLS-440 | International Law and Organizations |
| POLS-445 | War and the State |
| SOCI-250 | Terrorism and Political Violence |
| SOCI-315 | Globalization and Security |
| Indigenous studies |  |


| ANTH-220 | Language and Culture |
| :--- | :--- |
| ANTH-260 | Native North Americans |
| ANTH-265 | Native Americans in Film |
| ANTH-285 | American Indian Languages |
| ANTH-310 | Popular Cultures in the Global South |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-375 | Natuve American Cultural Resources and Rights |
| ANTH-40 | Visual Anthropology |
| ANTH-455/ECON-452/ <br> INGS-455 | Economics of Native America |

## International Business

| ECON-405 | International Trade and Finance |
| :--- | :--- |
| ECON-406 | Global Economic Issues |
| HIST-380 | International Business History |
| INTB-225 | Globalization |
| INTB-300 | Cross-cultural Management |
| INTB-310 | Regional Business Studiues |
| INTB-320 | Global Marketing |
| INTB-489 | Seminar in International Business |
| INTB-550 | Global Entry and Competition Strategies |
| MKTG-230 | Principles of Marketing |

## Latin American studies

| ANTH-235 | Immigration to the U.S. |
| :--- | :--- |
| ANTH-285 | American Indian Languages |
| ANTH-315 | Archaeology of Cities |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-350 | Global Economy and the Grassroots |
| ANTH-410 | Global Cities |
| ENGL-416 | Topics in Global Literatures: Caribbean Literature |
| ENGL-416 | Topics in Global Literatures: Latin American Literature |
| ENGL-416 | Topics in Global Literatures: Latino Experience in Literature |
| INGS-310/HIST-310 | Global Slavery and Human Trafficking |
| MLSP-351 | Gender and Sexuality in Hispanic Studies |
| MLSP-352 | Caribbean Cinema |
| MLSP-353 | Trauma and Survival in the First Person Narrative |
| POLS-335 | Politics in Developing Countries |

## Middle Eastern studies

| ANTH-240 | Muslim Youth Cultures |
| :--- | :--- |
| ANTH-255 | Regional Archaeology: Middle East |
| ANTH-275 | Global Islam |
| ANTH-310 | Archaeology of Cities |
| ANTH-365 | Culture and Politics in the Middle East |
| ENGL-425 | Global Cinema: Iranian Literature and Film |
| POLS-335 | Politics in Developing Countries |

## Sustainable futures

| ANTH-270/INGS-270 | Cuisine, Culture, and Power |
| :--- | :--- |
| ANTH-280 | Sustainable Development |
| ANTH-285 | American Indian Languages |
| ANTH-410 | Global Cities |
| ECON-448 | Development Economies |
| ISTE-348 | Geographic Information Systems |
| ISTE-383 | Introduction to Geospatial Technologies |
| PHIL-308 | Environmental Philosophy |
| POLS-335 | Politics in Developing Countries |
| SOCI-250 | Globalization and Security |
| SOCI-255 | Disaster, Public Health Crisis, and Global Responses |
| SOCI-320 | Population and Society |
| STSO-220 | Environment and Society |
| STSO-330 | Energy and the Environment |
| STSO-341 | Biomedical Issues: Science and Technology |
| STSO-441 | Cyborg Theory: (Re)thinking the Human Experience in the 21st Century |

## Transnational Gender Studies

| ANTH-290 | Language and Sexuality |
| :--- | :--- |
| ANTH-325 | Bodies and Culture |
| ANTH-425 | Global Sexualities |
| ECON-451/SOCI-451/ | Economics of Women and the Family |
| INGS-451 |  |
| ENGL-414 | Topics in Women's and Gender Studies |
| FNRT-206 | Queer Looks |
| MLSP-351 | Gender and Sexuality in Hispanic Studies |
| PHIL-309 | Feminist Theory |
| SOCI-235 | Women, Work, and Culture |
| SOCI-245 | Gender and Health |
| STSO-342 | Gender, Science, and Technology |

## Additional information

## Faculty

Faculty members have distinguished records of research in Latin America, the Caribbean, China, Japan, Korea, West and North Africa, the Middle East, Native North America, and Europe. A number have teaching experience abroad; collaborate with transnational teams on issues of human trafficking, genocide, political violence, environmental sustainability, and global justice; and have achieved international recognition through prestigious grants, fellowships, and publications.

## Career opportunities

Students are well-prepared to pursue careers in government, diplomatic or security service, international business, and not-for-profit initiatives. Graduates also are prepared for competitive graduate programs in fields as diverse as international law, international development, global education, administration, public policy, and the social sciences.

## Journalism, BS

## rit.edu/journalism

## Andrea Hickerson, Department Chairperson (585) 475-6129, aahgpt@rit.edu

## Program overview

The journalism major prepares students to gather, critically analyze, and synthesize verbal and visual information to communicate accurate and clear news stories across multiple media platforms. In addition to writing and reporting, students prepare audio and visual content for dissemination in a variety of media, making them a valuable asset to any future employer specializing in news reporting and factual storytelling.

The major is enhanced by RIT's reputation for using cutting-edge technology, yet is grounded in the traditional reporting and writing skills needed by professional journalists. The major prepares students for a converged digital media world. They learn the conceptual and practical skills demanded by the digital newsroom through a combination of journalism, communication, and applied professional courses, along with a professional core of courses from the colleges of Business, Computing and Information Sciences, and Imaging Arts and Sciences.

## Plan of study

Students develop skills through a core of required communication courses, which cover news writing, news editing, multi-platform journalism, communication theory, mass communications, law and press ethics, and computer-assisted reporting. A professional core of four courses, chosen from the colleges of Business, Computing and Information Sciences, or Imaging Arts and Sciences, introduces students to photojournalism, multimedia, Web development, digital entrepreneurship, and building a Web business. Journalism electives, free electives, and liberal arts courses complete the curriculum.

## Senior project

In a senior capstone course students apply what they've learned to a project similar to one they would encounter in their profession. Students produce a long-form piece of journalism, a website, and a digital portfolio of selected works.

## Cooperative education

Students are required to complete one semester of cooperative education or an internship experience. This experience gives students the opportunity to apply their classroom learning to a professional work environment. Past co-op positions have been at newspapers, including the Democrat and Chronicle, Rochester's daily newspaper. The Office of Career Services and Cooperative Education assists students in identifying and applying to co-op and internship positions as well as permanent placement upon graduation.

## Curriculum

Journalism, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| Choose one of the following: | 3 |  |
| COMM-261 | History of Journalism |  |
| COMM-271 | Introduction to Journalism | 3 |
| COMM-272 | Reporting and Writing I (WI) | 12 |
|  | LAS Perspective 1, 2, 3, 4 | 3 |
|  | First Year LAS Elective | 3 |
|  | Professional Core Course | 3 |
| COMM-273 | Reporting and Writing II | 3 |
|  | First Year Writing Seminar | 0 |
| ACSC-010 | Year One: College Experience | 0 |


| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| Second Year |  |  |
| COMM-301 | Theories of Communication | 3 |
| COMM-274 | News Editing | 3 |
|  | LAS Perspective $5 \ddagger, 6,7 \mathrm{~A}, 7 \mathrm{~B}$ | 12 |
| COMM-263 | Computer Assisted Reporting | 3 |
|  | Professional Core Course | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Third Year |  |  |
| COMM-361 | Reporting in Specialized Fields | 3 |
|  | Professional Core Courses | 6 |
|  | Free Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 9 |
| COMM-362 | Law and Ethics of the Press | 3 |
|  | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| COMM-461 | Multi-platform Journalism | 3 |
|  | Professional Core Course | 3 |
|  | Free Electives | 9 |
|  | LAS Electives | 12 |
| COMM-561 | Senior Project | 3 |
| COMM-497 | Communication Portfolio | 0 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and the lab portion.


## Professional core

| Required courses |  |
| :--- | :--- |
| MAAT-271 | Webpage Production I |
| MAAT-272 | Webpage Production II |
| PHAR-203 | Elements of Photojournalism |
| PHPJ-315 | Non-fiction Multimedia |
| Choose one of the following: |  |
| COMM-489 | Special Topics in Communication: Digital Journalism Incubator |
| MGIS-360 | Building a Web Business |
| MGMT-360 | Digital Entrepreneurship |

## Additional information

## Advisers

Every student is assigned a professional academic adviser and a faculty mentor in the department of communication. The professional adviser assists with course planning and registration; the faculty mentor provides advising about career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level journalism students, are available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective.

## Faculty

Nearly all 18 faculty members in the department of communication hold the highest degrees in their fields. Many have won awards for teaching, and all have been published within their areas of expertise.

## Careers

Journalism majors have a wide range of career options to choose from. It is expected that the market for writers and editors will increase by nearly 20 percent in the next few years, and graduates with experience in new media technologies will have a significant edge. The program also is ideal for those interested in pursuing graduate study in journalism or communication. The department of communication offers an MS degree in communication and media technologies. Please consult RIT's Graduate Bulletin for more information.

## Museum Studies, BS

rit.edu/cla/museumstudies/<br>Tina Olsin Lent, Program Director<br>(585) 475-2460, tnlgsh@rit.edu

## Program overview

The bachelor of science degree in museum studies is an innovative, interdisciplinary, technically-based major that prepares students for careers in museums, archives, photo collections, and libraries.

## Plan of study

The major includes a set of introductory and advanced core courses to familiarize students with the fundamentals of museum studies, including the history, theory, and practice of institutional collecting, conservation, and the technical investigation of art. To broaden and deepen their knowledge, students choose a professional track in management or public history.

## Internship

The major requires students to complete a 200 -hour internship in a cultural institution. This experience gives students the opportunity to apply what they've learned in the classroom to a professional setting and gain valuable work experience before they graduate.

## Professional tracks

The professional tracks (management and public history) include course work that meets the criteria established by professionals in the field and reflects current opinion about necessary skill sets. Since 2000, the International Council of Museums (ICOM) and the Committee on Museum Professional Training (COMPT) have called for revisions in the training of museum professionals that reflect evolving needs for management, leadership, information technology, fundraising, and grant writing skills-all of which are included in the management track. The public history track offers students core courses in learning how to think historically, make a sound historical argument, and present history effectively to a public audience.

## Curriculum

Museum studies (management track), BS degree, typical course
sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MUSE-220 | Introduction to Museums and Collecting | 3 |
| ARTH-135 | History of Western Art: Ancient to Medieval | 3 |
| ARTH-136 | History of Western Art: Renaissance to Modern | 3 |
|  | LAS Perspective 1, 2, 3, 4, 7A | 15 |
| MUSE-221 | Introduction to Public History | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MUSE-358 | Legal and Ethical Issues for Collecting Institutions | 3 |
| MUSE-341 | Museum Education and Interpretation | 3 |
| MUSE-225 | Museum and the Digital Age | 3 |
| MGMT-215 | Organizational Behavior | 3 |
| MGMT-310 | Leadership in Organization | 3 |
|  | LAS Immersion 1 | 3 |
|  | LAS Perspective 5 $\ddagger, 6,7 \mathrm{~B}$ | 10 |
| MUSE-224 | History and Theory of Exhibitions | 3 |
| Third Year |  |  |
| MUSE-355 | Fundraising, Grant Writing, and Marketing for Nonprofit Institutions | 3 |
| MGMT-360 | Digital Entrepreneurship | 3 |
| MUSE-340 | Introduction to Archival Studies | 3 |
| MUSE 354 | Exhibition Design | 3 |
| MUSE 360 | Visitor Engagement and Museum Technologies | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective | 3 |
| MUSE-357 | Collections Management and Museum Administration | 3 |
| MUSE-359 | Cultural Informatics | 3 |
| MUSE-499 | Museum Studies Co-op | 0 |
| Fourth Year |  |  |
| MUSE-489 | Research Methods | 3 |
| MUSE-490 | Senior Thesis | 3 |
|  | Free Electives | 6 |
|  | MUSE Electives | 6 |
|  | LAS Electives | 12 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement

Museum studies (public history track), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MUSE-220 | Introduction to Museums and Collecting | 3 |
| MUSE-221 | Introduction to Public History | 3 |
| HIST-101 | Making History | 3 |
|  | LAS Perspective 1, 2, 3, 4, 6, 7A | 19 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MUSE-225 | Museums and the Digital Age | 3 |
| HIST-125 | Public History, Public Debates | 3 |
|  | LAS Perspective 5, 7B | 6 |
|  | LAS Immersion 1, 2 | 6 |
| MUSE-224 | History and Theory of Exhibitions | 3 |
| MUSE-341 | Museum Education | 3 |
| HIST-324 | Oral History | 3 |
| MUSE-358 | Legal and Ethical Issues | 3 |
| Third Year |  |  |
| MUSE-354 | Exhibition Design | 3 |
| MUSE-355 | Fundraising, Grant Writing, and Marketing | 3 |
| MUSE-359 | Cultural Informatics | 3 |
|  | History Elective | 3 |
| HIST-325 | Museums and History | 3 |
|  | LAS Immersion 3 | 3 |
| MUSE-357 | Collections Management and Museum Administration | 3 |
| MUSE-360 | Visitor Engagement and Technologies | 3 |
|  | LAS Electives | 6 |
| MUSE-499 | Internship | 0 |
| Fourth Year |  |  |
| MUSE-489 | Research Methods | 3 |
| MUSE-490 | Senior Thesis | 3 |
|  | LAS Electives | 18 |
|  | Free Electives | 6 |
| Total Semester Credit Hours |  | 121 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement


## Additional information

## Career opportunities

Upon graduation students are prepared to work in institutions that collect cultural objects, such as museums, historical sites, historical societies, libraries, archives, and corporations. Students are also prepared to further their education in graduate programs in museum studies, art history, informatics, arts management, library and information studies, or an MBA.

## Advisers

Every student is assigned a faculty adviser who provides academic advising and career counseling. All of the faculty members in museum studies hold the highest degrees in their field and all have been published within their areas of expertise.

## Philosophy, BS

## rit.edu/philosophy

## John T. Sanders, Program Director <br> (585) 475-2465, jts@rit.edu

## Program overview

Most of the skills required for student and career success-how to learn, how to apply that learning in professional and personal environments, and how to communicate that knowledge-are central to philosophical training. Philosophy students are taught to evaluate complex problems, identify and examine underlying principles, investigate issues from diverse perspectives, and communicate clearly in both written and oral forms.

The philosophy major provides a thorough grounding in three main areas of philosophy (history of philosophy, ethics, and logical argumentation/theory of knowledge), as well as a four-course specialization within philosophy. Students combine philosophy with a core competence (or even a double major) in another discipline, encouraging them to creatively pursue cross-disciplinary relationships. The major concludes with a capstone senior thesis.

## Plan of study

Students develop skills through a core of philosophy courses which cover the history of philosophy, ethics, and logical argumentation/theory of knowledge. Students choose four courses in an area of philosophical specialization. Examples of approved areas include: philosophy of mind and cognitive science, philosophy of science and technology, applied ethics, philosophy of the social sciences and political philosophy, philosophy of art and aesthetics, history of philosophy, and philosophy of law. Students also complete a professional core of courses designed to provide foundational knowledge in a professional/technical discipline outside of philosophy, which complements their studies. Philosophy electives, general electives, and liberal arts courses complete the curriculum.

## Specializations

## Philosophy of mind and cognitive science

This specialization covers the philosophical issues involved in studying intelligence, cognition, identity, consciousness, rationality, creativity and emotion, especially as such concepts and categories are invoked by computer and cognitive scientists, and as they are applied in relation to natural and artificial systems.

## Philosophy of science and technology

This specialization examines the concepts, methodologies, and philosophical implications of science and technology, and explores the underlying theories, practices, and consequences of science and technology and their role in shaping societies and their values.

## Applied ethics

This specialization examines the ethical underpinnings of different professions as well as the ethical presuppositions and implications of technology, engineering, science, management, and other disciplines. Attention is also given to ethics education within the professions and to the role professional ethicists can play in different professional and organizational settings.

## Philosophy of social sciences and political philosophy

This specialization examines philosophical issues arising from social and political life as well as the disciplines that study them.

## Philosophy of art and aesthetics

This specialization examines how different philosophical frameworks conceive of the various arts and crafts and the forms of creative experience and production with which they are engaged; explores the relationship between aesthetic perception and other forms of experience and judgment, between art and society, between art and ethics, and between art and technology.

## History of philosophy

This specialization explores the development and connection of philosophical ideas, concepts, and movements throughout time through an in-depth analysis of major transformative moments and figures, and examines how philosophical positions result from an ongoing conversation with previous thinkers.

## Philosophy and law

This specialization prepares students for law school and other advanced studies by focusing on the skills and topics important to the study of the law. The courses provide an examination of the theoretical and ethical foundations of the law and an understanding of the logical and epistemological skills useful in evaluating and constructing legal arguments. In addition, a grounding in these topics and skills is valuable in a range of professions outside the legal field.

## Senior thesis

Building on their philosophy specialization and their professional core, students investigate a particular question in depth through research. Students choose a faculty member to serve as a primary adviser and to help identify a subject topic. The finished thesis is discussed and examined by a committee including two other faculty members.

## Curriculum

Philosophy, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PHIL-201 | Ancient Philosophy | 3 |
|  | Professional/Technical Core Courses | 6 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 7A | 9 |
| PHIL-203 | Modern Philosophy | 3 |
| PHIL-205 | Symbolic Logic | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PHIL-202 | Foundations of Moral Philosophy | 3 |
|  | Program Electives | 9 |
|  | Professional/Technical Core Courses | 6 |
|  | LAS Perspective 3, 4, 5才, 7B | 12 |
| Third Year |  |  |
|  | Program Electives | 6 |
|  | Free Electives | 6 |
|  | Professional/Technical Core Course | 3 |
|  | LAS Electives | 6 |
|  | LAS Perspective 6 | 3 |
|  | Specialization Course | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
|  | Specialization Courses | 9 |
| PHIL-416 | Seminar in Philosophy | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Electives | 9 |
| PHIL-595 | Senior Thesis in Philosophy | 3 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.


## Specializations

| Philosophy of mind and cognitive science |
| :--- |
| COURSE  <br> Electives  <br> Choose four of the following  <br> PHIL-315 Responsible Knowing <br> PHIL-404 Philosophy of Mind <br> PHIL-47 Philosophy of Action <br> PHIL-414 Philosophy of Language <br> PHIL-401 Great Thinkers* <br> PHIL-416 Seminar in Philosophy* <br> PHIL-449 Special Topics* |

Philosophy of science and technology

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose four of the following |  |
| PHIL-315 | Responsible Knowing |
| PHIL-307 | Philosophy of Technology |
| PHIL-310 | Theories of Language |
| PHIL-314 | Philosophy of Vision and Imaging |
| PHIL-402 | Philosophy of Science |
| PHIL-401 | Great Thinkers* |
| PHIL-416 | Seminar in Philosophy* |
| PHIL-449 | Special Topics* |

## Applied ethics

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose four of the following |  |
| PHIL-304 | Philosophy of Law |
| PHIL-305 | Philosophy of Peace |
| PHIL-306 | Professional Ethics |
| PHIL-308 | Environmental Philosophy |
| PHIL-315 | Responsible Knowing |
| PHIL-401 | Great Thinkers* |
| PHIL-416 | Seminar in Philosophy* |
| PHIL-449 | Special Topics* |

## Philosophy of social sciences and political philosophy

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose four of the following |  |
| PHIL-304 | Philosophy of Law |
| PHIL-305 | Philosophy of Peace |
| PHIL-308 | Environmental Philosophy |
| PHIL-309 | Feminist Theory |
| PHIL-315 | Responsible Knowing |
| PHIL-403 | Social and Political Philosophy |
| PHIL-405 | Philosophy of Social Sciences |
| PHIL-401 | Great Thinkers* |
| PHIL-416 | Seminar in Philosophy* |
| PHIL 449 | Special Topics* |

## Philosophy of art and aesthetics

## course

## Electives

| Choose four of the following |  |
| :--- | :--- |
| PHIL-303 | Philosophy pf Art/Aesthetics |
| PHIL-313 | Philosophy of Film |
| PHIL-314 | Philosophy of Vision and Imaging |
| PHIL-413 | Philosophy and Literary Theory |
| PHIL-401 | Great Thinkers* |
| PHIL-416 | Seminar in Philosophy* |
| PHIL-417 | Continental European Philosophy |
| PHIL-449 | Special Topics* |

## History of philosophy

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose four of the following |  |
| PHIL-301 | Philosophy of Religion |
| PHIL-311 | East Asian Philosophy |
| PHIL-312 | American Philosophy |
| PHIL-401 | Great Thinkers* |
| PHIL-406 | Contemporary Philosophy |
| PHIL-408 | Critical Social Theory |
| PHIL-409 | Existentialism |
| PHIL-410 | Medieval Philosophy |
| PHIL-412 | Nineteenth Century Philosophy |
| PHIL-416 | Seminar in Philosophy* |
| PHIL-417 | Continental European Philosophy |
| PHIL-449 | Special Topics* |

## Philosophy and law

course
Electives

| Choose four of the following |  |
| :--- | :--- |
| PHIL-304 | Philosophy of Law |
| PHIL-306 | Professional Ethics |
| PHIL-310 | Theories of Knowledge |
| PHIL 403 | Social and Political Philosophy |
| PHIL-401 | Great Thinkers* |
| PHIL-416 | Seminar in Philosophy* |
| PHIL-449 | Special Topics* |

* These courses are eligible only when their topic is relevant. Permission to include these courses in a specialization must be approved by the department.


## Additional information

## Advising

Each student is assigned a faculty adviser who assists in planning course schedules, professional/technical core requirements, and a philosophy specialization area.

## Faculty

The philosophy department's faculty are outstanding teachers. They are active scholars, publishing regularly in journals, editing and authoring books, and organizing and delivering papers at conferences at RIT and elsewhere in the United States and abroad.

## Political Science, BS

rit.edu/cla/politicalscience<br>Sean Sutton, Department Chairperson (585) 475-4620, sdsgsm@rit.edu

## Program overview

The bachelor of science degree in political science tightly integrates the traditional fields of American government and international relations in order to prepare students for a life and career in an increasingly globalized world. Moreover, the major includes three tracks for students to choose from: politics and life sciences, digital politics and organization, and political institutions. Through these tracks students study the influence of recent advances in biology and biotechnology on how we understand ourselves as human beings and citizens, or the use of information technology for political organization and communication. There are few undergraduate political science majors in the country that so fully incorporate both these fields into their curricula, including the opportunity to take courses from the biology and information technology departments as part of their program requirements. The major prepares principled leaders and responsible citizens for fruitful careers in the public and private sectors.

## Plan of study

## Core courses

The major consists of four core courses designed to introduce students to the general themes of political science. The major culminates in a capstone course, which ties together the themes of the program through a seminar and significant writing project.

## Program tracks

The overarching goal of the political science major is to prepare students for the challenges of a life and a career in a world that is increasingly globalized, where the application of biotechnology and biomedicine become common, and where social computing shape and influence democratic government and the wider community. Students are required to choose one track for in depth study on the political impact of modern biology and biotechnology, the changing role of political institutions in a globalized world, or the development and implementation of technologies that increasingly influence political organization and communication.

## Politcal science electives

Students are required to take seven political science electives from the department's American politics and international relations/comparative government offerings with a minimum of three courses from each area. This requirement recognizes the increasing interdependence of domestic and international politics in this era of globalization. Students focus their studies on American politics, international relations, and comparative politics to provide an integrated national and global political perspective. For a complete list of electives, please consult an academic adviser.

## Curriculum

Political science, BS degree, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| POLS-110 American Politics | 3 |
| First Year LAS Elective | 3 |
| LAS Perspectives 1, 2, 6, 7A, 7B | 15 |
| POLS-120 Introduction to International Relations | 3 |
| Political Science Elective | 3 |
| First Year Writing Seminar | 3 |
| ACSC-010 Year One: College Experience | 0 |
| Wellness Education* | 0 |
| Second Year |  |
| POLS-290 Politics and the Life Sciences | 3 |
| Political Science Electives | 6 |
| LAS Perspectives 3, 4, 5才 | 9 |
| LAS Immersion 1, 2 | 6 |
| POLS-295 Cyberpolitics | 3 |
| Free Elective | 3 |
| Third Year |  |
| Political Science Track Courses | 6 |
| Political Science Electives | 6 |
| Free Electives | 6 |
| LAS Immersion 3 | 3 |
| LAS Electives | 9 |
| Fourth Year |  |
| POLS-530 Political Science Capstone (WI) | 3 |
| Political Science Track Course | 3 |
| Political Science Electives | 6 |
| LAS Electives | 12 |
| Free Electives | 6 |
| Total Semester Credit Hours | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.


## Program tracks

Politics and the life sciences

| BIOL-201 | Cell Biology and Molecular Biology |
| :--- | :--- |
| BIOL-265 | Evolutionary Biology |
| BIOL-293 | Evolution, Creationism and Intelligent Design |
| BIOL-321 | Genetics |
| POLS-215 | Technology, Ethics, and Global Policy |
| POLS-410 | Environmental Ethics and Political Ecology |
| POLS-415 | Evolutionary International Relations |
| POLS-420 | Evolution and Law |
| STSO-421 | Primate Politics |

## Digital politics and organization

| COMM-343 | Technology Mediated Communication |
| :--- | :--- |
| ISTE-10 | Web I |
| ISTE-230 | Introduction to Database and Data Modeling |
| ISTE-240 | Web II |
| ISTE-305 | Rapid Online Presence |
| ISTE-330 | Database Connectivity and Access |
| MGIS-320 | Database Management Systems |
| MGIS-425 | Database Systems Development |
| POLS-305 | Political Parties and Voting |
| POLS-370 | Cyberwar, Robots, and the Future of Conflict |

Political institutions

| POLS-210 | Comparative Politics |
| :--- | :--- |
| POLS-220 | Global Political Economy |
| POLS-310 | The Congress |
| POLS-315 | The American Presidency |
| POLS-325 | International Law and Organizations |
| POLS-425 | Constitutional Law |

## Additional information

## Double majors

Students may pursue a double major in political science and a secondary area. Students have combined political science with a double major in diverse fields such as computer science, criminal justice, economics, and philosophy.

## Accelerated 4+1 MBA option

An accelerated $4+1$ option is available for students who wish to earn a BS in political science and an MBA. The option is offered in conjunction with Saunders College of Business and allows students to obtain both degrees in five years of study.

## Experiential education

Beginning in the third year, students may participate in optional learning experiences that may include an internship and/or cooperative education (co-op), which provides students with hands-on experience in a variety of environments, from government agencies, non-profits, nongovernmental agencies, to political campaigns. Through these experiences, students gain employment experience as well as the opportunity to further develop skills in their chosen profession.

## Study abroad

A study abroad opportunity enhances student's understanding of global politics and culture. Students may study full time at a variety of host schools and are able to select courses in their major as well as liberal arts courses. To learn more about the Study Abroad program, please visit studyabroad.rit.edu.

## Career opportunities

A degree in political science prepares students for careers in law; local, state, and national government; foreign service; business; government relations; and other areas of the private and public sector in which knowledge of the political process and the strengths and limitations of modern democracy and modern society is appropriate. In addition, students are well-prepared for graduate study in a variety of fields, ranging from business and law to political science and public policy.

## Advising

Each student is assigned a faculty adviser who assists with course registration, scheduling, course selection, academic concerns, and career counseling.

## Faculty

The political science faculty have extensive experience in the classroom and are well-published in their fields of expertise. Faculty members have broad backgrounds in addition to their political science training, including criminal justice, literature, philosophy, political campaigning, political polling, and public policy. Several members have worked for the United Nations and in Washington, D.C., think tanks.

## Psychology, BS

## rit.edu/cla/psychology <br> Andrew M. Herbert, Department Chairperson <br> (585) 475-4554, amhgss@rit.edu

## Program overview

The bachelor of science degree in psychology provides students with a strong grounding in the discipline of psychology, integrated with a technological focus. Upon entry, students are assigned a faculty adviser to mentor their progress through the program. Curriculum planning and career discussions occur with each student's faculty mentor.

## Plan of study

The program is unique and encompasses four key elements: a choice of five upper-level interdisciplinary tracks, a solid grounding in experimental methodology and statistics, the capstone sequence of courses, and a cooperative education requirement.

## Interdisciplinary tracks

Students choose two of the following interdisciplinary tracks: biopsychology, clinical psychology, cognitive psychology, social psychology, or visual perception. Current research and technology are integrated into these tracks to produce a focused and career-oriented psychology program. The tracks represent active fields of research in psychology, and students receive training that provides a strong foundation for graduate school and employment in related fields.
The biopsychology track studies brain function as the basis of behavior. It focuses on topics such as lateralization, cortical specialization, brain injury, and psychopharmacology. Psychophysiological measures (including EEG, EMG, and skin conductance) are covered in depth along with the relationship between brain chemistry and behavior. Students perform laboratory work on the brain and its relationship to attention, memory, language, perception, and psychological disorders.

The clinical psychology track emphasizes the empirical foundations of clinical and applied mental health care. Empirically based methods are introduced to understand, assess and treat human behavioral and psychological problems. This track prepares students for graduate programs in mental health.

The cognitive psychology track uses an interdisciplinary approach to study processes such as judgment, decision making, memory, learning, language, problem solving, and attention. The track explores the interaction of human factors, psychology, and technology.

The social psychology track introduces students to the complexity of human behavior in groups. Behavior in pairs, small groups and larger aggregates is covered in different classes. Like the other tracks, students learn by doing studies and reading relevant literature.

The visual perception track focuses on human perceptual systems. Vision is presented as the integration of anatomy, physiology, and behavior. Students learn psychophysical methods. The track covers cutting-edge topics such as color perception, perception of 2D features, 3D perception and our interactions with objects, and neural plasticity.

## Cooperative education

The program requires students to complete a cooperative education experience for one semester. This is normally done in the summer after the junior year, but can be done in any semester after the second year in the program. The co-op experience is in a psychology-related field and does not carry academic credit.

## Curriculum

Psychology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PSYC-101 | Introduction to Psychology | 3 |
| STAT-145 | LAS Perspective 7A: Introduction to Statistics I | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1,2 | 6 |
|  | Free Elective | 3 |
|  | Breadth Course | 3 |
|  | Pre-track Course | 3 |
|  | First Year Writing Seminar | 3 |
| STAT-146 | LAS Perspective 7B: Introduction to Statistics II | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PSYC-250 | Research Methods I (WI) | 3 |
|  | Pre-track Courses | 6 |
|  | Breadth Course | 3 |
|  | LAS Perspective 3,4 | 6 |
| MEDG-101, 103 | LAS Perspective 5: Human Biology I and Lab | 4 |
| PSYC-251 | Research Methods II (WI) | 3 |
| MEDG-102, 104 | LAS Perspective 6: Human Biology II and Lab | 4 |
|  | LAS Elective | 3 |
| Third Year |  |  |
|  | Breadth Course | 3 |
|  | Track Courses | 9 |
|  | LAS Immersion 1, 2, 3 | 9 |
|  | LAS Electives | 9 |
| Fourth Year |  |  |
|  | Psychology Capstone $\ddagger$ | 6 |
|  | Track Course | 3 |
|  | LAS Electives | 9 |
|  | Free Electives | 12 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students may choose one of the following courses to fulfill the psychology capstone: Philosophy of Science (PSYC-402) (WI), PSYC-501, or PYSC-510 (WI).


## Additional information

## Career opportunities

The unique requirements of this major ensure that each student is wellprepared for advanced study in psychology or a related field, employment in industry or in human service agencies, or other career opportunities.

## Public Policy, BS

rit.edu/cla/publicpolicy

## Sandra Rothenberg, Department Chairperson <br> (585) 475-6032, srothenberg@saunders.rit.edu

## Program overview

Policy plays a critical role in addressing the many environmental, social, economic and technological challenges facing society. The public policy major provides you with the skills and knowledge needed to analyze and advocate for policy change in both private and public organizations.

## Plan of study

In the major, you will develop the skills needed to fully comprehend the impact of public policy on an increasingly technology-based society. The curriculum is designed to train you to analyze policy in terms of complex, interconnected systems. You can integrate your interests in government, science, technology, economics, and other social science fields by taking courses with a broad disciplinary range.

The major combines an understanding of these fields with the analytical tools needed to study the impact of public policy on society. Courses help you attain a deep understanding of the ethical, political, and social dimensions of policy issues and help you develop strong policy analysis skills. The major has many key features, including:

Interdisciplinary-Public policy core courses ensure the major provides integration of diverse disciplines and enables students to integrate diverse subjects and apply them to the analysis of public policy.

Integrated qualitative and quantitative skills-The major balances both quantitative and qualitative approaches to the analysis of public policy so that students are able to achieve a full systems-level grasp of policy issues.

Customizable concentrations-Through customizable concentrations students are trained in the vernacular, methodologies, and problem-solving approaches of the sciences and technologies relevant to their chosen are of policy study, and develop a well-grounded familiarity in that area.

Solid grounding in liberal arts-While students acquire quantitative and qualitative training, by the end of their academic career they also complete liberal arts courses with a broad disciplinary range. It is this grounding in humanistic values, combined with technology and science, that makes the major both balanced and unique.

Applied experience-The major provides opportunities for optional cooperative education experiences after the student's third year of study. Students work directly with policy analysts and policymakers in legislative offices, nonprofit organizations, special interest groups, industry organizations, or corporate public affairs departments and gain paid professional experience in their field. In their senior year, students work closely with RIT faculty on research as part of a capstone senior project, which provides an applied research or consulting experience that uses many of the skills developed throughout the program.

## Concentrations

Student must complete a five course concentration in one of the following areas: biotechnology policy, computer crime policy, computer software policy, energy policy, engineering policy, environmental policy, or information and telecommunications policy. With the help of a faculty adviser, students can customize a concentration based on their interests and professional aspirations. Students apply skills acquired in general public policy courses to specific policy areas. Many concentration courses, including those that provide a firm grounding in science and technology, are offered through other majors and colleges of the university. This gives students an opportunity to interact and study with researchers and faculty from a broad range of disciplines.

## Curriculum

Public policy, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PUBL-101 | Foundations of Public Policy | 3 |
| ECON-101 | Microeconomics | 3 |
|  | LAS Perspective 1, 2, 5¥, 7A§ | 12 |
|  | First Year LAS Elective | 3 |
| STSO-201 | Science, Technology, and Policy | 3 |
| ECON-201 | Macroeconomics | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PUBL-201 | Ethics, Values, and Public Policy | 3 |
| STSO-220 | Environment and Society | 3 |
| STAT-145 | LAS Perspective 7B: Statistics 1 | 3 |
|  | LAS Perspective 3, 4, 6 | 9 |
|  | Free Electives | 6 |
| PUBL-210 | Qualitative Methods and Analysis | 3 |
|  | Concentration Course | 3 |
| Third Year |  |  |
| PUBL-301 | Public Policy Analysis | 3 |
|  | LAS Immersion 1, 2, 3 | 9 |
|  | Free Electives | 6 |
|  | LAS Elective | 3 |
| PUBL-302 | Decision Analysis | 3 |
| POLS-455 | Comparative Public Policy | 3 |
|  | Concentration Course | 3 |
| Fourth Year |  |  |
| PUBL-500 | Senior Project (WI) | 3 |
|  | Concentration Courses | 9 |
|  | Free Electives | 6 |
|  | LAS Electives | 9 |
| PUBL-510 | Technology Innovation and Public Policy | 3 |

Total Semester Credit Hours ..... 121

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement
§ Students choose one of the following calculus options Elementary Calculus (MATH-161) or Projectbased Calculus I (MATH-181)


## Concentrations

Biotechnology policy

| STSO-240 | Social Consequences of Technology |
| :--- | :--- |
| STSO-421 | Environmental Policy |
| BIOL-101 | General Biology I |
| BIOL-102 | General Biology II |
| MEDG-106 | Microbiology in Health and Disease |

## Computer crime policy

| PUBL-520 | Information and Communications Policy |
| :--- | :--- |
| STSO-240 | Social Consequences of Technology |
| CRIM-110 | Introduction to Criminal Justice |
| CRIM-210 | Technology in Criminal Justice |
| CRIM-290 | Computer Crime |
| NSSA-101 | NSSA Themes |

## Computer software policy

| PUBL-520 | Information and Communications Policy |
| :--- | :--- |
| STSO-240 | Social Consequences of Technology |
| MATH-190 | Discrete Mathematics for Computing |
| CSCI-141 | Computer Science I |
| CSCI-142 | Computer Science II |
| SWEN-261 | Intoduction to Software Engineering |

## Energy policy

| STSO-330 | Energy and the Environment |
| :--- | :--- |
| STSO-550 | Sustainable Communities |
| ECON-520 | Environmental Economics |
| ECON-421 | Natural Resource Economics |
| PUBL-530 | Energy Policy |

## Engineering policy

| EEEE-120 | Digital Systems I |
| :--- | :--- |
| EEEE-220 | Digital Systems II |
| EEEE-281 | Circuits I |
| EEEE-381 | Electronics I with Lab |
| ISEE-345 | Engineering Economy |
| MECE-104 | Engineering Design Tools |
| MECE-103 | Statics |
| MECE-110 | Thermodynamics I |
| MECE-210 | Thermal Mechanics |
| MECE-305 | Fluid Mechanics |
| MECE-352 | Materials Science with Applications |
| PHYS-211 | Thermodynamics II |
| PHYS-212 | University Physics I |
| Environmental policy | University Physics II |
| STSO-220 | Environment and Society |
| STSO-422 | Great Lakes |
| STSO-330 | Energy and the Environment |
| STSO-421 | Environmental Policy |
| STSO-325 | History of the Environmental Sciences |
| STSO-521 | Biodiversity and Society |
| PHIL-308 | Environmental Philosophy |
| ECON-421 | Natural Resource Economics |
| ESHS-150 | Principles of Environmental Sustainability, Health and Safety |
| ESHS-310 | Solid and Hazardous Waste Management |
| ESHS-480 | Environmental Health and Safety Law |
| BIOL-211 | Invertebrate Zoology |
| CHMG-142 | Vertebrate Zoology |
| CHMG-146 | General and Analytic Chemistry II |
| CHMO-231 | Organic Chemistry |

Information and communications policy

| MGMT-215 | Organizational Behavior |
| :--- | :--- |
| MGMT-420 | Managing Innovation and Technology |
| MGIS-120 | Business Computer Applications |
| MGIS-201 | Business Information Systems Processes |
| STSO-240 | Social Consequences of Technology |
| STSO-550 | Sustainable Communities |
| PUBL-510 | Technological Innovation and Public Policy |
| PUBL-520 | Information and Communications Policy |
| COMM-101 | Human Communication |
| COMM-202 | Mass Communications |
| COMM-362 | Law and Ethics of the Press |
| ENVS-250 | Applications of Geographic Information Systems |
| ISTE-105 | Web Foundations |
| ISTE-120 | Computational Problem Solving in the Information Domain I |
| ISTE-121 | Computational Problem Solving in the Information Domain II |

## Accelerated dual degree option

Students have the option of completing a five-year, accelerated dual degree leading to a BS in public policy and an MS in science, technology, and public policy. The BS/MS option provides graduates with a considerable advantage in many policy-related careers.

Public policy, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| PUBL-101 | Foundations of Public Policy | 3 |
| ECON-101 | Microeconomics | 3 |
|  | LAS Perspective $\ddagger \ddagger, 7 \mathrm{~A}$ | 6 |
|  | LAS Perspective 1,2 | 6 |
|  | First Year LAS Elective | 3 |
| STSO-201 | Science, Technology, and Policy | 3 |
| ECON-201 | Macroeconomics | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| PUBL-201 | Values and Public Policy | 3 |
| STSO-220 | Environment and Society | 3 |
| STAT-145 | LAS Perspective 7B: Statistics | 3 |
|  | LAS Perspective 3, 4, 5 | 9 |
|  | Free Electives | 6 |
| PUBL-210 | Qualitative Methods and Analysis | 3 |
|  | Concentration Course | 3 |


| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| Third Year |  |
| PUBL-301 Public Policy Analysis | 3 |
| LAS Immersion 1, 2 | 6 |
| Free Electives | 6 |
| LAS Elective | 3 |
| PUBL-302 Decision Analysis | 3 |
| POLS-455 Comparative Public Policy | 3 |
| Concentration Courses | 6 |
| Fourth Year |  |
| PUBL-500 Senior Project (WI) | 3 |
| LAS Immersion 3 | 3 |
| Concentration Courses | 6 |
| Free Electives | 6 |
| LAS Electives | 9 |
| PUBL-510 Technology Innovation and Public Policy | 3 |
| PUBL-700 Readings in Public Policy | 3 |
| STSO-710 Science and Technology Policy Seminar | 3 |
| Fifth Year |  |
| PUBL-701 Graduate Policy Analysis | 3 |
| PUBL-703 Program Evaluation and Research Design | 3 |
| Graduate Electives | 9 |
| PUBL-702 Graduate Decision Analysis | 3 |
| Choose one of the following: | 6 |
| PUBL-799 Thesis |  |
| Comprehensive Exam§ |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.
§ Students who choose to complete the comprehensive exam will take an additional two graduate electives.


## Additional information

## Cooperative education

Students may complete a co-op or internship within the private, public, or nonprofit sectors. The co-op experience makes our students attractive to a wide range of agencies, businesses, and organizations.

## Employment opportunities

Exciting career opportunities await professionals who can integrate an understanding of science and technology with public policy decision making. Graduates are uniquely positioned to take advantage of the growing job market in public policy, with career options in a range of fields within the private, government, and nonprofit sectors.

## Faculty

Faculty have extensive experience in the classroom and as practitioners in their respective fields. In addition to public policy, faculty members have a broad range of backgrounds, including physics, engineering, law, environmental science, energy management, and information technology.

## Sociology and Anthropology, BS

rit.edu/cla/socanthro<br>Christine Kray, Program Co-Director<br>(585) 475-4686, cakgss@rit.edu<br>Kijana Crawford, Program Co-Director<br>(585) 475-2943, drcgss@rit.edu<br>\section*{Program overview}

The sociology and anthropology major is dedicated to understanding and appreciating social and cultural complexity and diversity across the globe and through time. Students are exposed to critical perspectives, theories, and research skills that are necessary to engage complex global and local issues that crosscut the economy, politics, society, gender, ethnicity, and culture. Understanding societies past and present better prepares us to face the challenges of a rapidly changing world and to assume positions of leadership that promote vision and equity.

## Plan of study

This integrated, interdisciplinary degree program explores the common scholarly roots and creative differences of sociology and anthropology, through which students gain a synergistic set of perspectives and skills that prepare them for social analysis in the widest array of social and cultural settings. Students develop a specialization by choosing one of five tracks: archaeology, cultural anthropology, sociology, urban studies, or thematic.

Graduates pursue careers in medicine and public health, law, business, international development, the not-for-profit sector, urban planning, architecture, social work, education, and government, among other possibilities.

## Cooperative education and field experience

Students apply their classroom knowledge with opportunities for handson learning through cooperative education assignments, internships, archaeological, ethnographic, or linguistic fieldwork, laboratory analysis, and study abroad.

## Curriculum

## Sociology and anthropology (archaeology track), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar | 3 |
| ANTH-103 | Archaeology and the Human Past | 3 |
| Choose two of the following courses: |  | 6 |
| ANTH-102 | Cultural Anthropology |  |
| SOCI-102 | Foundations of Sociology |  |
| SOCI-103 | Urban Experience |  |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3, 4, 5 $\ddagger$ | 15 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ANTH/SOCl-201 | Ethnographic Imagination: Writing About Society and Culture (WI) | 3 |
| ANTH/SOCl-301 | Social and Cultural Theory | 3 |
| ANTH/SOCl-302 | Qualitative Research | 3 |
| ANTH-215 | Field Methods in Archaeology | 3 |
|  | Track Elective§ | 3 |
| ANTH-250 | Themes in Archaeological Research | 3 |
|  | LAS Perspective 6, 7A, 7B | 9 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
| ANTH/SOCl-303 | Quantitative Research | 3 |
| ANTH-255 | Regional Archaeology | 3 |
|  | Track Electives§ | 15 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective | 3 |
| Choose one of the following: |  |  |
| ANTH-498 | Practicum | 0 |
| ANTH-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| Choose one of the following: |  | 3 |
| ANTH-501 | Senior Research Project |  |
| ANTH-502 | Scholar's Thesis I |  |
| Choose one of the following: |  | 3 |
| Track Elective§ |  |  |
| ANTH-503 | Scholar's Thesis II |  |
|  | Free Electives | 6 |
|  | LAS Electives | 18 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.
§ Students choose from among the following archaeology track electives: Archaeology and Cultural Imagination (ANTH-230), Native North Americans (ANTH-260), People Before Cities (ANTH312), Archaeology of Cities (ANTH-315), Historic Archaeology (ANTH-355), Humans and their Environment (ANTH-360), Islamic Culture and the Middle East (ANTH-365), Native American Repatriation (ANTH-375), Archaeological Science (ANTH-415), Exploring Ancient Technology (ANTH-420), Garbage Archaeology (ANTH-435), Applications Geographic Information System (ENVS-250).

Sociology and anthropology (cultural anthropology track), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| ANTH-102 | Cultural Anthropology | 3 |
| Choose two of the following courses: |  | 6 |
| ANTH-103 | Archaeology and the Human Past |  |
| SOCI-102 | Foundations of Sociology |  |
| SOCI-103 | Urban Experience |  |
|  | LAS Perspective 1, 2, 3, 4, 5才 | 15 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ANTH/SOCI-201 | Ethnographic Imagination: Writing About Society and Culture (WI) | 3 |
| ANTH/SOCI-301 | Social and Cultural Theory | 3 |
| ANTH/SOCI-302 | Qualitative Research | 3 |
|  | Track Electives§ | 9 |
|  | LAS Perspective 6, 7A, 7B | 9 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
| ANTH/SOCI-303 | Quantitative Research | 3 |
|  | Track Electives§ | 18 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective | 3 |
| Choose one of the following: |  |  |
| ANTH-498 | Practicum | 0 |
| ANTH-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| Choose one of the following: |  | 3 |
| ANTH-501 Senior Research Project |  |  |
| ANTH-502 | Scholar's Thesis I |  |
| Choose one of the following: |  | 3 |
| Track Elective§ |  |  |
| ANTH-503 | Scholar's Thesis II |  |
|  | Free Electives | 6 |
|  | LAS Electives | 18 |

Total Semester Credit Hours $\mathbf{1 2 0}$

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement § Students choose from among the following cultural anthropology track electives: Culture and Globalization (ANTH-210), Language and Culture (ANTH-220), Globalizing Africa (ANTH-225), Immigration to the U.S. (ANTH-235), Muslim Youth Cultures (ANTH-240), Ritual and Performance (ANTH245), Native North Americans (ANTH-260), Native Americans in Film (ANTH-265), Cuisine, Culture, and Power (ANTH-270/INGS-270), Global Islam (ANTH-275), Sustainable Development (ANTH-280), Religion and Culture (ANTH-285), Language and Sexuality (ANTH-290), Comparative and Historical Linguistics (ANTH-305), African Popular Cultures (ANTH-310), Bodies and Culture (ANTH-325), Cultural Images of War (ANTH-330), Culture and Politics in Latin America (ANTH-335), Divided Europe (ANTH-340), Genocide and Post-Conflict Justice (ANTH-345), The Global Economy and the Grassroots (ANTH-350), Media and Globalization (ANTH-370), Native American Repatriation (ANTH-375), Nationalism and Identity (ANTH-380), Anthropology and History (ANTH-385), Marxist Perspectives (ANTH-390), Global Cities (ANTH-410), Global Sexualities (ANTH-425), Visual Anthropology (ANTH-430).
Sociology and anthropology (sociology track), BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS


## First Year

|  | First Year Writing Seminar | 3 |
| :--- | :--- | ---: |
| Choose two of the following courses: | 6 |  |
| ANTH-102 | Cultural Anthropology |  |
| ANTH-103 | Archaeology and the Human Past |  |
| SOCI-102 | Foundations of Sociology | 3 |
| SOCl-103 | Urban Experience | 15 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective $1,2,3,4,5 \ddagger$ | 0 |
|  | Track Elective§ | 0 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education |  |


| Second Year |  | 3 |
| :--- | :--- | :---: |
| ANTH/SOCI-201 | Ethnographic Imagination: Writing About Society <br> and Culture (WI) | 3 |


| ANTH/SOCl-301 | Social and Cultural Theory | 3 |
| :--- | :--- | :--- |


| ANTH/SOCI-302 | Qualitative Research | 3 |
| :--- | :--- | :--- |
| SOCI-225 | Social Inequality | 3 |


| SOCI-235 | Social Inequality | 3 |
| :--- | :--- | :--- |


| SOCI-220 | Minority Group Relations | 3 |
| :--- | :--- | :--- |
|  | LAS Perspective 6,7A, 7B | 9 |
|  | LAS Immersion 1 | 3 |


| Third Year |  |  |
| :--- | :--- | ---: |
| ANTH/SOCl-303 | Quantitative Research | 3 |
|  | Track Electives§ | 18 |
|  | LAS Immersion 2, | 6 |
| Choose one of the following: | LAS Elective | 3 |
| SOCl-498 |  | Practicum |
| SOCl-499 | Cooperative Education | 0 |


| Fourth Year |  |
| :--- | ---: |
| Choose one of the following: |  |
| SOCl-501 | Senior Research Project |
| SOCl-502 | Scholar's Thesis I |
| Choose one of the following: | 3 |
| SOCl-503 |  |
| Track Elective§ |  |
| Scholar's Thesis II | 18 |
|  | LAS Electives |

Total Semester Credit Hours ..... 120
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 - or 4 -credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.
§ Students choose from among the following sociology track electives: Urban Experience (SOCI-103), African American Culture (SOCI-210), Changing Family (SOCI-215), Sociology of Work (SOCI-230), Deaf Culture in America (SOCI-240 ), Gender and Health (SOCI-245), Globalization and Security (SOCI-250), Disaster, Public Health Crises, and Global Responses (SOCI-255), U.S. Housing Policy (SOCI-310), Global Exiles of War and Terror (SOCI-315), Population and Society (SOCl-320), Urban Poverty (SOCI-345), Socia Change (SOCl-350), Marxist Perspectives (SOCl-390).

Sociology and anthropology (urban studies track), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | First Year Writing Seminar | 3 |
| Choose two of the following courses: 6 |  |  |
| ANTH-102 | Cultural Anthropology |  |
| ANTH-103 | Archaeology and the Human Past |  |
| SOCI-102 | Foundations of Sociology |  |
| SOCI-103 | Urban Experience |  |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3, 4, 5才 | 15 |
|  | Track Elective§ | 3 |
|  | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| ANTH/SOCI-201 | Ethnographic Imagination: Writing About Society and Culture (WI) | 3 |
| ANTH/SOCI-301 | Social and Cultural Theory | 3 |
| ANTH/SOCI-302 | Qualitative Research | 3 |
|  | Track Electives§ | 9 |
|  | LAS Perspective 6, 7A, 7B | 9 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
| ANTH/SOCl-303 | Quantitative Research | 3 |
|  | Track Electives§ | 18 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective | 3 |
| Choose one of the following: |  |  |
| ANTH/SOCl-498 | Practicum | 0 |
| ANTH/SOCl-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
| Choose one of the following: |  | 3 |
| ANTH/SOCI-501 Senior Research Project |  |  |
| ANTH/SOCl-502 Scholar's Thesis I |  |  |
| Choose one of the following: |  | 3 |
| Track Elective§ |  |  |
| ANTH/SOCl-503 | Scholar's Thesis II |  |
|  | LAS Electives | 18 |
|  | Free Electives | 6 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement. § Students choose from among the following urban studies track electives: Immigration to the U.S. (ANTH-235), Archaeology of Cities (ANTH-315), Global Cities (ANTH-410), Urban Economics (ECON-440), Applications Geographic Information Systems (ENVS-250), State and Local Politics (POLS-250), Minority Group Relations (SOCI-220), Community and Economic Development: Rochester (SOCI-325), Urban Deviance (SOCI-330), Urban Cultures (SOCI-335), Urban Planning and Policy (SOCI-340), Urban Poverty (SOCI-345), Diversity in the City (SOCI-410), Sustainable Communities (STSO-550),

James J. Winebrake, BS, Lafayette College; MS, Massachusetts Institute of Technology; Ph.D., University of Pennsylvania-Dean; Professor

Babak Elahi, BA, San Diego State University; MA, University of California at San Diego; Ph.D., University of Rochester-Associate Dean; Professor

Laverne McQuiller Williams, BS,
Rochester Institute of Technology; JD, Albany Law School of Union University; MA, Buffalo State College; Ph.D., University at Buffalo-Associate Dean; Professor

John S. Smithgall, BA, Roberts Wesleyan College; MS, University of Rochester-Assistant Dean for Student Services

## School of Communication

Andrea Hickerson, BA, Syracuse University; MA, University of Texas at Austin; Ph.D., University of Washington-Director; Associate Professor

Bruce A. Austin, BA, Rider College; MS, Illinois State University; Ph.D., Temple University-Professor

Keri Barone, BA, MA, State University College at BrockportSenior Lecturer

Kari Cameron, BS, Nazareth College of Rochester; MS, Rochester Institute of Technology, M.Ed., Nazareth College of Rochester-Lecturer

Grant C. Cos, BA, University of Massachusetts at Amherst; MA, Emerson College; Ph.D., Kent State University-Director of Graduate Programs; Associate Professor
Keith B. Jenkins, BA, University of Arkansas; MA, Ph.D., Florida State University-Professor

Mike Johansson, MA, Syracuse University-Senior Lecturer

Ammina Kothari, BA, North Central College; MA, University of Oregon; Ph.D., Indiana UniversityDirector of Undergraduate Studies: Journalism; Assistant Professor

Eun Sook Kwon, BA, Hannam University (Korea); MA, University of Texas at Austin; Ph.D., University of Georgia-Assistant Professor

Hinda Mandell, BA, Brandeis University; MA, Harvard University; Ph.D., Syracuse UniversityAssistant Professor

Lori Marra, BS, Nazareth College;
MA, University of RochesterSenior Lecturer

Kelly Norris Martin, BA, John Carroll University; MS, Ph.D., North Carolina State University-Assistant Professor

David R. Neumann, BA, Ithaca College; MA, Ph.D., Bowling Green State University-Professor

Rudolph Pugliese, BA, State University College at Oneonta; MA, State University College at Brockport; Ph.D., Temple University-Professor

## Elizabeth Reeves O'Connor,

BS, MS, Rochester Institute
of Technology-Director of Undergraduate Studies; Principal Lecturer

Patrick M. Scanlon, BA, Albany University; MA, Ph.D., University of Rochester-Professor

Jonathan E. Schroeder, BA, University of Michigan; MA, Ph.D., University of California at Berkeley-William A. Kern Professor in Communications

Xiao Wang, BA, Beijing University of Aeronautics and Astronautics (China); MA, Marquette University; Ph.D., Florida State UniversityAssociate Professor

Tracy R. Worrell, BA, Otterbein University; MA, University of Cincinnati; Ph.D., Michigan State University-Associate Professor

## Criminal Justice

John McCluskey, BA, MA, Ph.D., State University of New York at Albany-Department Chair; Professor

Irshad Altheimer, BA, Alabama State; MA, Ph.D., Washington State University-Associate Professor

John M. Klofas, BA, College of the Holy Cross; MA, Ph.D., State University of New York at Albany-Professor

Laverne McQuiller Williams, BS
Rochester Institute of Technology; JD, Albany Law School of Union University; MA, Buffalo State College; Ph.D., University at Buffalo-Professor

Judy Porter, BA, University of Northern Colorado; MA, New Mexico State University; Ph.D., University of Nebraska at OmahaUndergraduate Program Director; Associate Professor
O. Nicholas Robertson, BA, State University College at Geneseo; MA, State University College at Brockport—Assistant Professor

## Christopher Schreck,

BA, University of Florida;
MA, University of Arizona;
Ph.D., Pennsylvania State
University-Professor
Jason Scott, BS, Roberts Wesleyan College; MA, Ph.D., State University of New York at Albany-Graduate Director; Associate Professor

Tony Smith, BA, MA, Ph.D., State University of New York at AlbanyAssociate Professor

Joe Williams, BS, Rochester Institute of Technology; MA, State University College at BrockportField Experience Coordinator, Lecturer

## Economics

M. Jeffrey Wagner, BA, University of Missouri; MA, Ph.D., University of Illinois-Department Chair; Professor

Amit Batabyal, BS, Cornell University; MS, University of Minnesota; Ph.D., University of California at Berkeley-Arthur J. Gosnell Professor in Economics

Bharat Bhole, BA, MA, University of Mumbai (India); Ph.D., University of Southern CaliforniaAssociate Professor

Javier Espinosa, BS, Miami
University; MA, Ph.D., University of Maryland at College ParkAssociate Professor

Bridget Gleeson Hanna, BComm, University College at Galway (Ireland); MA, University College at Dublin (Ireland); MA, University of Wisconsin at Madison-Associate Professor

Priti Kalsi, BA, University of Maryland at College Park; MA, Ph.D., University of Colorado at Boulder-Assistant Professor

Eddery Lam, BA, MA, Boston University; MA, University of Massachusetts at Amherst; Ph.D., Kansas State University-Assistant Professor

Jeannette C. Mitchell, BA, Westminster College; Ph.D., University of Utah-Undergraduate Program Director; Associate Professor

Nikolaus Robalino, BA, MA,
Ph.D., Simon Fraser UniversityAssistant Professor

Selhan Sahin, BSc., Middle East Technical University (Turkey); ABD, Virginia Polytechnic Institute and State University-Lecturer
Michael J. Vernarelli, AB, University of Michigan; MA, Ph.D., State University of New York at Binghamton-Professor

Ye Wang, BS, Beijing University of Technology (China); MS, University of International Business and Economics (China); MS, Ph.D., Texas Tech University-Visiting Lecturer

## English

## Sharon M. Beckford-Foster,

BA, MA, Ph.D., York University
(Canada)—Department Chair;
Associate Professor
Charles A. Baldwin (Sandy), BA,
Harvard University; MA, State University of New York at Albany; M.Phil, Ph.D., New York University-Associate Professor
A.J. Caschetta, BA, Nazareth College of Rochester; MA, University of Missouri; Ph.D., New York University-Senior Lecturer

Collette Caton, BA, St. Edward's
University; MA, Texas State University; ABD, Syracuse University-Lecturer

Babak Elahi, BA, San Diego State University; MA, University of California at San Diego; Ph.D., University of Rochester-Associate Dean; Professor

Robert Glick, BA, University of California at Berkeley; MA, San Francisco State University; Ph.D., University of Utah-Assistant Professor

Trent Hergenrader, BA, University of Wisconsin-Madison; MA, Ph.D., University of Wisconsin-Milwaukee-Assistant Professor

Lisa M. Hermsen, BA, Briar Cliff University; MA, University of Missouri at Columbia; MA, Ph.D., Iowa State University-Caroline Werner Gannett Professor

Gail Hosking, BA, Alfred University; MS, Iowa State University; MFA, Bennington College-Lecturer
Julie Johannes, BA, State University College at Geneseo; MA, University of Rochester-Senior Lecturer

Katherine Mayberry, BA, Smith College; MA, Ph.D., University of Rochester-Professor

David S. Martins, BA, St. Olaf College; MA, Northern Arizona University; Ph.D., Michigan Technological University—Director, University Writing Program; Associate Professor

Katherine Morrissey, BA, Emerson College; MA, Georgetown University; Ph.D., University of Wisconsin-Milwaukee-Visiting Assistant Professor
Cecillia Ovesdotter Alm, BA, Universitat Wien (Austria); MA, Ph.D., University of IllinoisAssistant Professor

Emily T. Prud'hommeaux, AB , Harvard College; MA, University of California; Ph.D., Oregon Health \& Science University-Assistant Professor

Amit Ray, BA, State University of New York at Buffalo; MA, Ph.D., University of Michigan-Associate Professor

John Roche, BA, University of Connecticut; MA, University College Dublin (Ireland); Ph.D., State University of New York at Buffalo-Associate Professor

Richard Santana, AA, LaGuardia Community College; BA, City College; MA, Hunter College; Ph.D., City University of New York Graduate School and University Center-Associate Professor

Laura Shackelford, BA, University of Minnesota; MA, Ph.D. Indiana University-Associate Professor
Elena Rakhimova-Sommers, BA, MA, Moscow State Pedagogical University (Russia); MA, University of Notre Dame; Ph.D., University of Rochester-Provost's Faculty Associate for Non-Tenure-Track Faculty; Principal Lecturer

Thomas M. Stone, BA, Northern Arizona University; MA, Bucknell University; Ph.D., University of Rochester-Lecturer

Paulette Swartzfager, BA, St. Mary's Dominican College; MA, Louisiana State University-Lecturer

Dianna Winslow, BA, MA, California State University, Chico; Ph.D., Syracuse UniversityDirector, First-Year Writing; Assistant Professor

Karen vanMeenen, BA, Binghamton University; CAPF, International Federation for Biblio/ Poetry Therapy; MA, Vermont College; MA, The New School; ABD/Ph.D., European Graduate School-Lecturer

## Performing Arts and Visual Culture

Jonathan Kruger, BA, Carthage
College; MM, DMA, Eastman
School of Music-Department Chair; Professor

Carl J. Atkins, BM, Indiana University; MM, New England Conservatory; DMA, Eastman School of Music-Professor

Juilee Decker, BA, Wittenberg University; MA, University of Illinois Urbana Champaign; Ph.D., Case Western Reserve UniversityAssociate Professor

Peter W. Ferran, BA, College of the Holy Cross; MA, Ph.D., University of Michigan - Professor

Elizabeth Goins, BA, University of Delaware; Ph.D., University of London-Associate Professor

Tina Lent, BA, MA, University of California at Los Angeles; Ph.D., University of Rochester-Museum Studies Program Director; Professor

Jessica Lieberman, BA, University of Pennsylvania; Ph.D., University of Michigan-Associate Professor

Michael E. Ruhling, BA, Goshen College; MA, University of Notre Dame; MM, University of Missouri; Ph.D., Catholic University of America-Professor

## Modern Languages and Cultures

Hiroko Yamashita, BA, University of Southern Mississippi; MA, Ph.D., The Ohio State UniversityDepartment Chair; Professor

Sara Scott Armengot, BA, Oberlin
College; MA, Ph.D., Pennsylvania State University-Associate Professor

Philippe Chavasse, BA, MA, Université Lyon 2 (France); Ph.D., University of Oregon-Associate Professor

Zhong Chen, BA, Nanjing Normal University (China); MA, Ph.D., Cornell University-Assistant Professor

Elisabetta D'Amanda, BA, State
University of New York; MA, Nazareth College of Rochester; Ph.D., Middlebury College-Senior Lecturer

Diane J. Forbes, BA, State University College at Geneseo; MA, Ph.D., Pennsylvania State University-Associate Professor

Kèvin Le Blèvec, BA, License, MA, Université de Rennes 2 (France)Lecturer and Modern Language Technology Specialist

Yukiko Maru, BA, Keio University (Japan); MA, MS, University of Illinois at Urbana-ChampaignSenior Lecturer

Godys Armengot Mejía, BA,
Pennsylvania State University; MS, University of Maryland-Lecturer
Masako Murakami, BA, Portland State University, MA, The Ohio State University-Senior Lecturer

Ulrike Stroszeck, BA, University of Akron; MA, Auburn University; Ph.D. University of North Carolina at Chapel Hill-Senior Lecturer

## History

Michael Laver, BA, Purdue University; MA, Ph.D., University of Pennsylvania-Department Chair; Associate Professor

Michael Brown, BS, Cornell University; M.Sc., London School of Economics and Political Science (United Kingdom); Ph.D., University of RochesterVisiting Assistant Professor

Tamar W. Carroll, BA, University of Massachusetts; MA, Ph.D., University of Michigan-Assistant Professor

Rebecca A. R. Edwards, BA, College of the Holy Cross; Ph.D., University of Rochester-Professor
Joseph M. Henning, BA, Colorado College; MIA, Columbia University; Ph.D., American UniversityAssociate Professor

Christine Keiner, BA, Western Maryland College; Ph.D., Johns Hopkins University-Associate Professor

Mary Beth Kitzel, BS, Rochester Iinstitute of Technology; M.Sc., Ph.D., University of Sussex (United Kingdom)-Visting Assistant Professor

Richard Newman, BA, State University of New York at Buffalo; MA, Brown University; Ph.D., State University of New York at BuffaloAssociate Professor

Rebecca Scales, BA, Hollins College; MA, University of Georgia; Ph.D., Rutgers UniversityAssociate Professor

Corinna Schlombs, Diploma, Bielefeld University (Germany); MA, Ph.D., University of Pennsylvania-Assistant Professor

## Philosophy

Silvia Benso, Laurea, University of Torino (Italy); MA, Ph.D., Pennsylvania State UniversityDepartment Chair, Professor

Jesús Aguilar, BA, Hampshire College and Universidad Veracruzana (Mexico); MA, Universidad Nacional Autónoma de México (Mexico); Ph.D., McGill University (Canada) - Professor

Evelyn Brister, BA, Austin College; Ph.D., Northwestern UniversityAssociate Professor

John Capps, BA, St. John's College; MA, Ph.D., Northwestern University-Professor
Timothy H. Engström, BA, MA, Ph.D., University of Edinburgh (Scotland)-Professor
Wade L. Robison, BA, University of Maryland; Ph.D., University of Wisconsin-Ezra A. Hale Professor in Applied Ethics

John T. Sanders, BA, Purdue University; MA, Ph.D., Boston University-Undergraduate Degree Program Director; Professor

Brian Schroeder, BA, Edinboro College; M.Div., Princeton Theological Seminary; MA, Ph.D., State University of New York at Stony Brook-Professor

Evan Selinger, BA, State University of New York at Binghamton; MA, University of Memphis; Ph.D., State University of New York at Stony Brook-Professor

David B. Suits, BA, Purdue
University; MA, Ph.D., University of Waterloo (Canada)—Professor

Katie Terezakis, BA, Central Connecticut State University and Heidelberg University (Germany); MA, Ph.D., New School for Social Research-Associate Professor

Lawrence G. Torcello, BA, State University College at Brockport; MA, Ph.D., State University of New York at Buffalo-Associate Professor

## Political Science

Sean Sutton, B. Econ., University of Queensland (Australia); MA, Ph.D., University of DallasDepartment Chair; Professor
Benjamin R. Banta, BA, Purdue University; MA, Ph.D., University of Delaware-Assistant Professor

Sarah Burns, BA, University of Toronto (Canada); MA, Ph.D. Claremont Graduate UniversityAssistant Professor

Nathan M. Dinneen, BA, MA, University of North Texas; Ph.D., Northern Illinois UniversityUndergraduate Program CoDirector, Assistant Professor

Paul H. Ferber, BA, American University; M.Phil., Ph.D., George Washington University-Professor
Joseph Fornieri, BA, State University College at Geneseo; MA, Boston College; Ph.D., Catholic University of America-Professor

Lauren Hall, BA, State University of New York at Binghamton; MA, Ph.D., Northern Illinois University-Undergraduate Program Co-Director, Associate Professor

Edward Kannyo, BA, Makerere University (Uganda); M.Phil., Ph.D., Yale University-Lecturer

Dongryul Kim, BA, MA, Seoul University (South Korea); Ph.D., University of Virginia-Associate Professor

## Psychology

Andrew M. Herbert, BS, McGill University (Canada); MA, Ph.D., University of Western Ontario (Canada)-Department Chair; Professor

Suzanne Bamonto, AA, Finger Lakes Community College; BA, State University College at Geneseo; Ph.D., University of OregonGraduate Program Director, Associate Professor

Joseph S. Baschnagel, BA, MA, Ph.D., State University of New York at Buffalo-Associate Professor

Robert Bowen, BA, MA, State University College at Brockport; M.Ed, Ph.D., University of Rochester-Lecturer
A. Eleanor Chand-Matzke, BA, State University College at Geneseo; MA, The New School for Social Research; Ph.D., University of Massachusetts-Visiting Lecturer

Jessamy Comer, BA, Baylor University; MA, Ph.D., University of Rochester-Visiting Lecturer

Kirsten Condry, BA, Swarthmore College; Ph.D., University of Minnesota-Undergraduate Program Director; Associate Professor

Caroline M. DeLong, BA, New College of Florida; MA, Ph.D., University of Hawaii-Associate Professor

Nicholas DiFonzo, MA, Rider College; MA, Ph.D., Temple University-Professor

John E. Edlund, BS, MA, Ph.D., Northern Illinois UniversityAssociate Professor

Stephanie A. Godleski, BA,
Hamilton College; MA, Ph.D., University of Buffalo-Assistant Professor

Jennifer Lukomski, BA,
Williams College; MA, Gallaudet University; Ph.D., University of Arizona-Professor

Scott P. Merydith, BA,
M.Ed., Ph.D., Kent State

University-Professor
Vincent Pandolfi, BA, Lafayette College; MA, Ph.D., Hofstra University-Associate Professor

Esa M. Rantanen, BS, MS, EmbryRiddle Aeronautical University; MS, Ph.D., Pennsylvania State University-Associate Professor

Lindsay Schenkel, BA, St.
John Fisher College; MA, Ph.D., University of Nebraska at LincolnAssociate Professor

Paula Schneider, BA, Michigan State University; MS, Rochester Institute of Technology-Lecturer

Audrey Smerbek, BA, University of Rochester; Ph.D., State University of New York at Buffalo-Assistant Professor

Tina Sutton, BS, Union College; MA, Ph.D., State University of New York at Albany-Assistant Professor

## Public Policy

Sandra Rothenberg, BS, Syracuse University; MS, Ph.D., Massachusetts Institute of Technology-Department Chair, Professor

Eric Hittinger, BS, MS, Case Western Reserve University; Ph.D., Carnegie Mellon UniversityAssistant Professor

Qing Miao, BA, Nanjing University (China); MS, University of Michigan; Ph.D., Syracuse University-Assistant Professor
James J. Winebrake, BS, Lafayette College; MS, Massachusetts Institute of Technology; Ph.D., University of Pennsylvania-Dean; Professor

Josephine Wolff, AB, Princeton University; Ph.D., Massachusetts Institute of Technology-Assistant Professor

## Science, Technology, and Society

Deborah Blizzard, BA, Smith College; MS, Ph.D., Rensselaer Polytechnic Institute-Department Chair; Professor

Thomas Cornell, BA, Rhodes College; MS, Georgia Institute of Technology; Ph.D., Johns Hopkins University-Professor

Franz A. Foltz, BS, MA, Pennsylvania State University; Ph.D., Rensselaer Polytechnic Institute-Public Policy Gradute Director, Associate Professor
M. Ann Howard, BS, Cornell

University; JD, Rutgers
University-Professor
Christine Keiner, BA, Western Maryland College; Ph.D., Johns Hopkins University-Associate Professor

Richard Shearman, BA, Western State College of Colorado; MS, Eastern New Mexico University; Ph.D., State University of New York College of Environmental Science and Forestry-Associate Professor

Kristoffer J.Whitney, BS,
Rochester Institute of Technology; Ph.D., University of PennsylvaniaAssistant Professor

## Sociology and Anthropology

Uli Linke, BA, Macalester College; MA, Ph.D., University of California at Berkeley-Department Chair; Professor

Brian P. Barry, BA, St. John Fisher College; MSc, Ph.D., Syracuse University-Associate Professor
Jeffrey Burnette, BA, State University of Albany; MA, Ph.D., State University of New York at Buffalo-University Director of the Native American Future Stewards Program; Assistant Professor

Conerly Casey, BA, University of Vermont; MSEd, University of Southern California; Ph.D., University of California at Los Angeles-Associate Professor
Kijana Crawford, BA, Tougaloo College; MSW, Atlanta University; MA, Ed.D., University of Rochester-Sociology and Anthropology Undergraduate Program Co-Director; Professor

Christine Kray, BA, New Mexico State University; Ph.D., University of Pennsylvania-Sociology and Anthropology Undergraduate Program Co-Director; Associate Professor

Courtney Kurlanska, BA, Brandeis University; MS, University of New Orleans; Ph.D., State University of New York at Albany—Visiting Assistant Professor
Benjamin N. Lawrance, BA, MA, London University; MA, Ph.D., Stanford University-International \& Global Studies Undergraduate Program Director, Barber B. Conable Jr. Professor in International Studies

David C. Meiggs, BA, University of Colorado at Boulder; MA, Ph.D., University of Wisconsin at Madison-Assistant Professor
William D. Middleton, BA, University of California at San Diego; MA, San Francisco State University; Ph.D., University of Wisconsin at Madison-Associate Professor

Jessica W. Pardee, BA, MA, Ph.D.,
Tulane University-Associate Professor

Vincent Serravallo, BA, State University College of New York at Oswego; MA, University of Kansas; Ph.D., City University of New York Graduate Center-Associate Professor

Wilson De Lima Silva, BA, The Federal University of Amazonas (Brazil); MA, University of Rochester; Ph.D., University of Utah-Assistant Professor
Danielle Taana Smith, BA, Dartmouth College; MBA, Saint Martin's College; Ph.D., University of South Carolina-University Director of the Honors Program, Professor

Robert C. Ulin, BA, Whittier College; MA, Ph.D., New School for Social Research-Professor

## Distinguished

## Professorships

## Caroline Werner Gannett

 Professorship in the HumanitiesEstablished: 1974
Donor: Mrs. Frank E. Gannett
Purpose: To perpetuate Mrs.
Gannett's lifelong interest in
education, especially in those fields of study that have a humanistic perspective
Held by: Lisa Hermsen
Arthur J. Gosnell Professorship in Economics
Established: 1985
Donor: Family and friends of Arthur J. Gosnell

Purpose: To perpetuate the memory of Arthur J. Gosnell through recognition of the importance of good teaching in economics and by facilitating research into public policy questions Held by: Amit Batabyal

## Ezra A. Hale Professorship in Applied Ethics

Established: 1989
Donors: William B. and Patricia F. Hale and Lawyers Cooperative Publishing Company
Purpose: To establish a permanent memorial to a long-time and valued friend of RIT, Ezra A. Hale, and to provide instruction in applied ethics in keeping with his beliefs in sportsman-like conduct, fair play and honesty
Held by: Wade L. Robison
William A. Kern Professorship in Communication
Established: 1971
Donor: Rochester Telephone Corporation
Purpose: To commemorate the 100th anniversary of that company and to provide a memorial for a former president of the company and a man who served as an RIT trustee from 1959 to 1964
Held by: Jonathan E. Schroeder
Barber B. Conable Jr. Professorship in International Studies
Established: 2004
Donor: The Starr Foundation
Purpose: To honor the late statesman and former World Bank President and ensure that Barber Conable's legacy of principled and innovative leadership in the national and international arenas will be preserved for all time. Held by: Benjamin N. Lawrance

# National Technical Institute for the Deaf 

## Gerard Buckley, President, NTID; Vice President and Dean, RIT

ntid.rit.edu

## Programs of study

| Bachelor of Science in: | Page |
| :--- | ---: |
| ASL-English Interpretation | 155 |
| Associate in Applied Science in: | 156 |
| ASL-English Interpretation | 157 |
| Accounting Technology | 158 |
| Administrative Support Technology | 159 |
| Applied Computer Technology | 164 |
| Applied Mechanical Technology | 167 |
| Civil Technology | 168 |
| Computer Aided Drafting Technology | 171 |
| Design and Imaging Technology | 175 |
| Laboratory Science Technology | 177 |
| Mobile Application Development |  |
| Associate in Occupational Science in: | 160 |
| Applied Computer Technology | 166 |
| Business Technology | 169 |
| Computer Aided Drafting Technology | 170 |
| Computer Integrated Machining Technology | 172 |
| Design and Imaging Technology | 176 |
| Laboratory Science Technology |  |

## Associate in Science in:

Applied Computer Technology ..... 162
Applied Liberal Arts ..... 163
Business ..... 165
Hospitality and Service Management ..... 174

## Certificates in:

Deaf Cultural Studies-ASL ..... 178
Performing Arts ..... 178

## Pre-baccalaureate studies in:

Engineering Studies ..... 179
Liberal Studies ..... 179
Science and Mathematics ..... 179
Visual Communications Studies ..... 180

The National Technical Institute for the Deaf (NTID), one of RIT's nine colleges, provides deaf and hard-of-hearing students with careerfocused educational programs that lead to employment in business, industry, government, and education. More than 1,200 deaf and hard-ofhearing students from across the United States, several U.S. territories, and other countries, study and reside at RIT with more than 14,000 hearing undergraduate students. The college offers the most accessible educational community in the world, including faculty and staff who specialize in educating deaf and hard-of-hearing students, and a rich environment where students can fit in, feel comfortable, pursue their dreams, and fulfill their potential.

NTID provides deaf and hard-of-hearing students with technical and pre-professional training in nearly 20 programs, which prepare students for technical careers in a diverse set of fields.

Deaf and hard-of-hearing students who take courses or matriculate into one of RIT's other colleges may request educational access services, which typically include sign language interpreting services, FM systems, notetaking, or real-time captioning services. Alternative services are provided as required. Students are provided with educational support services such as personal and career counseling and academic advising. In addition, they can request tutoring services.

In support of its national mission, NTID has research, teaching, and learning activities that focus on understanding and enhancing the educational, social, and communication opportunities for deaf and hard-of-hearing individuals. NTID provides services and programs that enhance teaching and learning within the NTID community and beyond via broad-based research activities and dissemination strategies, curriculum development, instructional design and evaluation, and instructional media services.

Over the past five years, 93 percent of deaf and hard-of-hearing graduates who chose to enter the workforce have found employment.

## NTID's academic programs

NTID provides student-oriented academic programming to ensure a rich, coherent set of educational experiences for students. NTID offers Associate+Bachelor's degree programs and career-focused associate degrees as well as general education course work in a variety of disciplines.

Associate+Bachelor's degree programs: NTID offers
Associate+Bachelor's degree and pre-baccalaureate programs. Associate in science (AS) degrees in applied computer technology, applied liberal arts, business, and hospitality and service management provide a transition to baccalaureate programs in the colleges of Applied Science and Technology, Business, Computing and Information Sciences, and Liberal Arts. In addition, several of our associate in applied science (AAS) degree programs, such as administrative support technology, applied mechanical technology, civil technology, and laboratory science technology, provide students with the necessary skills to enroll in other RIT colleges. Pre-baccalaureate studies programs are designed to prepare qualified students for several specific bachelor's degree programs in other colleges of RIT.

Career-focused programs: Numerous career-focused options and concentrations, designed to lead directly to employment, are available within the following areas: accounting technology, administrative support technology, applied computer technology, business technology, computer aided drafting technology, computer integrated machining technology, design and imaging technology, laboratory science technology, and mobile application development. Laboratories are equipped with the latest technology and maintain a curriculum that represents current industry trends and requirements, based on routine feedback from business and industry advisory groups. These programs lead to the associate degree in applied science and the associate degree in occupational studies. All career-focused programs require one cooperative education experience, typically a minimum of 350 hours scheduled over a ten-week period.

General education: NTID offers an array of general education courses to a broad-based population of NTID students, including those who are undecided about, or underprepared for, matriculation into a program. In addition, NTID offers a degree program in American Sign Language-English interpretation and provides a comprehensive sign language education program for students, faculty, and staff members.

Support and access services: NTID provides comprehensive services in support of students enrolled in more than 200 baccalaureate or graduate programs in RIT's other colleges. The educational support services available include faculty tutoring, audiological assistance, speech-language services, and personal and career counseling. In addition, NTID provides access services that are based upon each student's educational need and typically include sign language interpreting services, FM systems, notetaking, or real-time captioning services. Alternative services also will be provided as required. Academic advising services are provided by the advisers in the student's home college. Through support and access services, students who are deaf are able to participate in all aspects of the RIT community.

## Educational opportunities through NTID

## Associate+Bachelor's degree programs

Associate+Bachelor's programs offered through NTID prepare qualified students to enroll in baccalaureate degree programs in other colleges of RIT.

Associate in science degree (AS) and selected associate in applied science degrees (AAS): Certification at this level requires the completion of 30-31 semester credit hours of technical course work, 30-32 semester credit hours in general education courses and other courses as appropriate to the degree. The majority of courses are offered through the other colleges of RIT. These degrees prepare students to enter and complete bachelor's degree programs in the colleges of Applied Science and Technology, Business, Computing and Information Sciences, and Liberal Arts. Admission to these programs is available in the fall semester only.

Pre-baccalaureate studies: The pre-baccalaureate studies program is available as a bridge to baccalaureate degree programs for students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program. Pre-baccalaureate programs are offered through the engineering studies, liberal studies,
science and mathematics, and visual communications studies departments. The career exploration studies program is available to students who are undecided as to their program of study.

The pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or disciplinerelated skills. This academic option is flexible and individualized and enables students to focus on needed skills while they progress toward their chosen field of study. Students take courses taught by NTID instructional/support faculty along with entry-level courses taught in other RIT colleges.

## Career-focused programs

Career-focused programs offered through NTID lead to the associate in applied science degree or the associate in occupational studies degree. These programs permit students to enter their careers directly.

Associate in applied science degree (AAS): Certification at this level requires 48-52 semester credit hours of technical instruction. In addition, students must complete 24 semester credit hours in general education courses, primarily offered through the College of Liberal Arts, as well as other required semester credit hours determined by the program of study. In some programs, this degree prepares students to apply for entry to bachelor's degree programs in other colleges of RIT.

Associate in occupational studies degree (AOS): Certification at this level requires 45-52 semester credit hours of technical instruction. In addition to satisfactorily completing technical courses, students must complete 15 semester credit hours in the NTID general education curriculum, as well as other required semester credit hours determined by the program of study.

## Career exploration studies

The career exploration studies program offers opportunities for students to collect information about NTID majors and career paths before deciding on a program of study. It also assists students who need additional academic preparation and study in order to be ready for their chosen major.

This option allows students the opportunity to do an intensive career search while they develop a better understanding of themselves through career and personal counseling; the Career Decision Workshop series; intensive sampling of various majors at RIT/NTID; use of a computer guidance program in the Career Resource and Testing Center; interest testing; and interpretation of aptitude, ability, and achievement tests. In addition, students take courses in mathematics, English, social and physical sciences, the humanities, and Deaf cultural studies/American Sign Language (ASL). Some students also may take introductory courses in specific programs of study and general education courses and be involved in extracurricular or other college-oriented activities.

An academic counselor is assigned to help students evaluate the information and make career decisions. Students can remain in the career exploration studies program for two academic semesters. Additional semesters in the program are possible with the approval of the program director.

## Educational opportunities in other RIT colleges

In addition to NTID's programs, qualified deaf and hard-of-hearing students may enroll as baccalaureate or master's degree students in one of the more than 200 professional programs offered through RIT's other colleges and degree-granting entities: College of Applied Science and Technology, Saunders College of Business, B. Thomas Golisano College of Computing and Information Sciences, Kate Gleason College of Engineering, College of Health Sciences and Technology, College of Imaging Arts and Sciences, College of Liberal Arts, School of Individualized Study, College of Science, and Golisano Institute for Sustainability. NTID students also may take classes in the other RIT colleges individually, on a course-by-course basis.
Each of RIT's colleges has NTID instructional/support faculty that provide services for deaf and hard-of-hearing students. These services include tutoring, and personal and career counseling. The department of access services provides sign language interpreting services,
notetaking, and real-time captioning services for deaf and hard-ofhearing students taking courses in the other eight colleges of RIT and for campus activities outside the classroom. FM systems and alternative services will be provided as required. Academic advising services are provided by the student's home college.
Deaf and hard-of-hearing students who wish to enroll in a program in another RIT college must meet that college's admission requirements. Furthermore, deaf and hard-of-hearing students supported by NTID also must meet NTID admission requirements, submit an audiological record completed by a certified audiologist (CCC-A), and complete standard RIT admission forms. Please see the Admissions section for more information. Qualified students may choose to enroll in courses taught through the other eight colleges of RIT for several reasons: as part of the elective requirements in their NTID programs; to complete their programs of study at NTID, then continue their education at another RIT college; to enter a program of another RIT college directly from high school; or to enroll directly into a program in one of RIT's colleges from another postsecondary program.

| CAREER-FOCUSED AND ASSOCIATE+BACHELOR'S DEGREE PROGRAMS OF NTID |  | RELATED EDUCATIONAL PROGRAMS OF OTHER RIT COLLEGES |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Leading to associate degrees |  | Leading to bachelor's or master's degrees in the other RIT colleges; students may request educational access services such as sign language interpreting services, FM systems, notetaking, or real-time captioning services. Alternative services also will be provided as required. |  |  |
| NTID PROGRAMS | OTHER RIT COLLEGES | OTHER RIT PROGRAMS |  |  |
| Administrative Support Technology | School of Individualized Study | - Applied Arts and Science |  |  |
| Applied Computer Technology Concentrations: <br> - PC Technical Support <br> - Networking and Cyber Security AS Program | College of Computing and Information Sciences | - Computer Science <br> - Game Design and Development <br> - Information Technology | - Computing Security <br> - Networking and System Administration | - Software Engineering |
| Applied Liberal Arts | College of Liberal Arts | - Advertising and Public Relations <br> - Criminal Justice <br> - Communication <br> - Digital Humanities and Social Sciences | - Economics <br> - International and Global Studies <br> - Journalism <br> - Museum Studies <br> - Philosophy | - Political Science <br> - Psychology <br> - Public Policy <br> - Sociology and Anthropology |
| Applied Mechanical Technology | College of Applied Science and Technology | - Applied Arts and Science <br> - Manufacturing Engineering Technology | - Mechanical Engineering Technology |  |
| Business Studies <br> Accounting Technology <br> Business <br> Business Technology | College of Business, School of Individualized Study | - Accounting <br> - Finance <br> - International Business <br> - Management | - Management Information Systems <br> - Marketing <br> - New Media Marketing |  |
| Civil Technology | College of Applied Science and Technology | - Civil Engineering Technology |  |  |
| Computer Aided Drafting Technology | College of Applied Science and Technology | - Civil Engineering Technology |  |  |
|  | College of Imaging Arts and Sciences | - Interior Design |  |  |
| Computer Integrated Machining Technology | College of Applied Science and Technology | - Manufacturing Engineering Technology |  |  |
| Design and Imaging Technology Concentrations: <br> - Graphic Design <br> - Graphic Production | College of Imaging Arts and Sciences | School for American Crafts <br> - Ceramics <br> - Furniture Design <br> - Glass <br> - Metals and Jewelry Design <br> - Undeclared Crafts <br> School of Art <br> - Fine Arts Studio <br> - Illustration <br> - Medical Illustration <br> - Undeclared Art and Design | School of Design <br> -3D Digital Design <br> - Graphic Design <br> - Industrial Design <br> - Interior Design <br> - New Media Design <br> School of Film and Animation <br> - Film and Animation <br> - Motion Picture Science <br> School of Media Sciences <br> - Media Arts and Technology | School of Photographic Arts and Sciences <br> - Photography and Imaging Arts (Advertising Photography option, Fine Art Photography option, Photojournalism option, Visual Media option) <br> - Photographic and Imaging Technologies (Biomedical Photographic Communication option, Imaging and Photographic Technology option) <br> - Undeclared Photography |
| Hospitality and Service Management Concentrations: <br> - Hotel and Resort Management <br> - Food and Beverage Management | College of Applied Science and Technology | - International Hospitality and Service Management (concentrations in International Hotel and Resort Management or Food and Beverage Management) |  |  |
| Laboratory Science Technology | College of Science, College of Health Sciences and Technology, School of Individualized Study | - Applied Arts and Science <br> - Environmental Management and Technology | - Biology <br> - Biomedical Sciences <br> - Biotechnology and Molecular Bioscience | - Chemistry <br> - Environmental Science <br> - Biochemistry |
| Mobile Application Development | College of Computing and Information Sciences | - Web and Mobile Computing |  |  |

 and interested in enrolling in another RIT college but not yet ready to enter a baccalaureate-level program.

## First-Year Experiences Programming

## NTID programs

Beginning with a summer orientation program, NTID provides a special array of curricular and co-curricular activities to help maximize each student's potential for success in the first year. These experiences are designed to enhance students' bonding with the community while providing time and support to select and enter into a major and/or progress within a career program.

First-year students qualified to enter NTID in the fall semester are required to participate in a summer orientation program called the Summer Vestibule Program. This program includes:

- placement testing in English and mathematics
- orientation/transition to college life activities
- career sampling
- counseling
- application to a career-focused or Associate+Bachelor's degree program, career exploration studies, pre-baccalaureate studies, or baccalaureate program
This summer program is followed by additional first-year experiences that allow students to work with a counselor to select courses and activities that meet individual goals and needs. Components of first-year experiences programming include:
- enrollment in the Freshman Seminar (NCAR-100) during the first semester; this course helps students identify personal, social, and academic skills that lead to a successful college experience
- completion of preparatory courses, as needed
- work with an academic adviser and counselor
- participation in career exploration and introductory courses, when and if appropriate
- completion of degree requirements, as appropriate
- participation in co-curricular and mentoring activities of choice
- if undecided, declaring a major and degree level by the end of the first year


## RIT's other colleges

Students who qualify to enter baccalaureate programs in other colleges of RIT participate in the first-year programming and activities designed by the affiliated instructional/support faculty and the colleges. Most first-year students enrolled in colleges other than NTID are required to:

- participate in the summer orientation options and in RIT's

New Student Orientation program as well as NTID's support service orientation workshops

- enroll in the Year One: College Experience (ACSC-010) course during the first semester
- participate in opportunities to explore and select a major, if needed
- work with an academic adviser and counselor


## NTID General Education Curriculum-Liberal Arts and Sciences (LAS)

The NTID general education curriculum-liberal arts and sciences (LAS) supports the preparation of students for lifelong learning, for success in their chosen fields, and for their role in society as welleducated and knowledgeable citizens. The general education curriculum provides for a broad academic base of courses, with some
organized into foundation and perspective categories. In general, AOS students complete all of their general education requirements through course work in the college of NTID, whereas students in the AAS and AS programs complete some required course work in the other colleges of RIT.

Students must complete a minimum number of general education credits for each degree. The general education distribution requirements chart shows the credit hour and distribution requirements for NTID AS, AAS, and AOS degrees. Students enrolled in colleges other than NTID should consult with their program departments about required general education courses.

## NTID General Education Requirements

|  | AS Degree | AAS Degree | AOS Degree |
| :--- | :---: | :---: | :---: |
| Foundation | $6^{*}$ | $6^{*}$ | $9 \dagger$ |
| ASL-Deaf Cultural Studies | - | $(3) \ddagger$ | - |
| Perspectives | $15 \S$ | $15 \S$ | $6^{* *}$ |
| Electives | $9 \dagger \dagger$ | $3 \not \ddagger \ddagger$ | - |
| Minimum Total General | $\mathbf{3 0}$ | $\mathbf{2 4}$ | $\mathbf{1 5}$ |
| Education Semester Credit Hours |  |  |  |

* RIT LAS Foundation courses First Year Writing: Writing Seminar (UWRT-150) (or another approved First Year Writing course) and First Year LAS Elective.
+ Career English I, II (NENG-212, 213) and mathematics (NMTH-120 or higher).
$\ddagger$ An ASL-Deaf cultural studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another RIT college. In order to fulfill this requirement as part of the credits in the program, it can be a course approved for AASASLDCS and an LAS Perspective, or it can be used in some programs as a free elective. § One course from each RIT LAS perspective category: ethical (P1), artistic (P2), global (P3), social (P4), and scientific principles (P6). P6 should be NSCI-250 level or higher for AS; NSCI-120 level or higher for AAS.
** Two courses from NTID LAS perspective categories: ASL-Deaf cultural studies; communication, social, and global awareness; creative and innovative exploration; and scientific processes. See program for specific requirements.
$\dagger \dagger$ One NTID mathematics course (NMTH-250 and higher) or a College of Science
mathematics course, plus two General Education Committee-approved elective courses. $\ddagger \ddagger$ One NTID mathematics course (NMTH-120 or higher).

AS and AAS foundation and perspectives-RIT's framework for general education specifies the requirements for NTID AS and AAS students, including foundation and perspective courses. (See NTID general education requirements chart.)

All AS and AAS students are required to take two foundation courses: First Year LAS Elective and a First Year Writing (FYW) course approved by the RIT University Writing Program. NTID AS and AAS students are advised to take First Year Writing: Writing Seminar (UWRT-150). This course provides students with experience in writing, reading and critical thinking techniques needed for success in LAS general education courses. Deaf and hard-of-hearing students are advised to earn a passing grade in the First Year Writing course before taking any additional general education courses, other than science and mathematics.

Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150), is based on the Writing Placement Exam or upon the satisfactory completion of Critical Reading and Writing (UWRT-100). AS and AAS students who enter NTID with English skills below the level required for their degree of choice will need to successfully complete additional courses before taking the First Year Writing course.

Deaf and hard-of-hearing students enrolled in AS and AAS degree programs are required to take general education courses that satisfy RIT's LAS perspectives 1-ethical, 2-artistic, 3-global,

4 -social and 6 -scientific principles. (See RIT graduation requirements for a description of the perspective categories.) For many of the perspective courses, students can choose between sections taught by either NTID faculty members or by faculty members from other colleges of RIT, including the College of Liberal Arts.
Where general education courses are taught by NTID faculty members, instructors communicate directly with students utilizing a variety of communication strategies that include sign language, spoken language, printed/visual aids, Web-based instructional materials and individual tutoring. The faculty member is responsible for facilitating communication in the classroom.

General education courses in the other colleges of RIT include both deaf and hearing students. Educational access services, such as sign language interpreting services, FM systems, notetaking, or real-time captioning services may be requested by students. Alternative services will be provided as required. Students also may request educational support services such as tutoring or academic advising.

## NTID AOS General Education Framework

AOS students take three NTID foundation courses and two NTID perspective courses, following the specific requirements determined by each AOS program. Approved student learning outcomes associated with the NTID AOS general education framework ensure that students are provided with courses and experiences consistent with NTID's mission, strategic direction, and values. General education AOS courses typically also incorporate aspects of ASL-Deaf cultural studies, critical thinking, and communication. To the extent possible and when appropriate, AOS courses promote community service and active learning components and support writing.

## NTID AOS LAS Foundation Courses

Career English-Courses in this category expose students to basic reading and writing that might be encountered in the workplace.

Mathematics-Courses in this category help students identify and understand the role that mathematics plays in the world.

## NTID AOS Perspective Courses

Communication, Social, and Global Awareness-Courses in this category promote an understanding of self and advocacy in relation to one's interactions with others in personal, professional, and civic lives. Courses address social dynamics as they vary across communities, ranging from local to global. Courses introduce students to contrasting cultural approaches to allow communication in situations such as face-to face, electronic format (such as e-mail or text), and group presentation situations.
Creative and Innovation Exploration-Courses in this category explore the creative process that leads to technological innovation, artistic expression and their products, in a variety of forms, while examining the influence of society and culture on the process and its end results. These courses provide insight into the creative process through innovative approaches to assignments or projects.

Scientific Processes-Courses in this category apply methods of scientific inquiry and problem solving in a laboratory or field experience. Science is more than a collection of facts, so students will be expected to participate in the processes of science as they collect and analyze data, and state conclusions.

## Course placement

The goal of assessment for course placement is to ensure that students begin their studies at the appropriate level. Assessment for initial course placement will be made during summer orientation in the following areas: mathematics, American Sign Language, and writing and reading.

## NTID science and mathematics curriculum

AS and AAS students are required to take a science course that satisfies the RIT scientific principles perspective (P6) general education requirement as well as a mathematics course that satisfies a general education elective. AS students typically take two additional mathematics and/or science courses as electives. All AOS programs require an NTID mathematics foundation course and some require an NTID scientific processes perspective course.

AS and AAS students, as well as AOS students, typically take mathematics and science courses in the college of NTID. These courses foster the reasoning and problem-solving skills that are a part of the foundation of their technical studies. In addition, the NTID science and mathematics curriculum provides an opportunity to develop the mathematical and scientific literacy demanded in today's society. (See typical courses listings in each program for specific requirements.)

## American Sign Language-Deaf Cultural Studies curriculum

NTID deaf and hard-of-hearing students have an opportunity to study American Sign Language and learn about their heritage as deaf people through the ASL-Deaf cultural studies (ASL-DCS) curriculum. An ASL-Deaf cultural studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another RIT college. In order to fulfill this requirement as part of the credits in the program, it can be a course approved for AASASLDCS and an LAS Perspective, or it can be used in some programs as a free elective. AOS students can take ASL-DCS courses to satisfy NTID perspective requirements.

## NTID English program

The NTID English program is designed to enable students to develop their English literacy skills. The program includes course sequences that offer instruction in reading and writing.

Students who plan to graduate with the AOS degree are required to complete 6 credits of English. Career English I and II (NENG-212 and 213) provide the English literacy skills needed for career-focused associate degrees. Students who enter NTID with English skills below the level required for their degree of choice will need to successfully complete additional courses before taking the required English courses.
The course sequence Analytical Reading \& Writing I and II (NENG-221 and 222) and Bridge to College English I and II (NENG-231 and 232) is for students who demonstrate strong potential for improving their skills sufficiently to access the University Writing Program's curriculum for the AS and AAS degrees. A grade of C or better is required at the completion of each course in order to progress through the sequence, and each course must be taken in conjunction with its co-requisite course. Students who earn a D in or withdraw from one or both courses may repeat the course(s) once and must earn a grade of C or better before enrolling in the next sequential course.

## NTID Student Life

## NTID Resources

www.ntid.rit.edu/students/resources/academic
The National Technical Institute for the Deaf offers an array of educational and service activities for deaf and hard-of-hearing students. These activities and services include career and mental health counseling, student-life programming, and communication skills development in the form of speech-language instruction, speechreading, and listening/audiological services, as well as a state-of-the-art learning center.

## NTID Learning Consortium

www.ntid.rit.edu/nlc
The NTID Learning Consortium is a partnership among RIT and NTID academic departments and educational programs. The goal is to support student success in the college curriculum. A primary resource of the Learning Consortium is the NTID Learning Center (NLC).

The NLC represents a creative combination of human, physical, and technological resources through which partnerships can be realized. Resources include:

- regular tutorial support from faculty and advanced students directly tied to discipline-specific curricula and classroom activities. Tutoring is offered in a range of disciplines, including English, math, and technical program majors. Tutorial support for students is available on a walk-in, scheduled, or assigned basis, either individually or in small groups;
- educational workshops (tied either to credit-bearing courses or independent experiences) addressing skills, knowledge, and attitudes important for success in college and beyond;
- computers supporting tutorial activities and course assignments as well as independent student work;
- designated areas for individual and small-group tutoring and studying, and
- designated areas for faculty/staff/students to record and edit videos for classroom materials and activities. The Video Production Studio hosts state-of-the-art hardware, HD cameras, a blue-screen backdrop, and editing software to facilitate optimal video quality. The NLC also sponsors the Sprint Relay Experimental Distance Learning/Access Demonstration Lab. The Sprint Relay Lab is an RIT-wide resource for experimenting with innovative technologies in support of remote learners. Key features of the lab include:
- focusing on both instructional activities and access strategies for deaf and hard-of-hearing learners participating in remote educational experiences;
- evaluating alternative technologies in the context of varied educational objectives, access goals, and student and teacher preferences;
- serving as a beta testing site where instructional and access technologies in support of remote learning can be developed, refined, and exported for use throughout RIT;
- providing a forum for information exchange; exploration of new instructional and access strategies; and training among teachers, students, access service providers, instructional designers and technologists, and researchers; and
- sponsoring vendor-display/consumer-testing for new products related to instructional and access technologies.
The lab includes PC workstations and wireless MacBook laptops; two side-by-side short-throw interactive projectors; a central projector/display system; a matrix router enabling versatile distribution of information to computer monitors and wallmounted displays throughout the room; and four wall-mounted video cameras to record in various settings and configurations.


## ASL Learning Center

ntid.rit.edu/aslie/sil.php
The ASL Learning Center serves as a collaborative learning environment where faculty, staff, and students from all ASL programs can gather to play with the language and have fun using ASL. The center emphasizes engaging with ASL in creative and fun ways that: enhance incidental learning; improve conversational fluency; and foster positive attitudes towards language learning, appreciation of Deaf culture, and respect for the visual language preferences of our Deaf and hard-of-hearing community members.

The center offers facilities and programming that foster group interaction and collaboration. Since language learning is most effective when students interact with native users of the language, the center offers a comfortable space where people can interact in ASL with intriguing programming designed to attract both ASL learners and ASL native users. It provides faculty a venue for experimenting with various out of class activities designed to enhance ASL skill development. It supports student learning outcomes by providing guided group activities that complement the curriculum by providing students a space to collaborate on assignments, establish mentoring relationships, and form study groups-with recording technology readily available to support their work..

## Communication Studies and Services

www.ntid.rit.edu/css
NTID strongly encourages all students to expand their communication skills to communicate with diverse audiences in educational, civic, and professional settings. Communication studies focuses on the effective expression of ideas independent of the language (ASL or English) that the student chooses to use. The communication studies and services department, the department of American Sign Language and interpreting education, and the department of cultural and creative studies provide intensive support and instruction for the development of communication competencies needed to enhance students' professional and personal success. The faculty and staff of the communication studies program conduct assessments and provide course work, workshops, and individualized instruction. They also work in collaboration with faculty and staff across the university.

Speech and language services: Faculty and staff who work in speech and language services provide learning activities that focus on the development of a full range of communication competencies. These activities include individual speech-language assessment and instruction, speech-language lab activities that support technical vocabulary/communication and second-language learning, and individualized use of multimedia and computerized visual feedback systems. Through these activities, students can work on conversational interactions, job-related communication skills, technical and formal presentations, and job interviews.

These services are open to all RIT students and are available through individual appointments with faculty or staff or on a walk-in basis through the Speech-Language Center. This lab has individual private rooms for pronunciation practice, computers for speech and language practice and visual feedback, and stations for digital recording and playback. There is no charge for utilizing these services. The faculty and staff in the department are certified by the American Speech-Language-Hearing Association.

Audiology services: The audiology faculty/staff offer a variety of services and information related to hearing aids, cochlear implants, communication strategies, telecommunications, assistive technologies, auditory training, speechreading, and job interviewing. Hearing and hearing-aid evaluations are available through the Audiology Center (Johnson Hall, room 3130). Evaluations are provided by audiologists certified by the American Speech-Language-Hearing Association and licensed through the State of New York. Faculty/staff are available daily in the center to discuss issues related to hearing loss, tinnitus, cochlear implants, and other areas. FM systems can be loaned to students for the academic year at no cost.

Students can go to the Audiology Center to purchase hearing aid accessories, including batteries, earhooks, and earmolds, and for hearing aid or cochlear implant repairs, as well as other services. In addition, students can schedule appointments for audiology and cochlear implant clinics with faculty/staff as well as with consultant ophthalmologists and otologists in the Eye and Ear Clinic. Services are available to all students, and most are provided at no cost.

## NTID Counseling and Academic Advising Services

www.ntid.rit.edu/counselingdept
(585) 286-4854 (V/VP)

NTID Counseling and Academic Advising Services is committed to helping students realize their full potential for a successful college experience. In pursuit of this goal, each NTID-supported associate level student is assigned a professionally trained counselor who provides a full complement of counseling, advising, assessment, advocacy, and referral services. NTID-supported bachelor level students receive all the services listed above with the exception of academic advising. This is provided by the primary academic adviser in their college. Counselors are trained in career development theory and techniques. Some hold individual certifications from the National Board for Certified Counselors. All counselors follow the guidelines for ethical standards set forth by the American Counseling Association. Counselors assist with student orientation, educational and career planning, adjustment to college life, study-skill development, access and referral to on-campus and community resources, and a wide range of personal and interpersonal concerns.

## NTID Mental Health Services

(585) 475-2261 or (585) 475-3333 (after hours)

The Counseling Center provides confidential mental health counseling to all hearing, deaf, and hard-of-hearing students requesting assistance. Members of the center work closely with RIT's Student Health Center, the Center for Residence Life, the NTID Counseling and Academic Advising Services department, Public Safety, and related campus units. Some of the counselors at the center are fluent in sign language.

Some concerns that students may need help resolving include medication referral and management, depression, anxiety, family conflicts, intimate relationships, and sexual and personal identity matters. Workshops, discussion groups, and group counseling on topics such as stress management, eating disorders, managing emotions, and improving relationships also are offered.

A 24-hour emergency crisis intervention service for students experiencing mental or emotional trauma is provided in conjunction with other relevant campus units.

## NTID Student Life Team

(866) 761-3896 (VP/VRS)

The Student Life Team is committed to providing quality co-curricular programs designed to help students enhance their quality of life, sense of relevancy to their studies, and overall satisfaction with and success in college. Through collaboration with other units within NTID and RIT, creative program strategies, and commitment to utilizing student paraprofessionals, the Student Life Team facilitates cultural diversity awareness, minority student support, leadership development, and exposure to deaf culture, ASL, and other communication modes. It also addresses contemporary social issues that impact college students.

## NTID Wellness, Intercollegiate Athletics, and Intramural Support <br> \section*{rit.edu/criw}

(585) 475-6104

NTID provides services that maximize access and success for deaf and hard-of-hearing students engaged in health/wellness seminar discipline courses and other programs offered by the Center for Intercollegiate Athletics and Recreation. Support services ensure that education, consultation, communication and resource opportunities are available to deaf and hard-of-hearing students taking courses, engaging in programs, or participating in athletics. Mentoring is available. Leadership and other workshops are provided for deaf athletes throughout the year. Liaison services and educational programs are provided to the center's faculty and staff, athletic teams, and student employees.

## NTID Summer Vestibule Program

www.ntid.rit.edu/svp
The Summer Vestibule Program is NTID's required orientation program for new deaf and hard-of-hearing students that assists and prepares them for complex tasks; i.e., career awareness, decision making, adjustment to college life, and assessment of academic skills and competencies. During the program, students learn about the programs offered at NTID and the other RIT colleges, while faculty and staff members evaluate students' skills, abilities, and motivation. Through this process, students gain information that assists in the selection or confirmation of an appropriate program and the design of their individual academic plans.
Acceptance into SVP does not automatically guarantee admission to the program the student selects. The final decision on acceptance into a program of study for the fall semester is the responsibility of each academic department. Admission to a program depends on
successfully completing SVP, having requisite skills to begin the program of study, and availability of space in that program.

During SVP, students participate in various activities, including orientation to college services and academic expectations, career sampling, career planning, and placement assessments in mathematics and English. Recreational and social activities also are part of the program.

## NTID Support Service Orientation Workshops

www.ntid.rit.edu/svp/ntidbsstudents
The NTID Support Service Orientation (NSSO) workshops are designed for deaf and hard-of-hearing students who have been accepted into an RIT bachelor's degree program. These workshops provide students with information on how to use the various NTID educational access and support services available to them, acquaint them with RIT's campus and services, and allow them to meet other new students as well as their department's chairperson and faculty members, who will assist them with fall semester class registration and support services needed throughout the year.

## NTID Student Congress

www.ntid.rit.edu/nsc
The NTID Student Congress is an organization comprised of deaf and hard-of-hearing students who represent and provide programs for members of their community. The organization helps interested students communicate their needs, ideas, and concerns about campus life to faculty members, administrators, and other student organizations within RIT; provides opportunities for developing leadership skills; and encourages student activities and integration by providing deaf and hard-of-hearing students with opportunities to interact with their peers socially, academically, athletically, and culturally. Students interested in getting involved may stop in at the NTID Student Congress office in the CSD Student Development Center.

## NTID Performing Arts

## www.ntid.rit.edu/theatre

RIT/NTID Dance Company: The RIT/NTID Dance Company is a unique ensemble of deaf, hard-of-hearing, and hearing students that enriches the educational life of its dancers by providing challenging and rewarding choreographic and performance opportunities. Membership in the company is open to the entire RIT community (dancers as well as nondancers, from every level of ability and experience) at an annual audition in the fall semester.

The RIT/NTID Dance Company has presented a diverse repertoire consisting of full-length ballets and student and faculty choreography in modern dance, jazz, and a variety of ethnic-based dance. The company also has had guest choreographers and performers, including Garth Fagan, Sahomi Tachibana, Tim Draper, Michael Thomas, Sean McLeod, Carolyn Dorfman, Thomas Warfield, Hong Kong-based choreographer Andy Wong, deaf choreographer Christopher Smith, the Nrityagram Dance Ensemble of India, and Jim Donovan, lead drummer for Rusted Root. For information, contact Thomas Warfield, director of dance, at (585) 475-6252 (voice) or tfwnvc@rit.edu.

Panara Theatre: Students and faculty produce major plays and performances featuring deaf and hearing actors, dancers, and technical staff. For more information, please visit www.ntid.rit.edu/ theatre.

Lab Theater: Lab Theater features experimental, new, or unusual productions. New directors and student writers also use the space for developing their skills. For information, call (585) 475-6250 (voice). NTID performing arts course offerings: For information regarding acting, mime, technical theater, lighting, play creating, script translation, or dance classes, call NTID's Performing Arts Program, (585) 475-6250 (voice).

## NTID Admission Information

## Costs of attending RIT through NTID

The total cost of attending RIT through NTID sponsorship includes tuition, room, board, and fees. Charges to NTID-supported students are updated each year. The cost of books and supplies is students' responsibility. These costs vary depending on each student's program of study. The estimated cost for books and supplies for the 2016-17 academic year is $\$ 1,050$.

New students attending the Summer Vestibule Program will be charged a fee. Students participating in cooperative education are not charged tuition or fees for that particular term. They will be charged room, board, and residence hall fees, however, if they live on campus while participating in a co-op.

All students are required to carry accident and health insurance. Students may choose insurance coverage through RIT, or they may waive this coverage if they provide evidence of other insurance coverage. Waiver cards will be sent to all accepted students during the summer and will be available at registration. The fee for health insurance for 2016-17 is $\$ 1,822$.

## Deaf and hard-of-hearing applicants

Deaf and hard-of-hearing students may apply for admission to any of RIT's colleges. All applicants with a hearing loss should check the appropriate box on the application and submit an unaided audiological record completed by a certified audiologist (CCC-A) in order to qualify for educational access and support services as well as NTID's federally supported tuition rate. Send application materials to the NTID Office of Admissions. For further details regarding application requirements, please refer to the information in the Undergraduate Admission section of this bulletin.

## Transfer credit

Deaf and hard-of-hearing students may transfer into an NTID program, or they may qualify to enroll directly in a program in another RIT college with NTID sponsorship. The transfer credit of deaf students accepted to the Summer Vestibule Program will be evaluated in the fall, when they are accepted into a specific program.

## Campus visits

Deaf and hard-of-hearing students who wish to visit RIT may contact NTID's Office of Admissions at (585) 475-6700 (voice), by videophone at (585) 743-1366, or via e-mail at visitNTID@rit.edu. Students may take tours of campus and arrange personal interviews. Both of these are strongly encouraged but are not required for admission.

## Facilities

A modern academic and residential building complex on the RIT campus is designed to meet the specific needs of deaf and hard-ofhearing students. Lyndon Baines Johnson Hall and Hugh L. Carey Hall house laboratories, offices, communication studies and services centers, classrooms, and a theater. These classrooms and laboratories support the latest technologies for teaching and include high-resolution projection displays, digital document displays, DVDs, FM systems, Internet access, smart display boards, and other computerbased services. In addition, classrooms are specifically designed to meet the unique needs of both students and teachers.

The Communication Service for the Deaf (CSD) Student Development Center, interconnecting Johnson Hall and The Commons, which is an adjacent dining hall, is the focal point for students, faculty, and staff to engage in social events and community activities. In addition to a large multipurpose space for formal and informal lectures, small meeting rooms and offices provide workspace for student government groups, clubs, and organizations.

Sebastian and Lenore Rosica Hall, adjoining The Commons, is NTID's center for sponsored research. Rosica Hall is the home for several research centers which promote collaboration between faculty and staff. Rosica Hall also boasts an Innovation Center which will be a place where students, faculty, and mentors will work together using multidisciplinary collaborative innovation teams to turn their ideas into realities.
NTID's main academic building, Johnson Hall, boasts a state-of-the-art learning center. Using the latest technologies available, this center provides academic experiences, tutorial services, and course enrichment opportunities for all students. It provides students with access to networked computer workstations, videoconferencing capability, and a special technology-centered classroom.

One of the features of Johnson Hall is the Joseph F. and Helen C. Dyer Arts Center. This 7,000-square-foot facility features art exhibits as well as NTID's permanent art collection. The center also incorporates art-related educational activities, such as lectures and demonstrations, while serving as a multiuse facility. Johnson Hall also includes the Panara Theatre, a 500-seat facility where theatri-
cal productions are produced simultaneously in American Sign Language and English. The theater also hosts a wide range of cultural activities from all over the world, enriching student life and broadening students' world view.

All residence hall rooms, campus apartments, classrooms, laboratories, and administrative areas can access the campuswide computer network with wired or wireless connections.
All RIT and NTID residence halls are aggressively maintained and provide students with an appealing, highly functional living environment. Special rooms have been created to serve physically challenged students. Students are encouraged to bring their own computers to connect to the campus network and Internet from their rooms. A selection of apartment units also is available. Visual emergency strobe lights and visual doorbells are present throughout residence halls, apartments, and academic buildings.

Television, a basic part of the college's communication network, is used for both education and entertainment. Campus cable connections are provided in residence hall rooms, classrooms, and various other locations. The system supports 22 channels of basic service, which includes ABC, CBS, NBC, Fox, WB, PBS, a local news channel, a local public access channel, and several channels used on campus for distribution of educational programming. This basic service is free, although students may elect to purchase full cable service from the Rochester cable system provider.
A well-equipped television facility provides studio services to produce class and self-instruction media for use within the university.

## Telecommunications

NTID students can access telephone services through VRS and computer-based relay services. CapTel service also is available in New York state.

Public videophones are available to students in several on campus locations. Students who have their own videophones are encouraged to bring them to campus at move-in, and students who do not yet have videophones will be encouraged to work with the VRS provider of their choice to acquire one.

## NATIONAL TECHNICAL INSTITUTE FOR THE DEAF FIXED CHARGES 2016-2017 (DOMESTIC STUDENTS)

|  | Summer Vestibule Program <br> Aug. 7-20, 2016 | NSSO* <br> Aug. 16, 2016 | Fall Semester <br> Aug. 22-Dec. 16, 2016 | Spring Semester <br> Jan. 23-May 20, 2017 |
| :--- | :--- | :--- | :--- | :--- |
| Tuition | $\$ 700$ | 0 | $\$ 7,570$ | \$7,570 |
| Room | $\$ 245$ | 0 | $\$ 3,581$ | \$3,581 |
| Board (standard meal plan) | $\$ 221$ | 0 | $\$ 2,669$ | $\$ 2,669$ |
| Student fees $\dagger$ | 0 | 0 | $\$ 272$ | $\$ 272$ |
| Orientation fee $\ddagger$ | 0 | 0 | $\$ 225$ | 0 |
| Student health insurance fee | 0 | 0 | $\mathbf{\$ 1 , 8 2 2}$ |  |
| Total | $\mathbf{\$ 1 , 1 6 6}$ | $\mathbf{0}$ | $\mathbf{\$ 1 6 , 1 3 9}$ | 0 |

[^5]Notes: Required books and supplies will impact these figures.
The standard academic year includes fall and spring semesters.
New students accepted to the Summer Vestibule Program will be charged according to the prorated fee schedule indicated above.

Students in co-op will not be charged tuition or fees for that particular semester and will be charged room and board only if they live on campus while they work.

## Communication skills

Communication competence is considered an important component of the student's educational experience at NTID. Students have opportunities to develop skills through a wide range of curricular and co-curricular activities that promote communication success in educational, social, and work situations. The communication studies and services department, the department of American Sign Language and interpreting education, and the department of cultural and creative studies provide intensive support and instruction for the development of communication skills. Faculty and staff conduct assessments and provide coursework, workshops, and individualized instruction. They also work collaboratively with instructional/support faculty and professional staff.

## The Audiology Center

The NTID Audiology Center provides the RIT community with services related to hearing loss, hearing aids, and cochlear implants. Students may visit the center to receive information about hearing loss and cochlear implants or to schedule clinical appointments, obtain new ear molds and batteries, have hearing aids repaired and other services. The center is located in Johnson 3130 and can be contacted by calling (585) 475-6473 (voice) or by emailing audiology@rit.edu.

## NTID counseling and academic advising services

Every NTID-supported student is assigned a counselor in the NTID counseling and academic advising services department. Counselors provide individual, personal, social, and career counseling to all of their students as well as academic advising services to students enrolled in NTID associate degree programs. In addition, counselors work closely with students and faculty in students' academic programs to help students achieve academic success. Counselors also consult and network extensively with families and internal and external resources with the goal of helping students achieve personal, career, and educational success. Most counselors assist in the teaching of the Freshman Seminar course and the Career Decision Making Series. Students can contact their assigned counselors to arrange for appointments.

## Career resource and testing center

The innovative Career Resource and Testing Center provides NTID students with useful educational, career, and assessment services. Print, video, and online sources of information allow students to learn about personal interests, values, and skills as well as suitable college and career options. Computerized guidance and assessment programs allow students to compare their personal characteristics with occupations. The center also supports our college's Career Decision Making Series, which helps undecided students develop a personal career plan. The center is coordinated by a professional counselor from NTID Counseling and Academic Advising Services and is open weekdays. For additional information or an appointment, call Katie Zuris, Staff Assistant for NTID Counseling and Academic Advising Services at (585) 475-6468 (V), (585) 286-4570 (VP) or e-mail: crzncd@rit.edu.

## Mental health/psychological counseling

Mental health counseling services for deaf and hard-of-hearing students are part of a range of services at the RIT Counseling Center. Individual and group therapy are offered for psychological and adjustment issues such as depression, anxiety, family conflicts, relationships, college success, and identity issues. Mental health emergency services and crisis intervention are provided by the RIT Counseling Center on a 24 -hour basis in collaboration with other campus service providers. The Counseling Center also coordinates medication consultation and management, when appropriate, through the RIT psychiatrist.

Psychoeducational programs and workshops also are offered on a variety of topics, including body image, stress management, depression, and social skills.

Counseling Center staff provides consultation about mental health issues and deafness on campus, locally, nationally, and internationally.

## Cooperative education

A feature of most RIT academic programs, including those offered through NTID, is cooperative education. Co-op provides students with the opportunity to gain hands-on experience in their chosen career field. NTID AAS and AOS programs require a co-op education experience. A majority of students complete the co-op experience during the summer. However, co-op can be completed any time during the year, consistent with a student's course schedule.

## Employment

Employment of deaf and hard-of-hearing graduates is a high priority for NTID. To help ensure that graduates obtain programrelated employment, NTID's Center on Employment assigns each new student an adviser experienced in employment assistance in the various academic concentrations. To help prepare them for obtaining cooperative education experiences and full-time employment, students in AAS and AOS programs take required job preparation courses.

The center's employment advisers are in constant contact with potential employers throughout the United States. In addition, the center hosts an annual job fair attended by national employers. Such services have contributed to a high employment rate of deaf and hard-of-hearing graduates. Over the past five years, 93 percent of deaf and hard-of-hearing graduates who chose to enter the workforce have found employment.

## Research

NTID is a nationally known center on deafness. Faculty and staff at NTID conduct state-of-the-art research to better understand factors associated with deaf and hard-of-hearing students in a number of areas, such as teaching and learning, language and communication, technology access support, and employment, including career growth and success. The dual mission of the NTID research enterprise is to conduct scientific research investigations and to make the findings available to students, parents, teachers, researchers, and other professionals. Students may become involved in NTID research by volunteering to participate in a research study, becoming a research assistant, or conducting their own research under the supervision of NTID faculty and staff.

## ASL-English Interpretation, BS

## www.rit.edu/NTID/aslie

## Kim Brown Kurz, Chairperson <br> (585) 286-5511 (VP), kbknss@rit.edu

## Program overview

## On-the-job responsibilities

The BS degree program in ASL-English interpretation prepares sign language interpreters for work in settings where deaf, hard-of-hearing, and hearing people interact and communicate. This degree allows students to develop foundation skills for general interpreting, with opportunities to explore specialized fields such as those in educational and medical settings, and/or community interpreting.

## Places of employment

Graduates will find work in a variety of settings, including elementary, secondary, and post-secondary educational institutions; community service organizations; hospitals or clinics; vocational rehabilitation agencies; business/industry; and government agencies.

## Admission requirements

In addition to RIT's general admissions procedures, the ASL-English interpretation major requires applicants to complete admission materials from the NTID Admissions Office.

## Academic preparation

Applicants are required to have at least a high school diploma or equivalent. High school preparation should include a college preparatory program with a minimum of four years of English (with a minimum of a B average), three years of science and mathematics, and two years of a foreign language.

Applicants must demonstrate beginning ASL competency equivalent to ASL 1.
The middle 50 percent of accepted NTID applicants possess SAT scores of 1530-1940. Equivalent ACT composite scores are 22-29. Either SAT and ACT tests may be submitted.

For those applicants who have had college experience, college transcripts should document a GPA of 3.0 or better, with evidence of very good performance in English courses. A writing sample will be judged on vocabulary, grammar, structure, style, and creativity.
To succeed in this program, students must be able to understand a speaker who is behind them; understand a speaker who is far away; focus on what a speaker is saying in a noisy room; and understand recorded voices through headphones. To see a list of the major skills and abilities needed to study sign language interpreting, please visit the section "Is Interpreting the Career for Me?" on our website.

## Curriculum

## ASL-English interpretation, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| INTP-125 | American Sign Language II | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3, 4, 7A, 7B | 18 |
| INTP-126 | American Sign Language III | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| INTP-210 | Introduction to the Field of Interpreting | 3 |
| INTP-225 | American Sign Language IV | 3 |
|  | Deaf Cultural Studies Elective | 3 |
|  | LAS Elective | 3 |
|  | LAS Perspective $5 \ddagger, 6$ | 7 |
| INTP-215 | Processing Skills Development | 3 |
| INTP-220 | Discourse Analysis | 3 |
| INTP-226 | American Sign Language V | 3 |
| MLAS-351 | Linguistics of ASL | 3 |
| Third Year |  |  |
| INTP-310 | Interpreting \| | 3 |
| INTP-325 | American Sign Language VI | 3 |
| INTP-315 | Practical and Ethical Applications | 3 |
|  | LAS Elective | 3 |
|  | Free Elective | 3 |
| INTP-326 | American Sign Language VII | 3 |
| INTP-335 | Interpreting II: English to ASL | 3 |
| INTP-336 | Interpreting II: ASL to English | 3 |
|  | Professional/Technical Elective | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| INTP-350 | Practicum and Seminar I | 3 |
| INTP-435 | Interpreting III: English to ASL | 3 |
| INTP-436 | Interpreting III: ASL to English | 3 |
|  | Professional/Technical Elective | 3 |
|  | LAS Immersion 2, 3 | 6 |
| INTP-440 | Interpreting IV: Adapting to Diverse Consumers | 3 |
| INTP-450 | Practicum and Seminar II | 3 |
| INTP-460 | Issues in Interpreting (WI) | 3 |
|  | Free Elective | 3 |
| Total Semester Credit Hours |  | 123 |

Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) refers to writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students may select one of the lab science courses listed below to fulfill this requirement. Both the lecture and the laboratory sections must be taken. Human Biology I (MEDG-101) and Human Biology Lab 1 (MEDG-103), Human Biology II (MEDG-102) and Human Biology Lab II (MEDG-104), Field Biology (BIOG-110), General Biology I (BIOL-101) and General Biology Lab I (BIOL-103), General Biology II (BIOL-102) and General Biology Lab II (BIOL-104), Introductory Biology I (BIOL-121), Introductory Biology II (BIOL-122), General-Organic-Biochemistry I (CHMG-111), College Physics I (PHYS-111), College Physics II (PHYS-112)


## ASL-English Interpretation, AAS

http://www.ntid.rit.edu/aslie

## Kim Brown Kurz, Chairperson <br> (585) 286-5511 (VP), kbknss@rit.edu

## Program overview

## On-the-job responsibilities

The ASL-English interpretation major prepares entry-level sign language interpreters for work in settings where deaf, hard-of-hearing, and hearing people interact and communicate. The degree allows students to develop foundation skills.

## Places of employment

Graduates will find entry work in a variety of settings, including elementary, secondary, and post-secondary educational institutions; community service organizations; vocational rehabilitation agencies; business/ industry; and government agencies

## Admission requirements

In addition to RIT's general admissions procedures, the ASL-English interpretation major requires applicants to complete admission materials from the NTID Admissions Office.

## Academic preparation

Entry to the associate degree option is available for students who demonstrate proficiency at the ASL III (INTP-126) level and are ready to enter ASL IV (INTP-225) (see course descriptions). It is strongly recommended that applicants possess a BS degree. (Note: Candidates for national interpreter certification must possess a baccalaureate degree.) For those applicants who have had college experience, college transcripts should document a GPA of 3.0 or better, with evidence of very good performance in English courses. A writing sample will be judged on vocabulary, grammar, structure, style, and creativity.

To succeed in this major, students must be able to understand a speaker who is behind them; understand a speaker who is far away; focus on what a speaker is saying in a noisy room; and understand recorded voices through headphones. To see a list of the major skills and abilities needed to study sign language interpreting, please visit the section "Is Interpreting the Career for Me?" on our website.

## Curriculum

ASL-English interpretation, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| INTP-210 | Introduction to the Field of Interpreting | 3 |
| INTP-225 | American Sign Language IV | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2, 3 | 9 |
| INTP-215 | Processing Skills Development | 3 |
| INTP-220 | Discourse Analysis | 3 |
| INTP-226 | American Sign Language V | 3 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  | 3 |
| INTP-310 | Interpreting I | 3 |
| INTP-315 | Practical and Ethical Applications | 3 |
| INTP-325 | American Sign Language VI | 6 |
|  | LAS Perspective 4, 6 | 3 |
| INTP-326 | American Sign Language VII | 3 |
| INTP-335 | Interpreting II: English to ASL | 3 |
| INTP-336 | Interpreting II: ASL to English | 3 |
| INTP-350 | Practicum and Seminar I | 3 |
|  | LAS Elective: Mathematics | 60 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course


## Accounting Technology, AAS

## http://www.ntid.rit.edu/businessstudies

## Mary Lou Basile, Chairperson, Business Studies

(585) 475-6460 (V/TTY), mlbnbt@rit.edu

## Program overview

The AAS degree in accounting technology prepares students for entrylevel employment in accounting-related occupations. Students learn the functions of the complete accounting cycle for service, merchandising, and manufacturing businesses. Graduates will use computers to maintain and reconcile various financial records, verify business records, and perform other clerical and administrative duties.

The Associate+Bachelor's degree program provides students with the foundation needed for transfer into a bachelor's degree program. Students begin their studies in the associate of applied science program in accounting technology. Upon successful completion of five semesters of the AAS program, and with a minimum GPA of 2.5 , students may enroll in RIT's School of Individualized Studies to pursue a bachelor's degree in applied arts and science. More information is available at ntid.rit.edu/ businessstudies/accaplusb.

## Places of employment

Graduates will find employment in a variety of settings, including business, industry, and government, as well as self-employment. Positions for which graduates qualify include junior accounting technician, cost accounting clerk, accounts receivable/payable clerk, payroll clerk, general accounting clerk, and microcomputer accounting clerk.

## Prerequisites

English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Any math course numbered NMTH-120 or higher is required. Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Accounting technology, AAS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
| NCAR-100 | Freshman Seminar | 1 |
|  | First Year LAS Elective | 3 |
|  | ASL/Deaf Cultural Studies§ | 0 |
|  | LAS Perspective 1 | 3 |
| NAST-160 | Spreadsheet Applications for Business | 3 |
| NACC-130 | Personal Finance | 3 |
| NAST-140 | Essential Document Production | 3 |
|  | LAS Foundation 2: First Year Writing | 3 |
| NMTH-120 | Mathematics $\ddagger$ | 3 |
| NACC-201 | Accounting 1 | 3 |
| NBUS-200 | Orientation to Business | 3 |
| NAST-150 | Advanced Document Production | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
|  | LAS Perspective 2, 3, 4 | 9 |
| NAST-210 | Essentials of Business Communication | 3 |
| NACC-202 | Accounting 2 | 3 |
| NAST-215 | Integrated Document Production | 3 |
| NAST-220 | Database Applications for Business | 3 |
| NACC-203 | Accounting 3 | 3 |
| NBUS-217 | Fundamentals of Management | 3 |
| NBUS-213 | Applied Ethics for Business | 3 |
| NACC-299 | Cooperative Education | Co-op |
| Third Year |  |  |
|  | LAS Perspective 6 | 3 |
| NACC-204 | Accounting Capstone | 3 |
| NBUS-223 | Fundamentals of Marketing | 3 |
| NBUS-220 | Introduction to Economics | 3 |
|  | Free Elective | 3 |
| Total Semester Credit Hours |  | 76 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course.
$\ddagger$ Any mathematics course numbered NMTH-120 or higher.
§ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS
Perspective or LAS Elective or it can be used to fulfill an Open Elective.


## Additional information

## Microsoft certification

The department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

## Administrative Support Technology, AAS

http://www.ntid.rit.edu/businessstudies

## Mary Lou Basile, Chairperson <br> (585) 475-6460 (V/TTY), mlbnbt@rit.edu

## Program overview

The AAS degree program in administrative support technology provides students with opportunities to develop skills needed in processing information using a variety of integrated office software applications as well as appropriate professional interpersonal communication skills. Graduates will input, manipulate, and retrieve data; use interactive office software and e-mail; learn information processing skills for applications such as word processing, spreadsheet, presentation, and database; and perform other office duties.

The Associate+Bachelor's degree program provides students with the foundation needed for transfer into a bachelor's degree program. Students begin their studies in the associate of applied science program in administrative support technology. Upon successful completion of five semesters of the AAS program, and with a minimum GPA of 2.5, students may enroll in RIT's School of Individualized Study to pursue a bachelor's degree in applied arts and science. More information is available at www.ntid.rit.edu/businessstudies/asbs-ast.

## Places of employment

Graduates will find employment in a variety of settings, including business, industry, government, and education. Positions for which graduates qualify include administrative assistant, office assistant, word processor, and secretary.

## Prerequisites

English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Mathematics course (NMTH-120) or higher is required. Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Typically, students entering this program will have completed at least two years of high school science.

Curriculum
Administrative support technology, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | ASL Deaf Cultural Studiest | 3 |
|  | First Year LAS Elective | 3 |
| NAST-140 | LAS Perspective 1 | 3 |
| NACC-130 | Essential Document Production | 3 |
| NAST-160 | Personal Finance | 3 |
|  | Spreadsheet Applications for Business | 3 |
| NMTH-120 | First Year Writing Seminar | 3 |
| NAST-150 | Mathematics $\ddagger$ | 3 |
| NBUS-200 | Advanced Document Production | 3 |
| NACC-201 | Orientation to Business | 3 |
| Second Year | Accounting 1 | 0 |
|  | Wellness Education* | 9 |
| NAST-220 | LAS Perspective 3, 4, 6 | 3 |
| NAST-215 | Database Applications for Business | 3 |
| NAST-210 | Integrated Document Production | 3 |
| NBUS-213 | Essentials of Business Communication | 3 |
| NAST-225 | Applied Ethics for Business | 3 |
| NAST-240 | Business Graphics | 3 |
| NBUS-217 | Administrative Support Technology Seminar | 3 |
| NAST-299 | Fundamentals of Management | 3 |
| Third Year | Cooperative Education | 3 |
| NBUS-223 |  | 3 |
| NAST-230 | LAS Perspective 2 | 3 |
| NBUS-221 | Fundamentals of Marketing | 3 |
|  | Desktop Publishing for Business | 3 |
| Essentials of Human Resource Management | 3 |  |
|  | Free Elective | 3 |
|  |  | 3 |

Total Semester Credit Hours 76
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\dagger$ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS
Perspective or LAS Elective or it can be used to fulfill an Open Elective
$\ddagger$ Any mathematics course numbered NMTH-120 or higher.


## Additional information

## Microsoft certification

As an authorized testing center for Microsoft Office Specialist, preparatory courses are offered to prepare students for several exams each semester.

## Applied Computer Technology, AAS

http://www.rit.edu/NTID/act

Elissa Olsen, Chairperson
(585) 475-2225 (V), emondp@rit.edu

## Program overview

Computers are important to all parts of the economy, and the number of careers that involve work with computers is constantly expanding. Students in the AAS degree program in applied computer technology take courses to prepare them for careers that involve maintaining computer software and hardware, installing and maintaining computer networks, and working with a variety of computer applications.

## Program concentrations

Students will select a concentration in computer technical support or networking and cyber security in the second year.

Computer technical support: This concentration develops skills specific to working with office professionals to solve computer-related problems. These skills prepare students to work at a help desk responding to a client's computer problems and performing setup, upgrades, and repairs to computers and computer peripherals.

Networking and cyber security: Students in this concentration develop skills specific to network and network security support. The skills include server setup, support and administration, network setup, troubleshooting and repair, identifying and implementing security policies, and installing appropriate hardware and software to support a secure and robust network.

## On-the-job responsibilities

Students work as computer technicians, computer support specialists, network technicians, network security technicians, and network administrators.

## Places of employment

Graduates can expect to work in a variety of environments, including banks, insurance companies, large stores, manufacturing companies, public utilities, government agencies, health care agencies, hospitals, and many other kinds of departments and businesses that use computers and networks.

## Prerequisites

Successful completion of a sampling experience in applied computer technology, either through the Summer Vestibule Program or equivalent career exploration course, is a prerequisite for this program, as are the following:

English: Placement into a First Year Writing course, such as the FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Mathematics in Society (NMTH-140) or a higher-level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Applied computer technology (computer technical support concentration), AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | ASL-Deaf Cultural Studies $\ddagger$ |  |
| NACT-150 | Introduction to PC Hardware | 3 |
| NACT-160 | Networking Essentials | 3 |
| NACT-170 | Introduction to Web Development | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Elective§ | 3 |
| NACT-151 | Windows Operating Systems | 3 |
| NACT-161 | Client-Server Networks | 3 |
| NACT-155 | Non-Windows Operating Systems | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1 | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NACT-200 | Help Desk Support | 3 |
| NACT-250 | Computer and Data Security | 3 |
| NACT-230 | Introduction to Programming | 3 |
| NACT-240 | World of Work | 3 |
| NACT-251 | Digital Systems Integration | 3 |
| NACT-295 | ACT Technical Capstone | 3 |
| NACT-235 | Introduction to Database Applications | 3 |
|  | LAS Perspective 2, 3, 4 | 9 |
| NACT-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NACT-252 | Server Management and Security | 3 |
|  | Professional/Technical Electives** | 6 |
|  | LAS Perspective 6 | 3 |
| Total Seme | t Hours | 73 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\ddagger$ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS Perspective.
§ NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140 Mathematics in Society.
** ACT program electives include A+ Certification Prep (NACT-255), LAN/WAN Design (NACT-260), Network Security (NACT 261), Network+ Certification Prep (NACT-265), Network Defense Technologies (NACT-266), Web Applications (NACT-270), and Client-Side Scripting (NACT-271). Additional electives from another NTID major can be taken with approval from the ICS Department Chair.

Applied computer technology (networking and cyber security concentration), AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | ASL-Deaf Cultural Studies $\ddagger$ |  |
| NACT-150 | Introduction to PC Hardware | 3 |
| NACT-160 | Networking Essentials | 3 |
| NACT-170 | Introduction to Web Development | 3 |
|  | First Year LAS Elective | 3 |
| NACT-151 | LAS Elective§ | 3 |
| NACT-161 | Windows Operating Systems | 3 |
| NACT-155 | Client-Server Networks | 3 |
|  | Non-Windows Operating Systems | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1 | 3 |
| Second Year | Wellness Education* | 0 |
| NACT-200 | Help Desk Support | 3 |
| NACT-260 | LAN WAN Design | 3 |
| NACT-230 | Introduction to Programming | 3 |
| NACT-240 | World of Work | 3 |
| NACT-261 | Network Security | 3 |
| NACT-295 | ACT Technical Capstone | 3 |
| NACT-235 | Introduction to Database Applications | 3 |
| NACT-299 | LAS Perspective 2, 3, 4 | $\mathbf{3}$ |
| Third Year | Cooperative Education | $\mathbf{3}$ |
| NACT-262 | Fundamentals of Systems Administration | 3 |
|  | Professional/Technical Electives** | 3 |
| Total Semester Credit Hours | 6 |  |
|  | LAS Perspective 6 | 3 |
|  |  | 3 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course
$\ddagger$ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS Perspective.
§ NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140 Mathematics in Society.
** Professional/Technical electives include Computer and Data Security (NACT-250), Digital Systems Integration (NACT-251), A+ Certification Prep (NACT-255), Network+ Certification Prep (NACT-265), Network Defense Technologies (NACT-266), Web Applications (NACT-270), and Client-Side Scripting (NACT-271). Additional electives from another NTID major can be taken with approval from the ICS Department Chair.


## Applied Computer Technology, AOS

http://www.rit.edu/NTID/act
Elissa Olsen, Chairperson
(585) 475-2225, emondp@rit.edu

## Program overview

Computers are important to all parts of the economy, and the number of careers that involve work with computers is constantly expanding. Students in the AOS degree program in applied computer technology take courses to prepare them for careers that involve maintaining computer software and hardware, installing and maintaining computer networks, and working with a variety of computer applications.

## Program concentrations

Students select a concentration in computer technical support or networking cyber security in their second year.

Computer technical support: This concentration develops skills specific to working with office professionals to solve computer-related problems. These skills prepare students to work at a help desk responding to a client's computer problems and performing setup, upgrades, and repairs to computers and computer peripherals.

Networking and cyber security: Students in this concentration develop skills specific to network and network security support. The skills include server setup, support and administration, network setup, troubleshooting and repair, identifying and implementing security policies, and installing appropriate hardware and software to support a secure and robust network.

## On-the-job responsibilities

Students work as computer technicians, computer support specialists, network technicians, network security technicians, and network administrators.

## Places of employment

Graduates can expect to work in a variety of environments, including banks, insurance companies, large stores, manufacturing companies, public utilities, government agencies, health care agencies, hospitals, and many other kinds of departments and businesses that use computers and networks.

## Prerequisites

Successful completion of a sampling experience in applied computer technology, either through the Summer Vestibule Program or equivalent career exploration course, is a prerequisite for this major, as are the following:

English: Placement into Career English I (NENG-212) or above. Students successfully completing the AOS degree typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Mathematics in Society (NMTH-140) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

## Applied computer technology (computer technical support concentration), AOS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| NACT-150 | Introduction to PC Hardware | 3 |
| NACT-160 | Networking Essentials | 3 |
| NACT-170 | Introduction to Web Development | 3 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
|  | NTID LAS Foundation: Mathematics $\dagger$ | 3 |
| NACT-151 | Windows Operating Systems | 3 |
| NACT-161 | Client-Server Networks | 3 |
| NACT-155 | Non-Windows Operating Systems | 3 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NACT-200 | Help Desk Support | 3 |
| NACT-250 | Computer and Data Security | 3 |
| NACT-230 | Introduction to Programming | 3 |
| NACT-240 | World of Work | 3 |
| NACT-251 | Digital Systems Integration | 3 |
| NACT-295 | ACT Technical Capstone | 3 |
| NACT-235 | Introduction to Database Applications | 3 |
|  | NTID LAS Perspective $\ddagger$ | 3 |
| NACT-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NACT-252 | Server Management and Security | 3 |
|  | Professional/Technical Electives§ | 6 |
|  | NTID LAS Perspective $\ddagger$ | 3 |

Total Semester Credit Hours64

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\dagger$ NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140 Mathematics in Society. Students who place above NMTH-140 can take math or a 3-credit course from any non-science perspective category
$\neq$ NTID LAS Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& GLobal Awareness; and Creative and Innovative Exploration.
$\S A C T$ program electives include A+ Certification Prep (NACT-255), LAN WAN Design (NACT-260), Network Security (NACT 261), Network+ Certification Prep (NACT-265), Network Defense Technologies (NACT266), Web Applications (NACT-270), Client-side Scripting (NACT-271). Additional electives from another NTID major can be taken with approval from the ICS Department Chair

Applied computer technology (networking and cyber security concentration), AOS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NACT-150 | Introduction to PC Hardware | 3 |
| NACT-160 | Networking Essentials | 3 |
| NACT-170 | Introduction to Web Development | 3 |
| NCAR-100 | Freshman Seminar | 1 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
|  | NTID LAS Foundation: Mathematicst | 3 |
| NACT-151 | Windows Operating Systems | 3 |
| NACT-161 | Client-Server Networks | 3 |
| NACT-155 | Non-Windows Operating Systems | 3 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NACT-200 | Help Desk Support | 3 |
| NACT-260 | LAN WAN Design | 3 |
| NACT-230 | Introduction to Programming | 3 |
| NACT-240 | World of Work | 3 |
| NACT-261 | Network Security | 3 |
| NACT-295 | ACT Technical Capstone | 3 |
| NACT-235 | Introduction to Database Applications | 3 |
|  | NTID LAS Perspective $\ddagger$ | 3 |
| NACT-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NACT-262 | Fundamentals of Systems Administration | 3 |
|  | Professional/Technical Electives§ | 6 |
|  | NTID LAS Perspective $\ddagger$ | 3 |
| Total Semester Credit Hours |  | 64 |
| Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. <br> * Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course. <br> $\dagger$ NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140 Mathematics in Society. Students who place above NMTH-140 can take math or a 3 credit-course from any non-science perspective category <br> $\ddagger$ NTID LAS Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration. § ACT program electives include Computer and Data Security (NACT-250), Digital Systems Integration (NACT-251), A+Certification Prep (NACT-255), Network+ Certification Prep (NACT-265), Network Defense Technologies (NACT-266), Web Applications (NACT-270), Client-side Scripting (NACT-271). Additional electives from another NTID major can be taken with approval from the ICS Department Chair. |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Applied Computer Technology, AS

http://www.ntid.rit.edu/ics/a-plus-b-act

## Elissa Olsen, Chairperson <br> (585) 475-2225 (V), emondp@rit.edu

## Program overview

The associate in science in applied computer technology is an Associate+Bachelor's degree program designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree in the B. Thomas Golisano College of Computing and Information Sciences. NTID's AS degree is a program specifically designed so that students can enroll in one of the following majors in the Golisano College: computing and information technologies or web and mobile computing. Coordination between the two colleges maximizes the number of credits a student may apply toward the baccalaureate degree. Admission to the applied computer technology major is available for the fall semester only.

## Prerequisites

The following prerequisites are necessary for admission into the applied computer technology AS major:

ACT: Composite test score of 18 or better
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150).

Mathematics: Entrance into NTID's NMTH-275 Advanced Math
To transfer into the Golisano College, students must possess a GPA of 2.8 or higher upon graduating with the AS degree in applied computer technology.

Students in the applied computer technology major receive a foundation in computer hardware, networking, and computer applications.

## Curriculum

Applied computer technology, AS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar |  |
|  | First Year LAS Elective | 3 |
| NMTH-275 | Advanced Math | 3 |
| NACA-172 | Website Development | 3 |
| NACA-160 | Programming Fundamentals I | 3 |
|  | First Year Writing Seminar | 3 |
| MATH-131 | Discrete Mathematics | 4 |
| NACA-161 | Programming Fundamentals II | 3 |
| Choose one of the following: |  | 3 |
| NMDE-111 | Digital Design Survey 1 |  |
| NSSA-102 | Computer System Concepts |  |
|  | LAS Perspective 1,4 |  |
|  | Wellness Education* |  |
| Second Year |  |  |
| ISTE-121 | Computational Problem Solving in the Information Domain II |  |
| MATH-161 | Applied Calculus | 4 |
| ISTE-190 | Foundations of Modern Information Processing | 3 |
|  | LAS Perspective 2, 3, 6 |  |
| ISTE-240 | Web and Mobile II |  |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
| Choose one of the following: |  | 3 |
| ISTE-260 | Designing the User Experience |  |
| NSSA-220 | Task Automation |  |
| Choose one of the following: |  | 3 |
| NSSA-290 | Networking Essentials for Developers |  |
| NSSA-241 | Routing and Switching |  |

Total Semester Credit Hours 64

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course.


## Applied Liberal Arts, AS

http://www.ntid.rit.edu/liberalstudies/asbs
Jennifer L. Gravitz, Chairperson
(585) 475-6846, jlgnge@rit.edu

## Program overview

The associate in science degree in applied liberal arts is designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree in the College of Liberal Arts, which offers majors in advertising and public relations, communication, criminal justice, digital humanities and social sciences, economics, international and global studies, journalism, museum studies, philosophy, political science, psychology, public policy, and sociology and anthropology.
By the end of the first year, students choose a College of Liberal Arts major they wish to enroll in after completing the AS degree. During the second year, students take four professional courses in their chosen liberal arts major. In addition, as a part of their AS course work, students complete one mathematics and once science course to meet the graduation requirements of their major.

The AS degree maximizes the number of credits a student may transfer toward a baccalaureate degree within the College of Liberal Arts. Admission to this major is available throughout the academic year.

## Prerequisites

ACT: Composite test score of 18 and above.
English: Placement into Critical Reading and Writing (UWRT-100), or a First Year Writing course, such as FYW: Writing Seminar (UWRT-150).

Mathematics: Placement into NMTH-250 or higher from NTID, COS or another RIT college. Students will enroll in the mathematics course required by their prospective baccalaureate program. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Readiness for NSCI-250 or higher from NTID, COS or another RIT college. Students will enroll in the science course required by their prospective baccalaureate program. Typically, students entering this major will have completed at least two years of high school science.

## Enrollment requirements

To enroll in the College of Liberal Arts, students must have a grade-point average of 2.5 or higher upon graduating with the AS degree in applied liberal arts.

## Curriculum

Applied liberal arts, AS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| UWRT-100 | Critical Reading and Writing | 3 |
| NSCI-250 | LAS Perspective 6 $\dagger$ | 3 |
|  | NTID LAS: NTID Mathematics $\ddagger$ | 3 |
|  | NTID LAS Elective§ | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| NMTH-250 | LAS Perspective 1, 2,3 | 9 |
|  | Elementary Statistics | 3 |
| Second Year | Wellness Education* | 0 |
|  |  |  |
|  | Professional/Technical Electives** | 12 |
|  | LAS Perspective 4 | 3 |
|  | LAS Electives $\ddagger$ | 6 |
|  | LAS Immersion 1, 2,3 | 9 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course.
$\dagger$ NTID science course numbered NSCI-250 or higher, or College of Science course required by chosen professional area.
$\ddagger$ Mathematics and science courses as required by chosen professional area.
§ NTID course numbered NCOM-201 or higher, or NHSS-260 or higher.
** Four courses in a College of Liberal Arts professional area of study.


## Applied Mechanical Technology, AAS

http://www.ntid.rit.edu/engineering/a-plus-b-amt
Dino Laury, Chairperson
(585) 286-4613 (VP), dino@mail.rit.edu

## Program overview

The AAS in applied mechanical technology is an Associate+Bachelor's degree program that prepares students to enter and successfully complete a baccalaureate program in the College of Applied Science and Technology in manufacturing engineering technology or mechanical engineering technology. Students strengthen their skills by taking courses taught by NTID faculty.

These courses systematically address the preparatory challenges that deaf and hard-of-hearing students face upon entry to the majors in the College of Applied Science and Technology.

Students in the applied mechanical technology major receive a comprehensive foundation in engineering fundamentals: precision measurement, precision machining, computer aided design applications, strength of materials, and machine design. Upon successful completion of the AAS degree in applied mechanical technology, students enroll in the bachelor's degree program in either manufacturing engineering technology or mechanical engineering technology.

## Prerequisites

ACT: Composite test score of 18 or higher
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150) or Critical Reading and Writing (UWRT-100).

Mathematics: Entrance into NTID's Trigonometry (NMTH-220) course.

Science: Entrance into the College of Science's College Physics I (PHYS-111) course; however, students who did not take physics in high school are recommended to take a bridging physics course at NTID, such as Concepts of College Physics (NSCI-270).

## Enrollment requirements

Students who graduate in good standing from NTID and have maintained a grade of C or better in the six NTID applied mechanical technology technical courses should be well-prepared for the College of Applied Science and Technology.

## Curriculum

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| NCAR-100 Freshman Seminar | 1 |
| NETS-101 Fundamentals of Engineering | 3 |
| NETS-110 Foundations of Materials | 2 |
| NETS-111 Foundations of Materials Lab | 1 |
| MATH-171 LAS Elective: Calculus A | 3 |
| UWRT-100 Critical Reading and Writing | 3 |
| First Year LAS Elective | 3 |
| NETS-120 Manufacturing Processes | 3 |
| NETS-150 Mechanical Design and Fab | 3 |
| NETS-151 Mechanical Design and Fab Lab | 1 |
| MATH-172 Calculus B | 3 |
| PHYS-111 LAS Perspective 6: College Physics I | 4 |
| First Year Writing Seminar | 3 |
| Wellness Education* | 0 |
| Second Year |  |
| MCET-220 Principles of Statics | 3 |
| MCET-210 Foundations of Non-metallic Materials | 2 |
| MCET-211 Characterization of Non-metallic Materials Lab | 1 |
| PHYS-112 College Physics II | 4 |
| LAS Perspective 1, 2, 3, 4 | 12 |
| MCET-221 Strength of Materials | 4 |
| EEET-215 Circuits/Electronics | 2 |
| EEET-216 Circuits/Electronics Lab | 1 |
| MATH-211 Elements of Multivariable Calculus and Differential <br> Equations | 3 |
| Total Semester Credit Hours | 65 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.


## Business, AS

http://www.ntid.rit.edu/businessstudies/asbs-business

## Mary Lou Basile, Chairperson <br> (585) 475-6460 (V/TTY), mlbnbt@rit.edu

## Program overview

The AS degree in business is an Associate+Bachelor's degree program designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree program in Saunders College of Business. Saunders College is accredited by the Association to Advance Collegiate Schools of Business International (AACSB), the premier accrediting organization for business schools. Upon completion of the AS program, students with a minimum GPA of 2.5 will enroll in Saunders College, where they complete their bachelor's degree in accounting, finance, international business, management, management information systems, marketing, or new media marketing. Admission to this major is available during the fall semester only.

## Prerequisites

ACT: composite test score of 18 and above.
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students who qualify for Critical Reading and Writing (UWRT-100) will be considered for admission if they are at NMTH-250 or higher in mathematics.

Mathematics: Placement into mathematics NMTH-250 or higher. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Placement into science NSCI-250 or higher. Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Business, AS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | First Year LAS Elective | 3 |
| MGIS-101 | Computer Based Analysis | 1 |
| NSCI-250 | LAS Perspective 6t | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| NBUS-211 | World of Business and Innovation | 3 |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year Writing Seminar | 3 |
| NACC-205 | Financial Accounting | 3 |
| STAT-146 | Introduction to Statistics II | 4 |
| NBUS-225 | Introduction to Entrepreneurship | 3 |
|  | Wellness Education* | 0 |
| Second Year |  | 3 |
| NACC-206 | Managerial Accounting | 3 |
| COMM-253 | Communication | 3 |
| ECON-101 | Principles of Microeconomics | 3 |
|  | LAS Perspective 3, 4 | 6 |
| INTB-225 | Global Business Environment | 3 |
| MATH-161 | LAS Elective: Applied Calculus | 4 |
| NBUS-227 | Principles of Marketing | 3 |
| MGMT-215 | Organizational Behavior | 3 |
| ECON-201 | Principles of Macroeconomics | 3 |
|  |  | 64 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course.
$\dagger$ Any science course numbered NSCI-250 or higher may fulfill this requirement


## Additional information

## Admission requirements

To enroll in one of the bachelor degree programs in Saunders College of Business, students must have a minimum grade-point average of 2.5 upon graduation with the AS degree in business.

## Microsoft certification

As an authorized testing center for Microsoft Office Specialist, preparatory courses are offered for several exams each semester.

## Business Technology, AOS

www.rit.edu/NTID/bustech
Mary Lou Basile, Chairperson
(585) 475-6460 (V/TTY), mlbnbt@rit.edu

## Program overview

The business technology AOS degree program includes technical course work in accounting, computers, payroll, general office skills, and word processing/information processing skills. Students complete a sequence of courses that provides either an accounting technology or administrative support technology concentration.

This is a nontransfer occupational program, with primary emphasis on preparation for immediate employment.

## Places of employment

Graduates of this major will find employment in a variety of settings, including business, industry, government, and education.

## On-the-job responsibilities

Graduates will input, manipulate, and retrieve data; use interactive software, e-mail, and information processing skills; and use computers to maintain and reconcile various financial records. Positions for which graduates qualify include general office clerk, accounts receivable/payable clerk, payroll records clerk, word processing technician, cost accounting clerk, and microcomputer accounting clerk.

## Prerequisites

English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Math course (NMTH-120) or higher is required. Typically, students entering this major will have completed at least two years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Business technology (administrative support technology option), AOS degree, typical course sequence

| COURSE |  |  |
| :--- | :--- | ---: |
| First Year |  | SEMESTER CREDIT HOURS |
| NCAR-100 | Freshman Seminar |  |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
| NAST-140 | Essential Document Production | 3 |
| NACC-130 | Personal Finance | 3 |
| NAST-160 | Spreadsheet Applications for Business | 3 |
| NENG-213 | NTTD LAS Foundation: Career English II | 3 |
| NMTH-120 | NTID LAS Foundation: Mathematics | 3 |
| NAST-150 | Advanced Document Production | 3 |
| NBUS-200 | Orientation to Business | 3 |
| NACC-201 | Accounting I | 3 |
|  | Wellness Education* | 3 |
| Second Year |  | 3 |
| NAST-215 | Integrated Document Production | 3 |
| NAST-210 | Essentials of Business Communication | 3 |
| NAST-220 | Database Applications for Business | 3 |
| NBUS-213 | Applied Ethics for Business | 3 |
| NAST-225 | Business Graphics | 3 |
| NBUS-217 | Fundamentals of Management | 3 |
|  | NTID LAS Perspective $\neq$ | 3 |
| NAST-240 | Administrative Support Technology Seminar | 3 |
| NAST-299 | Cooperative Education | Co-op |


| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| Third Year |  |  |
|  | NTID LAS Perspective $\ddagger$ | 3 |
| NAST-230 | Desktop Publishing for Business | 3 |
| NBUS-223 | Fundamentals of Marketing | 3 |
|  | Free Elective | 3 |
| Total Semester Credit Hours |  | $\mathbf{6 4}$ |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information.
$\dagger$ Any mathematics course numbered NMTH-120 or higher. Students who place above NMTH-120 can take math or a 3-credit course from any non-science perspective category.
$\ddagger$ NTID LAS Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.

Business technology (accounting technology option), AOS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
| NAST-140 | Essential Document Production | 3 |
| NACC-130 | Personal Finance | 3 |
| NAST-160 | Spreadsheet Applications for Business | 3 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
| NMTH-120 | NTID LAS Foundation: Mathematics $\dagger$ | 3 |
| NAST-150 | Advanced Document Production | 3 |
| NBUS-200 | Orientation to Business | 3 |
| NACC-201 | Accounting I | 3 |
|  | Wellness Education* | 0 |
| Second Year |  | 3 |
| NAST-215 | Integrated Document Production | 3 |
| NAST-210 | Essentials of Business Communication | 3 |
| NAST-220 | Database Applications for Business | 3 |
| NACC-202 | Accounting 2 | 3 |
|  | NTID LAS Perspective $\ddagger$ | 3 |
| NBUS-213 | Applied Ethics for Business | 3 |
| NBUS-217 | Fundamentals of Management | 3 |
| NACC-203 | Accounting 3 | Co-op |
| NACC-299 | Cooperative Education | 3 |
| Third Year |  | 3 |
| NACC-204 | NTID LAS Perspective $\ddagger$ | 3 |
| NBUS-223 | Accounting Capstone | 3 |
|  | Fundamentals of Marketing | 3 |
|  | Free Elective | 3 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† Any mathematics course numbered NMTH-120 or higher. Students who place above NMTH-120 can
take math or a 3-credit course from any non-science perspective category.
$\ddagger$ NTID LAS Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.


## Additional information

## Microsoft certification

The department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

## Civil Technology, AAS

http://www.ntid.rit.edu/engineering/a-plus-b-ct
Dino Laury, Chairperson
(585) 286-4613 (VP), dino@mail.rit.edu

## Program overview

The AAS in civil technology is an Associate+Bachelor's degree program that prepares qualified students to enter and successfully complete a baccalaureate program in Civil Engineering Technology in the College of Applied Science and Technology. Students strengthen their skills by taking courses taught by NTID faculty.
These courses systematically address the preparatory challenges that deaf and hard-of-hearing students face upon entry to the majors in the College of Applied Science and Technology. The civil technology program capitalizes on courses offered through NTID's Departments of Engineering Studies, English, and Science and Mathematics in order to prepare qualified students for entry to the baccalaureate program.

Students receive a comprehensive foundation in civil engineering fundamentals: engineering graphics, computer aided design applications, construction materials and methods, surveying, statics, strength of materials, and elements of building construction.

Upon successful completion of the AAS degree in civil technology, students enroll in the bachelor's degree program in civil engineering technology.

Prerequisites
ACT: Composite test score of 18 ( 20 Math, 16 Reading) or higher
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150) or Critical Reading and Writing (UWRT-100).

Mathematics: Placement into NTID's Advanced Math (NMTH-275) course or higher
Science: Readiness after a single NTID science course, Concepts of College Physics (NSCI-270), for entry into the College of Science Physics I (PHYS-111) course.

Enrollment requirements
Students must graduate in good standing from NTID and have maintained a grade point average of 2.5 or better to enroll in the College of Applied Science and Technology. Transfer credit will be awarded for courses completed with a grade of B or better for courses coded "NCAD" and "NMTH" and a grade of C or better for other courses.

## Curriculum

Civil technology, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | First Year LAS Elective | 3 |
| NCAD-255 | Construction Materials and Methods I | 3 |
| NCAD-150 | Engineering Graphics in AEC | 3 |
|  | LAS Perspective 1 | 3 |
| NMTH-275 | LAS Elective: Advanced Math | 3 |
| NCAD-180 | Civil Technology Graphics | 3 |
| PHYS-111 | LAS Perspective 6: College Physics I w/ Lab | 4 |
| MATH-171 | Calculus A | 3 |
| UWRT-150 | First Year Writing Seminar | 3 |
|  | Elective | 3 |
|  | Wellness Education* | 0 |
| Second Year |  | 3 |
| CVET-160 | Surveying | 3 |
| CVET-161 | Surveying Lab | 3 |
| MCET-220 | Principles of Statics | 3 |
| MATH-172 | Calculus B | 4 |
| PHYS-112 | College Physics II w/ Lab | 3 |
| CVET-170 | Elements of Building Construction | 4 |
| MCET-221 | Strength of Materials | 4 |
| CHMG-141, 145 | General and Analytical Chemistry with Lab | 9 |
|  | LAS Perspective 2, 3, 4 | 66 |
| Total Semester Credit Hours |  | 3 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.


## Computer Aided Drafting Technology, AAS

www.rit.edu/NTID/cadt
Dino Laury, Chairperson
(585) 286-4613 (VP), dino@mail.rit.edu

## Program overview

People who work in computer aided drafting technology use their skills to create two- and three-dimensional drawings on the computer. These drawings are used to visually represent buildings, bridges, canals, and houses. Computer-aided drafting operators (technicians) take the sketches of an engineer, architect, or designer and produce a set of technical drawings.

In addition to a strong emphasis on computer-aided drafting, the major provides students with a background in mathematics, building systems, construction regulations, site utilities, and materials and methods used in the architecture, engineering, and construction industries.

Students earning an AAS degree and satisfying the entry requirements in a specific major have the option of finding employment or continuing to work towards a baccalaureate degree. Transfer requirements vary by major.

## On-the-job responsibilities

Graduates will enter businesses and industries that need technical employees with skills in computer drafting technology and a broad knowledge of applications and procedures. Graduates will work for architectural, engineering, or construction firms creating engineering drawings.

## Places of employment

Graduates will find work in a variety of settings, including government agencies and architectural, construction, and engineering firms. Positions for which graduates qualify include drafters/technicians for architectural, highway design, and civil environments.

## Prerequisites

English: Placement in a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement in Trigonometry (NMTH-220). Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Principles of Physics (NSCI-201) or a higherlevel course. Typically, students entering this program will have completed at least three years of high school science. High school physics would be beneficial.

## Curriculum

Computer aided drafting technology, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | ASL-Deaf Cultural Studiest |  |
| NCAD-112 | Computing Tools for ET | 3 |
| NCAD-150 | Engineering Graphics in AEC | 3 |
|  | LAS Perspective 1 | 3 |
|  | First Year LAS Elective | 3 |
| NMTH-220 | LAS Elective: Trigonometry | 3 |
| NCAD-170 | Construction CADI | 3 |
| NCAD-108 | Data Collection and Analysis | 3 |
| NCAD-180 | Civil Technology Graphics | 3 |
| NMTH-275 | Advanced Mathematics | 3 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NCAD-220 | Construction CAD II | 3 |
| NCAD-255 | Construction Materials and Methods I | 3 |
| NCAD-275 | Principles of Structural Systems | 3 |
| NSCI-201 | LAS Perspective 6: Principles of Physics | 3 |
| NCAD-201 | Job Search Process for CADT | 3 |
| NCAD-230 | Construction CAD III | 3 |
| NCAD-265 | Construction Materials and Methods II | 3 |
| NCAD-285 | MEP Systems | 3 |
| NCAD-280 | GIS Fundamentals | 3 |
|  | LAS Perspective 2 | 3 |
| NCAD-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NCAD-240 | Advanced Construction CAD | 3 |
| NCAD-250 | Presentation Graphics | 3 |
|  | Professional/Technical Elective§ | 3 |
|  | LAS Perspective 3,4 | 6 |
| Total Semester Credit Hours |  | 76 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course
$\dagger$ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS Perspective.
§ Choose one from the following list of courses (or another course by departmental approval): Principles of Design and Color (NAIS-120), Raster and Vector Graphics (NAIS-130), Scenic and Lighting Technology (NHSS-223), Materials of Construction w/ Lab (CVET-140, 141), Surveying w/ Lab (CVET-160, 161), Theatre Practicum (NHSS-248-02 and NHSS-248-08). Permission required for CVET-140, 141 and CVET-160, 161


## Computer Aided Drafting Technology, AOS

## www.rit.edu/NTID/cadt

Dino Laury, Chairperson
(585) 286-4613 (VP), dino@mail.rit.edu

## Program overview

People who work in computer aided drafting technology use their skills to create two- and three-dimensional drawings on the computer. These drawings are used to visually represent buildings, bridges, canals, and houses. Computer aided drafting operators (technicians) take the sketches of an engineer, architect, or designer and produce a set of technical drawings.

In addition to a strong emphasis on computer aided drafting, the major gives students a background in mathematics, building systems, construction regulations, site utilities, and materials and methods used in the architecture, engineering, and construction industries.

## On-the-job responsibilities

Graduates will enter businesses and industries that need technical employees with skills in computer aided drafting technology and a broad knowledge of applications and procedures. Graduates will work in architectural, engineering, or construction firms creating engineering drawings.

## Places of employment

Graduates of this major will find work in a variety of settings, including engineering firms, government agencies, and architectural and construction firms. Positions for which graduates qualify include drafters/technicians for architectural, highway design, and civil environments.

## Prerequisites

Successful completion of a sampling experience either through the Summer Vestibule Program or an equivalent career exploration course is a prerequisite, as are the following:

English: Placement into Career English I (NENG-212) or above. Students successfully completing an AOS degree typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Integrated Algebra (NMTH-212) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Placement into Physics of Matter (NSCI-154) or a higherlevel course. Typically, students entering this major will have completed at least three years of high school science. High school physics would be beneficial.

## Curriculum

Computer aided drafting technology, AOS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

| First Year |  |  |
| :---: | :---: | :---: |
| NCAD-112 | Computing Tools for ET | 3 |
| NCAD-150 | Engineering Graphics in AEC | 3 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
| NMTH-212 | NTID LAS Foundation: Integrated Algebra | 3 |
| NCAR-100 | Freshman Seminar | 1 |
| NCAD-170 | Construction CAD I | 3 |
| NCAD-108 | Data Collection and Analysis | 3 |
| NCAD-180 | Civil Technology Graphics | 3 |
| NMTH-220 | Trigonometry | 3 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NCAD-220 | Construction CAD II | 3 |
| NCAD-255 | Construction Materials and Methods I | 3 |
| NCAD-275 | Principles of Structural Systems | 3 |
| NSCI-154 | NTID LAS Perspective: Physics of Matter | 3 |
| NCAD-201 | Job Search Process for CADT | 3 |
| NCAD-230 | Construction CAD III | 3 |
| NCAD-265 | Construction Materials and Methods II | 3 |
| NCAD-285 | MEP Systems | 3 |
| NCAD-280 | GIS Fundamentals | 3 |
| NCAD-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NCAD-240 | Advanced Construction CAD | 3 |
| NCAD-250 | Presentation Graphics | 3 |
|  | Professional/Technical Elective $\ddagger$ | 3 |
|  | NTID LAS Perspective $\dagger$ | 3 |
| Total Semester Credit Hours |  | 67 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\dagger$ NTID LAS Perspective course may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social and Global Awareness; and Creative and Innovative Exploration.
$\neq$ Choose one from the following list of courses, or another course by departmental approval, Principles of Design and Color (NAIS-120), Raster and Vector Graphics (NAIS-130), Scenic and Lighting Technology (NHSS-223), Materials of Construction w/ Lab (CVET-140, 141), Surveying w/ Lab (CVET-160, 161), Theatre Practicum (NHSS-248-02 and NHSS-248-08). Permission required for CVET-140, 141 and CVET-160, 161.


## Computer Integrated Machining Technology, AOS

www.ntid.rit.edu/engineering/cimt
Dino Laury, Chairperson
(585) 286-4613 (VP), dino@mail.rit.edu

Program overview
Students in the computer integrated machining technology major are prepared for employment in precision machining and/or precision optics manufacturing occupations. These include tool and die making, mold making, instrument making, manufacturing of optical elements, and computer numerical control machining (CNC). Graduates are successfully employed in both large manufacturing corporations and small contract manufacturing shops. In addition, graduates can continue their education in manufacturing and engineering technology programs.

## On-the-job responsibilities

Graduates will set up and operate lathes, milling machine tools, grinders, polishers, and computer numerical controlled machine tools; shape material into precision parts by conventional and nonconventional processes; follow blueprints; and use advanced measuring techniques to inspect work.

## Places of employment

Graduates will find work in a variety of settings, including manufacturing, metal and/or precision optics manufacturing industries, engineering firms, and engineering research firms. Positions for which graduates qualify include entry-level and apprenticeship programs for positions such as a tool and die maker, instrument maker, mold maker, pattern maker, model maker, machinist, computer numerical control operator, or computer numerical control programmer trainee. Graduates who choose precision optics electives are also qualified for an entry-level position as a precision optics manufacturing technician. Graduates also work for companies that produce optical elements for a variety of applications.

## Prerequisites

Successful completion of a sampling experience either through the Summer Vestibule Program or an equivalent career exploration course is a prerequisite, as are the following:

English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (NMTH-180) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Computer integrated machining technology, AOS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year |  |  |
| NCIM-131 | Computer Integrated Machining Technology I | 3 |
|  | NTID LAS Foundation: Mathematicst | 3 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
| NCAR-100 | Freshman Seminar | 1 |
| NCIM-101 | Blueprint Reading I | 3 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
| NMTH-206 | Trigonometry for Coordinate Analysis | 3 |
| NCIM-121 | Precision Measurement I | 3 |
| NCIM-132 | Computer Integrated Machining Technology II | 3 |
| NCIM-102 | Blueprint Reading II | 3 |
| Second Year |  | 3 |
| NCIM-233 | Computer Integrated Machining Technology III | 3 |
| NCIM-251 | CNCI | 3 |
| NCIM-241 | Precision Optics Manufacturing I | 3 |
| NSCI-200 | NTID LAS Perspective: Physics of Light | 3 |
| NCIM-201 | Job Search Process for CIMT | 2 |
|  | Wellness Education* | 0 |
| NCIM-234 | Computer Integrated Machining Technology IV | 3 |
| NCIM-252 | CNC II | 3 |
| NCIM-242 | Precision Optics Manufacturing II | 3 |
|  | Professional/Technical Elective | 3 |
| NCIM-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NCIM-235 | Computer Integrated Machining Technology V | 3 |
| NCIM-236 | Computer Integrated Machining Technology V Lab | 3 |
|  | NTID LAS Perspective | 3 |
|  | Professional/Technical Elective | 3 |
| Total Semester Credit Hours | $\mathbf{6 6}$ |  |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\dagger$ Any mathematics course numbered NMTH-180 or higher
$\ddagger$ NTID LAS Perspective course may be from any of these three Perspective categories: ASL-Deaf Cultural
Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration


## Electives

COURSE

| NCIM-207 | Industrial Materials |
| :--- | :--- |
| NCIM-222 | Precision Measurement II |
| NCIM-237 | Precision Grinding |
| NCIM-243 | Optical Testing |
| NCIM-214 | Applications |

## Design and Imaging Technology, AAS

www.ntid.rit.edu/vcs

## Kurt Stoskopf, Chairperson <br> 585-286-5345 (VP), kwsnda@rit.edu

## Program overview

People who work in the design and imaging field are responsible for designing, organizing, and producing print and web-based media for business, communication, publishing, manufacturing, entertainment, and advertising markets. This is a very large, exciting field that requires a variety of computer-based and traditional visual skills. The design and imaging technology major provides opportunities for students to enter various careers ranging from creative to highly technical positions at various degree levels.

The design and imaging technology major includes a core component of eight courses ( 24 semester credit hours) plus a required cooperative work experience. The core courses provide a solid foundation for continuing in advanced courses, a baccalaureate program, and employment. Several of the core courses are scheduled during the first year, and additional courses are completed during the second year.

In addition to the core courses taken in the first year, students immediately begin course work in their concentration. Students may choose a concentration in graphic design or graphic production. Both concentrations consist of six courses ( 18 semester credit hours.)

All students entering the major will be given an aptitude self-assessment experience. As a result of this assessment profile, students will be counseled and placed into an initial concentration: graphic design for students with creative aptitude and interest; graphic production for students with technical/production aptitude and interest. The assessment is not final. Based on success and demonstrated capabilities, students may request or be counseled to change their program concentration.

The program's curriculum includes six credits of program electives which will enable the students to develop additional skills and knowledge to better prepare them for employment and/or for continued education.

All students gain real work experience through one term of required cooperative education employment. They also complete a required portfolio workshop course in which they refine and complete their portfolio as needed for an application to a baccalaureate program (BFA or BS in RIT's College of Imaging Arts and Sciences) or for the search for employment.

## STEM and the DIT program

Education in STEM (science, technology, engineering, math) careers is a major emphasis for students, parents, and counselors as they consider which college programs match students' interests and aptitudes. Funding for STEM career preparation is often a driving factor. The NTID design and imaging technology major definitely is a STEM-career program. Graphic design is listed in the technology/ computer science STEM disciplines. Graphic design and production for print, the Web, and digital media cannot happen without the immersion of computer technology.

## On-the-job responsibilities

Depending on their concentration and elective course selection, graduates use computer-based methods to produce drawings, layouts, illustrations, and digital photographic images; prepare documents for print, the web, and digital distribution; produce interactive digital media; perform digital retouching and restoration of photographic images; produce composite digital images; design and produce websites; produce computer animations; plan and produce short edited videos; and operate
electrophotographic digital printing and inkjet systems, simple bindery, and finishing equipment.

## Places of employment

Graduates usually find employment in a variety of commercial, corporate, government, and educational settings. Examples include computer graphics firms, advertising agencies, art studios, printing or manufacturing plants, prepress companies, in-house printing or marketing departments, book and magazine publishing houses, newspaper facilities, government agencies, industrial training or media departments, educational media centers, and educational institutions.

Graduates may qualify for positions such as production graphic artist, graphic designer, digital photo artist, digital photography technician, digital prepress technician, video technician, website designer, website technician, and digital printing systems operator.

## Prerequisites

Successful completion of a sampling experience offered during the Summer Vestibule Program and also during the academic year is required. The sampling activities provide opportunities for students to learn about the arts and imaging field, identify career opportunities, and evaluate their interest and aptitude for a degree program.

ACT-minimum score=18
English-Placement into the Critical Reading and Writing (UWRT-100) course.

Mathematics-Placement into the Mathematics in Society (NMTH140) course. Typically, students entering this major will have completed at least two years of high school mathematics.

Science-Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

## Design and imaging technology, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| NAIS-120 | Principles of Design and Color | 3 |
| NAIS-130 | Raster and Vector Graphics | 3 |
| Choose one of the following: |  |  |
| NGRD-111 | Drawing l $\ddagger$ |  |
| NGRP-110 | Digital Photography I§ |  |
|  | First Year LAS Elective | 3 |
| NMTH-120 | LAS Elective: Mathematics** | 3 |
|  | ASL-Deaf Cultural Studies $\dagger$ |  |
| NAIS-140 | Graphic Design and Typography I | 3 |
| NAIS-150 | Page Layout I | 3 |
| NAIS-160 | Web Design I | 3 |
|  | First Year Writing Seminar | 3 |
| NSCl-120 | LAS Perspective 6t† | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NAIS-201 | Employment Seminar | 3 |
| Choose two of the following: |  | 6 |
| NGRD-240 | Graphic Design and Typography II\# |  |
| NGRD-221 | History of Graphic Design $\ddagger$ |  |
| NGRP-231 | Image Preparation§ |  |
| NGRP-245 | Color Theory and Management§ |  |
|  | Professional/Technical Elective | 3 |
|  | LAS Perspective 1 | 3 |
| Choose two of the following: |  | 6 |
| NGRD-255 | Publication Design $\ddagger$ |  |
| NGRD-256 | Identity Design $\ddagger$ |  |
| NGRP-252 | PDF Production and Workflow§ |  |
| NGRP-250 | Page Layout Il§ |  |
| NAIS-291 | Production Workshop | 3 |
|  | LAS Perspective 2, 3 | 6 |
| NAIS-299 | Cooperative Education:Visual Communications Studies | Co-op |
| Third Year |  |  |
| NAIS-292 | Portfolio Workshop | 3 |
|  | Professional/Technical Elective | 3 |
| Choose one of the following: |  | 3 |
| NGRD-230 | Digital Illustration $\ddagger$ |  |
| NGRP-270 | Specialty Graphics Imaging§ |  |
|  | LAS Perspective 4 | 3 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course
$\dagger$ An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS Perspective or LAS Elective.
\# NGRD courses/Graphic Design concentration
§ NGRP courses/Graphic Production concentration
** Any mathematics course numbered NMTH-120 or higher.
$\dagger \dagger$ Any science course numbered NSCI-120 or higher.


## Electives

| COURSE |  |
| :--- | :--- |
| NGRD-115 | Visual Idea Development |
| NGRD-211 | Drawing II |
| NGRD-257 | Animation |
| NGRD-258 | Cartooning |
| NGRP-210 | Digital Photography II |
| NGRP-220 | Videography |
| NGRP-232 | Image Manipulation |
| NGRP-251 | Publication Production |
| NGRP-260 | Web Design II |
| NGRP-275 | Digital Printing Systems |
| NAIS-199 | Independent Study:Visual Communications Studies |
| NAIS-289 | Special Topics: Visual Communications Studies |

Design and Imaging Technology, AOS
www.ntid.rit.edu/vcs

## Kurt Stoskopf, Chairperson

585-286-5345 (VP), kwsnda@rit.edu

## Program overview

People who work in the design and imaging field are responsible for designing, organizing, and producing print and Web-based media for business, communication, publishing, manufacturing, entertainment, and advertising markets. This is a large, exciting field that requires a variety of computer-based and traditional visual skills. The design and imaging technology major provides opportunities for students to enter various careers ranging from creative to highly technical positions at various degree levels.

The design and imaging technology major includes eight required core courses ( 24 semester credit hours) plus a required cooperative education experience. The core courses provide a solid foundation for continuing in advanced courses, a baccalaureate program, and employment. Several of the core courses are scheduled during the first year, and additional courses are completed during the second year.

In addition to the core courses taken in the first year, students immediately begin course work in their concentration. Students may choose a concentration in graphic design or graphic production. Both concentrations consist of six courses ( 18 credit hours).

All students entering the major will be given an aptitude self-assessment experience. As a result of this assessment profile, students will be counseled and placed into an initial concentration: graphic design for students with creative aptitude and interest; graphic production for students with technical/production aptitude and interest. The assessment is not final. Based on success and demonstrated capabilities, students may request or be counseled to change their concentration.

The curriculum includes six credits of program electives which will enable the students to develop additional skills and knowledge to better prepare them for employment and/or for continued education.

All students gain real work experience through one term of required cooperative education employment. They also complete a required portfolio workshop course in which they refine and complete their portfolio as needed for an application to a baccalaureate program or for the search for employment.

## STEM and the DIT program

Education in STEM (science, technology, engineering, math) careers is a major emphasis for students, parents, and counselors as they consider which college programs match students' interests and aptitudes. Funding for STEM career preparation is often a driving factor. The NTID design and imaging technology major definitely is a STEM-career program. Graphic design is listed in the technology/ computer science STEM disciplines. Graphic design and production for print, the Web, and digital media cannot happen without the immersion of computer technology.

## On-the-job responsibilities

Depending on the specific concentration and elective course selection, graduates use computer-based methods to produce drawings, layouts, illustrations, and digital photographic images; prepare documents for print, the web, and digital distribution; produce interactive digital media; perform digital retouching and restoration of photographic images; produce composite digital images; design and produce websites; produce computer animations; plan and produce short edited videos; and operate electrophotographic digital printing and inkjet systems, simple bindery, and finishing equipment.

## Places of employment

Graduates usually find employment in a variety of commercial, corporate, government, and educational settings. Examples include computer graphics firms, advertising agencies, art studios, printing or manufacturing plants, prepress companies, in-house printing or marketing departments, book and magazine publishing houses, newspaper facilities, government agencies, industrial training or media departments, educational media centers, and educational institutions.

Graduates may qualify for positions such as production graphic artist, graphic designer, digital photo artist, digital photography technician, digital prepress technician, video technician, website designer, website technician, and digital printing systems operator.

## Prerequisites

Successful completion of a sampling experience offered during the Summer Vestibule Program and also during the academic year is required. The sampling activities provide opportunities for students to learn about the arts and imaging field, identify career opportunities, and evaluate their interest and aptitude for a degree program.

ACT : minimum score $=15$
English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into the Mathematics in Society (NMTH140) course. Typically, students entering this major will have completed at least two years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Design and imaging technology, AOS degree, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| NAIS-120 Principles of Design and Color | 3 |
| NAIS-130 Raster and Vector Graphics | 3 |
| Choose one of the following: | 3 |
| NGRD-111 Drawing $\ddagger$ |  |
| NGRP-110 Digital Photography I§ |  |
| NENG-212 NTID LAS Foundation: Career English I | 3 |
| NCAR-100 Freshman Seminar | 1 |
| NAIS-140 Graphic Design and Typography I | 3 |
| NAIS-150 Page Layout I | 3 |
| NAIS-160 Web Design I | 3 |
| NENG-213 NTID LAS Foundation: Career English II | 3 |
| NMTH-120 NTID LAS Foundation: Mathematics $\dagger$ | 3 |
| Wellness Education* | 0 |
| Second Year |  |
| NAIS-201 Employment Seminar | 3 |
| Choose two of the following: | 6 |
| NGRD-240 Graphic Design and Typography IIf |  |
| NGRD-221 History of Graphic Design $\ddagger$ |  |
| NGRP-231 Image Preparation§ |  |
| NGRP-245 Color Theory and Management§ |  |
| Professional/Technical Elective | 3 |
| Choose two of the following: | 6 |
| NGRD-255 Publication Design $\ddagger$ |  |
| NGRD-256 Identity Design $\ddagger$ |  |
| NGRP-252 PDF Production and Workflow§ |  |
| NGRP-250 Page Layout II§ |  |
| NAIS-291 Production Workshop | 3 |
| NTID LAS Perspective** | 3 |
| NAIS-299Cooperative Education: Visual Communications <br> Studies | Co-op |
| Third Year |  |
| NAIS-292 Portfolio Workshop | 3 |
| Professional/Technical Elective | 3 |
| Choose one of the following: | 3 |
| NGRD-230 Digital Illustration $\ddagger$ |  |
| NGRP-270 Specialty Graphics Imaging§ |  |
| NTID LAS Perspective** | 3 |
| Total Semester Credit Hours | 64 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\ddagger$ NGRD courses/Graphic Design concentration
§ NGRP courses/Graphic Production concentration
$\dagger$ Any mathematics course numbered NMTH-120 or higher; students who place above NMTH-140 can take math or a 3-credit course from any of the four NTID LAS Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; Creative and Innovative Exploration; and Scientific Processes.
** NTID LAS Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.

Electives

| COURSE |  |
| :--- | :--- |
| NGRD-115 | Visual Idea Development |
| NGRD-211 | Drawing II |
| NGRD-257 | Animation |
| NGRD-258 | Cartooning |
| NGRP-210 | Digital Photography II |
| NGRP-220 | Videography |
| NGRP-232 | Image Manipulation |
| NGRP-251 | Publication Production |
| NGRP-260 | Web Design II |
| NGRP-275 | Digital Printing Systems |
| NAIS-199 | Independent Study:Visual Communications Studies |
| NAIS-289 | Special Topics: Visual Communications Studies |

## Hospitality and Service Management, AS

www.ntid.rit.edu/businessstudies/asbs-hospitality
Mary Lou Basile, Chairperson
(585) 475-6460 (V/TTY), mlbnbt@rit.edu

## Program overview

The associate in science degree in hospitality and service management is an Associate+Bachelor's degree program designed to prepare deaf and hard-of-hearing students to enter and successfully complete a baccalaureate program in the College of Applied Science and Technology's School of International Hospitality and Service Innovation.

Upon completion of the AS program with a minimum GPA of 2.5, students will enroll in the College of Applied Science and Technology, where they will pursue a bachelor's degree in international hospitality and service management. AS students may choose one of two concentrations: hotel and resort management or food and beverage management. Admission to this major is available for the fall semester only.

## Prerequisites

ACT: composite test score of 18 and above.
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students who qualify for Critical Reading and Writing (UWRT-100) will be considered for admission if they are at NMTH-250 or higher in mathematics.

Mathematics: Placement into mathematics NMTH-210 or higher. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Placement into science NSCI-250 or higher. Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Hospitality and service management (hotel and resort management option), AS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
|  | First Year LAS Elective | 3 |
| NSCI-250 | LAS Perspective $6 \dagger$ | 3 |
| HSPT-131 | Hotel Management and Operations | 3 |
| HSPT-181 | Principles of Food, Hotel and Tourism Operations | 3 |
|  | LAS Perspective 1, 2 | 6 |
|  | First Year Writing Seminar | 3 |
|  | LAS Elective才 | 3 |
|  | HSPT or FOOD Elective§ | 3 |
| HSPT-334 | International Resort Management | 3 |
| HSPT-499 | Cooperative Education | Co-op |
| Second Year |  |  |
|  | Professional/Technical Elective§ | 3 |
| HSPT-281 | Service Management in a Global Economy | 3 |
| FOOD-223 | Food and Beverage Management | 3 |
| FOOD-226 | Food and Beverage Operations | 3 |
| HSPT-284 | Hospitality Industry Sales and Marketing | 3 |
| ECON-101 | Principles of Microeconomics | 3 |
|  | LAS Perspective 3,4 | 6 |
| MATH-101 | College Algebra | 3 |
| NACC-205 | Financial Accounting | 3 |
|  | Wellness Education* | 0 |

Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate
degrees are required to complete one Wellness course.
$\dagger$ Any science course numbered NSCI-250 or higher
$\ddagger$ Any mathematics course numbered NMTH-250 or higher
§ Choose a course from one of the following HSPT or FOOD program options: International Food Marketing and Distribution, International Hotel and Resort Management, and Entertainment and Event Management. See chart below.

Hospitality and service management (food and beverage management option), AS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| NSCI-250 | First Year Seminar** | 3 |
| FOOD-121 | LAS Perspective 6† | 3 |
| HSPT-181 | Principles of Food Production | 3 |
|  | Principles of Food, Hotel and Tourism Operations | 3 |
|  | HSPT or FOOD Elective§ | 3 |
|  | LAS Perspective 1, 2 | 6 |
| FOOD-123 | First Year Writing Seminar | 3 |
| FOOD-223 | Mathematics $\ddagger$ | 3 |
| HSPT-499 | Sanitation and Safety | 1 |
| Second Year | Food and Beverage Management | 3 |
| HSPT-281 | Cooperative Education | Co-op |
| ECON-101 | Professional/Technical Elective§ |  |
|  | Service Management in a Global Economy | 3 |
| MATH-101 | Principles of Microeconomics | 3 |
| NACC-205 | LAS Perspective 3,4 | 3 |
| FOOD-224 | College Algebra | 6 |
| HSPT-284 | Financial Accounting | 3 |
| FOOD-226 | Serving Alcohol Safely | 3 |
|  | Hospitality Industry Sales and Marketing | 1 |
|  | Food and Beverage Operations | 3 |
|  | Wellness Education* | 4 |
|  |  | 6 |

Total Semester Credit Hours
Please see the NTID General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\dagger$ Any science course numbered NSCI-250 or higher
$\ddagger$ Any mathematics course numbered NMTH-250 or higher
$\S$ Choose a course from one of the following HSPT or FOOD program options: Entertainment and Event
Management, International Food Marketing and Distribution, and International Hotel and Resort Management. See chart below.


## Electives

Entertainment and Event Management

| HSPT-234 | Negotiation and Conflict Resolution |
| :--- | :--- |
| HSPT-244 | Meeting Event Management |
| HSPT-246 | Casino Management |
| HSPT-248 | Project Management for Events |
| HSPT-336 | International Risk Assessment and Hospitality Law |
|  | Venue Management |

International Food Marketing and Distribution

| FOOD-151 | International Food Distribution |
| :--- | :--- |
| FOOD-454 | Food Processing Quality and Integrity |
| PACK-301 | Packaging Materials |

International Hotel and Resort Management
HSPT-234 Negotiation and Conflict Resolution
HSPT-336 International Risk Assessment and Hospitality Law

## Additional information

## Admission requirements

To enroll in the College of Applied Science and Technology's School of International Hospitality and Service Innovation, the student must present a grade point average of 2.5 or higher upon graduation with the associate in science degree.

## Laboratory Science Technology, AAS

www.ntid.rit.edu/scimath/laboratory-science-technology

## Matthew A. Lynn, Chairperson

(585) 475-5923 (V), (585) 286-4751 (VP), malntm@rit.edu

## Program overview

The laboratory science technology major, with its foundation of course sequences in chemistry, biology, and instrumental analysis, was developed primarily from an industry perspective to prepare students for employment as laboratory technicians. The major has several significant factors that set it apart, including the application of real-world analyses and a state-of-the-art instrumentation laboratory. Graduates are prepared to work in a broad range of fields, including chemical, biological, biotechnical, pharmaceutical, environmental, industrial, forensic, and food analysis.

Students earning an AAS degree have the option of finding employment or continuing to work toward a baccalaureate degree. Under the program's agreement with RIT's School of Individualized Study, individuals who maintain a grade-point average of 3.0 or higher may enroll in the center's bachelor's degree program. Students may then complete a BS degree in applied arts and science with a concentration in biotechnology studies. Students may also complete a BS degree in chemistry or biochemistry from the College of Science's School of Chemistry and Materials Science. For more information, please visit http://www.ntid.rit. edu/scimath/a-plus-b-lst.

## On-the-job responsibilities

Technicians are involved with the collection and preparation of samples and standards. They also perform instrumental, volumetric, gravimetric, and biological analyses. Additional job responsibilities may include the interpretation and reporting of experimental results and data.

## Places of employment

The major prepares graduates for technical jobs in municipal, public, private, and industrial laboratories.

## Prerequisites

English-AAS: Placement in a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores of 9.0 on the California Reading Test.

Mathematics: Placement in Integrated Algebra (NMTH-212) or higher. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science. Completion of high school chemistry is required.

## Curriculum

## Laboratory science technology, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| NCAR-100 | Freshman Seminar | 1 |
| NLST-120 | Laboratory Tools | 3 |
| NLST-171 | Fundamentals of Chemistry I | 3 |
| NSCI-161 | LAS Perspective 6: Fundamentals of Biology I | 3 |
| NMTH-212 | Integrated Algebrał | 3 |
|  | First Year LAS Elective | 3 |
|  | ASL-Deaf Cultural Studies $\dagger$ |  |
|  | LAS Perspective 1 | 3 |
| NLST-172 | Fundamentals of Chemistry II | 3 |
| NSCI-162 | Fundamentals of Biology II | 3 |
| NLST-220 | Analytical Chemistry | 4 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NLST-250 | Quantitative Instrumental Analysis | 4 |
| NLST-240 | Biotechnology I | 3 |
| NLST-230 | Principles of Organic Chemistry | 4 |
| NLST-225 | Laboratory Applications | 3 |
| NLST-232 | Laboratory Mathematics | 3 |
| NLST-255 | Chemical Separations and Chromatography | 4 |
| NLST-245 | Biotechnology II | 3 |
| NLST-235 | Principles of Biochemistry | 3 |
| NLST-260 | Laboratory Methods | 3 |
|  | LAS Perspective 2 | 3 |
| NLST-299 | Cooperative Education | Co-op |
| Third Year |  |  |
|  | Professional/Technical Electives§ | 6 |
|  | LAS Perspective 3, 4 | 6 |

Total Semester Credit Hours $\quad \mathbf{7 7}$
See NTID General Education Curriculum-Liberal Arts and Sciences (LAS) requirements for more information.

* See Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and an LAS Perspective.
£ Students placing above NMTH-212 must take a higher-level NMTH or MATH (College of Science) course as appropriate.
§ Approved technical electives are Chemical Technology (NLST-270) or any of the following with departmental approval: NSCI-120 or above, NMTH-212 or above, BIOL-101 (or equivalent), BIOL-121 (or equivalent), CHMG-141 (or equivalent), STAT-145 (or equivalent), STAT-155 (or equivalent), or MATH-161 (or equivalent).


## Laboratory Science Technology, AOS

www.ntid.rit.edu/scimath/laboratory-science-technology
Matthew A. Lynn, Chairperson
(585) 475-5923 (V), (585) 286-4751 (VP), maIntm@rit.edu

## Program overview

The laboratory science technology major, with its foundation of course sequences in chemistry, biology, and instrumental analysis, was developed primarily from an industry perspective to prepare students for employment as laboratory technicians. The major has several significant factors that set it apart, including the application of real-world analyses and a state-of-the-art instrumentation laboratory. Graduates are prepared to work in a broad range of fields, including chemical, biological, biotechnical, environmental, industrial, forensic, and food analysis.

## On-the-job responsibilities

Technicians are involved with the collection and preparation of samples and standards. They also perform instrumental, volumetric, gravimetric, and biological analyses. Additional job responsibilities may include the interpretation and reporting of experimental results and data.

## Places of employment

The major prepares graduates for technical jobs in municipal, public, private, and industrial laboratories.

## Prerequisites

English—AOS: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Integrated Algebra (NMTH-212) or above. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science. Completion of high school chemistry is required.

## Curriculum

Laboratory science technology, AOS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT |
| :--- | :--- | ---: |
| FOURS |  |  |
| First Year |  |  |
| NLST-120 | Laboratory Tools | 3 |
| NLST-171 | Fundamentals of Chemistry I | 3 |
| NSCI-161 | Fundamentals of Biology I | 3 |
| NMTH-212 | NTID LAS Foundation: Integrated Algebrat | 3 |
| NENG-212 | NTID LAS Foundation: Career English I | 3 |
| NCAR-100 | Freshman Seminar | 1 |
| NLST-172 | Fundamentals of Chemistry II | 3 |
| NSCI-162 | Fundamentals of Biology II | 3 |
| NLST-220 | Analytical Chemistry | 4 |
| NENG-213 | NTID LAS Foundation: Career English II | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| NLST-250 | Quantitative Instrumental Analysis | 4 |
| NLST-240 | Biotechnology I | 3 |
| NLST-230 | Principles of Organic Chemistry | 4 |
| NLST-225 | Laboratory Applications | 3 |
| NLST-255 | Chemical Separations and Chromatography | 4 |
| NLST-245 | Biotechnology II | 3 |
| NLST-235 | Principles of Biochemistry | 3 |
| NLST-260 | Laboratory Methods | 3 |
| NLST-299 | Cooperative Education | Co-op |
| Third Year |  |  |
| NLST-232 | Laboratory Mathematics | 3 |
|  | Technical Electives | 6 |
|  | NTID LAS Perspective§ | 3 |

Total Semester Credit Hours
See NTID General Education Curriculum-Liberal Arts and Sciences (LAS) requirements for more information.

* See Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† Students placing above NMTH-212 can take a higher-level NMTH course or any course from a nonscience LAS Perspective area.
$\ddagger$ Courses that can be used as a technical elective include Chemical Technology (NLST-270), NSCI-120 or above with departmental approval, and NMTH-220 or above with departmental approval.
§ This LAS Perspective course may be from any of the following three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; or Creative and Innovative Exploration.


## Mobile Application Development, AAS

http://www.ntid.rit.edu/ics/mobile-application-development
Elissa Olsen, Chairperson
(585) 475-2225 (V), emondp@rit.edu

## Program overview

The mobile application development major is an associate degree program that prepares students for work in the software development industry with a focus on application design and development for mobile platforms. Mobile app development is a field that brings concepts in programming, web development and interface design together. Using current and emerging technologies, students develop skills in app design, learn relevant programming languages for application development on a variety of smart-devices, and learn the policies and procedures for submitting apps for distribution.

## On-the-Job Responsibilities

Graduates of this program may work independently or with a team of programmers writing and developing software programs for mobile applications for contemporary devices. This requires skills in information gathering, user-centered design, effective deployment practices on a range of devices and strong communication skills.

## Places of Employment

The majority of the graduates of this program will find jobs in public or private software development companies. Most often, these companies will specialize in web or mobile application development.

## Prerequisites

ACT: Composite score of 17 or higher, with minimum scores of 18 in Mathematics, 16 in English, and 19 in Reading.

English: Placement in a First Year Writing course such as FYW: Writing Seminar (UWRT-150). Students that place into Critical Reading and Writing (UWRT-100) would also be considered.

Mathematics: Placement into NTID Introduction to Discrete Mathematics (NMTH-255) or higher. Typically, students entering this major will have completed at least three years of high school mathematics.

Science: Typically, students entering this major will have completed at least two years of high school science.

## Curriculum

Mobile application development, AAS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
|  | ASL/Deaf Cultural Studies* | 0 |
| NCAR-100 | Freshman Seminar | 1 |
| NACA-172 | Website Development | 3 |
| NMAD-180, 181 | Programming Fundamentals I, II: Mobile Domain | 8 |
| UWRT-150 | Writing Seminar | 3 |
| NMTH-255 | Introduction to Discrete Mathematics | 3 |
| NMAD-182 | Software Analysis and Design | 3 |
| NMAD-150 | Mobile User Interfaces | 3 |
|  | ASL/Deaf Cultural Studies* | 0 |
|  | LAS Perspective 2 | 3 |
|  | LAS Elective* | 3 |
|  | Wellness Education $\dagger$ | 0 |
| Second Year |  |  |
| NMAD-260, 261 | Mobile Application Development I, II | 8 |
| NMAD-251 | Mobile Application Design Elements | 3 |
| NMAD-250 | Mobile User Experience | 3 |
| NACT-240 | The World of Work | 3 |
| NMAD-270 | Best Practices for Mobile Development | 3 |
| NMAD-262 | Web Services and Data Storage Technologies | 3 |
| NMAD-299 | Cooperative Education (summer) | 0 |
|  | LAS Perspective 1, 4, 6 | 9 |
| Third Year |  |  |
| NBUS-211 | World of Business and Innovation | 3 |
| NMAD-290 | Mobile Application Development Capstone Projects | 3 |
|  | Free Elective* | 3 |
|  | Technical Elective $\ddagger$ | 3 |
|  | LAS Perspective 3 | 3 |
| Total Semester | t Hours | 77 |

* An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the 77 credit hours required in the program, it can be a course approved for both AASASLDCS and an LAS Perspective or LAS Elective, or it can be used to fulfill an Open Elective.
$\dagger$ Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
$\ddagger$ The Mobile Application Development program Technical Elective can be: Web Implementation (NACA174), Programming Fundamentals II (NACA-161), Web and Mobile I (ISTE-140), Intro to Database and Data Modeling (ISTE-230), Java for Programmers (ISTE-200), or a course from another program with approval of the ICS Department Chair and the Department Chair of the program offering the course.


## Deaf Cultural Studies-American Sign Language, Certificate

www.rit.edu/NTID/ds<br>Patti Durr, Program Contact<br>(866) 833-4374 (VP), paddhd@rit.edu

## Program overview

The Deaf cultural studies-American Sign Language certificate offers deaf and hard-of-hearing students the opportunity to understand the deaf community as an entity unto itself and within the context of society as a whole.

Knowledge, skills, and abilities learned through this program of study include: understanding the structure of ASL and the application of linguistic principles to other languages (specifically English); enhancement of bilingual skills to improve communication; increased knowledge of Deaf culture and Deaf history; a heightened sense of self-concept, selfesteem, and self-confidence; improved presentation skills; and enhanced literacy and critical thinking skills.

Candidates for this certificate must complete or have already completed an undergraduate degree program at NTID/RIT.

## Curriculum

Deaf cultural studies-ASL, certificate, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| Choose three of the following courses: |  |  |
| NHSS-159 | Deaf Community in the Modern World |  |
| NHSS-260 | Deaf People and Civil Rights |  |
| NHSS-270 | Multiculturalism in the Deaf Community |  |
| NASL-275 | Structure of ASL |  |
| NHSS-269 | Visual Expressions of Deafhood |  |
| NHSS-279 | Seminar in Deaf Cultural Studies |  |

Total Semester Credit Hours

## Performing Arts, Certificate

www.rit.edu/NTID/pa
Aaron Kelstone, Program Director
(585) 286-1659 (VP), abwnpa@rit.edu

## Program overview

The performing arts certificate provides students with an additional set of marketable skills. Students develop knowledge of standard theatrical operating procedures as well as principles and practices of theater accessibility for deaf people, allowing them to work in professional, regional, and community theater. The certificate also provides a solid foundation for both deaf and hearing students who wish to pursue further education in film, video, theater, and related forms of performing arts.

The certificate includes knowledge of theater terminology, practices, and protocols; issues in script analysis; ASL translation and accessibility; and experience in performance and technical theater. Students take Theatre Practicum I (NHSS-248), then select three additional courses in areas such as stagecraft, acting, scenic and lighting technology, and scenic painting and props, to name a few. Candidates for this certificate must complete or have already completed an undergraduate program at NTID/RIT.

## Curriculum

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| NHSS-248 | Theatre Practicum I | 1 |
| Choose three of the following courses: |  | 9 |
| NHSS-120 | Introduction to Performing Arts |  |
| NHSS-122 | Introduction to Stagecraft |  |
| NHSS-130 | Acting I |  |
| NHSS-132 | Sign Mime, Creative Movement, and Visual Theatre |  |
| NHSS-134 | Dance I: Jazz and Hip-Hop |  |
| NHSS-223 | Scenic and Lighting Technology |  |
| NHSS-224 | Scenic Painting and Props |  |
| NHSS-225 | Costume, Mask, and Stage Make-Up |  |
| NHSS-231 | Acting II |  |
| NHSS-235 | Dance Il: Modern Dance and Ballet |  |
| NHSS-240 | Theatre History Through Deaf Eyes |  |
| NHSS-249 | Seminar in Performing Arts |  |

Total Semester Credit Hours

## Pre-baccalaureate Studies

## General information

The pre-baccalaureate studies program is available to students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program through one of the other colleges of RIT. It is a bridge program for qualified students, based on academic transcripts, scores on admissions tests, and other evidence that supports a reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to a program of study may choose the career exploration stdies program.
Enrollment in the pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or disciplinerelated skills. The academic program is flexible and individualized and allows students to focus on needed skills while concurrently progressing toward their chosen field of study. Students may take courses taught by NTID faculty, as well as entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students cannot receive a degree in pre-baccalaureate studies. Rather, they will apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to a degree-granting program in NTID or one of the other colleges of RIT.

## Engineering Studies

## Dino Laury, Chairperson, Engineering Studies

Pre-baccalaureate studies, engineering option, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| NCAR-100 | Freshman Seminar | 1 |
|  | First Year LAS Elective | 3 |
|  | Pre-baccalaureate Coursest | $0-3$ |
|  | Major Courses | 6 |
| PHYS-211, 212 | University Physics I, II | 8 |
|  | LAS-General Education | 6 |
| MATH-181,182 | Project-based Calculus I, ll $\ddagger$ | 8 |
| Total Semester Credit Hours | $\mathbf{3 2 - 3 5}$ |  |

Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation Requirements section of this bulletin for more information.
$\dagger$ Pre-baccalaureate courses strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.
$\ddagger$ Alternative mathematics courses may be required as prerequisites, depending on placement. If pursuing the physics option, students must choose the physics sequence.

Pre-baccalaureate studies, engineering technology option, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| NCAR-100 Freshman Seminar | 1 |
| First Year LAS Elective | 3 |
| Pre-baccalaureate Courses $\dagger$ | 0-3 |
| Undeclared Engineering Technology Seminar | 1 |
| Major Courses | 6 |
| LAS-General Education | 6 |
| PHYS-111 College Physics I | 4 |
| MATH-111 Pre-Calculus | 3 |
| MATH-171, $172 \quad$ Calculus A, B $\ddagger$ |  |
| Total Semester Credit Hours | 30-33 |
| Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation Requirements section of this bulletin for more information. |  |
| $\dagger$ Pre-baccalaureate courses strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. |  |
| $\ddagger$ Alternative mathematics courses may be required as prerequisites, pursuing the physics option, students must choose the physics seq | ing on placement. If |

## Liberal Studies

## Jennifer L. Gravitz, Chairperson, Liberal Studies

Students entering pre-baccalaureate studies in liberal studies will typically be required to have:

ACT: Minimum composite score of 19 with a reading score of 20 and all other skill area scores of 18 or higher

English: Placement into Critical Reading and Writing (UWRT-100)
Mathematics: Placement into the NTID Advanced Mathematics (NMTH-275) course or higher

Pre-baccalaureate studies, liberal arts, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | ---: | ---: |
| NCAR-100 | Freshman Seminar | 1 |
| First Year Major Courses | 6 |  |
| LAS-General Education* | $6-9$ |  |
| Mathematics or Science Course $\ddagger$ | 3 |  |
| NTID Humanities or Social Science Courses§ | 3 |  |
| Pre-Baccalaureate Courses $\dagger$ | $6-9$ |  |
| Total Semester Credit Hours | $\mathbf{2 5 - 3 1}$ |  |

* Please see the NTID General Education Curriculum-Liberal Arts and Sciences for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT100) or a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students should also choose a course that satisfies one of the RIT LAS Perspectives: ethical (P1), artistic (P2), global (P3), or social (P4).
† Pre-baccalaureate courses strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.
\# Students may choose one of the following: NMTH-210, NMTH-250, NMTH-260, or a science course numbered NSCl-250 or higher.
§ Students may choose one of the following: any communication studies course numbered NCOM-201 or higher, or any humanities and social sciences course numbered NHSS-260 or higher.


## Science and Mathematics

## Matthew A. Lynn, Chairperson, Science and Mathematics

Students entering pre-baccalaureate studies in science or mathematics will typically be required to have:

ACT: Minimum composite score of 21 with subscores of at least 19.
English: Placement into Critical Reading and Writing (UWRT-100)
Mathematics: Placement in NTID Advanced Mathematics (NMTH275) course or higher

Pre-baccalaureate studies (biology, biotechnology, environmental science, environmental management, or medical sciences), typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| NCAR-100 | Freshman Seminar | 1 |
|  | Pre-baccalaureate courses\# | $3-6$ |
| BIOL-101, 102 | General Biology I, II | 6 |
| BIOL-103, 104 | General Biology Lab I, II | 2 |
|  | LAS General Education* | 9 |
| MATH-101 | College Algebra | 3 |
| MATH-161 | Applied Calculus $\ddagger$ | 3 |
| Total Semester Credit Hours | $\mathbf{2 7 - 3 0}$ |  |

\# Pre-baccalaureate courses are an available option to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas

* Please see Liberal Arts General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150).
$\ddagger$ Alternative mathematics courses may be required as prerequisites, depending on placement

Pre-baccalaureate studies in science (chemistry option), typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| NCAR-100 | Freshman Seminar | 1 |
|  | Pre-baccalaureate courses\# | $3-6$ |
| CHMG-141, 142 | General and Analytical Chemistry I, II | 6 |
| CHMG-145,146 | General and Analytical Chemistry Labs I, II | 2 |
| MATH-181,182 | Project-Based Calculus I, II | 6 |
|  | LAS General Education* | 9 |
| Total Semester Credit Hours | $\mathbf{2 7 - 3 0}$ |  |

\# Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.

* Please see Liberal Arts General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150),

Pre-baccalaureate studies in science (math or physics option), typical course sequence

\# Pre-baccalaureate courses are an option to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.
$\ddagger$ Alternate mathematics courses may be required as prerequisites, depending on placement

* Please see Liberal Arts General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150).
§ If pursuing the physics option, students must choose the physics sequence.


## Visual Communications

## Kurt Stoskopf, Chairperson <br> Visual Communications Studies Department

Students entering pre-baccalaureate studies in visual communications will typically be required to have:

ACT: minimum score of 18
English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150)

Mathematics: Placement into mathematics course NMTH-120 or higher for BFA degrees or NMTH-250 or higher for BS degrees

Science: Placement into science NSCI-120 or higher for BFA degrees or NSCI-250 or higher for BS degrees

Pre-baccalaureate studies, visual communications (schools of American Crafts, Art, and Design), typical course sequence

| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| NGRD-115 | Visual Idea Development | 3 |
| NGRD-111, 211 | Drawing I, II | 6 |
| NAIS-120 | Principles of Design and Color | 3 |
| NAIS-130 | Raster and Vector Graphics | 3 |
| NGRD-140 | Graphic Design and Typography I | 3 |
|  | LAS-General Education | 12 |
| NCAR-100 | Freshman Seminar | 1 |
|  | Elective | 3 |

## Total Semester Credit Hours

Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information
Note: Portfolio of original artwork is required to determine admission. See the College of Imaging Arts and Sciences support coordinator for further information.

Pre-baccalaureate studies, visual communications (School of Photographic Arts and Sciences), BFA degree, typical course sequence

| COURSE | SEMESTER CREDIT |  |
| :--- | :--- | ---: |
| HGRP-110, 210 | Digital Photography I, II | 6 |
| NGRD-111 | Drawing I | 3 |
| NAIS-120 | Principles of Design and Color | 3 |
| NAIS-130 | Raster and Vector Graphics | 3 |
| NGRD-115 | Visual Idea Development | 3 |
| NGRD-140 | Graphic Design and Typography | 3 |
|  | LAS General Education | 12 |
| NCAR-100 | Freshman Seminar | 1 |
| Total Semester Credit Hours | $\mathbf{3 4}$ |  |

Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation Requirements section of this bulletin for more information.

Pre-baccalaureate studies, visual communications (School of Photographic Arts and Sciences), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT |
| :--- | :--- | ---: |
| NGRP-110 | Digital Photography I | 3 |
| NAIS-120 | Principles of Design and Color | 3 |
| NAIS-130 | Raster and Vector Graphics | 3 |
| NGRP-231 | Image Preparation | 3 |
| NGRP-232 | Image Manipulation | 3 |
|  | Math Courset | 3 |
|  | Science Course $\ddagger$ | 3 |
|  | LAS-General Education | 12 |
| NCAR-100 | Freshman Seminar | 1 |
| Total Semester Credit Hours |  | $\mathbf{3 4}$ |

Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information.
$\dagger$ Students may choose any mathematics course numbered NMTH-120 or higher
$\ddagger$ Students may choose any science course numbered NSCl-120 or higher.
Pre-baccalaureate studies, visual communications (film and animation option), typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| NGRP-220 | Videography | 3 |
| SOFA-107 | Principles of Animation | 3 |
| SOFA-103 | Film/Video Materials and Technology | 3 |
| SOFA-106 | Film Syntax | 3 |
|  | Theatre Electives/Performing Arts $\dagger$ | $3-9$ |
| NCAR-100 | LAS-General Education | 12 |

Total Semester Credit Hours $\quad$ 28-34
Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information.
$\dagger$ Please see the College of Imaging Arts and Sciences support coordinator for a list of current theatre electives.

Pre-baccalaureate studies, visual communications (School of Media Sciences), typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | ---: |
| NAIS-130 | Raster and Vector Graphics | 3 |
| NAIS-150 | Page Layout I | 3 |
| NGRP-231 | Image Preparation | 3 |
| NGRP-232 | Image Manipulation | 3 |
| NGRP-245 | Color Theory and Management | 3 |
|  | Math Courset | 3 |
|  | Science Course $\ddagger$ | 3 |
| NCAR-100 | LAS-General Education | 12 |
| Total Semester Credit Hours | Freshman Seminar | 1 |

Please see the General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information.
† Students may choose any mathematics course numbered NMTH-120 or higher.
$\ddagger$ Students may choose any science course numbered NSCI-120 or higher.

Gerard J. Buckley, BS, Rochester Institute of Technology; MSW, University of Missouri; Ed.D., University of Kansas-President NTID and Vice President and Dean, RIT; Associate Professor

Robert Q. Pollard, BS, Union College; MA, Ph.D., State University of New York at Buffalo-Associate Dean of Research

Todd E. Pagano, BA, State University College at Oswego; MS, Ph.D., Tufts University-Associate Dean for Teaching and Scholarship Excellence; Professor

## Academic Affairs

Stephen F. Aldersley, BS, University of Surrey (United Kingdom); MA, College of St. Rose; Ed.D., University of RochesterAssociate Vice President for Academic Affairs; Professor

Linda M. Bryant, BS, Nazareth College of Rochester; MS, Gallaudet University; Ed.D., University of Rochester-Director, NTID Learning Consortium and Online Learning Initiatives

Marianne Gustafson, BS, Northwestern University; MS, Syracuse University-Associate Dean for Curriculum and Special Projects; Professor

Geoffrey S. Poor, AAS, Seattle Central Community College; BA, Vassar College; MA, Nazareth College of Rochester-Coordinator, Office of ASL Training and Evaluation; Professor

Kathryn L. Schmitz, BA, Duke University; MS, Rochester Institute of Technology; Ph.D., University at Buffalo-Associate Dean for Academic Administration; Associate Professor

## American Sign Language and Interpreting Education

Kim B. Kurz, BSW, MS, Rochester Institute of Technology; Ph.D., University of Kansas-Chairperson; Associate Professor

Leisa R. Boling, AAS, BFA, MS, Rochester Institute of TechnologyASL Program Director, American Sign Language and Interpreting Education; Assistant Professor

Sandra Bradley, BS, Gallaudet University; MS, Rochester Institute of Technology-Senior Lecturer

Jennifer K. Briggs, BA, Gallaudet University; MA, Columbia University-Lecturer

Marguerite F. Carrillo, BS,
MS, Rochester Institute of Technology-Lecturer

Robyn K. Dean, BA, Maryville College; MA, Colgate Rochester Crozer Divinity School; Ph.D., Heriot-Watt University (United Kingdom)—Assistant Professor

Lynette S. Finton, BA, Augustana College; MS, Rochester Institute of Technology-Program Director, American Sign Language-English Interpretation; Professor

Peter Hauser, BA, Central Connecticut State University; MA (linguistics), MA (psychology), Ph.D., Gallaudet University-Professor

Joseph Hill, BS, Miami University; MA, Ph.D., Gallaudet UniversityAssistant Professor

Lisa Johnston, BA, MA, Gallaudet University; MA, University of Arizona at Tucson-Lecturer

Baldev Kaur Khalsa, BA, M.Ed., McDaniel College—Associate Professor

Jason Listman, BS, MS, Rochester Institute of Technology; Ed.D., St. John Fisher College-Assistant Professor

Daniel V. Maffia, BS, Rochester Institute of Technology; MA, Western Oregon University-Lecturer

Campbell A. McDermid, BA, Carleton University; MA, Gallaudet University; M.Ed., Ph.D., York University (Canada)—Assistant Professor

Kathleen Miraglia, BS, State
University College at Brockport; MS, Rochester Institute of TechnologyCoordinator, Health Care Programs; Senior Lecturer

Christine Monikowski, BS, Shippensburg State College; MA, Gallaudet College; MA, Ph.D., University of New Mexico-Professor

Kevin T. Williams, BS, St. Louis Christian College; MS, Western Maryland College-Senior Lecturer

## Business Studies

Mary Louise Basile, BA, LeMoyne College; MA, University at Albany; MBA, Rochester Institute of Technology-Chairperson; Professor
W. Scot Atkins, BS, MS, Rochester Institute of Technology; Ed.D., University of St. Thomas-Assistant Professor

Alvin C. Boyd, AA, Delgado Community College; BS, Southern University and A\&M College; BS, MS, Rochester Institute of Technology; Ed.D., St. John Fisher College-Lecturer

Kathleen M. Brady, AS, Monroe Community College; BS, Houghton College; MBA, Rochester Institute of Technology-Lecturer

Ann M. Hager, BS, Nazareth
College of Rochester; MS, University of Rochester-Associate Professor

Michael Kane, BS, MS, Rochester Institute of Technology; MS, Gallaudet University- Senior Lecturer

Adriana C. Kulakowski, BS, Rochester Institute of Technology; MS, Nazareth College of Rochester; MBA, State University College at Oswego-Senior Lecturer

Tracy DeLong Magin, BS, MSED, State University College at Oswego; MBA, Rochester Institute of Technology-Senior Lecturer

Kelly Metz Davis, AS, BS,
MS, Rochester Institute of Technology-Lecturer

Mary Elizabeth Parker, BS,
University at Albany; M.Ed., University of Vermont-Associate Professor

Mark J. Pfuntner, BS, MBA, Rochester Institute of TechnologyAssociate Professor

Anne Strauch, AAS, BS MBA, Rochester Institute of Technology-Lecturer

Kathleen S. Szczepanek, AAS, AS, BS, MS, Rochester Institute of Technology-Senior Lecturer

Charlotte L. V.Thoms, BS, Youngstown State University; MS, Ed.D., University of RochesterAssociate Professor

Mellissa Youngman, AAS, Monroe Community College; BS, MBA, Rochester Institute TechnologySenior Lecturer

## Communication Studies and Services

Catherine C. Clark, BA, Bradley University; MS, University of Louisville; AuD, Salus UniversityAssociate Professor

John M. Conklin, AAS, Orange County Community College; BS, State University College at Brockport; MS, State University College at Geneseo-Assistant Professor

Linda G. Gottermeier, BS, Nazareth College of Rochester; MA State University College at Geneseo AuD, Salus University-Associate Professor

## Cultural and Creative Studies

Joseph H. Bochner, BA, City University of New York at Queens College; MA, Ph.D., University of Wisconsin-Chairperson; Professor

Erin Auble, BA, Emerson College;
MST, Rochester Institute of Technology-Senior Lecturer

Julie J. Cammeron, BA, University of Great Falls; MED, Gallaudet University-Associate Professor

Patricia A. Durr, BA, LeMoyne College; MS, University of Rochester-Associate Professor

Luane Davis Haggerty, BA, City University of New York at Hunter College; MA, Goddard College; Ph.D., Antioch University-Senior Lecturer

Aaron Weir Kelstone, BA, MA, Cleveland State University; Ph.D., Northeastern University-Principal Lecturer

## Deirdre A. Schlehofer,

BA, University of Alaska; M.Phil.,University of Bristol (United Kingdom); Ed.D., University of Rochester-Assistant Professor
J. Matt Searls, BA, MA, Gallaudet

University; Ph.D., The American University-Associate Professor

Thomas F. Warfield, BA, State University College at Purchase; MFA, University of Utah-Senior Lecturer

## Engineering Studies

Dino J. Laury, AAS, BS, MS, Rochester Institute of Technology; Ed.D., University of RochesterChairperson; Assistant Professor

Gary W. Behm, AAS, BS, Rochester Institute of Technology; MS, Lehigh University-Associate Professor

Scott Bellinger, BS, University of Illinois; MS, Rochester Institute of Technology-Senior Lecturer

Pamela Berkeley, BS, University of Massachusetts; MS, Ph.D., University of California at Berkeley-Assistant Professor

Wendy Dannels, AAS, BS, MS, Rochester Institute of TechnologySenior Lecturer

James R. Fugate, AAS, Monroe Community College; AAS, Rochester Institute of Technology; BA, University of Maryland; MS, Rochester Institute of TechnologyAssistant Professor

Eugene P. Galasso, BA, St. John Fisher College-Lecturer

Marcus Holmes, AAS, BS, MS, Rochester Institute of TechnologySenior Lecturer

William R. LaVigne, B.Arch., University of Notre Dame; MS, Rochester Institute of TechnologyAssistant Professor

Robert Michalek, AAS,
BS, Rochester Institute of
Technology-Lecturer
Dominic J. Peroni, AAS, Rochester Institute of Technology; BS, State University of New York Empire State College; MS, Rochester Institute of Technology-Assistant Professor

Edward A. Schwenzer, BA, MS, University of Rochester-Lecturer

## Information and Computing Studies

Elissa M. Olsen, AAS, BS, MS, Rochester Institute of TechnologyChairperson; Assistant Professor

Karen Beiter, BS, MS, Rochester Institute of Technology-Assistant Professor

Christopher Campbell,
BS, Rochester Institute of Technology; MS, University of Phoenix-Lecturer

Tao Eng, BS, MS, Rochester Institute of Technology-Senior Lecturer

Mark Jeremy, AAS, BS, Rochester Institute of Technology-Lecturer

Donna A. Lange, BS, State
University College at Brockport; MS, Rochester Institute of TechnologyAssociate Professor

David E. Lawrence, AAS, BET, University of Akron; MS, Rochester Institute of Technology-Associate Professor

James R. Mallory, AAS, Kent State University; BS, MS, Rochester Institute of Technology-Professor

Myra Bennett Pelz, BA, Rutgers University; MA, New York University; MS, Rochester Institute of Technology-Associate Professor
Tom Simpson, BS, Rochester
Institute of Technology;
MS, Nazareth College of
Rochester-Lecturer
Joseph Stanislow, AAS, BS,
Rochester Institute of Technology;
MS, Stevens Institute of
Technology-Assistant Professor
John V. Sweeney, BS, MS,
Michigan State University; MS, Rochester Institute of TechnologyAssistant Professor

Brian Trager, BS, MS, Rochester Institute of Technology-Assistant Professor

## Liberal Studies

Jennifer L. Gravitz, BS, MS, Rochester Institute of Technology; JD, Albany Law SchoolChairperson; Associate Professor
Alesia Allen, BS, Rochester Institute of Technology; MA, Ph.D. Gallaudet University-Lecturer
Gerald P. Berent, BS, University of Virginia; Ph.D., University of North Carolina at Chapel Hill—Professor

Pamela R. Conley, AAS, Rochester Institute of Technology; BA, Gallaudet University; MA, State University College at Brockport; MS, University of Rochester-Associate Professor

Kathleen E. Crandall, BA, MA, California State University at Fresno; Ph.D., Northwestern UniversityAssociate Professor

Jessica A. Cuculick, BS, Rochester Institute of Technology; MSW, East Carolina University; Ed.D., University of Rochester-Associate Professor

Matthew W. Dye, B.Sc., Manchester Polytechnic (United Kingdom); M.Sc., University of Stirling (United Kingdom); Ph.D. University of South Hampton (United Kingdom)—Associate Professor

Erin A. Esposito, BS, MS, Rochester Institute of Technology-Lecturer

Erin Finton, BA, Nazareth College; ME, University of Toronto (Canada)-Lecturer

Melinda J. Hopper, BS, MS, Illinois State University; Ph.D., University of Rochester-Lecturer

Clayton Ide, BS, Gallaudet
University; MS, Rochester Institute of Technology-Lecturer

Denise S. Kavin, BS, Gallaudet University; MS, Northwestern University; Ed.D., Northern Illinois University-Lecturer
Patricia Kenney, BA, Gallaudet University; BA, MA, California State University in Northridge-Lecturer
Pamela Kincheloe, BA, Rollins College; MA, University of North Carolina at Chapel Hill; Ph.D., Southern Illinois UniversityAssociate Professor

Kenneth Lerner, BA, Beloit
College; MS, University of Virginia-Senior Lecturer

Talila Lewis, BA, American University; JD, Washington College of Law, American University-Lecturer

Eugene Lylak, BA, University at Buffalo; M.Ed., St. Michael's College; Ed.D., University of Rochester-Professor

Marc Marschark, BA, Cornell University; MA, Ph.D., University of Western Ontario (Canada)-Professor

Rachel C. Mazique, BA, Gallaudet University; MA, Ph.D., University of Texas at Austin-Lecturer

Brian Milburn, AA, William Rainey Harper College; BS, MS, Rochester Institute of Technology-Lecturer

John E. Panara, AS, Monroe Community College; BS, MA, State University College at BrockportAssistant Professor

Vincent J. Samar, BA, MA, Ph.D., University of Rochester-Associate Professor

Kathy Varone, BS, State University College at Fredonia; MS, New York University-Lecturer

Aimee Whyte, BS, Rochester Institute of Technology; MA, Gallaudet University-Lecturer

Jeanne Yamonaco, BA, MS,
Nazareth College of RochesterSenior Lecturer

## Master of Science in Secondary Education

Gerald C. Bateman, BS, MS, State
University College at Geneseo; Ed.D., University of RochesterDirector; Professor

Susan B. Foster, BA, Northwestern University; BS, University of Maine; M.Ed., Bridgewater State College; Ph.D., Syracuse University-Professor

Ronald R. Kelly, BS, M.Ed., Ph.D., University of Nebraska at Lincoln-Professor

Christopher A.N. Kurz, BS, Rochester Institute of Technology; MS, Ph.D., University of KansasAssociate Professor
lla Parasnis, BA, MA, Nagpur University (India); MA, Ph.D., University of Rochester-Professor

Thomastine Sarchet, BS, MS, Rochester Institute of TechnologyResearch Associate

Sara Schley, BA, Reed College; MA, Northeastern University; Ed.D., Harvard University-Associate Professor

Michael Skyer, BFA, MS, Rochester Institute of Technology-Lecturer

Michael S. Stinson, BA, University of California at Berkeley; MA, Ph.D., University of Michigan-Professor

Jessica W. Trussell, BS, University of Georgia; M.Ed., Ph.D., Georgia State University-Assistant Professor

## Science and Mathematics

Matthew A. Lynn, BS, The Ohio State University; MS, Indiana University; Ph.D., University of Arizona- Chairperson; Associate Professor

Mitchell Bacot, BS, MS, Rochester Institute of Technology-Lecturer

Gary C. Blatto-Vallee, AAS, Rochester Institute of Technology; BS, State University College at Brockport; MA, Rochester Institute of Technology-Senior Lecturer

Stacey M. Davis, BA, Colgate University; BS, MS, Rochester Institute of Technology-Senior Lecturer

Austin U. Gehret, BS, Union College; MS, Ph.D., University of Rochester-Assistant Professor

Jane K. Jackson, BS, Stony Brook University; MS, University of Rochester-Assistant Professor

Bonnie C. Jacob, BA, Smith College; MS, Ph.D., Clemson University-Assistant Professor

Viet Le, BS, Ph.D., Wichita State University-Assistant Professor

Jacqueline McClive, AAS, BS, MS, Rochester Institute of Technology-Lecturer

Keith Mousley, BS, Rochester Institute of Technology; MA, Gallaudet University—Associate Professor

Jason Nordhaus, BA, BS, MS, Ph.D., University of RochesterAssistant Professor

Camille E. Ouellette, BS, Rochester Institute of Technology; MS, Johns Hopkins University-Lecturer

Victoria J. Robinson, BS, MS, University of Illinois at UrbanaAssociate Professor

Annemarie D. Ross, BS, MS, Rochester Institute of TechnologyAssociate Professor

Miriam E. Santana-Valadez, BS, Normal Superior Nueva Galicias; BS, ITESO University (Mexico); MS, St. John Fisher College-Lecturer

Sarah Sarchet, BS, MS, Rochester Institute of Technology-Lecturer

Melissa Skyer, BS, MS, Rochester Institute of Technology-Lecturer

Matthew J. Stefano, BS, MS, Rochester Institute of TechnologySenior Lecturer

Jennifer Swartzenberg, AS, Monroe Community College; BS, MS, Rochester Institute of Technology-Lecturer

David C. Templeton, BA,
Wittenberg University; MA, Northwestern University-Associate Professor

Karen Tobin, BS, Rochester Institute of Technology-Lecturer

Sharron M. Webster, BS, MS, Rochester Institute of TechnologyPrincipal Lecturer

Patricia S. Wink, B.Tech., MS, Rochester Institute of TechnologySenior Lecturer

## Visual Communications Studies

Kurt Stoskopf, BFA, MFA, Rochester Institute of TechnologyChairperson; Associate Professor

Gilbert Beverly, BA, NationalLouis University; MS, Rochester Institute of Technology—Assistant Professor

Stacy Bick, BFA, MS, Rochester Institute of Technology-Lecturer

Cathleen W. Chou, Certificate, New York University; BA, University of Rochester; MS, Rochester Institute of Technology-Assistant Professor

David Cohn, BFA, MS, Rochester Institute of Technology-Associate Professor

Shannon Connell, BFA, University of Missouri-Lecturer

Paula A. Grcevic, BFA, MFA, Pratt Institute-Professor

Laural Hartman, BFA,
MS, Rochester Institute of
Technology-Lecturer
David E. Hazelwood, BS, Rochester Institute of TechnologyAssistant Professor

Eric Kunsman, BFA, BS, MS,
Rochester Institute of Technology;
MFA, University of the
Arts-Lecturer
Nancy J. Marrer, BA,
FranklinPierce College; MS, RochesterInstitute of TechnologyAssistant Professor

Edward Mineck, BA, University of Connecticut; MFA, Rochester Institute of Technology-Professor
J. Troy Olivier, AA, BS,

MS, Rochester Institute of Technology-Lecturer

Sidonie M. Roepke, BFA, MST, MS, Rochester Institute of Technology-Professor

Ernie Roszkowski, BFA, Rochester Institute of Technology-Lecturer

Heather L. Smith, AAS, BS, MFA, Rochester Institute of TechnologySenior Lecturer

Michael J. Voelkl, BFA, MST,
Rochester Institute of TechnologyAssociate Professor

Andrea M. Zuchegno, BS, MS, Rochester Institute of TechnologyAssistant Professor

## Counseling and Academic Advising Services

Mark J. Rosica, BS, State
University College at Oswego; MS, Syracuse University; CAS, Gallaudet University; Postgraduate Certificate, University of Rochester-Associate Professor

## Access Services

Rico Peterson, BA, Nazareth
College of Rochester; MFA, University of California at Los Angeles; Ph.D., University of California, Riverside-Assistant Dean and Director; Professor

## Center on Access Technology

James J. DeCaro, BS, MS,
University at Buffalo; Ph.D., Syracuse University-Director; NTID Dean Emeritus; Professor

## The National Advisory

 GroupBelladarius Bell, Jr., State
Coordinator of Deaf \& Hard of Hearing Services for Alabama Department of Rehabilitation Services

Joyce Bender, CEO, Bender
Consulting Services
Lisa Dallos, Founder, High
IOMedia
Christopher Lehfeldt, Elmwood Dental Group

Mary Beth Mothersell, Sprint Relay

David Nelson, Senior Outreach Specialist, Amtrak

Gabrielle Nocciolino, Coordinator of Performing Arts, Texas School for the Deaf

Karen Putz, Owner, Ageless Passions

Joseph Riggio, Regional Outreach Manager, SCDVRS

Michael Tecklenburg, Counsel to House Democratic Leader Nancy Pelosi

Kathleen Treni, Principal of the Continuum of Services for the Deaf and Hard of Hearing, Bergen County

Sean Virnig, Superintendent of California School for the Deaf, Fremont

Douglas Watson, University of Arkansas (retired)

## National Technical Institute for the Deaf

## U.S. Government <br> Representatives

The Honorable Charles E.
Schumer, Member, U.S. Senate,
New York State
The Honorable Louise M.
Slaughter, Member, U.S. House of
Representatives, New York State

## Honorary Members

## W. Frank Blount

Nancy R. Horton
Jane Ratcliffe Pulver

# College of Science 

Sophia Maggelakis, Dean

rit.edu/science

Programs of study

| Bachelor of Science in: | Page |  |
| :--- | :--- | ---: |
| $\#$ | Applied Mathematics | 197 |
| $\#$ | Applied Statistics and Actuarial Science | 198 |
|  | Biochemistry | 187 |
| $\#$ | Bioinformatics | 191 |
|  | Biology | 193 |
|  | Biotechnology and Molecular Bioscience | 194 |
| $\#$ | Chemistry | 188 |
| $\#$ | Computational Mathematics | 200 |
| $\#$ | Environmental Science | 195 |
|  | Imaging Science | 190 |
| $\#$ | Physics | 201 |

\# Accelerated BS/MS option available.

Undergraduates in the College of Science receive a unique education, one that emphasizes the applications of science and mathematics in the professional world while providing a comprehensive liberal arts education in the humanities and social sciences. The College of Science curricula reflects current trends in the application of science and mathematics while preparing students for graduate study or for immediate employment in business, industry, government, and the medical science professions. All of the college's undergraduate programs serve as excellent preparation for graduate, medical, law, or business school.

Within an academic community committed to diversity and student centeredness, our emphasis is on the practical aspects of science and mathematics as found in science and computer laboratories. Students learn important skills in critical and analytical thinking, problem solving, and technical communication. While we are career-oriented, we recognize the value of the liberal arts for the intellectual enrichment of our students. In addition to technical competence, many of the skills acquired through the study of the liberal arts also are required by employers for promotion and career advancement.

## Admission requirements

For information on undergraduate admission, including transfer and freshman admission guidelines, please see the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

The college has more than 190 faculty members teaching in the fields of science and mathematics. All are committed to the education of undergraduate and graduate students, and most hold a doctoral degree. A variety of faculty expertise means students are likely to find a faculty member with similar interests to serve as a mentor.

Our faculty members are dedicated professors who also practice their professions outside of the classroom, participating in research and professional activities.

## Facilities

The College of Science's programs are conducted in 12 facilities on campus, including two main College of Science buildings: Gosnell Hall and the Carlson Building.

Gosnell Hall has 23 classrooms, 19 teaching laboratories, and 23 research laboratories that provide space for laboratory course work and student research projects. Some of the facilities within have specialized purposes, such as laboratories for X-ray and surface science, laser light scattering, animal care, plasma etching, electronics, quantum optics, confocal microscopy, and nuclear magnetic resonance. Additionally, Gosnell Hall is home to three computer laboratories, two statistical computing laboratories, and a greenhouse.
There are several study areas with WiFi for mobile computing. The Bruce and Nora James Atrium is a four story building used for individual study, collaboration, and community gatherings. The Bates Study Center in Gosnell Hall provides a quiet, comfortable environment for study and tutoring sessions with faculty.

The Carlson Building is home to the Chester F. Carlson Center for Imaging Science. Teaching and research facilities include dedicated classrooms for project-based and asynchronous learning, imaging science laboratories for multidisciplinary vision research, digital image processing, optics, and remote sensing. The School of Physics and Astronomy department offices, as well as physics laboratories dedicated to the study of optics, magnetism, and granular materials, are in the Carlson Building.

The Munsell Color Science Laboratory, in Color Science Hall, the Center for Computational Relativity and Gravitation, the Center for Detectors, and the university observatory also are part of the College of Science.

## Cooperative education/Internships

In RIT's cooperative education plan, a student alternates semesters of paid work experience with on-campus academic study. Co-op employment experience has many advantages. It helps students gain insight into how classroom learning is applied in real work settings, gives them a chance to experience their professional field of study, and helps them acquire practical experience that is valuable
in obtaining employment or applying to a graduate program. Salaries earned from cooperative education experiences enable students to offset a portion of the cost of their education.

Co-op is not a requirement in most of our programs, although it is strongly encouraged. The Office of Career Services and Cooperative Education assists students in identifying and applying for co-op positions. Students in the environmental science and imaging science majors are encouraged to participate in optional co-op blocks beginning the summer of the second year of their program. Students in the bioinformatics major are required to complete one cooperative education experience.

## Research

Our students are encouraged to work with faculty members as they pursue their research. Many joint student-faculty research projects have resulted in publication in professional literature. Student research is conducted in campus laboratories and through field studies. Opportunities for research across disciplines develop from the collaboration of students and faculty who share common interests. The results of student research projects are recognized in weekly forums and at the Undergraduate Research Symposium at the end of summer. The college encourages students to apply for Research Experiences for Undergraduates (REU) at other universities and currently offers four REUs at RIT.

## Accreditation

Programs in chemistry and biochemistry are approved by the Committee on Professional Training of the American Chemical Society.

## Advising

Each student is assigned both a professional academic adviser and a faculty adviser. The academic adviser provides advice on course selection, progress toward degree completion, and information on RIT services. The faculty adviser provides discipline specific, career related, and professional field advising.

## Academic enrichment

Honors Program: Students who demonstrate a high level of achievement at the high school level may be invited to join the Honors program. These students will participate in Honors course work throughout their program of study and experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.

Minors: RIT offers students more than 90 minors to choose from to enhance their major or further develop a personal area of interest. For a detailed list of minors, including courses, please refer to the Minors section of this bulletin.

Study Abroad: The Office of International Education \& Global Programs works closely with students, faculty, affiliate universities, and international institutions to provide students with opportunities to study abroad through over 250 programs spanning more than 50 countries. Students may elect to study abroad during fall, spring, or summer terms.

Study abroad opportunities are typically identified through a variety of affiliated semester programs, through RIT's unique faculty-led programs, or at one of RIT's global campuses in Dubai, Croatia, and Kosovo. With appropriate planning and by work-
ing with both the home academic program and the Study Abroad Office, students can develop a plan to successfully incorporate a study abroad experience into their plan of study. Depending on the specific experience being considered and a student's financial aid package, there may or may not be additional costs associated with a study abroad experience.

Professional student organizations: The college maintains memberships in the following professional organizations: Imaging Science and Technology Student Chapter, Honorary Physics Society, the Society of Physics Students, American Society for Biochemistry and Molecular Biology Student Affiliates, American Mathematical Society, Mathematical Society of America, and the Society for Industrial and Applied Mathematics, to name a few.

## Special opportunities

Accelerated dual degree options: Some programs offer accelerated, five-year dual BS/MS degree options. These degrees offer students the opportunity to earn a bachelor's degree and a master's degree in less time than pursuing each degree individually. Please refer to individual programs, the Graduate Bulletin, or the college's website for more information.

Graduate study: The college offers doctorate degrees in astrophysical sciences and technology, color science, and imaging science; and master of science degrees in applied and computational mathematics, astrophysical sciences and technology, bioinformatics, chemistry, applied statistics, color science, environmental science, and imaging science. For more information regarding these programs, please refer to the Graduate Bulletin or visit the college's website.

Actuarial studies: A plan of study is available for students interested in a career in the actuarial sciences. Actuarial science is a discipline that applies mathematical and statistical methods to assess risk in the insurance, finance, and other industries. Course work provides a foundation for students who will work as actuaries and also prepares students to take the first actuarial exams. These courses may count for credit in any of the three major programs in the School of Mathematical Sciences, or may be taken independently.

## Premedical Studies/Pre-health Professions Advisory Program

The premedical studies and pre-health professions advisory program is designed to provide guidance and assistance to all RIT students who are interested in continuing their education in one of the health professions; e.g., medicine, osteopathy, dentistry, optometry, podiatry, or veterinary science. Faculty members who participate in this program provide advice on the prerequisites (course selection, health-related experiences, extracurricular activities) needed for application to various health-related professional schools. In addition, they provide assistance with the application process.

## Enrollment in premedical studies/ pre-health professions advisory program

The premedical studies and pre-health professions advisory program is available to students who are enrolled in one of the
degree granting programs offered at RIT or to nonmatriculated students taking the premedical core courses or pre-professional prerequisite courses. To enroll in the program, students must contact the premedical studies and pre-health professions office in the College of Health Sciences and Technology.

## Science Exploration, Undeclared

## rit.edu/science/sep

Roger Dube, Program Director
(585) 475-5836, rrdpci@rit.edu

## Program overview

Many prospective students are interested in the sciences, but may be undecided as to which major best meets their interests and career aspirations. The science exploration option allows students to investigate the various majors in the College of Science before deciding on a program of study. Students who decide on a major within their first year will not lose time toward the completion of their degree.

## Plan of study

Science exploration is a year long option built around a single project aimed at designing, building, and conducting scientific research to achieve a goal, which is presented to students on the first day of class. This approach to interdisciplinary technical education emphasizes realworld, hands-on problem solving by student-led teams. It offers participating students a degree of autonomy and responsibility rarely found at the freshman level.

As a result, students develop an in depth appreciation for the specific field in which their team was involved while simultaneously learning about the other College of Science majors through the work of their classmates.

## Curriculum

Science exploration option, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |  |
| :--- | :--- | ---: |
| GSCI-101, 102 | Science Exploration I, II | 6 |
|  | Mathematics or Calculus Sequence | $3-9$ |
| Choose one of the following laboratory sequences: | 8 |  |
| BIOL-101, 102, <br> 103,104 | General Biology I, II with Labs |  |
| CHMG-141, 142, <br> 145,146 | General and Analytical Chemistry I, II with Labs |  |
| PHYS-121, 122 | University Physics | $3-6$ |
|  | Computer Science | $3-9$ |
|  | Liberal Arts* | 0 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Educationt |  |

## Total Semester Credit Hours

*Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
$\dagger$ Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

School of Chemistry and Materials Science

## Biochemistry, BS

## rit.edu/science/scms

## Paul Craig, School Head

(585) 475-6145, paul.craig@rit.edu

## Program overview

Biochemistry majors often have an interest in combining the life and health sciences with a chemistry degree. Students take a year of general biology in addition to a typical chemistry curriculum. During the upperlevel years, students take a substantial core of courses in biochemistry, physical chemistry, the liberal arts, and elective courses in life sciences. Students must take a minimum of two upper-division biology electives.
Employment opportunities for biochemistry students exist in the chemical, pharmaceutical, agricultural, forensic, and rapidly expanding biotechnological fields. Students also are well-prepared to enter advanced degree programs in biochemistry, medicine, pharmacy, dentistry, and veterinary medicine.

## Plan of study

Cooperative education
The biochemistry major may be completed in four or five years, depending on the amount of cooperative education each student elects to complete. Co-op may begin as early as the summer after the first year. Students may complete the BS degree requirements in a traditional four-year program with three summers of co-op. Students who choose to complete co-op requirements during the academic year will be required to extend their studies.

## Curriculum

Biochemistry, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CHEM-130 | Chemical Connections | 1 |
| CHEM-151 | General Chemistry | 3 |
| CHEM-155 | Chemistry Workshop | 2 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
|  | First Year LAS Elective | 3 |
| BIOL-121 | Introductory Biology I | 4 |
| CHMO-331 | Comprehensive Organic Chemistry I | 3 |
| CHMO-335 | Comprehensive Organic Chemistry Lab I | 1 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
|  | First Year Writing Seminar | 3 |
| BIOL-122 | Introductory Biology II | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHMO-332 | Comprehensive Organic Chemistry II | 3 |
| CHMO-336 | Comprehensive Organic Chemistry Lab II | 2 |
| CHMA-161 | Quantitative Analysis | 3 |
| CHMA-165 | Analytical Methods Lab | 1 |
| Choose one of the following: |  | 3 |
| MATH-219 | Multivariable Calculus |  |
| MATH-251 | Probability and Statistics |  |
|  | LAS Perspective 1, 2 | 6 |
|  | LAS Immersion 1 | 3 |
| CHMB-402 | Biochemistry I | 3 |
| PHYS-211 | LAS Perspective 5: University Physics I | 4 |
| BIOL-201 | Cellular and Molecular Biology | 4 |
| Third Year |  |  |
| CHMA-261 | Instrumental Analysis | 3 |
| CHMB-405 | Biochemistry Lab (WI) | 3 |
| PHYS-212 | LAS Perspective 6: University Physics II | 4 |
| CHMA-265 | Instrumental Analysis | 1 |
|  | Advanced Biochemistry Elective $\ddagger$ | 3 |
|  | LAS Perspective 3,4 | 6 |
|  | LAS Immersion 2 | 3 |
| CHMP-441 | Physical Chemistry I | 3 |
|  | Open Elective | 4 |
|  | Advanced Biology Electives $\ddagger$ | 3 |
| Fourth Year |  |  |
| CHMI-351 | Descriptive Inorganic Chemistry | 3 |
|  | Advanced Biology Elective $\ddagger$ | 3 |
|  | LAS Electives | 6 |
|  | LAS Immersion 3 | 3 |
| Choose one of the following: |  | 2 |
| Advanced Chemistry Lab Elective $\ddagger$ |  |  |
| Biochemistry Research |  |  |
|  | Advanced Biochemistry Electiveキ | 3 |
|  | Open Electives | 9 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please consult an adviser for course options.


## Additional information

## Undergraduate research opportunities

Students are encourage to meet the professors in the School of Chemistry \& Materials Science early in their time on campus. Many of our students join research labs and engage in research starting as early as their first year. Participation in undergraduate research opens up opportunities to make presentations at local and national conferences. Many of our student researchers also become contributing authors on peer-reviewed manuscripts.

## Chemistry, BS

## rit.edu/science/scms

## Paul Craig, School Head <br> (585) 475-6145, Paul.Craig@rit.edu

## Program overview

The chemistry major prepares students for positions in several fields of chemistry, including professional industrial work in processing and laboratory operations, research and experimental work, supervision of technical projects, and managerial positions. A substantial number of students continue their education and earn advanced degrees in chemistry or pursue careers in pharmacy, medicine, and dentistry.

The chemistry major allows for flexibility in the type and number of chemistry and university-wide elective courses taken by the student. The program also provides students the option of planning an elective concentration in a complementary field such as imaging science, business, graphic arts, psychology, biology, criminal justice, computer science, engineering, environmental science, forensics, mathematics, packaging science, and physics.

## Cooperative education

The chemistry major may be completed in four or five years, depending on the amount of cooperative education experience each student elects to complete. Co-op may begin as early as the summer after the first year. Students may elect to complete the BS degree requirements in a traditional four-year program with three summers of co-op work experience. Students who choose to complete co-op requirements during the academic year will be required to extend the length of their program.

## Undergraduate research opportunities

We encourage our students to meet the professors in the School of Chemistry \& Materials Science early in their time on campus. Many of our students join research labs and engage in research starting as early as their first year. Participation in undergraduate research will open up opportunties to make presentations at local and national conferences. Many of our student researchers also become contributing authors on peer-reviewed manuscripts.

## Curriculum

Chemistry, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CHEM-130 | Chemical Connections | 1 |
| CHEM-151 | General Chemistry | 3 |
| CHEM-155 | Chemistry Workshop | 2 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1, 2 | 6 |
| CHMO-331 | Comprehensive Organic Chemistry I | 3 |
| CHMO-335 | Comprehensive Organic Chemistry Lab I | 1 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHMA-161 | Quantitative Analysis | 3 |
| CHMA-165 | Analytical Methods Lab | 1 |
| CHMO-332 | Comprehensive Organic Chemistry II | 3 |
| CHMO-336 | Comprehensive Organic Chemistry Lab II | 2 |
| CHMI-351 | Descriptive Inorganic Chemistry | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| CHMB-402 | Biochemistryl | 3 |
| PHYS-211 | LAS Perspective 5: University Physics I | 4 |
|  | LAS Perspective 3 | 3 |
|  | LAS Immersion 1 | 3 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| Third Year |  |  |
| CHMA-261 | Instrumental Analysis | 3 |
| CHMA-265 | Instrumental Analysis Lab | 1 |
| CHMP-441 | Physical Chemistry I | 3 |
| PHYS-212 | LAS Perspective 6: University Physics II | 4 |
|  | LAS Perspective 4 | 3 |
|  | LAS Electives | 6 |
|  | Open Electives | 6 |
| CHMP-442 | Physical Chemistry II | 3 |
| CHMP-445 | Experimental Physical Chemistry (WI) | 3 |
| Fourth Year |  |  |
| CHMI-464 | Structural Inorganic Chemistry | 3 |
|  | Advanced Chemistry Electives§ | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Electives | 6 |
|  | Open Electives | 6 |
|  | Advanced Chemistry Lab§ | 2 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices.


## Accelerated dual degree option

The BS chemistry major may be combined with the MS in materials science and engineering, allowing undergraduate students to acquire both a bachelor's and a master's degree in a total of five years. This option is designed for students who wish to explore the industrial applications of chemistry in the areas of developing new materials (polymers, plastics, natural product substitutes), new processes for producing those materials, and research into new applications for existing materials.

Chemistry, BS degree/Materials science and engineering, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| CHEM-130 | Chemical Connections | 1 |
| CHEM-151 | General Chemistry | 3 |
| CHEM-155 | Chemistry Workshop | 2 |
| MATH-181 | LAS Perspective 7A: Project-Based Calculus I | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1,2 | 6 |
| CHMO-331 | Comprehensive Organic Chemistry I | 3 |
| CHMO-335 | Comprehensive Organic Chemistry I Lab | 1 |
| MATH-182 | LAS Perspective 7B: Project-Based Calculus II | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHMA-161 | Quantitative Analysis | 3 |
| CHMA-165 | Analytical Methods Lab |  |
| CHMO-332 | Comprehensive Organic Chemistry II | 3 |
| СНMO-336 | Comprehensive Organic Chemistry II Lab | 2 |
| CHMI-351 | Descriptive Inorganic Chemistry 1 | 3 |
| MATH-219 | Multivariable Calculus | 3 |
| MATH-233 | Linear Systems and Differential Equations | 4 |
| CHMB-402 | Biochemistry I | 3 |
| PHYS-211 | LAS Perspective 5: University Physics I | 4 |
|  | LAS Perspective 3 | 3 |
|  | LAS Immersion 1 | 3 |
| Third Year |  |  |
| CHMA-261 | Instrumental Analysis | 3 |
| CHMA-265 | Instrumental Analysis Lab |  |
| CHMP-441 | Physical Chemistry I | 3 |
| PHYS-212 | LAS Perspective 6: University Physics II | 4 |
|  | LAS Perspective 4 | 3 |
|  | LAS Electives | 6 |
|  | Open Electives | 6 |
| CHMP-442 | Physical Chemistry II | 3 |
| CHMP-445 | Experimental Physical Chemistry (WI) | 3 |
| Fourth Year |  |  |
| CHMI-464 | Structural Inorganic Chemistry | 3 |
|  | Advanced Chemistry Electives§ | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | Advanced Chemistry Lab§ | 2 |
|  | LAS Electives | 6 |
|  | Open Electives | 6 |
| Fifth Year |  |  |
| MTSE-601 | Introduction to Materials Science | 3 |
| MTSE-705 | Experimental Techniques | 3 |
| MTSE-790 | Thesis | 9 |
| MTSE-704 | Theoretical Methods |  |
|  | Graduate Elective§ |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices.


## Chester F. Carlson Center for Imaging Science

## Imaging Science, BS

## cis.rit.edu <br> David W. Messinger, Director <br> (585) 475-4538, messinger@cis.rit.edu <br> James Ferwerda, Associate Professor and Undergraduate Program Coordinator <br> (585) 475-4923, ferwerda@cis.rit.edu

## Program overview

Imaging science is a multidisciplinary field based on physics, mathematics, computer science, and systems engineering. Students study the theory behind the technologies used to create images, the integration of those technologies into imaging systems, and the application of those systems to solve scientific problems. The imaging science curriculum includes the study of:

- the physical observables associated with the subject of an image, such as reflected or emitted electromagnetic radiation;
- how those observables are captured by devices using optics and detectors such as satellites, digital cameras, medical imaging devices, and astronomical observatories;
- how the captured observables are processed using computers and specialized software;
- how processed signals are converted into images displayed on paper or electronic devices and perceived by humans; and
- how image quality is assessed and scientific information is extracted. The Innovative Freshman Experience (IMGS-181, 182) is a project-based course where students learn about imaging science while designing and implementing a novel imaging system. In subsequent years concepts presented in the classroom are reinforced through laboratory experiments and a capstone research experience, which can examine a problem in any of several imaging applications such as remote sensing, astronomy, biomedical imaging, manuscript imaging and enhancement, optics, color science, image quality, or visual perception. Both theoretical studies and practical application of technologies are integral parts of the curriculum.

Graduates are in demand by both industry and governmental agencies to work on the design, development, testing, or production of specialized imaging systems or technologies, or to use imaging systems to perform scientific research. Faculty members are deeply committed professionals who divide their time between teaching and the pursuit of scientific advances.

Faculty, staff, and students conduct research sponsored by both industry and the government. The research support ensures that students are exposed to the latest developments in a rapidly expanding field.

## Cooperative education

Cooperative education experience is not required but is recommended for the summers following the second and third years of the program. Opportunities to participate in research work with faculty are also available during academic and summer semesters.

## Curriculum

Imaging science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| IMGS-221 | Vision and Psychophysics |  |
| IMGS-181, 182 | Innovative Freshman Experience I, II |  |
| SOFA-103 | Introduction to Imaging and Video Systems |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
| PHYS-211 | LAS Perspective 5: University Physics I |  |
|  | LAS Perspective 1 |  |
|  | First Year LAS Elective |  |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* |  |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus |  |
| PHYS-212 | LAS Perspective 6: University Physics II | 4 |
|  | LAS Perspective 2, 3 |  |
| IMGS-351 | Fundamentals of Color Science | 3 |
| IMGS-261 | Linear and Fourier Methods for Imaging |  |
| IMGS-211 | Probability and Statistics for Imaging | 3 |
| PHYS-213 | Modern Physics I | 3 |
| IMGS-180 | Introduction to Computing and Control | 3 |
| Third Year |  |  |
| IMGS-251 | Radiometry |  |
| IMGS-321 | Geometric Optics | 3 |
| IMGS-322 | Physical Optics | 3 |
| IMGS-341 | Interactions Between Light and Matter | 3 |
| IMGS-361, 362 | Image Processing and Computer Vision I, II | 6 |
|  | LAS Perspective 3,4 | 6 |
|  | LAS Immersion 1 | 3 |
|  | Open Electives | 6 |
| Fourth Year |  |  |
| IMGS-371 | Imaging Systems Analysis |  |
| IMGS-441 | Noise and System Modeling | 3 |
| IMGS-451 | Imaging Detectors | 3 |
| IMGS-502,503 | Imaging Science Senior Project I, II (WI) | 6 |
|  | Imaging Science Elective Track 1, II | 6 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective |  |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Thomas H. Gosnell School of Life Sciences

rit.edu/cos/lifesciences

Larry Buckley, School Head
(585) 475-7507, ljbsbi@rit.edu

## Bioinformatics, BS

bioinformatics.rit.edu/
Larry Buckley, School Head
(585) 475-7507, ljbsbi@rit.edu

Lindsay D'Alleva, Academic Adviser
(585) 475-5147, Ikdiao@rit.edu

## Program overview

Bioinformatics represents the marriage of biotechnology and the computing sciences. Bioinformaticists use computers to analyze, organize, and visualize biological data in ways that increase the understanding of this data and lead to new discoveries. Students are well-qualified for many rewarding careers, including those in bioinformatics software development, biomedical research, biotechnology, comparative genomics, genomics, molecular imaging, pharmaceutical research and development, proteomics, and vaccine development.

The bioinformatics major was developed by faculty in the departments of biological sciences, chemistry, computer science, mathematics and statistics, and information technology, with the guidance from leaders in the bioinformatics and biotechnology industries. The major meets the needs of prospective employers in this challenging and rapidly changing field.

## Cooperative education

The major requires the completion of one cooperative education experience, where students participate in applied bioinformatics, using current technologies to gain a practical perspective. More than 65 organizations in industry, government, and academia employ our students in full-time paid positions. Co-op positions may be completed during the summer and/or the academic year. No tuition is charged for co-op participation. If a student elects to pursue co-op during the academic year, they may need to extend the date of graduation beyond the traditional four years.

## Curriculum

Bioinformatics, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-121 | Introductory Biology I | 4 |
| BIOL-130 | Introduction to Bioinformatics | 3 |
| CSCI-141 | Computer Science I | 4 |
|  | First Year LAS Elective | 3 |
| BIOL-122 | Introductory Biology II | 4 |
| CSCI-142 | Computer Science II | 4 |
|  | First Year Writing Seminar | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIOL-201 | Cellular and Molecular Biology | 4 |
|  | LAS Perspective 1, 2, 3 | 9 |
| MATH-190 | LAS Perspective 7B: Discrete Math | 3 |
| CHMG-141 | LAS Perspective 5: General and Analytical Chemistry I | 3 |
| CHMG-145 | LAS Perspective 5: General and Analytical Chemistry I Lab | 1 |
| CSCI-243 | The Mechanics of Programming | 3 |
| BIOL-321 | Genetics | 3 |
| STAT-145 | Introduction to Statistics \| | 3 |
| CHMG-142 | LAS Perspective 6: General and Analytical Chemistry II | 3 |
| CHMG-146 | LAS Perspective 6: General and Analytical Chemistry II Lab | 1 |
| Third Year |  |  |
| CSCI-251 | Concepts of Parallel and Distributed Systems | 3 |
|  | LAS Perspective 4 | 3 |
| BIOL-330 | Bioinformatics | 3 |
| CHMO-231 | Organic Chemistry I | 3 |
| CHMO-235 | Organic Chemistry I Lab | 1 |
| ISTE-230 | Introduction to Database and Data Modeling | 3 |
| BIOL-450 | Genetic Engineering (WI) | 5 |
| BIOL-230 | Bioinformatics Languages | 3 |
|  | LAS Immersion 1 | 3 |
|  | Open Elective | 3 |
| BIOL-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| BIOL-425 | Ethics in Bioinformatics | 3 |
| CHMB-402 | Biochemistry I | 3 |
| BIOL-340 | Genomics | 3 |
| BIOL-470 | Statistical Analysis for Bioinformatics | 3 |
| BIOL-430 | Bioinformatics Algorithms | 3 |
| BIOL-494 | Molecular Modeling and Proteomics | 3 |
|  | LAS Immersion 2, 3 | 6 |
|  | Open Electives | 6 |
| Total Semester Credit Hours |  | 122 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.

Bioinformatics (molecular genetics option), BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-121 | Introductory Biology I |  |
| BIOL-122 | Introductory Biology II |  |
| BIOL-130 | Introduction to Bioinformatics | 3 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab |  |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab |  |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar |  |
| MATH-161 | LAS Perspective 7A: Applied Calculus |  |
| ACSC-010 | Year One: College Experience |  |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIOL-201 | Cellular and Molecular Biology | 4 |
| CSCI-141, 142 | Computer Science I, II | 8 |
|  | LAS Perspective 1,2 |  |
| CHMO-231, 235 | Organic Chemistry I and Lab |  |
| CHMO-232, 236 | Organic Chemistry II and Lab |  |
| BIOL-321 | Genetics |  |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| Third Year |  |  |
|  | LAS Perspective 3,4 |  |
| BIOL-330 | Bioinformatics |  |
| ISTE-230 | Introduction to Database and Data Modeling |  |
| BIOL-450 | Genetic Engineering (WI) |  |
| BIOL-470 | Statistical Analysis for Bioinformatics |  |
| BIOL-230 | Bioinformatics Languages |  |
|  | LAS Immersion 1 | 3 |
|  | Open Elective |  |
| BIOL-499 | Cooperative Education (summer) | Co-op |
| Fourth Year |  |  |
| BIOL-425 | Ethics in Bioinformatics | 3 |
| CHMB-402 | Biochemistry I |  |
| BIOL-340 | Genomics |  |
|  | Molecular Bioscience and Biotechnology Electives§ | 11 |
|  | LAS Immersion 2, 3 |  |
|  | Open Electives |  |

## Total Semester Credit Hours

 125Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices.


## Accelerated dual degree option

The BS program may be combined with the MS program in bioinformatics, allowing undergraduate students to acquire both degrees in as few as five years. Undergraduate students with a minimum overall GPA of 3.2 may apply to the bioinformatics committee for entry before the completion of their third year of study. Students in the dual degree option are required to take graduate-level courses during their fourth year and complete an approved master's thesis during their final year of study.
Bioinformatics, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-121 | Introductory Biology 1 |  |
| BIOL-130 | Introduction to Bioinformatics | 3 |
| CSCI-141 | Computer Science I | 4 |
|  | First Year LAS Elective | 3 |
| BIOL-122 | Introduction to Biology II | 4 |
| CSCI-142 | Computer Science II | 4 |
|  | First Year Writing Seminar | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIOL-201 | Cellular and Molecular Biology | 4 |
|  | LAS Perspective 1 | 3 |
| MATH-190 | Discrete Math | 3 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| CSCI-243 | The Mechanics of Programming | 3 |
| BIOL-321 | Genetics | 3 |
|  | LAS Perspective 2 | 3 |
| STAT-145 | Introduction to Statistics I | 3 |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
|  | Open Elective | 3 |
| Third Year |  |  |
| CSCI-251 | Concepts of Parallel and Distribution Systems | 3 |
|  | LAS Perspective 3,4 | 6 |
| BIOL-330 | Bioinformatics | 3 |
| CHMO-231 | Organic Chemistry I | 3 |
| CHMO-235 | Organic Chemistry Lab I | 1 |
| ISTE-230 | Introduction to Databases and Data Modeling | 3 |
| BIOL-450 | Genetic Engineering (WI) | 5 |
|  | LAS Immersion 1 | 3 |
| BIOL-230 | Bioinformatics Languages | 3 |
|  | Open Elective | 3 |
| BIOL-499 | Cooperative Education | Co-op |
| Fourth Year |  |  |
|  | Open Electives | 12 |
| CHMB-402 | Biochemistry I | 3 |
| BIOL-340 | Genomics | 3 |
|  | LAS Immersion 2, 3 | 6 |
| BIOL-694 | Molecular Modeling and Proteomics | 3 |
| Fifth Year |  |  |
| BIOL-625 | Ethics in Bioinformatics | 3 |
| BIOL-635 | Bioinformatics Seminar | 3 |
| BIOL-630 | Bioinformatics Algorithms | 3 |
| BIOL-670 | Statistical Models for Bioinformatics | 3 |
|  | Graduate Electivesキ | 9 |
| BIOL-790 | Thesis | 6 |
| Total Semester | it Hours | 152 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation
Requirements section of this bulletin for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
$\neq$ Graduate electives may be any graduate-level course related to the field of bioinformatics. Consult academic advisers for assistance in course selection


## Biology, BS

rit.edu/science/gsols

## Larry Buckley, School Head <br> (585) 475-7507, ljbsbi@rit.edu <br> Rosanne Klingler, Academic Adviser <br> (585) 475-4765, rkssbi@rit.edu

## Program overview

In the College of Science, biology is something that students do, rather than something they merely learn. Courses present biology as it is done by career biologists, and hands-on laboratory and field experience is emphasized. Scientific knowledge is based on research, and students are encouraged to undertake research projects in the college's laboratories.

The biology major prepares students for rewarding positions in occupations related to the life sciences, including biomedical research, scientific management, science journalism, forensic science, ecology and environmental science, agriculture, genetic counseling, and education.

The major includes all of the course work and support services to prepare students to pursue advanced degrees in medicine, dentistry, veterinary medicine, optometry, podiatry, and chiropractic medicine, as well as a wide range of graduate programs in the life sciences.

## Cooperative education

Cooperative education is an optional component of the major. More than 65 organizations in private industry, government, and academia employ biology students in full-time paid positions directly related to the students' academic areas of interest. Co-op positions can be held during the summer and/or during the regular academic year. No tuition is charged for co-op participation. If a student elects to pursue co-op during the regular academic year, they may need to extend the date of graduation beyond the traditional four years.

## Curriculum

Biology, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-121 | Introduction to Biology I | 4 |
| CHMG-141 | LAS Perspective 5: General and Analytical Chemistry I | 3 |
| CHMG-145 | LAS Perspective 5: General and Analytical Chemistry I Lab | 1 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| BIOL-122 | Introduction to Biology II | 4 |
| CHMG-142 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
|  | First Year Writing | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| CHMO-231 | Organic Chemistry I | 3 |
| CHMO-235 | Organic Chemistry I Lab | 1 |
|  | LAS Perspective 2, 3 | 6 |
| BIOL-201 | Cellular and Molecular Biology | 4 |
| CHMO-232 | Organic Chemistry II | 3 |
| CHMO-236 | Organic Chemistry II Lab | 1 |
| Choose one of the following: |  | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics |  |
| STAT-155 | LAS Perspective 7B: Introduction to Biostatistics |  |
| Choose one of the following: |  | 4 |
| BIOL-240 | General Ecology (WI) |  |
| BIOL-265 | Evolutionary Biology (WI) |  |
| Choose one of the following: |  | 3 |
| BIOL-321 | Genetics |  |
| BIOL-365 | Introduction to Population Genetics |  |
| Third Year |  |  |
| PHYS-111 | College Physics I | 4 |
| PHYS-112 | College Physics II | 4 |
|  | Program Electives§ | 15 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
| Choose one of the following: |  | 4 |
| BIOL-322 | Developmental Biology |  |
| BIOL-313 | Comparative Animal Physiology |  |
| Fourth Year |  |  |
| BIOL-500 | Experiential Education Requirement in the Life Sciences | 0 |
|  | Program Electives§ | 20 |
|  | Open Electives | 6 |
|  | LAS Immersion 2, 3 | 6 |
| Total Semester Credit Hours |  | 122 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices.


## Biotechnology and Molecular Bioscience, BS

rit.edu/science/gsols
Larry Buckley, School Head
(585) 475-7507, ljbsbi@rit.edu

Rosanne Klingler, Academic Adviser
(585) 475-4765, rkssbi@rit.edu

## Program overview

The BS degree in biotechnology and molecular bioscience prepares students to immediately assume challenging positions in research, development, and management in the field of biotechnology. Students are also well-prepared for positions in the fields of plant biotechnology, human genetics, agriculture, food products, pharmaceuticals and vaccine development, environment and energy, forensic science, and genetic counseling.

The advanced nature of the third- and fourth-year courses, as well as the opportunity to participate in faculty-sponsored undergraduate research, provide a sound foundation to those students wishing to pursue a master's or doctoral degree. The major also can be designed to include the education necessary for the pursuit of a career in a medical field.

Specialized areas of emphasis include recombinant DNA, microbial and plant genetic engineering, mammalian and plant tissue culture, monoclonal antibody production and purification, large-scale fermentation techniques (bacterial and mammalian cell), and methods for characterization and separation of proteins and nucleic acids in yeast, bacterial, viral, and plant systems.

## Cooperative education

The major provides students with the option of participating in cooperative education. More than 65 organizations in industry, government, and academia employ biology students in full-time paid positions directly related to students' academic areas of interest. Co-op positions can be held during the summer and/or during the regular academic year. Tuition is not charged while a student is on co-op. If a student elects to pursue a coop during the regular academic year, they may need to extend the date of graduation beyond the traditional four years.

## Curriculum

Biotechnology and molecular bioscience, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| BIOL-121 | Introduction to Biology 1 | 4 |
| CHMG-141 | LAS Perspective 5: General and Analytical Chemistry I | 3 |
| CHMG-145 | LAS Perspective 5: General and Analytical Chemistry I Lab | 1 |
|  | LAS Perspective 1 | 3 |
|  | First Year LAS Elective | 3 |
| BIOL-122 | Introduction to Biology II | 4 |
| CHMG-142 | LAS Perspective 6: General and Analytical Chemistry <br> II | 3 |
| CHMG-146 | LAS Perspective 6: General and Analytical Chemistry II Lab | 1 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
| ACSC-010 | Year One: College Experience | 0 |
|  | First Year Writing Seminar | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| BIOL-201 | Cell and Molecular Biology w/ Lab | 4 |
| CHMO-231 | Organic Chemistry 1 | 3 |
| CHMO-235 | Organic Chemistry I Lab | 1 |
| Choose one of the following: |  | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics |  |
| STAT-155 | LAS Perspective 7B: Biostatistics |  |
| BIOL-321 | Genetics | 3 |
|  | Program Elective§ | 4 |
| CHMO-232 | Organic Chemistry II | 3 |
| CHMO-236 | Organic Chemistry II Lab | 1 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| BIOL-204 | Microbiology w/ Lab | 4 |
| CHMB-402 | Biochemistry I | 3 |
| BIOL-325 | Bioinformatics Analysis Macromolecule | 3 |
|  | Program Electives§ | 13 |
|  | LAS Perspective 4 | 3 |
|  | Open Elective | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| BIOL-500 | Experiential Learning Requirement in the Life Sciences | 0 |
|  | Program Electives§ | 20 |
|  | LAS Immersion 2, 3 | 6 |
|  | Open Elective | 3 |
|  | LAS Elective | 3 |

Total Semester Credit Hours 121
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
One Writing Intensive (WI) elective must be selected to satisfy degree requirements. Please see adviser for a list of eligible courses.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices.


## Environmental Science, BS

rit.edu/cos/environmental/
Larry Buckley, School Head
(585) 475-7507, ljbsbi@rit.edu

Brenda Mastrangelo, Academic Adviser
(585) 475-7474, bkmsch@rit.edu

## Program overview

Environmental scientists solve problems relating to power generation, waste reduction and recycling, pollution control, land use and land cover change, preserving biodiversity and ecological services, transportation, forestry, agriculture, economics, and a wide range of other areas. They study our relationship to nature and to each other, developing solutions that prevent or reverse environmental deterioration and work toward sustainability. Meeting these challenges requires problem-solving abilities based in science, mathematics, the social sciences, and other disciplines. The BS program provides students with the education and experiences they need to be successful.

## Plan of study

The practice of environmental science demands that students be wellrounded specialists. To accomplish this, each student is required to complete an environmental science concentration in one of the following areas: digital imaging, environmental biology, environmental economics, environmental public policy, mathematics and statistics, or remote sensing. Students also may develop a self-designed concentration in an area of personal interest, subject to approval from an environmental science review committee.

## Cooperative education

Cooperative education is optional for environmental science majors, however, it offers students a great way to get a head start on their career with paid, professional work experience. Students can participate in cooperative education as soon as the summer after their second year of study. Co-op placements are typically with local, state, or federal government agencies, nonprofit environmental organizations, and a host of environmental consulting firms.

## Curriculum

Environmental science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ENVS-101 | Concepts of Environmental Science | 3 |
| ENVS-111 | Soil Science | 4 |
| BIOL-121, 122 | Introductory Biology I, II | 8 |
|  | LAS Perspective 1 | 3 |
|  | First Year LAS Elective | 3 |
| ENVS-201 | Environmental Workshop | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| STSO-220 | Environment and Society | 3 |
| Choose one of the following: |  | 3 |
| STSO-421 | Environmental Policy |  |
| PUBL-210 | Introduction to Qualitative Policy Analysis |  |
| ENVS-250 | Applications of Geographic Information Systems | 4 |
| BIOL-240 | General Ecology | 4 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| ENVS-301 | Environmental Science Field Skills | 4 |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| STSO-422 | Great Lakes | 3 |
| ENVS-450 | Hydrologic Applications of GIS | 4 |
| BIOL-475 | Conservation Biology | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | Concentration Courses | 6 |
| CHMO-231, 235 | Organic Chemistry I and Lab | 4 |
|  | LAS Perspective 4 | 3 |
| STAT-146 | Introduction to Statistics II | 4 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| ENVS-551 | Environmental Science Capstone I | 3 |
|  | Concentration Courses§ | 8 |
|  | Open Electives | 6 |
|  | LAS Immersion 2, 3 | 6 |
| ENVS-552 | Environmental Science Capstone II (WI) | 3 |
| IMGS-431 | Environmental Applications of Remote Sensing | 3 |
| Total Semester Credit Hours |  | 125 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of choices.


## Accelerated dual degree option

Students may apply to an accelerated dual degree (BS/MS) option, which provides them with a considerable advantage over other environmental science graduates in the job market.
Environmental science, BS/MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ENVS-101 | Concepts of Environmental Science | 3 |
| ENVS-111 | Soil Science |  |
| BIOL-121, 122 | Introductory Biology I, II |  |
|  | LAS Perspective 1 | 3 |
|  | First Year LAS Elective | 3 |
| ENVS-201 | Environmental Workshop |  |
| MATH-161 | LAS Perspective 7A: Applied Calculus |  |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience |  |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| STSO-220 | Environment and Society |  |
| ENVS-250 | Applications of Geographic Information Systems |  |
| BIOL-240 | General Ecology |  |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab |  |
| Choose one of the following: |  |  |
| STSO-421 | Environmental Policy |  |
| PUBL-210 | Qualitative Methods and Analysis |  |
| ENVS-301 | Environmental Science Field Skills |  |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab |  |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| BIOL-675 | Advanced Conservation Biology | 3 |
| STSO-422 | Great Lakes | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
|  | Concentration Courses§ | 6 |
| CHMO-231, 235 | Organic Chemistry I and Lab |  |
|  | LAS Perspective 4 |  |
| ENVS-650 | Hydrologic Applications of GIS |  |
| STAT-146 | Introduction to Statistics II |  |
|  | LAS Immersion 1 |  |
| Fourth Year |  |  |
| ENVS-551 | Environmental Science Capstone I | 3 |
|  | Concentration Courses§ |  |
|  | Open Electives | 6 |
|  | LAS Immersion 2, 3 |  |
| ENVS-601 | Environmental Science Graduate Studies |  |
| ENVS-552 | Environmental Science Capstone II (WI) | 3 |
| IMGS-431 | Environmental Applications of Remote Sensing | 3 |
| Fifth Year |  |  |
|  | Graduate Science, Technology, and Society Core Elective | 3 |
|  | Graduate Public Policy Core Elective | 3 |
|  | Graduate Science Core Elective | 3 |
|  | Graduate Electives | 6 |
| Choose one of the following: |  |  |
| ENVS-790 | Environmental Science Thesis |  |
| ENVS-780 | Environmental Science Project |  |
| ENVS-670 | Advanced Concepts of Environmental Chemistry |  |
| Choose one of the following: |  |  |
| ENVS-790 | Environmental Science Thesis |  |
| ENVS-780 | Environmental Science Project |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
§ Please see adviser for complete list of elective choices

Environmental science, BS degree/Science, technology and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| ENVS-101 | Concepts of Environmental Science | 3 |
|  | First Year LAS Elective | 3 |
| ENVS-111 | Soil Science | 4 |
|  | First Year Writing Seminar | 3 |
| BIOL-121, 122 | Introduction to Biology I, II | 8 |
| ACSC-010 | Year One: College Experience | 0 |
| ENVS-201 | Environmental Workshop | 3 |
| MATH-161 | LAS Perspective 7A: Applied Calculus | 4 |
|  | LAS Perspective 1 | 3 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| STSO-220 | Environment and Society | 3 |
| ENVS-250 | Applications of Geographic Information Systems | 4 |
| BIOL-240 | General Ecology (WI) | 4 |
| CHMG-141, 145 | LAS Perspective 5: General and Analytical Chemistry I and Lab | 4 |
| Choose one of the following: |  | 3 |
| STSO-421 | Environmental Policy |  |
| PUBL-210 | Qualitative Methods and Analysis |  |
| ENVS-301 | Environmental Science Field Skills | 4 |
| CHMG-142, 146 | LAS Perspective 6: General and Analytical Chemistry II and Lab | 4 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| STSO-422 | Great Lakes | 3 |
| STAT-145 | LAS Perspective 7B: Introduction to Statistics I | 3 |
| STAT-146 | Introduction to Statistics II | 4 |
| CHMO-231, 235 | Organic Chemistry I and Lab | 4 |
| ENVS-450 | Hydro Apps GIS | 4 |
| PUBL-702 | Graduate Decision Analysis | 3 |
| BIOL-475 | Conservation Biology | 3 |
|  | Environmental Science Concentration Course | 4 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
| Fourth Year |  |  |
| ENVS-551,552 | Environmental Science Capstone I, II | 6 |
| IMGS-431 | Environmental Applications of Remote Sensing | 3 |
| PUBL-700 | Readings In Public Policy | 3 |
| PUBL-701 | Graduate Policy Analysis | 3 |
| PUBL-703 | Program Evaluation and Research Design | 3 |
|  | Environmental Science Concentration Course | 4 |
|  | LAS Immersion 2, 3 | 6 |
|  | Open Elective | 3 |
| Fifth Year |  |  |
| STSO-710 | Graduate Seminar in Science Technology Policy | 3 |
|  | Public Policy Graduate Electives | 9 |
| PUBL-700 | Readings in Public Policy | 3 |
| Choose one of the following: |  | 6 |
| PUBL-790 | Public Policy Thesis |  |
|  | Graduate Electives, Comprehensive Exam |  |
| Total Semester Credit Hours |  | 146 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.


## Additional information

## Employment opportunities

There is a great need for individuals who have both a strong background in environmental science and the ability to participate in an interdisciplinary problem-solving team. Upon graduation, students will be valued for their broad understanding of environmental science, their depth of knowledge in a particular aspect of environmental science, and their ability to attack and solve tough environmental problems.

## School of Mathematical Sciences

## Applied Mathematics, BS

## rit.edu/science/sms

## Mihail Barbosu, Head, School of Mathematical Sciences (585) 475-2123, mxbsma@rit.edu

## Program overview

The applied mathematics major focuses on the study and solution of problems that can be mathematically analyzed. Industry, academia, and government all have a great need for individuals with this type of education. Students gain the knowledge and skills to collaborate on complex problems with scientists, engineers, computer specialists, or other analysts. Some application areas include applied statistics; biology; business; economics; chemistry; electrical, industrial, or mechanical engineering; operations research; and imaging science.

Graduates typically are employed in scientific, engineering, business, or government environments, applying their mathematics background to the analysis and solution of real-world problems.

## Curriculum

Applied mathematics, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
| MATH-199 | Mathematics and Statistics Seminar | 1 |
| CSCl-101 | Principles of Computing | 3 |
| CSCI-141 | Computer Science I | 4 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective $5 \ddagger$ | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251, 252 | Probability and Statistics I, II | 6 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | LAS Perspective 2, 3, 4, $6 \ddagger$ | 12 |
| Third Year |  |  |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| MATH-431 | Real Variables I | 3 |
|  | Program Electives | 18 |
|  | LAS Immersion 1, 2 | 6 |
|  | Open Elective | 3 |
| Fourth Year |  |  |
| MATH-421 | Mathematical Modeling (WI) | 3 |
| MATH-441 | Abstract Algebra I | 3 |
| MATH-411 | Numerical Analysis | 3 |
| MATH-500 | Senior Capstone in Mathematics§ | 3 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 9 |
|  | Program Elective | 3 |
|  | Open Electives | 6 |

Total Semester Credit Hours
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.
§ Students who have completed an experiential learning requirement with some other pre-approved activity may replace this course with a program elective.


## Accelerated dual degree option

Students may be interested in combining the BS in applied mathematics with an MS in applied and computational mathematics for an accelerated option that allows them to earn both degrees following one additional year of study.

## Applied mathematics, BS degree/Applied and computational mathematics, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
| MATH-199 | Mathematics and Statistics Seminar | 1 |
| CSCI-101 | Principles of Computing | 3 |
| CSCI-141 | Computer Science I | 4 |
|  | LAS Perspective 5 $\ddagger$ | 4 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1 | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251, 252 | Probability and Statistics I, II | 6 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra | 3 |
|  | LAS Perspective 2, 3, 4, $6 \ddagger$ | 12 |
| Third Year |  |  |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| MATH-431 | Real Variables I | 3 |
|  | Program Electives | 18 |
|  | LAS Immersion 1, 2 | 6 |
|  | Open Elective | 3 |
|  | LAS Elective | 3 |
| Fourth Year |  |  |
| MATH-421 | Mathematical Modeling (WI) | 3 |
| MATH-441 | Abstract Algebra I | 3 |
| MATH-602 | Numerical Analysis | 3 |
|  | Math Graduate Core | 6 |
| MATH-606 | Graduate Seminar I | 1 |
| MATH-607 | Graduate Seminar II | 1 |
|  | LAS Immersion 3 | 3 |
|  | LAS Electives | 6 |
|  | Program Elective | 3 |
|  | Open Elective | 3 |
| Fifth Year |  |  |
|  | Math Graduate Core | 3 |
|  | Graduate Concentration Courses | 6 |
|  | Graduate Electives | 9 |
| MATH-790 | Thesis | 7 |

Total Semester Credit Hours $\mathbf{1 5 0}$
Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.


## Additional information

## Accelerated 4+1 MBA option

An accelerated $4+1$ option is available for students who wish to earn a BS in applied mathematics and an MBA. The option is offered in conjunction with Saunders College of Business and allows students to obtain both degrees in five years of study.

## Applied Statistics and Actuarial Science, BS

## rit.edu/science/sms

## Mihail Barbosu, Head, School of Mathematical Sciences (585) 475-2123, mxbsma@rit.edu

## Program overview

The applied statistics and actuarial science major provides students with a strong foundation in mathematical and statistical methodology, experience in its applications, a solid background in the use of statistical computing packages, and the skills to communicate the results of statistical analysis. This gives students an advantage in the fields of business, government, and industry, and also prepares them well for advanced study in graduate school.

Students collaborate with specialists in both scientific and non-technical areas to design and conduct experiments and interpret the results. Application areas are very diverse and include product design, biostatistics, actuarial science, quality control, and statistical forecasting.

## Curriculum

## Applied statistics and actuarial science, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-199 | Mathematics and Statistics Seminar I | 1 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| CSCI-101 | Principles of Computing | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, 2, $5 \ddagger$ | 10 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251, 252 | Probability and Statistics I, II | 6 |
| MATH-241 | Linear Algebra | 3 |
|  | Open Elective | 3 |
|  | LAS Perspective 3, 4, $6 \ddagger$ | 10 |
| Third Year |  |  |
| MATH-255 | Actuarial Mathematics | 2 |
| MATH-261 | Topics in Financial Mathematics | 3 |
| STAT-325 | Design of Experiments (WI) | 3 |
| STAT-305 | Regression Analysis | 3 |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| STAT-511 | Statistical Software | 3 |
|  | Program Electives** | 6 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Electives | 6 |
| Fourth Year |  |  |
| STAT-405, 406 | Mathematical Statistics I, II | 6 |
| STAT-500 | Capstone in Statistics (WI) | 3 |
|  | LAS Immersion 3 | 3 |
|  | Program Electives** | 12 |
|  | Open Elective | 3 |
|  | LAS Electives | 6 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.
** At least two of the program electives must be from the following set of courses: Stochastic Processes (MATH-401), Statistical Quality Control (STAT-315), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Statistical Sampling (STAT-415), Multivariate Analysis (STAT-425), or Statistical Linear Models (STAT-435).


## Accelerated dual degree options

Students may be interested in combining the BS in applied statistics and actuarial science with an MS in applied and computational mathematics or with an MS in applied statistics. These accelerated options allow students to earn both a bachelor's and a master's degree following one additional year of study.

Applied statistics and actuarial science, BS degree/Applied and computational mathematics, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-199 | Mathematics and Statistics Seminar I | 1 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| CSCI-101 | Principles of Computer Science | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, 2, 5才, $6 \ddagger$ | 14 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251, 252 | Probability and Statistic I, II | 6 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra I | 3 |
|  | LAS Immersion 1,2 | 6 |
|  | LAS Perspective 3,4 | 6 |
| Third Year |  |  |
| MATH-255 | Actuarial Mathematics | 2 |
| MATH-261 | Topics in Financial Mathematics | 3 |
| STAT-325 | Design of Experiments (WI) | 3 |
| STAT-305 | Regression Analysis | 3 |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| STAT-511 | Statistical Software | 3 |
|  | Open Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | Program Electives |  |


| Fourth Year |  |  |
| :--- | :--- | ---: |
| STAT-405,406 | Mathematical Statistics I, II | 6 |
| MATH-606, 607 | Math Graduate Core | 9 |
| STAT-500 | Graduate Seminar I, II | 2 |
|  | Capstone in Statistics (WI) | 3 |
|  | LAS Electives | 12 |


| Fifth Year |  |  |
| :--- | :--- | :--- |
|  | Math Graduate Core | 3 |
| Concentration Core Courses | 6 |  |
| Graduate Electives | 9 |  |

MATH-799 Thesis 8
Total Semester Credit Hours ..... 150

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Applied statistics and actuarial science, BS degree/Applied statistics, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-199 | Mathematics and Statistics Seminar I | 1 |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| CSCI-101 | Principles of Computer Science | 3 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
|  | LAS Perspective 1, $2,5 \ddagger$, $6 \ddagger$ | 14 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251, 252 | Probability and Statistics I, II | 6 |
| MATH-241 | Linear Algebra | 3 |
|  | Program Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
|  | LAS Perspective 3,4 | 6 |
| Third Year |  |  |
| MATH-255 | Actuarial Mathematics | 2 |
| MATH-261 | Topics in Financial Management | 3 |
| STAT-325 | Design of Experiments (WI) | 3 |
| STAT-305 | Regression Analysis | 3 |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| STAT-511 | Statistical Software | 3 |
|  | Open Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | Program Electives | 6 |
| Fourth Year |  |  |
| STAT-405, 406 | Mathematical Statistics I, II | 6 |
| STAT-741 | Regression Analysis | 3 |
| STAT-500 | Senior Capstone in Statistics | 3 |
| STAT-701 | Foundations of Experimental Design | 3 |
|  | Program Elective | 3 |
|  | LAS Electives | 12 |
| Fifth Year |  |  |
|  | Graduate Electives | 18 |
| STAT-792 | Capstone | 3 |
| Total Semester Credit Hours |  | 143 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.


## Additional information

## Minors

The flexibility of the applied statistics and actuarial science major allows students to complete a minor in science, liberal arts, or business, or to combine courses from various minors into a sequence tailored to their career aspirations.

## Computational Mathematics, BS

## rit.edu/science/sms <br> Mihail Barbosu, Head, School of Mathematical Sciences (585) 475-2123, mxbsma@rit.edu

## Program overview

Computational mathematics prepares students for a mathematical career that incorporates extensive computer science skills. In this major, much emphasis is given to the use of the computer as a tool to solve mathematically modeled physical problems. Students often pursue positions as mathematical analysts, scientific programmers, software engineers, or systems analysts. Job opportunities in private industry and government abound in this field.

## Curriculum

Computational mathematics, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-based Calculus I, II | 8 |
| MATH-199 | Mathematics and Statistics Seminar | 1 |
| CSCI-141,142 | Computer Science I, II | 8 |
|  | LAS Perspective 1, $\ddagger \ddagger$ | 7 |
|  | First Year LAS Elective | 3 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |
| MATH-251 | Probability and Statistics I | 3 |
| MATH-231 | Differential Equations | 3 |
| MATH-241 | Linear Algebra | 3 |
| CSCI-243 | Mechanics of Programming | 3 |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |
| CSCI-262 | Introduction to Computer Science Theory | 3 |
|  | LAS Perspective 2, 3, $6 \ddagger$ | 10 |
| Third Year |  |  |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |
| MATH-431 | Real Variables I | 3 |
| MATH-441 | Abstract Algebra I | 3 |
| MATH-411 | Numerical Analysis | 3 |
| SWEN-261 | Software Engineering | 3 |
|  | Program Electives | 9 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1 | 3 |
|  | LAS Elective | 3 |
| Fourth Year |  |  |
| MATH-421 | Mathematical Modeling (WI) | 3 |
| Choose one of the following: |  | 3 |
| MATH-412 | Numerical Linear Algebra |  |
| MATH-351 | Graph Theory |  |
| MATH-500 | Senior Capstone in Mathematics§ | 3 |
|  | Program Elective | 4 |
|  | LAS Immersion 2, 3 | 6 |
|  | LAS Elective | 3 |
|  | Open Electives | 6 |
| Total Semester Credit Hours |  | 120 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Students will satisfy this requirement by taking either a 3 or 4 cr lab science course. If a science course consists of separate lecture and laboratory sections, the student MUST take both the lecture and lab portions to satisfy the requirement. The lecture alone will not fulfill the requirement.
§Students who have completed their experiential learning requirement with some other pre-approved activity may replace this course with a program elective.


## Accelerated dual degree option

Students may be interested in combining the BS in computational mathematics with an MS in applied and computational mathematics for an accelerated option that allows them to earn both degrees following one year of graduate study.

Computational mathematics, BS degree/Applied and computational mathematics, MS degree, typical course sequence

| Course |  | Sem. Cr. Hrs. |  |
| :---: | :---: | :---: | :---: |
| First Year |  |  |  |
| MATH-181, 182 | LAS Perspective 7A, 7B: Project-Based Calculus I, II |  |  |
| MATH-199 | Mathematics and Statistics Seminar | 1 |  |
| CSCI-141, 142 | Computer Science I, II | 8 |  |
|  | LAS Perspectives 1, $5 \ddagger$ | 6 |  |
|  | First Year LAS Elective | 3 |  |
|  | First Year Writing Seminar | 3 |  |
|  | Wellness Education* | 0 |  |
| ACSC-010 | Year One: College Experience | 0 |  |
|  | Open Elective | 3 |  |
| Second Year |  |  |  |
| MATH-221 | Multivariable and Vector Calculus | 4 |  |
| MATH-241 | Linear Algebra | 3 |  |
| MATH-251 | Probability and Statistics I | 3 |  |
| MATH-231 | Differential Equations | 3 |  |
| MATH-200 | Discrete Mathematics with Introduction to Proofs | 3 |  |
| CSCI-243 | Mechanics of Programming | 3 |  |
| CSCI-262 | Introduction to Computer Science Theory | 3 |  |
|  | LAS Perspective $6 \ddagger$ | 3 |  |
|  | LAS Perspective 2,3 | 6 |  |
| Third Year |  |  |  |
| MATH-431 | Real Variables I | 3 |  |
| MATH-399 | Mathematical Science Job Search Seminar | 0 |  |
| MATH-441 | Abstract Algebral | 3 |  |
|  | Program Electives | 9 |  |
| SWEN-261 | Software Engineering | 3 |  |
|  | LAS Perspective 4 | 3 |  |
|  | LAS Immersion 1,2 | 6 |  |
|  | LAS Elective | 3 |  |
| Fourth Year |  |  |  |
| MATH-421 | Mathematical Modeling (WI) | 3 |  |
|  | Math Graduate Core | 6 |  |
| MATH-606, 607 | Graduate Seminar I, II | 2 |  |
| MATH-602 | Numerical Analysis | 3 |  |
| Choose one of the following: |  |  | 3 |
| MATH-412 | Numerical Linear Algebra |  |  |
| MATH-645 | Graph Theory |  |  |
|  | Open Electives | 6 |  |
|  | LAS Immersion 3 | 3 |  |
|  | LAS Elective | 3 |  |
|  | Program Elective | 3 |  |
| Fifth Year |  |  |  |
|  | Math Graduate Core | 3 |  |
|  | Concentration Core Courses | 6 |  |
|  | Graduate Electives | 9 |  |
| MATH-790 | Thesis | 7 |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a
science course consists of separate lecture and laboratory sections, the student MUST take both the lecture and lab portions to satisfy the requirement. The lecture alone will not fulfill the requirement.

School of Physics and Astronomy

## Physics, BS

## physics.rit.edu

## Michael Kotlarchyk, School Head <br> (585) 475-6115, mnksps@rit.edu

## Program overview

Graduates with a BS degree in physics are sought after and highly employable in both the private and public sectors. They typically find positions in industry, government agencies and labs, and teaching. Many graduates choose to continue their education in doctoral or master's programs in physics or physics-related areas such as astrophysics, applied physics, biophysics, geophysics, atmospheric science, imaging science, and engineering. Students also are well-prepared for entry into medical, law, or business school.

## Curriculum

Physics, BS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| Choose one of the following: |  | 3 |
| CHMG-141 | LAS Perspective 5: General and Analytical Chemistry I§ |  |
| BIOL-101 | LAS Perspective 5: General Biology I§ |  |
| Choose one of the following: |  | 1 |
| CHMG-145 | LAS Perspective 5: General and Analytical Chemistry I Lab§ |  |
| BIOL-103 | LAS Perspective 5: General Biology I Lab§ |  |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| PHYS-150 | Introduction to Special Relativity | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| Choose one of the following: |  | 3 |
| CHMG-142 | LAS Perspective 6: General and Analytical Chemistry II§ |  |
| BIOL-102 | LAS Perspective 6: General Biology IIf |  |
| Choose one of the following: |  | 1 |
| CHMG-146 | LAS Perspective 6: General and Analytical Chemistry II Lab§ |  |
| BIOL-104 | LAS Perspective 6: General Biology II Lab§ |  |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| PHYS-216 | University Physics I: Physics Majors | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-217 | University Physics II: Physics Majors | 4 |
| PHYS-225 | Introduction to Computational Physics and Programming | 3 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics I | 3 |
| PHYS-222 | Electronic Measurements | 3 |
| PHYS-275 | Sophomore Physics Seminar | 1 |
| PHYS-283 | Vibrations and Waves | 3 |
|  | LAS Perspective 2, 3, 4 | 9 |
| Third Year |  |  |
| PHYS-214 | Modern Physics II | 3 |
| PHYS-315 | Experiments in Modern Physics | 3 |
| PHYS-320 | Mathematical Methods in Physics | 3 |
| PHYS-330 | Classical Mechanics | 4 |
| PHYS-316 | Advanced Laboratory in Physics | 3 |
| PHYS-411 | Electricity and Magnetism | 4 |
| PHYS-450 | Capstone Preparation | 1 |
|  | Physics Elective $\ddagger$ | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| PHYS-414 | Quantum Mechanics | 3 |
| PHYS-440 | Thermal and Statistical Physics | 3 |
| PHYS-451 | Capstone Project I | 3 |
| PHYS-452 | Capstone Project II (WI) | 3 |
|  | Physics Electives $\ddagger$ | 6 |
|  | Open Electives | 6 |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
| Total Semester Credit Hours |  | 124 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please see academic adviser for a list of physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.


## Accelerated dual degree options

The department offers accelerated dual degree options in which students can, in five years, earn a BS degree in physics and an MS degree in one of the following fields: materials science and engineering; science, technology and public policy; or astrophysical sciences and technology.

Physics, BS degree/Materials science and engineering, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| Choose one of the following: |  |  |
| $\begin{aligned} & \text { CHMG-141, 142, } \\ & 145,146 \end{aligned}$ | LAS Perspective 5: General and Analytical Chemistry I, II and Labs§ |  |
| $\begin{aligned} & \text { BIOL-101, 102, } \\ & 103,104 \end{aligned}$ | LAS Perspective 5: General Biology I, Il and Labs§ |  |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I |  |
| PHYS-150 | Introduction to Special Relativity | 3 |
|  | First Year LAS Elective |  |
|  | LAS Perspective 1 |  |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| PHYS-216 | University Physics I: Physics Majors | 4 |
|  | First Year Writing Seminar |  |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-217 | University Physics II: Physics Majors |  |
| PHYS-225 | Introduction to Computational Physics and Programming | 3 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics I | 3 |
| PHYS-222 | Electronic Measurements | 3 |
| PHYS-275 | Sophomore Physics Seminar |  |
| PHYS-283 | Vibrations and Waves | 3 |
|  | LAS Perspective 2, 3,4 | 9 |
| Third Year |  |  |
| PHYS-214 | Modern Physics II | 3 |
| PHYS-315 | Experiments in Modern Physics | 3 |
| PHYS-320 | Mathematical Methods in Physics | 3 |
| PHYS-330 | Classical Mechanics |  |
| PHYS-316 | Advanced Laboratory in Physics | 3 |
| PHYS-411 | Electricity and Magnetism |  |
|  | Physics Elective $\ddagger$ | 3 |
|  | Open Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| PHYS-414 | Quantum Mechanics | 3 |
| PHYS-440 | Thermal and Statistical Physics | 3 |
| MTSE-601 | Materials Science | 3 |
|  | Materials Science Elective | 3 |
|  | Physics Electives $\ddagger$ | 6 |
| MTSE-705 | Experimental Techniques | 3 |
|  | Open Elective | 3 |
|  | LAS Elective | 3 |
|  | LAS Immersion 3 | 3 |
| Fifth Year |  |  |
| MTSE-704 | Theoretical Methods in Materials Science and Engineering |  |
|  | Materials Science Electives |  |
| MTSE-790 | Research and Thesis |  |
|  | Open Elective |  |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information. (WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please see academic adviser for a list of physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.

Physics, BS degree/Science, technology, and public policy, MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| Choose one of the following: |  | 8 |
| $\begin{aligned} & \text { CHMG-141, 142, } \\ & 145,146 \end{aligned}$ | LAS Perspective 5: General and Analytical Chemistry I, II and Labs§ |  |
| $\begin{aligned} & \text { BIOL-101, 102, } \\ & 103,104 \end{aligned}$ | LAS Perspective 5: General Biology I, II and Labs§ |  |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| PHYS-150 | Introduction to Special Relativity | 3 |
|  | First Year LAS Elective | 3 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| PHYS-216 | University Physics : Physics Majors | 4 |
|  | First Year Writing Seminar | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-212 | University Physics II | 4 |
| PHYS-225 | Introduction to Computational Physics and Programming | 3 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics I | 3 |
| PHYS-222 | Electronic Measurements | 3 |
| PHYS-275 | Sophomore Physics Seminar | 1 |
| PHYS-283 | Vibrations and Waves | 3 |
|  | LAS Perspective 2, 3,4 | 9 |
| Third Year |  |  |
| PHYS-214 | Modern Physics II | 3 |
| PHYS-315 | Experiments in Modern Physics | 3 |
| PHYS-320 | Mathematical Methods in Physics | 3 |
| PHYS-330 | Classical Mechanics | 4 |
| PHYS-316 | Advanced Laboratory in Physics | 3 |
| PHYS-411 | Electricity and Magnetism | 4 |
| PHYS-450 | Capstone Preparation | 1 |
|  | Program Elective | 3 |
|  | LAS Immersion 1, 2 | 6 |
| Fourth Year |  |  |
| PHYS-414 | Quantum Mechanics | 3 |
| PHYS-440 | Thermal and Statistical Physics | 3 |
| PHYS-451, 452 | Capstone Project I, II | 6 |
| PUBL-701 | Graduate Policy Analysis | 3 |
| PUBL-702 | Graduate Decision Analysis | 3 |
| STSO-710 | Graduate Science, Technology, and Public Policy | 3 |
|  | Public Policy Electives | 6 |
|  | Physics Electiveキ | 3 |
| Fifth Year |  |  |
| PUBL-700 | Readings in Public Policy | 3 |
| PUBL-703 | Evaluation and Research Design | 3 |
|  | Physics Elective\# | 3 |
|  | Open Elective | 3 |
|  | LAS Elective | 3 |
|  | LAS Immersion 3 | 3 |
|  | Public Policy Elective | 3 |
| PUBL-790 | Thesis Research | 6 |

## Total Semester Credit Hours

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please see academic adviser for a list of physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.

Physics, BS degree/Astrophysical sciences and technology,
MS degree, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year |  |  |
| Choose one of the following: |  | 8 |
| $\begin{aligned} & \text { CHMG-141, 142, } \\ & 145,146 \end{aligned}$ | LAS Perspective 5: General and Analytical Chemistry I, II and Labs§ |  |
| $\begin{aligned} & \text { BIOL-101, 102, } \\ & 103,104 \end{aligned}$ | LAS Perspective 5: General Biology I, II and Labs§ |  |
| MATH-181 | LAS Perspective 7A: Project-based Calculus I | 4 |
| PHYS-150 | Introduction to Special Relativity | 3 |
|  | First Year LAS Elective | 3 |
|  | LAS Perspective 1 | 3 |
| MATH-182 | LAS Perspective 7B: Project-based Calculus II | 4 |
| PHYS-216 | University Physics I: Physics Majors | 4 |
|  | First Year Writing Seminar (WI) | 3 |
| ACSC-010 | Year One: College Experience | 0 |
|  | Wellness Education* | 0 |
| Second Year |  |  |
| MATH-219 | Multivariable Calculus | 3 |
| PHYS-217 | University Physics II: Physics Majors | 4 |
| PHYS-225 | Introduction to Computational Physics and Programming | 3 |
| MATH-231 | Differential Equations | 3 |
| PHYS-213 | Modern Physics I | 3 |
| PHYS-222 | Electronic Measurements | 3 |
| PHYS-275 | Sophomore Physics Seminar | 1 |
| PHYS-283 | Vibrations and Waves | 3 |
| PHYS-220 | University Astronomy | 3 |
|  | LAS Perspective 2, 3 | 6 |
| Third Year |  |  |
| PHYS-214 | Modern Physics II | 3 |
| PHYS-315 | Experiments in Modern Physics | 3 |
| PHYS-320 | Mathematical Methods in Physics | 3 |
| PHYS-330 | Classical Mechanics | 4 |
| PHYS-316 | Advanced Laboratory in Physics | 3 |
| PHYS-411 | Electricity and Magnetism | 4 |
| PHYS-374 | Introduction to Astrophysics | 1 |
|  | Computational Physics Elective $\ddagger$ | 3 |
|  | LAS Perspective 4 | 3 |
|  | LAS Immersion 1,2 | 6 |
| Fourth Year |  |  |
| PHYS-414 | Quantum Mechanics | 3 |
| PHYS-440 | Thermal and Statistical Physics | 3 |
| ASTP-613 | Astronomical Observational Techniques and Instrumentation | 3 |
| ASTP-601, 602 | Graduate Seminar I, II | 2 |
|  | AST Graduate Courses | 6 |
| Choose one of the following: |  | 3 |
| ASTP-610 | Mathematical Methods for the Astrophysical Sciences |  |
| ASTP-611 | Statistical Methods for Astrophysics |  |
|  | LAS Immersion 3 | 3 |
|  | LAS Elective | 3 |
|  | Open Elective | 6 |
| Fifth Year |  |  |
| ASTP-617 | Astrophysical Dynamics | 3 |
| ASTP-615 | Radiative Processes for Astrophysical Sciences | 3 |
|  | AST Graduate Courses | 6 |
| ASTP-790 | Research and Thesis | 6 |
| Total Semester Credit Hours |  | 153 |

Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness courses.
$\ddagger$ Please see academic adviser for a list of computational physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.

Sophia A. Maggelakis, BS, MS, Ph.D., Old Dominion UniversityDean; Professor

Mark D. Fairchild, BS, MS, Rochester Institute of Technology; Ph.D., University of RochesterAssociate Dean of Research and Graduate Education; Professor

Laura Ellen Tubbs, BA, Hood College; Ph.D., University of Rochester-Associate Dean for Undergraduate Education; Professor

## Catherine Mahrt-Washington,

 BS, Niagara University; MS, Rochester Institute of TechnologyAssistant Dean; Director of Student Advising; College of Science Honors Advocate
## Thomas H. Gosnell School of Life Sciences

Larry Buckley, BA, University of Missouri at St. Louis; MS, Southern Illinois University at Edwardsville; Ph.D., Southern Illinois University at Carbondale-Head, School of Life Sciences; Associate Professor

Gregory A. Babbitt, BA, Ohio Wesleyan University; MS, Ph.D., University of Florida-Assistant Professor

Dawn Carter, BSc, Botany University of Manchester (United Kingdom); Ph.D., University of Nottingham (United Kingdom) Senior Lecturer

Sandra Connelly, BS, Juniata College; MS, University at Buffalo; Ph.D., Miami University of OhioAssistant Professor

Mary-Anne Courtney, BA Miami University; Ph.D., University of Louisville School of Medicine; Postdoctoral Fellowship, University of Rochester School of Medicine-Lecturer

Feng Cui, MD, Hunan Medical University (China); MS, Truman State University; Ph.D., Iowa State University-Assistant Professor

Elizabeth DiCesare, BA, Colgate University; Ph.D., Lehigh University-Lecturer

Irene M. Evans, BA, University of Rochester; MS, Wesleyan University; Ph.D., University of Rochester-Professor

Maureen C. Ferran, BS, Fordham University; MS, Ph.D., University of Connecticut-Associate Professor

Elizabeth N. Hane, BA, Rice University; MA, University of Kansas; Ph.D., Brown UniversityAssociate Head, School of Life Sciences; Associate Professor

André O. Hudson, BS, Virginia Union University; Ph.D., Rutgers University-Associate Professor

Karl F. Korfmacher, BA, Carleton College; MEM, Ph.D., Duke University-Professor

Premlata Kumar, BS, MS, University of Bombay (India); Ph.D. University of Western Australia (Australia)—Visiting Lecturer

David A. Lawlor, BA, University of Texas; MS, Ph.D., University of Texas Health Science Center at San Antonio-Associate Professor

Jeffrey S. Lodge, BA, University of Delaware; Ph.D., University of Mississippi-Associate Professor

Carmody K. McCalley, BA, Middlebury College; Ph.D., Cornell University-Assistant Professor

Dina L. Newman, BS, Cornell University; MS, Ph.D., University of Chicago-Associate Professor

Michael V. Osier, BS, University of Vermont; Ph.D., Yale UniversityGraduate Program Director, Bioinformatics; Associate Professor

Crey Ptak, BS, State University College at Fredonia; Ph.D., Cornell University-Visiting Lecturer
Robert H. Rothman, BA, Ph.D., University of California at Berkeley; MA, California State University at San Diego-Professor

Michael A. Savka, BS, West Virginia University; MS, Ph.D., University of Illinois at Urbana-Champaign-Professor

Paul A. Shipman, BS, MS, Emporia State University; Ph.D., Oklahoma State University-Associate Professor

Gary K. Skuse, BA, University of Rochester; Ph.D., Syracuse University-Professor

Susan Smith Pagano, BS, State University College at Oswego; MS, State University College at Brockport; Ph.D., University of Rhode Island-Associate Professor

Hyla C. Sweet, BS, Union College; Ph.D., University of Texas at Austin-Associate Professor

Julie A. Thomas, B.App.Sc., Ph.D., LaTrobe University, Bendingo (Australia)—Assistant Professor

Anna Christine Tyler, BS, Cornell University; MS, Ph.D., University of Virginia-Graduate Program Director, Environmental Science; Associate Professor

Beth VanWinkle, BS, Rochester Institute of Technology; Ph.D., University of Rochester-Visiting Lecturer

Michelle L. Weatherell, BS,
MS, Rochester Institute of
Technology-Lecturer
Leslie Kate Wright, BS, Rochester Institute of Technology; MS, Ph.D., University of Rochester-Associate Professor

## School of Mathematical Sciences

Mihail Barbosu, BS, Ph.D.,BabesBolyai University (Romania); MS, Ph.D., Paris VI University (France)-Head of School; Professor

Anurag Agarwal, BS, MS, Indian Institute of Technology; Ph.D., State University of New York at BuffaloAssociate Professor

Ephraim Agyingi, BS, MS, University of Ilorin (Nigeria); Ph.D., University of Manchester (United Kingdom)—Associate Professor

Peter Bajorski, MS, University of Wroclaw (Poland); Ph.D., Technical University of Wroclaw (Poland)-Professor

Nate Barlow, BS, Ph.D., Clarkson University-Assistant Professor

David S. Barth-Hart, BS, Syracuse University; MA, University of Rochester-Associate Professor

Maurino P. Bautista, BS, Ateneo de Manila University (Philippines); MS, Ph.D., Purdue University—Professor

Bernard Brooks, BS, University of Toronto (Canada); MBA, Rochester Institute of Technology; MS, Ph.D., University of Guelph (Canada)—Professor

Nathan D. Cahill, BS, MS, Rochester Institute of Technology; D.Phil., University of Oxford (United Kingdom)—Associate Professor

Manuela Campanelli, Laurea in Mathematics, University of Perugia (Italy); Ph.D., University of Bern (Switzerland)—Professor

Linlin Chen, BS, Beijing University (China); MCS, Rice University; MA, Ph.D., University of RochesterAssociate Professor

Elizabeth Cherry, BS, Georgetown
University; Ph.D., Duke
University-Associate Professor
Patricia A. Clark, SB, SM,
Massachusetts Institute of Technology; Ph.D., University of Rochester-Professor

Matthew Coppenbarger, BS, University of Arizona; MA, Ph.D., University of Rochester-Associate Professor

Michael Cromer, BS, York College of Pennsylvania; MS, Ph.D. University of Delaware-Assistant Professor

Joshua Faber, BS, State University of New York at Stony Brook; Ph.D., Massachusetts Institute of Technology-Associate Professor

Raluca Felea, BS, University of Iasi (Romania); Ph.D., University of Rochester-Associate Professor

Ernest Fokoue, Maitrise B. Sc., University of Yaounde (Cameroon); M.Sc., Aston University (United Kingdom); Ph.D., University of Glasgow (United Kingdom) Associate Professor

John F. Hamilton, BA, Cornell University; MA, Ph.D., Indiana University—Research Faculty

Anthony A. Harkin, BS, State University College at Brockport; MS, Massachusetts Institute of Technology; Ph.D., Boston University-Associate Professor
Matthew J. Hoffman, BA, Williams College; MS, Ph.D., University of Maryland-Assistant Professor

Jobby Jacob, BS, Bharata Mata College (India); MS, Indian Institute of Technology (India); Ph.D., Clemson University-Associate Professor

Jay Alan Jackson, BS, MS, Ph.D., Florida State University-Associate Professor

Baasansuren Jadamba, BS,
National University of Mongolia (Mongoloa); MS, University of Kaiserlautern (Germany); Ph.D., University of Erlangen-Nuremberg (Germany)—Assistant Professor

Sogol Jahanbekam, BS, Shiraz University (Iran); MS, Sharif University of Technology (Iran); Ph.D., University of Illinois at Urbana-Champaign-Assistant Professor

Akhtar Khan, MS, Technical University Kaiserslautern (Germany); Ph.D., Michigan Technological University-Associate Professor

Seshavadhani Kumar, BS, MS, University of Madras (India); Ph.D., University of Delaware-Professor

Steven M. LaLonde, BA, State University College at Potsdam; MBA, University of Rochester; MA, Ph.D., Syracuse UniversityAssociate Professor

Manuel Lopez, AB, Princeton University; Ph.D., Wesleyan University-Associate Professor

Carlos Lousto, MS, Universidad Nacional de la Plata (Argentina); Ph.D., Universidad de Buenos Aires (Buenos Aires)—Professor

Carl V. Lutzer, BS, Michigan State University; MA, Ph.D., University of Kentucky-Professor

Sophia A. Maggelakis, BS,
MS, Ph.D., Old Dominion University-Professor

Kara L. Maki, BS, University of New Hampshire; MS, Ph.D., University of Delaware-Assistant Professor

Carol E. Marchetti, BS, Case Institute of Technology; MS, Weatherhead School of Management; MA, Ph.D., University of Rochester-Associate Professor

James E. Marengo, BA, MS, California State University; Ph.D., Colorado State University-Professor

Douglas S. Meadows, BS, Stanford University; MS, New York University; Ph.D., Stanford University-Professor

Laura M. Munoz, BS, California Institute of Technology; Ph.D., University of California at Berkeley-Assistant Professor

Darren A. Narayan, BS, State University of New York at Binghamton; MS, Ph.D. Lehigh University-Director of Undergraduate Research; Professor

Richard O'Shaughnessy, BA, Cornell University; Ph.D., California Institute of Technology-Assistant Professor

Niels F. Otani, BA, University of Chicago; Ph.D., University of California at Berkeley-Associate Professor

Robert J. Parody, BS, Clarkson University; MS, Rochester Institute of Technology; Ph.D., University of South Carolina-Associate Professor

Wei Qian, BS, Peking University (China); MS, Stanford University; Ph.D., University of Minnesota, Twin Cities-Assistant Professor

Michael Radin, BA, Rowan University; MS, Ph.D., University of Rhode Island-Associate Professor

David Ross, BA, Columbia
College; Ph.D., New York
University-Professor
Hossein Shahmohamad, BS, MA, California State University at Long Beach; Ph.D., University of Pittsburgh-Professor

Wanda Szpunar-Lojasiewicz, BS, Jagiellonian University (Poland); MS, Ph.D., University of Cracow (Poland)-Associate Professor

Joseph G. Voelkel, BS,
Rensselaer Polytechnic Institute; MS, Northwestern University; Ph.D., University of Wisconsin-Madison-Professor

Paul S. Wenger, BA, Boston College; MS, Ph.D., University of Illinois at Urbana-ChampaignAssistant Professor

John T. Whelan, BA, Cornell University; Ph.D., University of California at Santa BarbaraAssociate Professor

Tamas Wiandt, BS, Jozsef Attila University (Hungary); Ph.D., University of Minnesota-Associate Professor

Elmer L. Young, BA, Amherst College; MS, Ph.D., The Ohio State University-Associate Professor

Yosef Zlochower, BS, Ph.D. University of Pittsburgh-Associate Professor

## School of Chemistry and Materials Science

Paul Craig, BS, Oral Roberts University; Ph.D., University of Michigan-Head, School of Chemistry and Materials Sciences; Professor

Alla Bailey, BS, University of St. Petersburg (Russia); Ph.D., Russian Academy of Science (Russia) Senior Lecturer

Jeremy Cody, BS, Indiana
University of Pennsylvania; Ph.D., University of Rochester-Associate Professor

Michael Coleman, BS, Ph.D., University of Buffalo-Associate Head; Associate Professor

Christina Goudreau Collison, BA, Colby College; Ph.D., University of Rochester-Associate Professor

Christopher Collison, BS, Ph.D., Imperial College, University of London (United Kingdom) Associate Professor

Nathan Eddingsaas, BS, University of Wisconsin, Stevens Point; Ph.D., University of Illinois at Urbana-Champaign-Assistant Professor

Joseph P. Hornak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D., University of Notre Dame-Professor

Michael Gleghorn, BS, Clarion University; Ph.D., Pennsylvania State University-Assistant Professor

Thomas Kim, BS, Loyola College; Ph.D., University of Wisconsin at Madison-Associate Professor

Joseph Lanzafame, BS, St. John Fisher College; Ph.D., University of Rochester-Senior Lecturer

Howard L. McLean, BS, Ph.D., University of Wyoming-Lecturer

Lea Michel, BS, Colgate
University; MS, Ph.D., University of Rochester-Associate Professor

Casey Miller, BA, Wittenberg
University; Ph. D., University of Texas at Austin-Associate Professor

Jeffrey L. Mills, BS, Juaniata College; Ph.D., University at Buffalo-Lecturer

Massoud J. Miri, BS, MS, Ph.D., University of Hamburg (Germany)-Associate Professor

Suzanne F. O'Handley, BS, Rutgers University; MS, Ph.D., University of Rochester-Associate Professor

John-David Rocha, BS, MS, University of North Texas; Ph.D., Rice University-Assistant Professor

William J. Ryan, BS, MS Rochester Institute of Technology, MBA; University of Rochester-Lecturer
K.S.V. Santhanam, B.Sc., MA, Ph.D., Sri Venketaswara University (India)—Professor

Hans Schmitthenner, BS, Massachusetts Institute of Technology; Ph.D., Pennsylvania State University-Lecturer

Darren M. Smith, BS,
MS, Rochester Institute of
Technology-Lecturer
Thomas W. Smith, BS, John Carroll University; Ph.D., University of Michigan-Professor

Gerald A. Takacs, BS, University of Alberta (Canada); Ph.D., University of Wisconsin-Professor

Laura Ellen Tubbs, BA, Hood
College; Ph.D., University of Rochester-Professor

Scott Williams, BS, Purdue University; Ph.D., Montana State University-Professor

## School of Physics and Astronomy

Michael Kotlarchyk, BS, MS, Ph.D., Massachusetts Institute of Technology-Head; Professor
John D. Andersen, BS, State
University of New York at Buffalo; MA, Ph.D., University of Rochester-Professor

Linda S. Barton, BS, Massachusetts Institute of Technology; MS, Ph.D., University of Illinois-Associate Professor

Mishkat Bhattacharya, BTech, Indian Institute of Technology (India); MA, Ph.D., University of Rochester-Assistant Professor

Peter A. Cardegna, BS,
Loyola College; Ph.D., Clemson University-Professor
Michelle D. Chabot, BA, Rice University; MA, Ph.D., University of Texas at Austin-Lecturer

Sukanya Chakrabarti, B.Sc., North Carolina State University; MS, Georgia Institute of Technology; Ph.D., University of California at Berkeley-Assistant Professor

Jennifer Connelly, BS, Dickinson College; MA, Wesleyan University; Ph.D., Ludwig Maximilian University of Munich (Germany) Visiting Assistant Professor
Moumita Das, BS, MS, Jadavpur University (India); Ph.D., Indian Institute of Science-Assistant Professor

Tracy A. Davis, BA, BS, Wofford College; Ph.D., Clemson University-Associate Professor

Kristina M. Driscoll, BA, MS, Ph.D., Boston University-Lecturer

Scott V. Franklin, BA, University of Chicago; Ph.D., University of Texas-Professor

Edwin Hach III, BS, MS, St. Bonaventure University; Ph.D., University of Arkansas-Assistant Professor

Dawn Hollenbeck, BS, University of California at Davis; MS, Ph.D., University of Texas at DallasAssociate Professor

Seth M. Hubbard, BS, Drexel University; MS, Case Western Reserve University; Ph.D., University of Michigan-Associate Professor

Jeyhan Kartaltepe, BA, Colgate University; MS, Ph.D., University of Hawaii-Assistant Professor

Brian Koberlein, BS, Southern Illinois University; MS, Ph.D., University of Connecticut-Senior Lecturer

Charles P. Lusignan, BS, State University of New York at Binghamton; MA, Ph.D., University of Rochester-Lecturer

Amir Maharjan, B.Sc., Tri-chandra College (Nepal); M.Sc., Tribhuvan University (Nepal); MS, Ph.D., University of Cincinnati-Senior Lecturer

Aaron M. McGowan, BS, Cornell University; Ph.D., University of Minnesota-Senior Lecturer

David Merritt, BS, University of Santa Clara; Ph.D., Princeton University-Professor

Vivek Narayanan, M.Sc., Indian Institute of Technology (India); MA, Ph.D., University of Texas-Lecturer

Christopher O'Dea, BS,
Massachusetts Institute of Technology; Ph.D., University of Massachusetts-Research Professor

Michael S. Pierce, BS, Rensselaer Polytechnic Institute; MS, Ph.D., University of WashingtonAssistant Professor

Ryne Raffaelle, BS, MS, Southern Ilinois University; Ph.D., University of Missouri-Rolla-Professor

Michael W. Richmond, BA, Princeton University; MA, Ph.D., University of California at Berkeley-Professor
Andrew Robinson, BS, Ph.D., University of Manchester (United Kingdom)—Professor

Joel D. Shore, BS, Haverford College; Ph.D., Cornell University-Lecturer

Robert B. Teese, BS, North Carolina State University; MS, Ph.D., University of Texas-Professor

George M. Thurston, AB, Oberlin College; Ph.D., Massachusetts Institute of Technology-Professor

Greg Trayling, B.Sc., Simon Fraser University (Canada); M.Sc., University of Victoria (Canada); Ph.D., University of Windsor (Canada)—Senior Lecturer

David J. Urminsky, B.Sc., McMaster University (Canada); M.Sc., University of British Columbia (Canada); Ph.D., University of Edinburgh (United Kingdom)-Lecturer

Billy Vazquez, BS, University of Puerto Rico (Puerto Rico); Ph.D., Rochester Institute of Technology-Lecturer
Earl Wood, BS, Western Kentucky University; Ph.D., University of Wyoming-Visiting Lecturer

Aditya Yechan Gunja, B.Sc., St. Stephens College (India); MS, Ph.D., Wayne State University-Lecturer

Andronique I. Zacharakis, B.Sc., M.Sc., Concordia University (Canada); Ph.D., University of Quebec (Canada)-Visiting Lecturer

Michael B. Zemcov, B.Sc., University of British Columbia (Canada); Ph.D., Cardiff University (United Kingdom)—Assistant Professor

Benjamin M. Zwickl, BS, Purdue
University; MS, Ph.D., Yale
University-Assistant Professor

## Chester F. Carlson Center for Imaging Science

Stefi A. Baum, BA, Harvard University; Ph.D., University of Maryland-Research Professor

Charles Bachmann, A.B., Princeton University; Sc.M., Ph.D., Brown University-Associate Professor

Gabriel J. Diaz, BFA, Skidmore College; MS, Ph.D., Rensselaer Polytechnic Institute—Assistant Professor

Roger Dube, BS, Cornell
University; Ph.D., Princeton
University-Research Professor

Roger L. Easton Jr., BS, Haverford College; MS, University of Maryland; Ph.D., University of Arizona-Professor

James A. Ferwerda, BA, MS, Ph.D., Cornell UniversityAssociate Professor

Richard Hailstone, BS, Northern Illinois University; MS, Indiana University-Associate Professor

Maria Helguera, BS, National Autonomous University of Mexico (Mexico); MS, University of Rochester; Ph.D., Rochester Institute of Technology-Associate Research Professor

Joseph Hornak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D., University of Notre Dame-Professor

Emmett lentilucci, BS, MS, Ph.D., Rochester Institute of TechnologyAssociate Research Professor
Christopher Kanan, BS, Oklahoma State University; MS, University of Southern California, Ph.D., University of California-Assistant Professor

Joel H. Kastner, BS, University of Maryland; MS, Ph.D., University of California-Professor

John P. Kerekes, BS, MS, Ph.D., Purdue University-Professor

Robert L. Kremens, BS, The Cooper Union; MS, University of Rochester; MS, Ph.D., New York University-Research Professor

David W. Messinger, BS, Clarkson University; Ph.D., Rensselaer Polytechnic Institute-Director and Professor
Zoran Ninkov, BS, University of Western Australia (Australia); M.Sc., Monash University (Australia); Ph.D., University of British Columbia (Canada)-Professor

Jeff Pelz, BFA, MS, Rochester Institute of Technology; Ph.D., University of Rochester-Professor

Joe Pow, BS, MS, University of Rochester; MS, Air Force Institute of Technology-Associate Director

Jie Qiao, BS, University of Science and Technology Liaoning (China); MS, Tsinghua University (China); MBA, University of Rochester; Ph.D., University of Texas at Austin-Associate Professor

Navalgund Rao, BS, MS, Banaras Hindu University (India); Ph.D., University of Minnesota-Research Professor

Carl Salvaggio, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York College of Environmental Science and Forestry-Professor

John Schott, BS, Canisius College; MS, Ph.D., State University of New York College of Environmental Science and Forestry-Research Professor

Grover Swartzlander, BS, Drexel University; MS, Purdue University; Ph.D., Johns Hopkins UniversityAssociate Professor

Jan van Aardt, BSc, University of Stellenbosch (South Africa); MS, Ph.D., Virginia Polytechnic Institute and State University-Professor

Anthony Vodacek, BS, University of Wisconsin; MS, Ph.D., Cornell University-Professor

## Distinguished <br> Professorships

## Richard S. Hunter Professorship

 in Color Science, Appearance, and TechnologyEstablished: 1983
Donors: Mr. and Mrs. Richard S.
Hunter
Purpose: To enable RIT to increase its research and educational efforts in the areas of color science, technology, and appearance science in order to benefit the industry and science of color.
Held by: Roy S. Berns

## Frederick and Anna B. Wiedman

 ProfessorshipEstablished: 1985
Donor: Frederick Wiedman Jr.
Purpose: To support a truely
outstanding scholar and/or teacher
in Imaging Science
Held by: Charles Bachmann

## Frederick Wiedman Jr.

## Professorship

Established: 1997
Donor: Frederick Wiedman, Jr.
Purpose: To support a second truely outstanding scholar and/or teacher in Imaging Science.
Held by: Jeff Pelz

## Xerox Professorship in Imaging

## Science

Established: 1996
Donor: Xerox Corporation
Purpose: Established to expand and enhance the research and teaching activities within the Chester F. Carlson Center for Imaging Science. Held by: David Messinger

## Academic Affairs

rit.edu/academicaffairs

Neil Hair, Executive Director, Innovative Learning Institute rit.edu/ili

James C. Hall, Executive Director, School of Individualized Study rit.edu/sois

Danielle T. Smith, Director, University Honors Program rit.edu/honors

## Innovative Learning Institute

RIT Online
Teaching and Learning Services
School of Individualized Study
BS, Applied Arts and Science 210
AAS, Applied Arts and Science 210
Diploma, Applied Arts and Science 210

Organizational Change and Leadership, Certificate 210
Quality Management, Certificate 211
University Honors Program
University Studies
University Writing Program

## Innovative Learning Institute

## rit.edu/ili

Neil Hair, Interim Executive Director
(585) 475-6322, nfhbbu@rit.edu

The Innovative Learning Institute supports systematic experimentation with and adoption of emerging modes and models of teaching and learning, including technology-enhanced and online course formats. ILI strives to provide students with a meaningful, effective, and success-oriented learning experience; to serve as a focal point for research, experimentation, application, and assessment of innovative pedagogy; to formalize and enlarge the scope of experimentation with online and other modes of teaching and learning; and to foster a network of expertise, scholarly work, and innovation in teaching and learning throughout RIT and the world.

ILI is comprised of two entities-RIT Online and the Teaching and Learning Services-and provides:

- A nexus of research and timely experimentation with emerging teaching and learning technologies and practices for RIT faculty.
- Faculty support services for course design and delivery, including academic technology and classroom equipment usage.

Marty Burris, Director, University Studies<br>rit.edu/universitystudies

David Martins, Director, University Writing Program
rit.edu/writing

- Market research and student recruitment support for online programs, as well as a robust virtual campus experience for online.


## RIT Online

## rit.edu/ritonline

(585) 475-2229 (V/TTY)

RIT Online builds programs around industry standards, employer demand, and the perspectives of our global network. Degree programs offered online are of the same high quality as those offered on campus. Online courses meet the same rigorous objectives set for traditional classroom experiences, and faculty who teach online courses often teach the same class in a traditional format. A degree achieved through online study is the same as the one received by those who study on campus. There is no distinction between degree earned online versus those earned on campus.

Online learning is convenient and makes it possible to balance work, family, and school. Students can study and take classes anywhere there's an Internet connection, at times that are convenient and flexible.

## Resources and support

All of the functions of a traditional university are available online, including admission, financial aid services, course registration, tuition payment, career advisement, a comprehensive library, and a bookstore. Online students also have access to the RIT Virtual Campus where they can network with faculty and fellow online students, obtain technical support, access resources, view RIT videos, and share their experiences directly with staff from RIT Online.

RIT is dedicated to helping students experience a high level of support to ensure academic success. Online students have full access to a comprehensive array of services including orientation, the RIT Virtual Campus, proctored exam assistance, an academic adviser, and a support desk available to answer general and technical questions via e-mail, IM, or phone.

## Learning online

Online classes are just as demanding as their bricks-and-mortar counterparts. Each online course is set up by the professor and is designed to satisfy and accomplish the goals of that course. However, online learning takes more self-discipline, excellent time management skills, and a dedication to succeed. The online environment offers flexibility to fit around work and family schedules, but this convenience must be offset with rigorous study skills. Without a physical campus environment, many students find they need strong independent study and learning habits.

Most online courses establish either a weekly schedule for learning activities or a project-based learning approach where deliverables demonstrate that certain learning outcomes are accomplished. Students interact online with other students and instructors to exchange ideas and
collaborate much like they would in traditional on-campus courses. Each professor decides which learning outcomes are necessary for a particular course and how those outcomes are assessed (for example, if a professor decides to assess students using an exam, they may choose to use an online exam or a proctored exam). Other course activities may include readings from a textbook or electronic reserves from the RIT's library, watching streaming video, participating in an online discussion, or submitting written assignments or projects to the online dropbox.

## Online programs and courses

RIT offers numerous degrees, certificate programs, and courses in an online format. For more information, please visit the RIT Online website.

## Teaching and Learning Services

## rit.edu/tls

Teaching and Learning Services promotes and supports student learning through faculty development and by collaborating with faculty. TLS partners with faculty to enrich their on-campus, blended, and online classes through instructional design, effective support of academic technologies, and media and individual consulting and coaching.

## School of Individualized Study

## rit.edu/sois

## James C. Hall, Executive Director (585) 475-2234, jchcms@rit.edu

Through the School of Individualized Study, students interested in more than one area of study have the option of creating personalized undergraduate programs directly related to their interests and aspirations. The diverse nature of these customized degree programs values student's ideas and provides an interdisciplinary approach to learning that can be applied to the professional environment.
Like the school itself, students participating in the school are anything but typical. Some are full-time undergraduate students with nontraditional ideas about what they want in a college degree, while others are adults with families and careers attending classes online or in the evening. The school offers a BS degree, an AAS degree, and a diploma.

## Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

In addition to the admission requirements of the university, the school has added enrollment policies that must be followed.

Enrollment policies: The school allows a student to enroll in any course for which he or she has sufficient background. Many courses have prerequisites that students are expected to meet before enrolling. Academic advisers are available throughout the year to answer questions regarding course or program choices.

In support of and in compliance with RIT's policy of assuring competency in written communication, all students matriculated in a BS degree program must satisfy a writing competency requirement. Information about this requirement, and the various methods for satisfying it, is available at the SOIS office or by visiting the school's website.

Students matriculated in the school's baccalaureate degree program are expected to complete the degree within seven years.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

The school utilizes full- and part-time faculty members who guide students through individual advising. Faculty members and academic advisers assist students in course selection and planning, and offer advice on career exploration and student development.

## Assessment of prior learning and experiential learning

Students with substantial work experience in a specific field may petition to receive academic credit for their life experience. Their adviser will assist them in identifying and preparing the appropriate documentation to prove that their experience is at least equivalent to the breadth and depth of a col-lege-level course. These materials, presented as portfolios of prior learning experience, are reviewed by faculty members within the school. Students can also discuss experiential learning opportunities with an adviser.

## Military experience

Students who have previously served in the armed forces and participated in any number of training programs may be eligible to receive credit for their responsibilities through the American Council of Education (ACE). Students should contact Veterans Enrollment Services at (585) 475-6641 or mskecr@rit.edu for an evaluation and recommendation of college credit for their military experience. RIT also is an institutional member of the Servicemembers Opportunity Colleges (SOC), which is a consortium of more than 1,500 colleges and universities that provide educational opportunities for service members and their families. SOC is funded by the Department of Defense and managed by the Defense Activity for Non-Traditional Education Support (DANTES).

## Cooperative education

While cooperative education and/or an internship experience are not required for the BS in applied arts and science degree, they are encouraged. Cooperative education gives students the opportunity to apply classroom-based knowledge to real world situations, where they gain experience working on and solving problems in industry.

## Advising

The school's faculty and academic advisers are experienced and trained across academic disciplines. They help match educational and career goals with an appropriate program of study. With an adviser's help, each program begins by taking into account what the student already knows and has accomplished. For example, college credits earned at RIT or other accredited institutions are reviewed to see how they might be applied to the program of study; professional certifications and experiences are evaluated for the possibility of receiving credit; and credits may be earned (by examination, portfolio reviews, or other documentation) for college-level learning that was gained on the job or through other educational experiences.

## Special opportunities

Graduate study: SOIS offers an MS degree in professional studies and an advanced certificate in project management. Please refer to the Graduate Bulletin or the school's website for more information.

Online learning: The school offers a variety of courses through online learning. Students have the option of completing the diploma, AAS, and BS degrees online. This option allows students flexibility in completing their courses while maintaining a class atmosphere through online discussions via chat/e-mail conferencing. Online learning courses use textbook readings, assignments, and exams to deliver course work. Students have access to instructors by e-mail, computer, telephone, or individual appointments.

## Applied Arts and Sciences, BS

www.rit.edu/sois
School of Individualized Study
(585) 475-2234

## Program overview

The School of Individualized Study offers students the opportunity to create individualized undergraduate programs of study through its applied arts and science program. In this program, students work closely with faculty and professional advisers to design unique, multidisciplinary plans of study that combine several areas of academic knowledge and interest.

The applied arts and science program is particularly appropriate for individuals who have unique ideas about how they want to design their academic areas of study, have prior college-level learning, are interested in changing majors, or who want to prepare themselves for a career that requires skills and expertise from several disciplines.

## Plan of study

The applied arts and science program is available as a bachelor of science program, an associate of applied science program, or a 24 credit hour diploma program.

Bachelor of science (BS) degree: 120 semester credit hours total; program is comprised of general education courses plus course work in professional areas of focus.

Associate of applied science (AAS) degree: 60 semester credit hours total; program is comprised of general education courses plus course work in a professional area of focus.

BS and AAS degrees are available to full-time day students, part-time evening students, and online students. These degrees allow students to pursue several different areas of study, selected specifically to meet individual career and personal goals.

For their professional core, students may draw upon a wealth of educational resources from across RIT's colleges and departments.

Students looking to complete the BS or AAS online can choose from a diverse selection of online concentrations. Examples include::

- Web design
- Organizational change
- Health systems administration
- Integrated electronics
- Leadership
- Project management
- Quality management
- Various liberal arts concentrations

No two applied arts and science programs will be exactly alike because each takes into account the individual's goals and any previous learning. For example, one individualized program might lead to a bachelor's degree with a professional core that combines information technology, graphic arts, and management, while another could lead to a bachelor's degree that combines the fields of technical communication and health systems administration.

As career plans evolve and the demands of their technical and professional fields change, students meet regularly with professional advisers to review and update plans of study.

## Applied Arts and Sciences, AAS

www.rit.edu/sois

School of Individualized Study

(585) 475-2234

## Program overview

The applied arts and science major offers students the opportunity to create individualized undergraduate programs of study through three levels: a bachelor of science degree, an associate of applied science degree, and a diploma. Further information for all three levels can be found under the applied arts and science BS program.

## Applied Arts and Sciences, Diploma

www.rit.edu/sois
School of Individualized Study
(585) 475-2234

## Program overview

The applied arts and science major offers students the opportunity to create individualized undergraduate programs of study through three levels of study: a bachelor of science degree, an associate of applied science degree, and a diploma. Further information for all three levels can be found under the applied arts and science BS program.

## Organizational Change and Leadership, Certificate

www.rit.edu/sois
School of Individualized Study
(585) 475-2234, sois@rit.edu

## Program overview

Profound and ongoing changes are taking place in organizations, and individuals need to be flexible and proactive in their response. The organizational change and leadership certificate will help students understand corporate culture and develop skills necessary to manage organizational and individual change. Through the study of leadership, corporate culture, change management, organizational behavior, and teams, individuals will understand and obtain the skills necessary to proactively manage change.

## Curriculum



## Quality Management, Certificate

www.rit.edu/sois

School of Individualized Study<br>(585) 475-2234, sois@rit.edu

## Program overview

Poor quality in manufacturing and service can cost companies as much as 20 percent of revenue in rework, scrap, brand switching, and loss of goodwill. Organizations have begun to understand that prevention saves more time and money than the discovery of flaws after the fact.

The school's management-oriented certificate program focuses on quality as a priority. Developed in cooperation with industry, the courses can help students develop a total quality management environment to combine the theory and practice of statistical quality control with leadership, teamwork, and problem-solving concepts and skills.

The certificate in quality management teaches the nuts and bolts of a quality organization, prepares students to introduce quality concepts to their organization, and teaches how to put quality principles to work. The certificate can prepare students to work as quality trainers, facilitators, team leaders, or managers at various levels of an organization.

## Curriculum

Quality management, certificate, typical course sequence

| COURSE |  | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year |  |  |
| QLTM-310 | Introduction to Quality | 3 |
| QLTM-340 |  | Quality Data Analysis |
| QLTM-410 | Introduction to Lean Six Sigma | 3 |
| Choose one of the following: | 3 |  |
| QLTM-420 |  | Statistical Quality Tools |
| QLTM-430 | Management for Quality | 3 |
| Total Semester Credit Hours |  | $\mathbf{1 2}$ |

## University Honors Program

## rit.edu/honors <br> Danielle Smith, Director <br> (585) 475-4511, dtsgla@rit.edu

The RIT University Honors Program provides a supportive and encouraging environment for high achieving students with academic distinction. Students benefit by working closely with faculty, and by sharing academic experiences with other Honors students, both in and out of the classroom. Honors activities and courses enhance the professional dimension of the student's collegiate experience. Major components of the Honors Program include professional development opportunities within the student's home college, enhanced general education courses, and complementary learning experiences. Special features include:

- An Honors curriculum of special courses, seminars, projects, and advising.
- Research and experiential learning.
- Honors advising with the students home college.
- Leadership and service opportunities with Honors Council.
- Residence in Honors housing increases studying, social, and community interactions among Honors students.


## University Studies Program

## rit.edu/universitystudies <br> Marty Burris, Director (585) 475-4027, marty.burris@rit.edu

University Studies is an exploratory program designed for first- or second-year undergraduate students who are undecided about a college major.

## Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

## Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

## Faculty

University Studies utilizes part-time faculty members with backgrounds in career development to teach a one-credit hour Career Seminar course to guide students through the career exploration process. Additionally, full-time academic advisers assist students in course selection and planning, and offer further advice on majors and career options.

## University Studies, Undeclared

http://www.rit.edu/universitystudies/

## Program overview

Some of RIT's accepted students have interests that span two or more colleges. To help these students choose the academic program that best meets their career interests and goals, RIT offers the university studies option. The university's broadest and most flexible option, university studies allows students up to a year to explore more than 90 bachelor's degree programs while completing courses in general education, math, and science. Students work individually with experienced advisers who make suggestions on course work and programs of study. Through advising and individual interaction with faculty and department chairs, students narrow their focus on a major that matches their career interests and goals.

## Curriculum

University studies, typical course sequence

| COURSE | SEMESTER CREDIT HOURS |
| :---: | :---: |
| First Year |  |
| ITDL-101 Career Exploration Seminar | 1 |
| First Year Writing Seminar | 3 |
| LAS Perspectives 1, 2, 3, 4, 5, 6, 7A, 7B | 24 |
| Major Exploration Courses $\dagger$ | 6 |
| ACSC-010 Year One: College Experience | 0 |
| Wellness Education* | 0 |
| Total Semester Credit Hours | 28 |
| Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) in the Graduation Requirements section of this bulletin for more information. <br> (WI) Refers to a writing intensive course within the major. <br> * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two Wellness course. <br> $\dagger$ Please see an academic adviser to select sample courses in your majors of interest. |  |
|  |  |
|  |  |

## University Writing Program

## rit.edu/writing

David Martins, Director (585) 475-6376, dsmgla@rit.edu

The University Writing Program supports and advances writing excellence throughout RIT's programs, colleges, and global locations. Comprised of three interrelated units (Writing Across the Curriculum, First Year Writing, and the University Writing Commons) the program: - provides writing support to all RIT students, regardless of location, year level, or major

- provides support for writing instruction to any RIT faculty member
- coordinates and helps develop writing resources across campus
- produces evidence of students' achievement of writing-related student learning outcomes
- cultivates high-quality environments for practicing, teaching, and researching writing.

Innovative Learning Institute

Neil Hair, BS, University of Wales (United Kingdom); MS, Sheffield Hallam University (United Kingdom); Ph.D., Cranfield University (United Kingdom) Interim Executive Director

Therese Hannigan, BFA, MFA, Rochester Institute of TechnologyInterim Director, ILI and RIT Online

## School of Individualized Study

Peter Boyd, BA, Nazareth College; MA, Columbia UniversityGraduate Program Coordinator
Katie Bush, BS, State University College at Brockport; MS, Rochester Institute of Technology-Visiting Lecturer

James Hall, BA, MA, Wilfried Laurier University; MTS, Waterloo Lutheran Seminary, MA, Ph.D., Univertsity of Iowa-Executive Director \& Professor

Thomas Hanney, Certificate, Rochester Institute of Technology; BA, St. John Fisher College; MPA, State University College at Brockport-Senior Lecturer
Clarence Sheffield, BS, University of Utah; MA, University of Colorado at Boulder; Ph.D., Bryn Mawr College-Professor

## University Studies

Marty Burris, BA, Western
Michigan University, MBA,
Rochester Institute of
Technology-Director
Pradip Ananda, BS, Eckerd College, MA, Florida Gulf Coast University-Assistant Director

Dewey Lawrence, BS, Keuka College; MSEd, State University Colege at Brockport-Senior Academic Adviser

## Honors Program

## Danielle T. Smith—Director

Kerrie Bondi-Assistant Director

## University Writing Program

David S. Martins, BA, St. Olaf College; MA, Northern Arizona University; Ph.D., Michigan Technological University-Director; Associate Professor

Rachel Chaffee, BA, Roberts
Wesleyan College; MA, State University College at Brockport, Ph.D., University of RochesterDirector, University Writing Commons

Dianna Winslow, BA, MA, California State University, Chico; Ph.D., Syracuse UniversityDirector, First Year Writing; Assistant Professor

Collette Caton, BA, St. Edward's University; MA, Texas State University-Lecturer

Amy Wrobel Jamieson, BA, State University College at Geneseo; MA, Niagara University-Lecturer

Andrew Perry, BA, State University College at Oswego; MA, State University College at BrockportSenior Lecturer
Phil Shaw, BA, MA, University of Denver-Lecturer

Thomas M. Stone, BA, Northern
Arizona University; MA, Bucknell University; Ph.D., University of Rochester-Lecturer

Paulette M. Swartzfager, BA, St.
Mary's Dominican College; MA, Louisiana State University-Lecturer

## Minors

Students pursuing a bachelor's degree have the option of completing a minor, which can complement a student's major, help them develop another area of professional expertise, or enable them to pursue an area of personal interest. Completion of a minor is formally designated on the baccalaureate transcript, which serves to highlight this accomplishment to employers and graduate schools. For the most recent list of minors, please visit rit.edu/minors.

Please note: A minor is a related set of academic courses consisting of no fewer than 15 credit hours. The following parameters must be met in order to earn a minor:

- At least nine credit hours of the minor must consist of courses not required by the student's home major.
- Students may pursue multiple minors. A minimum of nine credit hours must be designated toward each minor; these courses may not be counted toward other minors.
- The residency requirement for a minor is a minimum of nine credit hours consisting of RIT courses (excluding "X" graded courses).

Not all minors are approved to fulfill general education requirements. Please check with an adviser in regard to minors approved to fulfill these requirements.

## Accounting

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

Accounting is necessary in a wide variety of careers. Students completing an accounting minor will broaden their learning experiences and professional opportunities by gaining more depth in operational accounting topics. This minor is closed to students majoring in accounting.

| COURSE |  |
| :--- | :--- |
| Required Courses | Financial Accounting |
| ACCT-110 | Management Accounting |
| ACCT-210 |  |
| Electives |  |
| Choose three of the following: |  |
| ACCT-360 | Intermediate Financial Accounting I* |
| ACCT-365 | Intermediate Financial Accounting II* |
| ACCT-420 | Personal and Small Business Taxation* |
| ACCT-430 | Cost Accounting |
| ACCT-345 | Accounting Information Systems |
| ACCT-440 | Accounting for Government and Not-for-profit Organizations |
| ACCT-450 | Forensic Accounting and Fraud Examination |
| ACCT-460 | Seminar in Accounting |
| ACCT-489 | Auditing |
| ACCT-490 | Internal Auditing |
| ACCT-510 | Advanced Accounting |
| ACCT-540 | Personal Financial Management $\dagger$ |
| FINC-120 | Financial Management $\dagger$ |
| FINC-220 | Business Law It |
| BLEG-200 | Business Ethics and Corporate Social Responsibility $\dagger$ |
| MGMT-340 |  |

* These courses are recommended for students interested in pursuing CPA certification.
$\dagger$ Students may choose one of these courses as a substitute for an accounting elective.


## Advertising and Public Relations

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The advertising and public relations minor prepares students to analyze audiences, write advertising copy, prepare press releases, select media, and manage broad-scaled persuasive campaigns. Students are grounded in the basic theories of persuasive communication enabling them to create persuasive messages with a strong emphasis on ethical decisionmaking. This minor is closed to students majoring in advertising and public relations or communication.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| COMM-211 | Principles of Advertising |
| COMM-212 | Public Relations |
| Electives |  |
| Choose three of the following:* |  |
| COMM-202 | Mass Communications |
| COMM-221 | Public Relations Writing |
| COMM-303 | Small Group Communication |
| COMM-305 | Persuasion |
| COMM-321 | Capywriting and Visualization |
| COMM-322 | Visual Communication |
| COMM-341 |  |
| * At least two courses must be at the 300 level or higher |  |
| This course has two pre-requisites: Principles of Advertising (COMM-211) and Public Relations (COMM- <br> $212)$. |  |

## American Art

## College of Liberal Arts, Office of Student Services

 (585) 475-2444, libarts@rit.eduThis minor provides students with an opportunity to study the American arts in a variety of disciplines, including painting, architecture, film, photography, music, theatre, and the mass media. Course present American art within the context of the broader current of American life, including its history, philosophy, social, and cultural traditions.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose five courses from the following:* |  |
| Visual culture |  |
| FNRT-206 | Queer Looks |
| FNRT-370 | American Painting |
| FNRT-371 | African-American Art |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American Film Since the Sixties |
| FNRT-374 | Art in the Age of the New Deal |
| FNRT-377 | Imag(in)ing Rochester |
| FNRT-378 | Memory, Memorials, and Monuments |
| FNRT-383 | Traumatic Images |
| FNRT-384 | Art of Dying |
| Performing arts |  |
| FNRT-201 | Music in the U.S. |
| FNRT-203 | American Popular and Rock Music |
| FNRT-322 | Survey of Jazz |
| FNRT-323 | Survey of African-American Music |
| FNRT-324 | Sounds of Protest |
| FNRT-325 | American Popular Song |
| FNRT-327 | American Musical Theatre |
| Literature |  |
| ENGL-411 | Topics in American Literature |
| ENGL-412 | American Studies |
| ENGL-413 | African-American Literature |
| * Students must take at least one course in each of the three disciplines. |  |

## American Politics

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The purpose of the American politics minor is to study the basic principles and institutions of the American political order and their implications for current political practice. The strengths and limitations of American constitutionalism are emphasized throughout and contemporary political and policy questions facing the country are examined. This minor is closed to students majoring in political science.

| COURSE |  |
| :--- | :--- |
| Required Courses | American Politics |
| POLS-110 |  |
| Electives | Ethical Debates in American Politics |
| Choose four of the following:* |  |
| POLS-115 | Law and Society |
| POLS-200 | State and Local Politics |
| POLS-250 | Politics and the Life Sciences |
| POLS-290 | Cyberpolitics |
| POLS-295 | Rhetoric and Poltical Development |
| POLS-300 | Political Parties and Voting |
| POLS-305 | The Congress |
| POLS-310 | American Foreign Policy |
| POLS-320 | The American Presidency |
| POLS-325 | Politics and Public Policy |
| POLS-345 | Political Leadership |
| POLS-355 | Evolution and Law |
| POLS-415 | Primate Politics |
| POLS-420 | Constitutional Law |
| POLS-425 | Constitutional Rights and Liberties |
| POLS-430 | American Political Thought |
| POLS-435 | Classical Constitutionalism, Liberty, and Equality |
| POLS-460 | Modern Constitutionalism, Liberty, and Equality |
| POLS-465 | Women in Politics |
| POLS-480 | Politics Through Fiction |
| POLS-485 | Politics Through Film |
| POLS-490 | Special Topics in Political Science |
| POLS-525 | Pare |

* At least two courses must be at the 300 level or higher.


## American Sign Language and Deaf Cultural Studies

## Matt Searls, Minor Adviser <br> (585) 286-4657, jmsdhd@rit.edu

## Sandra Bradley, Minor Adviser

## (585) 286-5149, spbnss@ntid.rit.edu

The American Sign Language and deaf cultural studies minor prepares students in the multidisciplinary study of American Sign Language and deaf culture. The minor is open to hearing and deaf students enrolled in all bachelor's degree programs. Courses in the minor address topics in the field of ASL and DCS including the study of ASL and its structure, ASL literature, literature in English pertaining to the D/deaf experience, the history of D/deaf people in America and around the world, Deaf art and cinema, the experience of $D /$ deaf people from racial, ethnic, and other minority groups, oppression in the lives $\mathrm{D} /$ deaf people, and various political, legal, and educational issues affecting members of the $\mathrm{D} /$ deaf community. The minor complements majors in fields such as business, imaging arts and sciences, health sciences, policy studies, professional and technical communication, psychology, and numerous scientific and technical fields.

| COURSE |  |
| :---: | :---: |
| Required Courses |  |
| Option 1: For students who are not proficient in ASL: |  |
| MLAS-201 | Beginning American Sign Language I |
| MLAS-202 | Beginning American Sign Language II |
| Option 2: For students who are proficient in ASL, choose one of the following: |  |
| MLAS-351 | Linguistics of American Sign Language |
| MLAS-352 | American Sign Language Literature |
| Electives |  |
| Choose three or four of the following courses*: |  |
| Language courses: |  |
| MLAS-301 | Intermediate Sign Language I |
| MLAS-302 | Intermediate Sign Language II |
| MLAS-351 | Linguistics of American Sign Language |
| MLAS-352 | American Sign Language Literature |
| MLAS-401 | Advanced American Sign Language I |
| MLAS-402 | Advanced American Sign Language II |
| Deaf cultural studies courses: |  |
| ENGL-343 | Global Deaf Literature |
| ENGL-417 | Deaf Literature |
| FNRT-440 | Deaf Art and Cinema |
| HIST-230 | American Deaf History |
| HIST-231 | Deaf People in Global Perspective |
| HIST-330 | Deaf People and Technology |
| HIST-333 | Diversity in the Deaf Community |
| HIST-334 | Oppression in the Lives of Deaf People |
| HIST-335 | Women and the Deaf Community |
| HIST-430 | Deaf Spaces |
| HIST-431 | Theory and Methods of Deaf Geographic |
| SOCI-240 | Deaf Culture in America |
| * Students who wish to focus their studies on ASL should choose two language courses. Students who wish to focus on Deaf Cultural Studies should choose three or four DCS courses depending on their proficiency in ASL. Students who prefer a balance of ASL and DCS courses may freely distribute their electives across ASL and DCS in a manner consistent with their ASL proficiency and course prerequisites. |  |

## Anthropology and Sociology

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The minor in anthropology and sociology offers disciplinary insights on understanding human social life, both from local and global perspectives. Through anthropology we discover and appreciate the diversity of other cultural systems on a global scale and through sociology we discover how our own lives are influenced by social relationships around us. Careful selection of courses provides insights into a wide range of topics such as human history and prehistory through archaeology, gender and sexuality, race, ethnicity, social class, inequality, health, urban life and cities, cultural images and mass media, war and violence, social movements, social and cultural change, and globalization. This minor is closed to students majoring in sociology and anthropology.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| Choose one of the following: |  |
| ANTH-102 | Cultural Anthropology |
| ANTH-102H | Honors Cultural Anthropology |
| ANTH-103 | Archaeology and the Human Past |
| ANTH-104 | Language and Linguistics |
| INGS-101 | Global Studies |
| SOCI-102 | Houndations of Sociology |
| SOCI-102H |  |
| Electives | Ethnographic Imagination: Writing about Society and Culture |
| Choose four of the following:* |  |
| ANTH-201 | Culture and Globalization |
| ANTH-210 | Field Methods in Archaeology |
| ANTH-215 | Language and Culture: Linguistic Anthropology |
| ANTH-220 | Globalizing Africa |
| ANTH-225 | Archaeology and Cultural Imagination |
| ANTH-230 | Immigration to the U.S. |
| ANTH-235 | Muslim Youth Cultures |
| ANTH-240 | Ritual and Performance |
| ANTH-245 | Themes in Archaeological Research |
| ANTH-250 | Regional Archaeology |
| ANTH-255 | Native North Americans |
| ANTH-260 |  |


| COURSE |  |
| :---: | :---: |
| ANTH-265 | Native Americans in Film |
| ANTH-270/INGS-270 | Cuisine, Culture, and Power |
| ANTH-275 | Global Islam |
| ANTH-280 | Sustainable Development |
| ANTH-285 | American Indian Languages |
| ANTH-290 | Language and Sexuality |
| ANTH-301 | Social and Cultural Theory |
| ANTH-302 | Qualitative Research |
| ANTH-303 | Quantitative Research |
| ANTH-305 | Comparative and Historical Linguistics |
| ANTH-310 | Popular Cultures in the Global South |
| ANTH-312 | People Before Cities |
| ANTH-315 | The Archaeology of Cities |
| ANTH-325 | Bodies and Culture |
| ANTH-328 | Hertitage and Tourism |
| ANTH-330 | Cultural Images of War and Terror |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-340 | Divided Europe |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-350 | The Global Economy and the Grassroots |
| ANTH-360 | Humans and Their Environment |
| ANTH-365 | Culture and Politics in the Middle East |
| ANTH-370 | Media and Globalization |
| ANTH-375 | Native American Cultural Resources and Rights |
| ANTH-380 | Nationalism and Identity |
| ANTH-385 | Anthropology and History |
| ANTH-390 | Marxist Perspectives |
| ANTH-410 | Global Cities |
| ANTH-415 | Archaeological Science |
| ANTH-420 | Exploring Ancient Technology |
| ANTH-425 | Global Sexualities |
| ANTH-430 | Visual Anthropology |
| ANTH-435 | The Archaeology of Death |
| ANTH-451 | Economics of Women and the Family |
| ANTH-455 | Economics of Native America |
| SOCI-103 | The Urban Experience |
| SOCI-201 | Ethnographic Imagination: Writing about Society and Culture |
| SOCI-210 | African-American Culture |
| SOCI-215 | The Changing Family |
| SOCI-220 | Minority Group Relations |
| SOCI-225 | Social Inequality |
| SOCI-230 | Sociology of Work |
| SOCI-235 | Women, Work, and Culture |
| SOCI-240 | Deaf Culture in America |
| SOCI-245 | Gender and Health |
| SOCI-250 | Globalization and Security |
| SOCI-255 | Disaster, Public Health Crises, and Global Responses |
| SOCI-301 | Social and Cultural Theory |
| SOCI-303 | Qualitative Research |
| SOCI-302 | Quantitative Research |
| SOCI-310 | U.S. Housing Policy |
| SOCI-315 | Global Exiles of War and Terror |
| SOCI-320 | Population and Society |
| SOCI-325 | Community and Economic Development: Rochester |
| SOCI-330 | Urban (In)Justice |
| SOCI-335 | Urban Cultures |
| SOCI-340 | Urban Planning and Policy |
| SOCI-345 | Urban Poverty |
| SOCI-410 | Diversity in the City |
| SOCI-451 | Economics of Women and the Family |
| INGS-201 | Histories of Globalization |
| INGS-210 | Culture and Politics in Urban Africa |
| INGS-270 | Cuisine, Culture and Power |
| INGS-310 | Global Slavery and Human Trafficking |
| INGS-451 | Economics of Women and the Family |
| INGS-455 | Economics of Native America |

* At least two courses must be at the 300 level or higher.


## Applied Statistics

## Bernard Brooks, Minor Adviser <br> (585) 475-5138, bpbsma@rit.edu

The statistics minor provides an opportunity for students to deepen their technical background and gain further appreciation for modern mathematical sciences and the use of statistics as an analytical tool. The minor is closed to students majoring in applied statistics and actuarial sciences.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Project-based Calculus I |
| MATH-181 | Project-based Calculus II |
| MATH-182 |  |
| Electives | Probability and Statistics I |
| Choose five of the following: | Probability and Statistics II |
| MATH-251 | Stochastic Processes |
| MATH-252 | Biostatistics |
| MATH-401 | Applied Statistics |
| MATH-655 | Probability and Statisitics for Engineers I |
| STAT-205 | Probability and Statistics for Engineers II |
| STAT-251 | Statistical Analysis |
| STAT-252 | Introduction to Regression Analysis |
| STAT-295 | Statistical Quality Control |
| STAT-305 | Design of Experiments |
| STAT-315 | Introduction to Time Series |
| STAT-325 | Nonparametric Statistics |
| STAT-335 | Mathematical Statistics I |
| STAT-345 | Mathematical Statistics II |
| STAT-405 | Statistical Sampling |
| STAT-406 |  |
| STAT-415 |  |

## Archaeological Science

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

Archaeology is the study of the human past, principally by means of the physical residue of past human behavior. Archaeological science is the application of techniques from the physical sciences to research problems in archaeology and related disciplines. Over the past six decades archaeological science has provided powerful tools for understanding the past, ranging from absolute dating to bone chemistry. It has become an established sub-field within the discipline of archaeology, which itself has grown during the same period from a discipline largely focused on cultural history (the use of artifacts to reconstruct regional cultural sequences) and the validation of documentary history to the explanation of the processes of cultural change in the past. This minor is closed to students majoring in sociology and anthropology who have chosen the archaeology or cultural anthropology tracks.

## COURSE

ANTH-415 Archaeological Science

## Electives

Choose three of the following:*

| Disciplinary |  |
| :--- | :--- |
| ANTH-103 | Archaeology and the Human Past |
| ANTH-230 | Archaeology and Cultural Imagination |
| ANTH-250 | Themes in Archaeological Research |
| ANTH-255 | Regional Archaeology |
| ANTH-312 | Archaeology of Cities |
| ANTH-315 | Heritage and Tourism |
| ANTH-328 |  |
| Applied/Laboratory | Field Methods in Archaeology |
| ANTH-215 | Humans and Their Environment |
| ANTH-360 | Native American Cultural Resources and Rights |
| ANTH-375 | Exploring Ancient Technology |
| ANTH-420 | Archaeology of Death |
| ANTH-435 |  |

* At least one course must be selected from each group and at least one course must be 300-level or higher.


## Art History

## Sarah Thompson, Minor Adviser

## (585) 475-4459, setfaa@rit.edu

In the art history minor students explore the history of art, architecture, craft, design, photography, and aesthetic theory across multiple cultures, eras, and intellectual perspectives. Art historians examine a society's artistic production, analyzing form, content, and process to better understand how art expresses meaning within specific cultural contexts. Students completing this minor will be able to use art historical and related methodologies to evaluate works of art, formulate a history of artistic styles, analyze art in relation to its historical setting, and engage with the world of contemporary art. The minor's emphasis on writing and critical thinking complements any academic program while the inclusion of visual analysis, historical context, and theoretical approaches to artistic production make this a useful addition for students seeking careers in areas such as the fine arts, education, design, communication, game design, museum and gallery work, or digital humanities.

## COURSE

## Prerequisites

| ARTH-135 |
| :--- |
| ARTH-136 |

Survey of Western Art and Architecture: Ancient to Medieval Survey of Western Art and Architecture: Renaissance to Modern

Choose five of the following:

| ARTH-221 | Contemporary Design Issues |
| :---: | :---: |
| ARTH-311 | Art of Italy: 1250-1400 |
| ARTH-312 | Art and Architecture of Italy: 1600-1750 |
| ARTH-317 | Art and Architecture in Florence and Rome: 15th Century |
| ARTH-318 | Art and Architecture in Florence and Rome: 16th Century |
| ARTH-345 | History of Architecture, Interiors, and Furniture I |
| ARTH-346 | History of Architecture, Interiors, and Furniture II |
| ARTH-364 | Art in Paris: Monuments, Museums, Modernity |
| ARTH-366 | 18th and 19th Century Art |
| ARTH-368 | 20th Century Art: 1900-1950 |
| ARTH-369 | 20th Century Art: Since 1950 |
| ARTH-373 | Art of the Last Decade |
| ARTH-378 | Baroque Painting in Flanders |
| ARTH-379 | Renaissance Painting in Flanders |
| ARTH-457 | Art and Activism |
| ARTH-392 | Theory and Criticism of 20th Century Art |
| ARTH-521 | The Image |
| ARTH-541 | Art and Architecture of Ancient Rome |
| ARTH-544 | Illuminated Manuscripts |
| ARTH-550 | Topics in Art History |
| ARTH-554 | Late Medieval Art |
| ARTH-558 | The Gothic Revival |
| ARTH-561 | Latin American Art |
| ARTH-563 | Modern Architecture |
| ARTH-566 | Early Medieval Art |
| ARTH-568 | Art and Technology: From the Machine Aesthetic to the Cyborg Age |
| ARTH-572 | Art of the Americas |
| ARTH-573 | Conceptual Art |
| ARTH-574 | Dada and Surrealism |
| ARTH-576 | Modernism and Its Other |
| ARTH-577 | Displaying Gender |
| ARTH-578 | Edvard Munch |
| ARTH-581 | Realism and the Avant- Garde in Russian Art |
| ARTH-582 | Medieval Craft |
| ARTH-583 | Installation Art |
| ARTH-584 | Scandinavian Modernism |
| ARTH-586 | History of Things: Studies in Material Culture |
| DDDD-302 | History of Digital Graphics |
| GRDE-205 | History of Graphic Design |
| GRDE-322 | Women Pioneers in Graphic Design |
| GRDE-326 | 20th Century Editorial Design History |
| IDDE-221 | History of Industrial Design |
| IDDE-223 | History of Modern Furniture |
| PHAR-211 | History and Aesthetics of Photography I |
| PHAR-212 | History and Aesthetics of Photography II |
| PHIL-303 | Philosophy of Art and Aesthetics |
| PHIL-313 | Philosophy of Film |
| PHIL-314 | Philosophy of Vision |

## Astronomy

## Andrew Robinson, Minor Adviser <br> (585) 475-2726, axrsps@rit.edu

Astronomy is an interdisciplinary minor offered jointly by the department of physics in the College of Science and the Chester F. Carlson Center for Imaging Science. Students have the opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| MATH-181 | Project-based Calculus I |
| MATH-182 | Project-based Calculus II |
| PHYS-211 | University Physics I |
| PHYS-212 | University Physics II |
| PHYS-213 | Modern Physics I |
| Required Courses |  |
| PHYS-220 |  |
| Astrophysics |  |
| Choose one of the following: |  |
| PHYS-370 | Stellar Astrophysics |
| PHYS-371 | Galactic Astrophysics |
| PHYS-372 | Extragalactic Astrophysics and Cosmology |
| Experimental |  |
| Chooseone ofthe following: |  |
| PHYS-373 | Observational Astronomy |
| IMGS-461 | Multi-wavelength Astronomical Imaging |
| IMGS-528 | Design and Fabrication of a Solid State Camera |
| Electives |  |
| Choose two of the following: |  |
| PHYS-370 | Stellar Astrophysics |
| PHYS-371 | Galactic Astrophysics |
| PHYS-372 | Extragalactic Astrophysics and Cosmology |
| PHYS-373 | Observational Astronomy |
| IMGS-461 | Multi-wavelength Astronomical Imaging |
| IMGS-528 | Design and Fabrication of a Solid State Camera |
| IMGS-361 | Image Processing and Computer Vision I |
| IMGS-362 | Image Processing and Computer Vision II |
| IMGS-451 | Imaging Detectors |
| PHYS-493 | Astrophysics Research |

## Bioinformatics Analysis

## Michael Osier, Minor Adviser

## (585) 475-4392, mvoscl@rit.edu

The bioinformatics analysis minor immerses students in the core challenges and strengths of the field of bioinformatics, as well as the ethical issues involved. Students gain hands-on experience implementing some of the core algorithms utilized by professionals in the field. This minor is closed to students majoring in bioinformatics.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| BIOL-130 | Introduction to Bioinformatics |
| BIOL-330 | Bioinformatics |
| BIOL-425 | Ethics in Bioinformatics |
| Electives |  |
| Choose two of the following |  |
| BIOL-230 | Bioinformatics Languages |
| BIOL-430 | Bioinformatics Algorithms |
| BIOL-494 | Molecular Modeling and Proteomics |
| BIOL-635 | Bioinformatics Seminar |

## Biology: Cellular and Molecular

## Rosanne Klingler, Academic Adviser <br> (585) 475-4765, rkssbi@rit.edu

The biology: cellular and molecular minor provides students with opportunities to experience and explore topics related to both the cellular and molecular aspects of modern biology to broaden and enhance their educational experience. This minor is closed to students majoring in biology, biochemistry, bioinformatics, biomedical sciences, and biotechnology and molecular bioscience.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| Choose one of the following sequences: |  |
| BIOL-101, 102, 103, 104 | General Biology I, Il and Labs |
| BIOL-121, 122 | Introduction to Biology I, II |
| Required Course |  |
| BIOL-201 | Cellular and Molecular Biology |
| Electives* |  |
| Elective choices should total a |  |
| BIOL-204 | Inimum of 11 credit hours |
| BIOL-218 | Biology of Plants |
| BIOL-265 | Evolutionary Biology |
| BIOL-305 | Plants, Medicine, and Technology |
| BIOL-306 | Food Microbiology |
| BIOL-307 | Microbiology of Wastewater |
| BIOL-308 | Biology of Cancer |
| BIOL-310 | Bioenergy: Microbial Production |
| BIOL-314 | Tissue Culture |
| BIOL-321 | Genetics |
| BIOL-322 | Developmental Biology |
| BIOL-325 | Bioinformatic Analysis of Macromolecules |
| BIOL-340 | Genomics |
| BIOL-341 | Synthetic Biology |
| BIOL-375 | Advanced Immunology |
| BIOL-380 | Bioremediation |
| BIOL-401 | Biological Separations: Principles and Practices |
| BIOL-403 | Principles of Plant Biochemistry and Pathology |
| BIOL-415 | Virology |
| BIOL-416 | Plant Biotechnology |
| BIOL-418 | Bacterial Host Interactions |
| BIOL-420 |  |
| BIOL-450 |  |

[^6]
## Biology: Ecology and Evolution

## Rosanne Klingler, Academic Adviser (585) 475-4765, rkssbi@rit.edu

The biology: ecology and evolution minor provides students with the opportunity to experience both the ecological and evolutionary underpinnings of modern biology. The minor explores these areas of biology through laboratory and field experiences. The minor is closed to students majoring in biology or enrolled in the biology concentration of the environmental science major.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| Choose one of the following sequences: |  |
| BIOL-101, 102, 103, 104 | General Biology I, Il and Labs |
| BIOL-121, 122 | Introduction to Biology I, II |
| Required Course |  |
| Choose one of the following: |  |
| BIOL-240 | General Ecology |
| BIOL-265 | Evolutionary Biology |
| Electives* |  |
| Elective choices should total a |  |
| BIOL-205 | Aninimam of 11 credit hours |
| BIOL-207 | Galapagos: Ecology and Evolution |
| BIOL-211 | Invertebrate Zoology |
| BIOL-212 | Vertebrate Zoology |
| BIOL-218 | Biology of Plants |
| BIOL-290 | Vertebrate Evolution |
| BIOL-293 | Evolution and Creationism |
| BIOL-309 | Comparative Vertebrate Anatomy |
| BIOL-313 | Comparative Animal Physiology |
| BIOL-343 | Tropical Ecology |
| BIOL-365 | Population Genetics |
| BIOL-371 | Freshwater Ecology |
| BIOL-385 | Seneca Park Zoo Internship |
| BIOL-455 | Biogeography |
| BIOL-473 | Marine Biology |
| BIOL-475 | Conservation Biology |
|  |  |

*Two courses must be 300 -level or above.

## Business Administration

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

This minor is appropriate for undergraduate students interested in broad exposure to the world of business. Undergraduate students interested in pursuing an MBA degree may use this minor to fulfill certain MBA bridge courses. This minor is closed to students majoring in business.

## COURSE

Required Courses

| Required Courses |  |
| :--- | :--- |
| Choose three of the following |  |
| ACCT-110 | Financial Accounting |
| BLEG-200 | Business Law I |
| DECS-310 | Operations Management |
| INTB-225 | Global Business Environment |
| MGMT-215 | Organizational Behavior |
| MKTG-230 | Principles of Marketing |
| FINC-120* | Personal Financial Management* |
| FINC-220* | Financial Management* |
| Electives |  |

Choose two electives from courses within Saunders College of Business.

* Student may choose only one of the finance courses.


## Chemical Engineering Systems Analysis

## Steven Weinstein, Minor Adviser

## (585) 475-4299, steven.weinstein@rit.edu

The minor in chemical engineering systems analysis provides students with a sophisticated understanding of the application of scientific knowledge to the solution of a vast array of practical problems in which chemistry plays a critical role. Students are taught the systems methodology that chemical engineers employ to analyze and solve real world problems involving distinct chemical components, chemical reaction, multiple phases, and mass transfer.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| CHME-230 | Chemical Process Analysis |
| CHME-330 | Mass Transfer Operations |
| CHME-340 | Reaction Engineering |
| Electives |  |
| Choose two courses from the following groups: |  |
| Alternate energy systems |  |
| CHEM-201 | Clean Energy: Hydrogen Fuel Cells |
| MECE-529 | Renewable Energy Systems |
| Advanced materials |  |
| CHMA-222 | Chemical Separations |
| CHME-350 | Multiple Scale Material Science |
| CHME-421 | Interfacial Phenomena |
| CHMG-201 | Introduction to Organic Polymer Technology |
| CHMP-751 | Colloid and Interface Science |
| MECE-557 | Applied Biomaterials |
| Biomedical |  |
| BIME-200 | Introduction to Musculoskeletal Biomechanics |
| BIME-370 | Introduction to Biomaterials Science |
| MECE-358 | Contemporary Issues in Bioengineering |
| MECE-407 | Biomedical Device Engineering |
| Chemical |  |
| CHME-310 | Applied Thermodynamics |
| CHME-320 | Continuum Mechanics I |
| CHME-431 | Advanced Separation Processes |
| Environmental |  |
| ISEE-787 | Design for the Environment |
| MECE-357 | Contemporary Issues in Energy and the Environment |
| Semiconductor Processing |  |
| MCEE-201 | IC Technology |
| MCEE-503 | Thin Films |
| MCEE-505 | Lithography Materials and Processes |

## Chemistry

## Brenda Mastrangelo, Academic Adviser

 (585) 475-7474, bkmsch@rit.eduStudents have the opportunity to complete a minor in chemistry in order to build a secondary area of expertise in support of their major or other areas of interest.

## COURSE

| Prerequisites |  |
| :--- | :--- |
| CHMG-141 | General and Analytical Chemistry I |
| CHMG-145 | Chemical Principles I Laboratory |
| CHMG-142 | General and Analytical Chemistry II |
| CHMG-146 | Chemical Principles II Laboratory |
| Required Courses |  |
| CHMO-231 | Organic Chemistry I |
| CHMO-235 | Organic Chemistry I Lab |
| CHMO-232 | Organic Chemistry II |
| CHMO-236 | Organic Chemistry II Lab |
| Electives |  |
| Choose three of the following:* |  |
| CHMO-637 | Advanced Organic Chemistry |
| CHMO-636 | Spec. ID of Organic Compounds |
| CHMO-739 | Advanced Physical Organic Chemistry |
| CHMO-710 | Literature Explorations in Organic Synthesis |
| CHMA-161 | Quantitative Analysis |


| COURSE |  |
| :--- | :--- |
| CHMA-165 | Analytical Methods Lab |
| CHMA-221 | Instrumental Analysis |
| CHMA-222 | Chemical Separations |
| CHMA-711 | Advanced Instrumental Analysis |
| CHMB-402 | Biochemistry I |
| CHMB-403 | Biochemistry II |
| CHMB-540 | Biochemistry of Infectious Diseases |
| CHMB-610 | Advanced Protein Biochemistry |
| CHMI-351 | Inorganic Chemistry I |
| CHMI-352 | Inorganic Chemistry II |
| CHMP-441 | Physical Chemistry I |
| CHMP-442 | Physical Chemistry II |
| CHMP-752 | Molecular Photophysics and Photochemistry |
| CHMP-753 | Computational Chemistry |
| CHPO-706 | Polymer Chemistry I |
| CHPO-707 | Polymer Chemistry II |
| CHMA-621 | Advanced Instrumental Analysis Lab |
| CHMB-405 | Biochemistry Experimental Techniques |
| CHMI-565 | Preparative Inorganic Chemistry Lab |
| CHPO-708 | Polymer Synthesis and Characterization Lab |

* At least one course must be 400-level or above.


## Communication

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The communication minor offers students a foundation in human communication theories, research, and skills. Students select courses in mass media analysis, communication in professional and organizational contexts, communication skills, and critical reflection of and on communication in society. This minor is closed to students majoring in communication.

| COURSE |  |
| :--- | :--- |
| Required Course: | Human Communication |
| COMM-101 |  |
| Electives | Public Speaking |
| Choose four of the following: |  |
| COMM-201 | Mass Communications |
| COMM-202 | Interpersonal Communication |
| COMM-302 | Small Group Communication |
| COMM-303 | Intercultural Communication |
| COMM-304 | Persuasion |
| COMM-305 | Visual Communication |
| COMM-341 | Communication Law and Ethics |
| COMM-342 | Technology-Mediated Communication |
| COMM-343 | Health Communication |
| COMM-344 | Ethics in Technical Communication |
| COMM-345 | Professional Writing |
| COMM-442 | Advanced Public Speaking |
| COMM-503 |  |

## Computer Engineering

## Roy Melton, Minor Adviser

## (585) 475-7698, rwmeec@rit.edu

The computer engineering minor provides students with a foundation in digital systems design, computer organization, and low-level programming. Students build on this foundation through elective courses in the areas of hardware design, architectures, networks, and systems. The minor is closed to students majoring in computer engineering, computer engineering technology, electrical engineering technology, or telecommunications engineering technology.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Computer Science I (or equivalent) |
| CSCl-141 |  |
| Plus one of the following: | Project-based Calculus I |
| MATH-181 | Calculus B |
| MATH-172 | Discrete Mathematics for Computing |
| MATH-190 |  |
| Required Courses | Digital System Design I |
| CMPE-160 | Assembly Language |
| CMPE-250 | Computer Organization |
| CMPE-350 |  |
| Electives |  |
| Choose two of the following: |  |
| CMPE-260 | Digital System Design II |
| CMPE-380 | Applied Programming |
| CMPE-460 | Interface and Digital Electronics |
| CMPE-480 | Digital Signal Processing |
| CMPE-530 | Digital IC Design |
| CMPE-550 | Computer Architecture |
| CMPE-540 | Control Systems |
| CMPE-570 | Data and Communication Networks |
| CMPE-755 | High Performance Architectures |
| CMPE-660 | Reconfigurable Computing |
| CMPE-663 | Real Time and Embedded Systems |
| CMPE-770 | Wireless Networks |
| CMPE-730 | Advanced Digital IC Design |
| CMPE-655 | Multiple Processor Systems |

## Computer Science

## Henry A. Etlinger, Minor Adviser

## (585) 475-2097, hae@cs.rit.edu

The computer science minor allows students to explore an in-depth study of programming or to sample selected theoretical or applied areas within the computer science field. At least two of the four electives must have course numbers of 300 or higher and students with the proper prerequisites may use graduate-level computer science courses toward the minor. This minor is closed to students majoring in computer science.

| COURSE |  |
| :---: | :---: |
| Prerequisites |  |
| CSCI-141, 142 | Computer Science I, II* |
| MATH-181, 182 | Project-based Calculus I, II $\dagger$ |
| Choose one of the following: |  |
| MATH-190 | Discrete Mathematics for Computing |
| MATH-200 | Discrete Mathematics and Introduction to Proof |
| MATH-131 | Discrete Mathematics |
| Required Course |  |
| CSCI-243 | The Mechanics of Programming |
| Electives |  |
| Choose four of the following:§ |  |
| CSCI-250 | Concepts of Computer Systems |
| CSCI-251 | Concepts of Parallel and Distributed Systems |
| CSCI-261 | Analysis of Algorithms |
| CSCI-262 | Introduction to Computer Science Theory |
| CSCI-263 | Honors Introduction to Computer Science Theory |
| CSCI-320 | Principles of Data Management |
| CSCI-331 | Introduction to Intelligent Systems |
| CSCI-344 | Programming Language Concepts |
| CSCI-351 | Data Communications and Networks I |
| CSCI-352 | Operating Systems |
| CSCl-420 | Principles of Data Mining |
| CSCl-431 | Introduction to Computer Vision |
| CSCl-452 | System Programming |
| CSCI-453 | Computer Architecture |
| CSCI-455 | Principles of Computer Security |
| CSCI-462 | Introduction to Cryptography |
| CSCI-464 | Xtreme Theory |
| CSCI-510 | Introduction to Computer Graphics |
| CSCl-519 | Seminar in Computer Graphics |
| CSCI-529 | Seminar in Data Management |
| CSCI-531 | Introduction to Security Measurement |
| CSCI-532 | Introduction to Intelligent Security Systems |
| CSCI-539 | Seminar in Intelligent Systems |
| CSCI-541 | Programming Skills |
| CSCI-549 | Seminar in Languages and Tools |
| CSCI-559 | Seminar in Systems |
| CSCI-569 | Seminar in Theory |
| CSCI-599 | Computer Science Undergraduate Independent Study |

* Students may also fulfill the prerequisite requirement with an equivalent two-course introductory programming sequence.
† Students may also fulfill the prerequisite requirement with an equivalent two-course calculus sequence. $\ddagger$ Students may also choose the equivalent of one discrete mathematics course.
§ Courses numbered CSCI-600 or higher may also be selected


## Computing Security

## Bo Yuan, Chair

(585) 475-4468, bo.yuan@rit.edu

With the prevalence of mobile computing, the advantages of cloud computing, the ubiquity of computing in general, and the issues of securing "big data" caused by the world-wide explosion of eBusiness and eCommerce today, secure computing environments and appropriate information management have become critical issues to all sizes and types of organizations. Therefore, there is a vital and growing need for all computing professionals to have a foundation in the issues critical to information security and how they apply to their specific disciplines. The minor consists of two required courses and three electives chosen by the student from the computing security advanced course clusters. There are many elective course choices to provide flexibility. Therefore, the minor provides any computing major outside of the computing security degree program with basic knowledge of the issues and technologies associated with computing security and allows students the opportunity to select a set of security electives that are complementary to their majors. Before beginning the minor in students must possess prerequisite knowledge that can be obtained from various programming sequences and courses in calculus and discrete math.

| COURSE |  |
| :--- | :--- |
| Required Courses | Fundamentals of Computing Security |
| CSEC-101 |  |
| Plus one of the following: | Cryptography and Authentication |
| CSEC-362 | Introduction to Cryptography |
| CSCl-462 |  |
| Electives | Computer System Security |
| Choose three of the following | Network Security and Forensics |
| CSEC-461 | Sensor Network Security |
| CSEC-462 | Network and System Security Audits |
| CSEC-463 | Introduction to Malware |
| CSEC-465 | Mobile Device Security and Forensics |
| CSEC-466 | Risk Management for Information Security |
| CSEC-467 | Covert Communications |
| CSEC-468 | Penetration Testing |
| CSEC-470 | Cyber Defense Techniques |
| CSEC-471 | Unix Based System Forensics |
| CSEC-473 | Windows System Forensics |
| CSEC-474 | Malware Reverse Engineering |
| CSEC-475 | Disaster Recovery Planning |
| CSEC-476 | Advanced Mobile Device Forensics |
| CSEC-477 | Advanced Mobile Device Security |
| CSEC-478 | Principles of Computer Security |
| CSEC-479 | Xtreme Theory |
| CSCl-455 | Introduction to Security Measurement |
| CSCI-464 | Introduction to Intelligent Security Systems |
| CSCl-531 | Engineering Secure Software |
| CSCl-532 | Hardware/Software Co-Design for Cryptographic Applications |
| SWEN-331 |  |
| SWEN-467 |  |

## Construction Management

Todd Dunn, Minor Adviser

## (585) 475-2900, gtdite@rit.edu

The construction management minor broadens the learning experiences and professional opportunities of students who have an interest in building construction, bid development, management of construction projects after a successful bid, and the business, management, and technical aspects related to construction.

## COURSE

Required Courses

| CVET-170 | Elements of Building Construction |
| :--- | :--- |
| CVET-461 | Construction Cost Estimating I |
| CVET-462 | Construction Project Management |
| Electives |  |
| Choose two of the following: |  |
| CVET-423 | GIS for CETEMS |
| CVET-464 | Construction Planning, Scheduling, and Control |
| CVET-465 | Contracts and Specifications |
| CVET-505 | Sustainable Building Design and Construction |
| ESHS-225 | Construction Safety |

## Creative Writing

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The creative writing minor's series of courses offers students a practical, theoretical, and historical understanding of the art and craft of writing nonfiction and fiction prose and poetry, as well as experimenting in digital storytelling and interactive media. The minor encourages students to use those skills and insights for interdisciplinary projects and the enrichment of their careers and personal lives. Students choose either five creative writing courses or four creative writing courses and one literature course.

## COURSE

Electives

| Creative writing courses |  |
| :--- | :--- |
| ENGL-211 | Introduction to Creative Writing |
| ENGL-376 | Experimental Writing |
| ENGL-386 | World Building Workshop |
| ENGL-389 | Digital Creative Writing Workshop |
| ENGL-390 | Creative Writing Workshop |
| ENGL-490 | Advanced Creative Writing Workshop |
| ENGL-511 | Advanced Topics in Creative Writing |
| ENGL-543 | Game-Based Fiction Workshop |
| Literature courses |  |
| ENGL-216 | Literature from Around the World |
| ENGL-307 | Mythology and Literature |
| ENGL-308 | Shakespeare: Drama |
| ENGL-309 | Topics in Literary Forms |
| ENGL-315 | Digital Literature |
| ENGL-316 | Global Literature |
| ENGL-318 | Popular Literature |
| ENGL-320 | Genre Fiction |
| ENGL-373 | Media Adaptation |
| ENGL-374 | Games and Literature |
| ENGL-375 | Storytelling Across Media |
| ENGL-391 | Dangerous Texts |
| ENGL-400 | Special Topics in Literary and Cultural Studies |
| ENGL-414 | Topics in Women's and Gender Studies |
| ENGL-418 | Great Authors |
| ENGL-419 | Literature and Technology |
| ENGL-422 | Maps, Spaces, and Places |
| ENGL-450 | Free and Open Source Culture |
|  |  |

## Criminal Justice

## College of Liberal Arts, Office of Student Services <br> (585) 475-2444, libarts@rit.edu

The criminal justice minor provides a foundation in the formal process of social control through the criminal justice system, how behavior is defined as criminal, how crime is measured, and how society responds to crime. This minor is closed to students majoring in criminal justice.

| COURSE |  |
| :--- | :--- |
| Required Courses | Introduction to Criminal Justice |
| CRIM-110 |  |
| Electives | Technology in Criminal Justice |
| Choose four of the following: |  |
| CRIM-210 | Corrections |
| CRIM-220 | Juvenile Justice |
| CRIM-230 | Law Enforcement in Society |
| CRIM-240 | Courts |
| CRIM-260 | Crime and Violence |
| CRIM-275 | Minority Groups in the Criminal Justice System |
| CRIM-285 | Major Issues in Criminal Justice |
| CRIM-489 |  |

## Database Design and Development

## Edward Holden, Minor Adviser

## (585) 475-5361, edward.holden@rit.edu

The database design and development minor provides a cohesive set of courses that elevates students from a foundational level to advanced knowledge of database systems and the database development process. Students learn the basics of data modeling, the relational model, normalization, and Structured Query Language (SQL). Students also learn the skills needed to effectively capture requirements, compose data models that accurately reflect those requirements, develop programs that establish lines of communication with back-end databases, build and manage large databases, and learn methods for designing and developing data warehouses.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| Course work in discrete mathematics and a three-course sequence in programming. |  |
| Required Courses |  |
| ISTE-430 | Information Requirements Modeling |
| ISTE-330 | Database Connectivity and Access |
| ISTE-436 | Data Management and Access |
| ISTE-230 | Introduction to Databases and Data Modeling |
| Choose one of the following: |  |
| ISTE-432 | Database Application Development |
| ISTE-434 | Data Warehousing |

## Digital Business

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

Digital business represents the impact of new technologies on business practice, products, and services. Today, social computing and mobile devices are dramatically changing the behaviors and characteristics that lead individuals and organizations to success. Through this minor students enhance their major with a focus on these new technologies and their application in business.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| MGIS-360 | Building a Web Business |
| Electives |  |
| Choose four of the following: |  |
| MGMT-360 | Digital Entrepreneurship |
| MKTG-230 | Principles of Marketing |
| MKTG-320 | Internet Marketing |
| MKTG-410 | Search Engine Marketing and Analytics |
| MKTG-430 | Social Media Marketing |
| FINC-359 | Financing New Ventures |
| MGIS-320 | Database Management Systems |

## Digital Literatures and Comparative Media

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The courses in the digital literatures and comparative media minor challenge students to think about how the digital in new comparative media affects the way we read, study, and understand literature: What happens to literature and the literary in an age of digital technology and new forms of media? Courses examine a varied collection of print genres and electronic literature in order to understand the current state of this new literary field and its relation to traditional concepts of literary study. The minor provides an entry point into investigating particular aspects of the general category of the digital and its comparative relation to the the literary.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| ENGL-215 | Text and Code |
| Electives |  |
| Choose four of the following |  |
| ENGL-315 | Digital Literature |
| ENGL-373 | Media Adaptation |
| ENGL-374 | Games and Literature |
| ENGL-375 | Storytelling Across Media |
| ENGL-376 | Experimental Writing |
| ENGL-386 | World Building Workshop |
| ENGL-419 | Literature and Technology |
| ENGL-422 | Maps, Spaces, and Places |
| ENGL-450 | Free and Open Source Culture |

## Minors

## Economics

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

An economics minor provides a systematic analysis of economic issues through the study of the allocation of scarce resources into production and the distribution of production among the members of society. This minor is closed to students majoring in economics.

## COURSE

## Prerequisite

| Choose one of the following: |  |
| :--- | :--- |
| ECON-101 | Principles of Microeconomics |
| ECON-101H | Honors Economics |

Required Course

## ECON-201

 Principles of MacroeconomicsTheory and policy
Choose two or three of the following:

| ECON-401 | Intermediate Microeconomics Theory |
| :--- | :--- |
| ECON-402 | Intermediate Macroeconomic Theory |
| ECON-405 | International Trade and Finance |
| ECON-406 | Global Economic Issues |
| ECON-407 | Industrial Organization |
| ECON-421 | Natural Resource Economics |
| ECON-422 | Benefit-Cost Analysis |
| ECON-430 | Managerial Economics |
| ECON-431 | Monetary Analysis and Policy |
| ECON-432 | Open Economy Macroeconomics |
| ECON-440 | Urban Economics |
| ECON-441 | Labor Economics |
| ECON-444 | Public Finance |
| ECON-445 | History of Economic Thought |
| ECON-448 | Development Economics |
| ECON-449 | Comparative Economic Systems |
| ECON-450 | Health Care Economics |
| ECON-451 | Economics of Women and the Family |
| ECON-452 | Economics of native America |
| ECON-453 | Behavioral and Experimental Economics |
| ECON-520 | Envirornmental Economics |

Quantitative
Choose one or two of the following:

| ECON-401 | Intermediate Microeconomic Theory |
| :--- | :--- |
| ECON-403 | Econometrics I |
| ECON-404 | Mathematical Methods: Economics |
| ECON-410 | Game Theory: Economic Applications |
| ECON-503 | Econometrics II |

## Electrical Engineering

## Sohail Dianat, Minor Adviser <br> (585) 475-2165, sadeee@rit.edu

Electrical engineering encompasses disciplines such as electronics, communication, control, digital systems, and signal/image processing. A minor in electrical engineering provides a foundation to explore specialized material in electrical engineering. The minor is designed to provide students from other engineering or non-engineering disciplines an introduction to the wide-ranging content of the electrical engineering major. The minor is closed to students majoring in computer engineering technology, electrical engineering, or electrical engineering technology.

| COURSE |  |
| :--- | :--- |
| Prerequisites* | Project-based Calculus II |
| MATH-182 | University Physics II |
| PHYS-212 |  |
| Required Courses | Circuits I |
| EEEE-281 | Circuits II |
| EEEE-282 |  |
| Electives | Digital Systems I |
| Choose three of the following: |  |
| EEEE-120 | Digital Systems II |
| EEEE-220 | Embedded Systems Design |
| EEEE-420 | Linear Systems |
| EEEE-353 | EM Fields and Transmission Lines |
| EEEE-374 | Electronics I |
| EEEE-381 | Electronics II |
| EEEE-482 | Control Systems Design |
| EEEE-414 | Mechatronics |
| EEEE-483 | Communications Systems |
| EEEE-484 |  |

* Additional prerequisites may be required based on the choice of electrical engineering electives.


## Engineering Management

## Robin Borkholder, Minor Adviser

(585) 475-2990, rrbeie@rit.edu

The minor in engineering management integrates technological and managerial expertise while focusing on the management of these areas. Engineering management is concerned with understanding the technology involved in an engineering project and the management process through which the technology is applied. This minor is closed to students majoring in industrial engineering.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Linear Systems and Differential Equations |
| MATH-233 |  |
| Plus one of the following: | Applied Statistics |
| STAT-205 | Probability and Statistics II |
| MATH-252 |  |
| Required Courses | Engineering Economy |
| ISEE-345 | Engineering Management |
| ISEE-350 | Cost Management in Technical Organizations |
| ACCT-500 |  |
| Electives | Operations Research |
| Choose two of the following: |  |
| ISEE-301 | Facilities Planning |
| ISEE-323 | Production Planning and Scheduling |
| ISEE-420 | Systems Simulation |
| ISEE-510 | Applied Statistical Quality Control |
| ISEE-560 | Lean Six Sigma Fundamentals |
| ISEE-582 | Supply Chain Management |
| ISEE-703 |  |

## English

## College of Liberal Arts, Office of Student Services

(585) 475-2444, libarts@rit.edu

The English minor gives students the opportunity to explore the areas of literature, linguistics, and creative writing. The minor introduces students to texts written in English, acquaint them with a variety of historical periods and geographical regions, create an awareness of methods and theories of analysis, and provide an introduction to critical or creative writing.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| Choose one of the following courses |  |
| ENGL-210 | Literature, Culture, and Media |
| ENGL-216 | Literature from Around the World |
| Electives |  |
| Choose four of the following |  |
| ENGL-307 | Mythology and Literature |
| ENGL-308 | Shakespeare: Drama |
| ENGL-309 | Literary Forms* |
| ENGL-310 | Introduction to Language Science |
| ENGL-315 | Digital Literature |
| ENGL-316 | Global Literature |
| ENGL-318 | Popular Literature |
| ENGL-320 | Genre Fictiont |
| ENGL-345 | History of Madness |
| ENGL-351 | Language Technology |
| ENGL-373 | Media Adaptation |
| ENGL-386 | World Building Workshop |
| ENGL-389 | Digital Creative Writing Workshop |
| ENGL-390 | Creative Writing Workshop $\ddagger$ |
| ENGL-391 | Dangerous Texts |
| ENGL-410 | Film Studies |
| ENGL-418 | Great Authors |
| ENGL-419 | Literature and Technology |

* Literary Forms (ENGL-309) may be taken up to two times, for six semester credit hours, as long the course topics are different.
† Genre Fiction (ENGL-320) may be taken up to two times, for six semester credit hours, as long the course topics are different.
\# Creative Writing Workshop(ENGL-390) may be taken up to two times, for six semester credit hours, as long the course topics are different.


## Entrepreneurship

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

The entrepreneurship minor allows students to learn business skills that can be applied to any professional field. Students gain insight into the customer requirements and financial implications involved in taking a product or service from idea to implementation.

| COURSE |  |
| :--- | :--- |
| Required Courses | Entrepreneurship |
| MGMT-350 | Applied Entrepreneurship and Commercialization |
| Choose one of the following: | Field Experience in Business Consulting (or another approved field <br> experience) |
| MGMT-470 |  |
| MGMT-550 | Flectives |
| Choose three of the following: |  |
| ACCT-110 | Management Accounting |
| ACCT-210 | Cost Management in Technical Organizations |
| ACCT-500 | Financing New Ventures |
| FINC-359 | Organizational Behavior |
| MGMT-215 | Digital Entrepreneurship |
| MGMT-360 | Principles of Marketing |
| MKTG-230 | Internet Marketing |
| MKTG-320 |  |

## Environmental Modeling

## Karl Korfmacher, Minor Adviser <br> (585) 475-5554, kfkscl@rit.edu

The environmental modeling minor introduces students to the process of spatial modeling as part of a tool set for investigating environmental issues and provides opportunities to apply these skills through advanced course work. Courses are designed to give students a solid foundation of environmental issues and concepts. Central to this minor are the development of geographic information systems (GIS) and remote sensing techniques, problem-solving skills, and an understanding of the multiple stakeholder perspectives often involved with environmental issues.

| COURSE |  |
| :--- | :--- |
| Required Courses  <br> ENVS-101 Concepts of Environmental Science <br> ENVS-250 Applications of Geographic Information Systems <br> ENVS-450 Advanced Applications of Geographic Information Systems <br> IMGS-431 Environmental Applications of Remote Sensing <br> STSO-220 Environment and Society |  |

## Environmental Science

## Karl Korfmacher, Minor Adviser

## (585) 475-5554, kfkscl@rit.edu

The environmental science minor introduces students to the interdisciplinary nature of environmental issues and concepts and provides them with opportunities to further investigate these issues through advanced course work. Central to this minor are the development of field, analytical, and problem-solving skills and an understanding of the multiple stakeholder perspectives often involved with environmental issues. This minor is closed to students majoring in environmental science.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Introduction to Biology I |
| BIOL-121 | Introduction to Biology II |
| BIOL-122 | General Ecology |
| BIOL-240 |  |
| Required Courses | Concepts of Environmental Science |
| ENVS-101 | Environmental Workshop |
| ENVS-201 | Environment and Society |
| STSO-220 |  |
| Electives | Tropical Ecology |
| Choose two of the following: |  |
| BIOL-343 | Freshwater Ecology |
| BIOL-371 | Marine Biology |
| BIOL-373 | Conservation Biology |
| BIOL-475 | Environmental Science Field Skills |
| ENVS-301 |  |

## Environmental Studies

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

With an emphasis on sustainability and holistic thinking, the environmental studies minor provides students with opportunities for the indepth analysis of global and regional environmental issues, their causes, and their potential solutions. In particular, a required 500 -level seminar serves as a capstone experience, helping students to integrate knowledge from several disciplinary perspectives, including socio-cultural, historical, political, economic, ethical, scientific, and/or technological factors. Having completed the minor, students will possess a high level of environmental literacy, an important component of many professional fields within the sciences, engineering, law, journalism, and public affairs.

| COURSE |  |
| :--- | :--- |
| Required Course | Seminar in Science, Technology, and Society |
| STSO-510 |  |
| Electives | Introduction to Environmental Studies |
| Choose four of the following:* |  |
| STSO-120 | Environment and Society |
| STSO-220 | Face of the Land |
| STSO-321 | History of Environmental Science |
| STSO-325 | History of Ecology and Environmentalism |
| STSO-326 | Energy and the Environment |
| STSO-330 | Environmental Policy |
| STSO-421 | Special Topics in STS |
| STSO-489 | Biodiversity |
| STSO-521 | Great Lakes |
| STSO-522 | Sustainable Communities |
| STSO-550 | Energy Policy |
| PUBL-530 | Environmental Economics |
| ECON-420 | Natural Resource Economics |
| ECON-421 | Environmental Disasters |
| HIST-345 | Environmental Philosophy |
| PHIL-308 | Population and Society |
| SOCI-320 |  |

* At least one elective must be at the 300 level or higher.


## Ethics

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The ethics minor provides students with the ability to recognize ethical issues and to think critically to resolve them, both generally and within their chosen discipline. They also learn how ethical problems can result from complex social structures and how changing structural features may avoid ethical problems. This minor is closed to students majoring in philosophy.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| PHIL-202 | Foundations of Moral Philosophy |
| PHIL-415 | Ethical Theory |
| Electives |  |
| Choose three of the following <br> outside philosophy) |  |
| BIOL-255 | Genetics and Society |
| CRIM-299 | Crime, Justice, and Ethics |
| ISTE-110 | Ethics in Computing |
| MEDS-360 | Placebo, Suggestion, Research, and Health |
| MGMT-340 | Business Ethics and Corporate Responsibility |
| NSSA-221 | System Administration I |
| PHHL-304 | Philosophy of Law |
| PILL-305 | Philosophy of Peace |
| PHIL-306 | Professional Ethics |
| PHIL-308 | Environmental Philosophy |
| PHIL-309 | Feminist Theory |
| PHIL-403 | Social and Political Philosophy |
| PUBL-201 least one course must be |  |
| SOCI-225 | Ethics, Values, and Public Policy |

## Exercise Science

## William Brewer, Minor Adviser <br> (585) 475-2476, wsbscl@rit.edu

The exercise science minor includes foundation sequences in anatomy and physiology upon which the basic principles of exercise physiology, fitness assessment, and the preparation of fitness programs are built. The minor prepares students to sit for professional certification examinations for work in the fitness industry, provides understanding of sports physiology for those interested in sports equipment design and technology, and complements and enhances personal fitness.

| COURSE |  |
| :--- | :--- |
| Prerequisites <br> Choose one of the following sequences: <br> BIOL-101, 102 | General Biology I, II |
| BIOL-121, 122 | Introduction to Biology I, II |
| MEDG-101, 102 | Human Biology I, II |
| Electives |  |
| Choose five of the following: |  |
| EXSC-205 | Sports Physiology and Life Fitness |
| EXSC-206 | Fitness Prescription |
| EXSC-207 | Exercise for Special Populations |
| EXSC-280 | Strength Training for Performance |
| EXSC-350 | Exercise Physiology |
| EXSC-410 | Kinesiology |
| EXSC-480 | Training the High Performance Athlete |
| MEDS-250 | Anatomy and Physiology I |
| MEDS-251 | Anatomy and Physiology II |

## Film Studies

## College of Liberal Arts, Office of Student Services <br> (585) 475-2444, libarts@rit.edu

Film studies explores the role of cinema in the contemporary global culture. Using methodologies and perspectives from a variety of disciplines, such as English, anthropology, philosophy, fine arts/visual culture, political science, history, and modern languages, the film studies minor investigates the cinema's mass appeal as a form of entertainment, but also the power it wields as a disseminator of ideas, history, values, aesthetics, behavior, and cultural norms. This minor is closed to students majoring in film and animation.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose five of the following: |  |
| ANTH-265 | Native Americans in Film |
| ANTH-430 | Visual Anthropology |
| ENGL-410 | Film Studies |
| ENGL-425 | Global Cinemas |
| FNRT-200 | Anime |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American Film Since the Sixties |
| FNRT-440 | Deaf Art and Cinema |
| HIST-450 | Modern Japan in History, Fiction, and Film |
| HIST-275 | Screening the Trenches: The History of World War I through Film |
| MLFR-351 | French Films and Hollywood |
| MLSP-352 | Caribbean Cinema |
| PHIL-313 | Philosophy of Film |
| POLS-490 | Politics through Film |

## Finance

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

The finance minor helps students create value in any type of business organization. The minor broadens a student's learning experiences and professional opportunities by focusing on corporate finance and investment topics in more depth. This minor is closed to students majoring in finance.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ACCT-110 | Financial Accounting |
| FINC-220 | Financial Management |
| Electives |  |
| Choose three of the following: |  |
| FINC-120 | Personal Financial Management |
| FINC-352 | Financial Management II |
| FINC-359 | Financing New Ventures |
| FINC-361 | Financial Institutions and Markets |
| FINC-362 | Intermediate Investments |
| FINC-420 | Finance in a Global Environment |
| FINC-430 | Advanced Corporate Financial Planning |
| FINC-460 | Financial Analysis and Modeling |
| FINC-470 | Introduction to Options and Futures |
| FINC-489 | Seminar in Finance |

## Flexible Packaging

Stefanie Soroka, Minor Adviser
(585) 475-4974, swsmet@rit.edu

The flexible packaging minor addresss flexible containment systems, one of the fastest growing segments of the packaging materials industry. The manufacturing and use of flexible containment systems requires specific expertise and knowledge of appropriate technology for implementation. Flexible pouches and containment systems are considered more sustainable for replacing glass bottles and jars, plastic bottles, and metal cans. They use materials more efficiently and reduce the weight and costs associated with physical distribution activities.

Students learn about the sustainability performance of flexible packaging by studying product lifecycle from a societal, environmental, and economic impact as they design and manufacture more environmentally friendly flexible container systems. The minor enhances employment opportunities in industries such as consumer goods, health care, and the various food industries. Students with interests in engineering, engineering technology, printing, manufacturing and safety, product marketing, industrial design, logistics, and other related fields can benefit from the minor. This minor is closed to student enrolled in the packaging science major.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| MAAT-256 | Principles of Printing |
| MAAT-558 | Package Printing |
| PACK-560 | Converting and Flexible Packaging |
| Electives |  |
| Choose two of the following: |  |
| MAAT-544 | Color Manangement Systems |
| MAAT-361 | Digital Print Process |
| MAAT-367 | Image Processing Workflow |
| MAAT-368 | Gravure and Flexographic Printing |
| MAAT-376 | Lithographic Process |
| PACK-211 | Packaging Metals and Plastics |
| PACK-430 | Packaging Regulations |
| PACK-530 | Packaging Sustainability and the Environment |
| PACK-550 | Packaging Machinery |

## Free and Open Source Software and Free Culture

## Kathleen Schreier Rudgers, Minor Adviser (585) 475-2763, kmsrla@rit.edu

Free and open source software is released with licenses that allow it to be redistributed freely for others to use, copy, and/or modify within certain restrictions and conditions. Free culture refers to writing, art, music, and other creative materials also released with rights for reuse and/or redistribution that are more flexible than those of the traditional marketplace. Both are often created and/or distributed by collaborative teams with members around the world. The minor in free and open source software and free culture is intended for students who want to develop a deep understanding of the processes, practices, technologies, financial, legal, and societal impacts of these movements. The minor includes a set of computing and liberal arts courses that explore these aspects through research, analysis, and participation in these communities via the creation of digital cultural artifacts and team-driven software projects. Students complete three required courses, one constrained elective course, and one elective course.

| COURSE |  |
| :--- | :--- |
| Required Courses | Free and Open Source Culture |
| ENGL-450 | Humanitarian Free and Open Source Software Development |
| IGME-582 | Legal and Business Aspects of FOSS |
| IGME-583 |  |
| Constrained Elective |  |
| Choose one of the following: |  |
| ENGL-361 | Technical Writing |
| IGME-584 | Software Development on Linux Systems |
| Elective Course |  |
| Choose one of the following: |  |
| CSEC-474 | Unix-based System Forensics |
| ENGL-215 | Lext and Code |
| ENGL-351 | Technical Writing* |
| ENGL-361 | Introduction to Natural Language Processing |
| ENGL-481 | Software Development on Linux Systems* |
| IGME-584 | Project in FOSS Development |
| IGME-585 | Foundations of Mobile Design |
| ISTE-452 |  |
| * Students may elect to take both of the constrained elective courses to complete the minor instead of |  |
| selecting one contrained course and one elective course. |  |

## Game Design

## Kathleen Schreier Rudgers, Minor Adviser (585) 475-2763, kmsrla@rit.edu

The game design minor is intended for non-computing majors who want to experience the process and underpinnings of world design and game interaction studies, but are just beginning to explore the technology required to produce computational interactivity. This minor is closed to students majoring in game design and development and computer engineering.

| COURSE |  |
| :--- | :--- |
| Required Courses 2 A Animation and Asset Production <br> IGME-119 New Media Interactive Design and Algorithmic Problem Solving I <br> IGME-101 New Media Interactive Design and Algorithmic Problem Solving II <br> IGME-102 Game Design and Development I <br> IGME-220 Game Design and Development II <br> IGME-320  |  |

## Game Design and Development

Kathleen Schreier Rudgers, Minor Adviser
(585) 475-2763, kmsrla@rit.edu

The game design and development minor is intended for students studying in a technical field who want to combine their knowledge and skill in software development with the media-centric approach to application design that is exemplified in the professional games and simulation industries. The minor defines a series of courses that build upon students' existing knowledge in computing, physics, and mathematics to explore the design principles of games and interactive worlds through the creation of prototypes and software projects. This minor is closed to students majoring in game design and development.

## COURSE

Required Courses

| IGME-202 | Interactive Media Development |
| :--- | :--- |
| IGME-220 | Game Design and Development I |
| IGME-320 | Game Design and Development II |
| IGME-209 | Data Structures and Algorithms for Games and Simulation I |
| IGME-309 | Data Structures and Algorithms for Games and Simulation II |

## Geographic Information Systems

## Brian Tomaszewski, Minor Adviser

(585) 259-9678, bmtski@rit.edu

The geographic information systems (GIS) minor provides students with experience in the concepts, technology, and applications related to computer-based mapping, spatial databases, and geographic analysis and problem solving. The minor features two tracks: a GIS development track for students interested in GIS software development, and a GIS analysis track for students interested in utilizing GIS as a strong methodological base within their major of study. Required courses provide core GIS foundations applicable to a variety of multidisciplinary elective courses students can choose from to match their research, post-graduate, or career interests.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ISTE-382 | Introduction to Geospatial Technologies |
| ISTE-384 |  |
| Electives | GIS Programming |
| GIS development track | Geospatial Data Analysis |
| ISTE-386 | Thematic Cartography and Geovisualization |
| ISTE-482 |  |
| ISTE-484 | Geospatial Data Analysis |
| GIS analysis track | Introduction to Database and Data Modeling |
| ISTE-482 | Information Science and Technology Research |
| ISTE-230 |  |
| ISTE-483 |  |

## Global Literatures and Cultures

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The global literatures and cultures minor offers a rich variety of courses for students curious about global literatures and the different forms they take across cultures, from epic poetry to contemporary film. Students examine aspects of globalization and the human condition through mutiple cultural lenses, better preparing them for the complex global workplace of the 21 st century. Given the diverse, international backgrounds of our faculty, students learn how literary imaginations of all types are transmitted across historical epochs and national boundaries using a range of old and new material technologies.

## COURSE

Required Course
ENGL-416 Global Literatures

## Electives

| Choose four of the following: |  |
| :--- | :--- |
| ENGL-391 | Special Topics: Dangerous Texts |
| ENGL-406 | Shakespeare: Tragedies |
| ENGL-407 | Shakespeare: Comedies |
| ENGL-409 | Mythology and Literature |
| ENGL-411 | American Literature |
| ENGL-413 | African-American Literature |
| ENGL-415 | British Literature |
| ENGL-418 | Great Authors |
| ENGL-421 | The Graphic Novel |
| ENGL-461 | Latin American Literature |
| ENGL-470 | The Evolving English Language |

## Health Communication

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The health communication minor provides students with theoretical and applied knowledge about communication's role in health care delivery, doctor-patient communication, health campaigns and public health, and other areas related to the dissemination of health information. This collaborative minor is designed for students interested in health care fields or health and risk communication.

| COURSE |  |
| :--- | :--- |
| Required Course | Health Communication |
| COMM-344 | (Health) Campaign Manangement and Planning |
| Choose one of the following: | Reporting in Special Fields: Health |
| COMM-322 |  |
| COMM-361 | Bodies and Culture |
| Electives | Digital Design in Communication |
| Choose three of the following: | Health Care Economics |
| ANTH-325 | History of Madness |
| COMM-223 | Health Awareness |
| ECON-450 | Computers in Medicine |
| ENGL-345 | Language of Medicine |
| MEDG-105 | Contemporary Nutrition |
| MEDI-130 | Death and Dying |
| MEDS-201 | Gender and Health |
| NUTR-125 | Population and Society |
| PSYC-231 |  |
| SOCI-245 |  |
| SOCI-320 |  |

## Health IT

## Larry Hill, Minor Adviser

## (585) 475-7064, Lawrence.Hill@rit.edu

Medical informatics, also known as health information technology or health IT, is experiencing a period of rapid growth fueled by the federal government's push for universal adoption of electronic health records. The health IT minor teaches students with a computing background how to develop and maintain software systems in the health care field. One year of object-oriented programming and an introductory database course are required prerequisites. Five required courses give students the skills they need to design and develop computing systems for the health care environment.
course

| Prerequisite |  |
| :--- | :--- |
| ISTE-120 | Computer Problem Solving: Information Domain I* |
| ISTE-121 | Computer Problem Solving: Information Domain II* |
| ISTE-230 | Introduction to Database and Data Modeling |
| Required Courses |  |
| MEDI-130 | Computers in Medicine |
| ISTE-330 | Database Connectivity and Access |
| MEDI-320 | Medical Database Architectures |
| MEDI-330 | The Electronic Health Record |
| MEDI-430 | Medical Application Integration |

* Students may fulfill this prerequsite with one year of computer programming in an object-oriented programming language.

| COURSE |  |
| :--- | :--- |
| HIST-280 | History of Modern Germany |
| HIST-290 | U.S. History Since 1945 |
| HIST-301 | Great Debates in U.S. History |
| HIST-302 | Special Topics in History |
| HIST-310 | Global Slavery and Human Trafficking |
| HIST-321 | Special Topics in Public History |
| HIST-322 | Monuments and Memory |
| HIST-323 | America's National Parks |
| HIST-324 | Oral History |
| HIST-325 | Museums and History |
| HIST-326 | Doing History in a Digital World |
| HIST-330 | Deaf People and Technology |
| HIST-335 | Women and the Deaf Community |
| HIST-345 | Environmental Disasters |
| HIST-350 | Terrorism, Intelligence, and War |
| HIST-351 | The Vietnam War |
| HIST-365 | Conflict in Modern East Asia |
| HIST-369 | Histories of Christianity |
| HIST-380 | International Business History |
| HIST-381 | Technology in the Modern World |
| HIST-390 | Medicine and Public Health in American History |
| HIST-402 | Special Seminar in History |
| HIST-421 | Hands-on History |
| HIST-430 | Deaf Spaces |
| HIST-431 | Theory and Method of Deaf Geographies |
| HIST-439 | Biography as History |
| HIST-450 | Modern Japan in History, Fiction, and Film |
| HIST-462 | East-West Encounters |
| HIST-465 | Samurai in Word and Image |
| HIST-470 | Science, Technology, and European Imperialism, 1800-1965 |
| HIST-480 | Indepal Information Age |
| HIST-499 |  |
| At least two courses must be at the 300 level or higher. |  |

## Hospitality Management

## Carol Whitlock, Minor Adviser

(585) 475-2353, cbwism@rit.edu

Jayne Downes, Minor Adviser
(585) 475-5575, jmdism@rit.edu

Hospitality industries and related entrepreneurial businesses include those in lodging, resorts, food, entertainment, events and conventions, and tourism. The hospitality management minor provides an opportunity to learn about service-oriented businesses that are a significant portion of the economies of many countries.

| COURSE |  |
| :--- | :--- |
| Required Courses | Principles Food Hotel and Tourism Operations |
| HSPT-181 | Service Management in a Global Economy |
| HSPT-281 | Technology in Service Systems |
| HSPT-381 | Assessing and Improving Service Quality |
| HSPT-383 |  |
| Electives |  |
| Choose one of the following: |  |
| FOOD-223 | Food and Beverage Management |
| HSPT-131 | Hotel Management and Operations |
| HSPT-244 | Meeting and Event Management |

## Imaging Science

Carl Salvaggio, Minor Adviser (585) 475-6380, salvaggio@cis.rit.edu

Students have the opportunity for additional study in imaging science in order to build a secondary area of expertise in support of their major or other areas of interest.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Imaging science | Introduction to Imaging and Video Systems |
| Choose three of the following: |  |
| SOFA-103 | Linear and Fourier Methods for Imaging |
| IMGS-261 | Image Processing and Computer Vision I |
| IMGS-361 | Image Processing and Computer Vision II |
| IMGS-362 | Multivariate Statistical Image Processing |
| IMGS-462 | Vision and Psychophysics |
| IMGS-221 | Radiometry |
| IMGS-251 | Color Science |
| IMGS-351 | Interactions Between Light and Matter |
| IMGS-341 | Imaging Detectors |
| IMGS-451 | Design and Fabrication of a Solid State Camera |
| IMGS-528 | Principles of Solid State Imaging Array |
| IMGS-539 | Testing of Focal Plane Arrays |
| IMGS-542 | Geometric Optics |
| IMGS-321 | Physical Optics |
| IMGS-322 |  |
| Non-imaging science |  |
| Choose two of the following: | Linear Systems and Differential Equations |
| MATH-233 | Linear Algebra |
| MATH-241 | Probability and Statistics I |
| MATH-251 | Modern Physics I |
| PHYS-213 | Vibrations and Waves |
| PHYS-283 | Mathematical Methods in Physics |
| PHYS-320 | Physical Optics |
| PHYS-365 |  |

## Imaging Systems

## Nitin Sampat, Minor Adviser <br> (585) 475-2747, nitin.sampat@rit.edu

The imaging systems minor offers students an introduction to the business and technology of photographic imaging services. Courses cover digital imaging capture systems, professional practices, output technologies, color management, and imaging workflows. The minor provides the foundation students need to pursue opportunities in business management, photo-lab operations, technical support, digital imaging technology, and sales for photo and imaging manufacturers.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| IMSM-301 | Imaging Systems |
| IMSM-302 | Color Management Technology |
| IMSM-303 | Imaging Workflows |
| Electives |  |
| Choose two of the following: |  |
| IMPT-322 | Digital Imaging Processing |
| IMPT-306 | e-Sensitometry |
| IMPT-312 | High Speed Photography |
| IMPT-307 | Survey Non-Conventional Imaging Systems |
| MAAT-256 | Principles of Printing |
| MAAT-206 | Print and Production Workflow |
| PHFA-361 | Retouch and Restore |
| PHFA-362 | The Fine Print Workflow |
| PHPS-316 | Scanning Electron Microscopy |
| PHPS-315 | Web Publishing |
| PHPS-306 | Historic Photographic Processes |

## Industrial Engineering

## Robin Borkholder, Minor Adviser <br> (585) 475-2990, rrbeie@rit.edu

A minor in industrial engineering focuses on the design, improvement, and installation of integrated systems of people, material, equipment, and energy. Student utilize skills in statistics, ergonomics, operations research, and manufacturing.

| COURSE |  |
| :--- | :--- |
| Prerequisite Courses |  |
| MATH-233 | Linear Systems and Differential Equations |
| Choose one of the following: |  |
| MATH-252 | Probability and Statatistics II |
| STAT-205 | Applied Statistics |
| Electives |  |
| Choose five of the following: |  |
| ISEE-250 | Engineering Economy |
| ISEE-301 | Operations Research |
| ISEE-323 | Facilities Planning |
| ISEE-330 | Ergonomics/Human Factors |
| ISEE-510 | Systems Simulation |
| ISEE-420 | Production Planning and Scheduling |
| ISEE-421 | Design and Analysis of Production Systems |
| ISEE-460 | Applied Statistical Quality Control |
| ISEE-582 | Lean Six Sigma Fundamentals |
| ISEE-626 | Comtemporary Production Systems |

## Innovation

## Meg Walbaum, Minor Adviser <br> (585) 475-4953, mswcms@rit.edu

The innovation minor enables students from across all of RIT's colleges to develop the necessary skills, knowledge, and experiences to become innovators in areas of interest related to their individual academic and professional goals. The core of the minor helps students to define innovation; understand past and current trends in innovation, as well as the processes and practical considerations for innovating; and gain experience at innovating through project-based, interdisciplinary experiential learning and collaborative activities. Students who select the minor will customize their curriculum by taking innovation elective courses that explore an area of personal and/or professional interest within the boundaries of the larger minor. The minor is inter-disciplinary in its approach and fosters multi-college collaboration as it allows students to select discipline-specific courses, sourced from across the university, as their innovation elective courses.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| CMDSS-211 | Exploring Innovation |
| CMDS-411 | The Practice of Innovation and Invention |
| CMDS-511 | Innovation Lab |
| Electives |  |
| Choose two of the following: |  |
| CMDS-333 | Wicked Problems |
| CMDS-441 | Creative Critical Thinking and Problem Solving |
| ENGL-419 | Literature and Technology |
| ENGL-450 | Free and Open Source Culture |
| IGME-581 | Innovation and Invention |
| MGMT-330 | Design Thinking and Concept Development |

## International Business

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

Students minoring in international business benefit from learning the global view of worldwide markets and the role of business in these environments.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| INTB-225 | Global Business Environment |
| INTB-310 | Regional Business Studies |
| Electives |  |
| Choose three of the following: |  |
| FINC-420 | Finance in the Global Environment |
| MKTG-230 | Principles of Marketing |
| INTB-300 | Cross-Cultural Management |
| INTB-320 | Global Marketing |
| INTB-489 | Seminar in International Business |
| INTB-550 | Global Entry and Competition Strategies |

## International Relations

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The international relations minor helps students to make sense of the world through exploring ideas that have shaped it. Students explore the thoughts of various thinkers and approaches to international relations and use these perspectives to understand key themes in world politics. Important topics include democratization, globalization, terrorism, war and peace, human rights, and international law. Students will reflect upon the interplay between domestic and international politics and how changes in the world order affect the internal politics of various countries. This minor is closed to students majoring in political science.

| COURSE |  |
| :--- | :--- |
| Required Course | Introduction to International Relations |
| POLS-120 |  |
| Electives | Ethics in International Politics |
| Choose four of the following:* |  |
| POLS-205 | Comparative Politics |
| POLS-210 | Technology, Ethics, and Global Politics |
| POLS-215 | Global Political Economy |
| POLS-220 | Environmental Ethics and Political Ecology |
| POLS-285 | International Law and Organizations |
| POLS-315 | American Foreign Policy |
| POLS-320 | Human Rights in Global Perspective |
| POLS-330 | Politics of Developing Countries |
| POLS-335 | Government and Politics of East Asia |
| POLS-350 | International Political Thought |
| POLS-360 | Cyberwar, Robots and the Future of Conflict |
| POLS-370 | Evolutionary International Relations |
| POLS-410 | War and the State |
| POLS-440 | Terrorism and Political Violence |
| POLS-445 | Comparative Public Policy |
| POLS-455 | Special Topics in Political Science |
| POLS-525 |  |

* At least two courses must be at the 300 level or higher.


## Journalism

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The journalism minor provides students with a foundation in the professional study and practice of journalism. Courses offer a broad perspective that includes historical, legal, and ethical issues of specific concern to journalism, as well as learning and practice writing in a journalistic style for delivery across multiple media platforms. This minor is closed to students majoring in journalism.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| COMM-271 | Introduction to Journalism |
| Electives |  |
| Choose four of the following:* |  |
| COMM-261 | History of Journalism |
| COMM-263 | Computer-Assisted Reporting |
| COMM-272 | Reporting and Writing I |
| COMM-273 | Reporting and Writing II |
| COMM-274 | News Editing |
| COMM-361 | Reporting in Specialized Fields |
| COMM-362 | Law and Ethics of the Press |
| COMM-442 | Professional Writing |
| COMM-461 | Multiplatform Journalism |
| *At least two courses must be at the 300 level or higher |  |

## Language Science

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The language science minor prepares students for the study and analysis of human language. The minor is directly applicable to students interested in computing and media, human-computer interaction, brain and cognition, language acquisition, human health, interpreting, relevant branches of engineering, and policy studies. Students can complete the minor requirements irrespective of their skills in languages other than English. Electives allow students to customize the minor to their interests and needs, with the support of a faculty adviser. The minor is an excellent complement to majors such as computer science, game design, information technology, psychology, sign language interpreting, mechanical engineering, electrical engineering, bioengineering, science, or a foreign language.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ENGL-310 | Introduction to Language Science |
| Plus one of the following: |  |
| ENGL-371 | Language, Dialects, and Identity |
| ENGL-351 | Language Technology |
| MLCU-301 | Special Topics: Psycholinguistics |
| Electives* |  |
| Choose three of the following: |  |
| A beginning ASL or foreign language course |  |
| ENGL-351 | Language Technology |
| ENGL-371 | Language, Dialects, and Identity |
| ENGL-470 | Evolving English Language |
| ENGL-482 | Language and Brain |
| MLAS-596 | Linguistics of American Sign Language |
| MLCU-301 | Psycholinguistics |
| MLP-351 | Languages in Japanese Society |
| MLP-451 | Structure of the Japanese Language |
| PHIL-414 | Philosophy of Language |
| PSYC-331 | Language and Thought |
| *Students may also use special topic courses or independent study, if approved by the minor adviser. |  |

## Latino/Latina/Latin American Studies

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The Latino/Latina/Latin American studies minor provides at least two full years of instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses fostering cultural, or linguistic and cultural, proficiency. Part of the minor requirements can be taken abroad. This minor is closed to students majoring in international and global studies who have chosen to focus on the Spanish or Portuguese languages or on Latin America as a regional focus.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Culture Courses |  |
| Choose four or five of the following: |  |
| MLSP-351 |  |
| MLSP-352 | Gender and Sexuality |
| MLSP-353 | Caribbean Cinema |
| ANTH-255 | Trauma and Survival |
| ANTH-335 | Regional Archaeologyt |
| ANTH-350 | Culture and Politics in Latin America |
| Language Courses | The Global Economy and the Grassroots |
| Choose one of the following (if only four culture courses are chosen):* |  |
| MLSP-201A | Beginning Spanish IA |
| MLSP-201B | Beginning Spanish IB |
| MLSP-202 | Beginning Spanish II |
| MLSP-301 | Intermediate Spanish I |
| MLSP-302 | Intermediate Spanish II |
| MLSP-401 | Advanced Spanish I |
| MLSP-402 | Advanced Spanish II |
| MLPO-201 | Beginning Portuguese I |
| MLPO-202 | Beginning Portuguese II |
| MLPO-301 | Intermediate Portuguese I |
| MLPO-302 | Intermediate Portuguese II |
| MLPO-401 | Advanced Portuguese I |
| MLPO-402 | Advanced Portuguese II |
| Sud |  |

* Students who have prior study in either language must take a placement exam through the Department of Modern Languages to determine the appropriate level language course to begin with
$\dagger$ Course may be used when topic focuses on Mesoamerica


## Legal Studies

College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

Recognizing the critical role that law plays in societies, the minor in legal studies is designed to provide students with courses that will deepen and expand their understanding of law as practiced, especially its influence on social, political, and economic institutions.

## COURSE

Required Course

| Choose one of the following: |  |
| :--- | :--- |
| CRIM-215 | Law and Society |
| POLS-200 | Law and Society |
| Electives |  |
| Choose four of the following:* |  |
| COMM-342 | Communication Law and Ethics |
| COMM-362 | Law and Ethics of the Press |
| CRIM-225 | Criminal Law |
| CRIM-260 | Courts |
| CRIM-315 | Evidence |
| CRIM-489 | Major Issues in Criminal Justice |
| PHIL-205 | Symbolic Logic |
| PHIL-304 | Philosophy of Law |
| PHIL-403 | Social and Political Philosophy |
| POLS-325 | International Law and Organizations |
| POLS-330 | Human Rights in Global Perspective |
| POLS-425 | Constitutional Law |
| POLS-430 | Constitutional Rights and Liberties |
| POLS-460 | Classical Constitutionalism, Virtue, and Law |
| POLS-464 | Modern Constitutionalism, Liberty, and Equality |
| SOCI-310 | U.S. Housing Policy |

* Students majoring in communication, criminal justice, philosophy, or political science may only count one course from their home department toward the requirements of the minor


## Management

## Peter Rosenthal, Minor Adviser <br> (585) 475-7063, prosenthal@saunders.rit.edu

The management minor provides a solid introduction to the world of general business management.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| MGMT-215 | Organizational Behavior |
| MGMT-310 | Leadership in Organizations |
| Electives |  |
| Choose three of the following: |  |
| INTB-300 | Cross-Cultural Management |
| INTB-550 | Global Entry and Competition Strategies |
| MGMT-320 | Managerial Skills |
| MGMT-340 | Business Ethics and Corporate Social Responsibility |
| MGMT-350 | Entrepreneurship |
| MGMT-360 | Digital Entrepreneurship |
| MGMT-380 | Human Resource Management |
| MGMT-450 | Negotiations |
| MGMT-470 | Applied Entrepreneurship and Commercialization |
| MGMT-489 | Seminar in Management |
| MGMT-550 | Field Experience in Business Consulting |
| MGMT-560 | Strategy and Innovation |

## Management Information Systems

## Peter Rosenthal, Minor Adviser <br> (585) 475-7063, prosenthal@saunders.rit.edu

The management information systems minor is designed for students who wish to learn about computer-based information systems and how they are used in today's businesses. The minor enhances the career options of students in any major and increases their capacity to analyze, design, and manage business processes related to their program of study.

| COURSE |  |
| :--- | :--- |
| Required Course | Systems Analysis and Design |
| MGIS-330 |  |
| Electives | Database Management Systems |
| Choose four of the following: |  |
| MGIS-320 | Developing Business Applications |
| MGIS-350 | Building a Web Business |
| MGIS-360 | Object-oriented Business Programming |
| MGIS-415 | Database Systems Development |
| MGIS-425 | Advanced Systems Analysis and Design |
| MGIS-435 | Web Systems Development |
| MGIS-445 | Enterprise Systems |
| MGIS-450 | Seminar in MIS |
| MGIS-489 | MIS Capstone |
| MGIS-550 |  |

## Marketing

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

Marketing, sales, and customer-oriented aspects of the marketing minor broaden students' learning experiences and professional opportunities by creating a secondary focus in marketing.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| MKTG-230 | Principles of Marketing |
| Electives |  |
| Choose four of the following: |  |
| MKTG-310 | Marketing Metrics And Research |
| MKTG-320 | Internet Marketing |
| MKTG-350 | Consumer Behavior |
| MKTG-360 | Professional Selling |
| MKTG-370 | Advertising and Promotion Management |
| MKTG-410 | Search Engine Marketing and Analytics |
| MKTG-430 | Social Media Marketing |
| MKTG-489 | Seminar In Marketing |
| MKTG-550 | Marketing Strategy |
| INTB-320 | Global Marketing |

## Mathematics

## Bernard Brooks, Minor Adviser

## (585)475-5338, smsminors@rit.edu

The mathematics minor provides an opportunity for students to deepen their technical background and gain further appreciation for modern mathematical sciences.

| COURSE |  |
| :---: | :---: |
| Prerequisites |  |
| MATH-181 | Project-based Calculus I |
| Plus one of the following: |  |
| MATH-182 | Project-based Calculus II |
| MATH-190 | Discrete Mathematics for Computing |
| MATH-200 | Discrete Mathematics and Introduction to Proofs |
| Electives |  |
| Choose five of the following, with at least one from Group II: |  |
| Group I |  |
| MATH-219 | Multivariable Calculus |
| MATH-221 | Multivariable and Vector Calculus |
| MATH-231 | Differential Equations |
| MATH-233 | Linear Systems and Differential Equations |
| MATH-241 | Linear Algebra |
| MATH-251 | Probability and Statistics I |
| MATH-311 | Linear Optimization |
| MATH-312 | Nonlinear Optimization |
| MATH-321 | Game Theory |
| MATH-326 | Boundary Value Problems |
| MATH-331 | Dynamical Systems |
| MATH-361 | Combinatorics |
| MATH-367 | Codes and Ciphers |
| MATH-381 | Complex Variables |
| Group II |  |
| MATH-341 | Advanced Linear Algebra |
| MATH-351 | Graph Theory |
| MATH-371 | Number Theory |
| MATH-401 | Stochastic Processes |
| MATH-411 | Numerical Analysis |
| MATH-412 | Numerical Linear Algebra |
| MATH-431 | Real Variables I |
| MATH-432 | Real Variables II |
| MATH-441 | Abstract Algebra I |
| MATH-442 | Abstract Algebra II |
| MATH-461 | Topology |

## Mechanical Engineering

## Alan Nye, Minor Adviser <br> (585) 475-6121, ahneme@rit.edu

The minor in mechanical engineering exposes students to the core foundations of the discipline. Courses help non-majors explore high-technology careers and communicate more effectively with engineers on project teams. The minor consists of a sequence of five discipline-based courses that build on prerequisite knowledge from calculus and engineering mechanics. Elective courses provide additional depth of knowledge in an area of individual student interest.

| COURSE |  |
| :---: | :---: |
| Prerequisites |  |
| Choose one of the following: |  |
| MECE-102 | Engineering Mechanics Lab |
| PHYS-211 | University Physics I |
| Plus an approved course with significant programming content |  |
| Required Courses |  |
| MECE-104 | Engineering Design Tools |
| MECE-103 | Statics |
| MECE-110 | Thermodynamics |
| Electives |  |
| Choose two of the following:* |  |
| MECE-203 | Strength of Materials |
| MECE-210 | Fluid Mechanics I |
| MECE-205 | Dynamics |
| MECE-310 | Heat Transfer |
| MECE-305 | Materials Science with Applications |
| MECE-317 | Numerical Methods |
| MECE-320 | System Dynamics |
| MECE-355 | Fluid Mechanics II |
| MECE-360 | Advanced Computational Techniques |
| MECE-402 | Turbomachinery |
| MECE-403 | Propulsion |
| MECE-405 | Wind Turbine Engineering |
| MECE-406 | Advanced Solid Modeling and Design |
| MECE-407 | Biomedical Device Engineering |
| MECE-409 | Aerodynamics |
| MECE-410 | Flight Dynamics |
| MECE-411 | Orbital Mechanics |
| MECE-412 | Aerostructures |
| MECE-421 | Internal Combustion Engines |

[^7]
## Media Arts and Technology

Michael Riordan, Minor Adviser
(585) 475-4753, michael.riordan@rit.edu

The media arts and technology minor provides students with a fivecourse sampling of the media arts and technology major. Most students begin with the Design Production (MAAT-383) course and customize their selection of courses from diverse offerings related to media production, media architecture, media strategy, and media management.

## COURSE

## Required Course

| Choose one of the following: |  |
| :--- | :--- |
| MAAT-101 | Cross Media Foundations |
| MAAT-383 | Design Production |
| Electives |  |
| Choose four of the following: |  |
| MAAT-106 | Typography and Page Design |
| MAAT-107 | Imaging |
| MAAT-206 | Print Production Workflow |
| MAAT-256 | Principles of Printing |
| MAAT-301 | Database Publishing |
| MAAT-306 | Information Architecture Publishing |
| MAAT-307 | Finance and Accounting for Media Managers |
| MAAT-355 | Media Law |
| MAAT-356 | Multimedia Strategies |
| MAAT-357 | Color Management Systems |
| MAAT-358 | Estimating Practice |
| MAAT-361 | Digital Print Processes |
| MAAT-362 | Operations Management in the Graphic Arts |
| MAAT-363 | Media Industries Analysis |
| MAAT-364 | Digital News Systems Management |
| MAAT-366 | Introduction to Book Design |
| MAAT-367 | Image Processing Workflow |
| MAAT-368 | Gravure and Flexography |
| MAAT-369 | Bookbinding |
| MAAT-376 | Lithographic Process |
| MAATT-377 | Advanced Retouching and Restoration |
| MAAT-558 | Package Printing |
| MAAT-561 | Industry Issues and Trends |
| MAAT-566 | Typography Research |

## Microelectronic Engineering

## Michael Jackson, Minor Adviser <br> (585) 475-2828, majemc@rit.edu

The minor in microelectronic engineering provides basic integrated circuit fabrication skills to students from science and other engineering disciplines whose career path may involve the semiconductor industry. With one of the finest clean rooms in the world specializing in undergraduate microelectronic education, this minor provides students with a unique opportunity to experience a highly specialized and dynamic industry. The minor is closed to students majoring in microelectronic engineering.

| COURSE |  |
| :--- | :--- |
| Prerequisites* |  |
| MATH-182 | Project-based Calculus II |
| PHYS-212 | University Physics II |
| CHMG-131 | General Chemistry for Engineers (or equivalent) |
| Required Courses |  |
| MCEE-201 | IC Technology |
| MCEE-503 | Thin Films |
| Electives |  |
| Choose three of the following: |  |
| EEEE-260 | Semiconductor Devices |
| MCEE-360 | Semiconductor Devices-MicroE |
| MCEE-502 | Semiconductor Process Integration |
| MCEE-505 | Microlithography Materials and Processing |
| MCEE-515 | Nanolithography Systems |
| MCEE-550 | CMOS Processing |
| MCEE-720 | Photovoltaics |
| MCEE-730 | Metrology for Failure Analysis and Yield of ICs |
| MCEE-732 | Evaluation of Microelectronic Manufacturing |
| MCEE-770 | Microelectromechanical Systems |

* Additional prerequisites may be required based on the choice of microelectronic engineering electives.


## Military Studies and Leadership

## Lt. Col. Ann M. Gallucci, Minor Adviser (585) 475-5198, amgair@rit.edu Lt. Col. Chris Otero, Minor Adviser (585) 475-5545, cdoarm@rit.edu

The minor in military studies and leadership provides students the opportunity to learn about military officer training and its mission to develop leaders for tomorrow's Armed Forces. Courses promote leadership and management, skills that can be employed in any career field, along with courses analyzing the military's role in national security affairs and foreign policy. Students choose the Air Force track or the Army track. Please note: This minor is available to all ROTC cadets. Students who are interested in this minor, but are not enrolled in the ROTC program, must gain approval and appropriate waivers before registering for courses.

| COURSE |  |
| :--- | :--- |
| Air Force track |  |
| Required Courses | Foundations of the U.S. Air Force I |
| AERO-101 | Foundations of the U.S. Air Force II |
| AERO-102 | History of Airpower I |
| AERO-201 | History of Airpower II |
| AERO-202 | National Security Forces I |
| AERO-401 | National Security Forces II and Preparation for Active Duty |
| AERO-402 | Air Force Management and Leadership I |
| MGMT-300 | Air Force Management and Leadership II |
| MGMT-301 |  |
| Army track |  |
| Required Courses | Introduction to Leadership |
| ARMY-101 | Introduction to Tactical Leadership |
| ARMY-102 | Innovative Team Leadership |
| ARMY-201 | Foundations of Tactical Leadership |
| ARMY-202 | Adaptive Team Leadership |
| ARMY-301 | Applied Team Leadership |
| ARMY-302 | Adaptive Team Leadership II |
| ARMY-401 | Leadership in a Complex World |
| ARMY-402 |  |

## Mobile Design and Development

## Bryan French, Minor Adviser

## (585) 475-5231, bdfvks@rit.edu

The minor in mobile design and development provides non-computing majors with a firm foundation in designing applications for mobile devices. There is an explosion in the types and amount of mobile devices and this minor is designed to provide students with the ability to design and implement cross-platform applications. This minor is closed to students majoring in any degree program offered by the B. Thomas Golisano College of Computing and Information Sciences.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ISTE-120 | Computational Problem Solving in the Information Domain I |
| ISTE-140 | Web and Mobile I |
| ISTE-240 | Web and Mobile II |
| ISTE-260 | Designing the User Experience |
| ISTE-252 | Foundations of Mobile Design |

## Mobile Development

## Bryan French, Minor Adviser

## (585) 475-5231, bdfvks@rit.edu

The minor in mobile development provides students enrolled in computing degree programs with experience designing and creating compelling native applications for mobile devices. Smartphones are outselling desktop computers. New mobile devices of varying sizes, types, and uses are being created everyday for both businesses and personal use and contexts. Developers are needed to create applications for these needs that perform well on the major mobile platforms.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ISTE-140 | Web and Mobile I* |
| ISTE-240 | Web and Mobile II $\dagger$ |
| ISTE-252 | Foundations of Mobile Design |
| ISTE-340 | Client Programming |
| ISTE-454 | Mobile Application Development I $\ddagger$ |
| ISTE-456 | Mobile Application Development II $\ddagger$ |

[^8]
## Modern Language - Arabic

## Hiroko Yamashita, Minor Adviser

(585) 475-6074, hxygs!@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent speakers of Arabic.

## course

Electives
Choose five consecutive language courses:

| MLAR-201 | Beginning Arabic I |
| :--- | :--- |
| MLAR-202 | Beginning Arabic II |
| MLAR-301 | Intermediate Arabic I |
| MLAR-302 | Intermediate Arabic II |
| MLAR-401 | Advanced Arabic I |
| MLAR-402 | Advanced Arabic II |
| Students can take up to two culture courses as part of the Arabic minor. In addition to culture courses listed <br> for the minor, other courses from other departments or schools dealing with aspects of Arabic culture may be <br> approved by the faculty adviser. |  |
| ANTH-240 |  |

## Modern Language - Chinese

## Zhong Chen, Assistant Professor

(585) 475-6917, zxcgs!@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent speakers of Chinese.

| COURSE |  |
| :--- | :--- |
| Electives Beginning Chinese I <br> Choose five consecutive language courses:  <br> MLCH-201 Beginning Chinese II <br> MLCH-202 Intermediate Chinese I <br> MLCH-301 Intermediate Chinese II <br> MLCH-302 Advanced Chinese I <br> MLCH-401 Advanced Chinese II <br> MLCH-402  |  |
| Students can take up to two culture courses as part of the Chinese minor. In addition to culture courses listed <br> for the minor, other courses from other departments dealing with aspects of Chinese culture may be approved <br> by the faculty adviser. |  |
| ANTH-255 | Regional Archaeology* |
| HIST-261 | History of Modern China |
| HIST-260 | History of Pre-modern China |
| HIST 365 | Conflict in Modern East Asia |
| POLS-350 | Politics in East Asia |
| PHIL-311 | East Asian Philosophy |
| * This course may be taken when the topic focuses on East Asia. |  |

## Modern Language - French

## Philippe Chavasse, Minor Adviser

## (585) 475-3158, pxcgsl@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent native speakers of French.

## COURSE

## Electives

Choose five consecutive language courses:

| MLFR-201 | Beginning French I |
| :--- | :--- |
| MLFR-202 | Beginning French II |
| MLFR-301 | Intermediate French I |
| MLFR-302 | Intermediate French II |
| MLFR-401 | Advanced French I |
| MLFR-402 | Advanced French II |

Students can take up to two culture courses as part of the French minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of French and Francophone cultures may also be approved by the faculty adviser.

| MLFR-351 | French Films and Hollywood |
| :--- | :--- |
| MLFR-352 | The French Heritage in Film |
| HIST-270 | History of Modern France |
| HIST-275 | Screening the Trenches: A History of WWI through Film |

HIST-275 Screening the Trenches: A History of WWI through Film
ARTH-364 Art in Paris

## Modern Language - Italian

## Elisabetta D'Amanda, Minor Adviser (585) 475-6522, exdgla@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent native speakers of Italian.
COURSE

## Electives

| Choose five consecutive language courses: |  |
| :--- | :--- |
| MLIT-201 | Beginning Italian I |
| MLIT-202 | Beginning Italian II |
| MLIT-301 | Intermediate Italian I |
| MLIT-302 | Intermediate Italian II |
| MLIT-401 | Advanced Italian I |
| MLIT-402 | Advanced Italian II |

Students can take up to two culture courses as part of the Italian minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Italian culture may be approved by the faculty adviser.

| ARTH-311 | Art and Architecture of Italy: 1250-1400 |
| :--- | :--- |
| ARTH-312 | Art and Architecture of Italy: 1600-1750 |
| ARTH-317 | Art and Architecture of Florence and Rome: 15th Century |
| ARTH-318 | Art and Architecture of Florence and Rome: 16th Century |

## Modern Language - Japanese

## Yukiko Maru Leary, Minor Adviser

(585) 475-4558, yxmgsl@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent native speakers of Japanese.

| COURSE |  |
| :--- | :--- |
| Electives | Beginning Japanese I |
| Choose five consecutive language courses: |  |
| MLJP-201 | Beginning Japanese II |
| MLJP-202 | Intermediate Japanese I |
| MLJP-301 | Intermediate Japanese II |
| MLJP-302 | Advanced Japanese I |
| MLJP-401 | Advanced Japanese II |
| MLJP-402 | Professional Japanese |
| MLJP-403 | Advanced Speaking in Japanese |
| MLJP-405 | Lapanese Culture in Print |
| Students can take up to two culture courses as part of the Japanese minor. In addition to culture courses listed |  |
| for the minor, other courses from other departments dealing with aspects of Japanese culture, society, history, |  |
| and art may also be approved by the faculty adviser |  |
| MLJP-404 | Japanese Society |
| MLJP-351 | Structure of the Japanese Language |
| MLJP-451 | The United States and Japan |
| HIST-450 | History of Modern Japan |
| HIST-252 | History of Pre-modern Japan |
| HIST-265 | The Samurai in Word and Image |
| HIST-266 | Politics in East Asia |
| HIST-465 | Regional Archaeology* |
| POLS-350 | East Asian Philosophy |
| ANTH-255 | Anime |
| PHIL-311 |  |
| FNRT-200 |  |

* Course may be used when topic focuses on East Asia.


## Modern Language - Portuguese

## Hiroko Yamashita, Minor Adviser

## (585) 475-6074, hxygs@@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent speakers of Portuguese.

## course

Electives
Choose five consecutive language courses:

| MLPO-201 | Beginning Portuguese I |
| :--- | :--- |
| MLPO-202 | Beginning Portuguese II |
| MLPO-301 | Intermediate Portuguese I |
| MLPO-302 | Intermediate Portuguese II |
| MLPO-401 | Advanced Portuguese I |
| MLPO-402 | Advanced Portuguese II |

Students can take up to two culture courses as part of the Portuguese minor. In addition to culture courses listed for the minor, other courses from other departments or schools dealing with aspects of Brazilian Portuguese, or other Lusophone cultures may also be approved by the faculty adviser. ANTH-335

Culture and Politics in Latin America

## Modern Language - Russian

## Hiroko Yamashita, Minor Adviser

## (585) 475-6074, hxygs!@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent speakers of Russian.

## COURSE

## Electives*

| Choose five of the following: |  |
| :--- | :--- |
| MLRU-201 | Beginning Russian I |
| MLRU-202 | Beginning Russian II |
| MLRU-301 | Intermediate Russian I |
| MLRU-302 | Intermediate Russian II |
| MLRU-401 | Advanced Russian I |
| MLRU-402 | Advanced Russian II |

Students can take up to two culture courses as part of the Russian minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Russian culture may be approved by the faculty adviser.
ENGL-418 Great Authorst
ENGL-416 Topics in Global Literatures $\dagger$

* Under special circumstances, and with permission of the minor adviser, up to two culture courses may be substituted for two sequential language courses. Students should contact the minor adviser for a list of approved culture courses.
$\dagger$ When course specifically pertains to Russian authors


## Modern Language-Spanish

## Diane Forbes, Minor Adviser

## (585) 475-6765, djfgs@@rit.edu

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad. This minor is closed to fluent native speakers of Spanish
course

| Electives |  |
| :---: | :---: |
| Choose five consecutive language courses: |  |
| MLSP-201A | Beginning Spanish IA* |
| MLSP-201B | Beginning Spanish IB* |
| MLSP-202 | Beginning Spanish II |
| MLSP-301 | Intermediate Spanish I |
| MLSP-302 | Intermediate Spanish II |
| MLSP-401 | Advanced Spanish I |
| MLSP-402 | Advanced Spanish II |
| Students can take up to two culture courses as part of the Spanish minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Hispanic cultures may also be approved by the faculty adviser. |  |
| MLSP-351 | Gender and Sexuality |
| MLSP-352 | Caribbean Cinema |
| MLSP-353 | Trauma and Survival in First-person Narrative |
| ANTH-255 | Regional Archaeologyt |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-350 | The Global Economy and the Grassroots |
| ANTH-235 | Immigration to the U.S. |
| ENGL-416 | Topics in Global Literatures $\ddagger$ |
| ENGL-418 | Great Authors $\ddagger$ |
| ARTH-561 | Latin American Art |
| * Students who begin the language sequence at the Beginning I Level will take either Beginning Spanish IA (MLSP-201A) or Beginning Spanish 1B (MLSP-201B). Placement will be determined in consultation with the department. |  |
| $\dagger$ When course focuses on Mesoamerica |  |
| $\ddagger$ When cours | ish and/or Latin American literature |

## Minors

## Museum Studies

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

The museum studies minor provides students with a foundation in the history and practice of the museum as an institution and in the history, theory, and practice of collecting, exhibiting, and preserving the cultural heritage that defines the purpose and function of the museum. Courses cover a wide range of topics that are relevant to contemporary museology: the history of museums and collecting, the technical study of art and materials, the history and theory of exhibitions, interactive design, public history, the rise of the museum profession, legal and ethical concerns, and conservation. This minor is closed to students majoring in museum studies.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| MUSE-220 | Introduction to Museums and Collecting |
| MUSE-221/HIST-221 | Introduction to Public History |
| Electives |  |
| Choose three of the following:* |  |
| HIST-322 | Monuments and Memory |
| HIST-323 | America's National Parks |
| HIST-324 | Oral History |
| HIST-325 | Museums and History |
| MUSE-224 | History and Theory of Exhibitions |
| MUSE-225 | Museums and the Digital Age |
| MUSE-340 | Introduction to Archival Studies |
| MUSE-341 | Museum Education and Interpretation |
| MUSE-358 | Legal and Ethical Issues |
| MUSE-360 | Visitor Engagement and Technologies |
| MUSE-489 | Special Topics |

* At least one course must be a MUSE course and one must be a HIST course.


## Music and Technology

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

The music and technology minor includes courses in music theory, music history, contemporary and historical musical instrument technology, acoustics, audio engineering, music for media, and music performance. This minor provides students with an avenue to integrate their technological interests and skills with music.

| COURSE |  |
| :--- | :--- |
| Required Courses | Fundamentals of Audio Engineering |
| FEET-261 | Music Theory I |
| FNRT-205 |  |
| Electives | Modern Audio Production |
| Choose three of the following:* |  |
| EEET-361 | Music in the U.S. |
| FNRT-201 | Studies in World Music |
| FNRT-202 | American Pop and Rock |
| FNRT-203 | Music and the Stage |
| FNRT-204 | Bach, Handel and Baroque |
| FNRT-210 | Era of Haydn, Mozart and Beethoven |
| FNRT-211 | Singers |
| FNRT-250 | Orchestra |
| FNRT-251 | Concert Band |
| FNRT-252 | World Music Ensemble |
| FNRT-253 | Jazz Ensemble |
| FNRT-254 | Chamber Orchestra |
| FNRT-255 | Music of the Romantic Era |
| FNRT-320 | Music Since 1900 |
| FNRT-321 | Survey of Jazz |
| FNRT-322 | Survey of African American Music |
| FNRT-323 | Sounds of Protest |
| FNRT-324 | American Popular Song |
| FNRT-325 | History of Musical Instruments |
| FNRT-326 | American Musical Theatre |
| FNRT-327 | Music Theory II |
| FNRT-485 | Digital Audio Production |
| IGME-570 | Interactive Games Audio |
| IGME-571 | *I is strongly recommended that students select two music electives and one technology elective. At |
| least two courses must be at the 300 level or higher. |  |

## Music Performance

## College of Liberal Arts, Office of Student Services <br> (585) 475-2444, libarts@rit.edu

The music performance minor combines courses in music theory, music history, and world music with practical application through ensemble participation and applied music study. This combination of the academic and the practical offers students a more profound understanding of the art of music, and in a broader sense, an introduction to cultural development and the communication of ideas. A total of 15 credit hours from the suggested list of courses must be earned for the minor, with three credits in music theory and three credits from ensemble participation, required.
course

## Required Course

FNRT-205
Music Theory I
Students choose at least three semester credits of the following one credit courses:

| FNRT-250 | Singers |
| :--- | :--- |
| FNRT-251 | Orhestra |
| FNRT-252 | Concert Band |
| FNRT-253 | World Music Ensemble |
| FNRT-254 | Jazz Ensemble |
| FNRT-255 | Chamber Orchestra |

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| FNRT-201  <br> FNRT-202 Music in the U.S. <br> FNRT-203 Studies in World Music <br> FNRT-204 American Pop and Rock <br> FNRT-210 Music and the Stage <br> FNRT-211 Bach, Handel and the Baraque <br> FNRT-320 Era of Haydn, Mozart and Beethoven <br> FNRT-321 Music of the Romantic Era <br> FNRT-322 Music Since 1900 <br> FNRT-323 Survey of Jazz <br> FNRT-324 African American Music <br> FNRT-325 Sounds of Protest <br> FNRT-326 American Popular Song <br> FNRT-327 History of Musical Instruments <br> FNRT-485 American Musical Theater <br> *A minimum of two courses must be 300 level or above.  |  |

A minimum of two courses must be 300 level or above.

## Networking and Systems Administration

## Larry Hill, Minor Adviser <br> (585) 475-7064, Lawrence.Hill@rit.edu

This minor provides computing students with a firm foundation in networking and/or systems administration. Computer networks and the systems attached to these networks have become ubiquitous. Therefore, knowledge of how computer networks function, their administration, and the administration of the systems attached to them can be of value to every computing professional since their work is impacted in some way by computer networks and computer systems. Students may choose between two tracks: networking or system administration.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Computer Systems Concepts |
| NSSA-102 | Introduction to Routing and Switching |
| NSSA-241 |  |
| Required Courses |  |
| Student choose one track and complete all courses: |  |
| Networking | Wireless Networking |
| NSSA-242 | VoIP and Unified Communications |
| NSSA-341 | Mobile Ad Hoc and Sensor Networks |
| NSSA-445 |  |
| System Administration | Task Automation with Interpretive Languages |
| NSSA-220 | System Administration I |
| NSSA-221 | Virtualization |
| NSSA-244 |  |

## Optical Science

## Zoran Ninkov, Minor Adviser <br> (585) 475-7195, ninkov@cis.rit.edu Michael Kotlarchyk, Minor Adviser (585) 475-6115, mnksps@rit.edu

Optical science techniques are used in a variety of consumer products (e.g., digital cameras, CD players), communication technologies (optical fibers), medical imaging (infrared imaging), and the sciences (surveillance, remote sensing, astronomical systems). This minor can be an important complement to studies in electrical and microelectronic engineering, the biological sciences, physics, chemistry, mathematics, technical photography, and various majors in the field of applied science and technology.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Group A |  |
| Choose one of the following: | Geometric Optics |
| IMGS-321 | Physical Optics |
| IMGS-322 | Physical Optics |
| PHYS-365 | Nanolithography Systems |
| MCEE-515 | Photographic Optics |
| PHPS-211 |  |
| Group B | Laser Physics |
| Choose one of the following: | Radiometry |
| PHYS-408 |  |
| IMGS-251 | Detectors |
| Group C | Design and Fabrication of a Solid State Camera |
| Choose one of the following: | Testing of Focal Plane Arrays |
| IMGS-451 |  |
| IMGS-528 |  |
| IMGS-542 | Vision and Psychophysics |
| Group D | Physical Optics |
| Choose two of the following: | IMGS-221 Interaction of Light and Matter <br> IMGS-322 Modern Physics I <br> IMGS-341 Electricity and Magnetism II <br> PHYS-213 Quantum Chemistry <br> PHYS-412 Microlithography Systems and Lab <br> CHMP-442 Scanning Electron Microscopy <br> EEEE-374  <br> MCEE-515 PHPS-316 |

## Packaging Science

## Stefanie Soroka, Minor Adviser

## (585) 475-4974, swsmet@rit.edu

The packaging science minor offers courses covering a broad range of packaging activities, including development/design, testing, marketing, and production. Related legal, economic, and environmental/sustainability concerns are also addressed. Students from majors such as engineering, engineering technology, multidisciplinary studies, management, marketing, international business, industrial design, and print media could all benefit from the packaging science minor.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| PACK-301 | Packaging Materials |
| PACK-302 |  |
| Electives | Packaging Containers |
| Choose three of the following: |  |
| PACK-471 | Packaging Supply Chain |
| PACK-530 | Characterization and Evaluation of Polymer Packaging |
| PACK-535 | Pharmaceutical and Medical Packaging |
| PACK-546 | Pharmaceutical and Medical Packaging Lab |
| PACK-547 | Import/Export Packaging |
| PACK-555 | Packaging Machinery |
| PACK-550 |  |

## Minors

## Philosophy

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

The philosophy minor provides students with the critical skills of philosophical analysis while they take courses on a wide variety of issues central to everyone's existence. Students get a solid grasp of the major philosophers, movements, and topics of philosophical debate that continue to shape our lives and how we act. This minor is closed to students majoring in philosophy.

| COURSE |  |
| :--- | :--- |
| Electives | Ancient Philosophy |
| Choose five of the following:* |  |
| PHIL-201 | Foundations of Moral Philosophy |
| PHIL-202 | Modern Philosophy |
| PHIL-203 | Symbolic Logic |
| PHIL-205 | Philosophy of Religion |
| PHIL-301 | Symbolic Logic |
| PHIL-302 | Philosophy of Art/Aesthetics |
| PHIL-303 | Philosophy of Law |
| PHIL-304 | Philosophy of Peace |
| PHIL-305 | Professional Ethics |
| PHIL-306 | Philosophy of Technology |
| PHIL-307 | Environmental Philosophy |
| PHIL-308 | Feminist Theory |
| PHIL-309 | Theories of Knowledge |
| PHIL-310 | East Asian Philosophy |
| PHIL-311 | American Philosophy |
| PHIL-312 | Philosophy of Film |
| PHIL-313 | Philosophy of Vision and Imaging |
| PHIL-314 | Responsible Knowing |
| PHIL-315 | Great Thinkers |
| PHIL-401 | Philosophy of Science |
| PHIL-402 | Social and Political Philosophy |
| PHIL-403 | Philosophy of Mind |
| PHIL-404 | Philosophy of the Social Sciences |
| PHIL-405 | Contemporary Philosophy |
| PHIL-406 | Philosophy of Action |
| PHIL-407 | Critical Social Theory |
| PHIL-408 | Existentialism |
| PHIL-409 | Medieval Philosophy |
| PHIL-410 | Metaphysics |
| PHIL-411 | Nineteenth Century Philosophy |
| PHIL-412 | Philosophy and Literary Theory |
| PHIL-413 | Philosophy of Language |
| PHIL-414 | Sthical Theory |
| PHIL-415 | Continental European Philosophy |
| PHIL-416 | PHIL-417 |
| PHIL-579 | Shilo |

[^9]
## Physics

## Dawn Hollenbeck, Minor Adviser

## (585) 475-6652, dmhsps@rit.edu

Students have the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Project-based Calculus I |
| MATH-181 | Project-based Calculus II |
| MATH-182 | University Physics I |
| PHYS-211 | University Physics II |
| PHYS-212 |  |
| Required Courses | Modern Physics I |
| PHYS-213 | Vibrations and Waves |
| PHYS-283 |  |
| Electives | Experiments in Modern Physics |
| Choose three of the following |  |
| Group A least one must come from Group A and at least one from Group B): |  |
| PHYS-315 | Advanced Laboratory in Physics |
| PHYS-316 | Physical Optics |
| PHYS-365 | Advanced Computational Physics |
| PHYS-377 | Modern Physics II |
| Group B | Mathematical Methods in Physics |
| PHYS-214 | Classical Mechanics |
| PHYS-320 | Electricity and Magnetism |
| PHYS-330 | Quantum Mechanics |
| PHYS-411 | Thermal and Statistical Physics |
| PHYS-414 | Introduction to Chaotic Dynamics in Physics |
| PHYS-440 | Laser Physics |
| PHYS-360 |  |
| PHYS-408 |  |

## Political Science

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The political science minor emphasizes the interdependence of domestic politics and international relations in the age of globalization. The minor brings together components of American politics, international relations, and comparative politics to provide students with both national and global perspectives on politics. Perhaps most important, the political science minor seeks to help students make sense of the increasingly complicated political environment that confronts them in their role as citizens. This minor is closed to students majoring in political science.

| COURSE |  |
| :---: | :---: |
| Required Course |  |
| Choose one of the following: |  |
| POLS-110 | American Politics |
| POLS-120 | Introduction to International Relations |
| Electives* |  |
| American politics |  |
| Choose two of the following: |  |
| POLS-115 | Ethical Debates in American Politics |
| POLS-200 | Law and Society |
| POLS-250 | State and Local Politics |
| POLS-290 | Politics and the Life Sciences |
| POLS-295 | Cyberpolitics |
| POLS-300 | Rhetoric and Political Deliberation |
| POLS-305 | Political Parties and Voting |
| POLS-310 | The Congress |
| POLS-315 | The American Presidency |
| POLS-320 | American Foreign Policy |
| POLS-345 | Politics and Public Policy |
| POLS-355 | Political Leadership |
| POLS-415 | Evolution and Law |
| POLS-420 | Primate Politics |
| POLS-425 | Constitutional Law |
| POLS-430 | Constitutional Rights and Liberties |
| POLS-435 | American Political Thought |
| POLS-460 | Classical Constitutionalism, Liberty and Equality |
| POLS-465 | Modern Constitutionalism, Liberty and Equality |
| POLS-480 | Women in Politics |
| POLS-485 | Politics Through Fiction |
| POLS-490 | Politics Through Film |
| POLS-525 | Special Topics in Political Science |
| International relations |  |
| Choose two of the following: |  |
| POLS-205 | Ethics in International Politics |
| POLS-210 | Comparative Politics |
| POLS-215 | Technology, Ethics, and Global Politics |
| POLS-220 | Global Political Economy |
| POLS-285 | Environmental Ethics and Political Ecology |
| POLS-325 | International Law and Organizations |
| POLS-320 | American Foreign Policy |
| POLS-330 | Human Rights in Global Perspective |
| POLS-335 | Politics of Developing countries |
| POLS-350 | Government and Politics of East Asia |
| POLS-360 | International Political Thought |
| POLS-370 | Cyberwar, Robots, and the Future of Conflict |
| POLS-410 | Evolutionary International Relations |
| POLS-440 | War and the State |
| POLS-445 | Terrorism and Political Violence |
| POLS-455 | Comparative Public Policy |
| POLS-525 | Special Topics in Political Science |

## Psychology

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The minor in psychology provides the opportunity for students to take courses comprising the study of behavior. Students may select from among a variety of courses, which enables students to customize their minor while getting wide exposure to important concepts, issues, methods, and theories in psychology. This minor is closed to students majoring in psychology.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| PSYC-101 | Introduction to Psychology |
| Electives |  |
| Choose four of the following: |  |
| PSYC-221 | Abnormal Psychology |
| PSYC-222 | Biopsychology |
| PSYC-223 | Cognitive Psychology |
| PSYC-224 | Perception |
| PSYC-225 | Social Psychology |
| PSYC-231 | Death and Dying |
| PSYC-232 | Developmental Psychology |
| PSYC-233 | History and Systems |
| PSYC-234 | Industrial and Organizational Psychology |
| PSYC-235 | Learning and Behavior |
| PSYC-236 | Personality |
| PSYC-237 | Psychology of Women |
| PSYC-238 | Psychology of Religion |
| PSYC-239 | Positive Psychology |
| PSYC-240 | Psychology of Human Sexuality |

## Public Policy

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

The public policy minor provides students with a foundation in the field of public policy and allows them to make connections between public policy and other fields of study. The minor underscores the role of public policy on science and technology-based problems. Students obtain a deeper understanding of public policy and the policy making process, how policy analysis impacts policymaking, and how public policies operate within a number of specific science or technological domains. This minor is closed to students majoring in public policy.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| Choose one of the following: |  |
| PUBL-101 | Foundations of Public Policy |
| STSO-201 | Science and Technology Policy |
| PUBL-201 | Ethics, Values and Public Policy |
| Required Courses |  |
| Choose four of the following (at least two must be at the 300 level or higher): |  |
| PUBL-210 | Introduction to Qualitative Methods |
| PUBL-301 | Public Policy Analysis |
| PUBL-302 | Decision Analysis |
| PUBL-363 | Cybersecurity Policy and Law |
| PUBL-455 | Comparative Public Policy |
| PUBL-489 | Special Topics in Public Policy |
| PUBL-510 | Technology Innovation and Public Policy |
| PUBL-520 | Information and Communication Policy |
| PUBL-530 | Energy Policy |
| STSO-421 | Environmental Policy |

[^10]
## Science, Technology, and Society

## College of Liberal Arts, Office of Student Services <br> (585) 475-2444, libarts@rit.edu

This minor integrates the studies of human society, science, and technology in their social content and context. The minor bridges the humanities and social sciences to provide better understanding of the ways in which science, technology, and society are mutually interacting forces in our world. Students learn how to analyze the social institutions, the built environment, and their role in creating them. This minor enhances a student's ability to contribute to the development of science and technology in ways that are historically, culturally, and ethically informed.

| COURSE |  |
| :--- | :--- |
| Required Course | Seminar in STS |
| STSO-510 |  |
| Electives | Literature and Technology |
| Choose four of the following:* |  |
| ENGL-419 | Philosophy of Science |
| PHIL-402 | Energy Policy |
| PUBL-530 | Science Technology and Values |
| STSO-140 | Science and Technology Policy |
| STSO-201 | Social Consequences of Technology |
| STSO-240 | History of Women in Science and Engineering |
| STSO-245 | Face of the Land |
| STSO-321 | Biomedical Issues |
| STSO-341 | Gender, Science and Technology |
| STSO-342 | Makers of Modern Science |
| STSO-345 | History of American Technology |
| STSO-346 | Cyborg Theory |
| STSO-441 | Science, Technology and Society Classics |
| STSO-442 | History of Science |
| STSO-445 | History of Chemistry |
| STSO-446 | Special Topics in STS |
| STSO-489 |  |

* At least one course must be at the 300 level or higher.


## Software Engineering

## Sarah Mittiga, Minor Adviser <br> (585) 475-2012, sarah@se.rit.edu

Students in disciplines with a heavy reliance on software applications may be interested in pursuing a minor in software engineering. The minor provides a broad view of the software engineering landscape including introductory material and fundamentals in design and process. Students deepen their software design skills and learn techniques for working on a productive software engineering team by choosing electives in design or process to gain a deeper understanding of one of these areas, or they may choose to balance their courses for a broad view of both topics.

| COURSE |  |
| :--- | :--- |
| Required Courses | Introduction to Software Engineering |
| SWEN-261 | Engineering of Software Subsystems |
| SWEN-262 | Software Process and Project Management |
| SWEN-256 |  |
| Electives | Secure Software System Development |
| Choose two from the following groups: |  |
| Design | Engineering of Concurrent and Distributed Software Systems |
| SWEN-331 | Engineering of Enterprise Software Systems |
| SWEN-342 | Real Time and Embedded Systems |
| SWEN-343 | Modeling of Real Time Systems |
| SWEN-344 | Performance Engineering of Real Time and Embedded Systems |
| SWEN-461 | Software Engineering Design Seminar |
| SWEN-462 |  |
| SWEN-463 | Software Process and Product Quality |
| SWEN-549 | Software Testing |
| Process | Trends in Software Development Processes |
| SWEN-350 | Software Engineering Process Seminar |
| SWEN-352 |  |
| SWEN-356 | Mathematical Models of Software |
| SWEN-559 | Software System Requirements and Architectures |
| Other | Human Centered Requirements and Design |
| SWEN-220 | Software Engineering Seminar |
| SWEN-440 |  |
| SWEN-444 |  |

## Structural Design

## Amanda Bao, Minor Adviser <br> (585) 475-4956, axbite@rit.edu

The structural design minor creates a focus on the different types of structures and materials used in design. It also introduces related design codes. The minor is designed to accommodate students majoring in mechanical engineering technology or mechanical engineering. This minor is not available for students majoring in civil engineering technology.

## COURSE

Required Courses

| CVET-230 | Elementary Structures |
| :--- | :--- |
| CVET-332 | Structural Analysis with STAAD |
| CVET-431 | Structural Design-Steel |
| CVET-432 | Structural Design-Reinforced Concrete |
| Elective |  |
| Choose one of the following: |  |
| CVET-433 | Structural Timber Design |
| CVET-434 | Design of Highway Bridges |
| CVET-435 | Pre-stressed Concrete |
| CVET-436 | Masonry Structures |

## Supply Chain Management

## Peter Rosenthal, Minor Adviser

## (585) 475-7063, prosenthal@saunders.rit.edu

The supply chain management minor provides students with the knowledge to assist in developing and implementing efficient supplier systems in order to maximize customer value. Supply chain management is the coordination of the associated processes required both within a business, as well as across businesses and suppliers, to deliver products and services-from raw materials to customer delivery. The minor provides students with a background in areas commonly needed to support supply chain manangement, including business strategy, information systems, lean/quality management, customer service, purchasing, negotiations, contracts, forecasting, inventory management, logistics, and project management. Completion of this minor provides students with Lean SixSigma Yellow Belt body of knowledge.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| Choose one of the following: |  |
| DECS-310 | Production Planning and Scheduling |
| ISEE-420 |  |
| Required Courses | Lupply Chain Management |
| DECS-435 | Enterprise Systems |
| ISEE-582 |  |
| MGIS-450 |  |
| Electives | Business Law II |
| Choose two of the following: | Managing Supplier Relations |
| BLEG-300 | Cross-Cultural Management |
| DECS-445 | Regional Business Studies |
| INTB-300 | Global Entry and Competition Strategies |
| INTB-310 | Engineering Management |
| INTB-550 | Contemporary Production Systems |
| ISEE-350 | Supply Chain Management |
| ISEE-626 | Logistics Management |
| ISEE-703 | Production Systems Management |
| ISEE-704 | Database Management Systems |
| ISEE-728 | Systems Analysis and Design |
| MGIS-320 | Negotiations |
| MGIS-330 |  |
| MGMT-450 |  |

## Sustainable Product Development

## Brian Thorn, Minor Adviser <br> (585) 475-6166, bkteie@rit.edu

This multidisciplinary minor is for students interested in exploring issues associated with developing and delivering sustainable product systems. Courses enhance the understanding of the three dimensions of sustainability (economic, ethical, and environmental), develop awareness of the need for more sustainable approaches to product development, and explore strategies for developing and delivering sustainable product systems.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ISEE-345 | Engineering Economy* |
| ISEE-785 | Fundamentals of Sustainable Engineering |
| ISE--786 | Lifecycle Assessment |
| Electives |  |
| Choose two courses from the following groups (at least one course must come from the social context group): |  |
| Social Context |  |
| ANTH-280 | Sustainable Development |
| CMDS-333 | Wicked Problems |
| ECON-520 | Environmental Economics |
| PUBL-510 | Technology Innovation and Public Policy |
| PUBL-530 | Energy Policy |
| STSO-120 | Introduction to Environmental Studies |
| STSO-140 | Science, Technology, and Values |
| STSO-201 | Science and Technology Policy |
| STSO-220 | Environment and Society |
| STSO-240 | Social Consequences of Technology |
| STSO-326 | History of Ecology and Environmentalism |
| STSO-321 | Face of the Land |
| STSO-330 | Energy and the Environment |
| STSO-421 | Environmental Policy |
| STSO-442 | Great Lakes |
| STSO-521 | Biodiversity and Society |
| STSO-550 | Sustainable Communities |
| Technical |  |
| EEEE-221 | Clean and Renewable Energy Systems and Sources |
| EEET-51, 252 | Green Energy Systems and Lab |
| ESHSSS0 | Solid and Hazardous Waste Management |
| ESHS-330 | Industrial Wastewater Management |
| ESHS-500 | Social Responsibilty and Environmental Sustainability |
| ESHS-525 | Air Emissions Management |
| ESHS-720 | Environment, Health, and Safety Management |
| ISEE-684 | Engineering and the Developing World |
| ISEE-787 | Design for the Environment |
| MECE-348 | Contemporary Issues in Energy and the Environment |
| MCEE-520 | Photovoltaic Science and Engineering |
| MCET-560 | Alternative Energy |
| MCET-580 | Plastics Manufacturing Technology |
| MCET-583 | Plastics Product Design |
| MECE-629 | Renewable Energy Systems |
| PACK-530 | Packaging Sustainability and the Environment |
| StS |  |

* Students majoring in industrial engineering must complete an alternative course.


## Theater Arts

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

The theatre arts minor provides an iterative balance of theory and practice that engages students intellectually and creatively. This combination of critical thinking and experiential learning offers students an in-depth understanding of the art of theatre, as well as an introduction to the role of theatre as both a form of commentary on, and as a reflection of, society and culture. The minor includes student participation in a minimum of three department sponsored theatre productions via Theatre Ensemble (FNRT-230) and Dramatic Theory and Text Analysis (FNRT-207).

## COURSE

Required Courses
FNRT-207 Dramatic Theory and Text Analysis
FNRT-230 Theatre Ensemble*

## ectives

| Choose three of the following |  |
| :--- | :--- |
| FNRT-204 | Music and the Stage |
| FNRT-231 | Theory and History of Acting |
| FNRT-260 | Design/Stagecraft Apprenticeshipt |
| FNRT-301 | Theatre in Europe |
| FNRT-302 | Theatre in the United States |
| FNRT-303 | Shakespeare the Dramatist |
| FNRT-304 | African American Playwrights |
| FNRT-489 | Special Topics in Performing Arts |
| FNRT-490 | Special Topics in Performing Arts |

* Students must take Theatre Ensemble (FNRT-230) three times.
$\dagger$ Students may substitute one credit of Design/Stagecraft Apprenticeship (FNRT-260) for one credit of Theatre Ensemble (FNRT-230)


## Urban Studies

## College of Liberal Arts, Office of Student Services <br> (585) 475-2444, libarts@rit.edu

This minor focuses on the interplay between urban issues and urban policy. Every metropolitan area must address such enduring issues as poverty, housing, homelessness, transportation, education, crime, safety, recreation, and economic development. Each urban community must do so with an understanding of its unique social mix and neighborhood relations, and with recognition of its place in wider regional, national, and global networks. Students identify and analyze central issues and social problems of urbanization and explore and assess various ways decisionmakers respond to these issues. This minor is closed to students majoring in sociology and anthropology who have chosen the urban studies track.

| COURSE |  |
| :--- | :--- |
| Required Course | The Urban Experience |
| SOCI-103 |  |
| Electives | Immigration to the U.S. |
| Choose four of the following:* |  |
| ANTH-235 | Archaeology of Cities |
| ANTH-315 | Global Cities |
| ANTH-410 | Urban Economics |
| ECON-440 | Imag(in)ing Rochester |
| FNRT-377 | The City in History |
| HIST-103 | Culture and Politics in Urban Africa |
| INGS-210 | Minority Group Relations |
| SOCI-220 | Community and Economic Development: Rochester |
| SOCI-325 | Urban (In)Justice |
| SOCI-330 | Urban Cultures |
| SOCI-335 | Urban Poverty |
| SOCI-345 | Urban Planning and Policy |
| SOCI-340 | Diversity in the City |
| SOCI-410 | Sustainable Communities |
| STSO-550 |  |

[^11]
## Visual Culture

## College of Liberal Arts, Office of Student Services (585) 475-2444, libarts@rit.edu

Visual culture explores the role of visual media in everyday life and its critical function in the dissemination of ideas in the public sphere. Emphasizing comparative critical approaches to the convergence of art, popular media, science, and technology, the minor engages globalized visual media ranging from photography, television and film, to new media (the Web, digital imaging and social networks), architecture, design, and art (painting, sculpture and multimedia forms) in the context of such social arenas, as art, news, science, advertising, and popular culture.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| FNRT-376 | Visual Culture Theory |
| Electives |  |
| Group A |  |
| Choose three of the following: |  |
| FNRT-206 | Queer Looks |
| FNRT-220 | Introduction to Museums and Collecting |
| FNRT-225 | Museums and the Digital Age |
| FNRT-353 | History and Theory of Exhibitions |
| FNRT-360 | Visitor Engagement and Museum Technologies |
| FNRT-370 | American Painting |
| FNRT-371 | African American Art |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American FFilm Since ethe Sixties |
| FNRT-375 | Women/Gender/Art |
| FNRT-377 | Imag(in)ing Rochester |
| FNRT-378 | Memory, Memorials, and Monuments |
| FNRT-383 | Traumatic Images |
| FNRT-384 | Art of Dying |
| FNRT-440 | Deaf Art and Cinema |
| Group B |  |
| Choose one ofthe following: |  |
| ANTH-210 |  |
| ANTH-240 | Culture and Globalization |
| ANTH-265 | Muslim Youth Cultures |
| ANTH-310 | Native North Americans in Film |
| ANTT-325 | African Popular Cultures |
| ANTH-330 | Bodies and Culture |
| ANTT-375 | Cultural Images of War |
| ANTH-425 | Native American Repatriation |
| ANTH-430 | Global Sexualities |
| ANTH-435 | Visual Anthropology |
| COMM-341 | Garbage Archaeology |
| COMM-440 | Visual Communication |
| ENGL-410 | Visual Communication of Technical Information |
| ENGL-421 | Film Studies |
| ENGL-422 | The Graphic Novel |
| HIST-421 | Maps, Spaces and Places |
| MLFR-351 | Hands On History |
| MLSP-351 | French Films and Hollywood |
| MLSP-352 | Gender and Sexuality in Hispanic Studies |
| PHIL-303 | Caribbean Cinema |
| PHIL-309 | Philosophy of Art and Aesthetics |
| PHIL-313 | Feminist Theory |
| PHIL-314 | Philosophy of Film |
| POLS-490 | Philosophy of Vision/Imaging |
| STSO-321 | Politics Through Film |

## Water Resources

## Scott Wolcott, Adviser

## (585) 475-6647, sbwite@rit.edu

The water resources minor broadens the learning experiences and professional opportunities of students in technical disciplines who have an interest in courses related to water treatment, wastewater treatment, hydrology, the environment and society.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| CVET-250, 251 | Hydraulics and Lab |
| CVET-450 | Principles of Water and Wastewater Treatment |
| Electives |  |
| Choose one course from group A and one from Group B. A third course may be chosen from either group. |  |
| Group A |  |
| CVET-451 | Design of Water and Wastewater Treatment Facilities |
| CVET-452 | Groundwater Hydraulics |
| CVET-453 | Stormwater Management |
| Group B |  |
| CVET-423 | GIS for CETEMS |
| ESHS-500 | Social Responsibility and Environmental Sustainability |
| STSO-421 | Environmental Policy |

## Web Design and Development

## Ronald P. Vullo, Minor Adviser

## (585) 475-7281, rpvvks@rit.edu

The minor in Web design and development is for non-computing majors and students outside the computing field who wish to learn more than just the basics of Web usage. The minor features courses in Web images, video, communication, development, and integration technologies. Students learn how to design and build websites, and create and manipulate digital images and video for the Web. Students develop a broad range of skills and the understanding necessary to design and build a Web presence.

| COURSE |  |
| :--- | :--- |
| Required Courses  <br> ISTE-105 Web Foundations <br> ISTE-205 Digital Image Creation <br> ISTE-206 Digital Video Creation <br> ISTE-305 Rapid Online Presence <br> ISTE-405 Web Integration and Application |  |

## Web Development

## Daniel Bogaard, Minor Adviser <br> (585) 475-5231, dsbics@rit.edu

This minor provides students with a firm foundation in web development. The web has become a global, essential, and ubiquitous information delivery medium. Hence, knowledge of how the web works and how to effectively develop dynamic websites adds considerable value to computing majors. This minor provides foundational skills in web development, starting with simple sites, moving through dynamic client-side and server-side functionality, and culminating in web-based systems that create and access various information services.
COURSE

| Prerequisites |  |
| :--- | :--- |
| Students should complete course work in discrete mathematics and a two-course programming sequence <br> prior to beginning course work for this minor. |  |
| Required Courses |  |
| ISTE-140 | Web and Mobile I |
| ISTE-230 | Introduction to Database and Data Modeling |
| ISTE-240 | Web and Mobile II |
| ISTE-340 | Client Programming |
| SWEN-383 | Software Design Principles and Patterns |
| ISTE-341 | Server Programming |

## Women's and Gender Studies

## College of Liberal Arts, Office of Student Services

## (585) 475-2444, libarts@rit.edu

The women's and gender studies minor provides a critical framework to explore the significance of gender (along with race, sexuality, and class) in the construction of knowledge within academic disciplines and in the shaping of women's and men's lives. Courses engage a critical pedagogy focused on the recovery of women's contributions in a variety of fields, on women's and men's roles in society across cultures, and especially on critical questions about gender neutrality in the shaping of culture.

| COURSE |  |
| :--- | :--- |
| Required Course | Foundations in Women's and Gender Studies |
| WGST-200 |  |
| Electives | Bodies and Culture |
| Choose four of the following: |  |
| ANTH-325 | Global Sexualities |
| ANTH-425 | Gender and Health |
| SOCI-245 | Queer Looks |
| WGST-206 | Introduction to LGBT Studies |
| WGST-210 | Women, Work, and Culture |
| WGST-235 | Psychology of Women |
| WGST-237 | Psychology of Human Sexuality |
| WGST-240 | Prostitution and Vice |
| WGST-245 | History of Women in Science and Engineering |
| WGST-246 | Domestic Violence |
| WGST-250 | Seminar on Sexual Violence |
| WGST-255 | Women and Crime |
| WGST-265 | American Women's and Gender History |
| WGST-290 | History of Family and Children in the U.S. |
| WGST-291 | Feminist Theory |
| WGST-309 | Women and the Deaf Community |
| WGST-335 | Gender, Science, and Technology |
| WGST-342 | Gender and Sexuality in Hispanic Studies |
| WGST-351 | Queering Gender |
| WGST-361 | Women, Gender, Art |
| WGST-375 | Traumatic Images |
| WGST-383 | Art of Dying |
| WGST-384 | Topics in Women's and Gender Studies |
| WGST-414 | Economics of Women and the Family |
| WGST-451 | Women in Politics |
| WGST-481 |  |

## Immersions

As a part of their bachelor's degree requirements, students must complete an immersion - a concentration of three courses in a particular area. These upper-level courses are used to meet RIT's general education requirements and provide you with course work in a specialized area that can enhance and complement your major or allow you to explore a personal interest. For the most recent list of immersions, please visit rit.edu/programs/immersions.

## Advertising and Public Relations

The advertising and public relations immersion provides opportunities for the advanced study of selected areas central to the persuasive arts as they apply to advertising and public relations, as well as education and practice in the writing, speaking, and design skills required of these professions. This immerson is closed to students majoring in advertising and public relations or communication.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| Choose one of the following: |  |
| COMM-211 | Principles of Advertising |
| COMM-212 | Public Relations |
| Electives |  |
| Choose two of the following: |  |
| COMM-202 | Mass Communications |
| COMM-211 | Principles of Advertising* |
| COMM-212 | Public Relations* |
| COMM-221 | Smblic Relations Writing |
| COMM-303 | Persuasion Communication |
| COMM-305 | Copywriting and Visualization |
| COMM-321 | Campaign Management and Planning |
| COMM-322 | Visual Communication |
| COMM-341 |  |
| * Students are required to complete Principles of Advertising (COMM-211) or Public Relations (COMM- |  |
| 212$) . ~ S t u d e n t s ~ m a y ~ t a k e ~ b o t h ~ c o u r s e s ~ u s i n g ~ o n e ~ a s ~ a ~ r e q u i r e d ~ c o u r s e ~ a n d ~ o n e ~ a s ~ a n ~ e l e c t i v e . ~$ |  |
| At least one course must be at the 300 level of higher. |  |

## Africa and the Diaspora

The immersion in Africa and the Diaspora enables students to gain knowledge about African societies, cultures, histories, and modern political realities, cultures, and communities of the African Diaspora. Students are encouraged to enhance their scholarly knowledge through language study and study abroad. This immersion is closed to students who are majoring in international and global studies who have chosen a specialization in Africa.

## course

## Electives

## Choose three of the following:*

| ANTH-225 | Globalizing Africa |
| :--- | :--- |
| ANTH-310 | Popular Cultures in the Global South |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ENGL-413 | African-American Literature |
| FNRT-323 | Survey of African-American Music |
| FNRT-371 | African-American Art |
| HIST-245 | American Slavery and Freedom |
| INGS-210/HIST-210 | Introduction to Africa and the Diaspora |
| INGS-310/HIST-310 | Global Slavery and Human Trafficking |
| SOCI-210 | African-American Culture |
| SOCI-315 | Global Exiles of War and Terror |
| * At least one course must be taken from either INGS, ANTH, or SOCI. Topics in Global Literature (ENGL |  |

* At least one course must be taken from either INGS, ANTH, or SOCI. Topics in Global Literature (ENGL 416) may be substituted when the topic is Caribbean literature.


## American Arts

This immersion provides students with the opportunity to study the American arts through a variety of disciplines, including painting, architecture, film, photography, music, theatre and the mass media. Each course presents American art within the context of the broader current of American life, including its history, philosophy, social, and cultural traditions.

## COURSE

Electives
Choose three courses from the following:*

| Visual culture |  |
| :--- | :--- |
| FNRT-206 | Queer Looks |
| FNRT-370 | American Painting |
| FNRT-371 | African-American Art |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American Film Since the Sixties |
| FNRT-374 | Art in the Age of the New Deal |
| FNRT-377 | Imag(in)ing Rochester |
| FNRT-378 | Memory, Memorials, and Monuments |
| FNRT-383 | Traumatic Images |
| FNRT-384 | Art of Dying |
| Performing arts |  |
| FNRT-201 | Music in the U.S. |
| FNRT-203 | American Popular and Rock Music |
| FNRT-321 | Music Since 1900 |
| FNRT-322 | Survey of Jazz |
| FNRT-323 | Survey of African-American Music |
| FNRT-324 | Sounds of Protest |
| FNRT-325 | American Popular Song |
| FNRT-327 | American Musical Theatre |
| *Students must take at least one course in each discipline. |  |

## American Politics

The American politics immersion introduces students to the fundamental principles, institutions, and issues of American government. In addition, the strengths and limitations of American constitutionalism are emphasized throughout and current political and policy questions facing the country will be examined. The overarching intention of the immersion is to give students the necessary tools to deliberate upon the political questions of the day and to actively participate in the political process. This immersion is closed to students majoring in political science.

## COURSE

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| POLS-200 | Law and Society |
| POLS-250 | State and Local Politics |
| POLS-290 | Politics and the Life Sciences |
| POLS-295 | Cyberpolitics |
| POLS-300 | Rhetoric and Political Deliberation |
| POLS-305 | Political Parties and Voting |
| POLS-310 | The Congress |
| POLS-315 | The American Presidency |
| POLS-320 | American Foreign Policy |
| POLS-345 | Politics and Public Policy |
| POLS-355 | Political Leadership |
| POLS-415 | Evolution and Law |
| POLS-420 | Primate Politics |
| POLS-425 | Constitutional Law |
| POLS-430 | Constitutional Rights and Liberties |
| POLS-435 | American Political Thought |
| POLS-460 | Classical Constitutionalism, Virtue and Law |
| POLS-465 | Modern Constitutionalism, Liberty and Equality |
| POLS-480 | Women in Politics |
| POLS-485 | Politics Through Fiction |
| POLS-490 | Politits Through Film |
| POLS-525 | Special Topics in Political Science |

[^12]
## American Sign Language and Deaf Cultural Studies

The ASL and deaf cultural studies immersion prepares students in the multi-disciplinary study of American Sign Language and Deaf Culture. Open to hearing and deaf students, courses address topics in the field of ASL and deaf cultural studies, including the study of ASL and its structure, ASL literature, literature in English pertaining to the D/deaf experience, the history of D/deaf people in America and around the world, Deaf art and cinema, the experience of $\mathrm{D} /$ deaf people from racial, ethnic, and other minority groups, oppression in the lives of $\mathrm{D} /$ deaf people, and various political, legal, and educational issues affecting members of the D/deaf community. Students enrolled in the ASL-English Interpretation major can pursue the immersion if they choose an emphasis on Deaf Cultural Studies. They cannot apply ASL courses towards the immersion. For ASL-English Interpretation major, the immersion courses must also be different from the two Deaf Cultural studies courses they elect to fulfill the Deaf cultural studies requirements for their major.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following: |  |
| ENGL-343 | Global Deaf Literature |
| ENGL-417 | Deaf Literature |
| FNRT-440 | Deaf Art and Cinema |
| HIST-230 | American Deaf History |
| HIST-231 | Deaf People in Global Perspective |
| HIST-330 | Deaf People and Technology |
| HIST-333 | Diversity in the Deaf Community |
| HIST-334 | Oppression in the Lives of Deaf People |
| HIST-335 | Women and the Deaf Community |
| HIST-430 | Deaf Spaces |
| HIST-431 | Theory and Methods of Deaf Geographies |
| MLAS-201 | Beginning American Sign Language I |
| MLAS-202 | Beginning American Sign Language II |
| MLAS-301 | Intermediate Sign Language I |
| MLAS-302 | Intermediate Sign Language II |
| MLAS-351 | Linguistics of American Sign Language |
| MLAS-352 | American Sign Language Literature |
| SOCI-240 | Deaf Culture in America |

## Applied Statistics

This immersion is closed to students majoring in applied statistics, applied mathematics, and computational mathematics.

| COURSE |  |
| :--- | :--- |
| Prerequisites |  |
| MATH-181 | Project-based Calculus I |
| MATH-182 | Project-based Calculus II |
| (or equivalents) |  |
| Electives | Applied Statistics |
| Choose three of the following:* |  |
| STAT-205 | Probability and Statistics I |
| MATH-251 | Probability and Statistics II |
| MATH-252 | Introduction to Regression Analysis |
| STAT-305 | Design of Experiments |
| STAT-325 | Statistical Quality Control |
| STAT-315 | Statistical Analysis for Bioinformatics |
| STAT-295 | Mathematical Statistics I |
| STAT-405 | Mathematical Statistics II |
| STAT-406 | Non-parametric Statistics |
| STAT-345 | Statistical Sampling |
| STAT-415 | Introduction to Time Series |
| STAT-335 | Biostatistics |
| MATH-655 | Stochastic Processes |
| MATH-401 |  |
| * At least one of the courses must be at the 300-level or above |  |

## Archaeology

Archaeology is the study of the human past by means of the physical residues of past human behavior: for example, pottery, stone, and metal tools, and the remains of ancient dwelling sites. The archaeologist explains how human society has changed and developed over time using such physical evidence. Archaeology employs techniques from the physical sciences to build a more detailed picture of the human past. Students explore the worlds of the past through hands-on applications of physical science techniques in a diverse range of fields, including chemistry, metallurgy, biology, and material science, applying these disciplines in a novel and challenging context. This immersion is closed to students majoring in sociology and anthropology who have chosen the archaeology track.

## course

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| ANTH-103 | Archaeology and the Human Past |
| ANTH-215 | Field Methods in Archaeology |
| ANTH-230 | Archaeology and Cultural Imagination |
| ANTH-250 | Themes in Archaeological Research |
| ANTH-255 | Regional Archaeology |
| ANTH-312 | People Before Cities |
| ANTH-315 | The Archaeology of Cities |
| ANTH-328 | Heritage and Tourism |
| ANTH-360 | Humans and Their Environment |
| ANTH-375 | Native American Cultural Resources and Rights |
| ANTH-415 | Archaeological Science |
| ANTH-420 | Exploring Ancient Technology |
| ANTH-435 | Archaeology of Death |

[^13]
## Art History

In the art history students explore the history of art and architecture across multiple cultures and eras. Art historians examine a culture's artistic production, analyzing form, content, and creative context to better understand how art expresses the intent of the artist, the interpretation of the viewer, or particular cultural values and ideals. Students will use art historical methodologies to evaluate works of art, formulate a history of artistic style, analyze art in relation to its historical context, and engage with the world of contemporary art. This immersion is closed to students enrolled in the following programs: 3D digital design, ceramics, film and animation, fine arts studio, furniture design, glass, graphic design, illustration, industrial design, interior design, medical illustration, metals and jewelry design, new media design, photographic and imaging arts, and museum studies.

## COURSE

## Electives

| Choose three of the following: |  |
| :--- | :--- |
| ARTH-311 | Art and Architecture of Italy: 1250-1400 |
| ARTH-312 | Art and Architecture of Italy: 1600-1750 |
| ARTH-317 | Art and Architecture in Florence and Rome: 15th Century |
| ARTH-318 | Art and Architecture in Florence and Rome: 16th Century |
| ARTH-364 | Art in Paris |
| ARTH-366 | 18th, 19th Century Art |
| ARTH-368 | 20th Century Art: 1900-1950 |
| ARTH-369 | 20th Century Art: Since 1950 |
| ARTH-373 | Art of the Last Decade |
| ARTH-378 | Barogue Painting in Flanders |
| ARTH-379 | Renaissance Painting in Flanders |
| ARTH-392 | Theory and Criticism of 20th Century Art |
| ARTH-457 | Art and Activism |
| ARTH-521 | The Image |
| ARTH-541 | Art and Architecture of Ancient Rome |
| ARTH-544 | Illuminated Manuscripts |
| ARTH-550 | Topics in Art History |
| ARTH-554 | Late Medieval Art |
| ARTH-558 | The Gothic Revival |
| ARTH-561 | Latin American Art |
| ARTH-563 | Modern Architecture |
| ARTH-566 | Early Medieval Art |
| ARTH-568 | Art and Technology: From the Machine Aesthetic to the Cyborg Age |
| ARTH-572 | Art of the Americas |
| ARTH-573 | Conceptual Art |
| ARTH-574 | Dada and Surrealism |
| ARTH-576 | Modernism and Its Other: Realism in the Shadow of Expressionism |
| ARTH-577 | Displaying Gender |
| ARTH-578 | Edvard Munch |
| ARTH-582 | Medieval Craft |
| ARTH-583 | Installation Art |
| ARTH-584 | Scandinavian Modernism |
| ARTH-586 | History of Things: Studies in Material Culture |
| ARTH-588 | Symbols and Symbol-Making |

## Astronomy

The astronomy immersion provides students with the opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. The immersion offers a broad background in astronomy with courses providing a broad survey of modern astrophysics and the techniques and technologies used to investigate astronomical phenomena. This immersion is closed to students majoring in imaging science and physics.

| COURSE |  |
| :--- | :--- |
| Prerequisites | University Physics I |
| PHYS-211 | University Physics II |
| PHYS-212 |  |
| Required course | University Astronomy |
| PHYS-220 |  |
| Electives |  |
| Choose two of the following: |  |
| PHYS-370 | Stellar Astrophysics |
| PHYS-371 | Galactic Astrophysics |
| PHYS-372 | Extragalactic Astrophysics and Cosmology |
| PHYS-373 | Observational Astronomy |

## Biology

Biology is the study of living organisms, including their structure, systems, function, evolution, and ecology. The biology immersion provides students with the opportunity to experience courses in a variety of areas of biology. Students complete a foundational course in Cell and Molecular Biology, General Ecology, or Evolutionary Biology (all of which include laboratory experiences) and then choose one area of biology to study in more depth. This immersion is closed to students majoring in biochemistry, bioinformatics, biology, biomedical science, biomedical engineering, biotechnology and molecular bioscience, environmental science, or physician assistant.

| COURSE |  |
| :---: | :---: |
| Prerequisites |  |
| Choose one of the following sequences: |  |
| BIOL-101, 102, 103, 104 | General Biology I, II and Labs |
| BIOL-121, 122 | Introduction to Biology l, II |
| Required Course |  |
| Choose at least one of the following: |  |
| BIOL-201 | Cellular and Molecular Biology |
| BIOL-240 | General Ecology |
| BIOL-265 | Evolutionary Biology |
| Electives* |  |
| Choose two of the following: |  |
| BIOL-204 | Introduction to Microbiology |
| BIOL-207 | Galapagos: Ecology and Evolution |
| BIOL-313 | Comparative Animal Physiology |
| BIOL-321 | Genetics |
| BIOL-322 | Developmental Biology |
| BIOL-365 | Population Genetics |
| BIOL-475 | Conservation Biology |

[^14]
## Chemistry

All of the required or optional courses for the chemistry immersion are core chemistry courses within the chemistry curriculum. This immersion is closed to students majoring in biochemistry, biology, biotechnology and molecular bioscience, chemical engineering, chemistry, and the environmental chemistry concentration of the environmental science major.

| COURSE |  |
| :--- | :--- |
| Prerequisites | General and Analytical Chemistry I |
| CHMG-141 | General and Analytical Chemistry II |
| CHMG-142 |  |
| Required course | Organic Chemistry I |
| CHMO-231 |  |
| Electives | Organic Chemistry II |
| Choose two of the following: |  |
| CHMO-232 | Quantitative Analysis |
| CHMA-161 | Instrumental Analysis |
| CHMA-221 | Chemical Separations |
| CHMA-222 | Biochemistry I |
| CHMB-402 | Inorganic Chemistry I |
| CHMI-351 |  |

## Communication

The communication immersion provides opportunities for the advanced study of selected areas of communication. Topics include an overview of the fields of persuasion, mass communications, public speaking, and small group communication. Students will understand and apply several modes of communication in academic, professional, and personal situations. This immersion is closed to students majoring in advertising and public relations and communication.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following: |  |
| COMM-201 | Public Speaking |
| COMM-202 | Mass Communications |
| COMM-302 | Interpersonal Communication |
| COMM-303 | Small Group Communication |
| COMM-304 | Intercultural Communication |
| COMM-305 | Persuasion |
| COMM-341 | Visual Communication |
| COMM-342 | Communication Law and Ethics |

## Creative Writing

The creative writing immersion includes a series of courses offering students a practical, theoretical, and historical understanding of the art and craft of writing nonfiction, fiction prose and poetry, as well as experimenting in digital storytelling and interactive media. The immersion encourages students to use these skills and insights for interdisciplinary projects and the enrichment of their careers and personal lives.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following: |  |
| ENGL-211 | Introduction to Creative Writing |
| ENGL-376 | Experimental Writing |
| ENGL-386 | World Building Workshop |
| ENGL-389 | Digital Creative Writing Workshop |
| ENGL-390 | Creative Writing Workshop |
| ENGL-490 | Advanced Creative Writing Workshop |
| ENGL-511 | Advanced Topics in Crative Writing |
| ENGL-543 | Game-based Fiction Workshop |

## Criminal Justice

The criminal justice immersion provides students with the appropriate foundation to analyze crime, crime control policy, and the role of the criminal justice system in the maintenance of order in society. Courses focus on the social definition and measurement of crime, a broad understanding of the causes of crime, and societal responses to crime through the police, courts, and corrections. This immersion is closed to students majoring in criminal justice.

## COURSE

Prerequisite
CRIM-110

## Electives

| Choose three of the following: |  |
| :--- | :--- |
| CRIM-210 | Technology in Criminal Justice |
| CRIM-220 | Corrections |
| CRIM-230 | Juvenile Justice |
| CRIM-240 | Law Enforcement in Society |
| CRIM-260 | Courts |
| CRIM-275 | Crime and Violence |
| CRIM-285 | Minority Groups in the Criminal Justice System |
| CRIM-489 | Major Issues in Criminal Justice |

## Cultural Anthropology

Cultural anthropology is the study of culture past and present from a worldwide comparative perspective. As a disciplinary field, cultural anthropology attempts to provide insights on how human beings across the globe live and work and shape their cultural world in families, cities, societies, ethnic groups, nations, and networked solidarities through ideas, ideologies, beliefs, and values or worldviews. One of the goals of cultural anthropology is to promote understanding among peoples-an increasingly important venture in our vastly interconnected world communities. This immersion is closed to students majoring in the sociology and anthropology who have chosen the cultural anthropology track.

## COURSE

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| ANTH-104 | Language and Linguistics |
| ANTH-201/SOCI-201 | Ethnographic Imagination: Writing About Society and Culture |
| ANTH-210 | Culture and Globalization |
| ANTH-220 | Language and Culture: An Introduction to Linguistic Anthropology |
| ANTH-225 | Globalizing Africa |
| ANTH-235 | Immigration to the U.S. |
| ANTH-240 | Muslin Youth Cultures |
| ANTH-245 | Ritual and Performance |
| ANTH-260 | Native North Americans |
| ANTH-265 | Native Americans in Film |
| ANTH-270/INGS-270 | Cuisine, Culture, and Power |
| ANTH-275 | Global Islam |
| ANTH-280 | Sustainable Development |
| ANTH-285 | American Indian Languages |
| ANTH-290 | Language and Sexuality |
| ANTH-301/SOCI-301 | Social and Cultural Theory |
| ANTH-305 | Comparative and Historical Linguistics |
| ANTH-310 | Popular Cultutes in the Global South |
| ANTH-325 | Bodies and Culture |
| ANTH-328 | Heritage and Tourism |
| ANTH-330 | Cultural Images of War and Terror |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-340 | Divided Europe |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-350 | Global Economy and the Grassroots |
| ANTH-365 | Culture and Politics in the Middle East |
| ANTH-370 | Media and Globalization |
| ANTH-375 | Native American Cultural Resources and Rights |
| ANTH-380 | Nationalism and Identity |
| ANTH-385 | Anthropology and History |
| ANTH-390 | Marxist Perspectives |
| ANTH-410 | Global Cities |


| COURSE |  |
| :--- | :--- |
| ANTH-425 | Global Sexualities |
| ANTH-430 | Visual Anthropology |
| ANTH-451/SOCI-451/INGS- <br> 451/ECON-451 | Economics of Women and the Family |
| ANTH-455/ECON-452/ <br> INGS-455 | Economics of Native America |
| INGS-210 | Culture and Politics in Urban Africa |

* At least one course must be taken at the 300 level or higher.


## Digital Literatures and Comparative Media

We encounter digital texts and codes every time we use a smart phone, launch an app, or interact online. This immersion explores innovative and evolving questions and practices of text and code in literature, creative writing, and interactive media. It invites students to explore the social, cultural, and technological significance of text, code, and their interrelations.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| ENGL-215 | Text and Code |
| Electives |  |
| Choose two of the following: |  |
| ENGL-315 | History of Digital Literature |
| ENGL-373 | Media Adaptation |
| ENGL-374 | Games and Literature |
| ENGL-375 | Storytelling Across Media |
| ENGL-376 | Experimental Writing |
| ENGL-386 | World Building Workshop |
| ENGL-419 | Literature and Technology |
| ENGL-422 | Maps, Spaces, and Places |
| ENGL-450 | Free and Open Source Culture |

## Diversity in the U.S.

This immersion offers students a variety of academic perspectives on how diverse groups may share cultural or inherited characteristics, and how perceptions of difference influence their interactions. Race, ethnicity, gender, and sexualities are the main points of focus. Students will examine differential power between groups, analyze the social structures used to maintain, moderate and alter power relations, as well as probe interpersonal relationships across social divides. This immersion is closed to students majoring in sociology and anthropology who have chosen the cultural anthropology or the sociology track.

## COURSE

## Required course

SOCI-220 Minority Group Relations

## Electives

| Choose two of the following:* |  |
| :--- | :--- |
| ANTH-235 | Immigration to the U.S. |
| ANTH-260 | Native North Americans |
| ANTH-285 | American Indian Langauges |
| ANTH-290 | Language and Sexuality |
| ANTH-305 | Comparitive and Historical Linguistics |
| ANTH-451/INGS-451/SOCI- <br> 451/ECON-451 | Economics of Women and the Family |
| ANTH-455/ECON-452/ <br> INGS-455 | Economics of Native America |
| COMM-304 | Intercultural Communication |
| CRIM-285 | Minority Groups and the Criminal Justice System |
| ENGL-414 | Topics in Women's and Gender Studies |
| FNRT-206 | Queer Looks |
| FNRT-323 | Survey of African-American Music |
| FNRT-324 | Sounds of Protest |
| FNRT-371 | African-American Art |
| SOCI-210 | African-American Culture |
| SOCI-225 | Social Inequality |
| SOCI-235 | Women, Work, and Culture |
| SOCI-410 | Diversity in the City |

[^15]
## Economics

An economics immersion provides a systematic analysis of economic issues through the study of the allocation of scarce resources into production and the distribution of production among the members of society. This immersion is closed to students majoring in economics.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Principles of Microeconomics |
| ECON-101 | Honors Principles of Microeconomics |
| ECON-101H |  |
| Electives | Principles of Macroeconomics |
| Choose three of the following: |  |
| ECON-201 | Intermediate Microeconomic Theory |
| ECON-401 | Intermediate Macroeconomic Theory |
| ECON-402 | Econometrics I |
| ECON-403 | Mathematical Methods: Economics |
| ECON-404 | International Trade and Finance |
| ECON-405 | Global Economic Issues |
| ECON-406 | Industrial Organization |
| ECON-407 | Game Theory: Economic Applications |
| ECON-410 | Natural Resource Economics |
| ECON-421 | Benefit-Cost Analysis |
| ECON-422 | Managerial Economics |
| ECON-430 | Monetary Analysis and Policy |
| ECON-431 | Open Economy Economics |
| ECON-432 | Urban Economics |
| ECON-440 | Labor Economics |
| ECON-441 | Public Finance |
| ECON-444 | History of Economic Thought |
| ECON-445 | Development Economics |
| ECON-448 | Comparative Economic Systems |
| ECON-449 | Health Care Economics |
| ECON-450 | Economics of Women and the Family |
| ECON-451 | Economics of Native America |
| ECON-452 | Behavioral and Experimental Economics |
| ECON-453 | Environmental Economics |
| ECON-503 |  |
| ECON-520 |  |
|  |  |

## English

The English immersion gives students the opportunity to explore English studies in the areas of literature, linguistics, and creative writing. The immersion is flexible in order to accommodate student interest in areas such as specific literary historical periods or geographic areas, multimedia and the visual arts, or genre fiction such as science fiction, fantasy, or romance. Courses emphasize the ability to read literature and new media analytically and write critically.

| COURSE |  |
| :--- | :--- |
| Required Course |  |
| Choose one of the following: |  |
| ENGL-210 | Literature, Culture, and Media |
| ENGL-216 | Literature from Around the World |
| Electives |  |
| Choose two of the following: |  |
| ENGL-307 | Mythology and Literature |
| ENGL-308 | Shakespeare: Drama |
| ENGL-309 | Introduction to Language Science |
| ENGL-310 | History of Digital Literature |
| ENGL-315 | Global Literature |
| ENGL-316 | Popular Literature |
| ENGL-318 | Genre Fiction |
| ENGL-320 | History of Madness |
| ENGL-345 | Language Technology |
| ENGL-351 | Media Adaptation |
| ENGL-373 | World Building Workshop |
| ENGL-386 | Digital Creative Writing Workshop |
| ENGL-389 | Creative Writing Workshop |
| ENGL-390 | Dangerous Texts |
| ENGL-391 | Film Studies |
| ENGL-410 | Great Authors |
| ENGL-418 | Literature and Technology |
| ENGL-419 |  |

## Environmental Studies

The environmental studies immersion is an examination of the basic environmental problems we face, how environmental resource depletion and energy issues are related, and what kind of environmental ethics and/or values we have today and have had in the past. The immersion also explores the economic, legislative, and regulatory framework within which most environmental decisions are made. Since most technological areas are associated with significant environmental implications, it is essential that students have an understanding of and a well-thought-out value orientation about such environmental consequences.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following:* |  |
| PUBL-530 | Energy Policy |
| STSO-220 | Face of the Land |
| STSO-321 | History of the Environmental Sciences |
| STSO-325 | History of Ecology and Environmentalism |
| STSO-326 | Energy and the Environment |
| STSO-330 | Environmental Policy |
| STSO-421 | Great Lakes |
| STSO-422 | Special Topics |
| STSO-489 | Interdisciplinary Capstone Seminar |
| STSO-510 | Biodiversity and Society |
| STSO-521 | Sustainable Communities |
| STSO-550 | * At least one course must be from the 300 level or higher. |

## Ethics

The ethics immersion helps students to understand more deeply the nature of ethical thinking, to recognize and understand ethical dilemmas in private, professional, and public settings, and to think clearly and critically about possible answers to ethical problems. The immersion also provides students with the opportunity to acquaint themselves with some of the most influential writings and thinkers in the philosophical canon. Courses are especially well suited to students considering careers in law, medicine, business, or politics. This immersion is closed to students majoring in philosophy.
COURSE
Required courses

| Required courses |  |
| :--- | :--- |
| Choose one of the following:* |  |
| PHIL-202 | Foundations of Moral Philosophy |
| PHIL-415 | Ethical Theory |
| Electives |  |
| Choose two of the following:** |  |
| PHIL-202 | Foundations of Moral Philosophy |
| PHIL-304 | Philosophy of Law |
| PHIL-305 | Philosophy of Peace |
| PHIL-306 | Professional Ethics |
| PHIL-308 | Environmental Philosophy |
| PHIL-309 | Feminist Theory |
| PHIL-311 | East Asian Philosophy |
| PHIL-315 | Responsible Knowing |
| PHIL-403 | Social and Political Philosophy |
| PHIL-407 | Philosophy of Action |
| PHIL-409 | Existentialism |
| PHIL-415 | Ethical Theory |
| MGMT-340 | Business Ethics and Corporate Social Responsibility |

[^16]** At least two courses must be at the 300 level or higher.

## Film Studies

The film studies immersion allows students to engage in the study of global cinema using a variety of interdisciplinary methodologies and perspectives. Coming from the disciplines of English, anthropology, philosophy, fine arts/visual culture, political science, history, and modern languages, the immersion investigates cinema's mass appeal as a form of entertainment, but also the power it wields as a disseminator of ideas, history, values, aesthetics, behavior, and cultural norms.

## COURSE

Electives
Choose three of the following:*

| ANTH-265 | Native Americans in Film |
| :--- | :--- |
| ANTH-430 | Visual Anthropology |
| ENGL-410 | Film Studies |
| ENGL-425 | Global Cinemas |
| FNRT-200 | Anime |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American Film Since the Sixties |
| FNRT-440 | Deaf Art and Cinema |
| HIST-450 | Modern Japan in History, Fiction, and Film |
| HIST-275 | Screening the Trenches: The History of World War I through Film |
| MLFR-351 | French Films and Hollywood |
| MLSP-352 | Caribbean Cinema |
| PHIL-313 | Philosophy of Film |
| POLS-490 | Politics through Film |

* Students must take courses in more than one discipline, e.g., two in FNRT and one in ANTH.


## Global Justice

The global justice immersion examines attempts to create lasting peace and social justice on the international scale. Courses in philosophy and the social sciences help students to understand concepts of human rights, world poverty, and global solidarity. The immersion is well suited for students considering careers in law, politics, or public policy related fields.

## course

Electives

| Electives |  |
| :--- | :--- |
| Choose three of the following:* |  |
| ANTH-280 | Sustainable Development |
| ANTH-340 | Divided Europe |
| ANTH-330 | Cultural Images of War |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-350 | The Global Economy and the Grassroots |
| ANTH-365 | Culture and Politics in the Middle East |
| ANTH-375 | Native American Cultural Resources and Rights |
| ANTH-425 | Global Sexualities |
| INGS-201 | Histories of Globalization |
| INGS-210 | Culture and Politics in Urban Africa |
| INGS-310 | Global Slavery and Human Trafficking |
| PHIL-202 | Foundations of Moral Philosophy |
| PHIL-304 | Philosophy of Law |
| PHIL-305 | Philosophy of Peace |
| PHIL-308 | Environmental Philosophy |
| PHIL-309 | Feminist Theory |
| PHIL-403 | Social and Political Philosophy |
| PHIL-415 | Ethical Theory |
| POLS-320 | American Foreign Policy |
| POLS-440 | War and the State |
| SOCI-235 | Women, Work and Culture |
| SOCI-245 | Gender and Health |
| SOCI-255 | Disaster, Public Health Crisis, and Global Responses |
| SOCI-315 | Global Exiles of War and Terror |
| SOCI-331 | Honors Sociology of Women |
| SOCI-451 | Economies or Women and the Family |

* Students must select courses from at least two different disciplines. Students majoring in philosophy, sociology and anthropology, or political science must choose two of the three required courses from outside their respective major


## Globalization Theory

Globalization theory analyzes how linkages and interconnections across and beyond conventional borders and boundaries are forged by people, political regimes, social movements, corporate enterprise, and culture industries. The immersion's emphasis is on the causes, signs, and possibilities of globalization with view to mobile populations, permeable borders, transnational flows of capital, and the traffic of culture across space or historical time. Courses examine how global fluidities, mobilities, and connections have been forged, the various dynamic and unpredictable responses of people in diverse locations to global processes, and the implications of global processes for a shared future. This immersion is closed to students majoring in international and global studies.

## course

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| ANTH-210 | Culture and Globalization |
| ANTH-235 | Immigration to the U.S. |
| ANTH-330 | Cultural Images of War and Terror |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-350 | Global Economy and the Grassroots |
| ANTH-370 | Media and Globalization |
| ANTH-410 | Global Cities |
| ANTH-425 | Global Sexualities |
| INGS-201 | Histories of Globalization |
| SOCI-250 | Globalization and Security |
| SOCI-315 | Global Exiles of War and Terror |
| SOCI-331 | Honors Sociology of Human Rights |

* At least one course must be from the 300 level or higher.


## Health and Culture

This immersion focuses on the shifting configurations of health and culture in a globalizing world. Health beliefs, including notions about bodily integrity or emotional well-being, illness causation, and diagnostic practices, and the experiences, expressions, and treatments of human ailments unfold in concrete cultural contexts. Every society has some form of health care system, which is minimally administered by community members or specialized practitioners. By moving beyond the lens of western biomedicine, the immersion provides students with a set of tools for analyzing the impact of culture on how health care is delivered, how health symptoms are interpreted and communicated by patients and health providers, and how costs for treatment are calculated and managed in relation to perceived benefits. Courses examine the interrelation between health and culture from a number of perspectives and contexts, including the cultural realities within which bodies are meaningfully constituted or in some cases enhanced by technology, the culture-specific communicative or representational health practices, the socially constituted experiences of trauma, death, suffering, and healing, and the various culturally mediated approaches to health care costs and remedies.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following:* |  |
| ANTH-325 | Bodies and Culture |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-425 | Global Sexualities |
| COMM-344 | Health Communication |
| CRIM-245 | Prostitution and Vice |
| ECON-450 | Health Care Economics |
| FNRT-383 | Traumatic Images |
| FNRT-384 | Art of Dying |
| MLSP-353 | Trauma and Survival in First-Person Narrative |
| PSYC-231 | Death and Dying |
| SOCI-245 | Gender and Health |
| SOCI-255 | Disaster, Public Health Crisis, and Global Responses |
| SOCI-315 | Global Exiles of War and Terror |
| STSO-341 | Biomedical Issues |
| STSO-441 | Cyborg Theory: (Re)thinking the Human Experience in the 21st Century |

* At least one course must be taken from either ANTH or SOCI.


## History

The history immersion provides students with intensive study within the discipline of history. Students may choose to structure their immersion broadly, by choosing a wide range of historical topics to study, or narrowly, by choosing a particular area to study, such as American, European, or Asian history.

| COURSE |  |
| :---: | :---: |
| Electives |  |
| Choose three of the following:* |  |
| HIST-201 | Histories of Globalization |
| HIST-210 | Introduction to Africa and the Diaspora |
| HIST-220 | Introduction to Public History |
| HIST-230 | American Deaf History |
| HIST-238 | History of Disability |
| HIST-240 | Civil War America |
| HIST-245 | American Slavery and Freedom |
| HIST-250 | Origins of U.S. Foreign Relations |
| HIST-251 | Modern U.S. Foreign Relations |
| HIST-252 | The United States and Japan |
| HIST-260 | History of Pre-modern China |
| HIST-261 | History of Modern China |
| HIST-265 | History of Modern Japan |
| HIST-266 | History of Pre-modern Japan |
| HIST-270 | History of Modern France |
| HIST-275 | Screening the Trenches: A History of WWI Through Film |
| HIST-280 | History of Modern Germany |
| HIST-290 | U.S. History Since 1945 |
| HIST-301 | Great Debates in U.S. History |
| HIST-302 | Special Topics in History |
| HIST-310 | Global Slavery and Human Trafficking |
| HIST-321 | Special Topics in Public History |
| HIST-322 | Monuments and Memory |
| HIST-323 | America's National Parks |
| HIST-324 | Oral History |
| HIST-325 | Museums and History |
| HIST-326 | Doing History in a Digital World |
| HIST-330 | Deaf People and Technology |
| HIST-333 | Diversity in the Deaf Community |
| HIST-334 | Oppression in the Lives of Deaf People |
| HIST-335 | Women and the Deaf Community |
| HIST-345 | Environmental Disasters |
| HIST-350 | Terrorism, Intelligence, and War |
| HIST-351 | The Vietnam War |
| HIST-365 | Conflict in Modern East Asia |
| HIST-369 | Histories of Christianity |
| HIST-380 | International Business History |
| HIST-381 | Technology in the Modern World |
| HIST-390 | Medicine and Public Health in American History |
| HIST-402 | Special Seminar in History |
| HIST-421 | Hands-On History |
| HIST-430 | Deaf Spaces |
| HIST-431 | Theory and Methods of Deaf Geographies |
| HIST-439 | Biography as History |
| HIST-450 | Modern Japan in History, Fiction, and Film |
| HIST-462 | East-West Encounters |
| HIST-465 | The Samurai in Word and Image |
| HIST-470 | Science, Technology, and European Imperialism |
| HIST-480 | Global Information Age |

## Human Language Technology and Computational Linguistics

The human language technology and computational linguistics immersion provides exposure to computational linguistics and relevant language science course work. Students gain knowledge and practical skills in computational natural language processing and technical linguistic analysis, useful for analytics and modeling with language data and for developing, evaluating, and maintaining language technology software.

| COURSE |  |
| :--- | :--- |
| Required course |  |
| ENGL-481 | Introduction to Natural Language Processing |
| Electives |  |
| Choose two of the following: |  |
| ENGL-310 | Introduction to Language Science |
| ENGL-351 | Language Technology |
| ENGL-482 | Science and Analytics of Speech |
| ENGL-582 | Advanced Topics in Computational Linguistics |

## International Relations

The international relations immersion combines the study of the complexities and shifting trends of international politics with the study of the global system. Particular emphasis is placed on the interactions and interconnectedness of nation-states at the international level and other participants in international affairs, such as international organizations, non-governmental organizations, sub-national entities, and individual citizens. Global issues studied include democratization, international and regional conflicts, terrorism, international trade and economic integration, economic development, international law and organizations, and human rights. This immersion is closed to students majoring in political science.

| COURSE |  |
| :--- | :--- |
| Electives | Ethics in International Politics |
| Choose three of the following:* |  |
| POLS-205 | Comparative Politics |
| POLS-210 | Technology, Ethics and Global Politics |
| POLS-215 | Global Political Economy |
| POLS-220 | Environmental Ethics and Political Ecology |
| POLS-285 | International Law and Organizations |
| POLS-315 | American Foreign Policy |
| POLS-320 | Human Rights in Global Perspective |
| POLS-330 | Politics of Developing Countries |
| POLS-335 | Government and Politics of East Asia |
| POLS-350 | International Political Thought |
| POLS-360 | Cyberwar, Robots, and the Future of Conflict |
| POLS-370 | Evolutionary International Relations |
| POLS-410 | War and the State |
| POLS-440 | Terrorism and Political Violence |
| POLS-445 | Comparative Public Policy |
| POLS-455 | Special Topics in Political Science |
| POLS-525 |  |

[^17]
## Journalism

The journalism immersion provides opportunities for the advanced study of selected areas of journalism, including its history and relevant legal and ethical issues, and for education and practice in writing and editing skills required of journalists. This immersion is closed to students majoring in journalism.

| COURSE |  |
| :--- | :--- |
| Required course |  |
| COMM-271 | Introduction to Journalism |
| Electives |  |
| Choose two of the following: |  |
| COMM-261 | History of Journalism |
| COMM-263 | Computer-Assisted Reporting |
| COMM-272 | Reporting and Writing I |
| COMM-273 | Reporting and Writing II |
| COMM-274 | News Editing |
| COMM-361 | Reporting in Specialized Fields |
| COMM-362 | Law and Ethics of the Press |
| COMM-442 | Professional Writing |
| COMM-461 | Multiplatform Journalism |

## Language Science

The language science immersion prepares students in the interdisciplinary scientific study and analysis of human language. Language science is directly applicable to students interested in computing and media, human-computer interaction, brain and cognition, language acquisition, human health, interpreting, relevant branches of engineering, and policy studies. Students can complete the immersion irrespective of their skills in languages other than English. Besides a core course on linguistic principles, students can choose electives covering technology of language, philosophy of language, and language in culture and society. Electives allow students to customize the immersion to their interests and needs, with the support of a faculty adviser.

## COURSE

## Required course

ENGL-310 Introduction to Language Science

## Electives

| Choose two of the following: |  |
| :--- | :--- |
| ANTH-220 | Language and Culture |
| ENGL-310 | Introduction to Language Science |
| ENGL-351 | Language Technology |
| ENGL-470 | Evolving English Language |
| ENGL-481 | Introduction to Natural Language Processing |
| ENGL-482 | Language and Brain |
| ENGL-582 | Advanced Topics in Computational Linguistics |
| MLAS-351 | Linguistics of American Sign Language |
| MLCU-301 | Psycholinguistics |
| MLJP-351 | Languages in Japanese Society |
| MLJP-451 | Structure of the Japanese Language |
| MLST-449 | Special Topics: Modern Language* |
| PHIL-414 | Philosophy of Language |

* This course may be used when the topic focuses on linguistics


## Latino/Latina/Latin American Studies

The Latino/Latina/Latin American studies immersion allows students to study Latino or Latin American culture. The goal is to introduce students to the customs and culture (history, art, literature, politics, anthropology, music) of Latin America or of Latinos in the U.S. Students become aware of the relationship between language and culture and of the differences between their own language and culture and those of Spanish-speaking countries or Brazil. This immersion is closed to students majoring in international and global studies who have chosen an area of study in the Spanish or Portuguese language or a field specialization in Latin America or Europe.

| COURSE |  |
| :---: | :---: |
| Electives |  |
| Choose three of the following:* |  |
| ANTH-235 | Immigration to the U.S. |
| ANTH-255 | Regional Archaeology $\dagger$ |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-350 | The Global Economy and the Grassroots |
| ARTH-561 | Latin American Art |
| MLPO-201 | Beginning Portuguese I |
| MLPO-202 | Beginning Portuguese II |
| MLPO-301 | Intermediate Portuguese I |
| MLPO-302 | Intermediate Portuguese II |
| MLPO-401 | Advanced Portuguese I |
| MLPO-402 | Advanced Portuguese II |
| MLSP-201A | Beginning Spanish IA |
| MLSP-201B | Beginning Spanish IB |
| MLSP-202 | Beginning Spanish II |
| MLSP-301 | Intermediate Spanish I |
| MLSP-302 | Intermediate Spanish II |
| MLSP-401 | Advanced Spanish I |
| MLSP-402 | Advanced Spanish II |
| MLSP-351 | Gender and Sexuality in Hispanic Studies |
| MLSP-352 | Caribbean Cinema |
| MLSP-353 | Trauma and Survival in First-Person Narrative |
| * This immersion consists of three culture courses. If a student chooses, one of the three courses may be substituted for a Spanish or Portuguese language course. Students who have prior study of either language must take a placement exam through the department of modern languages to determine the appropriate level language course to complete. <br> $\dagger$ This course may be used when the topic focuses on Mesoamerica. |  |

## Legal Studies

The legal studies immersion provides students with a foundation in the study of law and legal institutions, and in the relationship of law to other aspects of society and culture. Courses provide a broad perspective on law and legal institutions including historical, ethical, sociological, political, and philosophical approaches to these areas.

| COURSE |
| :--- |
| Required Course |
| Choose one of the following: |
| CRIM-215 |
| POLS-200 |
| Electives |
| Choose two of the following:* |
| COMM-342 |
| COMM and Society |
| CRIM-225 |

* All three courses cannot be from the same discipline. Students majoring in communication, criminal justice, philosophy, and political science must choose two of the three courses from outside their respective major


## Linguistic Anthropology

Language is a fundamental property of being human. Linguistics, the study of human language, is one of the four branches of anthropology. Linguistic anthropology explores the dynamic interrelationships among language, culture, and society, how human beings make sense of the world, and participate in social life through creative speech acts and linguistic play. Courses familiarize students with a range of theoretical and analytic approaches, including general linguistics, sociolinguistics, theories of languages, communication, semiotics, and literary studies. This immersion is closed to students majoring in anthropology and sociology who have chosen the cultural anthropology track.

| COURSE |  |
| :--- | :--- |
| Required Courses |  |
| ANTH-104 | Language and Linguistics |
| Electives |  |
| Choose two of the following |  |
| ANTH-201/SOCl-201 | Ethnographic Imagination: Writing about Society and Culture |
| ANTH-220 | Language and Culture: An Introduction to Linguistic Anthropology |
| ANTH-285 | American Indian Languages |
| ANTH-290 | Language and Sexuality |
| ANTH-305 | Comparative and Historical Linguistics |
| ANTH-312 | People Before Cities |
| COMM-304 | Intercultural Communication |
| PHIL-414 | Philosophy of Language |

## Mathematics

This immersion is closed to students majoring in applied statistics, applied mathematics, and computational mathematics.

| COURSE |  |
| :--- | :--- |
| Prerequisites | Project-based Calculus I (or equivalent) |
| MATH-181 |  |
| Plus one of the following: | Project-based Calculus II |
| MATH-182 | Discrete Mathematics for Computing |
| MATH-190 | Discrete Mathematics and Introduction to Proof |
| MATH-200 |  |
| Electives | Multivariable Calculus |
| Choose three of the following: |  |
| MATH-219 | Multivariable Calculus and Vector Calculus |
| MATH-221 | Differential Equations |
| MATH-231 | Linear Systems and Differential Equations |
| MATH-233 | Linear Algebra |
| MATH-241 | Probability and Statistics I |
| MATH-251 | Linear Optimization |
| MATH-311 | Non-linear Optimization |
| MATH-312 | Game Theory |
| MATH-321 | Boundary Value Problems |
| MATH-326 | Dynamical Systems |
| MATH-331 | Combinatorics |
| MATH-361 | Codes and Ciphers |
| MATH-367 | Complex Variables |
| MATH-381 | Advanced Linear Algebra |
| MATH-341 | Graph Theory |
| MATH-351 | Number Theory |
| MATH-371 | Stochastic Processes |
| MATH-401 | Numerical Analysis |
| MATH-411 | Numerical Linear Algebra |
| MATH-412 | Real Variables I |
| MATH-431 | Real Variables II |
| MATH-432 | Abstract Algebra I |
| MATH-441 | Topology Algebra II |
| MATH-442 |  |
| MATH-461 |  |

## Modern Languages and Cultures - Arabic

## Hiroko Yamashita, Immersion Adviser (585) 475-6074, hxygs!@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Arabic-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register for language courses. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Arabic language, a field specialization in the Middle East, or are native speakers of Arabic.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose two or three consecutive language courses: |  |
| MLAR-201 | Beginning Arabic I |
| MLAR-202 | Beginning Arabic II |
| MLAR-301 | Intermediate Arabic I |
| MLAR-302 | Intermediate Arabic II |
| MLAR-401 | Advanced Arabic I |
| MLAR-402 |  |
| One culture course may be taken in place of one language course: |  |
| ANTH-240 |  |
| ANTH-365 | Muslim Youth Cultures |

## Modern Languages and Cultures - Chinese

## Zhong Chen, Immersion Adviser <br> (585) 475-6917, zxcgs!@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Chinese-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Chinese language, a field specialization in Asia, or are native speakers of Chinese.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose two or three consecutive language courses: |  |
| MLCH-201 | Beginning Chinese I |
| MLCH-202 | Beginning Chinese II |
| MLCH-301 | Intermediate Chinese I |
| MLCH-302 | Intermediate Chinese II |
| MLCH-401 | Advanced Chinese I |
| MLCH-402 | Advanced Chinese II |
| One Culture course may be used in place of one language course: |  |
| ANTH-255 | Regional Archaeology* |
| HIST-260 | History of Pre-modern China |
| HIST-261 | History of Modern China |
| HIST-365 | Conflict in Modern East Asia |
| POLS-350 | Politics of East Asia |
| PHIL-311 | East Asian Philosophy |

* This course may be used when the topic focuses on East Asia


## Modern Languages and Cultures - French

## Philippe Chavasse, Immersion Adviser

(585) 475-3158, pxcgsl@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of French-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in French language, a field specialization in Europe, or are native speakers of French.

| COURSE |  |
| :---: | :---: |
| Electives |  |
| Choose two or three consecutive language courses: |  |
| MLFR-201 | Beginning French I |
| MLFR-202 | Beginning French II |
| MLFR-301 | Intermediate French I |
| MLFR-302 | Intermediate French II |
| MLFR-401 | Advanced French I |
| MLFR-402 | Advanced French II |
| One culture course may be used in place of one language course: |  |
| MLFR-351 | French Films and Hollywood |
| MLFR-352 | The French Heritage in Films |
| HIST-270 | History of Modern France |
| HIST-275 | Screening the Trenches: History of WWI through Film |
| ARTH-364 | Art in Paris |

## Modern Languages and Cultures - German

## Ulrike Stroszeck, Immersion Adviser

(585) 475-2921, uisgsl@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of German-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills will begin the language courses at their current level of proficiency as determined by a placement test. This immersion is closed to students majoring in international and global studies who have chosen an area of study in German language, a field specialization in Europe, or are native speakers of German.

## course

## Electives

| Choose two or three consecutive language courses: |  |
| :--- | :--- |
| MLGR-201 | Beginning German I |
| MLGR-202 | Beginning German II |
| MLGR-301 | Intermediate German I |
| MLGR-302 | Intermediate German II |
| MLGR-401 | Advanced German I |
| MLGR-402 | Advanced German II |
| One culture course may be used in place of one language course: |  |
| FNRT-210 | Bach, Händel and the Baroque |
| FNRT-211 | Era of Haydn, Mozart and Beethoven |
| HIST-280 | History of Modern Germany |
| MLGR-449 | Special Topics in German |

## Modern Languages and Cultures - Italian

## Elisabetta D'Amanda, Immersion Adviser (585) 475-6522, exdgla@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Italy. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Italian language, a field specialization in Europe, or are native speakers of Italian.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose two or three consecutive Ianguage courses: |  |
| MLIT-201 | Beginning Italian I |
| MLIT-202 | Beginning Italian II |
| MLIT-301 | Intermediate Italian I |
| MLIT-302 | Intermediate Italian II |
| MLIT-401 | Advanced Italian I |
| MLIT-402 | Advanced Italian II |
| One culture course may be used in place of one language course: |  |
| ARTH-311 | Art \& Architecture of Italy: 1250-1400 |
| ARTH-312 | Art \& Architecture of Italy: 1600-1750 |
| ARTH-317 | Art \& Architecture of Florence and Rome: 15th Century |
| ARTH-318 | Art \& Architecture of Florence and Rome: 16th Century |

## Modern Languages and Cultures - Japanese

## Yukiko Maru Leary, Immersion Adviser

(585) 475-4558, yxmgs@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Japan. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Japanese language, a field specialization in Asia, or are native speakers of Japanese.

| COURSE |  |
| :--- | :--- |
| Electives | Beginning Japanese I |
| Choose two or three consecutive language courses: |  |
| MLJP-201 | Beginning Japanese II |
| MLJP-202 | Intermediate Japanese I |
| MLJP-301 | Intermediate Japanese II |
| MLJP-302 | Advanced Japanese I |
| MLJP-401 | Advanced Japanese II |
| MLJP-402 | Professional Japanese |
| MLJP-403 | Advanced Speaking in Japanese |
| MLJP-405 | Regional Archaeology |
| One culture course may be used in place of one language course: |  |
| ANTH-255 | Japanese Culture in Print |
| MLJP-404 | Language in Japanese Society |
| MLJP-351 | Structure of the Japanese Language |
| MLJP-451 | Anime |
| FNRT-200 | The United States and Japan |
| HIST-252 | Modern Japan in History, Fiction, and Film |
| HIST-450 | History of Modern Japan |
| HIST-265 | History of Pre-modern Japan |
| HIST-266 | The Samurai in Word and Image |
| HIST-465 | Politics of East Asia |
| POLS-350 | East Asian Philosophy |
| PHIL-311 |  |
| * This course may be used when the topic focuses on East Asia. |  |

## Modern Languages and Cultures - Portuguese

## Hiroko Yamashita, Immersion Adviser (585) 475-6074, hxygs!@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Portugal and Portuguese-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Portuguese language, a field specialization in Latin America or Europe, or are native speakers of Portuguese

## COURSE

## Electives

Choose two or three consecutive language courses:

| Choose two or three consecutive language courses: |  |  |  |
| :--- | :--- | :---: | :---: |
| MLPO-201 | Beginning Portuguese I |  |  |
| MLPO-202 | Beginning Portuguese II |  |  |
| MLPO-301 | Intermediate Portuguese I |  |  |
| MLPO-302 | Intermediate Portuguese II |  |  |
| MLPO-401 | Advanced Portuguese I |  |  |
| MLPO-402 | Advanced Portuguese II |  |  |
| One culture course may be used in place of one language course: |  |  |  |
| ANTH-335 | Culture and Politics in Latin America |  |  |

## Modern Languages and Cultures - Russian

## Hiroko Yamashita, Immersion Adviser

## (585) 475-6074, hxygs!@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Russia and Russian-speaking countries of the world. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Russian language, a field specialization in Asia, or are native speakers of Russian.

| COURSE |  |
| :---: | :---: |
| Electives |  |
| Choose two or three consecutive language courses: |  |
| MLRU-201 | Beginning Russian I |
| MLRU 202 | Beginning Russian II |
| MLRU-301 | Intermediate Russian I |
| MLRU-302 | Intermediate Russian II |
| MLRU-401 | Advanced Russian I |
| MLRU-402 | Advanced Russian II |
| One culture course may be used in place of one language course |  |
| ENGL-418 | Great Authors* |
| ENGL-416 | Topics in Global Literatures* |

## Modern Languages and Cultures - Spanish

## Diane Forbes, Immersion Adviser (585) 475-6765, djfgsl@rit.edu

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Spain and Spanish-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register. This immersion is closed to students majoring in international and global studies who have chosen an area of study in Spanish language, a field specialization in Latin America or Europe, or are native speakers of Spanish.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose two or three consecutive language courses: |  |
| MLSP-201A, 201B | Beginning Spanish IA, IB $\dagger$ |
| MLSP-202 | Beginning Spanish II |
| MLSP-301 | Intermediate Spanish I |
| MLSP-302 | Intermediate Spanish II |
| MLSP-401 | Advanced Spanish I |
| MLSP-402 | Advanced Spanish II |
| One culture course may be used in place of one language course |  |
| MLSP-351 | Gender and Sexuality in Hispanic Studies |
| MLSP-352 | Caribbean Cinema |
| MLSP-353 | Trauma and Survival in First-Person Narrative |
| ANTH-235 | Immigrationg to the U.S. |
| ANTH-255 | Regional Archaeologyt $\dagger$ |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-350 | The Global Economy and the Grassroots |
| ARTH-561 | Latin American Art |
| ENGL-416 | Topics in Global Literatures* |
| ENGL-418 | Great Authors* |
| Based on a student's previous study of the Spanish language, students may enroll in either Beginning <br> Spanish 1A (MLSP-201A) or Beginning Spanish 1B (MLSP-201B). <br> * When the course deals with Spanish and/or Latin American literature. <br> This course may be used when the topic focuses on Mesoamerica. |  |

## Museum Studies

The immersion in museum studies introduces students to the history, theory, and practice of institutional collecting, exhibiting, storing, and preserving our cultural heritage in museums, archives, collections, galleries, and libraries. It also provides students with an introduction to public history, the technical investigation of art, the history and theory of exhibitions, and interactive design for museums. This immersion is closed to students majoring in museum studies.

| COURSE |  |
| :--- | :--- |
| Electives | Monuments and Memory |
| Choose three of the following:* |  |
| HIST-322 | America's National Parks |
| HIST-323 | Oral History |
| HIST-324 | Museums and History |
| HIST-325 | Introduction to Museums and Collecting |
| MUSE-220 | Introduction to Public History |
| MUSE-221/HIST-221 | History and Theory of Exhibitions |
| MUSE-224 | Museums and the Digital Age |
| MUSE-225 | Archival Studies |
| MUSE-340 | Museum Education and Interpretation |
| MUSE-341 | Legal and Ethical Issues for Collecting Institutions |
| MUSE-358 | Visitor Engagement and Technologies |
| MUSE-360 | Special Topics |
| MUSE-449 |  |
| * Students must take at least one MUSE course and one HIST course. The third course may be taken from |  |
| either discipline. |  |

## Music

The immersion in music offers courses in the history, theory, and practice of music. Students with a background in music and/or a genuine desire to know more about the subject will have the opportunity to expand their knowledge of various theoretical and historical aspects, as well as participate in performing groups at RIT.

## COURSE

## Electives*

| Choose three of the following: |  |
| :--- | :--- |
| FNRT-250 | RIT Singerst $\dagger$ |
| FNRT-251 | RIT Orchestrat |
| FNRT-252 | RIT Concert Band $\dagger$ |
| FNRT-253 | World Music Ensemblet |
| FNRT-255 | RIT Chamber Orchestrat |
| FNRT-254 | RIT Jazz Ensemblet |
| FNRT-201 | Music in the United States |
| FNRT-202 | Studies in World Music |
| FNRT-203 | American Popular and Rock Music |
| FNRT-204 | Music and the Stage |
| FNRT-205 | Music Theory I |
| FNRT-210 | Bach, Handel, and the Baroque |
| FNRT-211 | Era of Haydn, Mozart, and Beethoven |
| FNRT-320 | Romanticism in Music |
| FNRT-321 | Music Since 1900 |
| FNRT-322 | Survey of Jazz |
| FNRT-323 | Survey of African American Music |
| FNRT-324 | Sounds of Protest |
| FNRT-325 | American Popular Song |
| FNRT-327 | The American Musical Theater |
| FNRT-485 | Music Theory 2 |

* At least one course must be at the 300 level or above.
$\dagger$ Each of these ensembles is one semester credit hour. Three semesters of participation are required to complete one immersion course.


## Native American Studies

The Native American studies immersion enhances students' knowledge of the unique heritage of Native Americans and their relationships with people from other communities and nations. This enhanced understanding is grounded in the study of the histories, collective memories, cultures, and languages of Native Americans and the representations, stereotypes, and pertinent laws and policies governing their lives. Courses emphasize indigenous ways of knowing and learning in the past and present. This immersion is closed to students majoring in sociology and anthropology who have chosen the cultural anthropology track and to students majoring in international and global studies who have chosen the indigenous studies track.

## COURSE

## Electives

| Choose three of the following:* $^{*}$ |  |
| :--- | :--- |
| ANTH-215 | Field Methods in Archaeology |
| ANTH-260 | Native North Americans |
| ANTH-265 | Native Americans in Film |
| ANTH-285 | American Indian Languages |
| ANTH-305 | Comparative and Historical Linguistics |
| ANTH-355 | Cultures and Politics in Latin America |
| ANTH-375 | Native American Cultural Resources and Rights |
| ANTH-415 | Archaeological Science |
| ANTH-455/ECON-452/ | Economics of Native America |
| INGS-455 |  |

* At least one course must be at the 300 level or higher.


## Philosophy

The philosophy immersion provides students with an opportunity to study the nature, methods, problems, and achievements of philosophical inquiry. The immersion emphasizes the following goals: the ability to think rationally and critically, an awareness of ethical values, an appreciation of aesthetic values, an awareness of how the past affects the present and future, and an understanding of the relationship between individuals and the social settings with which they interact. This immersion is closed to students majoring in philosophy.

## COURSE

## Electives

| Choose three of the following:* |  |
| :--- | :--- |
| PHIL-201 | Ancient Philosophy |
| PHIL-202 | Foundations of Moral Philosophy |
| PHIL-203 | Modern Philosophy |
| PHIL-205 | Symbolic Logic |
| PHIL-301 | Philosophy of Religion |
| PHIL-303 | Philosophy of Art/Aesthetics |
| PHIL-304 | Philosophy of Law |
| PHIL-305 | Philosophy of Peace |
| PHIL-306 | Professional Ethics |
| PHIL-307 | Philosophy of Technology |
| PHIL-308 | Environmental Philosophy |
| PHIL-309 | Feminist Theory |
| PHIL-310 | Theories of Knowledge |
| PHIL-311 | East Asian Philosophy |
| PHIL-312 | American Philosophy |
| PHIL-313 | Philosophy of Film |
| PHIL-314 | Philosophy of Vision and Imaging |
| PHIL-315 | Responsible Knowing |
| PHIL-401 | Great Thinkers |
| PHIL-402 | Philosophy of Science |
| PHIL-403 | Social and Political Philosophy |
| PHIL-404 | Philosophy of Mind |
| PHIL-405 | Philosophy of the Social Sciences |
| PHIL-406 | Contemporary Philosophy |
| PHIL-407 | Philosophy of Action |
| PHIL-408 | Critical Social Theory |
| PHIL-409 | Existentialism |
| PHIL-410 | Medieval Philosophy |
| PHIL-411 | Metaphysics |
| PHIL-412 | Nineteenth Century Philosophy |
| PHIL-413 | Philosophy and Literary Theory |
| PHIL-414 | Philosophy of Language |
| PHIL-415 | Sthical Theory |
| PHIL-416 | Coninar in Philosophy |
| PHIL-417 | Special Topics European Philosophy |
| PHIL-449 | Honors Philosophy |
| PHIL-571 | a |

## Physics

In a broad sense, the aim of physics is to develop interconnected unifying threads bridging the vast number of seemingly diverse phenomena observed in the physical world around us. This immersion provides students with the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest. This immersion is closed to students majoring in imaging science or physics.

| COURSE |  |
| :--- | :--- |
| Prerequisites | University Physics I |
| PHYS-211 | University Physics II |
| PHYS-212 |  |
| Required Courses | Modern Physics I |
| PHYS-213 | Modern Physics II |
| PHYS-214 |  |
| Electives |  |
| Choose one of the following: |  |
| PHYS-283 | Vibrations and Waves |
| PHYS-315 | Mathematical Methods in Physics |
| PHYS-320 | Classical Mechanics |
| PHYS-330 | Electricity and Magnetism |
| PHYS-411 | Thermal and Statistical Physics |
| PHYS-440 |  |

## Psychology

This immersion reflects the central themes of psychology, including topics such as the study of cognitive, developmental, social, and abnormal psychology. The study of behavior includes many different topics, but the unifying theme is that these courses all include the study of behavior using or applying the scientific method. This immersion is closed to students majoring in psychology.

| COURSE |  |
| :--- | :--- |
| Prerequisite | Introduction to Psychology |
| PSYC-101 |  |
| Electives | Abnormal Psychology |
| Choose three of the following: |  |
| PSYC-221 | Biopsychology |
| PSYC-222 | Cognitive Psychology |
| PSYC-223 | Perception |
| PSYC-224 | Social Psychology |
| PSYC-225 | Death and Dying |
| PSYC-231 | Developmental Psychology |
| PSYC-232 | History and Systems |
| PSYC-233 | Industrial and Organizational Psychology |
| PSYC-234 | Learning and Behavior |
| PSYC-235 | Personality |
| PSYC-236 | Psychology of Women |
| PSYC-237 | Psychology of Religion |
| PSYC-238 | Positive Psychology |
| PSYC-239 | Psychology of Human Sexuality |
| PSYC-240 |  |

## Public Policy

This immersion provides students with a clear understanding of public policy, the policy process, and policy analysis. Students have the opportunity to develop perspectives on a variety of contemporary public policy issues, especially those that emerge from scientific and technological advancements. Policy Analysis (PUBL-301) and Decision Analysis (PUBL-302) are offered especially for students who are considering the MS in public policy or who have an interest in analytical tools. This immersion is closed to students majoring in public policy.

| COURSE |  |
| :--- | :--- |
| Electives | Ethics, Values and Public Policy |
| Choose three of the following: |  |
| PUBL-201 | Introduction to Qualitative Policy Analysis |
| PUBL-210 | Public Policy Analysis |
| PUBL-301 | Decision Analysis |
| PUBL-302 | Cybersecurity Policy and Law |
| PUBL-363 | Special Topics |
| PUBL-489 | Technology Innovation and Public Policy |
| PUBL-510 | Information and Communication Policy |
| PUBL-520 | Energy Policy |
| PUBL-530 | Science and Technology Policy |
| STSO-201 | Environmental Policy |
| STSO-421 |  |

* At least one course must be at the 300 level or higher.


## Religious Studies

Religion plays a major role in human affairs. To understand more fully the nature of the relationship between society and the individual, it is essential to have some understanding of religion. The religious studies immersion engages students in the study of religion from the perspective of major Western and non-Western traditions through courses in disciplines such as anthropology, history, literature, philosophy, and psychology.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following:* |  |
| ANTH-245 | Ritual and Performance |
| ANTH-275 | Global Islam |
| ANTH-365 | Culture and Politics in the Middle East |
| ENGL-409 | Mythology and Literature |
| HIST-369 | Histories of Christianity |
| PHIL-301 | Philosophy of Religion |
| PHIL-311 | East Asian Philosophy |
| PHIL-409 | Existentialism |
| PHIL-410 | Medieval Philosophy |
| PHIL-411 | Metaphysics |
| PHIL-412 | Nineteenth-Century Philosophy |
| PSYC-238 | Psychology of Religion |

[^18]
## Science and Technology Studies

The science and technology studies immersion examines some of the major impacts of science and technology in the contemporary world. Special reference is given to American concerns. Students gain an overall appreciation of the social nature of science and technology as they have developed in the past, as they exist today, and as they may affect society in the future under various scenarios. Science and technology have become social systems in their own right and have made possible increasing freedom, a fantastic variety of choice, and, paradoxically, the growing interdependence of all segments of world society. A new level of public awareness and concern is crucial to understanding and dealing successfully with these consequences.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following:* |  |
| STSO-201 | Science and Technology Policy |
| STSO-240 | Social Consequences of Technology |
| STSO-246 | History of Women in Science and Engineering |
| STSO-321 | Face of the Land |
| STSO-341 | Biomedical Issues: Science and Technology |
| STSO-342 | Gender, Science and Technology |
| STSO-345 | Makers of Modern Science |
| STSO-346 | Technology in American History |
| STSO-441 | Cyborg Theory: (Re)thinking the Human Experience in the 21st Century |
| STSO-442 | Science, Technology and Society Classics |
| STSO-445 | The Natural Sciences in Western History |
| STSO-446 | History of Chemistry |
| STSO-489 | Special Topics |
| STSO-510 | Interdisciplinary Capstone Seminar |
| * At least one course must be from the 300 level or higher. |  |

## Science of Film, Photography, and Imaging

The science of film, photography, and imaging immersion explores the basic science behind technologies used in film, photography, and other imaging applications. Introductions to human visual perception, color science, imaging physics, and imaging system engineering set a groundwork for common theories underlying all major imaging industries. This immersion also provides necessary prerequisites for completion of a minor in imaging science. The immersion is closed to students majoring in imaging science, motion picture science, and imaging and photographic technology.

## COURSE

## Required Course

SOFA-103 Introduction to Imaging and Video Systems

## Electives

Choose two of the following:

| IMGS-221 |  |
| :--- | :--- |
| IMGS-261 | Lision and Psychophysics |
| IMGS-321 | Geometric Optics |
| IMGS-341 | Interactions Between Light and Matter |
| IMGS-351 | Fundamentals of Color Science |

## Social Inequalities

Social inequalities and collective responses to them, both locally and globally, are the focus of this immersion. Students explore the interplay between social and cultural dimensions of the rapid globalization of societies, and the concurrent inequalities of race, ethnicity, class, gender, and culture. The egalitarian strivings that emerge from these inequalities also will be examined. Courses offer the unique standpoints of two academic disciplines, sociology and anthropology, to analyze the roles of powerful social institutions and culture industries, and to identify and explain social inequalities and resulting conflicts and egalitarian hopes. This immersion is closed to students majoring in sociology and anthropology.

| COURSE |  |
| :---: | :---: |
| Electives |  |
| Choose three of the following:* |  |
| ANTH-210 | Culture and Globalization |
| ANTH-225 | Globalizing Africa |
| ANTH-235 | Immigration to the U.S. |
| ANTH-260 | Native North Americans |
| ANTH-285 | American Indian Languages |
| ANTH-290 | Language, and Sexuality |
| ANTH-305 | Comparative and Historical Linquistics |
| ANTH-328 | Heritage and Tourism |
| ANTH-335 | Culture and Politics in Latin America |
| ANTH-345 | Genocide and Post-Conflict Justice |
| ANTH-350 | The Global Economy and the Grassroots |
| ANTH-365 | Culture and Politics in the Middle East |
| ANTH-380 | Nationalism and Identity |
| ANTH-410 | Global Cities |
| ANTH-425 | Global Sexualities |
| $\begin{aligned} & \text { ANTH-451/INGS-451/ } \\ & \text { SOCI-451 } \end{aligned}$ | Economics of Women and the Family |
| ANTH-455/INGS-455 | Economics of Native America |
| INGS-310/HIST-310 | Global Slavery and Human Trafficking |
| SOCI-103 | The Urban Experience |
| SOCI-210 | African-American Culture |
| SOCI-215 | The Changing Family |
| SOCI-220 | Minority Group Relations |
| SOCI-225 | Social Inequality |
| SOCI-230 | Sociology of Work |
| SOCI-235 | Women, Work, and Culture |
| SOCI-245 | Gender and Health |
| SOCI-310 | U.S. Housing Policy |
| SOCI-315 | Global Exiles of War and Terror |
| SOCI-320 | Population and Society |
| SOCI-330 | Urban (In)Justice |
| SOCI-345 | Urban Poverty |
| SOCI-350 | Social Change |
| SOCI-410 | Diversity in the City |

## Theater Arts

The theater arts immersion offers courses in dramatic literature, theatre history, theory, and practice. Students will expand their knowledge of dramatic and theatrical arts as well as study the role and function of theater in the broader contexts of history, culture, and the communication of ideas.
COURSE
Electives

| Choose three of the following: |  |
| :--- | :--- |
| FNRT-207 | Dramatic Theory and Text Analysis |
| FNRT-230 | Theater Ensemble- |
| FNRT-231 | Theater and History of Acting |
| FNRT-301 | Theater in Europe |
| FNRT-302 | Theater in the United States |
| FNRT-303 | Shakespeare the Dramatist |
| FNRT-304 | African-American Playwrights |
| FNRT-327 | The American Musical Theater |
| *Theater Ensemble (FNRT-230) counts for 1 credit hour. The course may be repeated up to three times. |  |

## Urban Studies

Metropolitan areas must address such enduring issues as poverty, homelessness, affordable housing, transportation, pollution, education, water and food security, health, crime, safety, recreation, zoning, segregation, ethno-racial tensions, and economic development. Each city must do so with recognition of its place in the wider regional, national, and global contexts. The urban studies immersion helps students identify and analyze such fundamental issues and allows them to explore and assess various ways policy-makers respond to those issues. This immersion is closed to students majoring in sociology and anthropology who have chosen the urban studies track.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following:* |  |
| ANTH-235 | Immigration to the U.S. |
| ANTH-315 | Archaeology of Cities |
| ANTH-410 | Global Cities |
| ECON-440 | Urban Economics |
| INGS-210 | Culture and Politics in Urban Africa |
| SOCI-220 | Minority Group Relations |
| SOCI-310 | U.S. Housing Policy |
| SOCI-325 | Community and Economic Development: Rochester |
| SOCI-330 | Urban (In)Justice |
| SOCI-335 | Urban Cultures |
| SOCI-340 | Urban Planning and Policy |
| SOCI-345 | Urban Poverty |
| SOCI-410 | Diversity in the City |
| STSO-550 | Sustainable Communities |

* At least one course must be at the 300 level or higher.


## Visual Culture

Visual culture explores the role of visual media in everyday life and its critical function in the dissemination of ideas in the public sphere. Emphasizing comparative critical approaches to the convergence of art, popular media, science, and technology, the immersion engages globalized visual media ranging from photography, television, film, new media (the web, digital imaging, and social networks), architecture, design, and art (painting, sculpture, and multimedia forms) in the context of such social arenas as art, news, science, advertising, and popular culture. The goal is to help students develop media literacy. This immersion is closed to students majoring in museum studies.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following: |  |
| FNRT-206 | Queer Looks |
| FNRT-220 | Introduction to Museums and Collecting |
| FNRT-225 | Museums and The Digital Age |
| FNRT-353 | History and Theory of Exhibitions |
| FNRT-360 | Visitor Engagement and Museum Technologies |
| FNRT-370 | American Painting |
| FNRT-371 | African American Painting |
| FNRT-372 | American Film of the Studio Era |
| FNRT-373 | American Film Since the Sixties |
| FNRT-375 | Women/Gender/Art |
| FNRT-376 | Visual Culture Theory |
| FNRT-377 | Imag(in)ing Rochester |
| FNRT-378 | Memory, Memorials, Monuments |
| FNRT-383 | Traumatic Images |
| FNRT-384 | Art of Dying |
| FNRT-440 | Deaf Art and Cinema |

## Women's and Gender Studies

This immersion provides an introduction to women's and gender studies and enables students to interrogate the social constructions, political systems, and historical rhetorics that have produced and maintain power structures. Courses examine key feminist, queer, and critical race writings and discourses, study the rise of feminist thought, consider the history of women's activism and the women's rights movements from Suffrage to the present day, and the application of feminist theory made visible through the rise of new and intersectional social identity movements.

| COURSE |  |
| :--- | :--- |
| Electives |  |
| Choose three of the following: |  |
| ANTH-325 | Bodies and Culture |
| ANTH-425 | Global Sexualities |
| WGST-200 | Foundations Women's and Gender Studies |
| WGST-206 | Queer Looks |
| WGST-210 | Introduction to LGBT Studies |
| WGST-235 | Women, Work, and Culture |
| WGST-237 | Psychology of Women |
| WGST-240 | Psychology of Human Sexuality |
| WGST-245 | Prostitution and Vice |
| WGSS-246 | History of Women in Science and Engineering |
| WGSS-250 | Domestic Violence |
| WGSS-255 | Seminar on Sexual Violence |
| WGST-265 | Women and Crime |
| WGST-290 | American Women's and Gender History |
| WGT-291 | History of Family and Children in the U.S. |
| WGST-309 | Feminist Theory |
| WGST-335 | Women and the Deaf Community |
| WGST-342 | Gender, Science, and Technology |
| WGST-351 | Gender and Sexuality in Hispanic Studies |
| WGST-361 | Queering Gendel |
| WGST-375 | Women, Gender, Art |
| WGST-383 | Traumatic Images |
| WGST-384 | Art of Dying |
| WGST-414 | Topics in Women's and Gender Studies |
| WGST-451 | Ecomonics of Women and the Family |
| WGST-481 | Women in Politics |

# Undergraduate Admission <br> rit.edu/admission 

## Freshman admission

Students applying for freshman admission for the fall semester may apply through an Early Decision Plan or Regular Decision Plan. The Early Decision Plan is designed for those who consider RIT their first-choice college and wish to receive an early notification regarding admission. Early Decision requires that candidates file their applications and all supporting documents by November 15. Admission notification will be sent beginning in mid-Decemverby January 15.

Freshmen who choose not to apply for Early Decision are considered under our Regular Decision Plan. Regular Decision applicants who have provided all required application materials by January 15. Admission notification in mid-March. Applications received after January 15 will be reviewed on a space-available basis. Letter will be mailed four to six weeks after the application is completed.

All applications for spring or summer semester entry are reviewed as they are received, and notification letters are mailed four to six weeks after all application credentials are received. Some programs are limited to fall entry only. Students interested in beginning their studies in the spring or summer semesters are encouraged to submit all required application materials by November 1.

## Transfer admission

Applications for transfer admission are reviewed as they are received, and notification letters are mailed four to six weeks after the application is completed. Because some programs fill to capacity, it is strongly recommended that transfer applicants complete their application by March 1 for fall or summer admission and by November 1 for spring admission.

A transfer credit evaluation is completed as part of the application process. Transfer credit is granted by the academic departments for course work that is related to students' intended majors, if it is completed at a regionally accredited college or university. Usually a grade of C or better is required for transfer credit to be awarded.

There is no limit on the number of credit hours that can be awarded. However, a recipient of a two-year degree from an accredited university cannot receive more than 60 semester credits for that degree. A matriculated undergraduate student's year level is determined by the number of credit hours the student has earned, according to this scale:

| YEAR LEVEL | $1-4-Y E A R$ PROGRAMS | $5-Y E A R$ PROGRAMS |
| :--- | :--- | :--- |
| 1 | $0-26$ | $0-26$ |
| 2 | $27-55$ | $27-55$ |
| 3 | $56-84$ | $56-75$ |
| 4 | $85-$ above | $76-95$ |
| 5 |  | $96-a b o v e$ |

Specific instructions for completing the application process are contained in the application packet (also online). Be sure to read the instructions carefully before applying.

Factors considered in the admissions decision include, but are not limited to, past high school/college performance (particularly in required academic subjects), admission test scores, competitiveness of high school or previous college, art portfolio (if required for major), and related experiences (work, military, etc.). Recommendations from those familiar with your academic performance and interviews with admissions counselors often are influential.

If you are accepted for admission, a $\$ 300$ nonrefundable enrollment deposit reserves a place in your class and is credited to your first-semester costs at RIT. The due date for this deposit is indicated with each offer of admission.

## International applicants

International students whose native language is not English must submit results of the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) examination along with the requirements listed below. Applications from international students are reviewed on a rolling basis. However, to receive the best consideration for admission and scholarships, you are encourage to submit the application and all required documents by January 15 for fall entry (November 1 for spring entry). Applications received after those dates will be considered on a space-available basis.

## Application requirements

In order to complete the application process, you need to submit the following:

1. A fully completed application for admission (includes any required supplemental forms);
2. A nonrefundable $\$ 60$ application fee;
3. An official high school transcript for all freshman applicants and transfer students with fewer than 30 semester hours completed at the time of application;
4. Official American College Test (ACT) or Scholastic Reasoning Test (SAT-I) results for all freshman applicants;
5. Official transcripts of all completed college course work and a list of any courses in progress (and not on the transcript) or courses to be completed before enrolling at RIT; and
6. A portfolio of original artwork as part of the application process for students applying for admission to academic majors offered by the schools of American Crafts, Art, and Design. Please review the portfolio guidelines available at cias.rit.edu/prospective-students/portfolio-guide before submitting your portfolio.

Early admission: Students who complete the prescribed number and distribution of high school units in three years, with the exception of fourth-year English/history, may seek admission under an Early Admission Program. Please contact the Undergraduate Admissions Office for details.

Placement testing for admitted students: Many majors at RIT depend on a solid foundation in mathematics. In an effort to enable
students to succeed in their college mathematics courses, the School of Mathematical Sciences developed a Mathematics Placement Exam. This exam is taken by all entering students whose majors require a calculus sequence. It assesses students' mastery of some of the fundamental mathematical concepts they have seen in their high school mathematics courses. Students without a calculus sequence who are not sure about the appropriate mathematics course with which to begin their studies may contact the department of mathematics and statistics at (585) 475-5780 to arrange for a special mathematics diagnostic test.

The Writing Placement Exam is an online exam in which students are given sixty minutes to read one of two short prompts and write a three paragraph response. The outcome of the exam has no effect on GPA; it is only used to determine which level writing course a student should enroll in first. All first-year students are required to take the exam unless they meet one of the following criteria:

- A score of 560 or higher on the verbal section of the SAT
- A score of 23 or higher on the English portion of the ACT
- A score of 6 or higher on the SAT essay exam.

New York State immunization requirement: New York State Public Law 2165 requires that all matriculated students enrolled for more than 6 credit hours in a term and born after January 1, 1957, must provide RIT's Student Health Center with proof that they have received the appropriate immunizations against measles, rubella, and mumps. Immunization requirements include two measles vaccinations, at least one month apart, with a live virus (after January 1, 1968, and after the first birthday) and one vaccination each against mumps and rubella (after January 1, 1969, and after the first birthday). Additional information concerning the necessary documentation and where it must be sent is included with the Admissions Office acceptance packet or available from the Student Health Center office.

Admissions services and campus visits: Selecting the appropriate college is a difficult decision, and visiting a campus often helps students form more accurate impressions. We encourage campus visits and personal admission interviews because they allow students to see our outstanding facilities firsthand and get answers to questions they may have while examining personal, academic, and career goals.

Experienced admissions counselors are available to provide information and assist students with exploring academic options. Students may choose to participate in Admissions Open House programs or arrange personal interviews and campus tours. These options are not required for admission. An appointment for an admissions visit and campus tour may be scheduled by contacting the Undergraduate Admissions Office via our website, rit.edu/admissions, or calling (585) 475-6631. Office hours are Monday through Friday, 8:30 a.m. to 4:30 p.m. EST.

Deaf and hard-of-hearing students who wish to enter NTID or another RIT college may contact the NTID Office of Admissions by sending an e-mail to www.ntid.rit.edu or calling (585) 475-6700 (voice/TTY). Office hours are Monday through Friday, 8:30 a.m. to 4:30 p.m. EST.

Part-time enrollment services: The Office of Part-time Enrollment Services provides central information and counseling services to students interested in enrolling in part-time undergraduate studies offered through RIT's various colleges and schools. Contact the office if assistance is needed in selecting an academic major, explor-
ing financial aid opportunities, registering for classes, or receiving information about any aspect of part-time study at RIT.

Staff members are available to assist you from 8:30 a.m. to 6 p.m., Monday through Thursday, and from 8:30 a.m. to 4:30 p.m. on Friday. We invite you to visit our website at rit.edu/parttime, call (585) 475-2229 for information, or visit our office on the lower level of the Bausch \& Lomb Center on campus.

## Applying to NTID

In addition to the six application requirements listed above for admission to RIT, deaf and hard-of-hearing students applying for admission to programs offered at the National Technical Institute for the Deaf (NTID) or to any other college of RIT must submit the Audiological Record Form or submit an audiogram without the form. All audiograms must be unaided and have been completed within three years of the application date. This form is required in order to qualify for educational access and support services as well as NTID's federally supported tuition rate. Eligibility for NTID access and support services, which is agreed upon by RIT and the United States Department of Education, includes this criteria:

Hearing loss: An audiogram is required. Students must demonstrate a significant hearing loss and demonstrate the ability to benefit from the models used at RIT/NTID designated specifically to provide access to academic programs for deaf and hard-of-hearing students.

The NTID Office of Admissions adheres to the same application deadlines and notification dates for early and regular decision as outlined in the freshman admission text in this section.

Deaf and hard-of-hearing students may enter into an NTID program, or they may qualify for entry directly into a program in another RIT college with NTID sponsorship. The transfer credit of deaf students accepted to NTID's Summer Vestibule Program will be evaluated in the fall when they are accepted into a specific program.

## FRESHMAN ADMISSION PREPARATION \& REQUIREMENTS

Most students applying to RIT choose a specific major as part of the admission process. In addition, all colleges offer undeclared options and the University Studies program is available to applicants with interests in two or more colleges. Given the variety of majors, admission requirements and entrance exam score ranges will vary from one major to another. The chart below is provided to help you select a major or option that best fits your interests and academic background.

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
See specific math and science requirements and other recommendations below.

| College | Majors and Options | Specific Math and Science Requirements and Other Recommendations | $\underset{(C R+M)}{\text { SAT }}$ | ACT <br> Composite |
| :---: | :---: | :---: | :---: | :---: |
| College of Applied Science and Technology | School of Engineering Technology | - 3 years of math required; pre-calculus recommended <br> - Chemistry or physics required; biology recommended <br> - Technology electives desirable | $1100-1270$ (Old scoring) $1170-1330$ (Estimated new scoring) | 25-30 |
|  | - International Hospitality and Service Management | - 3 years of math required | 1070-1250 (Old scoring) 1140-1310 (Estimated new scoring) | 21-26 |
| Saunders <br> College of <br> Business | - Accounting - Marketing <br> - Finance - New Media Marketing <br> - International Business - Business Exploration <br> - Management Option <br>   <br> - Management Information  <br> Systems  | - 3 years of math required; pre-calculus recommended | 1090-1280 (Old scoring) $1160-1340$ (Estimated new scoring) | 24-29 |
| Golisano <br> College of <br> Computing and <br> Information Sciences | - Computer Science - New Media Interactive <br> - Computing and Development <br> Information Technologies - Software Engineering <br> - Computing Security - Web and Mobile <br> - Game Design and Computing <br> Development Computing Exploration <br> - Human-Centered Option  <br> Computing  | - 3 years of math required; pre-calculus required for computer science, computing security, and software engineering, and recommended for all other programs <br> - All programs require chemistry or physics and strongly recommend both <br> - Computing electives are recommended | 1200-1390 (Old scoring) $1270-1440$ (Estimated new scoring) | 28-33 |
| Kate Gleason College of Engineering | - Biomedical Engineering - Mechanical Engineering <br> - Chemical Engineering (all options) <br> - Computer Engineering - Microelectronic <br> - Electrical Engineering Engineering <br> (all options) - Engineering Exploration <br> - Industrial Engineering Program ${ }^{1}$ <br> (all options)  | - 4 years of math required; including pre-calculus or above <br> - Chemistry and physics required <br> - Biology required for biomedical engineering | 1230-1400 (Old scoring) $1300-1450$ (Estimated new scoring) | 28-32 |
| College of Science | - Applied Mathematics - Chemistry <br> - Applied Statistics and - Computational <br> Actuarial Science Mathematics <br> - Biochemistry - Environmental Science <br> - Bioinformatics - Imaging Science <br> - Biology - Physics <br> - Biotechnology and - Science Exploration <br> Molecular Bioscience (Undeclared Option) | - 3 years of math required; pre-calculus is required for imaging science and physics and recommended for all <br> - Biology required for biological sciences and environmental sciences and recommended for science exploration. <br> - Chemistry required for biological sciences, biochemistry, chemistry and environmental science <br> - Chemistry or physics required for physics | 1160-1350 (Old scoring) $1230-1410$ (Estimated new scoring) | 27-32 |
| College of Health Sciences and Technology | - Biomedical Sciences - Nutrition Management <br> - Diagnostic Medical - Physician Assistant <br> Sonography (Ultrasound) (BS/MS) <br> - Exercise Science  | - 3 years of math is required. Pre-calculus is recommended for all programs except nutrition management. <br> - Biology is required for all programs. Chemistry is required for all programs except diagnostic medical sonography where is it recommended. | 1100-1270 (Old scoring) $1170-1330$ (Estimated new scoring) | 26-30 |

## Pre-Professional Studies

## University Studies Option

Students interested in pre-professional studies (pre-law, pre-med and other pre-health professions) may enroll in any major at RIT and then take advantage of the advising and student organizations associated with their respective interests. For more information, see p. 17.

The University Studies option is coordinated by the Division of Academic Affairs for students who wish to explore majors across two or more of RIT's colleges. The program provides students one year to explore and focus their academic and career interests. Admission to this program is based on high school performance, standardized test scores, and appropriate preparation for possible academic interests. Please refer to admissions requirements in the colleges that correspond to your possible interests.
${ }^{1}$ A one-year program for students wishing to explore alternatives before selecting a specific major within this RIT college or school.
${ }^{2}$ Pending New York state approval

| College | Majors and Options |  | Specific Math and Science Requirements and Other Recommendations | $\underset{(\mathrm{CR}+\mathrm{M})}{\mathrm{SAT}}$ | ACT <br> Composite |
| :---: | :---: | :---: | :---: | :---: | :---: |
| College of Imaging Arts and Sciences | School of Art <br> - Fine Arts Studio <br> - Illustration <br> - Medical Illustration <br> - Undeclared Art Option ${ }^{1}$ <br> School for American Crafts <br> - Ceramics <br> - Furniture Design <br> - Glass <br> - Metals and Jewelry Design <br> - Undeclared Crafts Option ${ }^{1}$ | School of Design <br> - 3D Digital Design <br> - Graphic Design <br> - Industrial Design <br> - Interior Design <br> - New Media Design <br> - Undeclared Design Option ${ }^{1}$ | - Studio art experience and a portfolio of original artwork are required for all programs in the Schools of Art, Design, and Crafts <br> - Portfolio guidelines can be found at http://cias.rit. edu/prospective-students/portfolio-guide/ <br> - Medical illustration requires biology | 1090-1290 <br> (Old scoring) 1160-1350 <br> (Estimated new scoring) | 25-30 |
|  | School of Film and Animation <br> - Film and Animation <br> - Animation Option <br> - Production Option <br> - Motion Picture Science |  | - Motion picture science requires 3 years of math; pre-calculus and physics are recommended | 1160-1350 (Old scoring) $1230-1410$ (Estimated new scoring) | 26-31 |
|  | School of Photographic Arts a <br> - Photographic and Imaging Arts <br> - Advertising Photography Option <br> - Fine Art Photography Option <br> - Photojournalism Option <br> - Visual Media Option | and Sciences <br> - Photographic Sciences <br> - Biomedical Photographic <br> Communications Option <br> - Imaging and <br> Photographic <br> Technology Option <br> - Undeclared Photography Option ${ }^{1}$ | - Biology is required for the biomedical photographic communications option of photographic sciences | 1050-1230 (Old scoring) $1130-1300$ (Estimated new scoring) | 23-27 |
|  | School of Print Media <br> - Media Arts and Technology |  | - 3 years of math required <br> - Chemistry or physics required | 1020-1190 (Old scoring) $1100-1260$ (Estimated new scoring) | 23-27 |
| College of Liberal Arts | - Advertising and Public Relations <br> - Communication <br> - Criminal Justice <br> - Digital Humanities and Social Sciences <br> - Economics <br> - International and Global Studies | - Journalism <br> - Museum Studies <br> - Philosophy <br> - Political Science <br> - Psychology <br> - Public Policy <br> - Sociology and Anthropology <br> - Liberal Arts Exploration ${ }^{1}$ | - Public policy requires 3 years of math <br> - Strong performance in English and social studies expected | 1040-1260 (Old scoring) $1120-1320$ (Estimated new scoring) | 24-29 |
| School of Individualized Study (SOIS) | - Applied Arts and Sciences |  | This degree offers students the opportunity to create in programs of technical and professional study. See page | vidualized undergrad 4 for additional inform | tion. |
| National <br> Technical Institute for the Deaf (NTID) | Deaf and hard-of-hearing students seeking admission to bachelor's degree programs in the other colleges of RIT should refer to the information for the appropriate college and apply for NTID support and access services during the application process. A Pre-baccalaureate Studies Option is also available for students who may need additional preparation before entering a bachelor's degree program. |  |  |  |  |
|  | - American Sign Language-English Interpretation (BS) |  | - 3 years of math required <br> - 2 years of a foreign language recommended <br> - Must demonstrate beginning ASL competency | $1170-1270$ <br> (Old scoring) <br> 1240-1330 <br> (Estimated new scoring) | 27-30 |
|  | Associate Degree Leading to Bachelor's Degree (A + B) <br> Programs (Deaf and Hard-of-Hearing Students ONLY) <br> - Accounting Technology <br> - Administrative Support Technology <br> - Applied Computer Technology <br> - Applied Liberal Arts <br> - Applied Mechanical Technology <br> - Business <br> - Career Exploration Studies ${ }^{1}$ <br> - Civil Technology <br> - Hospitality and Service Management <br> - Laboratory Science Technology <br> - 3D Graphics Technology ${ }^{2}$ |  | - 2 years of math required; students interested in engineering, math, and science transfer programs should have three or more years of math <br> - 1 year of science required; students interested in engineering, math, and science programs should have two or more years of science <br> - Physics is recommended for students interested in engineering <br> - English language skills as evidenced by application materials determines associate degree options | Most applicants to NTID submit ACT scores. NTID recommends that applicants submit the ACT score, but will consider either SAT or ACT. | 18-21 |
|  | Career-focused Associate Deg <br> Hard-of-Hearing Students ON <br> - Accounting Technology <br> - Administrative Support Technology <br> - Applied Computer Technology <br> - Business Technology <br> - Career Exploration Studies ${ }^{1}$ <br> - Computer Aided Drafting Technology | gree Programs (Deaf and <br> NLY) <br> - Computer Integrated Machining Technology <br> - Design and Imaging Technology <br> - Laboratory Science Technology <br> - Mobile Application Development <br> - 3D Graphics Technology ${ }^{2}$ | - 2 years of math required <br> - 1 year of science required <br> - English language skills as evidenced by application materials determines associate degree options | Most applicants to NTID submit ACT scores. NTID recommends that applicants submit the ACT score, but will consider either SAT or ACT. | 14-17 |

## Undergraduate Admission

## Transfer Admission Guidelines

| Majors and Options | Transfer Course Recommendations without Associate Degree | Appropriate Associate Degree Programs for Transfer |
| :---: | :---: | :---: |
| School of Engineering Technology |  |  |
| Civil Engineering Technology | Courses in mathematics, science, engineering science, and engineering technology | Civil, Construction, Environmental, Architectural, Transportation, or Surveying Technology; Engineering Science |
| Computer Engineering Technology | Courses in computer science, math, science, engineering science, and engineering technology | Computer Technology, Electrical or Electronic Technology, or Computer Science |
| Electrical Engineering Technology | Courses in mathematics, science, engineering science, and engineering technology | Electrical Technology, Electronic Technology, Engineering Science |
| Electrical Mechanical Engineering Technology | Courses in mathematics, science, engineering science, and engineering technology | Electrical or Mechanical Technology, Electronic Technology, Engineering Science |
| Environmental Sustainability, Health and Safety | Math through Calculus I, micro and macro economics, introductory courses in biology, chemistry, and physics | Biology, Chemistry, or Environmental Sciences; Business or Public Administration; Liberal Arts with math/science |
| Manufacturing Engineering Technology | Courses in mathematics, science, engineering science, and engineering technology | Manufacturing, Mechanical, Drafting and Design, Robotics, or Electromechanical Technology; Engineering Science |
| Mechanical Engineering Technology | Courses in mathematics, science, engineering science, and engineering technology | Mechanical, Design and Drafting, Air Conditioning, or Electromechanical Technology; Engineering Science |
| Packaging Science <br> Management Option <br> Printing Option <br> Technical Option | Courses in business, mathematics, science, liberal arts, statistics, or computer science | Business Administration, Marketing, Management, Graphic Arts, Engineering Science, Liberal Arts with math/science |
| School of International Hospitality and Service Innovation |  |  |
| International Hospitality and Service Management | Courses in business and economics, foreign language, math, science, and liberal arts. | Dietetics or Nutrition, Food Service Management, Hotel/ Resort Management, Restaurant Management, Travel/ Tourism Management, Agriculture and Technology, Business, or Liberal Arts |
| SAUNDERS COLLEGE OF BUSINESS |  |  |
| Majors and Options | Transfer Course Recommendations without Associate Degree | Appropriate Associate Degree Programs for Transfer |
| Accounting | Courses in economics, accounting, liberal arts, science, and mathematics | AS degree in Accounting or Business Administration |
| Finance <br> International Business <br> Management <br> Marketing <br> New Media Marketing | Courses in economics, liberal arts, science, and mathematics | AS degree in Business Administration or Liberal Arts |
| Management Information Systems | Courses in liberal arts, math, science, economics, and computer science | AS degree in Data Processing/Management Information Systems or in Business Administration |
| B. THOMAS GOLISANO COLLEGE OF COMPUTING AND INFORMATION SCIENCES |  |  |
| Majors and Options | Transfer Course Recommendations without Associate Degree | Appropriate Associate Degree Programs for Transfer |
| Computer Science Department |  |  |
| Computer Science | Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology | AS degree in Computer Science, Engineering Science, or Liberal Arts |
| Computing Security Department Computing Security | Courses in programming, computer applications, calculus, lab sciences, liberal arts | AS degree in Computer Applications, Computer Science, Information Technology, or Liberal Arts |
| Information Sciences and <br> Technologies Department <br> Human-Centered Computing Information Technology Networking and Systems Administration |  |  |
| School of Interactive Games and Media Game Design and Development New Media Interactive Development |  |  |
| Software Engineering Department Software Engineering | Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology | AS degree in Computer Science, Engineering Science, or Liberal Arts |

Majors and Options

Biomedical Engineering
Chemical Engineering
Computer Engineering
Electrical Engineering
Electrical/Computer Engineering Option
Electrical/Energy Option
Electrical/Robotics Option
Electrical/Wireless Communications Option
Industrial Engineering
Industrial/Ergonomics Option
Industrial/Lean Six Sigma Option
Industrial/Manufacturing Option
Industrial/Six Sigma Option
Industrial/Supply Chain Management Option
Mechanical Engineering
Mechanical/Aerospace Option
Mechanical/Automotive Option
Mechanical/Bioengineering Option
Mechanical/Energy and Environment Option
Microelectronic Engineering

Transfer Course Recommendations without Associate Degree
Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts. Computer science courses for computer engineering applicants.

Appropriate Associate Degree Programs for Transfer

AS degree in Engineering Science (plus computer science electives for computer engineering applicants)

## COLLEGE OF HEALTH SCIENCES AND TECHNOLOGY

| Majors and Options | Transfer Course Recommendations without Associate Degree | Appropriate Associate Degree Programs for Transfer |
| :---: | :---: | :---: |
| Biomedical Sciences | Courses in liberal arts, sciences, and math | AS degree in Biology or Liberal Arts with biology option |
| Diagnostic Medical Sonography (Ultrasound) | Courses in liberal arts, sciences, and math | AS degree in Liberal Arts with science option; Allied Health; Radiologic Technology |
| Nutrition Management | Courses in liberal arts, sciences, and math. Science courses are required for Nutrition Management major. | Dietetics or Nutrition, Foodservice Management, or Liberal Arts |
| Physician Assistant (Fall Entry Only) | Courses in liberal arts, sciences, and math | AS degree in Liberal Arts with science option; Allied Health areas |
| COLLEGE OF IMAGING ARTS AND SCIENCES |  |  |
| Majors and Options | Transfer Course Recommendations without Associate Degree | Appropriate Associate Degree Programs for Transfer |
| School of Art <br> Fine Arts Studio, Illustration, Medical Illustration | Courses in studio art, art history, and liberal arts. <br> A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. | Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. |
| School of Design <br> 3D Digital Design, Graphic Design, Industrial Design, Interior Design, New Media Design |  | Summer courses can lead to third-year status in most programs. |
| Transfer Adjustment (Summer Entry) All Art and Design programs |  |  |
| School for American Crafts Ceramics, Furniture Design, Glass, Metals and Jewelry Design | Courses in art history, studio art, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit and year level in the program. | Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges. A portfolio of original artwork is required. |
| School of Film and Animation Film and Animation | Courses in liberal arts, science, design, drawing, and film, video, or animation | Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges |
| Motion Picture Science | Courses in calculus or higher mathematics, college chemistry, calculus-based physics, and liberal arts | Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges |
| School of Media Sciences Media Arts and Technology | Courses in liberal arts, college math, physics and chemistry, business | Transfer from associate degree programs considered on an individual basis |
| School of Photographic Arts and Sciences <br> Photographic and Imaging Arts Advertising Photography Option Fine Art Photography Option Photojournalism Option Visual Media Option | Courses in liberal arts, photography, design, and art history. Portfolio required for photo credit. | Applied Photography. Portfolio required for photo credit. |
| Photographic and Imaging Technologies Biomedical Photographic Communications Option | Courses in biology, photography, and liberal arts. Portfolio required for photo credit. | No common program available |
| Imaging and Photographic Technology Option | Courses in college physics, mathematics, photography, and liberal arts. Portfolio required for photo credit. | No common program available |
| Transfer Adjustment (Summer Entry): Available in all photography programs |  | Transfer adjustment leading to second- or third-year status in most programs |

## Undergraduate Admission

COLLEGE OF LIBERAL ARTS

| Majors and Options | Transfer Course Recommendations without <br> Associate Degree | Appropriate Associate Degree Programs for Transfer |
| :--- | :--- | :--- | :--- |
| Advertising and Public Relations | Courses in advertising, marketing, communications, liberal arts, and science | Advertising, Business/Marketing, Communications, Public <br> Relations, or Liberal Arts |
| Communication | Courses in liberal arts, math, science, and computer science | Liberal Arts with emphasis in communication and a technical field |
| such as business, photography, or computer science |  |  |

## CENTER FOR MULTIDISCIPLINARY STUDIES

Majors and Options

Applied Arts and Science

Transfer Course Recommendations without Associate Degree

Appropriate Associate Degree Programs for Transfer

The applied arts and science program is particularly appropriate for individuals who have prior college-level learning, are interested in changing majors, have unique ideas about how they want to design their academic areas of study, or want to prepare themselves for a career that requires skills and expertise from several disciplines.

## University Costs

The following information is provided to assist students and their families in understanding the full range of student financial aid and scholarship programs available to undergraduates, as well as the costs, payment procedures, and refund policies associated with student enrollment at RIT.

## Costs and payment procedures

Charges for tuition, fees, and room and board are computed on a term basis. University billing statements may be paid by cash, check, or electronic check (e-check). The university does not accept credit card payments for tuition, fees, and room and board that appear on the student billing statement. However, we have an arrangement for a third-party vendor to accept MasterCard, VISA, and Discover Card when payment is made online. The vendor does charge a service fee for each credit card transaction.

Billing-related payments by check may be mailed to: Rochester Institute of Technology, Student Financial Services, P.O. Box 92878-200, Rochester, N.Y. 14692-8978. Payment also may be made in person at the Student Financial Services Office on the first floor of the Student Services Center. Credit card and e-check payment information can be found on the Student Financial Services website at rit.edu/eservices.

Due dates are clearly designated on the billing statement and our website. Failure to pay the amount due or arrange an optional payment plan by the due date will result in a late payment fee for students without a valid deferral.

Due dates for the 2016-2017 academic year are as follows:
Fall Semester-August 15, 2016
Spring Semester-January 15, 2017
Summer Term—May 15, 2017

## Tuition assessment policies

1. Degree-seeking day college students are charged the undergraduate rate for all courses taken, including those courses taken while on co-op.
2. Students on co-op will not be charged tuition for those semesters unless they also are enrolled in classes.
3. Non-degree seeking students are charged for the type of course taken (day rate for day courses, graduate rate for graduate courses).
4. Students taking courses during summer semester should refer to the Summer Bulletin for policies and procedures.

FEE SCHEDULE 2016-17
(DEGREE-SEEKING DAY COLLEGE STUDENTS EXCEPT NTID)*

| Tuition | Semester | Per Year (Two Semesters) |
| :---: | :---: | :---: |
| Full-time Undergraduate (12-18 Cr. Hrs.) | \$19,012 | \$38,024 |
| Part-time Undergraduate (Less than 12 Cr . Hrs.) | \$901/Cr. Hr |  |
| Student Activities Fee (Mandatory Charge) |  |  |
| Full-time Undergraduate | \$137 | \$274 |
| Part-time Undergraduate | \$69 | \$137 |
| Student Health Fee (Mandatory Charge) |  |  |
| Full-time Undergraduate | \$135 | \$270 |
| Residence Hall Room Charges § |  |  |
| Double Occupancy | \$3,581 | \$7,162 |
| Single Occupancy | \$4,119 | \$8,238 |
| Board/Meal Plans |  |  |
| Tiger 20 (For students who typically eat 3 meals per day, 7 days a week, and spend approximately \$15 a week in Dining Dollars ${ }^{\dagger}$.) | \$2,782 | \$5,564 |
| Tiger 14 (For students who typically eat 2 meals per day, 7 days a week, and spend approximately $\$ 20$ a week in Dining Dollars ${ }^{\dagger}$ ) | \$2,669 | \$5,338 |
| Tiger 10 (for students who typically eat 2 meals per day, 5 days a week, and spend approximately $\$ 40$ a week in Dining Dollars ${ }^{\dagger}$.) | \$2,556 | \$5,112 |
| Part Time Programs |  |  |
| 1-11 credit hours |  | \$1,408/Cr. Hr. |
| 12-18 credit hours |  | \$19,012 |
| * See the National Technical Institute for the Deaf section of this bulletin for NTID cost information. <br> § Additional single-occupancy rates are available, depending on square footage of rooms. <br> **Additional meal plans also are available, providing for different meal and debit account amounts. Information can be obtained from RIT Food Service upon request. <br> ${ }^{+}$Dining Dollars may be used to purchase perishable and non-perishable groceries and food items only. |  |  |

## Other fees

In addition to the fees specified below, certain groups of students may incur other fees, as follows:

## Orientation fees:

New freshman students: $\$ 225$ (one-time charge)
New transfer students: \$105 (one-time charge)

Photo/print facilities fee: $\$ 149$ charged to all full-time photo and print media students; $\$ 75$ per term charged to all part-time photography and print media students

Some courses require additional charges to cover laboratory, studio, or supply fees. Consult the registrar's schedule for those courses with additional fees.

Costs for books and supplies: These costs vary with the program followed and, to some extent, the electives chosen. In programs with minimal expenses (e.g., liberal arts, business, hospitality), books and supplies will average $\$ 1,925$ or more annually. In the arts and crafts, costs may range from $\$ 900$ to $\$ 1,100$, and in photographic illustration, a realistic allowance is $\$ 2,000$ a year in addition to cameras and related supplies.

Student accident and sickness insurance: All registered students are required to maintain medical insurance while attending RIT. Insurance coverage can be through RIT, a family member's policy, or a personal policy.

A student accident and sickness insurance plan is available through RIT. There is a separate charge for this insurance. The plan provides coverage, within limits specified in the policy, for sickness and injury, outpatient services, emergency care, and prescriptions.

Enrollment in this plan is voluntary for all students except registered international undergraduate students (full- and parttime) on A, B, E, F, G, I, J, K, O, Q, R, and V visas. These students will be enrolled automatically in the basic accident and sickness policy on a semiannual basis.

There is no need to waive coverage if it is not desired. Students who want to enroll in this plan may enroll online or by mail. An open enrollment period is available at the beginning of each academic semester. Payment can be made by check, money order, or credit card, or the premium can be added to the student's account.

The open enrollment period ends 30 days after the start of the academic semester in which the student first registers at RIT.

For plan and enrollment information, visit the university health plans website at universityhealthplans.com, or call (800) 437-6448. Students are not required to obtain the RIT student accident and sickness insurance plan to receive services at the RIT Student Health Center.

## Vocational rehabilitation

Students receiving vocational rehabilitation (VR) support for fees and tuition must file authorization with RIT before registration. If authorization has not been received before registration, students must either obtain from their VR counselors a letter of commitment stating the dollar amount that is authorized and present it to Student Financial Services or be prepared to pay for the charges in question. If authorization is received after a student has paid the charges, he or she will receive a refund.

1. Students must pay all charges not authorized for payment by VR before the semester due date.
2. VR counselors should specify each charge they are covering on their authorization forms.
3. Clarification of VR authorization/billing procedures should be addressed to:

Rochester Institute of Technology
NTID/VR Billing
Student Financial Services
25 Lomb Memorial Drive
Rochester, NY 14623-5603

## Financial standing

Students, former students, and graduates are in good financial standing when their account is paid in full through the Student Financial Services Office. A late payment fee will be charged to all student accounts that become past due. This includes, but is not limited to, deferred payment accounts that become past due. Those whose account is not paid in full will not receive transcripts, diplomas, or other forms of recognition or recommendation from the university.

The university reserves the right to change its prices and pricing policies without prior notice.

## Electronic billing procedures

The university has an electronic billing (eBill) program for students. Each month, all RIT students receive an e-mail notification on their official university e-mail account stating that their eBill is available. Students have the option of granting additional access to allow for a parent, guardian, sponsor, or other authorized user to receive eBill notifications.

## Refund policies

The acceptable reasons for withdrawal with full refund during the semester are:

1. Active military service: A student called to active military service during the first eight weeks of the term may receive a full tuition refund. If called after the eighth week, he or she may elect to complete the course by making special arrangements with both the instructor and department, or may withdraw and receive a full tuition refund. If he or she withdraws, the course must be repeated at a later date.
2. Academic reasons: Students sometimes register before grades for the previous semester are available. If they later find they are subject to academic suspension or have failed prerequisites, they will be given a full refund upon withdrawal.
3. Part-time students: If part-time students drop a course during the official drop/add period (first six days of classes in any semester), they may contact the Student Financial Services Office for a full refund for the course dropped.

A full-time student must officially withdraw from all courses or take a leave of absence in order to be eligible for a partial tuition refund. Students must complete a leave of absence or withdrawal form, which can be initiated with their academic department. A partial refund will be made during a semester if withdrawal/leave of absence is necessitated for one of the following reasons:

1. Illness, certified by the attending physician, causing excessive absence from classes
2. Withdrawal for academic or disciplinary reasons, at the request of RIT, during a semester
3. Transfer by employer, making class attendance impossible
4. Withdrawal for academic, disciplinary, or personal reasons at the request of the student, approved by the student's adviser or department representative and the Student Financial Services Office

## Partial refund schedule for tuition

For more information, please visit rit.edu/sfs/refund for refund schedules and questions regarding refund policies.

Please note that nonattendance does not constitute an official withdrawal.

A student is not officially withdrawn until he or she receives a copy of the withdrawal form. The date on which a withdrawal form is properly completed will be the date of official withdrawal used to determine the refundable amount.

If the student drops his or her course load from full-time ( 12 or more credits) to part-time (less than 12 credits) status during the official drop/add period, he or she may contact the Student Financial Services Office for a refund based on the difference between the full-time tuition charge and the total per-credit charge for the part-time course load.

No refund will be made for classes dropped after the official drop/add period unless the student is officially withdrawing from the university.

Advance deposits are not refundable.
If institutional charges are reduced due to withdrawals, financial aid programs are reimbursed before a cash refund is issued to the student. The student also is responsible for any unpaid balance at the time of withdrawal. Aid programs are reimbursed in the following sequence: Federal Direct Unsubsidized Loan, Federal Direct Subsidized Loan, Graduate PLUS Loan, Parent PLUS Loan, Federal Pell Grants, Federal SEOG, other federal grants, state aid, institutional aid. If a credit balance still remains, the student is then issued a refund.

For further information or comments regarding refund policies and specific withdrawal dates, contact the Student Financial Services Office.

## Appeal process

An official appeal process exists for those who feel that individual circumstances warrant exceptions from published policy. The inquiry in this process should be made to Mary Beth Nally, director of Student Financial Services.

## Partial refund schedule for room and board

To complete a withdrawal from RIT, a resident student must check out with Housing Operations. All students on a meal plan should check out with the Food Service administrative office, located in the Student Alumni Union, Room A520 (lower level). Refunds, when granted, are from the date of official checkout. Room and
board refund policies are established by the Center for Residential Life and RIT Food Service.

Refund schedule and percentages for room and board are as follows:

## Room

1. During the first week of classes- 90 percent of unused room charge
2. During the second week of classes- 75 percent of unused room charge
3. During the third week of classes- 60 percent of unused room charge
4. During the fourth week of classes- 50 percent of unused room charge
5. Fifth and subsequent weeks-no refund

## Board

1. Within the first four weeks-75 percent of the unused meal/debit charges
2. After the fourth week (during week five through the end of week eight) -50 percent of the unused meal/debit charges
3. During the last two weeks of classes-no refund

Any student who intentionally defrauds or attempts to defraud the university of tuition, fees, or other charges, or who gives false information in order to obtain financial aid, is subject to legal liability, prosecution, and university disciplinary action.

# Financial Aid and Scholarships <br> rit.edu/financialaid 

RIT feels strongly that cost should not prohibit qualified students from considering RIT. With this in mind, the university offers a full range of financial aid programs.

More than 77 percent of RIT full-time undergraduate students receive some type of financial assistance each year. Last year, RIT undergraduates received more than $\$ 293$ million from all sources, including more than $\$ 176$ million in scholarships and grants.

## Your financial need

Eligibility for need-based financial aid at RIT begins with three basic requirements: graduation from high school or its equivalent, admission in an approved degree program, and demonstration of financial need. Most financial aid programs also require at least half-time enrollment.

Financial need is the difference between the cost of education and the amount a student is expected to contribute toward those educational costs (the expected family contribution). The formula used to calculate the expected family contribution is called the federal methodology, and use of the formula is required when colleges are determining a student's financial need for any federal financial aid programs. Financial aid programs are designed to supplement the expected family contribution.

The Free Application for Federal Student Aid (FAFSA) should be completed in order to determine a student's financial need. Information on the FAFSA is used to calculate the expected family contribution. All colleges and universities that award federal financial aid use the FAFSA. Students can complete the FAFSA online at fafsa.gov.

Determination of financial aid eligibility can be complex. Therefore, families are encouraged to contact the Office of Financial Aid and Scholarships with any questions or concerns. Students and families are encouraged to pursue all available sources of financial aid. If students are denied financial aid from one source, that does not necessarily mean they will be denied financial aid from another source.

## Application

The process of applying for financial aid should begin in January of the year the student plans to attend. The application priority date for freshmen applying for fall entry is March 1. The application priority date for transfer students entering RIT in the fall is March 15. Current undergraduate students should submit the FAFSA by April 1. Filing the FAFSA by these priority dates will allow RIT to provide students with financial aid awards when award notification begins. Applications received after these dates will be awarded as long as funds are available.

Students must reapply for financial aid each year by completing the FAFSA. Also, students must maintain minimum standards of satisfactory academic progress. The Office of Financial Aid and Scholarships will make every effort to provide a similar amount of
institutional gift aid, provided students apply on time and demonstrate a similar amount of financial need.

## Notification

Freshman and transfer students can expect notification of financial aid awards beginning March 15. Current RIT students can expect award notification beginning in June.

## Types of aid

At RIT, there are four general categories of financial aid: scholarships, grants, loans, and employment. An applicant for financial aid is considered for each of these categories.

## Scholarships

Scholarships generally are awarded on the basis of academic record. RIT awards many such scholarships each year. Other typical scholarship sources include corporations, private donors, foundations, fraternal organizations, unions, and local and state governments.

RIT offers academic merit scholarships to both freshman and transfer students. For example, Presidential Scholarships, Achievement Scholarships, and Computing Medal Scholarships are awarded to freshmen. Trustee Scholarships, Achievement Scholarships, and Phi Theta Kappa Scholarships are awarded to transfer students. Scholarship recipients are chosen on the basis of their academic record, recommendations, extracurricular activities, and requirements for their intended major. Only in rare cases will any combination of merit-based and need-based scholarships and grants exceed tuition. Please contact the Office of Financial Aid and Scholarships for more details on these programs.

The Office of Financial Aid and Scholarships encourages students to apply for scholarships awarded by private organizations. This is an excellent source of funding that may reduce the need to borrow. In many cases, no adjustment to a student's financial aid award is necessary. If we are required by federal regulations to adjust a financial aid award as a result of an outside scholarship, we will make every effort to reduce the student's loan or work study award before reducing RIT need-based grants.

## Grants

Grants are gifts of financial assistance awarded on the basis of demonstrated need. Grant award amounts from RIT vary up to $\$ 20,000$ per academic year. RIT also awards grants under the federally funded Supplemental Education Opportunity Grant Program (SEOG). The Federal Pell Grant and the New York State Tuition Assistance Program (TAP) are additional examples of grants. Other states offer grants as well.

## Student loans

Student loans are provided through a formal financial obligation that must be repaid. Students need to be aware of the interest rates, the method of payment after graduation, and the effect that loans will
have on their ability to meet later financial obligations. Student loans generally are not repaid until after graduation or termination of study.

Many students utilize the Subsidized Federal Direct Loan or the Unsubsidized Federal Direct Loan in meeting their costs. RIT also awards Federal Perkins Loans. These programs are administered by the Office of Financial Aid and Scholarships for eligible students.

Parents also are eligible to participate in the Federal Parent Loan for Undergraduate Students (PLUS) program. This program is available to supplement other aid programs in meeting educational costs. While the PLUS is not based on need, the amount borrowed in any year cannot exceed educational costs minus other financial aid received.

Private lenders also offer educational loans to assist families in meeting educational expenses. These loans are available to students who are creditworthy as determined by the lender. We encourage students and families to use alternative loans as a last option after first pursuing all federal loan options. Students have the option of choosing their lender for a private loan. Additional information is available from the Office of Financial Aid and Scholarships.

## Employment

Employment opportunities are available to assist RIT students in meeting college expenses. Students may choose to defray some of their expenses by working part time while attending the university.

As part of a financial aid award at RIT, students may be offered employment in the federal work-study program. More than 6,000 students are employed on campus each year. The Student Employment Office also assists students in securing part-time employment off campus.

RIT's cooperative education program is another employment opportunity available to assist in meeting college expenses. Students are encouraged to contact the Office of Cooperative Education and Career Services and their academic adviser to learn more about co-op opportunities.

## Academic progress requirements for state aid programs

## New York State Tuition Assistance Program (TAP)

In order to receive a TAP grant, an individual must be admitted as a full-time student in an approved program, meet New York State residency and income requirements, pursue the program of study in which he or she is enrolled, and make satisfactory progress toward completion of his or her program of study.

TAP academic requirements are current as of the 2016-17 year. Standards are subject to change by legislative action.

Completion of a course is defined as meeting course requirements and receiving a letter grade of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ or F .

State regulations mandate that if a student repeats a course in which a passing grade acceptable to the university was previously received, the repeated course does not count toward the minimum 12-credit- hour course load required for TAP and other state programs.
In addition, an accelerated TAP payment cannot be received unless the recipient completes a minimum of 24 RIT credit hours in the previous two terms. An accelerated term is the third consecutive term of enrollment at RIT.

## Waiver of academic progress standards for TAP

Students who have been denied TAP benefits due to failure to maintain satisfactory standards of academic progress may request a one-time waiver of those standards. State regulations require that these waivers be granted only under exceptional or extraordinary circumstances. Students failing to meet satisfactory progress standards will be given the opportunity to contact an institutional representative in the Office of Financial Aid and Scholarships to discuss their situation. The institutional representative will require documentation as appropriate and establish deadlines for submission of this documentation.
Under the regulations established by the Commissioner of Education, the decision of the institutional representative will be final. Students who, in the judgment of the institutional representative, satisfactorily meet the criteria for the waiver may have one waiver at the undergraduate level. Those wishing to apply for waivers must do so during the term in which notification of TAP denial was sent.

Reasons for which a waiver may be granted include the following:

1. Verifiable illness of the student or member of the student's immediate family during the semester in which academic standards were not met
2. Death of a member of the student's family during the semester in which standards were not met
3. Divorce/separation within the student's immediate family creating a demonstrable financial/emotional disruption sufficient to affect progress
4. Circumstances that the student feels were extenuating; applicants must explain why circumstances were extenuating and beyond their control

These regulations are subject to legislative change.

## TAP Satisfactory Academic Progress Standards for non-remedial (HEOP) students who received their first TAP award in 2010-2011 and thereafter

| Before being certified for this payment | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a student must have accrued at least this many credits | 0 | 6 | 15 | 27 | 39 | 51 | 66 | 81 |
| with at least this grade point average | 0 | 1.5 | 1.8 | 1.8 | 2.0 | 2.0 | 2.0 | 2.0 |
| AND complete the following minimum number of credits in the previous term a state grant or scholarship was received | 0 | 6 | 6 | 9 | 9 | 12 | 12 | 12 |

TAP Satisfactory Academic Progress Standards for HEOP students and students who first received state payments prior to July 1, 2010.

| Before being certified for this payment | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a student must gave accrued at least this many credits | 0 | 3 | 9 | 21 | 33 | 45 | 60 | 75 | 90 | 105 |
| with at least this grade point average | 0 | 1.1 | 1.2 | 1.3 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| AND complete the following minimum number of credits in the previous term a state grant or scholarship was received | 0 | 6 | 6 | 9 | 9 | 12 | 12 | 12 | 12 | 12 |

Please note: Only students in the HEOP program are eligible for more than four years of undergraduate awards.

## Academic progress requirements for federal aid programs

Federal regulations require financial aid recipients to maintain minimum standards of satisfactory academic progress (SAP) for continued receipt of federally sponsored aid. All students receiving federal assistance must remain admitted in a degree program. Regulations require a maximum time frame for degree completion, a quantitative measurement (credits attempted versus earned toward a degree) and a qualitative measurement (cumulative grade-point average). The annual review of academic progress at the end of the spring semester each year considers all terms of enrollment, including terms in which no federal aid was received.

Students are allowed a maximum of 150 percent of the published program length to complete their program (i.e. 120 credit program $=180$ credit maximum).

The minimum qualitative, or grade point average requirement, is outline below:

Completion of 1st semester-minimum cumulative GPA $=1.5$
Completion of 2nd semester-minimum cumulative GPA $=1.5$
Completion of 3rd semester-minimum cumulative GPA $=1.8$
Completion of semesters 4 through 12 -minimum cumulative GPA $=2.0$

In order to successfully meet the quantitative component of satisfactory academic progress, students must complete 66.67 percent of credits attempted. The following are considered attempted credits:

- withdrawals
- repeated courses
- non-matriculated courses
- incompletes
- grade exclusions
- credit by exam


## Additional eligibility requirements

## Transfer students

Cumulative grade-point average requirements are the same as for nontransfer students (i.e., students must obtain a 2.0 GPA at the end of their second year). Transfer students are expected to complete 66.67 percent of credits attempted. Transfer students also
are allowed a maximum of 150 percent of the published program length to complete their program.

## Repeated course work

Students repeating a course previously passed may do so only once. A course repeated more than once will not be included when determining enrollment status for federally sponsored financial aid.

The federal standards of satisfactory academic progress are applicable to the following aid programs: Federal Work-Study, Federal Pell and SEOG grants, and Federal Perkins, Direct Subsidized, Direct Unsubsidized, and Direct PLUS loans.

Student loan recipients also should note that all Federal Direct Loan Programs have specific annual and cumulative maximum amounts. The loan limits are listed in the Undergraduate Financial Aid Programs 2016-2017 chart and in the U.S. Department of Education Student Guide. Copies of the guide are available in the Office of Financial Aid and Scholarships.

## Notification and appeal

Students whose academic progress is not in compliance with federal regulations will be notified of the deficiency. Students who do not meet minimum SAP standards may continue to receive federal aid during a probationary period, not to exceed one payment period, as the result of a successful appeal. After one payment period on probation students must make SAP or must be meeting the requirements of an academic plan. Students may appeal due to special circumstances such as death of a relative, or injury or illness of the student. The following information must be provided to the Office of Financial Aid and Scholarships no later than three weeks prior to the start of the term to be considered for receipt of federally sponsored financial aid during a probationary period and under an academic plan:

- Documentation of student's special circumstances
- Written letter from student indicating why the student failed to make SAP and what has changed in the student's situation that would allow the student to meet SAP standards, and
- A written plan of work from the student's academic adviser that outlines the courses required and the minimum GPA requirements for the next academic year


## Academic progress requirements for RIT grants and scholarships

Academic progress requirements for RIT need-based grants are the same as the requirements for federal aid programs. Academic requirements and award duration for merit or special-purpose scholarship programs sponsored by RIT may differ from those used in RIT's need-based programs. Recipients are advised of merit scholarship terms and conditions at the time awards are made.

## Student responsibilities

Recipients of financial aid are responsible for reporting any significant changes in their financial situation during the year to the Office of Financial Aid and Scholarships for review. These changes may require a revision to the applicant's financial aid.

## Financial aid refund policy

## Return of federal funds

In accordance with federal regulations, the Office of Financial Aid and Scholarships recalculates federal aid eligibility for students who withdraw, drop out, are suspended, or take a leave of absence prior to completing more than 60 percent of a term.
"Withdrawal date" is defined as the actual date the student initiated the withdrawal process, the student's last date of recorded attendance, or the midpoint of the semester for a student who leaves without notifying the university. Recalculation is based on the percent of earned aid using the following formula: number of days completed up to the withdrawal date/total days in the semester. Aid returned to federal programs is then equal to 100 percent minus the percentage earned multiplied by the amount of federal aid disbursed.

Funds are returned to the federal government in the following sequence: Federal Direct Unsubsidized Loans, Federal Direct Subsidized Loans, Federal Perkins Loans, Federal Graduate PLUS, Federal Parent PLUS Loans, Federal Pell Grants, Federal SEOG, other federal grants.

## Late disbursement

If the student is otherwise eligible, the first disbursement of Federal Direct Subsidized Loan or Federal Direct Unsubsidized Loan proceeds is allowed up to 180 days after the student has ceased to be enrolled. Subsequent disbursements are not allowed.

## State scholarships

Regulations vary. Any adjustments are done in accordance with the specific requirements of the sponsoring state.

## Privately funded grants and scholarships

In the absence of specific instructions from the sponsor, 100 percent of the semester award will be credited to the student's account.

## RIT grants and scholarships

Instituional funding such as RIT grants and scholarships are prorated based on the tuition refund schedule for withdrawal during a semester. For more information, please contact the Office of

Financial Aid and Scholarships or visit their website at www.rit. edu/financialaid.

## Financial aid rights and responsibilities

- You have a right to privacy. All records and data submitted with your application for financial aid will be treated as confidential information.
- You have a right to a complete explanation of the award process. If you do not understand your financial aid award or feel your application has not been evaluated fairly, please contact the Office of Financial Aid and Scholarships.
- You have the right to be notified of cancellation or withdrawal of aid. As part of this notification you have the right to be told why this action is being taken.
- You have the right to appeal. An administrative appeal process has been established to review student requests for reconsideration. If you wish to appeal your financial aid award, submit your request in writing with any supporting documentation to the Office of Financial Aid and Scholarships.


## UNDERGRADUATE FINANCIAL AID PROGRAMS 2016-2017

| MERIT SCHOLARSHIPS | ELIGIBILITY | AMOUNT $\dagger$ | WHERE TO APPLY |
| :---: | :---: | :---: | :---: |
| RIT Presidential Scholarships | Freshman applicants with scores of 1330 or higher on the two combined sections of the SAT (or ACT composite of 29 or higher), and a secondary school rank in the top 15 percent at the end of the junior year, with evidence of completion of a rigorous program of study with distinguished performance relative to other candidates for admission to the program. | \$10,000 to \$16,000 per year (amounts based on merit). Renewable. | All freshman applications submitted to RIT by February 1 will be reviewed for possible selection. |
| National Merit and National Hispanic Scholarships | Semifinalists or finalists in either of these national scholarship programs. | Combined RIT Presidential and Merit Scholarships totaling \$18,000 or more per year. Renewable. | High school records provided for admission must indicate student's semifinalist or finalist selection. |
| RIT Achievement Scholarships for Business, Liberal Arts, and Hospitality Management | Freshman applicants for these academic programs demonstrating outstanding leadership, service, entrepreneurship, or citizenship with scores of 1210 or higher on the two combined sections of the SAT(or ACT composite of 27) and a B+ average in a strong preparatory program. | $\$ 7,000$ to $\$ 10,000$ per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Freshman admission applications for these academic programs submitted by February 1 will be reviewed for possible selection based on activities, recommendations, and academic record. |
| RIT Achievement Scholarships for Art, Photography, Design, and Crafts | Freshman applicants for these academic programs with scores of 1210 or higher on the two combined sections of the SAT (or ACT composite of 27) and a B+ average in a strong preparatory program who submit outstanding art portfolios or otherwise demonstrate excellence in creative expression. | \$7,000 to \$10,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Freshman admission applications and art portfolios submitted by February 1 will be reviewed for possible selection. |
| RIT Achievement <br> Scholarships-All Programs | Freshman applicants with scores of 1210 or higher on the two combined sections of the SAT (or ACT composite of 27) and a $B+$ average in a strong preparatory program. | $\$ 7,000$ to $\$ 10,000$ per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Freshman admission applications submitted by February 1 will be reviewed for possible selection. |
| RIT Computing Medal Scholarships | Recognizes high school juniors who have distinguished themselves academically, are active and involved members of their school and community, and demonstrate ability in computing. | \$7,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Eligible students must be identified by their high schools in the junior year for consideration. Apply for admission to RIT by February 1. |
| RIT Innovation and Creativity Award Scholarships | Recognizes high school juniors who have distinguished themselves academically, are active and involved members of their school and community, and demonstrate outstanding achievement in innovation, creativity, or entrepreneurship. | \$7,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Eligible students must be identified by their high schools in the junior year for consideration. Apply for admission to RIT by February 1. |
| RIT National Co-op Scholarships | Awarded to outstanding entering freshman students who, through their essay, reflect a clear enthusiasm for experiential learning. Recipients are identified based on secondary grades, college entrance examination scores, and personal recommendations. | \$6,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. Up to 10 awarded each year. | Submit scholarship application online at: waceinc.org. Apply between October 1 and February 15. |
| RIT/FIRST Robotics Scholarships | Freshman applicants who have participated on a high school FIRST team. Recipients are identified based on secondary grades, college entrance examination scores, and personal recommendations. | \$7,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. Up to 20 awarded each year. | Download scholarship application at: usfirst.org. Mail scholarship application to RIT and apply for admission by February 1. |
| RIT/Project Lead The Way (PLTW) Scholarships | Freshman applicants with combined SAT score of 1210 or higher (ACT 27) and a B+ average who complete two or more PLTW courses. | \$7,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. Up to 20 awarded each year. | Submit a letter of recommendation from a PLTW teacher along with RIT admission application and school transcripts by February 1. |
| RIT Hillside Scholarships | Awarded to incoming freshman students to recognize outstanding graduates of the Hillside Work-Scholarship Connection program. Recipients are identified based on secondary grades, college entrance examination scores, personal recommendations, and involvement in the Hillside Work-Scholarship Connection program. | \$10,000 per year. Students qualifying for an additional RIT merit scholarship will automatically be awarded the scholarship with the highest amount. Renewable. | Must apply for admission to RIT by February 1 to be considered. |


| RIT Trustee Scholarships for Transfer Students | Transfer applicants with a GPA of 3.3 or higher (computed by RIT) who will complete an associate degree before entering RIT. | $\$ 10,000$ per year with transfer GPA of 3.6 or higher; $\$ 7,000-\$ 8,500$ per year with GPA of 3.3-3.59. May be combined with Phi Theta Kappa scholarship. Renewable. | Submit all required admission application documents by: March 15 for summer/fall entry; November 15 for spring entry. |
| :---: | :---: | :---: | :---: |
| RIT Achievement Scholarships for Transfer Students | Transfer applicants with 3.3 or higher transfer GPA (computed by RIT) and 30 semester or 45 quarter hours completed at previous institution. | $\$ 7,000$ per year. May not be combined with RIT Trustee Scholarship. Renewable. | Submit all required admission application documents by March 15 for summer/fall entry; November 15 for spring entry. |
| RIT Phi Theta Kappa Scholarships for Transfer Students | Awarded to transfer students with an associate degree elected to Phi Theta Kappa honor society. | $\$ 2,000$ per year. May be combined with RIT Trustee or Achievement Scholarship. Renewable. | Proof of PTK membership must be submitted with transfer admission application. |
| RIT Nathaniel Rochester Society (NRS) Scholarships | Full-time undergraduate students who have achieved 2nd year standing at RIT with a GPA of 3.4 or higher. Winners selected by NRS scholarship Committee. | Maximum awarded is $\$ 2,000$ for four semesters of academic study (applied toward tuition charges). Awarded in addition to other financial aid and scholarships. | Download scholarship application at: rit.edu/nrs. File scholarship application in March. |
| ROTC Scholarships | Students enrolling in ROTC who are academically qualified. | Tuition support, fees, books, and monthly stipend. | Air Force: (585) 475-5197; Army: (585) 475-2881; Navy: (585) 275-4275 |
| RIT ROTC Scholarships | Awarded to Army, Air Force, or Navy ROTC cadets awarded three- or four-year scholarships prior to enrollment. | Up to the amount of a standard room and board plan, minus other financial aid and benefits. | Contact the Office of Financial Aid and Scholarships. |
| † Scholarship amounts indicated are based on RIT full-time tuition rates. Awards may be prorated for NTID-sponsored students |  |  |  |
| NEED-bASED GRANTS | ELICIBILITY | AMOUNTt | WHERE TO APPLY |
| RIT Grants | Students demonstrating financial need. | Amounts vary up to $\$ 20,000$ per year for full-time study. | File the Free Application for Federal Student Financial Aid (FAFSA) by March 1 for priority consideration. |
| RIT RCSD Scholarship Initiative | Awarded to qualified freshman graduates of the Rochester City School District who have both lived in the city and attended an approved high school within the RCSD for the last three years of high school. | Full tuition through a combination of RIT scholarships and state and federal need-based grants. | Must apply for admission to RIT by February 1 and be certified by the high school guidance office to be considered. |
| Say Yes to Education Scholarships | In partnership with Say Yes to Education, awarded to qualified graduates of the Syracuse and Buffalo City School Districts. Recipients are participants in the Say Yes to Education program. | Full tuition through a combination of RIT scholarships and state and federal need-based grants. <br> m. | Must apply for admission to RIT by February 1 and be certified by Say Yes to be considered. |
| RIT Endowed Scholarships | Full-time RIT students meeting selection criteria as established by the donor for each program; most awarded to upperclassmen based on financial need and academic performance at RIT. | ia Amounts vary IT. | File the Free Application for Federal Student Aid (FAFSA) by the priority date. |
| NTID Grant-in-Aid | Full-time students enrolling in RIT's National Technical Institute for the Deaf (NTID) who demonstrate financial need. | Amounts vary. | File the Free Application for Federal Student Aid (FAFSA) by the priority date. |
| RIT/NTID Grant | NTID students who are enrolled in an RIT bachelor's degree program who demonstrate financial need. | Amounts vary. | File the Free Application for Federal Student Aid (FAFSA) by the priority date. |
| RIT Part-time Studies Grant | Part-time undergraduate students enrolled for less than 12 credit hours in an RIT degree program who demonstrate financial need. | Amounts vary. | File the Free Application for Federal Student Aid (FAFSA) by the priority date. |
| New York State Tuition Assistance Program (TAP) | Full-time students who are New York state residents and meet state income guidelines. | $\$ 500-\$ 5,165$ per year for entering freshmen; transfer and returning student maximum varies. | File New York TAP Application and the Free Application for Federal Student Aid (FAFSA). |
| New York State Aid for Parttime Studies (APTS) | Matriculated undergraduate New York state residents enrolled for 3-11 credits per term who meet NYS residency requirements and demonstrate financial need based on NYS net taxable income; must not have received the equivalent of four years of NYS TAP aid. | Maximum award is $\$ 2,000$ per year, not to exceed cost of tuition. | Submit Aid for Part-time Studies Application to RIT's Office of Financial Aid and Scholarships. |
| Federal Pell Grant | Students who are pursuing their first bachelor's degree and meet need criteria. | r's $\$ 598$ to $\$ 5,815$ per year; prorated for part-time study. | File the Free Application for Federal Student Aid (FAFSA). |
| Federal Supplemental Educational Opportunity Grant (SEOG) | Students with high financial need (normally those who qualify for a Federal Pell Grant). | \$100-\$4,000 per year. | File the Free Application for Federal Student Aid (FAFSA). |
| NYS Higher Education Opportunity Program (HEOP) | Economically and academically disadvantaged residents of New York state. | Varies according to need and New York state funding. | Contact the HEOP office at RIT (585-475-2506) for eligibility guidelines. |
| Other State Grants | Varies. | Amounts vary. | Contact the State Education Department in your state of residency |


| LOANS | ELIGIBILITY | AMOUNTt |  | WHERE TO APPLY |
| :--- | :--- | :--- | :--- | :--- |

$\dagger$ Scholarship amounts indicated are based on RIT full-time tuition rates. Awards may be prorated for NTID-sponsored students

| EMPLOYMENT | ELIGIBILITY | AMOUNT $\dagger$ | WHERETO APPLY |
| :--- | :--- | :--- | :--- |
| Federal Work Study Program | Students with financial need; most jobs <br> provided are on campus, and some <br> community service positions are available. | Varies depending on hours and wage <br> rate. | File the Free Application for Federal Student Aid <br> (FAFSA). |
| RIT Employment Program | No financial need requirement; may be <br> on campus or off campus. | Varies depending on hours and wage <br> rate. | Contact the RIT Student Employment Office at rit. <br> edu/seo. |

† Scholarship amounts indicated are based on RIT full-time tuition rates. Awards may be prorated for NTID-sponsored students.

| Other awards | ELICIbILITY | AmOUNTt | WHERE TO APPLY |
| :---: | :---: | :---: | :---: |
| NYS Regents Awards for Children of Deceased and Disabled Veterans | Students whose parent(s) served in the U.S. Armed Forces during specified periods of war or national emergency and, as a result of service, either died, suffered a $40 \%$ or more disability, was classified as missing in action, or was a prisoner of war. The veteran must currently be a New York state resident or have been a New York state resident at the time of death. | $\$ 450$ per year for up to five years, depending on the normal length of the program. | Same as TAP. In addition, file the CV Award Supplement available at hesc.ny.gov. June 30 deadline. |
| Military Enhanced Recognition Incentive and Tribute (MERIT) Scholarship | Children, spouses, and financial dependents of members of the United States Armed Forces or state-organized militia who, at any time on or after Aug. 2, 1990, while New York state residents, died or became severely and permanently disabled while engaged in hostilities or training for hostilities. | Award equal to SUNY four-year college tuition and mandatory educational fees (or student's actual tuition and fees, whichever is less) and allowances for room and board, books, supplies, and transportation. | Same as TAP. In addition, file the Military Service Recognition Scholarship Supplement, available at hesc. ny.gov. |
| Memorial Scholarships for Families of Deceased Firefighters, Volunteer Firefighters, Police Officers, Peace Officers, and Emergency Medical Service Workers. | Must be a child or spouse of deceased firefighter, volunteer firefighter, or emergency medical service worker, police officer, peace officer, who died as a result of injuries sustained in the line of duty. | Award equals SUNY four-year college tuition and fees and allowances for room and board, books, supplies and transportation. | Same as TAP. In addition, file the appropriate award supplement, available at hesc.ny.gov. June 30 deadline. |
| NYS Aid to Native Americans | Members of a New York state tribe and their children who are attending, or planning to attend, a college in New York state and are New York state residents. | Up to $\$ 2,000$ per year for a maximum of four years (five years for certain programs) | Contact: the Native American Education Unit, NYS Education Department, Room 461 EBA, Albany, NY 12234, (518) 474-0537. |
| New York Scholarships for Academic Excellence | Outstanding graduate from registered New York state high schools. Awards are based on grades in certain Regents exams. | $\$ 1,500$ to top graduating senior of each high school in the state; $\$ 500$ to other academically gifted students. | Contact your high school guidance counselor. |
| Veterans Tuition Awards | Eligible veterans admitted in an approved program in New York State. | \$6,495 or tuition, whichever is less. | Same as TAP. In addition complete the New York State Veterans Tuition Award Supplement |
| Veterans Benefits | Eligible veterans and their dependents. | Amounts vary | Contact the Department of Veterans Affairs at 1-888-442-4551 or visit their website at www.va.gov. or gibill. va.gov/apply-for-benefits. |
| Aid to Native Americans | Students who are at least one-quarter American Indian, Eskimo, or Aleut who demonstrate financial need | Amounts vary | Contact U.S. Department of Interior, Bureau of Indian Affairs, Federal Bldg., Room 523, 100 S. Clinton St., Syracuse, NY 13202. |

$\dagger$ Scholarship amounts indicated are based on RIT full-time tuition rates. Awards may be prorated for NTID-sponsored students or for evening tuition rates.

## Notes:

This chart covers the most commonly awarded financial aid programs available to full-time undergraduate students at RIT. Information is correct as of May 2016. Most programs require satisfactory progress toward degree completion to maintain eligibility. Filing the FAFSA by March 1 (March 15 for transfer students and April 1 for continuing students) will ensure priority consideration for all programs. Applications filed after this date will receive consideration as long as funds remain available.

## Restricted and Endowed Scholarships

Each year the university awards restricted and endowed scholarships, made possible through the generosity of hundreds of individuals and organizations. Awards are made by RIT's Office of Financial Aid and Scholarships or RIT academic departments in accordance with the special criteria of each scholarship. All applicants for financial aid are automatically considered for scholarships for which they meet the established criteria.

Academic Excellence Endowed Scholarship
Harriet Thayer Adams Scholarship
Max Adler Scholarship
Advantage Federal Credit Union Endowed Scholarship
George Alden Scholarship Fund
Susan E. and Scott E. Alexander NRS Scholarship
Mary R. Alexander Scholarship
Fanny Knapp Allen Scholarship
Theodore \& Betty Jane Altier Scholarship
Ames Amzalek Scholarship
Salvador Anchondo Jr. Memorial Scholarship
Robert W. Anderson Endowed Scholarship
Betsy L. Andrews Scholarship
Clara L. Andrews Scholarship
Ezra R. Andrews Scholarship
Kate Rider Andrews Scholarship
Frank \& Geraldine Annunziata Endowed Scholarship
Anonymous NTID Scholarship
Susan and Robert Appleby Endowed Scholarship
Howard Applegate Scholarship
Association of Energy Engineers Scholarship
Lee Augustine Memorial Scholarship
Ralph Avery Scholarship
Helen Bader Foundation
David Baldwin Scholarship
Thomas Ward Ball Scholarship
Barlow Endowed Scholarship Fund
John \& Mary Bartholomew Scholarship
Nancy and Bruce Bates NRS/Science
The Bates Scholarship Endowment
Bausch \& Lomb Scholarship
John Bausch Scholarship
Clarence \& Birdice Beal Scholarship
Alice Beardsley Memorial Endowed Scholarship Fund for
Interpreting Students at NTID
Ned Behnke Memorial Scholarship at NTID
Richard Benjamin Memorial Scholarship
Hillary Blair Benner Memorial Scholarship in
New Media Design \& Imaging
Bennett Family Scholarship
Ruth L. Bernhardt Scholarship
Beta Gamma Sigma Scholarship
John and Donna Beusch Endowed Scholarship
Ruth E. Bice Endowed Chemistry Scholarship
Fanny R. Bigelow Scholarship
Roscoe Bills Scholarship
Howard Bingham/Eastman Kodak Scholarship

Blacksberg Family Endowed Fund
Helen \& Frederick Blaessig Memorial Scholarship
Doris W. Blanchard Endowed Scholarship Fund
Joseph \& Helen Blatecky Scholarship
Harriet Blickwede Scholarship
Karin A. Blood Endowed Scholarship
Boeing Company Scholarship
Matthew David Bouffard Memorial Scholarship
Donald N. and Jeris J. Boyce Endowed Scholarship
Farid Bozorgi Memorial Scholarship Fund
John and Honorable Caroline Branch
Andrew \& Mary Brenneman Annual Scholarship
Joseph Briggs Endowed Scholarship
Chester W. Brink Scholarship
Stephen Briody Scholarship
Adam D. Brody Memorial Phi Kappa Psi "Hero" Endowed Scholarship
Dr. Bernard B. Brody Medical Science Scholarship
Steffan Brown Scholarship
Angela Buckley Endowed Scholarship
Nettie Bullis Scholarship
Francis '76 and Catherine Burzik Endowed Scholarship
College of Business Recent Alumni
Business Alumni Scholarship
Business Faculty Endowed Scholarship
Business Women's Alumni Network
Owen Butler Scholarship
Orilla Wright Butts Scholarship Fund
Harold Cadmus Memorial Scholarship
Julia A. and Charles F. Cala NRS Scholarship in Science
Cala Family Endowment
Donn J. Calabrese Family Scholarship
The Cameros Family NRS Scholarship
Campus Connections Books and Supplies Scholarship
Richard Capella Scholarship
Caption First Scholarship at NTID
Carlson Imaging Excellence Scholarship
Howard F. Carver Scholarship
Howard T. Case Scholarship
CAST- Packaging Science General Scholarships
CAST Alumni Endowed Scholarship
Center for Multidisciplinary Studies Scholarship
Theodore Chapman Scholarship
Check Family Endowed Scholarship
Dr. Kathleen C. Chen Endowed Scholarship
Arunas Chesonis Scholarship in the Saunders College of Business
Adam Childs Memorial Scholarship
John \& Ruth Christie Scholarship
CIAS General Scholarships
Citigroup Foundation Endowed Scholarship Fund at NTID
Ruth and Brackett Clark Scholarship
Adele Hathaway Clark Scholarship
Florence Clark Scholarship
Hugh Elmer Clark Memorial Scholarship
Jack \& Barbara Clarq Endowed Scholarship
Class of '69 Scholarship

## Financial Aid and Scholarships

Memorial to the Class of 1949 Photographic Technology Endowed Scholarship Fund
COB Class Gift Endowed Scholarship
Albert G. Coenen Scholarship
Eugene Colby Scholarship
Coleman Corporation Scholarship
Wells Coleman Scholarship
College of Science Student Advisory Board
Ward D. Collister Scholarship
Computer Science House Scholarship
Anonymous Computer Science Scholarship
Comstock Foundation Scholarship
Karen Conner Annual Scholarship
Continental Corporation Scholarship Endowed Fund at NTID
Henry and Pinney Cooke Scholarship
Jerome Countryman Memorial
Lillian M. Cowin Memorial Endowed Scholarship Fund
Walter Crighton Scholarship
Alvin Cronig Scholarship
CSX Scholarship
Bryon Culver Scholarship
Curtice Burns Scholarship
Dorothy E. Ann Fund (D.E.A.F.) Endowed Scholarship
Robert R. and Donna E. Davila Endowed Scholarship Fund
Nancy J. Davis Scholarship
Alfred L. Davis \& Ruby C. Davis Continuing Education Scholarship
Alfred L. Davis \& Ruby C. Davis Leadership Award
Alfred L. and Ruby C. Davis International Student Scholarship
Alfred L. Davis International Student Scholarship
Donald F. and Maxine B. Davison Scholarship
Donald, Betty and Kevin Day Scholarship
Peter Debraal Memorial Endowed Scholarship
De Ridder Corporation Scholarship
James J. Decaro Endowed Scholarship Fund
Del Rosso Family Scholarship
Delta Sigma Phi Fraternity Endowed Scholarship
Valentine R. and John DePaul Founders Fund
Elliot \& Justin Derman Scholarship
DiMarco Constructors LLC NRS Endowment Fund
Michael DiRoma Memorial Scholarship
Division of Government and Community Relations
Endowed Scholarship
Ronald Dodge Memorial Endowed Fund at NTID
Ronald Dodge Memorial Endowed Scholarship Fund
Patrick Donovan Memorial
Doolittle/Merrill Scholarship
Thomas HW. Dougherty Scholarship
Bill DuBois Endowed Scholarships
Chris Dudek Memorial Scholarship
Mr. and Mrs. Joseph F. Dyer Endowed Scholarship Fund
Eberly Family Scholarship
ECI Systems \& Engineering
ECTET General Scholarships
Educational Technology Center Instructional Services Scholarship
Eisenhart Memorial Scholarship
Robert Elder Scholarship

Ellingson Memorial Scholarship
Fred Emerson Foundation Scholarship
Isabel \& Benjamin Emerson Scholarship
Raymond Englert
Gerald Ephraim Scholarship
Louise Epstein Supply Scholarship in SAC
Excellence in Engineering Endowed Scholarship
Eyer Foundation Scholarship
Max Factor Family Foundation Endowed Scholarship Fund
Barbara M. Fallon KPMG Memorial Endowed Scholarship
Max \& Marian Farash Charitable Foundation Scholarship
John Doane Fay Scholarship
Rose \& George Feigenbaum Scholarship
Endowed Scholarship Fund
Nancy and Len Fein Endowed Scholarship
William \& Mildred Feinbloom Scholarship
Ruth H. Fenyvessy Memorial Endowed Scholarship Fund
Joseph Ferraro Memorial Scholarship
Curt \& Jean Feuer Scholarship at NTID
James Fitz Memorial Scholarship
Flora J. Foley Scholarship
Maurice \& Maxine Forman Endowed Scholarship Fund
Donald J. Forst Endowed Scholarship
J. Andrew Foster Senior and J. Andrew Foster Junior Scholarship

Dr. Eugene Fram Scholarship
Ron Francis Scholarship
Howard Freckleton and Roy Hamel Endowed Fund
R.T. French Scholarship

Dr. Robert Frisina Scholarship
Ann Wadsworth Frisina Memorial
Max \& Helene Frumkes Memorial
Karl Fuchs Scholarship
Emma Fulton Memorial Scholarship
Fundamentals of Engineering Exam Endowed Scholarship
Garelick Family Endowed Scholarship
Garlinghouse Endowed Scholarship Fund
Garthwaite-Brennan Endowed Scholarship
GCCIS Alumni Endowed Scholarship
Gegeheimer/McClure Scholarship
Frank Geist Scholarship
Gelsomino Entrepreneurship Scholarship
General Motors Scholarship
George T. Georgantas Memorial Scholarship
Sarah Margaret Gillam Scholarship
Jean Gillings Scholarship
Kate Gleason Scholarship
Kate Gleason COE Alumni Endowed Scholarship
Gleason Memorial Scholarship Fund
George \& Anne Gleason Memorial Scholarship
Warren R. Goldman Endowed Scholarship Fund at NTID
Good Samaritan Association Scholarship
Allen \& Gloria Gopen Endowed Scholarship Fund
George Gordon Scholarship
Isaac Gordon Scholarship
Donald and Veda Gotts Memorial Scholarship
Goulds Pumps Inc. Award

Graflex Scholarship
Philip L. Graham Scholarship
Robert P. and Mary B. Gulick NRS Scholarship Endowment
The Hakim Family NRS Endowed Scholarship Endowment
Edward A. Halbleib Endowed Scholarship
Ezra Hale Scholarship
William B. Hale Scholarship
Mildred F. Hall Endowed Scholarship
Sil Hall Scholarship
Hamilton Relay Scholarship
Carter Harmon Scholarship
Jane King Harris Endowed Scholarship
Denton P. and Alice F. Harris Endowed Scholarship
Dr. Howard N. Harrison Scholarship
Harter, Secrest and Emery NRS Scholarship Endowment
Franz Haverstick Scholarship
G. Sherwin Haxton Scholarship

Safford Hazlett
Healthcare Purchasing Scholarship
William Randolph Hearst Endowed Scholarship
Mary Jane Hellyar Endowed Scholarship
Hermance Family Scholarship
Herstmonceux Study Abroad Program
Sol Heumann Scholarship
John and Catherine Hill Endowed Scholarship
Francis Sallie Ann Hillard Scholarship
Laura Church Hillman Scholarship
Hites Family Higher Education Challenge Grant Endowment
Richard Hoerner Endowed Scholarship
Hoffend Scholarship Fund
Edward G. Hoffmann and Bert G. Guerreri Scholarship Fund
Hogadone \& Larwood Scholarship
Holmes Family Endowed Scholarship
Eric Honsberger Endowed Memorial Scholarship
Diane Hope Student Support Fund
Charles C. Horn Scholarship
Frank Horton Center Endowed Memorial Scholarship
Frank Horton Scholarship-NTID
Frank Horton Undergraduate Scholarship
William "Dummy" Hoy Old Time Baseball Endowed Scholarship
HP Digital Publishing Innovations
Ying-Yuan Huang and Li-Chu Huang NRS Endowed Scholarship
Jerry Hughes Endowed Scholarship
Forrest and Robert Hurlbut Residence College Fund
T. Alan \& Vicki T. Hurwitz Family Endowed Scholarship

Frank Hutchins Scholarship
Ralph Hymes Endowed Scholarship Fund
Arthur Ingle Scholarship
Institute of Fellows Scholarship
International Education \& Global Program
Interpretek Scholarship
ISTA Educational Foundation/R. David LeButt
Memorial Scholarship
JHB Anonymous Endowed Scholarship
Louis \& Sylvia Jackson Scholarship
Andrew R. Jacobson Annual Scholarship

Robert L. Jacoby ‘ 77 Endowed Scholarship Elizabeth M. Jaenike Memorial Endowed Scholarship
Candy Thompson Jagus Endowed Memorial Scholarship
Dorothy B. James Scholarship
Sharyn \& Steven Janis Scholarship
Jack Jenkins Endowment Scholarship
Lucille Ritter Jennings Endowed Scholarship Fund
Jephson Educational Trusts Scholarship
Leo Joachim Graphic Arts Scholarship
The Johnson Scholarship Foundation Endowed Scholarship for Innovation \& Entrepreneurship
Helen Lucille Jones Memorial Scholarship
John Wiley Jones International Scholarship
Isaac Jordan Memorial Scholarship
Thomas F. Judson Sr. NRS Scholarship Endowment Fund
Thomas F. and Elisabeth Judson NRS Scholarship
Abraham \& Teresa Katz Scholarship
Robert \& Doris Kaufman Memorial Endowed Scholarship
David T. Kearns Endowed Fund for Technical Excellence
Ron \& Lyn Kelly Endowed Scholarship for Deaf and Hard of Hearing Students
Stephen J. Kersting Memorial Scholarship
Drew and Francis King Endowment Fund
Dorothy and Elizabeth Kitizing Endowed Scholarship
Ruth Klee Endowed Scholarship
David L. Kleinman Endowed Scholarship
Kodak Professional Imaging Award
Loweel Koenig Memorial Scholarship
Bernard \& May Kozel Entreprenurial Scholarship
Jack Kronenberg Endowed Scholarship
Sara L. Kuhnert Endowed Scholarship Fund at NTID
Los Angeles Times Endowed Scholarship in
Newspaper Production Management
Lancer Graphics Industries, Inc. Scholarship
Sheldon A. Lane Memorial NRS Scholarship Endowment
Johanna Larson Endowed Scholarship in the
Allied Health Disciplines
Michael E. Lawson Endowed Scholarship
Learning Support Services Scholarship
LeChase Corp. Scholarship
Leenhouts Family Scholarship
Jay and Stephanie M. Levine Scholarship
Levine Family Endowed Scholarship in Entrepreneurship
Richard B. Lewis Memorial Endowed Scholarship
Liberal Arts Alumni and Friends Endowed Scholarship
The Edward H. Lichtenstein Memorial Endowed Scholarship Fund
Abe Lincoln Scholarship
Dawn and Jacques Lipson M.D. Scholarship
Lockheed Martin Scholarship
Mildred Pembroke Loeffler Scholarship
Lomb Citizen Soldier Scholarship
Lomb People Scholarship
Dr. Frank W. Lovejoy Jr. Endowed Scholarship
Eugene Lowenthal Jr. Memorial Scholarship
Max Lowenthal Memorial Scholarship
Patrick T. Lynch Memorial Scholarship

## Financial Aid and Scholarships

M\&T Bank Urban Scholars Scholarship
M/E Engineering Scholarship
Barbara MacCameron Scholarship
Lois C. Macy Scholarship
Magazine Publishing Endowed Scholarship
Thomas H. Maguire Memorial Scholarship
Earl W. Mahuson Endowed Scholarship
Max Sullivan Maisel Memorial Scholarship
Maltby Endowed Scholarship
Manufacturers Hanover Endowed Scholarship
Donald Margolis Scholarship
Dr. James C. Marsters Endowed Scholarship Fund
Clara Martin Scholarship
Lois G. Martin Endowed Scholarship in
Hospitality and Service Management
Mathematics \& Statistics Fund of Rochester Scholarship
Warren and Lois McClure Endowed Scholarship
Margaret McEwen-Craven Scholarship
Welliver McGuire Fund
John McIntee Scholarship
McIntosh Education Fund Scholarship
Dean McWhirter Memorial Scholarship
Alice Melnyk Scholarship
Norman Miles Scholarship
Norman Miller Electrical Engineering Scholarship
Paul \& Louise Miller Endowed Scholarship
Paul A. and Francena L. Miller Professorship
Barbara Milliman Scholarship
Abraham \& Sadie Milstein Scholarship
Class Gift for the MMET/PS Department Scholarship Fund
Helen Monar Short Scholarship
Bernice Skinner Morecock Scholarship
Earl Morecock Scholarship
Clifford Waite Morgan Scholarship
Moore Working Scholarship Endowed Fund
Michael and Jean Morley NRS Endowment
Michael P. Morley ‘69 Endowed Scholarship
Catherine Morse Scholarship
Kevin Mowl Memorial Endowed Scholarship
Mowris-Mulligan Endowed Scholarship
Charles W., Sue L., Freda L. Muffitt Scholarship
Dennis \& Cathy Mullen Endowed Scholarship
Center for Multidisciplinary Studies Merit Scholarship
Irene L. Muntz Endowed Scholarship
Nicholas F. Murray Endowed Memorial Scholarship
Michelle "Shelley" Nageotte Memorial Scholarship
Ganpat Rai Nangea Memorial Scholarship
M.L. Navrat Endowed Scholarship at NTID
M.L. Navrat RIT/Rochester City Scholars Scholarship

Don Naylor Scholarship
C.B. Neblette Memorial Scholarship

Evaline and Louis Neff Scholarship
New Haven Craftsmen's Club Scholarship
Grace B. Norton Scholarship
Joseph F. Noveck Memorial Scholarship
Nathaniel Rochester Society Scholarships

NTID Scholarship
NTID Alumni Association Endowed Scholarship Fund
NTID Architectural Technology Scholarship
NTID Business Careers Endowed Scholarship
NTID Endowed Scholarship in Visual Arts Disciplines
NTID Foundation Endowed Scholarship Fund
NTID Performing Arts Endowed Scholarship Fund
NTID Science/Engineering Careers Endowed Scholarship Fund
NTID Student Leadership Endowed Fund
NTID Visual Communication Endowed Scholarship Fund
NYS Federation of Home Bureaus, Inc. Endowed Scholarship Fund in Honor of Martha Perry
Milton H. \& Ray B. Ohringer Endowed Scholarship Fund
Dr. David Olsson Memorial Endowed Scholarship
Oneida Air Future Craftsmen Award
Osher Reentry Scholarship Program
Palmer Food Services Scholarship
Robert F. Panara Endowed Scholarship Fund
Mary and John Parke NRS Scholarship
Sandra Parker Scholarship
Mohal T. Patel Scholarship
SJ Paterson \& ML Hall Endowed Scholarship
Barbara Paul Memorial Scholarship
Charles J. "Chuck" Pease Jr. Memorial Scholarship
Gerald \& Pamela Pelano Scholarship
Paul Pelletier Memorial Scholarship
Terry "Zippy" Peploski Memorial Endowed Scholarship
Anthony J. Petrucelli '61 Memorial Scholarship
Pharmaceutical Packaging Studies Scholarship
Philips ECG Inc. Scholarship
Physics Faculty and Alumni Endowed Scholarship
Wayne R. Pierce '42 Restricted Scholarship
Leonard T. Pimental Scholarship
William \& Jacqueline Pittenger NRS Scholarship
Seth Policzer and Syed Ali Turab Memorial Endowed Scholarship
Eugene and Wanda Polisseni Scholarship
Paul W. Porter Memorial Scholarship
Ann Conway Powers Endowed Memorial Scholarship
Prentice Family Scholarship
David Presco Memorial Scholarship
School of Print Media Scholarship for Women
Women in Printing Network Endowed Scholarship
John Myers Pritchard Endowed Scholarship
Pulver Family Endowed Scholarship Fund
Venkat Purushotham Endowed Scholarship
for International Students
Q.C.I. Corporation Scholarship

Queens Group Scholarship
Kamran Rab ‘05 Memorial Endowed Scholarship
Harold Rafael Memorial Scholarship
Byron J. Ramseyer Memorial Scholarship
Eustis and Thelma Rawcliffe Memorial Scholarship in Printing
Real Time Enterprises Scholarship
Redcom Laboratories Undergraduate Scholarship
William A. Reedy Memorial Scholarship
Russell Reilly Memorial Scholarship
R. Bruce Reinecker Scholarship Jack Renfro Scholarship Carl Reynolds Computer Science Endowed Scholarship Robert W. Rice Endowed Scholarship
Richards Endowed Scholarship
Edward J. Ries Memorial Scholarship
RIT Alumni Legacy Endowed Scholarship
RIT Department of Service Systems
RIT Facilities Management Employer Endowed Scholarship
RIT Greek Organization Service Scholarship
RIT International Student Alumni Scholarship
RIT Memorial Fund Scholarship
RIT Memorial Fund Endowed Scholarship
RIT Miscellaneous Endowed Scholarship
RIT Parents Endowed Scholarship
RIT Bill Reedy Memorial Endowed Kodak Scholarship
RIT Residence College Fund
Frank Ritter Memorial Scholarship
Ritz Dinner General Support
Robbins \& Meyers Scholarship
Jon and Jessie Roberts Endowed Scholarship in Performing Arts
Archibald \& Mary Robinson Scholarship
Rochester Area Business Ethics Foundation Scholarship
Rochester City Scholars Program Scholarship
Rochester Midland Corporation Endowed Scholarship
Rock-Tenn Packaging Scholarship
Ian Rodgers Memorial Scholarship
Roosevelt Paper Scholarship
Robert Root Endowed Scholarship
M. Richard and Clarice Rose NRS Scholarship

Rebecca Rosenberg Memorial Scholarship
Dr. Ellie Rosenfield Endowed Scholarship
Philip Rosenzweig Memorial Scholarship
Madelon and Richard Rosett Scholarship
Rubens Family Scholarship
Bud \& Joan Rusitzky Scholarship
Laura Bradford Russell Memorial Scholarship
David \& Fannie Rutty Memorial Scholarship
Janet R. Salitan Liberal Arts Scholarship
Jay P. Samuels/ Pictorial Offset NRS Scholarship
Ester Gosnell Sanders Endowed Scholarship
Nelson \& Celeste Sanford Memorial Scholarship
Elizabeth Dunlap Sargent Memorial
Endowed Scholarship Fund at NTID
Sasakawa-DeCaro Endowed Scholarship Fund
E. Philip Saunders Endowed Business Scholarship

Savlov Family Endowed Performing Arts Fund
Alan \& Michele Scheff Endowed Fund
Robert J. Scheiber Memorial Scholarship
Robert Pitman Schmidt Memorial Scholarship
Paul \& Katherine Schmidt Scholarship
Charles W. Schmitt Memorial Endowed Scholarship
William J. Schmitt Memorial Scholarship
Killian J. \& Caroline Schmitt International Scholarship
Martin L. Schultz Memorial Endowed Scholarship
Ruth S. Schumacher Fund

General Scholarships for College of Science
Marlene E. Scott Memorial Scholarship
Robert P. Scripps Graphic Arts Endowed Scholarship
Robert P. Scripps Graphic Arts Scholarship/ Melbert B. Carey Fund James Scudder Memorial Scholarship
Wilfrid and Isabel Searjeant Endowed Scholarship
James Sedgwick of New York Scholarship Fund
Norman C. and Mercedes S. Selke Memorial Scholarship
Eric Senna Scholarship
Martin Setto Memorial Scholarship
Shot Endowed Scholarship Fund
F. Ritter and Hettie Shumway NRS Scholarship Endowment
F. Ritter Shumway Scholarship
S. Richard Silverman Endowed

Fred Simmon Memorial Scholarship
Carolie R. Simone Endowed Scholarship at NTID
Albert J. Simone Endowed Scholarship for
Innovation and Entrepreneurship
Albert \& Carolie Simone Margaret's House Scholarship
Albert \& Carolie Simone NRS Scholarship
John T. \& Leona G. Skalny Scholarship
Joseph \& Deidre Smialowski Scholarship
Susan Smigel International Student Scholarship
Kevin Smith Memorial Scholarship
David Smith Memorial Endowment Scholarship
David Alan Smith Engineering and Entrepreneurship Scholarship
Eric Allen Smith Memorial Endowed Scholarship
Sidney Smith Family Endowed Scholarship
Dr. Fred W. Smith Endowed Scholarship
Norma M. Snyder NRS Endowed Scholarship
Robert L. and Norma M. Snyder NRS Scholarship Endowment
Software Engineering General Scholarship Fund
John G. Sommers Sr. Memorial Endowed Printing Scholarship
Benjamin Soukup Endowed Scholarship Fund at NTID
Southwest School of Printing Management Scholarship
C. Sherwood Southwick Jr. Endowed Scholarship

Harry Speck Scholarship
Spectrum Support Program
Karl Sperber Scholarship
Sprint Scholarship Fund @ NTID
Statler Foundation Study Abroad Scholarship
Arthur L. Stern Fund
Hattie m. Strong Scholarship
Pearl Hewlett Stutz Scholarship
Frank B. Sullivan Memorial Scholarship
Matthew Sullivan Memorial Scholarship
Solon E. Summerfield Foundation Endowed Scholarship Fund William Swart Endowed Scholarship
Michael A. Swartzman Memorial Endowed Scholarship Fund
David F. Sykes Endowed
Peter H. Sykes Endowed Scholarship
George Taenzer Memorial Scholarship
Paul and Sally Taylor Endowed Scholarship
Daniel D. Tessoni EMBA Endowed Scholarship
Thermal Analysis Prize

## Financial Aid and Scholarships

Michael Thomas Endowed Scholarship Fund in the Performing Arts
Eloise Thornberry Endowed Scholarship
Louis C. Tiffany Foundation
Hollis Todd Scholarship
Kenneth \& Barbara Tornvall Endowed Scholarship
Kate Louise Trahey Scholarship
Vincent F. \& Jeanette Traniello Memorial Endowed Scholarship
Donald and Christina Truesdale Endowed Scholarship
Fred Tucker Endowed Scholarship
Clarence Tuites Scholarship
Turri \& Brown Endowed Scholarship
Phil Tyler Endowed Scholarship
Clifford \& Ruth Ulp Memorial Scholarship
United Way Child Care Scholarship
University Studies Program General Support
W. Paul Urich Memorial Endowed Scholarship Fund

Walter Vanderweel Memorial Scholarship
Elizabeth VanHorne Memorial Scholarship
Al VanNevel Memorial Foundation Scholarship
James Ventimiglia Memorial Printing Award
Charles and Andrea Volpe Scholarship
Volpe Scholars Annual Fund
Joseph Waldinsperger Scholarship
Dewitt Wallace/ Reader's Digest Endowed Scholarship
Walls-Olsen Memorial Scholarship
Stephanie Warren Scholarship for Excellence
in Emergency Medicine
J. Watumull Scholarship Fund

Kathleen Wayland-Smith Scholarship
Louis A. Wehle Scholarship
David Weinstein Scholarship
Harold J. Weisburg Scholarship
Mark \& Beulah Welch Scholarship
Cy Welcher Scholarship
James Weldon and Lillie Chaney Brumfield Scholarship
Peter S. Wells Endowed Scholarship
Edwin Welter Fund
Western New York Village Superintendents Scholarship
Nelson Whitaker Scholarship
Ronald \& JoAnn White Scholarship
Whitman Family Scholarship for School for American Crafts
Whitman Family Scholarship
Eloise Wilkin Memorial Scholarship
Elizabeth W. Williams Endowed Fund for the Performing Arts
Norman Williams Family Scholarship
Daniel D. Wilson Memorial Scholarship
James Wilson Memorial Scholarship
Wallace \& Paula Wilson Scholarship
Thomas B. Wilson Scholarship
Windstream Scholarship Program
Jim Winter Memorial Scholarship
John J. Wittman II Memorial Endowed Scholarship
Joseph C. \& Loretta F. Wolf Endowed Scholarship Fund
Henry Wolf Scholarships
L. \& M. Wolk Foundation Physician Assistant Scholarship

Louis S. and Molly B. Wolk Foundation Endowed Scholarship Fund for Deaf Students at RIT
Rudolph Wollner Scholarship
Rose Wollner Scholarship
Women's Council of RIT Endowed Scholarship
Women's Club of Rochester Endowed NTID Scholarship
Women's Council Endowed NTID Scholarship
William D. Wright Scholarship
Wurzer NRS Endowed Scholarship Fund
Xerox Endowed Scholarship
Myles G. Yerden Endowed Memorial Scholarship
Young Printing Executive Club Scholarship
Richard and Lois Zakia Scholarship
Jeffrey W. Zielasko Memorial Scholarship
Donald Zrebiec Scholarship

## University Policies and Procedures

## Academic Policies and Procedures

RIT's educational mission is to prepare men and women for living and working in a democratic and technological society by offering curricula that meet those needs within an educational community that supports and encourages individual achievement in an atmosphere of pluralism and diversity. Moreover, RIT sets high standards that challenge students to develop values that will enhance their lives professionally and enable them to contribute constructively to society.

## Graduation requirements

To earn an academic credential from RIT, students must satisfy a number of graduation requirements, which may vary significantly from program to program. All students should seek out and use the academic advising resources within their colleges to assist them in planning their academic program of study. In general, students should expect to satisfy the following requirements before they can graduate from RIT:

## A. Completion of academic curricula

I. Students must satisfactorily complete all of the courses in their academic program. General education requirements and specific course requirements for each program are identified in the following pages. This bulletin, and careful consultation with an academic adviser, provide the best resources for planning and completing all of the requirements necessary for graduation.
II. Program curricula may include several types of courses, including cooperative education, field experience, practicum, thesis, research, and wellness. Most students will need to satisfy a wellness requirement, and many academic programs require one or more quarters of experiential learning, including cooperative education or internships.
III. The curriculum in effect at the time of admission into a program will normally be the curriculum one must complete in order to graduate. Occasionally, with departmental approval, course substitutions and other minor curricular modifications may occur. Although there is no time limit within which students must complete their course requirements, the curriculum under which a student is certified to graduate must be no more than seven years old.

## B. Grade-point average standard

I. Successful candidates for an undergraduate degree, diploma, or certificate must have a program cumulative grade-point average of at least 2.0. The physician assistant program requires a program cumulative grade-point average of 2.8 or higher.
II. Graduation honors are conferred on associate and bachelor's degree recipients who achieve a 3.40 or higher cumulative program GPA.

## C. Residency and minimum earned hours

At least 30 of the credit hours used toward a degree program must be earned by successfully completing RIT courses. In addition, at least 20 of the final 30 credit hours of any program must be earned through RIT courses. Credit earned through transfer, credit by exam/experience, College-Level Examination Program (CLEP), Advanced Placement (AP), International Baccalaureate (IB), or audit is excluded from these residency calculations. RIT academic programs vary as to the total number of credit hours required; however, under no circumstances will a student be allowed to graduate with a bachelor's degree with fewer than 120 cumulative earned hours ( 60 hours for associate degrees). Cumulative earned hours include RIT courses, transfer credit, credit by exam/experience, CLEP, AP, and IB credits.

## D. Developing writing excellence

Following university policy, all students are required to complete three writing intensive (WI) courses before they graduate:

- one First Year Writing course, to be taken in the first year;
- one Programmatic WI course, year taken as required by the particular degree program; and
- a third WI course, preferably within General Education but may be a second program WI course, to be taken in the second or third year is recommended.
First Year Writing is a General Education Foundations course that plays an essential role in students' academic transition to the university. In FYW, students learn about the social and intellectual aspects of university writing, and develop critical literacy practices required for academic success. There are currently three FYW courses that fulfill this requirement:
- FYW: Writing Seminar (UWRT-150)
- FYW: The Future of Writing (ENGL-150)
- FYW: Ethics in Computing (ISTE-110)

General Education Writing Intensive (WI) courses reinforce the knowledge and practices introduced in FYW. These courses are located throughout the perspective, immersion, and elective course categories on the General Education curriculum and use writing to engage students in course content.
Program Writing Intensive courses (identified on the typical course sequence charts with the designation "WI") are located in disciplinary contexts and apprentice students in specific forms of writing. These courses reinforce the knowledge and practices introduced in FYW, and students gain mastery of written forms specific to the student's major area of study.

## E. Fulfillment of financial obligations

Students must fulfill all financial obligations to RIT before they can be certified to graduate.

## General Education CurriculumLiberal Arts and Sciences

RIT's framework for general education provides students with courses that meet specific university approved general education learning outcomes and New York State Education Department liberal arts and sciences requirements. Students in all bachelor of science degree programs are required to complete a minimum of 60 credit hours in General Education; students in all bachelor of fine arts degree programs are required to complete a minimum of 30 credit hours in General Education. The general education framework intentionally moves through three educational phases designed to give students a strong foundation, an introduction to fundamentals of liberal arts and sciences disciplines, and the opportunity for deeper study and integrative learning through immersion in a cluster of related courses.

The general education curriculum consists of the following requirements:

1. First Year courses-two courses in the first year that introduce students to the intellectual life of the university, and provide a focus on communication skills to prepare students for future coursework and life-long learning.
a. First Year Writing: UWRT-150, ENGL-150, ISTE-101
b. First Year LAS Elective
2. Perspectives-eight courses designed to introduce students to seven key areas of inquiry that develop ways of knowing the world. The perspective courses introduce students to fundamentals of a liberal arts and sciences discipline (methods, concepts, and theories) while addressing specific general education learning outcomes.
a. Perspective 1 (ethical): Courses focus on ethical aspects of decision-making and argument, whether at the individual, group, national, or international level. These courses provide students with an understanding of how ethical problems and questions can be conceived and resolved, and how ethical forms of reasoning emerge and are applied to such challenges.
b. Perspective 2 (artistic): Courses focus on the analysis of forms of artistic expression in the context of the societies and cultures that produced and sustained them. These courses provide insight into the creative process, the nature of aesthetic experience, the fundamentals of criticism and aesthetic discrimination, and the ways in which societies and cultures express their values through their art.
c. Perspective 3 (global): Courses in this category encourage students to see life from a perspective wider than their own and to understand the diversity of human cultures within an interconnected global society. Courses explore the interconnectedness of the local and the global in today's world or in historical examples, and encourage students to see how global forces reverberate at the local level.
d. Perspective 4 (social): Courses focus on the analysis of human behavior within the context of social systems and institutions. Because RIT recognizes that student success depends on the ability to understand how social groups function and operate, these courses provide insight into the workings of social institutions' processes.
e. Perspective 5 (natural science inquiry): Science is more than a collection of facts and theories, so students are expected to understand and participate in the process of science inquiry. Courses focus on the basic principles and concepts of one of the natural sciences. In these classes, students apply methods of scientific inquiry and problem solving in a laboratory or field experience.
f. Perspective 6 (scientific principles): Courses focus on the foundational principles of a natural science or provide an opportunity to apply methods of scientific inquiry in the natural or social sciences. Courses may or may not include a laboratory experience.
g. Perspective 7A, 7B (mathematical): Courses focus on identifying and understanding the role that mathematics plays in the world. In these courses, students comprehend and evaluate mathematical or statistical information and perform college level mathematical operations on quantitative data.
3. Immersion-a series of three related general education courses that further broaden a student's judgment and understanding within a specific area through deeper learning.
4. General Education electives-The remaining general education elective credits may be specified by the academic programs in order for students to fulfill supporting requirements (e.g. math or science, foreign languages, etc.). Some of these credits will be free general education electives that can be chosen by the students themselves. Credits in the perspectives category that exceed the minimum requirement will be applied toward the elective credits.

## Wellness Education Requirement

RIT recognizes the need for wellness education in today's society and offers specifically designed courses to help students develop and maintain a well-balanced healthy lifestyle. The wellness education requirement is designed to assist students in making healthy decisions to support their academic and social interactions in college and beyond. The wellness curriculum provides learning experiences that are an integral part of the educational experience at RIT.

Students seeking a bachelor's degree: Students seeking a bachelor's degree must successfully complete two different wellness activity courses. (Important note: Different courses would include different levels of and/or forms of a course that may have the same course number (e.g., pilates and advanced pilates would count as two different activity courses).

Students seeking an associate degree: Students seeking an associate degree must successfully complete one wellness activity course.

Transfer students: Transfer students may apply course work successfully completed at a previous institution. The student's home department will determine and make decisions regarding transfer of health, wellness, or activity courses. The Center for Intercollegiate Athletics and Recreation is available for consultation.

## Exemption Scenarios

Age: Students who are 25 or older at the date of matriculation are exempt from the wellness education requirement but may enroll in any course on a space-available basis.

Club sports participation: Students participating in an RIT-recognized club sport may be granted one activity course credit for the year of participation. Participation on the same club team for multiple seasons (e.g., four seasons) can be counted only one time for activity course credit toward the graduation requirement. Students must see the club sports adviser before the end of the spring quarter add/drop period to facilitate the credit process.

Credit by experience: Retroactive credit may be granted for certain independent activities if completed within one year before matriculation at RIT. A formal written request must be submitted that clearly outlines the activity that is being considered for wellness education credit along with all documentation of the experience (e.g., signatures of instructors, copy of certificates, receipt from a course or seminar completion). A minimum of 16 hours of a previous activity is required. Formal requests should be submitted to the director of the Wellness Instructional Program.

Intercollegiate athletics: Students participating in the university's intercollegiate athletic program will be granted wellness activity course credit for the season(s) of participation.

Intramural participation: No credit is granted for intramural sports participation.

Medical excuse: A medical excuse may exempt students from participation in the activity segment of the graduation requirement, but they must still enroll in First-Year Enrichment (during their freshman year). The exemption will be granted only by a college dean with input from the associate director of wellness for the Center for Intercollegiate Athletics and Recreation. One copy of the medical excuse (signed physician's memo) should be filed with the Center for Intercollegiate Athletics and Recreation and the other copy taken to students' academic department.

Military duty: Students who have completed six months or more of active military duty are not required to complete the wellness education program but are encouraged to enroll in any wellness course on a space-available basis.

Nonmatriculated status: Nonmatriculated students are exempt from the wellness education requirement but are encouraged to enroll in any wellness course on a space-available basis.

Prior bachelor's degree: Students who have acquired a bachelor's degree are exempt from the wellness education requirement.

## Academic advising

All undergraduate students are assigned to an academic adviser. Most students also have a faculty adviser. Advisers help students transition into RIT, navigate their curriculum, connect to RIT resources, explore career choices, evaluate progress toward degree completion, and integrate into the RIT community. Students new to the university (freshman and transfers) are required to meet with their academic adviser during their first year. These advising
sessions allow students and advisers time to build their advising relationship and plan for success. Students can find their advisers listed on SIS and Tiger Center.
The University Advising Office is an excellent starting point for any questions related to academic advising and student success at RIT. This office coordinates undergraduate advising and targeted student success initiatives. Contact the University Advising Office at 585-475-7128 or advising@rit.edu.

## Academic policies

## Confidentiality of student records

In accordance with the Family Education Rights and Privacy Act of 1974 (commonly known as the Buckley Amendment), RIT students have the right to inspect, review, and challenge the accuracy of their official educational records. Students are also accorded the right to receive a formal hearing if dissatisfied with responses to questions regarding the content of the record.

RIT policy ensures that only proper use is made of such records. Therefore, with the exception of copies made for internal use (those provided to faculty and staff who have a legitimate need to know their contents), in most cases no copy of a student's academic record (transcript) or other nonpublic information from student records will be released to anyone without the student's written authorization. The determination of those who have a "legitimate need to know" (e.g., academic advisers, government officials with lawful subpoenas, etc.) will be made by the person responsible for the maintenance of the record. This determination will be made carefully, in order to respect the student whose record is involved. If an employer, for example, requests a transcript, he or she will have to obtain a written request from the student or former student.

The Buckley Amendment allows RIT to declare certain pieces of information as "directory" and therefore releasable without the specific permission of a student. Such "directory information" could include a student's name, date and place of birth, major field of study, participation records in official RIT activities and sports, weight and height of a member of an athletic team, dates of attendance at RIT, and degrees and awards received. Students may make written request of the Office of the Registrar that such directory information not be released. Because requests for nondisclosure will be honored by RIT for only one year, requests to withhold such information must be submitted to the Office of the Registrar annually.

Copies of the full act and RIT's written policies relating to compliance with the law are on file in the Office of the Registrar. Also available is information regarding a student's right to file a complaint with the U.S. Department of Education concerning the alleged failure of RIT to comply with the requirements for this act.

## Transcripts

A student's official academic record is maintained by the RIT Office of the Registrar and is normally reflected through a transcript. All requests for transcripts must be in writing and should include the student's full name (or name used while at RIT), student identifica-
tion number, dates of attendance, and signature to assure proper identification of the record requested. Transcripts are usually prepared and available within one week after the request is received.

Under no circumstances will a partial transcript be issued, nor will a transcript be issued to a student who is indebted to RIT. Transcripts from high schools and universities that have been received in support of admission applications and/or transfer credit evaluation will not be reissued by RIT.

## Transfer credit

Transfer credit at the undergraduate level will usually be granted for those courses completed with a grade of C or better in other regionally accredited colleges or universities and specific armed services course work that parallels courses in the program (including options, if any) for which the student is applying or is currently enrolled. However, if the program (or option) that the student finally chooses to pursue does not include any or all of the courses evaluated, they will not be credited toward requirements for a degree. RIT students who wish to take courses at other accredited institutions and receive transfer credit toward their RIT degree need to secure the prior written approval of the adviser(s) of the RIT college(s) concerned in order to assure appropriateness of the course content and course level for those courses.

Deaf and hard-of-hearing students may transfer into an NTID program, or they may qualify for transfer directly into a program in another RIT college with NTID sponsorship. The transfer credit of deaf students accepted to NTID's Summer Vestibule Program will be evaluated in the fall when they are accepted into a specific program.

Credit by exam: RIT grants credit for satisfactory scores on examinations covering objectives and contents parallel to the RIT courses for which students seek credit. Usually these are Advanced Placement (AP), International Baccalaureate (IB), College-Level Examination Program (CLEP), New York state proficiency examinations, or RIT-prepared examinations.

Advanced placement: Many students earn advanced standing through Advanced Placement (AP) examinations. The minimum required score and the manner in which credits are applied depend upon a student's exam score and choice of academic program. No credit is awarded for scores of 1 or 2 on AP exams. Advanced Placement credits may be applied in fulfillment of general education, program requirements, and/or minor requirements. Students may need to complete additional course work in order to fulfill all specific program requirements. Students should consult with their adviser for additional details. The policy covering the awarding of credit for Advanced Placement examinations is reviewed annually and may be subject to change.

International baccalaureate: Many students earn advanced standing through International Baccalaureate (IB) examinations.
The minimum required score and the manner in which credits are applied depend upon a student's exam score and choice of academic program. International Baccalaureate credits may be applied in fulfillment of general education, program requirements, and/or minor requirements. Students may need to complete additional course work in order to fulfill all specific program require-
ments. Students should consult with their adviser for additional details. The policy covering the awarding of credit for International Baccalaureate examinations is reviewed annually and may be subject to change.

College Level Examination Program: The College Level Examination Program (CLEP) is a nationwide system of credit by examination offered by the College Board. Any person entering college, presently attending college, or out of college may take CLEP examinations and seek credit by submitting the test results to RIT for evaluation. Credit recommendations for CLEP vary depending on the subject and examination results. CLEP examinations are offered through the RIT Counseling Center.

## The grading system

RIT uses a plus/minus grading system. All grades are determined and issued by the faculty in accordance with the RIT Institute Policies and Procedures Manual and the particular standards of the attempted courses. Individual instructors have an obligation to carefully describe the standards and grading practices of each course. The accepted RIT letter grades are as follows:

| GRADE | DESCRIPTION |
| :--- | :--- |
| A | Excellent |
| A- |  |
| B+ |  |
| B | Above Average |
| B- |  |
| C+ | Satisfactory |
| C | Minimum Passing Grade |
| C- | Failure <br> Audit (Indicates a student has officially registered <br> for the course for no credit.) |
| AU |  |

Additional grades and notations that may be found on a student term record or transcript are shown below:

- I grades are considered temporary and will revert to a grade $F$ unless changed by the faculty within a prescribed period of time.
- R, S, U, WV, and X grades are restricted to specific types of courses.

For more specific descriptions and procedures concerning the above, see Section D5.0and D2.0, Institute Policies and Procedures Manual. The manual is available online at rit.edu/policies.

## Course registration

To be officially registered at RIT, a student must be academically eligible, have been properly enrolled in a course, and have made the appropriate financial commitment. The registration process is uncomplicated and can be accomplished in a variety of ways. Typically, students start selecting courses six to eight weeks before the academic term begins and can register online or in person at their home department or the Registrar's office. The registration period ends on the seventh calendar day (excluding Sundays and
holidays) of the full fall, spring and summer terms. . These first seven days (excluding Sundays and holidays) of the term are typically known as the Add/Drop period. Specific dates and procedures can be found in the annual Enrollment Guide. RIT reserves the right to alter any of its courses at any time.

Students at RIT are free to choose their own courses and course loads. Colleges offering the courses are equally free to restrict enrollment to particular groups of students (for example, students in specific year groups or students who have already satisfied course prerequisites). Most courses also are restricted in class size. Students are strongly encouraged to seek out academic advice and plan their academic careers carefully.

Failure to make appropriate financial commitment, satisfy New York state health immunization requirements, or fulfill course prerequisites can result in the loss of courses for which a student has registered and/or prohibition of future registrations.

## Auditing courses

Courses that are taken on an audit basis will not count toward a student's residency requirement. They may not be used to repeat a course taken previously and do not satisfy degree requirements. Permission to audit a course is granted only by the college offering that course. Any changes in registration between credit and audit must be completed prior to the end of the add/drop period.

## Withdrawal from courses

A student may withdraw from a course up to the end of the twelfth week of the fall and spring semesters. A grade of W will be assigned and the course retained on the student's permanent academic record. Under exceptional situations, a dean may approve a course withdrawal following the twelfth week. In all other academic sessions and for courses offered in time frames different from the standard semesters (fall and spring), course withdrawal is available upon the student's request until 80 percent of the session or course, as determined by the Registrar's Office, has been completed. For policies pertaining to withdrawal from the university and tuition refund please refer to the Costs section of this bulletin.

## Dean's List eligibility

Degree-seeking students who earn at least 12 credit hours in an academic term, have a grade-point average of 3.40 or better, have not been placed on probation due to a low cumulative grade-point average, and do not have any grades of $\mathrm{I}, \mathrm{D}$, or F in that term are eligible for selection to the Dean's List of their college. Students who are pursuing their degree on a part-time basis are assessed for Dean's List consideration based on course work completed throughout the academic year (fall, intersession, spring, summer). Criteria for part-time students are essentially the same as those for full-time students. However, at least 9 credit hours must be earned during the academic year.

## Class attendance

Students are expected to fulfill the attendance requirements of their individual classes. Absences, for whatever reason, do not relieve students from responsibility for the normal requirements of the course. In particular, it is the student's responsibility to make individual arrangements prior to missing class. Attendance at class meetings on Saturdays or at times other than those regularly scheduled may be required.

## Academic probation and suspension

All degree-seeking students at RIT are expected to meet or exceed certain minimal academic standards. Failure to do so will result in being placed on academic probation or suspension. All such actions are taken by the college at the end of each term; once the action is made, it may be changed or revoked only by a dean. The RIT educational policy governing probation and suspension is specific (see the RIT Institute Policies and Procedures, Section D5.0). Two grade-point averages (GPAs) are calculated and used in probation/suspension decisions:

University Term GPA: grade average of all courses taken in a term that are applicable to a student's degree requirements.

University Cumulative GPA: grade average of all course work taken as either an undergraduate or graduate student at RIT.

## Academic probation

A student will be placed on probation if his or her term or cumulative grade-point average falls below $2.0^{*}$ (a C average). A student placed on probation is expected to sufficiently raise their GPA in the succeeding term so that the probationary status can be removed

## Academic suspension

- Any student who is on probation, as given above, and who is not removed from probation in the two succeeding terms (including summer session) in which credit is earned will be suspended from RIT for a period of one calendar year.
- Any student who has been placed on probation after having been removed from probation and whose cumulative gradepoint average is below $2.0^{*}$ will be suspended. Any student who has been placed on probation after having been removed from probation and whose cumulative grade-point average is $2.0^{*}$ or above will be granted one term to be removed from probation before suspension.
- Any student whose term grade-point average falls below 1.00 will be suspended for a period of one calendar year.
- Students who have been readmitted to their original program after having been suspended and then qualify for probation will be suspended. A suspended student cannot enroll in any credit or non-credit course at the university while on suspension.


## Health policies

## New York state and RIT immunization requirements

New York State public health law requires that all students enrolled for more than 6 credit hours in a term and born after January 1, 1957, must provide proof of immunization against measles, mumps and rubella and to sign a meningitis awareness form. The law applies to all full time and part time students including RIT employees. Immunization requirements include:

- Two MMR vaccinations at least one month apart and after the first birthday.
- A Meningitis Awareness Form must be signed by all students regardless of age.
- RIT requires students age 21 and under to be immunized against meningitis.
- Failure to comply with the New York State immunization law may lead to exclusion from classes and the RIT campus, and a \$200 fine.

Note: An email notification is sent to students' RIT email account with directions to complete the necessary health information through the Student Health Center portal. Please note that the immunization form is to be completed by the student online and then downloaded and taken to the student's health provider or school official for verification. The form must then be forwarded to the Student Health Center for approval (fax: 585-475-7530).

## Health/Medical records

Medical records are confidential and separate from educational records. Information is not released without the written consent of the student. Exceptions to this rule are made only when required by the public health laws of New York State, a court-ordered subpoena or in a life-threatening situation.

## Student Conduct Policies and Procedures

## Expectations for community behavior

- RIT is a learning community where time, energy, and resources are directed toward learning and personal development.
- Members of the community live and work together to foster their own learning as well as the learning of others, both in and outside the classroom.
- Within the community, members hold themselves and each other to high standards of personal integrity and responsibility.
- Individual members continually strive to exceed their personal best in academic performance and the development of interpersonal and professional skills and attributes.
- As a member of the community, each person continually conducts himself/herself in a manner that reflects thoughtful, civil, sober, and considerate behavior.
- As a member of the community, each person respects the dignity of all people and acts to protect and safeguard the well-being and property of others.
- As a member of the community, each individual contributes to the continued advancement and support of the community, personally challenging behavior that is contrary to the welfare of others.
- Members of the community create a campus culture that values diversity and discourages bigotry while striving to learn from individual differences.


## RIT honor code

Integrity and strong moral character are valued and expected within and outside of the RIT community. Members of the campus community, including students, trustees, faculty, staff, and administrators, have adopted an honor code to:

- demonstrate civility, respect, decency, and sensitivity toward our fellow RIT community members, recognizing that all individuals at this university are part of the larger RIT family and as such are entitled to support and respect.
- conduct ourselves with the highest standards of moral and ethical behavior. Such behavior includes taking responsibility for our own personal choices, decisions, and academic and professional work.
- affirm through the daily demonstration of these ideals that RIT is a university devoted to the pursuit of knowledge and a free exchange of ideas in an open and respectful climate.


## Summary of conduct policies

The following broad areas of conduct for students, although not all-inclusive, indicate, in general terms, the standards of student conduct that are important to the educational mission of RIT and the quality of campus life. The RIT conduct code and disciplinary processes are printed in their entirety in The Student Rights and Responsibilities Handbook. All policies and procedures relating to student and organization conduct are printed in this document and should be reviewed by all RIT students.

Human rights and dignity: Students are expected to follow RIT's policy prohibiting discrimination and harassment. All students should practice high regard for the rights and dignity of other people, preventing all types of discrimination. RIT attempts to resolve conflicts between individuals and groups with differing backgrounds and views through discussion and clarification of values and attitudes. Students should not physically or verbally abuse any person on RIT premises or at RIT-sponsored or supervised events.

Computer use: Students are expected to follow RIT's code of conduct for computer and network use. A variety of computing resources are available at RIT, ranging from application-specific microcomputers to central multiuser systems. Computer abuse is expensive and can have far-reaching consequences. Students should not intentionally disrupt the educational process through deletion of another's course assignment, dampen the creative process
through theft of intellectual property, violate an individual's privacy or institutional confidentiality or infringe on copyright.

Off-campus conduct: The conduct of RIT students off campus will be held to the same standards and policies as on campus. Any off-campus action that interferes with the completion of the educational mission of RIT or any member of the RIT community is subject to disciplinary action.

Academic honesty: Students are expected to follow RIT's policy on academic dishonesty. Students should not engage, or allow others to engage, in any form of academic dishonesty. These acts include, but are not limited to, plagiarism in any form or using information and materials not authorized by the instructor during an examination. Dishonesty also includes furnishing false information to RIT and forgery. Alteration or use of RIT documents or instruments of identification with intent to defraud are prohibited.

Disruption of RIT activities: Students should refrain from unreasonable disruption or obstruction of teaching, research, administration, organizational activities, disciplinary proceedings, or any other RIT activities.

Parking and traffic: All drivers on campus should follow RIT's parking and traffic regulations. New York state motor vehicle and traffic laws are in effect on campus. RIT may enact supplemental parking and traffic regulations for RIT-owned properties. The regulations are intended to promote order and ease of movement of pedestrians and motorists and to safeguard people and property.

Regard for property: Students are expected to exercise appropriate care for RIT property and the property of others. Theft, damage, or unauthorized possession of either RIT property or the property of a member of the academic community on RIT premises is subject to disciplinary action.

Library materials and laboratory facilities are of utmost importance to the completion of RIT's academic mission. Consequently, students should show considerable care in the handling of these items.

RIT officials: Students must furnish proof of enrollment through a valid student identification card upon request from RIT officials. Students should comply with the directions or instructions of RIT officials acting in performance of their duties.

Safety: Safety is an issue all students should care about deep-ly-not only the safety of themselves, but the safety of others. Students should behave sensibly to protect the welfare of others and minimize hazardous situations. Safety is of critical importance at all places on the campus, but particularly important in the apartments and residence halls, where the carelessness of one individual can affect the lives of hundreds. Willful violations of safety, such as causing false fire alarms, will result in immediate disciplinary action according to judicial procedures.

Sexual harassment/misconduct: RIT acknowledges that an individual student's sexual attitudes and values are a matter of choice. Nonetheless, responsible sexual behaviors must take into account the dignity, privacy, and rights of others. RIT's policy prohibiting discrimination and harassment and the RIT sexual assault policy should be observed at all times. Moreover, no individual should be subjected to exploitative actions.

Study environment: Students need a campus environment that is conducive to studying, especially in facilities designed primarily for
study. Individuals should respect the rights of others to study and should be understanding of different study habits.

Student-sponsored events: In the planning and scheduling of events, students should consider the safety and overall welfare of members of the academic community. Students should not knowingly conduct events that might inhibit the completion of the academic mission of the university or any member thereof.

## Student alcohol and drug policy

RIT is a learning community. The best environment for learning occurs when the community promotes and supports healthy and responsible behavior among its members. Students ultimately are responsible for their behavior and must assume full consequences for it. This includes the responsible and legal use of alcohol. The goal of RIT's student alcohol and drug policy is to promote individual responsibility and advance the goals and expectations stated in the previous section, "Expectations for Community Behavior."

This policy applies to all student members of the RIT community and their guests. It also applies to all student activities on the RIT campus and to all RIT-sponsored events where students are present. Faculty, staff, and their guests are governed by a separate policy.

RIT students are subject to federal, state, and local laws regarding alcohol and drug use. Serious civil and criminal legal liabilities can result from possessing, using, serving, selling, or unlawfully manufacturing drugs/alcohol. RIT will not protect individuals or groups from law enforcement by legal authorities with respect to drugs and alcohol use or abuse.

Individuals or organizations who hold private parties or sponsor private events where alcohol is served or consumed assume full personal responsibility and liability for compliance with the law and conduct related to the consumption of alcohol by attendees, participants, and guests. Officers of organizations that sponsor parties or events, or other hosts or people whose apartment, residence hall room, or office is the site where drinking occurs, will be held responsible for complying with the provisions of this policy.

## Provisions governing the possession and use of alcohol

- Alcohol may not be illegally used, possessed, manufactured, or exchanged on RIT-owned or -operated property or at RIT-sponsored events. No alcohol may be sold or exchanged for money on RIT property or at RIT-sponsored events without a New York state liquor license. The RITskeller is a licensed premise and is permitted to serve alcohol to individuals who are at least 21 years of age.
- The consumption or possession of alcoholic beverages is prohibited in all RIT residence halls (including Greek houses and house basements), regardless of age or circumstances.
- The consumption or possession of alcoholic beverages is permitted in RIT-operated apartments only by those residents of the apartment who are at least 21 years of age. Alcohol possession and consumption is not permitted in common or public areas within apartment complexes. Parties in apartments are to be limited to invited guests of a number that is defined by building occupancy
codes and can be accommodated without disturbing the community. These numbers may be found in the RIT apartment contract for a particular facility or obtained from apartment management.
- Guests at all privately sponsored parties where alcohol is to be served must be invited by direct personal invitation only. General "come all" posters, flyers, or mass electronic invitations will not be permitted for events designated as private parties. Only the RITskeller or an institutionally designated space can be used for a community-wide event where alcohol is to be served to students or student groups.
- Public Safety and other RIT officials have the right to terminate events and take appropriate action if they determine that it is probable that university policy and/or New York state law is being violated at any gathering on the RIT campus, in RIT-operated facilities, or at campus-sponsored functions.
- Bulk containers of beer (kegs or beer balls) are prohibited in all RIT-operated apartments. Such containers are permitted only in institutionally designated party areas where alcohol can be served for parties or special events, or in areas that are covered by a New York state liquor license.
- Open containers of alcohol are not permitted outdoors on the RIT campus without prior authorization. Authorization will be given in situations where alcohol is to be served in conjunction with an officially sponsored RIT student event. The authorization process for use of alcohol in these situations is coordinated through the Center for Campus Life in the Student Alumni Union. (See "Registration Procedures for Events Where Alcohol Is Served/Consumed on the RIT Campus" for specifics.)
- All student events and parties where alcohol is served, possessed, or consumed must abide by all existing university policies and procedures regarding the use, possession, sale, and distribution of alcohol, and may be restricted further by existing municipal and state ordinances. Prior to planning any activity or event where alcohol is to be served, individuals/groups should consult the Center for Campus Life, located in the Student Alumni Union, regarding the provisions and restrictions governing alcohol use at RIT activities and events.
- Student-sponsored parties/events where alcohol is served may be held in designated areas on the RIT campus. (Private parties held in RIT-operated apartments are covered in item No. 3.) Alcoholic beverages can be served at these student-sponsored parties and events on campus only by RIT Food Service or by an approved third-party vendor. Registration and authorization for such events can be obtained through the Center for Campus Life. The center coordinates the procedures for securing authorization from the State Liquor Board to sell/serve alcohol; this process takes a minimum of 10 business days.
- Behavior that is dangerous to oneself or others and/or disturbs the learning and/or living environment in RIT-operated facilities or at any RIT-sponsored activity/event is strictly prohibited. Such behavior will result in Public Safety intervention and campus judicial action.
- Serving, selling, or providing alcohol to those under 21 years of age or possession of alcohol by someone under 21 years of age is prohibited by both New York state law and RIT regulations. Any person who exhibits behavior that suggests excessive drinking has occurred cannot be served or permitted continued access to
alcohol. Individuals who serve such individuals alcoholic beverages will face Public Safety intervention, campus judicial action, and possible civil and criminal prosecution.
- Use of false or altered identification or other misrepresentation of one's age in order to possess or consume alcohol is explicitly forbidden.
- In order to avoid the dangerous and possibly fatal effects of alcohol poisoning, an individual who has "passed out" or shows other signs of serious effects from alcohol consumption should immediately be brought to the attention of Public Safety, RIT Ambulance, the Residence Life staff, or some other person able to assist or get assistance. Seeking such help is encouraged by RIT.
- Students violating the RIT Student Alcohol and Drug Policy will be subject to the campus judicial process published in the Student Rights and Responsibilities Handbook, as well as the judicial actions and sanctions described in this policy. All guests or visitors to the campus also must comply with the provisions of this policy or risk removal from the campus and possible future restriction from campus property.


## Sanctions regarding violations of RIT student alcohol policy

If a student or student organization violates the RIT alcohol policy, the following judicial outcomes should be anticipated:
$\left.\begin{array}{ll}\text { BEHAVIOR } & \text { CONSEQUENCES } \\ \hline \begin{array}{l}\text { Possession of alcohol } \\ \text { - In residence halls and Greek houses } \\ \text { regardless of age } \\ \text { - Under 21 years of age } \\ \text { - Possession of bulk alcohol }\end{array} & \begin{array}{l}\text { First offense: Disciplinary probation } \\ \text { Second offense: Deferred disciplinary } \\ \text { suspension/deferred removal from } \\ \text { housing and possible referral for a } \\ \text { chemical dependency screening } \\ \text { Third offense: Disciplinary suspension or } \\ \text { removal from housing, with appropriate } \\ \text { conditions }\end{array} \\ \hline \text { Behavior that suggests the excessive } \\ \text { consumption of alcohol } & \begin{array}{l}\text { First offense: Probable deferred } \\ \text { disciplinary suspension/deferred removal } \\ \text { from housing; possible referral to }\end{array} \\ \text { alternative educational sanction program } \\ \text { or a chemical dependency screening } \\ \text { Second offense: Disciplinary suspension } \\ \text { and/or removal from housing, with } \\ \text { appropriate conditions }\end{array}\right]$

These guidelines are examples of responses that will most likely result when there have been violations of the RIT alcohol policy. Each incident is handled individually. The prior judicial background of the student(s) involved and the impact of the incident on the student and the RIT community are considered when decisions are rendered. In some cases, even with first offenses, the impact of an incident may call for a more serious response. A sanction of deferred suspension or higher will require the dependent student to notify his or her parents or legal guardians about the decision and have the parents/legal guardians contact the Center for Student Conduct and Conflict Management Services for verification.

## Registration procedures for student-sponsored events where alcohol is served/consumed on the RIT campus

The following procedures do not apply to private parties held in RIT-operated apartments.

- Student-sponsored events where alcoholic beverages are to be served require that an event registration form be initiated and approved. This process takes a minimum of 10 business days prior to the event. Such events can be arranged on a space-available basis. Inquiries regarding the availability of space/rooms for events where alcohol is permitted can be obtained at the Center for Campus Life.
- Alcohol can be provided, possessed, or consumed by students only in institutionally designated spaces on the RIT campus. RIT Dining Services or an approved third-party vendor must dispense all alcohol at these parties/events. Arrangements for private parties where alcoholic beverages are served can be made through the Center for Campus Life. Only individuals who are at least 21 years of age may register an event where alcoholic beverages are to be served.
- Public Safety will determine the security staffing levels for each event where alcoholic beverages are to be served. The required number of officers must be present for the duration of the event. The costs of these officers will be billed directly to the sponsoring/ host organization. Public Safety will discuss requirements for security with the sponsoring individuals or groups prior to the event.
- The guests at all privately sponsored parties where alcoholic beverages are to be served must be invited by direct personal invitation only. General "come all" posters, flyers, or mass electronic invitations will not be permitted for events designated as private parties. Only the RITskeller or an institutionally designated space can be used for a community-wide event where alcoholic beverages are to be served to students or student groups.
- When alcoholic beverages are served at student-sponsored parties/events, nonalcoholic beverages and food also must be served. Guidelines may be obtained at the Center for Campus Life.
- Individuals/officers of the student organization sponsoring the event will be held responsible for the behavior of guests. An officer of the organization must be present for the duration of the event. The organization officer is also responsible for assuring that only individuals who are at least 21 years of age are consuming alcohol during the party/event.
- Student organizers of a party/event should ensure that appropriate transportation is available for individuals who have been consuming alcohol during the party. They should ensure that individuals who have been drinking do not drive while intoxicated.


## Provisions governing the possession and use of illegal drugs

- RIT explicitly prohibits the use, possession, sale, manufacture, or trafficking of illegal drugs on RIT-owned or -operated property, or at RIT-sponsored events.
- In order to avoid the dangerous and possibly fatal effects of drug overdose, an individual who has "passed out" or shows other signs of serious effects from drug use should immediately be
brought to the attention of Public Safety, RIT Ambulance, the Residence Life staff, or some other person able to assist or to get assistance. Seeking such help is encouraged by RIT.
- Students violating the RIT student alcohol and drug policy will be subject to the campus judicial process, published in the Student Rights and Responsibilities Handbook, and the judicial actions and sanctions described in this policy. RIT students will be held responsible for the behavior of their guests. All guests or visitors to the campus also must comply with the provisions of this policy or risk removal from the campus and possible future restriction from campus property.


## Sanctions Regarding Violations of RIT Student Drug Policy

If a student or student organization violates the RIT drug policy, the following judicial outcomes should be anticipated:

| BEHAVIOR | CONSEQUENCES |
| :--- | :--- |
| Use/possession of illegal drugs | First Offense: Deferred disciplinary <br> suspension; deferred removal or removal <br> from RIT housing; possible referral for <br> a chemical dependency screening and <br> alternative education program <br> Second Offense: Disciplinary suspension <br> or dismissal; drug treatment while on <br> suspension from the university |
| Selling or trafficking of illegal drugs | Disciplinary suspension, dismissal <br> or expulsion; referral to local law <br> enforcement agencies |

These guidelines are examples of responses that will most likely result when there have been violations of the RIT drug policy. Each incident is handled individually. The prior judicial background of the student(s) involved and the impact of the incident on the student and the RIT community are considered when decisions are rendered. In some cases, even though it may be a first offense, the impact of an incident may call for a more serious response. A sanction of deferred suspension or higher will require the dependent student to notify his/ her parents or legal guardians about the decision and have the parents or legal guardians contact the Center for Student Conduct and Conflict Management Services for verification.

## RIT process for student misconduct

RIT has established well-defined processes for handling student misconduct cases while protecting the civil and academic rights of all members of the RIT community. Student conduct and appeals processes are administered through the Center for Student Conduct and Conflict Management Services. Sanctions imposed upon those found responsible for violating the RIT conduct code may range from a written warning to restitution to disciplinary suspension, dismissal, and expulsion from the university. Students suspended from RIT may not enroll in any course until such time as the suspension is waived by the Center for Student Conduct and Conflict Management Services.

## RIT Conflict Management Services

Students involved in a dispute may utilize RIT Conflict Management Services. Mediation is a process by which students, organizations, faculty, or staff voluntarily meet with trained mediators to discuss ways in which problems or differences can be resolved.

## Consumer Information

## Student retention

RIT's graduation rate for freshmen seeking bachelor's degrees is 66 percent. Additionally, 88 percent of first-time, full-time freshmen register for their second year (source: IPEDS 2010 Enrollment and Graduation Rate Surveys).

## Public Safety

The Public Safety Department is open 24-hours-a-day and is located in Grace Watson Hall. The department encourages the RIT community to take responsibility for their safety by staying informed of these services and reporting suspicious activity. Although each individual is ultimately responsible for their own personal safety, learning and practicing basic safety precautions can enhance one's well being. The department provides the following services:

Blue light call boxes: Identified by a blue light and located across campus these call boxes provide a direct line to Public Safety 24 -hours-a-day. The location of the call is automatically recorded at the Public Safety Communications Center, making it possible for hard-of-hearing individuals to also use the call boxes. The call boxes may be used to request an escort, assist a motorist, report suspicious individuals or activity, or request access to a locked building or room.

Mobile escort service: Available to anyone, seven-days-a-week, on a timed schedule between 11 p.m. and 3 a.m.

Lost and found: All items lost and found on campus are stored by the Public Safety Department. To report an item lost, please visit rit.edu/publicsafety/safety/lostitems.html to submit information related to lost property (requires RIT computer account).

Emergency notification: If a family member needs to make an emergency notification to a student, he or she should contact Public Safety at (585) 475-2853 or TEXT at (585) 205-8333. Public safety will locate the student and relay the message.

Awareness programs: Public safety hosts a variety of prevention awareness programs and services on various topics including crime prevention, personal safety, and alcohol awareness. A monthly newsletter, RIT Ready, is distributed to students, faculty, and staff to bolster emergency preparedness on campus.

Annual Safety and Security Report: Public safety's security report is available online and offers a description of security practices and information on reported occurrences of crime. Access the report at rit.edu/ZnhGf.

Confidential tip line: This service is to obtain information that is unattainable through conventional methods and to alert public safety to endangering behavior that might go otherwise unreported. Individuals who utilize the tip line are encouraged to leave their names and contact information; however, they will not be contacted. An online form is available at rit.edu/publicsafety/forms/tipline (requires RIT computer account).

Crime statistics: The Advisory Committee on Public Safety will provide, upon request, all campus crime statistics as reported to the Department of Education. RIT crime statistics can be found at the Department of Education website (ope.ed.gov/security) or by contacting the Public Safety Department. A hard copy of reported crime statistics required to be ascertained under Title 20 of the U. S. Code Section 1092(f) will be mailed to you within 10 days of the request.

Sexual assault information and CARES: Confidential counseling services are available to anyone in need by calling (585) 546-2777 (voice/TTY). RIT's Campus Advocacy Response and Support (CARES) is located on campus and provides confidential and crisis intervention and support services for relationship concerns. Contact (585) 295-3533 at any time for assistance.

Emergency Preparedness: RIT regularly communicates, prepares, and practices emergency management with public safety personnel and campus managers from various departments. If necessary, we will provide updated information through broadcast email, mass notification system (RIT ALERT), voicemail, ALERTUS beacons, and the university's website at rit.edu.

## Outcomes Rate

In compliance with the federal Student-Right-to-Know and Campus Security Act, and regulations of the U.S. Department of Education, RIT provides the following information to current and prospective students:

- Of the cohort of full-time degree-seeking undergraduate students who first enrolled at RIT in fall 2009, 70.0 percent had earned their bachelor's degrees as of August 2015. While these beginning and end dates meet the act's requirements for determining a graduation rate ( 150 percent of the normal length of full-time study [4 years]), it is important to recognize that nearly twothirds of entering freshmen enroll in programs with mandatory cooperative education requirements. These requirements range from three to 14 months depending upon the academic program, thus extending the reported program length to five years.


## Administration and Trustees

## Officers

William W. Destler, BS, Ph.D., President

Gerard Buckley, BS, MSW, Ed.D.,
President, National Technical Institute for the Deaf; Vice President and Dean, RIT

Lisa Cauda, BS, MA, Vice President, Development and Alumni Relations

Keith Jenkins, BA, MA, Ph.D., Interim Vice President and
Associate Provost for Diversity and Inclusion

Jeremy Haefner, BS, MS, Ph.D., Provost and Senior Vice President for Academic Affairs

Sandra S. Johnson, Ed.D., Senior Vice President for Student Affairs

Katherine J. Mayberry, BA, MA, Ph.D., Vice President for Strategic Planning and Special Initiatives

James G. Miller, BS, MS, Ph.D., Senior Vice President, Enrollment Management and Career Services

Daniel Ornt, MD, FACP,
Vice President, Institute of Health Sciences and Technology; Dean, College of Health Sciences and Technology

Ryne Raffaelle, BS, MS, Ph.D., Vice President for Research and Associate Provost for Outreach Programs

Deborah M. Stendardi, BA, MPA, Vice President, Government and Community Relations

James H. Watters, BS, MA, Ph.D., Senior Vice President, Finance and Administration

## Deans

Yousef AI-Assaf, President, RIT Dubai

Gerard Buckley, BS, MSW, Ed.D., President, National Technical Institute for the Deaf; Vice President and Dean, RIT

Twyla Cummings, BS, MS, Ph.D., Graduate Education

Doreen Edwards, BS, Ph.D., Kate
Gleason College of Engineering
Anne Haake, BS, Ph.D., Dean, B. Thomas Golisano College of Computing and Information Sciences

Sharon Hart, Ph.D., President, RIT Kosovo

Donald W. Hudspeth, BC, MS, President/Dean, RIT Croatia

Lorraine Justice, BFA, MDes, Ph.D., College of Imaging Arts and Sciences

Sophia Maggelakis, BS, MS, Ph.D., College of Science
S. Manian Ramkumar, MS, Ph.D., Interim Dean, College of Applied Science and Technology

Jacqueline Reynolds Mozrall, BS, MS, Ph.D., Dean, Saunders College of Business

Daniel Ornt, MD, FACP, College of Health Sciences and Technology

James Winebrake, BS, MS, Ph.D., College of Liberal Arts

## Office of the President

Karen Barrows, BS, MBA,
Secretary of the Institute and Chief of Staff

Edith Cardinal, BS, MS, Senior Sustainability Adviser

Barry Culhane, BA, Ed.D., Executive Assistant to the President

Robert Finnerty, BA, MS, Chief
Communications Officer
Keith Jenkins, BA, MA, Ph.D.,
Interim Vice President and Associate Provost for Diversity and Inclusion

Lee Twyman, BA, MA, Ombudsperson

## Division of Academic Affairs

Jeremy Haefner, BS, MS, Ph.D., Provost and Senior Vice President for Academic Affairs

Keith Jenkins, BA, MA, Ph.D., Interim Vice President and Associate Provost for Diversity and Inclusion

Christine M. Licata, BS, MS, Ed.S., Ed.D., Senior Associate Provost

Chandra McKenzie, BS, MS, MLS, Assistant Provost for Academic Affairs

James Myers, BS, MS, Ph.D., Associate Provost of International Education and Global Programs

Nabil Nasr, BS, MS, M.Eng., Ph.D., Associate Provost; Director, CIMS; Director, Golisano Institute of Sustainability
J. Fernando Naveda, BS, Ph.D., Director of Summer Session

Susan Provenzano, BS, Assistant Vice President for Academic Affairs

Lynn Wild, BS, M.Ed., Ph.D., Associate Provost for Faculty Success

## Trustees

Robert W. August, Managing
Partner, Laser Wash Group, LLC
Eric J. Bieber, President and CEO, Rochester Regional Health System

Brooks H. Bower, '74, Chairman and Chief Executive Officer, Papercone Corp. East

Andrew N. Brenneman, '88, Senior Account Executive, Sprint

Charles S. Brown Jr., '79, Retired Executive Director, Center for Excellence in Math and Science, Rochester Area Colleges
William A. Buckingham, '64, Chair Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Executive Vice President, M\&T Bank

David J. Burns, Principal and Founder, Global Business Advisory Services, LLC

Ann L. Burr, Chair, Frontier Communications of Rochester; President, New Product Trials and Integration, Frontier Communications Corp.

Essie L. Calhoun-McDavid, Retired Chief Diversity Officer and Director, Community Affairs Vice President, Eastman Kodak Company

Richard M. Dastin, Corporate Vice President, Chief Development Engineer, Xerox Services

William W. Destler, Ph.D.,
President, Rochester Institute of Technology

Robert A. Dobies, Retired Vice President, ExxonMobil Chemical Company

Nancy L. Fein, '76, Vice Chair, Board of Trustees, Rochester Institute of Technology; Group Vice President, Toyota Customer Service, Toyota Motor Sales, USA

Marianne Goff, Women's Council Representative

Arthur A. Gosnell, Chairman and Chief Executive Officer, Stonehurst Capital LLC

Brian H. Hall, '78, Chair, Board of Trustees, Rochester Institute of Technology; Retired Vice Chairman, The Thomson Corporation

Jeffrey K. Harris, '75, Retired Corporate Vice President, Situational Awareness, Lockheed Martin Corp.
Frank S. Hermance, '73, '71, Chairman and Chief Executive Officer, AMETEK Inc.

Susan R. Holliday, '85, President and Publisher, Rochester Business Journal

Jay T. Holmes, Retired Executive Vice President and Chief Administrative Officer, Bausch \& Lomb, Inc.

Thomas F. Judson Jr., Chairman and Chief Executive Officer, The Pike Company

Richard A. Kaplan, Chief Executive Officer, Torvec Inc.

Joyce B. Klemmer, '78, Partner, Smith, Gambrell and Russell LLP

Eric J. Kuckhoff, MS'84, Chemistry, Vice President, Cargill, Inc.; Alumni Association Representative

Christopher Lehfeldt, DDS, NTID NAG Representative
Austin W. McChord, '09, Chief Executive Officer, Datto, Inc. Roosevelt Mercer Jr., Vice President, Government, Commercial and International Initiatives, Exelis, Inc.

Roosevelt Mercer Jr., Retired Vice President, Government, Commercial and International Initiatives, Exelis, Inc.

Robert D. Moore Jr., '91, Chief Executive Officer, EagleDream Technologies

Henry D. Navas, '74, '77
Brian P. O'Shaughnessy, '81, '84, Attorney at Law, RatnerPrestia

Sandra A. Parker, Retired Chief Executive Officer, Rochester Business Alliance, Inc.

Wolfgang Pfizenmaier, Retired Member of the Management Board, Heidelberger Druckmaschinen AG

Gerard Q. Pierce, '77, Senior Vice President for Human Resources, Wegmans Food Markets, Inc.

Susan M. Puglia, Vice President, University Programs and Vice Chair, IBM Academy of Technology, IBM Corporation

Robert W. Rice, '94, '97, President and Managing Partner, BayFirst Solutions, LLC

Ronald S. Ricotta, '79 B.S., CEO, Century Mold Company, Inc.
Susan J. Riley, '81, Chief Financial Officer, Vestis Retail Group, LLC

Richard E. Sands, Ph.D., Chairman, Constellation Brands, Inc.

Janet F. Sansone, Retired Chief Management Officer, The United States Government Printing Office
Stephen L. Schultz, '89, Chief Technology Officer, CryptoLabs

Frank S. Sklarsky, '78, Executive Vice President and Chief Financial Officer, PPG Industries

Kevin J. Surace, '85, Chief Executive Officer and President, Appvance Inc.

Sharon Ting, President, Ting and Associates, Inc.

Harry P. Trueheart III, Chairman Emeritus, Nixon Peabody LLP

Donald J. Truesdale, '87, Vice Chair, Board of Trustees, Rochester Institute of Technology; Partner, Goldman Sachs and Company

Kim E. VanGelder, '86, Vice President and Chief Information Officer, Eastman Kodak Company

## Judy B. von Bucher

Chester N. Watson, '74, Retired
General Auditor, General
Motors Corporation
Christine B. Whitman, Chair-
Elect, Board of Trustees, Rochester Institute of Technology; Chairman and Chief Executive Officer, Complemar Partners, Inc.

Ronald L. Zarrella, Chairman Emeritus, Bausch \& Lomb, Inc.

## Honorary Board Members

Catherine B. Carlson
Lella Vignelli, Chief Executive Officer, Vignelli Associates, President, Vignelli Designs

## Emeriti Faculty

Sam Abrams, Professor, College of Liberal Arts

Jerry Adduci, Professor, College of Science

Patricia Albanese, Librarian Emeritus, Wallace Center

Ronald F. Amberger, Professor, College of Applied Science and Technology

Peter Anderson, Professor, B. Thomas Golisano College of Computing and Information Sciences

Louis Andolino, Professor, College of Liberal Arts

Charles Arnold Jr., Professor, College of Imaging Arts and Sciences

Bekir Arpag, Professor, College of Imaging Arts and Sciences

Donald Baker, Professor, College of Applied Science and Technology
Rodger W. Baker, Professor, College of Applied Science and Technology
Thomas Barker, Professor, Kate Gleason College of Engineering

Mary Ann Begland, Associate Professor, College of Imaging Arts and Sciences

Donald Beil, Professor, National Technical Institute for the Deaf

Lawrence Belle, Professor, College of Continuing Education

Art Berman, Professor, College of Liberal Arts

William Birkett, Professor, College of Imaging Arts and Sciences

Kener Bond, Professor, College of Imaging Arts and Sciences

Philip Bornarth, Professor, College of Imaging Arts and Sciences

Edward Brabant, Professor, College of Imaging Arts and Sciences

George Brown, Professor, Kate Gleason College of Engineering

Joseph E. Brown, Professor,
College of Imaging Arts and Sciences

Robert Brown, Professor, College of Liberal Arts

Richard G. Budynas, Professor,
Kate Gleason College of Engineering

Edward Cain, Professor, College of Science

James I. Campbell, Professor, College of Liberal Arts

Walter A. Campbell, Professor, College of Imaging Arts and Sciences

Gunther Cartwright, Associate Professor, College of Imaging Arts and Sciences

Richard Chu, Professor, College of Liberal Arts

Robert Clark, Dean and Professor, College of Science

Douglas Cleminshaw, Associate Professor, College of Imaging Arts and Sciences

Douglas A. Coffey, Professor, College of Liberal Arts

Sarah Collins, Professor, College of Liberal Arts

John Compton, Professor, College of Imaging Arts and Sciences
Norman Coombs, Professor, College of Liberal Arts

Anne C. Coon, Professor, College of Liberal Arts

Lawrence A. Coon, Professor, College of Applied Science and Technology
Virginia Costenbader, Professor, College of Liberal Arts
W. Frederick Craig, Professor, College of Imaging Arts and Sciences

Elizabeth Croft, Associate Professor, College of Liberal Arts

Neil Croom, Professor, College of Imaging Arts and Sciences

David Crystal, Professor, College of Science

Ira Current, Professor, College of Imaging Arts and Sciences

Margaret D'Ambruso, Professor, College of Science

William J. Daniels, Dean and Professor, College of Liberal Arts

Robert Davila, Vice President, National Technical Institute for the Deaf

James DeCaro, Dean and Professor, National Technical Institute for the Deaf

Joseph DeLorenzo, Professor, Kate Gleason College of Engineering
William J. DeRitter, Professor, College of Liberal Arts

Charles DeRoller, Associate Professor, College of Applied Science and Technology

Robert M. Desmond, Professor, Kate Gleason College of Engineering

David Dickinson, Professor, College of Imaging Arts and Sciences

Thomas Dingman, Professor, College of Applied Science and Technology

Constantino Dumangane, Associate Professor, College of Liberal Arts

Robert Eastman, Professor, College of Applied Science and Technology

Judy Egelston-Dodd, Professor, National Technical Institute for the Deaf
F. Kingsley Elder, Professor, College of Science

Robert Ellson, Professor, Kate Gleason College of Engineering

Louis Eltscher, Associate
Professor, College of Liberal Arts

Lothar Englemann, Professor, College of Imaging Arts and Sciences

Joseph Fitzpatrick, Professor, College of Liberal Arts

James Fleming, Professor, College of Liberal Arts

James D. Forman, Professor, College of Applied Science and Technology

Hugh Fox, Professor, College of Imaging Arts and Sciences

Eugene Fram, Professor, E. Philip Saunders College of Business

Clifton Frazier, Professor, College of Imaging Arts and Sciences

Jon Freckleton, Associate
Professor, Kate Gleason College of Engineering
G. Thomas Frederick, Professor, College of Science
Robert Frisina, Professor, National Technical Institute for the Deaf

Earl Fuller, Professor, Physical Education

Louis Gennaro, Professor, College of Applied Science and Technology

Dale F. Gibson, Associate
Professor, E. Philip Saunders
College of Business
Peter Giopulos, Professor, College of Imaging Arts and Sciences

James Glasenapp, Professor, College of Science

Dane Gordon, Professor, College of Liberal Arts

Robert Hacker, Professor, College of Imaging Arts and Sciences

Paul A. Haefner, Professor, College of Science

Charles W. Haines, Professor, Kate Gleason College of Engineering/ College of Science

William J. Hayles, Professor, College of Science

Robert Hefner, Professor, Kate Gleason College of Engineering

Richard Hetnarski, Professor, Kate Gleason College of Engineering

Charles Hewett, Professor, College of Science

Warren L. Hickman, Professor, College of Liberal Arts

Rebecca Hill, Professor, College of Science

Ronald Hilton, Professor, College of Continuing Education

Barbara Hodik, Professor, College
of Imaging Arts and Sciences
Edwin Hoefer, Professor, College of Science

Eugene G. Hoff, Assistant
Professor, E. Philip Saunders
College of Business
Jack Hollingsworth, Professor, College of Science

Walter G. Horne, Professor, College of Imaging Arts and Sciences

John Hromi, Professor, Kate Gleason College of Engineering

Morton Isaacs, Professor, College of Liberal Arts

Joanne M. Jacobs, Associate Professor, College of Liberal Arts
Balwant Karlekar, Professor, Kate Gleason College of Engineering

Nabil Kaylani, Professor, College of Liberal Arts

Robert Kayser, Associate
Professor, College of Imaging Arts and Sciences

Weston Kemp, Professor, College of Imaging Arts and Sciences

Richard Kenyon, Dean, Kate
Gleason College of Engineering
Robert Keogh, Professor, College of Imaging Arts and Sciences

Robert Kerr, Professor, College of Imaging Arts and Sciences

William Keyser, Professor, College of Imaging Arts and Sciences

Andrew Kitchen, Professor,
B. Thomas Golisano College of Computing and Information Sciences

Michael Kleper, Professor, College
of Imaging Arts and Sciences
M. Joseph Klingensmith, Professor, College of Science

Russell Kraus, Professor, College of Imaging Arts and Sciences

Richard Lane, Professor, Kate Gleason College of Engineering

William C. Larsen, Professor, College of Applied Science and Technology

Howard LeVant, Professor, College of Imaging Arts and Sciences

Harry Lang, Professor, National
Technical Institute for the Deaf
Richard D. Lunt, Professor, College of Liberal Arts

Douglas Lyttle, Professor, College of Imaging Arts and Sciences
Swaminathan Madhu, Professor,
Kate Gleason College of
Engineering
Lakshmi Mani, Professor, College
of Liberal Arts
Douglas M. Marshall, Associate Professor, Kate Gleason College of Engineering

Edward Maruggi, Professor, National Technical Institute for the Deaf

Craig McArt, Professor, College of Imaging Arts and Sciences

Walter McCanna, Dean and Professor, E. Philip Saunders College of Business

Robert McGrath, Professor, College of Applied Science and Technology

Stanley D. McKenzie, Provost; Professor, College of Liberal Arts

Bonnie Meath-Lang, Professor, National Technical Institute for the Deaf

Paul Miller, President
Robert Morgan, Professor,
College of Imaging Arts and Sciences

Terence Morrill, Professor, College of Science

Jean-Guy Naud, Professor, National Technical Institute for the Deaf

John Neeman, Professor, College of Science

Ken Nelson, Professor, College of Liberal Arts

Chris Nilsen, Professor, Kate Gleason College of Engineering

Joe Noga, Professor, College of Imaging Arts and Sciences

Elizabeth O'Brien, Professor, National Technical Institute for the Deaf

Thomas O'Brien, Professor, College of Liberal Arts

David Olsson, Professor, College of Applied Science and Technology

Elaine O'Neil, Professor, College of Imaging Arts and Sciences

Richard Orr, Professor, College of Science

Sudhakar Paidy, Professor, Kate Gleason College of Engineering

John Paliouras, Dean and Professor, College of Science

James Palmer, Professor, Kate Gleason College of Engineering

Robert Panara, Professor, National Technical Institute for the Deaf

David Perlman, Professor, Kate Gleason College of Engineering

Paul Petersen, Dean, Kate Gleason College of Engineering
Daniel Petrizzi, Professor, Eisenhower College

Mark Piterman, Professor, College of Applied Science and Technology

Harvey F. Pough, Professor, College of Science

Thomas Pray, Professor, E. Philip Saunders College of Business

Mark Price, Professor, College of Liberal Arts

Archie Provan, Professor, College of Imaging Arts and Sciences

Harry Rab, Associate Professor, College of Imaging Arts and Sciences

VV Raman, Professor, College of Science

Marilu Raman, Associate
Professor, National Technical
Institute for the Deaf
Margery Reading-Brown, Associate Professor, College of Liberal Arts

Werner Rebsamen, Professor, College of Imaging Arts and Sciences

Kenneth Reek, Professor, B. Thomas Golisano College of Computing and Information Sciences

Margaret Reek, Professor, B Thomas Golisano College of Computing and Information Sciences

Richard Reeve, Professor, Kate Gleason College of Engineering

Martin A. Rennalls, Professor, College of Imaging Arts and Sciences

James Rice, Professor, College of Imaging Arts and Sciences

Carol Richardson, Professor, College of Applied Science and Technology

Albert D. Rickmers, Professor, College of Imaging Arts and Sciences

David Robertson, Professor, College of Imaging Arts and Sciences

Frank Romano, Professor, College of Imaging Arts and Sciences
M. Richard Rose, President

Richard Rosett, Dean, College of Business

James Runyon, Professor, College of Science

Marvin Sachs, Associate Professor, National Technical Institute for the Deaf

Pasquale Saeva, Professor, College of Science

Edward Salem, Professor, Kate
Gleason College of Engineering
Nan Schaller, Professor, B.
Thomas Golisano College of Computing and Information Sciences

Emery Schneider, Professor, College of Imaging Arts and Sciences

Gerhard Schumann, Professor, College of Imaging Arts and Sciences

Anthony Sears, Professor, College of Imaging Arts and Sciences

Franz Seischab, Professor, College of Science

Earl Sexton, Professor, College of Science

John Shaw, Professor, College of Science

Jasper Shealy, Professor, Kate Gleason College of Engineering
Douglas Sigler, Professor, College of Imaging Arts and Sciences

Julius Silver, Professor, College of Imaging Arts and Sciences

Donald Smith, Associate
Professor, College of Imaging Arts and Sciences

Marshall Smith, Professor, College of Liberal Arts

Caroline Snyder, Professor, College of Liberal Arts

Robert Snyder, Professor, Kate Gleason College of Engineering

Miles Southworth, Professor, College of Imaging Arts and Sciences
G. Hollister Spencer, Professor, E. Philip Saunders College of Business

Egon Stark, Professor, College of Science

John Stratton, Professor, College of Applied Science and Technology

Leslie Stroebel, Professor, College of Imaging Arts and Sciences
E. Ross Stuckless, Professor, National Technical Institute for the Deaf

Mary Sullivan, Dean and
Professor, College of Liberal Arts
U.T. Summers, Associate Professor, College of Liberal Arts

Hector Sutherland, Professor, College of Imaging Arts and Science

Robert WW Taylor, Associate Professor, National Technical Institute for the Deaf

Elaine Thiesmeyer, Professor, College of Liberal Arts

Toby Thompson, Professor,
College of Imaging Arts and Sciences

Robert Thompkins, Assistant Professor, College of Imaging Arts and Sciences

John Trauger, Professor, College of Imaging Arts and Sciences

Arden L. Travis, Professor, E. Philip Saunders College of Business

James Troisi, Associate Professor, College of Liberal Arts

Kay Turner, Professor, College of Science

Philip Tyler, Associate Professor, E. Philip Saunders College of Business

Thomas Upson, Professor, College of Science

James VerHague, Professor,
College of Imaging Arts and Sciences

Alan Vogel, Professor, College of Imaging Arts and Sciences

Vladimir Vukanovic, Distinguished Professor, College of Science

Helen Wadsworth, Assistant Professor, College of Liberal Arts

Jerome Wagner, Professor, College of Science

Nancy Wanek, Professor, College of Science

Charles Warren, Professor, College of Liberal Arts

Joseph Watson, Professor, College of Imaging Arts and Sciences

John Waud, Professor, College of Science

Charles J. Weigand, Associate Professor, College of Imaging Arts and Sciences

Houghton Wetherald, Professor, College of Liberal Arts

Dorothy Widmer, Professor, Student Affairs

Theodore Wilcox, Professor, College of Science

Norman Williams, Professor, College of Imaging Arts and Sciences

Thomas Williams, Professor, E.
Philip Saunders College of Business
Eugene O. Wilson, Professor, E.
Philip Saunders College of Business
Fred Wilson, Professor, College of Liberal Arts

Paul Wilson, Professor, College of Science

Tom Wilson
Stanley H. Witmeyer, Professor, College of Imaging Arts and Sciences

James J. Worman, Professor, College of Science

Richard Zakia, Professor, College of Imaging Arts and Sciences

Hans Zandvoort, Professor, College of Liberal Arts

## Campus Directory

## Academic Support Center

rit.edu/asc
(585) 475-6682

RIT Athletics
ritathletics.com
Center for Campus Life
rit.edu/studentaffairs/campuslife/ 585.475.7058

Career Services and Cooperative Education rit.edu/oce
(585) 475-2301

College Activities Board
rit.edu/cab
(585) 475-2509 (voice/TTY)

College Restoration Program
rit.edu/studentaffairs/crp/
(58) 475.2982

Counseling Center
rit.edu/counseling
(585) 475-2261

Dining Services
rit.edu/fa/diningservices/
(585) 475-2228

Disability Services
rit.edu/disabilityservices
(585) 475-2023

Office for Diversity and Inclusion www.rit.edu/diversity/
diversity-inclusion
(585) 475-6546

English Language Center
rit.edu/elc
(585) 475-6684 (voice/TTY)

Graduate Enrollment Services
rit.edu/grad
(585) 475-2229

Higher Education
Opportunity Program
rit.edu/heop
(585) 475-2506 (voice/TTY)

## Honors Program

rit.edu/honors
(585) 475-4511

## Housing Operations

rit.edu/fa/housing
(585) 475-2572

Information and Technology Services
rit.edu/its
(585) 475-4357

International Student Services
rit.edu/iss
(585) 475-6943 (voice/TTY)

Leadership Institute and
Community Service Center
rit.edu/lead
(585) 475-6974

Libraries
library.rit.edu
Margaret's House Early Childhood Education Center
rit.edu/margaretshouse
(585) 475-5176 (voice/TTY)

Multicultural Center for
Academic Success
www.rit.edu/mcas
(585) 475-4704

Off-Campus and Apartment Student Association
rit.edu/studentaffairs/ocasa/
(585) 475-6680 (voice/TTY)

Center for Orientation
and Transition
rit.edu/orientation
(585) 475-7995 (voice/TTY)

Parking and
Transportation Services
rit.edu/facilities/pats
(585) 475-2074

Part-time Enrollment Services
rit.edu/parttime
(585) 475-2229

Public Safety
rit.edu/publicsafety
(585) 475-3333 (Emergency)
(585) 205-8333 (Emergency TEXT)

IM:ritpublicsafety

Q Center
rit.edu/studentaffairs/qcenter/ (585) 475-6355

Center for Religious Life
rit.edu/religion
(585) 475-2135

Center for Residence Life
rit.edu/reslife
(585) 475-3102

Residence Halls Association
rit.edu/studentaffairs/rha/
Simone Center for
Student Innovation and Entrepreneurship
rit.edu/research/simonecenter/ (585) 475-2185

Spectrum Support Program rit.edu/ssp
(585) 475-6936

Student Conduct and
Conflict Resolution
www.rit.edu/studentconduct/ (585) 475-5662

Student Financial Services
rit.edu/sfs
(585) 475-6186

Student Government
rit.edu/sg
(585) 475-2204 (voice/TTY)

Student Government Clubs
campuslife.rit.edu/clubs
(585) 475-4483 (voice/TTY)

Student Health Center
rit.edu/studenthealth
(585) 475-2255 (voice), (585) 475-

5515 (TTY)
Student Music Association
rit.edu/finearts/music
Student Wellness Programs
http://www.rit.edu/wellness
(585) 475-3963

Study Abroad
rit.edu/studyabroad
(585) 475-4466

TRiO Student Support Services
rit.edu/trio
(585) 475-2833

Office of Undergraduate
Admission
rit.edu/admissions/
(585) 475-6631

Veteran Enrollment Services
rit.edu/military
(585) 475-6641

The Center for
Women and Gender
rit.edu/womenscenter
(585) 475-7464

Wellness Instructional Program www.rit.edu/criw/wellness.php (585) 475-6995

WITR Radio
witr.rit.edu

## A

Academic Advising ............... 285
Academic Affairs ................. . 208
Division of . . . . . . . . . . . . . . . . . 293
Faculty in ...................... 212
Academic Calendar . . inside front cover
Academic Policies. . . . . . . . . . . . . . 285

Academic Programs of Study
(HEGIS Chart)................. 4
Accessibility
as concentration in Human-
Centered Computing ........... 48
Accounting (see Business Administra-
tion-Finance)
Minor .......................... 213
Accounting Technology
AAS Degree (NTID) .......... 157
Accreditation........................ 2
Administration and Trustees ..... 293
Administrative Support Technology AAS Degree (NTID) . . . . . . . . . 158
Admission
Application Requirements . . . . . 260
Guidelines, Freshman . . . . . . . . . 262
Guidelines, NTID . . . . . . . . 152, 261
Guidelines, Transfer ........... . 246
International. . . . . . . . . . . . . . . . . 260
Undergraduate................. . . 260
Advanced Placement . . . . . . . . . . . . 286
Advertising Photography as option in Photographic and Imaging Arts 109
Advertising and Public Relations
Accelerated 4+1 MBA Option . . 121
BS Degree . . . . . . . . . . . . . . . . . . 120
Immersion . . . . . . . . . . . . . . . . . . 244
Minor ........................... 213
Aerospace Engineering
as option in Mechanical
Engineering...................... 71
244

African Studies
as field specialization in
International and Global
Studies.
Alcohol and Drug Policy......... 289
Alternative Energy
As option in Environmental
Sustainability and Health and Safety .16

American Art

Immersion ..... 244
Minor ..... 213
American Crafts, School for ..... 94
American Politics
Immersion ..... 245
Minor ..... 214


Asian Studies


International and Global Studies.128
ASL-English Interpretation
AAS Degree (NTID) ..... 156
BS Degree (NTID) ..... 155
ASL Learning Center ..... 150
Associate+Bachelor's Degree
Programs (NTID) ..... 145
Astronomy
Immersion ..... 247
Minor ..... 216
Attendance, Class . ..... 287
Audio
as option in Computer Engineering
Technology. . . . . . . . . . . . . . . . . . 12
as option in Electrical Engineering
Technology. . . . . . . . . . . . . . . . . . 13
Audiology Services (NTID) . . . . . . 151
Auditing Courses . . . . . . . . . . . . . . . 287
Automotive Engineering
as option in Mechanical
Engineering. . . . . . . . . . . . . . . . . 71
B
Biochemistry
BS Degree . . . . . . . . . . . . . . . . . 187

## Bioengineering

as option in Mechanical
Engineering . . . . . . . . . . . . . . . 71
Bioinformatics
BS Degree 191
BS/MS Degree Option . . . . . . . . 192
Bioinformatics Analysis
Minor .......................... . . . . 216
Biology
BS Degree193
Immersion ..... 247
Biology: Cellular and Molecular Minor . . . . . . . . . . . . . . . . . . . . . 217

Biology: Ecology and Evolution
Minor . . . . . . . . . . . . . . . . . . . . . 217
Biomaterials
as concentration in Biomedical Engineering
. 58
Biomedical Device and System Design as concentration in Biomedical Engineering
. 58
Biomedical Engineering BS Degree 58
BS/MS Degree Option ..... 59

Biomedical Photographic

Communications as option in Photographic
Sciences. . . . . . . . . . . . . . . . . . . . . 114
Biomedical Sciences BS Degree
.81
Biomedical Signal Processing as concentration in Biomedical Engineering . 58

Biopsychology

$$
\text { as track in Psychology. . . . . . . . . . } 135
$$

Biotechnology and Molecular Bioscience

BS Degree . ..... 194

Biotechnology Policy

## as concentration in Public

 Policy.137Buckley Amendment. . . . . . . . . . . . 285
Business
AS Degree (NTID) . . . . . . . . . . . 165
Business Administration
Accounting (BS Degree). . . . . . . . 33
Finance (BS Degree) . . . . . . . . . . . 33
International Business (BS Degree). . 34
Management (BS Degree) . . . . . . 35
Marketing (BS Degree). . . . . . . . . 35
Minor . . . . . . . . . . . . . . . . . . . . . . 217
Business Exploration Option . . . . . . 32
Business, Saunders College of. . . . . . 31
Business Technology
AOS Degree (NTID) . . . . . . . . . 166

## C

Campus Directory ................ 298
Cardiac Ultrasound
(see Echocardiography)
Career Exploration Studies
(NTID)
146
Center for
Imaging Science,
Chester F. Carlson . . . . . . . . . . 190
Ceramics
BFA Degree . . . . . . . . . . . . . . . . . . 95
Chemical Engineering
BS Degree .60

BS/MS Degree Options. . . . . . . . . 61
Chemical Engineering Systems
Analysis
Minor
.218
Chemistry
BS Degree . . . . . . . . . . . . . . . . . . . 188
BS/MS Degree Option . . . . . . . . 189
Immersion . . . . . . . . . . . . . . . . . . 247
Minor . . . . . . . . . . . . . . . . . . . . . . 218
Chinese Language
Minor
Chinese Language and Culture
Immersion . . . . . . . . . . . . . . . 253
Civil Engineering Technology
BS Degree . . . . . . . . . . . . . . . . . . . 10
Civil Technology
AAS Degree (NTID)
167
Class Attendance . . . . . . . . . . . . . . . 287
Clean and Renewable Energy as option in Electrical Engineering .64
Clinical Psychology
as track in Psychology. . . . . . . . . 135

| Cognitive Psychology as track in Psychology. . . . . . . . . 135 | Computing Exploration Undeclared option. . . . . . . . . . . . 40 |
| :---: | :---: |
| College Level Examination | Computing Security |
| Program ..................... 286 | BS Degree . . . . . . . . . . . . . . . . . 44 |
| College of | BS/MS Degree Options. ........ 45 |
| Applied Science and Technology . . 7 | Minor . . . . . . . . . . . . . . . . . 2220 |
| Faculty in . . . . . . . . . . . . . . . 29 | Conduct Policies, Summary of. . . 288 |
| Business ..................... 31 | Conflict Manangement Services. . . 291 |
| Faculty in .................. 37 | Confidentiality of Student |
| Computing and Information | Records.................... 285 |
| Sciences.................. 39 | Confidential Tip Line. . . . . . . . . . 292 |
| Faculty in .................. . 53 | Construction Management |
| Engineering .................. 55 | as option in Civil Engineering |
| Faculty in .................. 77 | Technology................... 11 |
| Health Sciences and Technology. . 80 | Minor ..................... 220 |
| Faculty in .................. . 90 | Consumer Information . . . . . . . . 292 |
| Imaging Arts and Sciences...... 91 | Costs and Tuition |
| Faculty in ................. 115 | RIT......................... . 267 |
| Liberal Arts. . . . . . . . . . . . . . . 118 | NTID....................... 153 |
| Faculty in ................. . 141 | Counseling and Academic Advising |
| National Technical Institute for | Services (NTID). . . . . . . . . . . . 151 |
| the Deaf . . . . . . . . . . . . . 145 | Course Registration . . . . . . . . . . . 286 |
| Faculty in ................. . 181 | Crafts |
| Science . . . . . . . . . . . . . . . . . . . 185 | Undeclared Option . . . . . . . . . . 84 |
| Faculty in ................. 204 | Creative Writing |
| Communication | Immersion . . . . . . . . . . . . . . . 247 |
| BS Degree . . . . . . . . . . . . . . . . 122 | Minor . . . . . . . . . . . . . . . . . . 2220 |
| Immersion . . . . . . . . . . . . . . . . . 247 | Credit by Exam................. 286 |
| Minor ..................... 218 | Crime Statistics................ . 292 |
| Communication Studies and | Criminal Justice |
| Services (NTID) . . . . . . . . . 150 | BS Degree . . . . . . . . . . . . . . . . 123 |
| Computational Mathematics | BS/MS Degree Option ........ 124 |
| BS Degree . . . . . . . . . . . . . . . . 200 | Immersion .................. 248 |
| BS/MS Degree Option ........ 200 | Minor ..................... 221 |
| Computer Aided Drafting | Cultural Anthropology |
| Technology | as track in Sociology and |
| AAS Degree (NTID) . . . . . . . . . 168 | Anthropology............... . 139 |
| AOS Degree (NTID). . . . . . . . . 169 | Immersion .................. 248 |
| Computer Accounts/Use. . . . . . . 288 |  |
| Computer Crime Policy | D |
| as concentration in Public <br> Policy.......................... . . 137 | Database Design and Development Minor |
| Computer Engineering | Deaf Cultural Studies/ASL |
| BS Degree . . . . . . . . . . . . . . . . . 62 | Certificate (NTID). . . . . . . . . . 176 |
| BS/MS Degree Options. . . . . . . . 63 | Deans........................ . . 293 |
| Minor ..................... 219 | Dean's List Eligibility . . . . . . . . . . 287 |
| as option in Electrical | Design |
| Engineering ............... 64 | as concentration in Human- |
| Computer Engineering Technology | Centered Computing . ........ . 48 |
| BS Degree ................... 12 | Design and Imaging Technology |
| BS/MS Degree Option ......... 12 | AAS Degree (NTID) . . . . . . . . 171 |
| Computer Integrated Machining | AOS degree (NTID) . . . . . . . . 172 |
| Technology | Design, School of . . . . . . . . . . . . 100 |
| AOS Degree (NTID) . . . . . . . . 170 | Diagnostic Medical Sonography |
| Computer Science | BS Degree . . . . . . . . . . . . . . . . 82 |
| BS Degree ................... . 41 | Certificate................... . 83 |
| BS/MS Degree Options. . . . . . . . 42 | Digital Business |
| Minor ...................... 219 | Minor ..................... . 221 |
| Computer Software Policy as concentration in Public | Digital Cinema (see Motion Picture Science) |
| Policy.................... 137 | Digital Humanities and Social Sciences |
| Computing and Information | BS Degree . . . . . . . . . . . . . . . 125 |
| Sciences, B. Thomas Golisano College of . . . . . . . . . . . . . . . . . . . 39 | Digital Literatures and Comparative |
| Computing and Information Sciences | Immersion ................... 248 |
| BS Degree . . . . . . . . . . . . . . . . . 43 | Minor |

Digital Politics and Organization
as track in Political Science $\ldots . .134$
Diversity in the U.S.
Immersion .................. 248
Drug and Alcohol Policy........ 289

## E

Early Admission.................. 260
Echocardiography
Certificate........................ . 84
Economics
Accelerated 4+1 MBA Option. . 126
BS Degree . . . . . . . . . . . . . . . . . . 126
Immersion . . . . . . . . . . . . . . . . . 249
Minor .......................... 222
Electrical Engineering
BS Degree....................... 64
BS/MS Degree Option .......... 65
Minor .......................... 222
Electrical Engineering Technology
BS Degree . . . . . . . . . . . . . . . . . . 13
Electrical Mechanical Engineering Technology
BS Degree....................... . 14
BS/MS Degree Option ......... 15
Electronic Billing Procedures .... 268
Emergency
Notification..................... . . 292
Preparedness . . . . . . . . . . . . . . . 292
Emeriti Faculty . . . . . . . . . . . . . . . . . 294
Endowed Scholarships. . . . . . . . . . 277
Energy Policy
as concentration in Public
Policy..................... 137
Energy and Environment
as option in Mechanical
Engineering .................. 71
Engineering Exploration........... 57
Engineering, Kate Gleason
College of ..................... 55
Engineering Management Minor
Engineering Policy

> as concentration in Public $\quad$ Policy..................... 137

Engineering Studies
as option in Pre-baccalaureate Studies (NTID) ............. 179
Engineering Technology, School of. . . 9
Engineering Technology
Undeclared Option ............... 9
English
Immersion . . . . . . . . . . . . . . . . . 249
Minor .......................... 223
English Program, NTID . ......... 149
Entertainment and Event Management as concentration in International Hospitality and Service Management. ................. 24
Entrepreneurship
Minor ......................... 223
Environmental Modeling Mino 223
Environmental Policy
$\quad$ as concentration in Public
$\quad$ Policy. . . . ................. 137
Environmental Science
BS Degree ..... 195
BS/MS Degree Options. ..... 196
Minor ..... 223
Environmental Studies
Immersion ..... 249
Minor ..... 224
Environmental Sustainability,
Health and Safety
BS Degree ..... 16
BS/MS Degree Option ..... 17
Ethics
Immersion ..... 249
Minor ..... 224
European Studies as field specialization in
International and Global ..... 128Studies.
Exercise Science ..... 85
Certificate ..... 86
Minor ..... 224
Expectations for Community Behavior ..... 288
FFaculty (see individual collegesunder College of)
Federal Aid Programs ..... 270
Film and Animation
BFA Degree ..... 105
School of. ..... 105
Film Studies
Immersion ..... 250
Minor ..... 224
Finance (see Business Administration-Finance)Minor .......................... 224Financial Aid and
Scholarships ..... 270
Financial Aid Programs. ..... 270
Financial Standing ..... 268
Financial Refund Policy. . . . . 268, 273
Fine Art Photographyas option in Photographic andImaging Arts109
Fine Arts StudioBFA Degree .98
First-Year Experiences Program,NTID148
Flexible Packaging Minor ..... 225
Food and Beverage Managementas concentration in InternationalHospitality and ServiceManagement24
Free and Open Source Software andFree CultureMinor225
French LanguageMinor234
French Language and Culture Immersion ..... 254
Freshman Admission. ..... 262
Front-end Developmentas concentration in Human-Centered Computing48

|  |  |
| :---: | :---: |
| Furniture DesignAOS Degree. . |  |
| BFA Degree ................. 95 |  |
| G |  |
| Game Design |  |
| Minor ...................... 225 |  |
| Game Design and Development |  |
| BS Degree . . . . . . . . . . . . . . . . 46 |  |
| BS/MS Degree Option ........ . 47 |  |
| Minor ...................... 226 |  |
| General Education Requirements |  |
| Liberal Arts and Sciences . . . . . 284 |  |
| NTID $\ldots . . . . . . . . . . . . . . . . . . ~$Wellness Education 148W |  |
|  |  |
| Geographic Information Systems |  |
| Minor |  |
| German Language |  |
| Minor ..................... . 234 |  |
| German Language and Culture Immersion . . . . . . . . . . . . . . . . . 254 |  |
|  |  |
| Glass |  |
| BFA Degree .................. 96 |  |
| Global Justice, Peace and Conflict |  |
| Issues |  |
| as field specialization in |  |
| International and Global |  |
| Studies..................... . . 128 |  |
| Global Justice |  |
| Immersion . . . . . . . . . . . . . . . 250 |  |
| Global Literatures and Cultures |  |
| Minor .................... 226 |  |
| Globalization Theory |  |
| Immersion . . . . . . . . . . . . . . . 250 |  |
| Grading System. ............... 286 |  |
| Graduation Requirements. . . . . . . 283 |  |
| Grants........................ . 270 |  |
| Graphic Design |  |
| BFA Degree ................ . 101 |  |
| Guidelines for Submitting |  |
| Portfolios .................... 91 |  |
| H |  |
| Health and Culture |  |
| Immersion . . . | . 250 |
| Health Communication |  |
| as track in Communication . . . 122 |  |
| Minor ...................... 226 |  |
| Health IT |  |
| Minor ...................... . 227 |  |
| Health Policies ................. 288 |  |
| Health/Medical Records . . . . . . . 288 |  |
| Health Sciences and Technology, College of . . . . . . . . . . . . . . . . 80 |  |
| Health Systems Administration |  |
| Certificate . . . . . . . . . . . . . . . . . 87 |  |
| Hearing Loss . . . . . . . . . . . . . . . . . 261 |  |
| History |  |
| Immersion . . . . . . . . . . . . . . . . 251 |  |
| Minor ...................... 227 |  |
| History of Philosophy <br> as specialization in Philosophy. . 132 |  |
| Honor Code . . . . . . . . . . . . . . 288 |  |
| Honors Program (see University Honors Program) |  |
| Hospitality Management |  |
|  |  |




## J

Japanese Language
Minor .......................... . 234
Japanese Language and Culture
Immersion ..................... . 254
Journalism
BS Degree . . . . . . . . . . . . . . . . . 129
Immersion . . . . . . . . . . . . . . . . . . 252
Minor .......................... . 229
L
Laboratory Science Technology
AAS Degree (NTID)......... 175
AOS Degree (NTID).............. . . 176
Late Disbursement . . . . . . . . . . . . . . 273
Latin American Studies
as field specialization in
International and Global
Studies129

Language, Modern
Minors.
Language/Culture, Modern
Immersions.
Language Science
Immersion
Minor ........................... 229
Latino/Latina/Latin American Studies
Immersion
. 252
Minor ........................... 230
Learning Center (NTID) . . . . . . . . 150
Learning Consortium (NTID) . . . . 150
Legal Studies
Immersion . . . . . . . . . . . . . . . . . 252
Minor ......................... . 230
Liberal Arts, College of . . . . . . . . . . 118
Liberal Arts Exploration. . . . . . . . . . 120
Liberal Studies
as option in Pre-baccalaureate
Studies (NTID) ............. . 179

## M

Management as track in Museum Studies . . . . 131
BS Degree....................... . . 35
Minor .......................... 230
Management Information Systems
BS Degree
. 36
Minor ............................ 230


BS Degree. . 18
BS/MS Degree Option . . . . . . . . . 19
Marketing
BS Degree .35
Minor ............................. . . . . 231
matics
Immersion . . . . . . . . . . . . . . . . . . 253
Minor ...................... 231
Mechanical Engineering
BS Degree . . . . . . . . . . . . . . . . . . . . 71

Minor . . . . . . . . . . . . . . . . . . . . . . 231
chanical Engineering Technology

BS/MS Degree Options. ...... 21
Mechatronics Engineering
Certificate. . . . . . . . . . . . . . . . . . . . 76
Media Arts and Technology
BS Degree . . . . . . . . . . . . . . . . . . . 108
BS/MBA 4+1 Degree Option. . . 108
Media Sciences, School of. . . . . . . . 108
Medical Illustration
BFA Degree ...................... . . 99
Mental Health Services (NTID) . . . 151
Metals and Jewelry Design
BFA Degree ...................... . 97
BS Degree . . . . . . . . . . . . . . . . . . . 74
BS/MS Degree Options. . . . . . . . . 75
Minor . . . . . . . . . . . . . . . . . . . . . . 232
Middle Eastern Studies
as field specialization in
national and Global

Military Science, Department of . . . 26
Military Studies and Leadership
Minor . . . . . . . . . . . . . . . . . . . 28, 232
Mobile Application Development AAS Degree (NTID) . . . . . . . . . . 177
Mobile Design and Development
Minor .......................... . . . 233
Mobile Development
.
Modern Language Minors. . . . . . . . . . . . . . . . . . . . . . 233
Modern Languages and Cultures
.......... 253
Molecular Genetics
as option in Bioinformatics . . . . 192
BS Degree . . . . . . . . . . . . . . . . . . . 107
Museum Studies
BS Degree
130
Immersion . . . . . . . . . . . . . . . . . . 255
Minor
236

Immersion . . . . . . . . . . . . . . . . . . 256
usic and Technology

Music Performance
Minor
237

N
National Portfolio Days. . . . . . . . . . . 92
National Press Photographers
Association. . . . . . . . . . . . . . . 110
National Technical Institute for the Deaf. . . . . . . . . . . . . . . . . . . 145
Natural Language Processing
as concentration in Human-
Centered Computing . ........ 48
Native American Studies Immersion. . .256
Networking and Systems
$\quad$ Administration
Minor ......................... 237
Minor ......................... 237
New Media Design
BFA Degree ................... . . 104
New Media Interactive Development
BS Degree ..................... . . 48
New Media Marketing
$\quad$ BS Degree . . . . . . . . . . . . . . . . . 36
New Media Publishing (see Media Arts and Technology)
Nutrition Management BS Degree .87

## 0

Occupational Health and Safety as option in Environmental Sustainability, Health and Safety .
Off-Campus Conduct . . . . . . . . . . . 289
Office of the President . . . . . . . . . . . . 293
Officers. . . . . . . . . . . . . . . . . . . . . . . . . 293
Optical Science
Minor ............................. . . . 237
Organizational Change and
Leadership
Certificate. . . . . . . . . . . . . . . . . . . . 210
Outcomes Rate . . . . . . . . . . . . . . . . . 237

## P

Packaging Science
BS Degree . . . . . . . . . . . . . . . . . . . . . . . . 22
Minor . . . . . . . . . . . . . . . . . . . . . . . 237
Parking and Traffic. . . . . . . . . . . . . . 289
Performing Arts
Certificate (NTID). . . . . . . . . . 178
Performing Arts Programs
$\quad$ (NTID) . . . . . . . . . . . . . . . . 152
Philosophy
BS Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Immersion . . . . . . . . . . . . . . . . . . 256
Minor . . . . . . . . . . . . . . . . . . . . . . 238
Specializations . . . . . . . . . . . . . . . . 132
Philosophy and Law
as specialization in Philosophy. . 132
Philosophy of Art and Aesthetics
as specialization in Philosophy. . 132
Philosophy of Mind and Cognitive Science
as specialization in Philosophy. . 132
Philosophy of Science and Technology as specialization in Philosophy. . 132
Philosophy of Social Sciences and Political Philosophy
as specialization in Philosophy. . 132
(

Philosophy and Law
as specialization in Philosophy. . 132
Photographic Arts and Sciences, School of. . . . . . . . . . . . . . . . . . 109
Photographic and Imaging Arts
BFA Degree ..................... . . 109
Photographic Sciences
BS Degree. . . . . . . . . . . . . . . . . . . 113
Photography, Undeclared Option . . 94
Photojournalism
as option in Photographic and Imaging Arts .
.110

## Physician Assistant

BS/MS Degree . . . . . . . . . . . . . . . . 99
Physiological Modeling, Dynamics, and Control
as concentration in Biomedical Engineering . . . . . . . . . . . . . . . 58
Physics
BS Degree . . . . . . . . . . . . . . . . . . . 201
BS/MS Degree Options. . . . . . . . 202
Immersion . . . . . . . . . . . . . . . . . . 257
Minor . . . . . . . . . . . . . . . . . . . . . . 238
Politics and the Life Sciences
as track in Political Science . . . . 134
Political Institutions
as track in Political Science . . . . 134
Political Science
BS Degree . . . . . . . . . . . . . . . . . . . 134
BS/MBA 4+1 Degree Option. . . 135
Minor . . . . . . . . . . . . . . . . . . . . . . 239
Portfolio Guidelines . . . . . . . . . . . . . . 91
Portuguese Language
Minor . . . . . . . . . . . . . . . . . . . . . . 235
Portuguese Language and Culture
Immersion . . . . . . . . . . . . . . . . . . 255
Pre-baccalaureate Studies
(NTID) . . . . . . . . . . . . . . . . . 146, 179
Pre Law Study . . . . . . . . . . . . . . . . . . 124
Premedical Studies and Pre-health Professions Advisory Program . . . . . . . . . . . . . . 81, 186
Production
as option in Film and Animation106

Psychology as concentration in HumanCentered Computing . . . . . . . . . 48
BS Degree . . . . . . . . . . . . . . . . . . . . 135
Minor . . . . . . . . . . . . . . . . . . . . . . 239
Public History
as option in Museum Studies. . . 131
Public Policy
BS Degree . . . . . . . . . . . . . . . . . . . . 136
BS/MS Degree . . . . . . . . . . . . . . . . 137
Immersion . . . . . . . . . . . . . . . . . . 257
Minor . . . . . . . . . . . . . . . . . . . . . . . 239
Public Safety . . . . . . . . . . . . . . . . . . . 292
R
Religious Studies Immersion . . . . . . . . . . . . . . . . . . 257
Reserve Officer's Training Corp (ROTC)
Army . . . . . . . . . . . . . . . . . . . . . . . . 26
Air Force. . . . . . . . . . . . . . . . . . . . . 27
Restricted and Endowed Scholarships . . . . . . . . . . . . . . . . . 277
Rhetoric, Media and Culture
as track in Communication . . . . 123
RIT Online . . . . . . . . . . . . . . . . . . . . 208
Robotics
as option in Electrical
Engineering . . . . . . . . . . . . . . . . . . 64
ROTC (see Reserve Officer
Training Corps)
Russian Language
Minor .235
Russian Language and Culture
Immersion ..... 255
S
Scholarships
Application Process. ..... 270
Notification. ..... 270
Restricted and Endowed. ..... 277
Types of Aid ..... 270
School of
American Crafts. ..... 94
Art . ..... 97
Chemistry and MaterialsSciences.187
Design. ..... 100
Engineering Technology. ..... 9
Film and Animation ..... 105
Individualized Study ..... 209
International Hospitality and
Service Innovation ..... 23
Life Sciences (Thomas H. Gosnell). ..... 191
Mathematical Sciences ..... 197
Media Sciences. ..... 108
Photographic Arts and Sciences 109
Physics and Astronomy ..... 201
Science and Mathematics
as option in Pre-baccalaureate
Studies (NTID) ..... 179
as NTID Curriculum . . ..... 149
Science and Technology Studies
Immersion ..... 258
Science Exploration, Undeclared . . 187
Science of Film, Photography and
Imaging
Immersion ..... 158
Science, College of . ..... 185
Science, Technology, and Society Minor . ..... 240
Social Inequities
Immersion ..... 258
Social Psychology
as track in Psychology. ..... 135
Sociology
as track in Sociology andAnthropology. . . . . . . . . . . . . . 140
Sociology and Anthropology BS Degree. ..... 138
Software Engineering
BS Degree. . ..... 49
BS/MS Degree Options. ..... 50
Minor ..... 240
Spanish Language
Minor ..... 235
Spanish Language and Culture
Immersion ..... 255

Structural Design

$$
\text { Minor . . . . . . . . . . . . . . . . . . . . . . } 240
$$

Student Accident and Sickness
Insurance . . . . . . . . . . . . . . . . . . 268
Student Alcohol and Drug Policy . 289
Student Conduct Policies
and Procedures . . . . . . . . . . . . . . 288
Student Congress (NTID) . . . . . . . . 152
Student Life (NTID). . . . . . . . . . . . . 150
Student Life Team (NTID) . . . . . . . 151
Student Loans . . . . . . . . . . . . . . . . . . 270
Student Misconduct,
Policies for 291
Student Retention. . . . . . . . . . . . . . . 292
Summer Vestibule Program (NTID) . 151
Supply Chain Management Minor .241
Support Service Orientation Workshops (NTID) . . . . . . . . . 151
Surveying and Geospolitcal Analysis as option in Environmental
Sustainability, Health and Safety. 17
Sustainable Futures
as field specialization in International and Global
Studies. . . . . . . . . . . . . . . . . . . . . . 129
Sustainable Product Development
Minor

## T

Teaching and Learning Services. . . 208
Technical Communication as track in Communication . . . . 122
Telecommunications
as option in Computer Engineering Technology.
as option in Electrical Engineering
Technology........................ . . 13
3D Digital Design
BFA Degree . . . . . . . . . . . . . . . . . 100
Theatre Arts
Immersion ...................... 258
Minor . . . . . . . . . . . . . . . . . . . . . . . 242
Transcripts. . . . . . . . . . . . . . . . . . . . . 285
Transfer Admission . . . . . . . . . . . . . 260
Transfer Credit . . . . . . . . . . . . . . . . . . 286
Transnational Gender Studies
as field specialization in
International and Global
Studies.
129
Trustees . . . . . . . . . . . . . . . . . . . . . . . . 293
Tuition
RIT.
267
NTID. . . . . . . . . . . . . . . . . . . . . . . . 153
Tuition Assistance Program (TAP). . 271

## U

Ultrasound
(see Diagnostic Medical Sonography)
Undeclared Options
Business Exploration. . . . . . . . . . . 32
Computing Exploration . . . . . . . . 40
Engineering Exploration ....... . 57
Liberal Arts Exploration. . . . . . . 120
Science Exploration. . . . . . . . . . . 187
Undeclared Art and Design...... 94
Undeclared Crafts ..... 94Undeclared Engineering
Technology...................... . . 9
Undeclared Photography ..... 94
University Studies ..... 211
Undergraduate Admission ..... 260
Undergraduate Financial Aid
Employment. ..... 276
Loans. ..... 276
Merit Scholarships ..... 274
Need-based Grants ..... 275
Other Awards ..... 276
Programs. ..... 274
University Costs ..... 267
University Honors Program . . . . . . 21
University Policies and Procedures 283
University Studies Program . . . . . . 211
University Writing Program . . . . . . 212Urban Studies
as track in Sociology and Anthropology. . . . . . . . . . . . . . 140 ..... ,
Immersion
Minor ..... 242

## V

Visual Communicationsas option in Pre-baccalaureate
Studies (NTID) ..... 180
Visual Culture
Immersion ..... 258
Minor ..... 242
Visual Media
as option in Photographic andImaging Arts110Visual Perception
as track in Psychology. ..... 135
Vocational Rehabilitation ..... 268

## W

Water Resources as option in Civil Engineering
Technology. . . . . . . . . . . . . . . . . . . 11
Minor ..... 242
Web and Mobile Computing
BS Degree ..... 52
Neb Design and Development242
Web Development Minor ..... 242
Wellness Education Requirement . 28
Wellness, Intercollegiate Athleticsand Intramural Support(NTID)151Wireless Communicationas option in ElectricalEngineering . . . . . . . . . . . . . . . . . 64
Withdrawal from Courses ..... 287
Women's and Gender Studies Immersion ..... 258
Minor ..... 242 ..... 242


RIT CAMPUS MAP
$\begin{array}{ll}\text { RSC } & \text { Rosica Hall } \\ \text { SAN } & \text { Sands Family Studios }\end{array}$
SAU Student Alumni Union
SMT Schmitt Interfaith Center
SUS Golisano Institute for Sustainability
UNI University Gallery
$\begin{array}{ll}\text { USC } & \text { University Services Center } \\ \text { VIG } & \text { Vignelli Center for Design Studies }\end{array}$
WAL Wallace Library
WEL Welcome Center

Periodicals

Rochester Institute of Technology

## www.rit.edu

twitter.com/RITnews


[^0]:    * Accelerated duel degree (BS/MS) option available.

[^1]:    * Accelerated duel degree (BS/MS) option available.
    $\dagger$ Evening option available.

[^2]:    Total Semester Credit Hours
    Please see New General Education Curriculum-Liberal Arts and Sciences (LAS) for more information
    WI) Refers to a writing intensive course within the major

    * Please see Wellness Education Requirement for more information. Students completing bachelor's
    degrees are required to complete two Wellness courses.

[^3]:    Total Semester Credit Hours

[^4]:    Total Semester Credit Hours
    Please see General Education Curriculum-Liberal Arts and Sciences (LAS) for more information.
    (WI) Refers to a writing intensive course within the major

[^5]:    * NSSO (NTID Support Service Orientation) workshops for NTID-supported students accepted to other RIT colleges.
    t Student fees are required of all full-time students and include: student health fee (\$135 per semester) and student activities fee (\$137 per semester).
    \# Charge to defray cost of fall Orientation program, for freshmen and new students only.

[^6]:    *Two courses must be 300-level or above.

[^7]:    * At least one course must be 300-level or higher.

[^8]:    * Website Design and Implementation (IGME-230) may be substituted for Web and Mobile I (ISTE-140).
    † Rich Media Web Application Development I (IGME-330) may be substituted for Web and Mobile II (ISTE-240).
    \# Students may choose Mobile Application Development I (ISTE-454) or Mobile Application Development II (ISTE-456) as the final course in the minor.

[^9]:    * At least one course must be at the 400 level.

[^10]:    * Students must select one of the three electives courses as their required course. The remaining courses may be taken as electives.
    † Students must choose four elective courses to bring the total number of courses to five. Students may accomplish this by choosing electives from among the required courses and the elective courses. At least one of the elective courses must be at the 300 level or higher.

[^11]:    * At least two of the elective courses must be at the 300 level or higher

[^12]:    * At least one course must be at the 300 level of higher.

[^13]:    * At least one course must be from the 300 level or higher.

[^14]:    *at least one elective must be at the 300 -level or above.

[^15]:    * At least one course should be taken from a discipline other than SOCI

[^16]:    *Students are required to take either Foundations of Moral Philosophy (PHIL-202) or Ethical Theory (PHIL-415). If students take one of these courses, they will choose two elective courses to complete the immersion. If they choose both of these courses students will choose one additional elective.

[^17]:    At least one course must be at the 300 level or higher

[^18]:    * To complete the immersion, students must select three courses from at least two distinct disciplines (e.g., anthropology, English, history, philosophy, or psychology). Philosophy majors must take two courses in disciplines other than philosophy. Special topics courses (in all departments) and Great Thinkers courses (in the philosophy department) will be considered on an individual basis, subject to approval by the religious studies immersion coordinator.

