RIT

Rochester
 Institute of Technology 2022-23
 Academic Calendar

\dagger The Add/Drop period is the first seven class days of the fall, spring, and full summer terms, excluding Sundays and holidays.

* Tentative spring semester and summer term schedule. RIT reserves the right to update the spring and summer schedule.

RIT does not discriminate. RIT promotes and values diversity within its workforce and provides equal opportunity to all qualified individuals regardless of race, color, creed, age marital status, sex, gender, religion, sexual orientation, gender identity, gender expression, national origin, veteran status, or disability.

For Title VI, Title IX, and Section 504/Title II ADA inquiries, contact Judy Bender, Title IX/504 Officer at 585-475-4315, jebpsn@rit.edu, 5000 Eastman Hall, or go to http://www.rit. edu/fa/humanresources/Diversity/ TitleIX for more information.
©2022 Rochester Institute of Technology. All rights reserved. RIT is a registered trademark of Rochester Institute of Technology.

Fall Semester (2221)

August 22
Day, evening, and online classes begin First day of Add/Drop period \dagger

August 27

Saturday classes begin
August 29
Last day of Add/Drop period \dagger
August 30
First day to drop from classes with a grade of "W"

September 5

Labor Day-No Classes
October 10-11
Fall Break-No Classes
November 4
Last day to drop from classes with a grade of "W"

November 23

No Classes
University closes at 2 pm
November 24-25
Thanksgiving Holiday
University closed
December 5
Last day, evening, and online classes
December 6
Reading Day
Dec. 7, 8, 9, 12, 13, 14
Final exams
December 16
Final grades due
December 15-January 16
Break between fall and spring semesters

Spring Semester (2225)

January 16
Martin Luther King Jr. Day (no classes)

January 17

Day, evening, and online classes begin First day of Add/Drop period \dagger

January 21

Saturday classes begin
January 24
Last day of Add/Drop period \dagger

January 25

First day to drop from classes with a grade of "W"
March 12-19
Spring Break (no classes)
April 7
Last day to drop from classes with a grade of "W"

May 1
Last day, evening, and online classes
May 2
Reading Day
May 3, 4, 5, 8, 9, 10
Final exams
May 12
Final grades due
May 12-13
Convocation and
Commencement Ceremonies
May 15-17
Break between spring semester and summer term

12-week Summer Term (2228)

May 18
Day, evening, and online classes begin First day of Add/Drop period \dagger

May 20

Saturday classes begin
May 25
Last day to Add/Drop classes \dagger
May 26
First day to drop from classes with a grade of "W"
May 29
Memorial Day (no classes)
University closed

July 4

Independence Day observed
University closed

July 27

Last day to drop from classes with a grade of "W"
August 9
Last day, evening, and online classes
August 10
Reading Day
August 11, 14, 15
Final exams
August 17
Final grades due
August 18-27
Break between summer term and fall semester

Short Session I Summer Term
(2228)

May 18

Day, evening, and online classes begin
First day of Add/Drop period \dagger

May 22

Last day to Add/Drop classes \dagger
May 23
First day to drop from classes with a grade of "W"
May 29
Memorial Day (no classes)
University closed
June 21
Last day to drop from classes with a grade of "W"
June 28
Last day of classes
June 29, 30
Final exams
July 3
Final grades due

Short Session II Summer Term
 (2228)

July 3

Day, evening, and online classes begin
First day of Add/Drop period \dagger
July 4
Independence Day observed (no classes)
University closed
July 6
Last day to Add/Drop classes \dagger
July 7
First day to drop from classes with a grade of "W"
August 2
Last day to drop from classes with a grade of "W"
August 9
Last day, evening, and online classes
August 10
Reading Day
August 11, 14, 15
Final exams
August 17
Final grades due

Rochester Institute of Technology

About This Bulletin

This Undergraduate Bulletin does not constitute a contract between the university and its students on either a collective or individual basis. It represents RIT's best academic, social, and financial planning at the time of publication. Course and curriculum changes, modifications of tuition, fees, dormitory, meal, and other charges, plus unforeseen changes in other aspects of RIT life, sometimes occur after the Undergraduate Bulletin has been printed but before the changes can be incorporated in a later edition of the same publication. Because of this, Rochester Institute of Technology does not assume a contractual obligation with its students for the contents of this Undergraduate Bulletin. RIT does not discriminate. RIT promotes and values diversity within its workforce and provides equal opportunity to all qualified individuals regardless of race, color, creed, age, marital status, sex, gender, religion, sexual orientation, gender identity, gender expression, national origin, veteran status, or disability.

Table of Contents

An Introduction to Rochester Institute of Technology 1
Academic Programs of Study (HEGIS chart). 3
College of Art and Design 5
Saunders College of Business. 41
Golisano College of Computing and Information Sciences. 57
Kate Gleason College of Engineering 86
College of Engineering Technology 118
College of Health Sciences and Technology 144
University Studies/School of Individualized Study 171
College of Liberal Arts 177
National Technical Institute for the Deaf 225
College of Science 279
Minors 322
Immersions. 390
Undergraduate Admissions and Financial Aid 348
University Policies and Procedures 449
Consumer Information 457
Administration and Trustees 458
Campus Directory 463
Campus Map 464

Produced by the Division of Academic Affairs and the Division of Marketing and Communications.

[^0]
An Introduction to Rochester Institute of Technology

Respected internationally as a world leader in career-oriented, technological education, Rochester Institute of Technology has been setting an innovative pace since 1829, when Colonel Nathaniel Rochester became the first president of the Rochester Athenaeum. In 1891, the Athenaeum merged with Mechanics Institute, which had been founded by a group of businessmen to instruct in "drawing and such other branches of studies as are most important for industrial pursuits." In 1944, recognizing the increasingly specialized professional nature of its programs, the university adopted the name it holds today.

A private, coeducational university in upstate New York, RIT offers academic programs that combine outstanding teaching, a strong foundation in the liberal arts and sciences, modern classroom facilities, and work experience gained through the university's cooperative education program, internships, and other opportunities.

Few universities provide RIT's variety of career-oriented studies. Our 11 colleges and degree-granting entities offer outstanding programs in business, engineering, art and design, science and mathematics, the liberal arts, photography, computing, hospitality management, and many other areas.

More than 200 programs-including such distinctive offerings as microelectronic and software engineering, imaging science, film and animation, biotechnology and molecular bioscience, physician assistant, new media, international business, telecommunications, and the programs of RIT's School for American Crafts and National Technical Institute for the Deaf (NTID)draw students from all 50 states and more than 100 countries.

As a major university, RIT offers academic opportunities that extend far beyond science and technology, including more liberal arts courses and faculty than are found at most liberal arts colleges. With a strong foundation in the humanities and social sciences, RIT graduates understand both technological developments and the larger philosophical and ethical issues presented by technology.

Approximately 15,750 undergraduate students and 3,100 graduate students attend RIT. More than 135,000 alumni can be found around the globe.

RIT is a top 100 national research university. We offer the following degrees: doctoral (Ph.D.) programs in astrophysical sciences and technology, biomedical and chemical engineering, color science, computing and information sciences, electrical and computer engineering, imaging science, engineering, mathematical modeling, mechanical and industrial engineering, microsystems engineering, and sustainability; master's degree programs: master of architecture (M.Arch.), master of business administration (MBA), master of engineering (ME), master of fine arts (MFA), master of science (MS), and master of science for teachers (MST); bachelor's degree programs: bachelor of fine arts (BFA) and bachelor of science (BS); and associate degree programs: AS, AOS, AAS.

RIT's cooperative education program is the fourth-oldest and one of the largest in the world. More than 4,300 students complete co-op positions with approximately 3,400 employers every year. In
addition, more than 600 companies visit RIT to conduct employment interviews on campus.

The world in which RIT graduates live and work is composed of people from many backgrounds, lifestyles, and cultures. Therefore, RIT encourages the appreciation of diversity through a variety of liberal arts courses, campus events, and special programs, including the annual International Banquet, Black History Month, Martin Luther King Jr. celebration, and Hispanic Heritage Week.

RIT has been recognized by U.S. News \& World Report magazine as one of the nation's leading comprehensive universities and one of America's Best College Values. Many college guidebooks have ranked RIT among the nation's top schools, including "Kaplan's Unbiased Guide to the 320 Most Interesting Colleges" and The Princeton Review's Best 379 Colleges.

Accreditation

Rochester Institute of Technology is accredited by the Middle States Commission on Higher Education, 3624 Market Street, Philadelphia, PA 19014, (267) 284-5000. The Middle States Commission on Higher Education is an institutional accrediting agency recognized by the U.S. Secretary of Education and the Council for Higher Education Accreditation..

In addition to institutional accreditation, many of RIT's academic programs have been granted accreditation by appropriate professional accreditation bodies. Where applicable, specific mention of accreditation is included in program descriptions. Students wishing to review documents describing accreditation should contact the Office of the Senior Vice President for Academic Affairs.

Academic Programs of Study (HEGIS chart)

Undergraduate Programs of Study

Degree and HEGIS Code							
Cert.	Diploma	AOS	AS	AAS	BFA	BS	
						1009	
				5012.00			
		5012		5309			
		5317.00					
					1009		
						4903.00	
					1002		
						1009	
						1009	
						1299	

Business, Management, and Leadership

Accounting*	B
Accounting Technology	N
Administrative Support Technology	N
Business Administration \ddagger	N
Business	
Business Technology	N
Community Development and Inclusive Leadership	
Dietetics and Nutrition	
Economics*	
Finance	Bus
Global Business Management	Bus
Health Systems Administration \ddagger	
Hospitality and Tourism Management	B
Management Information Systems (MIS)	Bu
Marketing	Bu
Organizational Change and Leadership \ddagger	S
Supply Chain Management	B
Communications and Digital Media	
3D Graphics Technology	

Undergraduate Programs of Study

Software Engineering* Web and Mobile Computing

Engineering and Engineering Technology

Applied Mechanical Technology
Architectural and Civil Drafting Technology Biomedical Engineering*
Chemical Engineering*
Civil Engineering Technology
Civil Technology
Computer Engineering*
Computer Engineering Technology*
Electrical Engineering*
Electrical Engineering Technology

Imaging Science

Industrial Engineering*
Integrated Electronics
Mechanical Engineering*
Mechanical Engineering Technology*
Mechatronics Engineering Technology
Microelectronic Engineering*
Packaging Science
Precision Manufacturing Technology
Robotics and Manufacturing Engineering Technology*
Software Engineering*

Civil Engineering Technology

Electrical Engineering*

Environmental Science*
Environmental Sustainability, Health and Safety*
Packaging Science
Game Design, Development, and Arts
3D Digital Design
Film and Animation
Game Design and Development*
Humanities, Computing, and Design
Illustration
New Media Interactive Development

Web and Mobile Computing

Health Professions and Medical Sciences

Biochemistry	Science							0414
Bioinformatics and Computational Biology*	Science							0499
Biology*	Science							0401
Biomedical Sciences	Health Sciences and Technology							0499
Biotechnology and Molecular Bioscience*	Science							0499
Diagnostic Medical Sonography (Ultrasound)	Health Sciences and Technology	5299						1299
Dietetics and Nutrition	Health Sciences and Technology							1306.00
Echocardiography (Cardiac Ultrasound)	Health Sciences and Technology	5217						
Exercise Science	Health Sciences and Technology	5299.30						1299.30
General Science	National Technical Institute for the Deaf				5604.00			
Health Systems Administration \ddagger	Health Sciences and Technology	5299.00						
Medical Illustration	Art and Design						1299	
Nutritional Sciences*	Health Sciences and Technology							1306.00
Physician Assistant \dagger	Health Sciences and Technology							1299.10
Humanities, Social Sciences, and Education								
Applied Arts and Sciences \ddagger	School of Individualized Study					5699		4999
Applied Liberal Arts	National Technical Institute for the Deaf				5699			
Applied Modern Language and Culture	Liberal Arts							1101.00
ASL-English Interpretation	National Technical Institute for the Deaf							1199
Community Development and Inclusive Leadership	National Technical Institute for the Deaf							2101.00
Criminal Justice*	Liberal Arts							2105
Deaf Cultural Studies-American Sign Language	National Technical Institute for the Deaf	5506.00						
Economics*	Liberal Arts							2204
English	Liberal Arts							1501.00
History	Liberal Arts							2205.00
Human-Centered Computing	Computing and Information Sciences							4605.00
Humanities, Computing, and Design	Liberal Arts							4903.00
International and Global Studies*	Liberal Arts							2210

* Accelerated duel degree (BS/MS) option available.
\dagger Evening option available.
\ddagger Online option available.

Undergraduate Programs of Study

des		Cert.	Diploma	AOS	AS	AAS	BFA	BS
Museum Studies	Liberal Arts							1099
Performing Arts	National Technical Institute for the Deaf	5610.00						
Philosophy	Liberal Arts							1509
Political Science	Liberal Arts							2207
Psychology*	Liberal Arts							2001
Public Policy*	Liberal Arts							2102
Sociology and Anthropology*	Liberal Arts							2214
Photography, Film, and Animation								
Film and Animation	Art and Design						1010	
Imaging Science	Science							1999.20
Motion Picture Science	Art and Design							1010
Photographic and Imaging Arts	Art and Design						1011	
Photographic Sciences	Art and Design							1901.00
Science and Math								
Applied Mathematics*	Science							1703
Applied Statistics and Data Analytics*	Science							1702
Biochemistry	Science							0414
Bioinformatics and Computational Biology*	Science							0499
Biology*	Science							0401
Biomedical Engineering*	Engineering							0905
Biomedical Sciences	Health Sciences and Technology							0499
Biotechnology and Molecular Bioscience*	Science							0499
Chemistry*	Science							1905
Computational Mathematics*	Science							1703
Diagnostic Medical Sonography (Ultrasound)	Health Sciences and Technology	5299						1299
General Science	National Technical Institute for the Deaf				5604.00			
Imaging Science	Science							1999.20
Laboratory Science Technology	National Technical Institute for the Deaf			5407		5407		
Motion Picture Science	Art and Design							1010
Photographic Sciences	Art and Design							1901.00
Physician Assistant \dagger	Health Sciences and Technology							1299.10
Physics*	Science							1902
Undeclared and Individualized Study								
Applied Arts and Sciences \ddagger	School of Individualized Study					5699		4999
Applied Arts and Sciences	School of Individualized Study							

[^1]
Colleges of RIT

RIT enrolls more than 19,000 full-time and part-time students in 10 colleges and schools on our main campus in Henrietta, N.Y. An additional 2,400 students are enrolled at RIT's global campuses in China, Croatia, Dubai, and Kosovo.

RIT's Colleges and Schools

College of Art and Design
Saunders College of Business
Golisano College of Computing and Information Sciences
Kate Gleason College of Engineering
College of Engineering Technology
College of Health Sciences and Technology
School of Individualized Study/University Studies
College of Liberal Arts
National Technical Institute for the Deaf
College of Science

College of Art and Design
 Todd Jokl, Dean
 www.rit.edu/artdesign/

Programs of Study
3D Digital Design BFA 15
Art Exploration 6
Design Exploration 17
Film and Animation BFA 24
Furniture Design AOS 8
Graphic Design BFA 17
Illustration BFA 6
Industrial Design BFA 19
Interior Design BFA 20
Medical Illustration BFA 8
Motion Picture Science BS 27
New Media Design BFA 22
Photographic and Imaging Arts BFA 27
Photographic Arts and Sciences Exploration 33
Photographic Sciences BS 33
Studio Arts BFA 10

The College of Art and Design includes the schools of American Crafts, Art, Design, Film and Animation, and Photographic Arts and Sciences.
Please visit the college's website-www.rit.edu/artdesign-for in depth information on academics, admisisons, financial aid and scholarships, faculty, facilities, research initiatives, advising services, and more.

Accreditation

The National Association of Schools of Art and Design (NASAD) accredits the BFA programs in the schools of American Crafts, Art, Design, Film and Animation, and Photographic Arts and Sciences. The School of Design's interior design program is accredited by the Council for Interior Design Education Accreditation.

School of Art

Art Exploration

www.rit.edu/study/art-exploration
Elizabeth Kronfield, Professor
585-475-5762, edkfaa@rit.edu

Program Overview

If you want to pursue studio arts but are unsure which major or program option best matches your interests, the art exploration option is for you. The School of Art offers majors in illustration, medical illustration, and studio arts (where you can choose an option in ceramics, expanded forms, furniture design, glass, metals and jewelry design, printmaking, painting, or sculpture). In your first year, you will work closely with your academic advisor to select courses that best align with your career aspirations.

The art exploration option requires the submission of a portfolio. View our Portfolio Requirements for more information.

Admission Requirements

Freshmen Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the School of Art.
- A portfolio must be submitted. View Portfolio Requirements for more information.

Illustration, BFA
www.rit.edu/study/illustration-bfa
Chad Grohman, Assistant Professor clgfaa@rit.edu

Program Overview

The illustration degree prepares students for a variety of careers within the visual communications field. The major provides an educational environment that supports the creative development of students and helps them to achieve their individual goals. Course work emphasizes traditional drawing and painting skills, the application of the latest digital media, and the use of dimensional media. Students learn conceptual skills, professional practices, and narrative story telling techniques while developing an individual style. These techniques and styles are then applied to produce illustrations suitable for advertising, publishing, editorial, and the service and gaming/entertainment industries.

Electives

Students may select electives that enhance their studies or allow them to pursue an area of personal or professional interest. Electives are available in graphic design, illustration, graphic visualization, industrial design, interior design, fine arts studio, environmental design, ceramics, glass, metals, textiles, woodworking, film making, photography, and imaging technology. To be eligible for these electives, students must complete the foundation program or have the permission of the instructor. Additional selections are offered as special topics courses.

Interested in a Career in Game Arts?

We've got you covered. The illustration degree allows you to explore your creative interests related to video games. You'll have endless opportunities to collaborate with developers and fellow artists on game and digital media projects. Illustration alumni have gone on to establish successful careers as game artists. Learn how you can use the illustration degree to launch a career in game arts.

Pre-College Portfolio Preparation Workshop

The School of Art's annual Pre-College Portfolio Preparation Workshop is a two-week visual arts class designed to prepare the portfolios of rising high school juniors and seniors for admission to college art programs. Learn more about the Pre-College Portfolio Preparation Workshop, including information on workshop dates and how to apply.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early
and often-to a variety of professional work environments, career paths, and industries.

In the College of Art and Design, experiential learning includes cooperative education and internships, international experiences, multidisciplinary projects, industry partnerships, and more. Participating in these opportunities is not only possible at RIT, but passionately encouraged.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for graduate students in the BFA in illustration.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Illustration, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval Art	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
FDTN-111	Drawing I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
FDTN-121	2D Design I	3
FDTN-122	2D Design II	3
FDTN-131	3D Design I	3
ILLS-209	3D Applications: The Figure	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A		
Second Year		
ILLS-213	Illustration I	3
ILLS-214	Anatomical Illustration	3
ILLS-219	Digital Illustration I	3
ILLS-371	2D/3D Pre-Visual World Building	3
	Art History Electivet	3
	CAD Studio Electives \ddagger	6
	Illustration Professional Elective§	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
Third Year		
ILLS-313	Illustration II	3
	Illustration Professional Electives§	12
	CAD Studio Elective \ddagger	3
	Art History Elective \dagger	3
	Open Elective	3
	General Education - Immersion 1 (WI), 2	6
Fourth Year		
ILLS-413	Illustration III	3
ILLS-501	Illustration Portfolio (WI-PR)	3
	Illustration Professional Electives§	6
	CAD Studio Elective \ddagger	3
	Open Electives	9
	General Education - Immersion	3

	General Education - Elective	SEMESTER CREDIT HOURS

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.
\ddagger CAD Studio elective courses are any College of Art and Design course with a studio or lab component,
per catalog restrictions.
§ lllustration Professional Electives are ILLS-300-level or higher.

Admission requirements

Freshmen Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design.
- A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

Furniture Design, AOS

www.rit.edu/study/furniture-design-aos
Andy Buck, Professor
aabsac@rit.edu

Program overview

An intensive course of study combining foundations in art and design with two years of study in woodworking and furniture design. For individuals not seeking the BFA or MFA degree, the associate degree will provide you with many of the fundamentals to begin a career in woodworking and furniture design.

The AOS degree in furniture design is a highly-focused, two-year course of study. Students learn how to use and care for basic hand tools and begin to explore the technical and visual potential of wood. Over the two-year experience, increasingly sophisticated techniques and design concepts are introduced. Students complete courses in two-dimensional design, three-dimensional design, freehand drawing, technical drawing, furniture history, and crafts business practices.

Curriculum

Furniture Design, AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CWFD-213	Introduction to Woodworking and Furniture Design	6
FDTN-111	Drawing I	3
FDTN-131	3D Design I	3
STAR-201	Crafts Drawing Practice	3
STAR-202	Crafts CADD Drawing	3
YOPS-10	YOPS-10 RIT 365: RIT Connections	0
	CAD Studio Electivest	6
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
Second Year		
CWFD-506	Furniture Design: Table Design and Construction	3
CWFD-507	Furniture Design: Bench Design and Construction	3
CWFD-511	Furniture Design: Wood Carving	3
CWFD-512	Furniture Design: Box and Cabinet Design and Construction	3
FDTN-121	2D Design I	3
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-502	STAR Capstone	3
Choose one of the following:		3
FDTN-122	2D Design II	
FDTN-222	2D Design II Workshop: Topic	
	Art History Electives*	6

Total Semester Credit Hours

Please see Wellness Education Requirement for more information. Students completing Associate's degrees are required to complete one Wellness course.

* Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH. † CAD Studio Electives are any College of Art and Design course with a lab or studio component.

Medical Illustration, BFA

www.rit.edu/study/medical-illustration-bfa
Craig Foster, Assistant Professor
585-475-2636, ceffaa@rit.edu

Program overview

What is a Medical Illustrator?

A medical illustrator is a professional artist with advanced education in the sciences (biology, human anatomy, physiology) and in art and design (illustration, 2D/3D/4D digital design, animation, interactive media). They are skilled in creating art that illustrates the things we often cannot see (internal organs of a body, cells and molecules, muscle tissues and tendons) or that need deeper explanation (how a surgery takes place, the inner workings of the human body, how a disease progresses).

Medical illustrators work with scientists, physicians, surgeons, researchers, and other medical specialists to take complex scientific information and distill it into visual images that can be used in a wide range of applications. These can include textbooks, brochures, infographics, interactive models, 2D and 3D animations, motion graphics, courtroom exhibits, digital presentations, educational materials, and more.

Medical Illustration Courses

During the first two years of the medical illustration degree, you will focus on developing your drawing and traditional illustration skills. During this time, you'll attend human biology, anatomy, and physiology classes. Building on this foundation of science courses, the third and fourth years of the major emphasize 2D and 3D computer illustration and animation. As a third and fourth-year student, you'll attend Human Gross Anatomy, a course that includes full head-to-toe dissection in RIT's Cadaver Lab, one of the few undergraduate cadaver labs in the nation. Through collaboration with area hospitals, you will also be able to draw from direct observation of surgical procedures and medical treatments in progress. The medical illustration degree explores all aspects of health care, from the molecular level through the macroscopic and into the theoretical.

Digital technology is integrated into the medical illustration program, which enables you to create highly polished, sophisticated images and well-designed, interactive, educational media presentations that include motion graphics, animation, and sound. You will graduate from the program with a comprehensive medical illustration portfolio that demonstrates your artistic talent, knowledge of scientific visualization, and expertise using multimedia.

Throughout your course work, you may select elective courses that enhance your studies or enable you to pursue an area of personal or professional interest. Electives are available in graphic design, new media design, 3D digital graphics, illustration, graphic visualization, industrial design, interior design, fine arts studio, environmental design, ceramics, glass, metals, textiles, woodworking, filmmaking, and photography. Additional electives are offered as special topics courses.

Refine Your Medical Illustration Portfolio

The medical illustration degree requires studio art experience and a portfolio of original artwork. In addition to offering portfolio requirements, RIT's School of Art offers an annual Pre-College Portfolio Preparation Workshop. This two-week visual arts class is designed to help prepare the portfolios of rising high school juniors and seniors for admission to college art programs. Learn more about the Pre-College Portfolio Prepara-
tion Workshop, including information on workshop dates and how to apply.

Graduate Study in Medical Illustration

RIT offers a medical illustration MFA. This is an advanced scientific illustration program and one of only five medical illustration programs at the graduate level in North America, and the only program in the northeast. The two-year program culminates with the production of a thesis project, which requires extensive background research and an original body of art and design work on a complex medical topic.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in medical illustration.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Medical Illustration, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
FDTN-111	Drawing I	3
FDTN-112	Drawing II	3
FDTN-121	2D Design I	3
FDTN-122	2D Design II	3
FDTN-131	3D Design I	3
ILLS-209	3D Applications: The Figure	3
MEDG-101	General Education - Natural Science Inquiry	3
Perspective: Human Biology I	3	
MEDG-102	General Education - Elective: Human Biology II	1
MEDG-104	General Education - Natural Science Inquiry	
Perspective: Human Biology Laboratory I	1	
YOPS-10	General Education - Elective: Human Biology	3
	Laboratory II	3
	RIT 365: RIT Connections	3
Second Year	General Education - First-Year Writing (WI)	
ARTH-135	General Education - Ethical Perspective	3
Choose one of the following:	General Education - Artistic Perspective: Survey:	

COURSE		SEMESTER CREDIT HOURS
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	3
ARTH-137	General Education - Global Perspective: Survey: Art of the Ancient Americas	3
FDTN-141	4D Design	3
ILLM-507	Computer Applications in Medical Illustration	3
ILLS-214	Anatomical Illustration	3
MEDS-250	Human Anatomy and Physiology I	4
MEDS-251	Human Anatomy and Physiology II	4
	Illustration Professional Elective \ddagger	3
	Open Elective	3
	General Education - Social Perspective	3
Third Year		
ILLM-501	Human Gross Anatomy	6
ILLM-502	Illustrating Human Anatomy	3
ILLM-503	3D Modeling of Organic Forms	3
ILLM-506	3D Animation of Organic Forms	3
ILLM-508	Scientific Visualization	3
	CAD Studio Elective§	3
	General Education - Immersion 1 (WI), 2	6
	Art History Elective \dagger	3
Fourth Year		
ILLM-512	Surgical Illustration	3
ILLM-515	Contemporary Media I	3
ILLM-516	Contemporary Media II	3
ILLM-517	Portfolio and Business Practices (WI-PR)	3
	CAD Studio Electives§	3
	Art History Elective \dagger	3
	General Education - Immersion 3	3
	Open Electives	9

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.
\ddagger Illustration Professional Electives include the following: Illustration I (ILLS-213), Digital Illustration I (ILLS219), and Zoological and Botanical Illustration (ILLS-563).
§ CAD Studio Electives are any College of Art and Design course with a studio or lab component, per catalog restrictions.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. View the Portfolio Requirements for more information.
- Medical illustration requires biology.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

Studio Arts, BFA

www.rit.edu/study/studio-arts-bfa

Jane Shellenbarger, Associate Professor jmssac@rit.edu

Program overview

The studio arts major offers options in ceramics, expanded forms, furniture design, glass, metals and jewelry design, painting, printmaking, and sculpture. The close alignment of curricular content and scheduling among these eight options fosters a sense of community through shared experiences and facilitated interaction. Through this integration, students acquire the conceptual and technical skills required to succeed as creative professionals.

The curriculum engages students in comprehensive inquiry that expands and supports their subject matter, ideation through sketches and models, articulation of a rationale for the application of media and process, and finally the refinement of work through editing and critique. Students are also exposed to a wide scope of visual arts and study their cultural relevance through visiting artists, trips to museums, and attendance at professional conferences. During the senior year, students exhibit their final body of work in a gallery. Guidance and experiential projects focusing on the presentation of work, self-promotion, business practice, and issues of professional engagement within the field help students thrive as creative professionals after graduation.

Upon completion of the program, students may choose to continue their education at the graduate level or begin careers by setting up independent studios and exhibiting their work. They also find employment in the fields of art therapy, art criticism, art restoration, gallery and museum management, set and display design, and marketing and advertising; in auction houses for their knowledge of contemporary and historical art and material culture; or as educators. Faculty members are active artists who exhibit widely and are committed to diverse approaches to art-making. They serve as inspiring role models for studio arts majors and offer them support and networking opportunities as they emerge as professionals.

Options

Students choose an option in one of the following areas:
Ceramics-The ceramics option provides a dynamic environment where intellectual discourse and craftsmanship thrive. Students focus on intellectual development, technical skill, and practical knowledge. The curriculum supports a range of fundamental topics within ceramics, such as sculpture, pottery, mold-making, glazing, firing, and material science, and personal aesthetic development with individual critiques and group discussions. Students selecting this option are equipped with the professional and practical skills necessary to operate a studio business.

Expanded forms-Artists have always challenged the definition of art. These challenges have pushed art into new realms of expression and the public into new ways of seeing. The expanded forms option, like the wider art world, extends beyond the traditional forms of painting, printmaking, and sculpture. Artists have expanded the possibilities for expression. Object making goes hand-in-hand with performance, installation, computer art, and multi-media displays. Students are encouraged
to explore the full spectrum of experimental and non-traditional artistic expression.

Furniture design-The furniture design option engages students in the pursuit of their creative interests while providing a comprehensive technical background in contemporary woodworking. The option focuses on technical expertise, freeing students to investigate a full range of creative expression and professional interests. A carefully sequenced curriculum begins with a firm foundation in the use and maintenance of hand tools, proceeding on to more advanced tools and topics in construction and design.

Glass-Through a rigorous and diversified curriculum, the glass option cultivates artists who are as versatile in their making as they are in their thinking. Studio instruction in glassblowing, flame-working, hot and kiln casting, cold-working, kiln-forming, glass imaging processes, and three-dimensional digital technologies help inform each student's creative potential with glass. An emphasis on research, idea development, material exploration, execution, and presentation equips students with the skills needed to succeed as professionals. Students in the glass option are also eligible to apply to a Glass Studio Residency Program.

Metals and jewelry design-The metals and jewelry design option focuses on design, aesthetics, as well as material and process mastery. Self-discovery is at the heart of student assignments, projects, and group discussions. This option develops students' creative potential through a broad introduction to materials and production techniques before moving on to advanced techniques in various metals.

Painting-Students selecting the painting option engage in contemporary visual art practice through a personal exploration of painting techniques. The comprehensive curriculum covers traditional methodologies as well as contemporary visual art practices. Rigorous studio practice and critical discourse encourage the development of a strong personal language that allow for effective individual expression.

Printmaking-The printmaking option focuses on concepts and techniques. Organized to offer a flexible experience, this option targets the development of problem-solving and skill-building within the context of printmaking. The curriculum addresses a wide variety of media, tools, and both traditional and technological techniques, as well as theoretical concepts to facilitate skill development and experimentation processes.

Sculpture-The sculpture option engages students in the exploration of three-dimensional art-making. Traditional sculptural processes are introduced, such as bronze casting, stone carving, steel fabrication, and mold-making, within a curriculum that focuses on both formal and conceptual development. Working with a broad variety of materials, ideas, and practices, students are prepared to engage in the dialogue of contemporary sculpture. Over the course of the major, students develop the technical, visual, and intellectual skills required to develop a sophisticated body of work.

Pre-College Portfolio Preparation Workshop

The School of Art's annual Pre-College Portfolio Preparation Workshop is a two-week visual arts class designed to prepare the portfolios of rising high school juniors and seniors for admission to college art programs.

Accelerated 4+1 MBA

An accelerated $4+1 \mathrm{MBA}$ option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in studio arts.

Curriculum

Studio Arts (ceramics option), BFA degree, typical course sequence COURSE SEMESTER CREDIT HOURS

First Year		
ARTH-135	General Education - Artistic Perspective: History of Western Art: Ancient to Medieval	3
Choose one of the following: 3		
ARTH-124	General Education - Global Perspective:Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americans	
CCER-124	Clay Studio Survey	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
CCER-206	Ceramic Sculptural Processes	3
CCER-211	Thrown Vessel Forms	3
FDTN-141	4D Design	3
STAR-503	CAD Drawing	3
	General Education - Immersion 1 (WI-GE)	3
	Art History Elective \ddagger	3
	CAD Studio Elective	6
	General Education - Ethical Perspective	3
Choose one of the following:		
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Third Year		
CCER-507	Mold Mechanisms	3
CCER-511	Ceramics Processes	6
CCER-513	Thrown Sculptural Forms	3
STAR-311	Ideation and Series	3
	Art History Elective \ddagger	3
	General Education - Immersion 2	3
	CAD Studio Elective \dagger	3
	General Education - Elective	3
	Open Elective	3
Fourth Year		
CCER-501	Ceramic Practice	3
CCER-511	Ceramic Processes	6
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
	CAD Studio Elective \dagger	3
	General Education - Immersion 3	3
	Open Electives	9
Total Seme	t Hours	120

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger CAD Studio Electives are any College of Art and Design course with a lab or studio component. \ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (expanded forms option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: History of Western Art: Ancient to Medieval	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americans	
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-122	2D Design II	
FDTN-222	2D Design II Workshop: Topic	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
FDTN-141	4D Design	3
PAIT-201	Introduction to Painting	3
PRNT-201	Introduction to Printmaking	3
SCUL-201	Introduction to Sculpture	3
SCUL-511	Expanded Forms	3
STAR-505	Figure Drawing	3
	CAD Studio Electivet	3
	Art History Elective \ddagger	3
	General Education - Ethical Perspective	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Third Year		
SCUL-511	Expanded Forms	6
STAR-311	Ideation and Series	3
Choose one of	wing:	3
CGLS-530	Glass Processes	
NMDE-375	New Media Design Digital Painting	
PHFA-386	Multimedia Arts Workshop: Topic	
PHFA-556	Moving Image and Contemporary Practices	
SCUL-501	Sculpture	
SCUL-583	Welding and Fabrication	
STAR-301	Digital Fabrication Applications for the Studio	
	Art History Elective \ddagger	3
	General Education - Immersion 1 (WI-GE)	3
	CAD Studio Electives \dagger	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
SCUL-511	Expanded Forms	6
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
Choose one of the following:		3
CGLS-530	Glass Processes	
NMDE-375	New Media Design Digital Painting	
PHFA-386	Multimedia Arts Workshop: Topic	
PHFA-556	Moving Image and Contemporary Practices	
SCUL-501	Sculpture	
SCUL-583	Welding and Fabrication	
STAR-301	Digital Fabrication Applications for the Studio	
	General Education - Immersion 2, 3	6
	Open Electives	9
Total Seme	it Hours	120

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
Students take SCUL-511 (Expanded Forms) for 15 credits and choose an additional 6 credits from: SCUL501 (Sculpture), SCUL-583 (Welding and Fabrication), CGLS-530 (Glass Processes), PHFA-556 (Moving Image and Contemporary Practices), PHFA-386 (Multimedia Arts Workshop: Topic), STAR-301 (Digital Fabrication Applications), and NMDE-375 (New Media Design Digital Painting).
\dagger CAD Studio Electives are any College of Art and Design course with a lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (furniture design option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
CWFD-124	Woodworking/Furniture Design Studio Survey	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
CWFD-213	Introduction to Woodworking and Furniture Design	3
CWFD-506	Furniture Design: Table Design and Construction	3
FDTN-141	4D Design	3
STAR-503	CAD Drawing	3
	General Education - Immersion 1 (WI-GE)	3
	Art History Elective \ddagger	3
	CAD Studio Electives \dagger	6
	General Education - Ethical Perspective	3
Choose one of the following:		3
	General Education - Natural Science Inquiry Perspective	
	General Education - Scientific Principles Perspective	
	General Education - Mathematical Perspective A or B	
Third Year		
CWFD-507	Furniture Design: Bench Design and Construction	3
CWFD-511	Furniture Design: Wood Carving	3
CWFD-512	Furniture Design: Box and Cabinet Design and Construction	3
STAR-311	Ideation and Series	3
	Art History Elective \ddagger	3
	General Education - Immersion 2	3
	CAD Studio Elective \dagger	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
CWFD-501	Furniture Design Senior I	6
CWFD-502	Furniture Design Senior II	3
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
	CAD Studio Elective \dagger	3
	General Education - Immersion 3	3
	Open Electives	9

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger CAD Studio Electives are any College of Art and Design course with a lab or studio component.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (glass option), BFA degree, typical course sequence
\(\left.\begin{array}{lll}\hline COURSE \& \& SEMESTER CREDIT HOURS

\hline First Year \& \&

\hline ARTH-135 \& General Education - Artistic Perspective: History of \& 3

\hline Choose one of the following: \& 3

\hline ARTH-124 \& General Education - Global Perspective: Survey: \&

\hline \& Themes in the History of Art\end{array}\right]\)| ARTH-136 |
| :--- |
| |
| |
| |
| General Education - Global Perspective: Survey: |
| Renaissance to Modern |

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger CAD Studio Electives are any College of Art and Design course with a lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (metals and jewelry design option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: History of Western Art: Ancient to Medieval	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
	CAD Studio Elective \dagger	3
Second Year		
CMTJ-206	Methods and Practice	3
CMTJ-207	Design, Fabrication, and Forming	3
CMTJ-211	Design and Fabrication	3
CMTJ-212	Fabrication, Casting, and Mold Making	3
FDTN-141	4D Design	3
STAR-503	CAD Drawing	3
	Art History Elective \ddagger	3
	General Education - Ethical Perspective	3
	General Education - Immersion 1 (WI-GE)	3
Choose one of the following:		3
	General Education - Natural Science Inquiry Perspective	
	General Education - Scientific Principles Perspective	
	General Education - Mathematical Perspective A or B	
Third Year		
CMTJ-301	Metals and Jewelry Design Junior I	6
CMTJ-302	Metals and Jewelry Design Junior II	6
STAR-311	Ideation and Series	3
	Art History Elective \ddagger	3
	General Education - Immersion 2	3
	CAD Studio Elective \dagger	3
	General Education - Elective	3
	Open Elective	3
Fourth Year		
CMTJ-501	Metals and Jewelry Design Senior I	6
CMTJ-502	Metals and Jewelry Design Senior II	3
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
	CAD Studio Elective \dagger	3
	General Education - Immersion 3	3
	Open Electives	9
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information

(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger CAD Studio Electives are any College of Art and Design course with a lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (painting option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey : Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-122	2D Design II	
FDTN-222	2D Design II Workshop: Topic	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
FDTN-141	4D Design	3
PAIT-201	Introduction to Painting	3
PAIT-501	Painting	3
PRNT-201	Introduction to Printmaking	3
SCUL-201	Introduction to Sculpture	3
STAR-505	Figure Drawing	3
	CAD Studio Elective \dagger	3
	Art History Elective \ddagger	3
	General Education - Ethical Perspective	3
Choose one of the following:		3
	General Education - Natural Science Inquiry Perspective	
	General Education - Scientific Principles Perspective	
	General Education - Mathematical Perspective A or B	
Third Year		
PAIT-501	Painting	6
STAR-311	Ideation and Series	3
Choose one of the following:		3
PAIT-460	Watercolor	
PAIT-561	Painting the Natural World	
PAIT-571	Painting the Figure	
	Art History Elective\#	3
	General Education - Immersion 1 (WI-GE)	3
	CAD Studio Electivest	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
PAIT-501	Painting	6
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-502	STAR Capstone	3
Choose one of the following:		3
PAIT-460	Watercolor	
PAIT-561	Painting the Natural World	
PAIT-571	Painting the Figure	
	General Education - Immersion 2, 3	6
	Open Electives	
Total Semester Credit Hours		120

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
Students take PAIT-501 for 15 credits and choose an additional 6 credits from: PAIT-470 (Watercolor), PAIT-
561 (Painting the Natural World), or PAIT-571 (Painting the Figure).
† CAD Studio Electives are College of Art and Design with a lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (printmaking option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: History of Western Art: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following:		3
FDTN-122	2D Design II	
FDTN-222	2D Design II Workshop: Topic	
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
FDTN-141	4D Design	3
PAIT-201	Introduction to Painting	3
PRNT-201	Introduction to Printmaking	3
PRNT-501	Printmaking	3
SCUL-201	Introduction to Sculpture	3
STAR-505	Figure Drawing	3
	CAD Studio Elective \dagger	3
	Art History Elective \ddagger	3
	General Education - Ethical Perspective	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Third Year		
PRNT-501	Printmaking	6
STAR-311	Ideation and Series	3
Choose one of the following:		3
STAR-268	Bookbinding	
STAR-468	Letterpress Printmaking	
STAR-578	Screenprinting	
	Art History Elective \ddagger	3
	General Education - Immersion 1 (WI-GE)	3
	CAD Studio Electivest	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
PRNT-501	Printmaking	6
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
Choose one of the following:		3
STAR-268	Bookbinding	
STAR-468	Letterpress Printmaking	
STAR-578	Screenprinting	
	General Education - Immersion 2, 3	6
	Open Electives	9

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
Students take PRNT-501 for 15 credits and choose an additional 6 credits from: STAR-268 (Bookbinding),
STAR-468 (Letterpress Printmaking), or STAR-578 (Screenprinting).
\dagger CAD Studio Electives are College of Art and Design courses with lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Studio Arts (sculpture option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
Choose one of the following: 3		
ARTH-124	General Education - Global Perspective: Survey: Themes in the History of Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
Choose one of the following: 3		
FDTN-122	2D Design II	
FDTN-222	2D Design II Workshop: Topic	
Choose one of the following: 3		
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
Second Year		
FDTN-141	4D Design	3
PAIT-201	Introduction to Painting	3
PRNT-201	Introduction to Printmaking	3
SCUL-201	Introduction to Sculpture	3
SCUL-501	Sculpture	3
STAR-505	Figure Drawing	3
	CAD Studio Elective \dagger	3
	Art History Elective \ddagger	3
	General Education - Ethical Perspective	3
Choose one of the following:		
General Education - Natural Science Inquiry Perspective		
	General Education - Scientific Principles Perspective	
	General Education - Mathematical Perspective A or B	
Third Year		
SCUL-501	Sculpture	6
STAR-311	Ideation and Series	3
Choose one of the following:		
SCUL-543	Foundry Practices	
SCUL-573	Figure Sculpture	
SCUL-583	Welding and Fabrication	
	Art History Elective \ddagger	3
	General Education - Immersion 1 (WI-GE)	3
	CAD Studio Electives \dagger	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
SCUL-501	Sculpture	6
STAR-411	Business Practices for Artists (WI-PR)	3
STAR-401	STAR Capstone	3
Choose one of the following:		
SCUL-543	Foundry Practices	
SCUL-573	Figure Sculpture	
SCUL-583	Welding and Fabrication	
	General Education - Immersion 2, 3	6
	Open Electives	9

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
Students take SCUL-501 for 15 credits and choose an additional 6 credits from: SCUL-543 (Foundry
Practices), SCUL-573 (Figure Sculpture), or SCUL-583 (Welding and Fabrication).
\dagger CAD Studio Electives are College of Art and Design courses with lab or studio component, per catalog restrictions.
\ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

School of Design

3D Digital Design, BFA

www.rit.edu/study/3d-digital-design-bfa

Shaun Foster, Associate Professor
 585-475-7124, scffaa@rit.edu

Program overview

3D digital designers use their passion to create virtual elements featured in everything from games and movies to visualizations and augmented reality. Vehicles, avatars, lighting, and environments are all designed to imagine something new, visualize an idea, or simulate a process. As you progress through the program you will discover new applications for your skills in creating with this advanced software. On your first day in the program, you begin learning and using the same software that professionals use in related fields. As a program in a university setting, ample opportunity exists to collaborate with engineers, musicians, scientists, animators, and medical professionals which means that you will have opportunities to put your 3D design abilities to use while you are at RIT and when you graduate.

From day one, students in the 3D digital design major use professional 3D software in game design, virtual reality, medical and scientific simulations, data visualization, models for architects and engineers, movies, motion or broadcast graphics, instructional media, and more. In addition to the 3D software, students use motion and facial capture, projection mapping, and 3D printing. Traditional design skills are augmented with principles of time, motion, lighting, rendering, and compositing to create inspiring projects. Alumni work in top companies around the country and the world applying the skills they have learned to design solutions to all kinds of problems.

Interested in a Career in Game Arts?

We've got you covered. The 3D digital design degree allows you to explore your creative interests related to video games. You'll have endless opportunities to collaborate with developers and fellow artists on game and digital media projects. 3D design alumni have gone on to establish successful careers as game artists. Learn how you can use the 3D digital design degree to launch a career in game arts.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart.

Students in the 3D digital design degree are strongly encouraged to participate in cooperative education and internships.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

3D Digital Design, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval Art	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	3
DDDD-101	Introduction to Modeling and Motion	3
DDDD-102	Introduction to Visual Design	3
DDDD-103	Imaging for 3D	3
FDTN-131	3D Design I	3
FDTN-141	4D Design	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Second Year		
DDDD-201	Modeling and Motion Strategies	3
DDDD-202	Layers and Effects	3
DDDD-203	Scripting	3
DDDD-209	Project Planning and Production	3
DDDD-207	Lighting, Materials, and Rendering	3
DDDD-208	Anatomical Figure Drawing	3
FDTN-121	2D Design I	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
	Programming Elective	3
Third Year		
DDDD-301	Professional Practice (WI-PR)	3
DDDD-302	General Education Elective: History of Digital Graphics (WI-PR)	3
DDDD-303	Collaboration Project	3
DDDD-209	Project Planning and Production	3
	3DDD Professional Electives	6
	Open Electives	6
	General Education - Immersion 1, 2	6
	Art History Elective†	3
Fourth Year		
DDDD-402	Senior Capstone I	3
DDDD-403	Senior Capstone II	3
	3DDD Professional Electives	12
	Open Electives	9
	General Education - Immersion 3	3
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Electives

3DDD Professional Electives

COURSE	
DDDD-516	Advanced Studio: Topic
DDDD-517	Experimental Workshop
DDDD-522	Character Design and Rigging
DDDD-522	Environment Design
DDDD-523	Hard Surface Design
DDDD-526	Physical Interface Design
DDDD-527	Real Time Design
DDDD-528	Simulating Natural Phenomena

Programming Electives

COURSE	
CMPR-271	Computational Problem Solving for Engineers
CSCI-140	Computer Science for AP Students
CSCI-141	Computer Science I
IGME-101	New Media Interactive Design and Algorithmic Problem Solving I
IGME-105	Game Development and Algorithmic Problem Solving I
ISCH-110	Principles of Computing
ISTE-100	Computational Problem Solving in Network Domain I
ISE-120	Computational Problem Solving in the Information Domain I

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

Design Exploration

www.rit.edu/study/design-exploration

Peter Byrne, Professor

585-475-6107, pjbfaa@rit.edu

Program overview

If you are passionate about design but are unsure which program best fits your career aspirations the design exploration option is for you. RIT's School of Design offers majors in 3D digital design, graphic design, industrial design, interior design, and new media design. In the first year, students will work closely with their academic advisor to select courses that best match their interests.
The design exploration option requires the submission of a portfolio. View our Portfolio Requirements for more information.

Admission requirements

Freshmen Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the School of Design.
- A portfolio must be submitted. View Portfolio Requirements for more information.

Graphic Design, BFA

www.rit.edu/study/graphic-design-bfa
Carol Fillip, Associate Professor
585-475-7914, Carol.Fillip@rit.edu

Program overview

A graphic design degree is perfect for students who eat, breathe, and sleep design, and would like to apply their skills in a hands-on way. In the graphic design major, we have a balance of design thinking, history, theory, conceptual explorations, problem-solving approaches and strategies, applied projects, and technical development. It all enables our students to create innovative and effective design solutions.

Graphic design is used in everything from branding and identity, books and magazines, advertising, packaging, web and interface design, motion graphics, and just about everything in between.

As an RIT graphic design student, you are exposed to a full range of design topics, including information design, editorial design, environmental design, wayfinding, motion, branding, signage, packaging, interactivity, and UX/UI. We offer collaborative experiences in and out of class that will fully prepare you for internships and co-ops during your studies, and for full-time permanent positions after you graduate. Alumni have worked for companies such as American Girl, Dick's Sporting Goods, Disney, ESPN, Google, L.L. Bean, Mattel, Nickelodeon, Nike, Procter \& Gamble, and Sports Illustrated, just to name a few.
Our program excels in digital creation but also maintains a large foothold and mastery of typographic principles and print. Being adept at both digital and print design is highly marketable, preparing you for a large range of jobs in the graphic media industry that represent digital, print, or both, while also having the capacity to see comprehensive design solutions and consistency across multiple media.

Alumni and guest speakers, along with opportunities for internships, co-ops, and freelance experiences, further enhance the program. Additionally, interdisciplinary and collaborative projects within RIT and with outside organizations result in innovative and meaningful hands-on projects that encourage you to explore the social, ethical, and environmental impact of design. You will be well-prepared to pursue positions within design firms, advertising agencies, corporations, and technology companies around the world.
You will also have access to RIT's world-renowned Vignelli Center for Design Studies, the Cary Graphic Design Archive, and the Cary Graphic Arts Collection which enables you to further enhance your learning and inquiry.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for graduate students in the BFA in graphic design.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Graphic Design, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval Art	
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	
FDTN-111	Drawing I	
FDTN-121	2D Design I	
FDTN-131	3D Design I	
Choose one of the following:		
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
GRDE-106	Graphic Design Studio I	
GRDE-107	Motion Design I	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	
Choose one of the following:		
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A		
Second Year		
GRDE-201	Typography 1	
GRDE-202	Graphic Design Studio II	3
GRDE-205	History of Graphic Design (WI-PR)	
GRDE-206	Typography II	3
GRDE-207	Interactive Design I	3
GRDE-217	Motion Design II	3
	CAD Studio Elective \dagger	3
	Open Elective	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
Third Year		
GRDE-301	Graphic Design Studio III	
GRDE-302	Interactive Design II	3
GRDE-306	Professional Practices	3
GRDE-307	Design Systems I	
GRDE-308	Experiential Graphic Design	3
	Art History Elective \ddagger	
	CAD Studio Elective \dagger	3
	Open Elective	
General Education - Immersion 1 (WI), 2		
Fourth Year		
GRDE-411	Graphic Design Studio IV	3
GRDE-412	Graphic Design Capstone	
GRDE-421	Design Systems II	3
	Professional Electives	
	Open Electives	
	General Education - Immersion	
	General Education - Elective	
Total Semester Credit Hours 120		
Please see General Education Curriculum (GE) for more information. (WI) Refers to a writing intensive course within the major. Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses. † CAD Studio Elective courses are any College of Art and Design course with a studio or lab component, per catalog restrictions. \ddagger Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.		

Electives

Senior Graphic Design History Electives

COURSE	
GRDE-401	Collaborative Design
GRDE-418	Editorial Design
GRDE-422	Interactive Design III
GRDE-423	Typography III
GRDE-428	Advertising Design
GRDE-431	Packaging Systems Collaborative
GRDE-432	Packaging Systems Projects

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

[^2] more information. Summer courses can lead to third-year status in most programs.

Industrial Design, BFA

www.rit.edu/study/industrial-design-bfa
Stan Rickel, Associate Professor
585-475-4745, srrfaa@rit.edu

Program overview

From thumbtacks to athletic wear and medical equipment to home goods - industrial designers produce products to be used by factories, businesses, and everyday people. The industrial design degree at RIT helps you develop the aesthetic sensitivity, technical competence, and the analytical thought needed to improve the user's experience. You will be able to bring your conceptual ideas to life by developing your technical 2D communications skills and 3D prototyping ability. You will also learn how to formally move your ideas and products to the marketplace.

Industrial design involves the integration of form and function as products are designed and created by combining materials, process, computer-aided design, and human factors. Blending technical instruction with studio assignments, studies also include package, exhibit, and furniture design. Aesthetic sensitivity, technical competence, and analytical thought are developed and applied to meet the challenge of designing products for human needs.

What You'll Study

The industrial design degree integrates major courses, studio and open electives, the liberal arts, and art history electives. Computer skills, design perspectives, career preparation, and exposure to the related areas of publishing, photography, engineering, and information technology are integrated into the curriculum.

4+2 BFA/M.Arch. Pathway

A BFA degree takes four years to complete and an M.Arch. degree typically takes an additional three to four years. In RIT's $4+2$ BFA/M.Arch. Pathway, you'll complete a BFA in industrial design or interior design and then enter the second year of RIT's NAAB-accredited master of architecture degree with advanced standing. Learn how this accelerated pathway enables you to earn a BFA and an M.Arch. degree in as little as six years, saving you time and money.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Professional Organizations

The School of Design maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top
companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in industrial design.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Industrial Design, BFA degree, typical course sequence

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

Interior Design, BFA

www.rit.edu/study/interior-design-bfa
Mary Golden, Associate Professor
585-475-7893, megfaa@rit.edu

Program overview

The interior design degree believes in creating contextually appropriate, architecture-centric design solutions grounded in evidence-based design research and human behavior theory. Our goal is to inspire and prepare students to generate holistic, technically creative construction solutions that are not only resilient, adaptable, and sustainable, but purposeful and universally designed.

We are a professional interior design BFA program within a design college, in a technical university affording broader access to allied programs, technology resources, and relationships that push traditional boundaries of interior design education.

From freshman through senior year, you'll be charged with addressing real-world projects in the studio along with peers in collaborative, multidisciplinary teaming activities and in independent studies with research faculty. As a student in the program accredited by the Council for Interior Design Accreditation (CIDA), you'll begin your education with an interdisciplinary Foundations and first-year experience.

The comprehensive interior design curriculum synthesizes the technical and experiential qualities of the built environment with a consciousness for global affairs. Our professionally certified and experienced faculty team mentor you through project-based learning to enhance the human experience with consideration for the health, safety, and welfare of people. In addition to interior design studies and extensive studio electives within the college, you can select a liberal arts immersion offering concentrated areas of study in a unique interest or complementary subject matter relevant to our profession.

Our studio culture is a rigorous, student-centered learning environment with a commitment to celebrating individual capabilities and advancing the program as a collaborative collective. Our enthusiasm for seeing the world through multiples lenses is grounded by curiosity, respectful inquiry, and intellectual discourse. We believe that together we can design a more profoundly meaningful future through the interior environment.

Our Mission

The interior design degree's mission is to educate you to be a designer who contributes to their professions, communicates effectively within your discipline, has a lifelong attitude of inquiry, and makes a positive impact on society. To this end, we promote an innovative educational community that balances expression, imaginative problem solving, aesthetic understanding, professional and environmental responsibility, and creativity.

Educational Philosophy

Our comprehensive interior design major synthesizes design history, building systems, space planning, and design process with a consciousness for global affairs so that students may contribute to the profession with a deep-rooted understanding of society, culture, and the environment. By maximizing an array of academic and professional opportunities, our graduates are reshaping how we live in the world.

Program Goals

1. Explore, challenge, and enhance interior design abilities through problem-solving
2. Demonstrate knowledge of historical, stylistic, theoretical, regional, and cultural design vocabularies
3. Use materials, techniques, and processes used in the built environment with a focus on sustainable design
4. Conduct research and analyze information
5. Introduce design theory, methodology, formal design elements, typology, and necessary technical skills to communicate concepts
6. Examine business practices, regulations, standards, and codes of interior design

Invaluable Resources

Dedicated studio and lecture spaces provide you with the freedom to interact with peers and faculty, fostering teamwork and collaboration. Our active material resource center is akin to the professional office library with "go-to" and specialty products that are managed and updated regularly by manufacturer vendors. RIT's world-renowned Vignelli Center for Design Studies also serves as a vital resource for understanding the process and product of design by some of the world's most acclaimed designers.

Faculty

We have professional faculty who are active in the industry and strive to provide an atmosphere akin to the professional workplace. Our adjuncts are practicing professionals immersed in the subject matters they instruct and extend our reach into the local design community, introducing you to real projects and experiences. Our faculty team is building a studio culture of community and an interior design program focused on excellence, diversity, and pluralism.

Staying Connected

Our illustrious alumni are committed to mentoring students through internship and professional networking activities. Additionally, as an International Interior Design Association (IIDA) Campus Center, we facilitate regular interaction and events with industry professionals.

Professional Memberships

The School of Design maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

4+2 BFA/M.Arch. Pathway

A BFA degree takes four years to complete and an M.Arch. degree typically takes an additional three to four years. In RIT's $4+2$ BFA/M.Arch. Pathway, you'll complete a BFA in industrial design or interior design and then enter the second year of RIT's NAAB-accredited master of architecture degree with advanced standing. Learn how this accelerated pathway enables you to earn a BFA and an M.Arch. degree in as little as six years, saving you time and money.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's
degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for graduate students in the BFA in interior design.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Interior Design, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval Art	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		
FDTN-132	3D Design II	
FDTN-232	3D Design II Workshop: Topic	
INDE-101	Introduction to Interior Design I	3
INDE-102	Design Drawing I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
	General Education - Natural Science Inquiry Perspective	
	General Education - Scientific Principles Perspective	
	General Education - Mathematical Perspective A or B	
Second Year		
INDE-201	Introduction to Interior Design II	3
INDE-202	Design Drawing II	3
INDE-203	Digital Graphics	3
INDE-207	Color and Lighting Theory	3
INDE-212	Hospitality Design	3
INDE-222	Design Issues (WI-PR)	3
	CAD Studio Electives*	6
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
Third Year		
INDE-301	Office Design	3
INDE-302	Exhibition and Merchandising Design	3
INDE-303	Materials and Specifications	3
INDE-304	Building Systems	3
INDE-345	History of Architecture, Interiors, and Furniture I	3
INDE-346	History of Architecture, Interiors, and Furniture II	3
INDE-405	Business Practices and Career Planning	3
	Open Elective	3
	General Education - Immersion 1 (WI), 2	6
Fourth Year		

COURSE		SEMESTER CREDIT HOURS
INDE-401	Multi-Story/Multi-Purpose Designt	3
INDE-403	Health Care Design	3
INDE-407	Contract Documents	3
INDE-411	Interior Design Capstone I	3
INDE-412	Interior Design Capstone II	3
	General Education - Immersion 3	3
	Open Electives	9
	General Education - Elective	3

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

* CAD Studio elective courses are any College of Art and Design course with a studio or lab component, per catalog restrictions.
†Course is 4 credits until Fall 2025-2026. Students admitted Fall 2022-2023 will likely take this course at 3 credits and as calculated above.

Accreditation

The interior design program maintains accreditation from the Council for Interior Design Accreditation (CIDA), which includes student achievement data.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

New Media Design, BFA

www.rit.edu/study/new-media-design-bfa
Adam Smith, Associate Professor
585-475-4552, aesfaa@rit.edu

Program overview

Every day, millions of people engage in interactive digital experiences, from smartphones and smart TVs, to tablets, wearables, gaming systems, and more. In the new media design degree, you'll explore dynamic aspects of digital design-visual design, user experience design, interaction, motion graphics, and technology-that give you the skills you need to create captivating, interactive media.

What is New Media?

New media is an ever-changing form of digital communication that engages, immerses, and entertains its users.

The term new media was first coined in the mid-80s to refer to the impact computing was beginning to have on traditional forms of media, such as newspapers, radio, and television. But as digital platforms began to evolve beyond the internet, new media came to encompass all types of information and entertainment accessed by our computers, phones, and tablets. New media now encompasses anything that integrates communication, computing, and technology - from social media (Facebook, Instagram) and streaming services (Spotify, Hulu, Amazon Prime), to highly interactive digital technologies like wearables (Apple Watch, FitBit), virtual reality, augmented reality, and gaming.

RIT's New Media Design Degree

In the new media design degree, your course work will help you build the skills you need to design for interactive media. These courses include visual design foundations, 2D and 4D design, animation, information design, user interface design, user experience design, 3D modeling, motion graphics, web and multimedia technologies, usability research, and programming. You'll gain the skills needed to design cutting-edge interactive solutions from mobile apps to fully immersive digital environments.

Design for interactive media requires collaboration with programmers skilled in interactive design. As a new media design student, you'll benefit from close collaboration with students in RIT's new media interactive development major, which focuses heavily on programming and interactive development. Courses in this major address the computing and programming side of new media design, with classes covering topics in mobile development and alternative interfaces, website design and implementation, physical/wearable computing, game design, game development, design and media production, interactive audio, and more. Both programs share core courses in programming and design, enabling students in both majors to develop the complementary skill sets needed for success in the industry.

Your senior year concludes with New Media Design Capstone I and II, a two-course, two-semester capstone project in which you'll team up with students from the new media interactive development major to work on a project for a corporate client looking for a solution to a digital challenge their organization faces. You'll gain the teamwork experience needed as you learn to develop, navigate, and leverage the designer-programmer-client relationship. With many courses both project- and team-based, you'll build a robust portfolio of interactive projects, positioning you well to showcase your skills, capabilities, and knowledge to prospective employers upon graduation. View samples of new media team projects to see what our teams have created.

Careers in Digital Media

Digital media is everywhere and we interact with it daily, on phones and tablets, on wearables, and in gaming. As a result, careers in digital media, new media design, and design for interactive media are booming. With a new media design degree, you will graduate with the skills and the experience to launch a career in visualization design, interactive design, and user experience design for digital advertising, marketing, social media, mobile app development, web applications, entertainment and gaming, and corporate design.

You'll also be well-positioned to utilize your skills in video and audio production, game design, 4D design, television streaming and broadcasting, interactive website design, graphic design, illustration, and more.

Connect with New Media Professionals

The School of Design maintains memberships in a variety of professional organizations that foster a community of design, new media, interactive design, and digital design professionals, including Industrial Designers Society of America, ACM Siggraph, Society of Environmental Graphic Designers, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Institute of Graphic Arts, and International Interior Design Association.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in new media design.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

New Media Design, BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NMDE-103	New Media Design Interactive I	3
FDTN-111	Drawing I	3
Choose one of the following:		3
FDTN-112	Drawing II	
FDTN-212	Drawing II Workshop: Topics	
FDTN-121	2D Design I	3
FDTN-141	4D Design	3
NMDE-111	New Media Design Digital Survey I	3
NMDE-112	New Media Design Digital Survey II	3
YOPS-10	RIT 365: RIT Connections	0
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
General Education - Ethical Perspective		3
General Education - First-Year Writing (WI)		3
Second Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval Art	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern Art	3
IGME-101	New Media Interactive Design and Algorithmic Problem Solving I	4
IGME-102	New Media Interactive Design and Algorithmic Problem Solving II	4
NMDE-201	New Media Design Elements II	3
NMDE-202	New Media Design 3D	3
NMDE-203	New Media Design Interactive II	3
NMDE-204	New Media Design Animation	3
	CAD Studio Elective \ddagger	3
General Education - Social Perspective		3
Third Year		
NMDE-305	New Media Design Motion Graphics	3
NMDE-302	New Media Design Graphical User Interface	3
NMDE-301	New Media Design Elements III (WI-PR)	3
NMDE-303	New Media Design Interactive III	3
	Art History Electivest	6
	Open Electives	6
	General Education - Immersion 1 (WI)	3
	Professional Elective§	3
Fourth Year		
NMDE-401	New Media Design Capstone I	3
NMDE-404	New Media Design Interactive IV	3
NMDE-411	New Media Design Capstone II	3
NMDE-406	New Media Design Experimental	3
	General Education - Immersion 2, 3	6
	General Education - Elective	3
	Open Electives	9

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH. \ddagger CAD Studio Elective courses are any College of Art and Design course with a studio or lab component, per catalog restrictions.
§ Professional Elective courses are any course offered by the following disciplines: GRDE, IGME, ISTE, IDDE, DDDD, SOFA, or photography (PHAP, PHAR, PHFA, PHPJ, PHVM, PHPS).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree

Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine
admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

School of Film and Animation

Film and Animation, BFA

www.rit.edu/study/film-and-animation-bfa
Brian Larson, Associate Professor
585-475-2711, bjlppr@rit.edu

Program overview

The film and animation major is for students who recognize the moving image as an expressive force uniquely important to modern life. As a bachelor of fine arts student, you have two options to choose from to pursue your craft. The animation degree path focuses on 2D, 3D, and stop motion animation spanning from conception to application to final production of short films. The film degree path focuses on production through visual and sound artistry utilizing hands-on experience with camera, editing, and sound equipment. The major ultimately develops students' production skills and promotes film and animation as creative media.

Plan of Study

The curriculum emphasizes production, with students beginning their first year working in 16 mm film, digital HD video, and animation. Production work continues in every semester. Students may choose one of two options: animation or production. The major prepares students to produce, creatively and practically, their own independent work and/or fulfill professional production responsibilities in any medium suitable to their interests and abilities.

Through lectures and laboratories, students develop individual skills in moving-image communications and learn the aesthetic principles governing art. Technology and technique are never taught as an end in themselves but in terms of learning to use the tools necessary to achieve a creative goal in relation to the audience.

Students produce several short films in either live-action or animation by working through all phases of production, from scripting, production planning, and budgeting to shooting, designing, animating, editing, and sound design. Students further their learning of visual and sound artistry through hands-on experience with camera and sound equipment. Film, video, and animation projects are designed by individual students. A wide variety of styles and intentions is expressed in the department's work.

Utilizing research, critical thinking, creativity, and a range of problemsolving principles, students are taught to address complex motion imaging workflow issues within the constraints of time, space, budget, and technology. Upon graduation, students enjoy a variety of career opportunities within feature film and television production.

Interested in a Career in Game Arts?

We've got you covered. The film and animation major allows you to explore your creative interests related to video games. You'll have endless opportunities to collaborate with developers and fellow artists on game and digital media projects. Film and animation alumni have gone on to establish successful careers as game artists. Learn how you can use the film and animation major to launch a career in game arts.

Memberships

The school maintains memberships in a number of professional organizations, including: Animation World Network, College Art Association, Rochester Audio Visual Association, Society of Motion Picture and Television Engineers, University Film and Video Association, Siggraph, and BEA.

Summer Session

The School of Film and Animation offers a limited selection of courses during the summer term. These range from beginning courses to those requiring a substantial background. For information on summer workshops, please contact the school.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in film and animation.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Film and Animation (animation option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		3
ARTH-124	General Education - Global Perspective: Survey:Themes in the History of Art	
ARTH-135	General Education -- Global Perspective: Survey: Ancient to Medieval Art	
ARTH-136	General Education -Global Perspective: Survey: Renaissance to Modern Art	
ARTH-137	General Education - Global Perspective: Survey: Arts of the Ancient Americas	
SOFA-101	Production	3
SOFA-107	Principles of Animation	3
SOFA-121	General Education - Artistic Perspective: Animation I	3
SOFA-122	Fundamentals of Computers and Imaging Technology	3
SOFA-131	Film History and Theory I	
YOPS-10	RIT 365: RIT Connections	0
FDTN-121	2D Design I	3
FDTN-131	3D Design I	3
Choose one of the following:		3
SOFA-108	Drawing for Animation (2D)	
SOFA-209	Introduction to 3D Modeling (3D)	
	General Education - First-Year Writing (WI)	3
Second Year		
SOFA-205	Basic Sound Recording	3
SOFA-217	Animation Production Workshop I	4
SOFA-228	Animation Scriptwriting and Storyboard (WI-PR)	3
SOFA-541	History and Aesthetics of Animation (WI-PR)	3
Choose one of the following:		3
SOFA-203	2D Animation I (2D)	
SOFA-215	3D Animation I (3D)	
SOFA-522	Stop Motion Puppet Fundamentals	
Choose one of the following:		3
SOFA-224	2D Digital Animation (2D)	
SOFA-226	Advanced 3D Modeling (3D)	
Choose one of the following:		3
SOFA-216	3D Animation II (3D)	
SOFA-218	Concept and Character Design (2D)	
SOFA-533	Advanced Stop Motion Techniques	
	Open Elective	3
General Education - Ethical Perspective		3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Third Year		
SOFA-303	Animation Production Workshop II	6
SOFA-518	Business and Careers in Animation	3
Choose one of the following:		3
SOFA-323	2D Animation II: Performance	
SOFA-582	Alternative Frame By Frame	
CAD Elective \ddagger		
Choose one of the following:		3
SOFA-575	3D Lighting and Rendering	
CAD Elective \ddagger		
Professional Electives		6
General Education - Social Perspective		3
General Education - Immersion 1		3
Open Elective		3
Fourth Year		
Choose one of the following:		3
SOFA-411	Animation Capstone I	
	CAD Elective \ddagger	
Choose one of the following:		3
SOFA-411	Animation Capstone I	
SOFA-412	Animation Capstone II	
CAD Elective \ddagger		
History and Aesthetics Elective		3
Open Electives		9
General Education - Immersion 2, 3		6
CAD Elective \ddagger		3
	General Education - Elective	3

Total Semester Credit Hours

Electives

History and Aesthetics Electives

COURSE	
ARTH-\#\#\#	Any "ARTH" undergraduate course
PHAR-211	Histories and Aesthetics of Photography I
PHAR-212	Histories and Aesthetics of Photography II
SOFA-511	Film Sound Theory: Music
SOFA-512	Film Sound Theory: Effects
SOFA-513	Film Sound Theory: Voice
SOFA-561	New Documentary Issues
SOFA-562	Film History
SOFA-566	Documentary Film History
IDEA-242	Comics: Image \& Text in Popular Culture

Professional Electives

COURSE	
ENGL-386	World Building Workshop
ILLS-468	Fantastic Illustration
ILLS-472	Sketchbook Illustration
SOFA-221	After Effects for Animators
SOFA-225	Performance Resources for Animation
SOFA-263	Virtual Production II
SOFA-516	Virtual Production I
SOFA-529	Experimental Animation
SOFA-531	Digital Effects \& Compositing
SOFA-556	Transformative Trends in Entertainment
SOFA-557	Chasing Rainbows: Entertainment Distribution
SOFA-581	Particles \& Dynamics
SOFA-583	Building the 3D Character
SOFA-586	Programming for 3D Animators

Film and Animation (production option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Global Perspective: Survey: Ancient to Medieval Art	
ARTH-136	General Education - Elective: Survey: Renaissance to Modern Art	3
SOFA-101	Production	3
SOFA-105	Documentary Field Practices	
SOFA-112	Fundamentals of Screenwriting	3
SOFA-121	General Education - Artistic Perspective: Animation I	3
SOFA-122	Fundamentals of Computers and Imaging Technology	
SOFA-131	Film History and Theory I	
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Ethical Perspective	3
Second Year		
SOFA-502	Production Processes	6
SOFA-205	Basic Sound Recording	3
SOFA-206	Directing	3
SOFA-208	Dramatic Structure (WI-PR)	3
Choose one of the following:t		
SOFA-211	Documentary Workshop	
SOFA-212	Fiction Workshop	
SOFA-213	Radical Cinema Workshop	
Choose one of the following:		
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
SOFA-214	Fundamentals of Editing	3
	CAD Elective¥	
	General Education - Social Perspective	
Third Year		
SOFA-306	Senior Capstone Seminar	
SOFA-514	Business and Careers in Film	3
	History and Aesthetics Electives	3
	CAD Electives \ddagger	6
	SOFA Craft Choice§	6
	Open Electives	6
	General Education - Immersion 1 (WI-GE)	3
Fourth Year		
SOFA-416	Production Capstone I	
SOFA-417	Production Capstone II	
	Open Electives	9
	General Education - Immersion 2, 3	6
	CAD Elective\#	3
	History and Aesthetics Elective	

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

+ SOFA production workshop courses include Documentary Workshop (SOFA-211), Fiction Workshop (SOFA-212), and Radical Cinema Workshop (SOFA-213). Students must complete two production workshops over the course of three semesters, starting in the spring of the second year and ending in the spring of the third year. Once the student has completed two different workshops, courses may be repeated for credit
\ddagger CAD Elective - any College of Art and Design course
§ SOFA craft choice courses include Advanced Sound Recording (SOFA-521), Advanced Editing (SOFA523), Advanced Directing (SOFA-524), Writing the Short (SOFA-526), Advanced Cinematography I (SOFA-578).

Electives

History and Aesthetics Electives

COURSE	
ARTH-\#\#\# Any "ARTH" undergraduate course ANTH-310 African Film ANTH-430 Visual Anthropology MLFR-352 The French Heritage in Films PHAR-211 Histories and Aesthetics of Photography I PHAR-212 Histories and Aesthetics of Photography II SOFA-511 Film Sound Theory: Music SFOA-512 Film Sound Theory: Effects SFFA-513 Film Sound Theory:Voice SOFA-541 History and Aesthetics of Animation	

COURSE	
SOFA-561	New Documentary Issues
SOFA-562	Film History
SOFA-566	Documentary Film History
VISL-373	American Film Since the Sixties

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, science, design, drawing, and film, video, or animation.

Appropriate associate degree programs for transfer

Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges.

Portfolio Guidelines

Specific instructions on portfolio submission for applicants to the film and animation major are available on the college website. The review committee is looking for work that is original in concept and content. It does not necessarily need to be motion media, but should be visual or aural. Examples include films/videos, photos, drawings, paintings, sculpture, stop-motion puppets, scripts, creative writing, storyboards, and original music.

Motion Picture Science, BS

www.rit.edu/study/motion-picture-science-bs
Ricardo Figueroa, Associate Professor 585-475-2745, rrfppr@rit.edu

Program overview

What's the last great movie or TV show you saw that made a lasting impression on you? The most ingenious minds behind the most captivating shows and movies apply their knowledge of science and engineering, and use their passion for storytelling to make film, television, and animation possible.

The BS in motion picture science provides a science- and engineeringbased education in the fundamental imaging technologies used for the motion picture industry. By combining a core curriculum in filmmaking, production, and digital cinema from the College of Art and Design and course work from the imaging science major in the College of Science, the motion picture science degree prepares students in the art and science of feature film, television, and animation production. Topics include film and digital image capture, film scanning, digital image manipulation, color science, visual effects, and digital and traditional projection. New facilities provide students with hands-on experience on the same equipment being used in major motion picture production today.
Utilizing research, critical thinking, creativity, and a range of prob-lem-solving principles, students are taught to address complex motion imaging workflow issues within the constraints of time, space, budget, and technology. Graduates enjoy a variety of career opportunities. Our alumni develop digital cinema technology, manage feature film and television post-production, design imaging equipment, and conduct research and development that continues the advancement of motion imaging technology.

Industry Connections

Students are active in making industry connections through attendance at large national conferences, including the National Association of Broadcaster's annual trade show and the Society of Motion Picture and Television Engineer's Annual Technical Conference \& Exhibition. Additionally, students, faculty, and alumni are routinely recognized at SMPTE's annual conference for their innovations and contributions to cinema technology. Students and alumni have won numerous SMPTE awards for their undergraduate research at RIT and for their research as industry professionals.

Professional Student Organizations

RIT's School of Film and Animation maintains memberships in a number of professional organizations: Animation World Network, College Art Association, Rochester Audio Visual Association, Society of Motion Picture and Television Engineers, University Film and Video Association, Siggraph, and BEA.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for graduate students in the BS in motion picture science.

Curriculum

Motion Picture Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
IMGS-181	Freshman Imaging Project I	3
IMGS-221	General Education - Elective:Vision \& Psychophysics	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	4
SOFA-101	Production	3
SOFA-103	General Education - Elective: Introduction to Imaging and Video Systems	3
SOFA-205	Basic Sound Recording	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Second Year		
IMGS-180	Object-Oriented Scientific Computing	3
IMGS-211	Probability and Statistics for Imaging	3
IMGS-261	General Education - Elective: Linear and Fourier Methods for Imaging	4
IMGS-351	General Education - Elective: Fundamentals of Color Science	3
PHYS-212	General Education - Scientific Principles Perspective: University Physics II	4
SOFA-121	General Education - Elective: Animation I	3
SOFA-502	Production Processes	6
SOFA-517	IT Fundamentals for Digital Media	3
	General Education - Ethical Perspective	3
Third Year		
IMGS-251	Radiometry	3
IMGS-321	General Education - Elective: Geometric Optics	3
IMGS-361	Image Processing and Computer Vision I	3
IMGS-362	Image Processing \& Computer Vision II	3
SOFA-311	Image Capture and Production Technology	3
SOFA-312	Digital Post Production Technology (WI-PR)	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Immersion 1	3
	Track Elective	3
Fourth Year		
SOFA-313	Film Projection and Digital Cinema	3
SOFA-401	Senior Project I	3
SOFA-402	Senior Project II	3
	General Education - Social Perspective	3
	General Education - Immersion 2 (WI-GE), 3	6
	Open Electives	12

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Track Electives

Choose one of the following:	
IMGS-341	Interactions Between Light and Matter
SOFA-105	Documentary Field Practices
SOFA-209	Introduction to 3D Modeling
SOFA-221	After Effects for Animators
SOFA-516	Virtual Production I
SOFA-531	Digital Effects \& Compositing
SOFA-567	Digital Color Correction
SOFA-568	Digital Color Management
SOFA-586	Programming for 3D Animators

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
Motion picture science requires 3 years of math; pre-calculus
and
physics are recommended.

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, science, design, drawing, and film, video, or animation.

Appropriate associate degree programs for transfer

Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges.

School of Photographic Arts and Sciences

Photographic and Imaging Arts, BFA

www.rit.edu/study/photographic-and-imaging-arts-bfa
Christye Sisson, Professor
585-475-7197, cpspph@rit.edu

Program overview

The photographic and imaging arts major-with options in advertising photography, fine art photography, photojournalism, and visual mediahas a rigorous curriculum designed with individual achievement in mind. It features an immersive and hands-on perspective geared towards creativity and innovation. Enrollment in photography classes begins on day one of the first year. Theoretical and experimental components lead to the development of broad-based skills required of professionals in today's ever-changing image culture, art world, and industries. With access to more than 150 unique photography, video, multimedia, webbased, and publication courses, students are challenged using real-world problems to produce successful real-world results.

Photographic and imaging arts majors participate in an educational community that includes required course work in general studies and operates in an environment with both undergraduate and graduate students. It is a community where students have the opportunity to work and study with our highly respected and accomplished faculty in state-of-the-art facilities. The School of Photographic Arts and Sciences also offers a wide array of visiting professionals, events, and talks, including the Charles Arnold Lecture Series and the RIT Big Shot, along with non-credit bearing summer workshops. Students undecided on which photography major best meets their career aspirations and interests may apply to the undeclared photography option.

Options

Advertising Photography

The advertising photography option prepares students for diverse and rewarding careers in the field of visual communications. While encouraging and nurturing students' individual image-making practice, students learn to create photographs and moving media for a wide range of commercial use in today's fast changing media environment.

The option provides flexibility and specialization within the course curriculum, providing students with a broad overview of the field. Advanced courses allow students to explore a variety of commercial specializations from traditional still life and portraiture, to interdisciplinary courses that model real world team collaborations with graphic designers, new media artists, industrial designers, and computer scientists. This flexibility also enables students to take elective courses from other departments across the university, in majors as diverse as graphic design, visual culture, philosophy, or fine art, in order to enrich their personal visual expression. Within the curriculum, advertising photography students study the inner workings and business aspects of the photographic and imaging industries. In an ever-growing global market, the school encourages and offers many study abroad opportunities for students.

The faculty consists of both full- and part-time professors-all of whom continue their personal photo arts practice and have extensive commercial experience as professional photographers. Students work collaboratively to conceive and execute camera-based work that is both cutting-edge and strategic. Along with conventional print-based imagery, students may also work in moving media, emerging and interactive
technologies that have real-world application in the commercial industry. Students build a strong professional portfolio throughout their time in the program. For more information on the advertising photography option, including samples of student work and alumni profiles, visit Advertising Photography Option-Photographic and Imaging Arts BFA.

Fine Art Photography

The fine art photography option prepares students for careers as visual artists, educators, editorial photographers, or freelance artists. Graduates are employed in a number of professional fine-art related institutions such as museums, archives, studios, and commercial galleries. The primary goal is to nurture the artist's personal aesthetic vision through photographic expression. Studying the theoretical and practical skills needed to create thought-provoking and meaningful images develops technical, conceptual, and aesthetic abilities, and furthers students' goals as contemporary image-makers.

The interdisciplinary curriculum enables students to explore other related fields in the fine arts, including painting, drawing, sculpture, graphic design, video, film, animation, printmaking and printing, computer graphics, and web publishing. Foundation and specialized courses include digital imaging workflow, alternative processes, new media, history and aesthetics of photography, and exhibition display.

Students have the opportunity to enroll in independent projects, educational internships, or co-ops in galleries, workshops, or other art and imaging centers. Students may choose to spend a year abroad earning credit in an applicable field of their choosing. For more information on the fine art photography option, including samples of student work and alumni profiles, visit Fine Art Photography Option-Photographic and Imaging Arts BFA.

Photojournalism

Photojournalism teaches students to produce non-fiction visual reporting that tells the stories of people, social issues and events for diverse and modern media outlets including digital and print. Students learn to create and publish both still photographic reporting as well as moving and interactive media that document our diverse culture, evoking both the momentous and the everyday circumstances of contemporary life and society. The photojournalism option allows flexibility and individual specialization where students can find their primary interest. Students take required courses in photojournalism fundamentals, picture editing, and multimedia, including sound, video gathering, and video editing.

Students then may choose to take extra courses in an area in which they want further specialization, including picture editing, still photojournalism field-work, or multimedia storytelling. Students contribute to the creation of special publications centered on community activity and awareness, and provide staff support to RIT's student-run magazine, The Reporter. Students also have the opportunity to travel to Washington, D.C., and New York to meet with potential employers that represent the wide spectrum where photojournalists currently work. For more information on the photojournalism option, including samples of student work and alumni profiles, visit Photojournalism Option-Photographic and Imaging Arts BFA.

Visual Media

The visual media option allows students to integrate the graphic communications professions of photography, media design, and business. Most visual media students earn a minor in business. This option prepares students for a career as a visual media specialist or other professional positions that have a demand for photographically skilled professionals who can work effectively with graphic designers, print media specialists, multimedia and social media professionals.

The visual media curriculum emphasizes photographic proficiency, in both photographic and digital imaging techniques, and has two specialized focuses on media design and business (management and/or marketing). Students also may utilize electives to broaden their interests.

This option is ideal for students who wish to experience various aspects of the graphics industry. Students are strongly encouraged to spend time in internships to strengthen their education and to gain hands-on experience. Upon graduation, students are diversely skilled visual media professionals who are ready to enter an exciting career in photography, media design, business management, marketing (including art directing and project management), social media, or advertising. For more information on the visual media option, including samples of student work and alumni profiles, visit Visual Media Option-Photographic and Imaging Arts BFA.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education, internships, and other experiential learning opportunities are optional but strongly encouraged for students in the BFA in photographic and imaging arts.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Photographic and Imaging Arts (advertising photography option), BFA degree, typical course sequence

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger Please consult an adviser for a complete list of courses that fulfill the advertising specialization requirement.
\ddagger Please consult an adviser for a complete list of courses that fulfill the professional elective requirement.
\S CAD elective refers to any course in the College Art and Design.
** Please consult an advisor for a complete list of imaging core courses.

Photographic and Imaging Arts (fine art photography option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
PHAR-101	Photographic Arts I	4
PHAR-102	Photographic Arts II	4
PHPS-106	Photographic Technology I	3
PHPS-107	Photographic Technology II	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Second Year		
FDTN-141	4D Design	3
PHAR-201	Elements of Fine Art Photography	3
PHAR-211	Histories and Aesthetics of Photography I	3
PHAR-212	Histories and Aesthetics of Photography II	3
Choose one of the following:		3
PHAR-202	Elements of Advertising Photography	
PHAR-203	Elements of Photojournalism	
PHAR-204	Elements of Visual Media	
	CAD Elective	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
	Open Electives	3
	General Education - Elective	3
Third Year		
PHFA-301	Fine Art Core I	3
PHFA-302	Fine Art Core II	3
PHFA-401	Professional Development for Artists (WI-PR)	3
	Art History Elective	3
	Fine Art Photography Professional Elective \ddagger	6
	CAD Elective§	3
	General Education - Immersion 1 (WI-GE), 2	6
	Open Elective	3
Fourth Year		
PHFA-402	Fine Art Photography Portfolio I	3
PHFA-403	Fine Art Photography Portfolio II	3
	Fine Art Photography Professional Elective \ddagger	6
	CAD Electives§	9
	Open Elective	6
	General Education - Immersion 3	3

Please see General Education Curriculum (GE) for more information.
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Please consult an adviser for a complete list of courses that fulfill the fine art photo specialization requirement
\ddagger Professional Electives are Art History courses which are coded in SIS with the Art History attribute, ARTH. § CAD elective refers to any course in the College Art and Design.
** Please consult an advisor for a complete list of imaging core courses.

Photographic and Imaging Arts (photojournalism option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
PHAR-101	Photographic Arts I	4
PHAR-102	Photographic Arts II	4
PHPS-106	Photographic Technology I	3
PHPS-107	Photographic Technology 11	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Second Year		
FDTN-141	4D Design	3
PHAR-203	Elements of Photojournalism	3
PHAR-211	Histories and Aesthetics of Photography I	3
PHAR-212	Histories and Aesthetics of Photography II	3
Choose one of the following:		
PHAR-201	Elements of Fine Art Photography	
PHAR-202	Elements of Advertising Photography	
PHAR-204	Elements of Visual Media	
General Education - Social Perspective		3
General Education - Ethical Perspective		3
CAD Elective		3
Open Electives		3
General Education - Elective		3
Third Year		
IDEA-301	Foundations of Project Development (WI-PR)	3
PHPJ-302	Photojournalism I	3
PHPJ-306	Picture Editing	
PHPJ-307	Ethics and Law	3
PHPJ-315	Non-Fiction Multimedia	3
PHPJ-455	Advanced Non-Fiction Multimedia	3
	CAD Elective§	3
General Education - Immersion 1,2Open Elective		6
		3
Fourth Year		
PHPJ-401	Photojournalism Capstone 1 (WI-PR)	3
PHPJ-402	Photojournalism Portfolio and Professional Development	3
	CAD Electives§	9
	Open Elective	6
	General Education - Immersion 3	3
	Photojournalism Professional Electives \ddagger	6

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger Please consult an adviser for a complete list of courses that fulfill the photojournalism specialization requirement.
\ddagger Please consult an adviser for a complete list of courses that fulfill the professional elective requirement. § CAD elective refers to any course in the College of Art and Design.
** Please consult an advisor for a complete list of imaging core courses.

Photographic and Imaging Arts (visual media option), BFA degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	3
FDTN-111	Drawing I	3
FDTN-121	2D Design I	3
PHAR-101	Photographic Arts I	4
PHAR-102	Photographic Arts II	4
PHPS-106	Photographic Technology I	3
PHPS-107	Photographic Technology II	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Choose one of the following:		3
General Education - Natural Science Inquiry Perspective		
General Education - Scientific Principles Perspective		
General Education - Mathematical Perspective A or B		
Second Year		
FDTN-141	4D Design	3
PHAR-204	Elements of Visual Media	3
PHAR-211	Histories and Aesthetics of Photography I	3
PHAR-212	Histories and Aesthetics of Photography II	3
Choose one of the following:		3
PHAR-201	Elements of Fine Art Photography	
PHAR-202	Elements of Advertising Photography	
PHAR-203	Elements of Photojournalism	
	CAD Electives	3
	General Education - Social Perspective	3
	General Education-Ethical Perspective	3
	Open Electives	6
	General Education - Elective	3
Third Year		
GRDE-106	Graphic Design Studio	3
GRDE-201	Typography I	3
	SCB Business Course	6
	Visual Media Professional Electives \ddagger	6
	CAD Elective§	3
	General Education - Immersion 1 (WI-GE), 2	6
	Open Elective	3

Fourth Year

Choose one of the following:		
GRDE-202	Graphic Design Studio II	
GRDE-206	Typography II	
GRDE-207	Interactive Design I	
GRDE-217	Motion Design II	
PHVM-301	Visual Media Career Research	
PHVM-401	Visual Media Capstone (WI-PR)	
	CAD Electives§	9
	Open Elective	
	SCB Business Course	

Total Semester Credit Hours

122Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses
\dagger Please consult an advisor for a complete list of courses that fulfill the visual media specialization requirement
\ddagger Please consult an advisor for a complete list of courses that fulfill the professional elective requirement.
\S CAD elective refers to any course in the College of Art and Design.
** Please consult an advisor for a complete list of imaging core courses

Accreditation

All four options of the BFA program in photographic and imaging arts, as well as the MFA program in photography and related media, are accredited by the National Association of Schools of Art and Design (NASAD).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, photography, design, and art history. Portfolio required for photo credit. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer

Applied Photography. Portfolio required for photo credit. View Portfolio Requirements for more information.

Photographic Arts and Sciences Exploration

www.rit.edu/study/photographic-arts-and-sciences-exploration
Christye Sisson, Professor
585-475-7197, cpspph@rit.edu

Program overview

For students interested in photography but unsure which major best meets their career aspirations, the photographic arts and sciences exploration option provides you with an overview of the two photography majors and their options. Students will learn about the curriculum, course work, and career paths associated with the BFA in photographic and imaging arts (with options in advertising photography, fine art photography, photojournalism, or visual media) and the BS in photographic sciences. This exploration option allows you to take up to a year to learn about each major while you complete general education and liberal arts courses.

Curriculum

Photography undeclared, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
Choose one of the following:	8
PHPS-101, 102 Photography I, II (BS)	
PHAR-101, 102 Photo Arts I, II (BFA)	
PHPS-106 Photographic Technology I	3
PHPS-107 Photographic Technology II	3
ENGL-150 FYW: Future of Writing	3
YOPS-10 RIT 365: RIT Connections	0
General Education-Ethical Perspective	3
General Education-Natural Science Inquiry Perspective	3
General Education-Scientific Principles Perspective	3
General Education-Mathematical B Perspective	3
Choose one of the following: 3	
$\begin{array}{ll}\text { ARTH-135 } & \text { General Education-Artistic Perspective: History of } \\ & \text { Western Art: Ancient to Medieval }\end{array}$	
General Education-Natural Science Inquiry Perspective	
General Education-Mathematical A Perspective	
Choose one of the following: 3	
$\begin{array}{ll}\text { ARTH-136 } & \text { General Education-Global Perspective: } \text { History of } \\ & \text { Western Art: Renaissance to Modern }\end{array}$	
General Education-Mathematical B Perspective	
General Education-Scientific Principles Perspective	
Choose one of the following:	3
FDTN-111 Drawing I (BFA)	
FDTN-121 2D Design I	
General Education-Artistic Perspective (BS)	

Total Semester Credit Hours 32
Please see General Education Framework in the Graduation Requirements section of this bulletin for more information.

Photographic Sciences, BS

www.rit.edu/study/photographic-sciences-bs

Daniel Hughes, Lecturer

dahpph@rit.edu

Program overview

Part scientist, part artist. A scientific photographer uses imaging to capture scientific data to explore science and medicine. These scientific images identify and solve problems-and help to advance our understand-ing-in biology and biomedical sciences, medicine, forensics, chemistry, and engineering. It's a dynamic field that combines photography with imaging science, information technology, computing, optics, biology, and biomedical sciences.

How to Become a Scientific Photographer

A scientific photographer needs to have the broad-based skills required of a professional photographer combined with a solid foundation in the sciences. RIT's photographic sciences program provides this indepth study, preparing you to launch a successful career as a scientific photographer.

You'll complete courses that develop your abilities as a photographer and gain the photographic skills and approaches required of scientific photography. In addition, you'll study science and technology through the lens of photography, with courses in high-speed photography, micrography, and ophthalmic imaging.

In the first two years, this scientific photography degree will immerse you in the technical applications of scientific photography while you also pursue courses in laboratory sciences, including physics and biology. This in a photography degree that is flexible, and enables you to use elective courses to explore areas that interest you and complement your career goals. You'll be encouraged to use general education requirements to integrate complementary studies in subjects such as imaging science, information technology, or developmental biology to help prepare for exciting and evolving career opportunities. It is common for graduates to pursue advanced degrees in fields such as optics, imaging science, and medicine.

You will graduate well-prepared to apply technological advances in photography to a wide variety of photographic and imaging careers spanning the fields of science, technology, and medicine.

Scientific Photography Careers

With a 95% outcomes rate, you'll be well-prepared to launch an exciting career in scientific photography. Our graduates are employed as ophthalmic photographers, forensic photographers, surgical photographers, photomicrographers, medical photographers, latent finger print examiners, core imaging facility managers, technical support engineers, imaging specialists, imaging engineers, public relations photographers, research associates, dermatology photographers, research photographers, and image quality engineers.

Recent employers include imaging companies, universities and research centers, camera companies, forensic laboratories, and government agencies. NASA, Apple, The Mayo Clinic, Carl Zeiss Microscopy, Harvard University, the National Geospatial Intelligence Agency, and Canon have all hired graduates of the program.

Photographic Sciences Student Association

The Photographic Sciences Student Association promotes professional and social interaction among students in the program and professionals
from the imaging and photographic technology industries. The association regularly invites alumni and leaders from the professional imaging fields to present lectures and demonstrations.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the photographic sciences program are required to complete one co-op experience. These experiences are generally completed between the second and third academic years. Some recent co-op placements, as well as permanent job placements, include Harvard University, the Mayo Clinic, Smithsonian, Georgetown University, Case Western Reserve University, NASA, Imatest, Carl Zeiss Microscopy, FBI, Nikon Scientific Instruments, Apple Inc., and NVIDIA.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. The 2021 Creative Industry Day will be a week-long virtual event where you'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Photographic Sciences, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
PPAR-101	Photographic Arts I	4
PPPS-102	Photography I	4
PPPS-106	Photographic Technology I	3
PHPS-107	Photographic Technology II	3
YOPS-10	RIT $365:$ RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Mathematical Perspective A**	3
	General Education - Mathematical Perspective B**	3
	General Education - First-Year Writing (WI)	3
Second Year		3
FDTN-141	4D Design	3
PHPS-201	Scientific Photography I	3
PHPS-202	Scientific Photography II	3
PHPS-207	General Education - Elective: Vision, Perception and	3
PHPS-211	Imaging (WI-GE)	3
Photographic Optics	3	
PHPS-217	Media Production \& Technology	0
	Photographic Sciences Co-op (summer)	3
	General Education - Elective	3
	General Education - Social Perspective	4
	General Education - Natural Science Inquiry	4
	Perspective	3
	General Education - Scientific Principles Perspective	

College of Art and Design

Faculty

Dean's Office

Todd Jokl, BA, Yale University; MFA, University of Connecticut; Ed.D., Southern Connecticut State University-Dean, Professor

Chris B. Jackson, BFA, Alfred University; MFA, Rochester Institute of Technology-Senior Associate Dean; Professor

Christine Shank, BFA, Miami University; MFA, Texas Woman's University-Associate Dean of Undergraduate Studies; Associate Professor

John Monaco, BFA, John Herron School of Art; MFA, Maryland Institute-Visiting Lecturer

School for American Crafts

Andy Buck, BA, Virginia Commonwealth University; MFA, Rhode Island School of DesignGraduate Director, School for American Crafts; Professor

Juan Carlos Caballero-Perez,

 BFA, MFA, Rochester Institute of Technology—ProfessorHectór Carmona-Miranda, AAS, Austin Community College; BFA, University of Texas at Austin; MFA, Texas Tech University-Visiting Lecturer

Rolf Hoeg, AOS, BS, Rochester Institute of Technology; MFA, Vermont College of Fine Arts-Lecturer

Elizabeth Kronfield, BFA, Bowling Green State University; MFA, University of Georgia-School Director, School of Art and School for American Crafts; Professor

Albert Paley, BFA, MFA, Temple University-Artist-in-Residence; Charlotte Fredericks Mowris Professor in Contemporary Craft; Professor

Suzanne Peck, BA, The Colorado College; MFA, Rhode Island School of Design-Lecturer

David Schnuckel, BFA, Anderson University; MFA, Rochester Institute of Technology-Assistant Professor

Jane Shellenbarger, BFA, Kansas City Art Institute; MFA, Southern Illinois University at EdwardsvilleUndergraduate Program Director, Studio Arts; Associate Professor

School of Art

Michael Amy, BA, Vrije Universiteit Brussel (Belgium); MA, Ph.D., New York University-Professor

Donald Arday, BFA, Cleveland Institute of Art; MFA, Syracuse University—Professor

Eileen Feeney Bushnell, BFA, University of Massachusetts at Amherst; MFA, Indiana State University—Professor

Robin Cass, BFA, Rhode Island School of Design; MFA, New York State College of Ceramics at Alfred University-Professor

Denton Crawford, BFA, University of South Florida; MFA, University of Georgia-Graduate Director, Fine Arts Studio; Senior Lecturer

Robert Dorsey, BFA, Rochester Institute of Technology; MFA, Syracuse University—Professor

Allen Douglas, BFA, Syracuse University; Illustration Master Class, Amherst-Lecturer

Craig Foster, BFA, University of Michigan; MS, Medical College of Georgia at Augusta UniversityUndergraduate Program CoDirector, Medical Illustration; Assistant Professor

Emily Glass, BFA, State University College at Potsdam; MFA, Kansas State University-Senior Lecturer

Chad Grohman, BFA, Rochester Institute of Technology; MFA, University of HartfordUndergraduate Program Director, Illustration; Assistant Professor

Jeff Harter, BFA, State University of New York at Buffalo; MA, Syracuse University-Assistant Professor

Glen R. Hintz, BA, Lafayette College; MS, The Medical College of Georgia-Undergraduate Program Co-Director, Medical Illustration; Associate Professor

Elizabeth Kronfield, BFA, Bowling Green State University; MFA, University of Georgia-School Director, School of Art and School for American Crafts; Professor

Christina Leung, BA, Miami University of Ohio; MFA, Cornell University—Visiting Assistant Professor

Amy McLaren, BA, Ithaca College; MFA, Rochester Institute of Technology-Senior Lecturer

Heidi Nickisher, BA, University of California at Santa Barbara; MA, California State University, Fullerton; Ph.D., University of Buffalo-Principal Lecturer

Peter Pincus, BFA, MFA, New York State College of Ceramics at Alfred University-Assistant Professor

Luvon Sheppard, BFA,
MST, Rochester Institute of Technology—Professor

Nicholas Sweet, BFA, California Institute of the Arts; MA, University of Alaska Fairbanks-Visiting Lecturer

Sarah Thompson, BA, University of California at San Diego; MA, Ph.D., University of California at Santa Barbara-Associate Professor

Henry Uhrik, BA, Kenyon College; MFA, Washington University in St. Louis-Visiting Lecturer

Daniel Worden, BA, Texas Christian University; MA, Ph.D., Brandeis University-Associate Professor

Clifford Wun, BFA, Rhode Island School of Design; MFA, Maryland Institute College of Art—Associate Professor

School of Design

Rebecca Aloisio, BFA, Cleveland Institute of Art; MFA, Syracuse University-Senior Lecturer

Jason Arena, BS, University of Buffalo; MFA, Pratt InstituteUndergraduate Program CoDirector, New Media Design; Associate Professor

Bryce Beamer, BS, MS,
Philadelphia University-Assistant Professor

Deborah Beardslee, BFA, Syracuse University; MFA, Virginia Commonwealth UniversityAssociate Professor

Peter Byrne, MFA, York University (Canada)—School Director, School of Design; Professor

Miguel A. Cardona, BFA, MFA, Rochester Institute of TechnologyAssistant Professor

Graham Carson, BFA, Indiana University of Pennsylvania; MFA, Rochester Institute of TechnologySenior Lecturer

Melissa Dawson, BS, Cornell University; MFA, Rochester Institute of Technology—Assistant Professor

Daniel DeLuna, BFA, Ball State University; MFA, Pratt InstituteAssociate Professor

Keli DiRisio, AAS, Cazenovia College; BFA, MS, MFA, Rochester Institute of Technology-Assistant Professor

John Dyer, Certificate: Graphic Design, Graphic Careers; BS, Art Institute of Pittsburgh; MFA, Rochester Institute of TechnologyVisiting Lecturer

Regina Ferrari, BFA, Wayne State University; MFA, Virginia Commonwealth UniversityPrincipal Lecturer

Carol Fillip, BS, State University of New York at Buffalo; MFA, Rochester Institute of TechnologyUndergraduate Program Director, Graphic Design; Associate Professor

Shaun Foster, BBA, University of Wisconsin; MFA, Rochester Institute of Technology-Undergraduate Program Director, 3D Digital Design; Professor

Lorrie Frear, BFA, MFA, Rochester Institute of Technology—Professor

Mary Golden, BA, M.Arch., University at BuffaloUndergraduate Program CoDirector, Interior Design; Associate Professor

Mitch Goldstein, BFA, Rhode Island School of Design; MFA, Virginia Commonwealth University-Associate Professor

Lara Goulart, BA, Universidade de Brasília (Brazil); MFA, Rochester Institute of Technology-Lecturer

Samantha Haedrich, BFA,
Carnegie Mellon University; MFA, Yale University-Assistant Professor

David Halbstein, BA, MA, William
Patterson University-Associate Professor

Joyce Hertzson, BFA, Rhode Island School of Design; MFA, Indiana University-Professor

Jennifer Indovina, BS, MBA, Rochester Institute of TechnologyVisiting Lecturer

Chris B. Jackson, BFA, Alfred University; MFA, Rochester Institute of Technology-Senior Associate Dean; Professor

Gary D. Jacobs, BFA, University of Northern Colorado; MFA, Pennsylvania State UniversityAssistant Professor

Anne Jordan, BFA, Rhode Island School of Design; MFA, Virginia Commonwealth UniversityAssistant Professor

Lorraine Justice, BFA, Edinboro University; MFA, Ph.D., The Ohio State University-Dean Emerita; Professor

Mark Kinsgley, BFA, Rochester Institute of Technology-Melbert B. Cary Jr. Professor

Alex Lobos, BID, Universidad Rafael Landívar (Guatemala); MFA, University of Notre DameGraduate Director, Industrial Design; Professor

Mindy Magyar, BS, Cornell University; MFA, Cranbrook Academy of Art; MBA, University of Pennsylvania-Associate Professor

Ihab Mardini, BA, International University of Science and Technology (Syria); MFA, Rochester Institute of Technology-Assistant Professor

Michael Minerva, BA, American University-Visiting Lecturer
Gary Molinari, BFA, Rochester Institute of Technology; MS, Nazareth College of RochesterSenior Lecturer

Hye-Jin Nae, BA, Sungshin Women's University (South Korea); BFA, University of Wisconsin; MFA, Rochester Institute of TechnologyAssistant Professor

Juan Noguera, BS, Colegio
Lehnsen (Guatemala); BID,
Universidad Rafael Landivar
(Guatemala); MID, Rhode Island

School of Design—Assistant Professor

Josh Owen, BA, BFA, Cornell University; MFA, Rhode Island School of Design—Director, Vignelli Center for Design Studies; Massimo and Lella Vignelli Distinguished Professor In Design

Alejandro Perez Sanchez, BS, Art Institute of California; MFA, Academy of Art UniversityAssistant Professor

Mariana Pinheiro, BA, Universidade Fransciscana (Brazil); MFA, Rochester Institute of Technology-Visiting Lecturer

Lori Resch, BFA, University of Notre Dame; MFA, Rochester Institute of Technology-Visiting Lecturer

Stan Rickel, BID, Pratt Institute; MID, Syracuse UniversityUndergraduate Program Director, Industrial Design; Graduate Director, Integrative Design; Associate Professor

Joel Rosen, BFA, Virginia Commonwealth University; MFA, Rochester Institute of Technology-Lecturer
Alicia Ross, BA, Baldwin-Wallace College; MFA, Rochester Institute of Technology-Lecturer
Stephen Scherer, BFA, Bradley
University-Lecturer
Heidi Schlegel, BFA, Rochester Institute of Technology; MS, University of Nebraska-LincolnUndergraduate Program CoDirector, Interior Design; Associate Professor
Amos Scully, BFA, Rochester Institute of Technology; MFA, California College of Arts and Crafts-Associate Professor

Kim Sherman, BS, State University College at Cortland; MFA, Rochester Institute of TechnologyPrincipal Lecturer

Adam Smith, BFA, MFA, Rochester Institute of TechnologyUndergraduate Program CoDirector, New Media Design; Graduate Co-Director, Visual Communication Design; Associate Professor

Michael Strobert, BFA, MFA, Rochester Institute of TechnologyGraduate Co-Director, Visual Communication Design; Senior Lecturer

Philip Szrama, BS, State University College at Geneseo; MFA, Rochester Institute of Technology-Lecturer

Marissa Tirone, B.Arch., University of Kentucky; M.Arch., Cornell University-Senior Lecturer

Isabella Trindade, B.Arch, M.Arch, Universidade Federal de Pernambuco, (Brazil); PhD, Universitat Politècnica de Catalunya (Spain)-Lecturer

Melissa Warp, BFA, University of Minnesota, MFA, Rochester Institute of Technology-Senior Lecturer

School of Film and Animation

Amy Adrion, BA, Georgetown University; MFA, University of California, Los Angeles-Assistant Professor

Ambarien Alqadar, BA, Jamia Millia University (India); MFA, Temple University-Associate Professor

Vashti Anderson, BA, University of Wisconsin-Madison; MFA, New York University-Assistant Professor

Meghdad Asadilari, BSc, MSc, Shiraz University (Iran); MFA, Rochester Institute of TechnologyAssistant Professor

Christine A. Banna, BFA, Boston University; MFA, Tufts University-Lecturer
Kevin Bauer, BFA, State University College at Oneonta; MFA, Rochester Institute of Technology-Graduate Director, Film and Animation; Senior Lecturer

Jack Beck, BA, Denison University; MFA, University of IowaUndergraduate Program Director, Production; Professor

Mari Jaye Blanchard, BFA, Massachusetts College of Art \& Design; MFA, University of Pennsylvania School of DesignAssociate Professor

Michael Boas, BA, State University of New York at Geneseo-Visiting Lecturer

Frank Deese, BA, MFA, University of California, Los AngelesAssistant Professor

Ricardo Figueroa, BS, MS, University of Puerto Rico at Mayagüez (Puerto Rico); Ph.D., Rochester Institute of TechnologyUndergraduate Program Director, Motion Picture Science; Associate Professor

Tom Gasek, BFA, Rochester Institute of Technology; MFA, Art Institute of Boston-Professor

Brian Larson, BFA, Colorado State University; MFA, Miami International UniversityUndergraduate Program Director, Animation; Associate Professor

David Long, BS, University
of Texas; MS, University of Rochester-Director, RIT MAGIC Center and MAGIC Spell Studios; Associate Professor

Peter Murphey, BFA,
Massachusetts College of Art; MFA, The Art Institute of Boston-Senior Lecturer

Atia Newman, BFA, National
College of the Arts, Lahore (Pakistan); MFA, Pratt InstituteAssociate Professor

Jesse O'Brien, BS, The Art Institute of Pittsburgh; MFA, The Academy of Art University-Assistant Professor

Mark Reisch, BFA, Savannah College of Art and Design; Advanced Studies in Animation Certificate, AnimationMentor. com; MFA, Rochester Institute of Technology-Assistant Professor

Jonathan Seligson, BFA, Rhode Island School of Design; MFA, California Institute of the Arts-Lecturer

David Sluberski, BA, State University College at FredoniaPrincipal Lecturer

Vanessa Sweet, BFA, The University of the Arts; MFA, California Institute of the ArtsAssistant Professor

Shanti Thakur, BA, Ottawa
University; BA, Concordia
University; MFA, Temple

University—School Director, School of Film and Animation; Professor

Munjal Yagnik, BFA, MFA, Syracuse University-Lecturer

School of Photographic Arts and Sciences

Kristy Boyce, BFA, Ryerson University (Canada); MFA, OCAD University (Canada)—Assistant Professor

Meredith Davenport, BFA, Rochester Institute of Technology; MFA, Hunter CollegeUndergraduate Program Director, Photojournalism; Associate Professor

Dennis Delgado, BA, University of Rochester; MFA, City College of New York-Visiting Lecturer

Rachel Ferraro, BFA, Rochester Institute of Technology; MFA, Visual Studies Workshop-Associate Professor

Gregory Halpern, BA, Harvard University; MFA, California College of the Arts-Associate Professor

Gregory Hayes, BA, Northeastern University; MFA, California Institute of the Arts-Visiting Lecturer

Daniel Hughes, BFA, Rochester Institute of TechnologyUndergraduate Program Director, Photographic Sciences; Lecturer

Ted Kinsman, BS, University of Oregon; MS, Syracuse UniversityAssociate Professor

Susan Lakin, BFA, Art Center College of Design; MFA, University of California-Professor

Dan Larkin, BFA, Rochester Institute of Technology; MFA, Bard College-Associate Professor
Clay Patrick McBride, BFA, MPS, School of Visual Arts-Senior Lecturer

Joshua Rashaad McFadden, BA, Elizabeth City State University; MFA, Savannah College of Art and Design-Assistant Professor

Josh Meltzer, BA, Carleton
College; MA, University of MiamiAssociate Professor

Therese Mulligan, BA, University of Missouri-Kansas City; MA,

Michigan State University; Ph.D., University of New Mexico-Professor

Laurie O'Brien, BA, San
Francisco State University; MFA, California Institute of the ArtsUndergraduate Program Director, Visual Media; Associate Professor

Juan Orrantia, MFA, University of Hartford; Ph.D., Yale UniversityAssistant Professor

Willie Osterman, BFA, Ohio University; MFA, University of Oregon-Professor

Ahndraya Parlato, BA, Bard College; MFA, California College of the Arts- Graduate Director, Photography and Related Media; Dr. Ronald Francis/Mabel Francis Chair in Silver-Halide Imaging Systems; Senior Lecturer

Michael R. Peres, BA, Bradley University; BS, MS, Rochester Institute of Technology-Gannett Distinguished Professor

Jennifer Poggi, BS, Syracuse University; MA, Ohio UniversityAssistant Professor

James Porto, BS, Rochester Institute of Technology; MFA, School of Visual Arts-Assistant Professor

Robert Rose, BS, Rochester Institute of Technology; M.Ed., American InterContinental University-Graduate Director, Media Arts and Technology; Associate Professor

Nanette Salvaggio, BS, Rochester Institute of Technology-Lecturer

Christine Shank, BFA, Miami
University; MFA, Texas Women's University-Associate Dean of Undergraduate Studies; Associate Professor

Christye Sisson, BS, MS, Rochester Institute of Technology-School Director, School of Photographic Arts and Sciences; Professor

William Snyder, BS, Rochester Institute of TechnologyUndergraduate Program Director, Advertising Photography; Professor

Josh Thorson, BA, University of Minnesota-Twin Cities; MFA, Bard College; Ph.D., Rensselaer Polytechnic Institute-Associate Professor
J. A. Stephen Viggiano, $A B$, Thomas Edison State College; MS, Ph.D., Rochester Institute of Technology-Assistant Professor

Carole Woodlock, BFA, Alberta College of Arts (Canada); MFA, Concordia University-Professor

Catherine Zuromskis, BA,
Harvard College; MA, University of New York at Stony Brook; MA, Ph.D., University of RochesterUndergraduate Program Director, Fine Art Photography; Associate Professor

Distinguished Professorships

Ann Mowris Mulligan Distinguished Professorship in Contemporary Crafts

Established: 1999
Donor: Ann Mowris Mulligan
Purpose: The holder must have a distinguished record of excellent teaching, wide recognition as a renowned artist, and a demonstrated commitment to students' career development in the craft industry. Held by: Open

Dr. Ronald Francis/Mabel Francis Professorship in Silver-Halide Imaging Systems

Established: 1993
Donor: Mabel Francis
Purpose: To establish an endowed professorship in the School of Photographic Arts and Sciences
Held by: Ahndraya Parlato

Gannett Distinguished Professor

Established: 1987
Donor: Gannett Foundation
Purpose: The distinguished professor is engaged in research and academic study to address problems in the news and information business.

Held by: Michael R. Peres
Charlotte Fredericks Mowris

Professorship in Contemporary

 CraftsEstablished: 1973
Donor: Mrs. Charles F. Mowris

Purpose: To perpetuate interest in the School for American Crafts through the work of faculty and students as talented craftspeople.

Held by: Albert Paley

Melbert B. Cary Jr. Professorship in Graphic Arts

Established: 1969
Donor: Mary Flagler Cary Charitable Trust

Purpose: To provide a permanent memorial for Mr. Cary, a former president of the American Institute of Graphic Arts, and to perpetuate his interest in the field.

Held by: Mark Kingsley
James E. McGhee Professorship in Photographic Management

Established: 1967
Donor: Photo Marketing Association (formerly Master Photodealers and Finishers Association), Kodak, and friends of M. McGhee

Purpose: To provide a permanent memorial for Mr. McGhee, a former vice president of Eastman Kodak Company and lifelong friend of the photofinishing industry.
Held by: Open

The Massimo and Lella Vignelli Distinguished Professor in Design
Established: 2010
Donor: The Helen Hamlyn Trust
Purpose: To extend the values and principles implicit in the work and careers of Massimo and Lella Vignelli to the next generation of designers.

Held by: Josh Owen

College of Art and Design

Saunders College of Business

Jacqueline R. Mozrall, Dean

saunders.rit.edu

Programs of study

\# Accounting BS	42
Business Exploration	44
Finance BS	45
Global Business Management BS	46
Hospitality and Tourism Management BS	48
Marketing BS	50
Management Information Systems (MIS) BS	51
Supply Chain Management BS	53

\# Combined Accelerated Bachelor's/Master's Degree available

Success in today's business environment requires leadership and management attuned to rapid changes in technology and increasingly vigorous global competition. Saunders College of Business offers a portfolio of comprehensive, rigorous programs of study. Our curriculum produces graduates who are able to convert managerial learning into pragmatic business applications.

To achieve these educational aims, Saunders College offers academic programs comprised of four components: business core courses, a program of study, required liberal arts courses, and cooperative education experience. The liberal arts component includes courses in the humanities, mathematics, science, and social sciences. Students are expected to display proficiency in oral and written forms of communication, and to choose a liberal arts concentration or minor. Please visit the college's website-saunders.rit.edu-for in depth information on academics, admisison requirements, faculty, facilities, financial aid and scholarships, research initiatives, advising services, and more.

Accreditation

Saunders College is accredited by the nationally recognized Association to Advance Collegiate Schools of Business (AACSB International), the premier accrediting agency for schools of business in the U.S.

Accounting, BS

www.rit.edu/study/accounting-bs
Matthew Cornwell,
585-475-6916, mcornwell@saunders.rit.edu

Program overview

Accountants are multidisciplinary professionals. They are responsible for determining an organization's overall wealth, profitability, and liquidity. Without accounting, organizations would have no foundation upon which daily and long-term business decisions could be made.

What is Accounting?

Accounting is a key function to all businesses. It's the collection, organization, and analysis of data that can reveal the financial state of a business. It can tell a company how well its products and services are performing, and if the products are making a profit. Financial data can help accountants make short- and long-term projections and estimate an organization's tax liabilities. Accounting also helps an organization plan for its future. Short- and long-term profit projections can help guide an organizations' growth and in which areas new employees will be needed. It can also help guide decision-making on which product lines to change and grow and which to downsize or eliminate. Accounting is essential to understanding which areas of your business are making money and which are not.

RIT's Accounting Degree

RIT's accounting degree covers financial and managerial accounting disciplines while introducing you to the technology needed for the profession. Leveraging the strength of our nationally ranked management information systems (MIS) program (\#6, College Factual), you'll gain the technical skills needed to design, operate, and control accounting information systems-skills that are highly sought after by employers. As one of the oldest and most respected professions in the world, a degree in business administration-accounting can lead to an exciting and rewarding career in one of the most essential lines of work in the business world.

Accounting Courses

RIT's accounting BS covers financial and managerial accounting disciplines while introducing you to accounting information systems. In addition to a full set of accounting courses, you'll also complete courses in the liberal arts, sciences, and management. Students planning a career in public accounting may select undergraduate course work preparing them to enter RIT's MBA-accounting program. Completion of both the accounting BS and the MBA-accounting degrees satisfies the New York state CPA education requirements (see electives). Some accounting majors may choose to tailor the program to meet diverse career opportunities in the commercial, government, and not-for-profit sectors.

Students planning to pursue an MBA-accounting degree and a career in public accounting should consult an accounting professor or accounting academic advisor.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more.

BS Accounting/MS Accounting and Analytics: In this combined accelerated dual degree, the accounting BS degree provides you with a solid accounting background while the accounting and analytics MS enhances your knowledge of the accounting technologies-Big Data, AI, advanced analytics, and financial analytics-that will help you analyze an organization's data so you can gain significant insights, predict future outcomes, and ascertain risk.

Accelerated $4+1$ MBA Option: Available to students enrolled in any of RIT's undergraduate programs, the accelerated $4+1$ MBA option allows you to earn both a bachelor's degree and an MBA in as little as five years of study.

Learn more about RIT's Combined Accelerated Bachelor's/Master's Degrees and how you can prepare for your future, faster.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the accounting BS are required to complete at least one cooperative education experience.

Accounting Career Fair

RIT's Office of Career Services and Cooperative Education hosts an accounting-specific career fair that connects accounting majors with employers in finance and banking. During this day-long event, you'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Accounting, BS degree, typical course sequence

COURSE SEMESTER CREDIT HOURS

First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
INTB-225	General Education - Elective: Global Business Environment	3
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	1
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
MATH-161	General Education - Elective: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
ACCT-305	Accounting Profession	1
ACCT-360	Intermediate Financial Accounting I	3
ACCT-445	Accounting Information Systems	3
BLEG-250	General Education - Elective - Law, Business, and Society	3
COMM-253	General Education - Elective: Communication	3
FINC-220	Financial Management	3
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
MGMT-215	Organizational Behavior	3
MKTG-230	Principles of Marketing	3
	General Education - Artistic Perspective	3
	Accounting Elective	3
Third Year		
ACCT-365	Intermediate Financial Accounting II	3
ACCT-420	Personal and Small Business Taxation	3
ACCT-499	Accounting Co-op (summer)	0
BANA-255	Data Literacy, Analytics, and Decision Making	3
DECS-310	Operations Management	3
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
	Open Elective	3
	General Education - Natural Science Inquiry Perspectivet	3
	General Education - Scientific Principles Perspective	3
	General Education Immersion 1,2	6
Fourth Year		
ACCT-430	Cost Accounting (WI-PR)	3
ACCT-490	Auditing	3
MGMT-560	Strategic Management	3
	General Education - Social Perspective	3
	General Education - Immersion 3	3
	Open Electives	9
	General Education - Electives	6
Total Seme	it Hours	24

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses
† Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Combined Accelerated Bachelor's/Master's Degree

Accounting, BS degree/Accounting and Analytics, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
INTB-225	General Education Elective: Global Business Environment	3
MATH-161	General Education Elective: Applied Calculus	4
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	1
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3

Second Year		
ACCT-305	Accounting Profession	1
ACCT-360	Intermediate Financial Accounting I	3
ACCT-365	Intermediate Financial Accounting II	3
BLEG-250	General Education - Elective: Law, Business, and	3
COMM-253	Society	
FINC-220	General Education - Elective: Communication	3
MGMT-215	Financial Management	3
MKTG-230	Organizational Behavior	3
Principles of Marketing	3	

STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	$\frac{3}{4}$

Introduction to Statistics II	3
Accounting Elective	3

Third Year		
ACCT-420	Personal and Small Business Taxation	3

ACCT-430 Cost Accounting (WI-PR) $\quad 3$
BANA-255 Data Literacy, Analytics, and Decision Making 3

DECS-310	Operations Management	3
MGMT-340	General Education - Ethical Perspective: Business	3

MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3

General Education - Scientific Principles Perspective	3
General Education - Immersion 1, 2	6
Open Elective	3

Fourth Year		
ACCT-490	Auditing	3
ACCT-745	Accounting Information and Analytics	3
MGMT-560	Strategic Management	3
	General Education - Electives	6
	General Education - Immersion 3	3
	General Education - Social Perspective	3
	Open Electives	9
Fifth Year		3
ACCT-738	Information Systems Auditing and Assurance	3
ACCT-796	Services	3
BANA-680	Accounting Capstone Experience	3
BANA-780	Data Management for Business Analytics	3
FINC-780	Advanced Business Analytics	3
MGIS-650	Financial Analytics	6
	Introduction to Data Analytics and Business	
	Intelligence	3
	Graduate Electives	3
	MGIS or BANA approved analytics/technology	
elective		3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.
\ddagger Students must also complete one semester of cooperative education.

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than five percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in economics, accounting, liberal arts, science, and mathematics
Appropriate associate degree programs for transfer
AS degree in accounting or business administration

Business Exploration, Undeclared

www.rit.edu/study/business-exploration

Matthew Cornwell,

585-475-6916, mcornwell@saunders.rit.edu

Program overview

Are you interested in pursuing a career in business, but uncertain as to which major best fits your personal and professional goals? Business exploration might be the best fit for you.

Majoring in Business: How to Decide on a Degree

Business exploration is for students who are not yet ready to declare a business major and need more time to explore different business disciplines to better understand which major bests meets their interests and carer goals. It's designed to keep you on track for graduation while you explore entry-level courses in RIT's seven business majors: accounting, finance, global business management, hospitality and tourism management, management information systems, marketing, or supply chain management.

In business exploration, you can take up to a year and a half to complete course work in general business topics while you you explore foundation courses in several of the business majors that interest you most. In your first-year, you will be encouraged to talk with RIT faculty, staff, and our career advisors to help you learn about our different business majors as you determine which areas of business interest you most. Advisors provide guidance throughout your time in the option and will assist you in course selection and in declaring a major.

Curriculum

Business exploration, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
MATH-161	Applied Calculus	4
MGIS-130	Information Systems and Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis	
MGMT-102	Business 2: Business Planning and Professional Development	3
ECON-101	Principles of Microeconomics	1
ECON-201	Principles of Macroeconomics	3
STAT-145	Introduction to Statistics I	3
STAT-146	Introduction to Statistics II	3
ACCT-210	Management Accounting	4
YOPS-10	RIT 365: RIT Connections	3
	General Education- First Year Writing	0
	Wellness Education*	3
Total Semester Credit Hours	0	
*Please see Wellness Education Requirements for more information. Students completing bachelor's		
degrees are required to complete two different Wellness courses.	33	

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

3 years of math required; pre-calculus recommended

Finance, BS

www.rit.edu/study/finance-bs

Matthew Cornwell,

585-475-6916, mcornwell@saunders.rit.edu

Program overview

Explore the management, creation, and study of money, banking, investments, assets, and liabilities, and the impact of technology on financial systems, cash-flow analysis, capital markets, financial decision-making, and forecasting. This is the exciting world of finance.

RIT's Finance Degree

The world's financial markets are globally integrated. As a result, you need a finance degree that prepares you with a global understanding of financial markets, how they are integrated, and how they impact the business world.

In RIT's finance degree, you'll learn about the management, creation, and study of money, banking, investments, assets, and liabilities. You'll become familiar with financial systems, which include the public, private, and government spaces, and have the opportunity to become an expert in cash-flow analysis, capital markets, financial decision-making, or forecasting. Set yourself a part with a finance degree that:

- Emphasizes the use of Big Data: You'll gain the data analytics skills to manage and analyze an organization's data to understand and forecast financial trends.
- Provides unparalleled access to technology: The state-of-the-art Sklarsky Center for Business Analytics features 12 Bloomberg terminals that connect you to Bloomberg technologies that track corporate financial data in real-time.
- Enables you to manage a real investment portfolio: In the student chapter of the Financial Management Association you'll actively manage a real $\$ 180,000+$ portfolio.
- Prepares you to today's finance careers: Graduates are analytics-driven and skilled in making keen decisions by evaluating historical data and market performance forecasts.

Finance Courses

The finance degree includes foundational courses in accounting, management, business planning, financial management, organizational behavior, and more. In addition, you'll study advanced finance courses in investments, financial analysis, and strategic management. Finance electives enable you to select courses for more in-depth study in areas such as options and futures, business law, financing new ventures, financial analytics, and more. You will also spend time monitoring markets and analyzing financial trends in the Sklarsky Center for Business Analytics, which features Bloomberg Terminals and the latest in finance-based technology, computing power, and software.

Careers in Finance

RIT's finance degree prepares you for management positions in financial, commercial, industrial, and governmental organizations. You will learn the principles of financial decision-making as you build an understanding of the economic, legal, and financial environment in which these principles operate. Careers in finance can be found in all types of sectors, including government, industry, service, and not-for-profit organizations.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more.

Accelerated $4+1$ MBA Option: Available to students enrolled in any of RIT's undergraduate programs, the accelerated $4+1$ MBA option allows you to earn both a bachelor's degree and an MBA in as little as five years of study.

Learn more about RIT's Combined Accelerated Bachelor's/Master's Degrees and how you can prepare for your future faster.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the finance degree are required to complete at least one block of cooperative education.

Curriculum

Finance, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
INTB-225	General Education - Elective: Global Business Environment	3
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Ideas and Business Planning	3
MGMT-102	Business 2: Business Planning and Professional Development	1
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
MATH-161	General Education - Elective: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
BANA-255	Data Literacy, Analytics, and Decision Making	3
COMM-253	General Education - Elective: Communication	3
FINC-220	Financial Management	3
FINC-352	Financial Management II (WI-PR)	3
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
SCBI-035	Careers in Business	0
MGMT-215	Organizational Behavior	3
MKTG-230	Principles of Marketing	3
	Finance Elective	3
	General Education - Artistic Perspective	3
	Open Elective	3
Third Year		
DECS-310	Operations Management	3
FINC-362	Intermediate Investments	3
FINC-460	Financial Analysis and Modeling	3
FINC-499	Finance Co-op (summer)	0
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
	General Education - Immersion 1, 2	6
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Scientific Principles Perspective	3
	Finance Electives	6

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than 5 percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in economics, accounting, liberal arts, science, and mathematics

Appropriate associate degree programs for transfer

AS degree in accounting or business administration

Global Business Management, BS

www.rit.edu/study/global-business-management-bs
Matthew Cornwell,
585-475-6916, mcornwell@saunders.rit.edu

Program overview

Industries around the world are in need of decision-makers and problem-solvers. Fortune 500 companies and non-profit organizations alike require strategic managers that know how to leverage the latest technology.

RIT's Global Business Management Degree

Our management degree focuses on the critical competencies and interpersonal skills needed to be a successful change-agent in any organization. Saunders College management students are exposed to many facets of management, from the ability to motivate peers, to communicating with others and leading a team - essential skills for good managers. Our global business management degree builds a T-shaped professional, who are characterized by a deep disciplinary knowledge and an understanding of the professional and personal skills that cross that transcend disciplines. In the global business management degree you will:

- Gain an understanding of solution-based thinking with a curriculum that features a strong emphasis on design thinking.
- Develop cross-cultural teamwork and management skills through virtual team projects with peers from partner universities and RIT's global campuses.
- Have the opportunity to study abroad at one of RIT's global campuses in China, Croatia, Dubai, or Kosovo, where you can experience different cultures and business practices.
- Choose a track in entrepreneurship, leadership, or supply chain management.
- Saunders Management Club is interwoven with our DECA Collegiate chapter and provides opportunities to engage in DECA competitions and conferences.
- Compete at least one block of cooperative education and internships, which provide full-time, paid career experience in industry.

Management Courses

The global business management degree prepares you for management careers in a variety of enterprises and organizations. You will develop the skills and concepts needed to become an effective leader and ethical decision-maker. The curriculum is comprised of management courses that emphasize operations management, strategic management, leading cross-cultural teams, communication, and critical reasoning while providing both depth and flexibility in its offerings. In addition to a foundation in. business management, you will also choose a concentration in entrepreneurship, leadership, or supply chain management.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the global business management degree are required to complete at least one block of cooperative education.

Curriculum

Global Business Management, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Approved Global Business Management Electives

COMM-304	Intercultural Communication
DECS-435	Supply Chain Management Fundamentals
FINC-420	International Finance
INTB-315	Exporting and Global Sourcing
INTB-480	Specialized Topics in Global Business
INTB-489	Seminar in International Business
MGIS-360	Building a Web Business
MGMT-330	Cyber: Risk and Resilience
MGMT-350	Design Thinking and Concept Development
MGMT-470	Entrepreneurship
MGMT-489	Applied Entrepreneurship and Commercialization
MKTG-320	Seminar in Management
MKTG-330	Digital Marketing
MKTG-365	Global Marketing

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than 5 percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in economics, accounting, liberal arts, science, and mathematics

Appropriate associate degree programs for transfer
AS degree in accounting or business administration

Hospitality and Tourism Management, BS

www.rit.edu/study/hospitality-and-tourism-management-bs
Matthew Cornwell,
585-475-6916, mcornwell@saunders.rit.edu

Program overview

The hospitality and tourism degree provides an in-depth understanding of the hospitality and tourism industry and prepares you to enter any segment of the industry, including food and beverage management, hotel/resort management, travel management, food marketing and distribution, cruise line operations, resorts and spas, event management, and airline catering.

Technology in Hospitality

Among the biggest evolutions in the hospitality field is the impact of technology on the guest experience, food service and delivery, and more. Technology, along with data analytics, is driving how resorts, restaurants, theme parks, and cruise lines are interacting with guests and managing their expectations. From apps that help plan and manage guest experiences, to wearables that unlock guest room doors, to online check-in and food ordering, today's hospitality professionals must be knowledgeable of how the latest technology is being used to improve the guest experience.

A Degree That Does it All: Hotel Management, Hospitality and Tourism, Restaurant Management

RIT's hospitality management degree includes a comprehensive core curriculum that provides you with a strong foundation in the core principles of hospitality, service management, and tourism operations. You'll develop an essential set of skills in operations analysis, project management, food safety, traditional and digital marketing, facilities management, strategic planning, information systems, real estate, and human resource management-which are needed to successfully manage the operations of all types of hospitality venues across all industry sectors.

You can customize the hospitality management degree around your personal career aspirations and interests by creating a three-to-five course sequence from disciplines from across RIT's nine colleges. This broadens your knowledge and expands your expertise. Courses in innovation, entrepreneurship, marketing, finance, packaging science, web design and development, and more expand upon the major's core courses and create opportunities for your to engage in hotel management, hospitality and tourism, and restaurant management in new, exciting ways.

Hospitality and tourism majors study the hospitality industry alongside students majoring in computing, information sciences, engineering, business, entrepreneurship, and more. This exposes you to diverse ideas in areas that are making a significant impact on the hospitality and tourism industry. This powerful experience can help inform your senior capstone project, where you will tackle a hospitality industry problem and propose an innovative solution.

Henry's Restaurant: A Full-Scale Restaurant Management Experience

Henry's is a 75 -seat, student-run, full-service, beverage-licensed restaurant located on campus and open to the public. The restaurant serves as a living laboratory for students in the Food and Beverage Management and the Restaurant and Event Management courses. Students are fully immersed in operating Henry's as they learn about the intricacies of restaurant service, kitchen management, purchasing and inventory con-
trol, service management, quality in food production and presentation, sanitation, nutrition, menu planning and merchandising, food product development, and more. Students rotate through essential management functions, such as menu design, food preparation and ordering, cost controls, forecasting, scheduling, service, profit and loss statements, and county health inspections.

International Hospitality: Study Hospitality and Tourism Abroad

With the truly global nature of hospitality and tourism, multicultural intelligence is a very important asset for success in the hospitality and tourism industry. The hospitality management degree is also offered at RIT Croatia, one of our global campuses. Because courses are taught by RIT faculty, you have a unique opportunity to complete a study abroad experience in Dubrovnik, Croatia, one of the most prominent tourist destinations in the Mediterranean Sea. Known as the "Pearl of the Adriatic" for its spectacular location on the Dalmatian Coast and for its historic Old Town district, Dubrovnik is home to some of Croatia's most beautiful Gothic, Renaissance, and Baroque churches, monasteries, palaces, and fountains. It's also the center of many Croatian cultural activities and festivals.

Students are able to complete a semester-long study abroad experience or participate in a 10 -day study experience. In both cases, you'll learn about the hospitality and tourism challenges and opportunities in Croatia as you study international hotel and resort management.

Jobs in Hospitality and Tourism

Hospitality and tourism is a massive global industry. According to the World Travel \& Tourism Council, one in five jobs created globally over the last ten years has been in travel, hospitality, and tourism.

The industry is looking for professionals who are adept at integrating technology and innovation into hospitality. Graduates are employed in a range of positions across all areas of the industry. Some work in guestcontact or direct guest-service as food service managers and owners of restaurants, event and catering companies, institutional food service organizations, or in hotel/resort/travel management for hotels, resorts, cruise lines, managed-care facilities, theme parks, and more.

Graduates also find themselves sought-after by related industries such as the retail sector (banking and investment organizations), hospitals and managed-care facilities, and vendor companies (such as Ecolab, Oracle). The global nature of the industry provides excellent opportunities for graduates who want to pursue a career in international hospitality, service management, tourism, and more.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the hospitality management degree are required to complete a combined 1,200 hours of practical cooperative education experience with classroom theory. In co-op placements, students work directly in the hospitality industry in a variety of positions and organizations. Co-op is usually completed in the summer following the freshman and sophomore years and during any semester in the junior and senior years, except the final semester of the senior year, when students are required to be in residence on campus. Co-op is planned, monitored, and evaluated by the student, the co-op counselor, the faculty adviser, and the employing firm.

Curriculum

Hospitality and Tourism Management, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
BANA-255	Data Literacy, Analytics, and Decision Making	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
INTB-225	General Education - Elective: Global Business Environment	3
MATH-161	General Education - Elective: Applied Calculus	4
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
HSPT-215	Principles of Food Production and Service	3
HSPT-225	Hospitality and Tourism Management Fundamentals	3
HSPT-315	Lodging Operations Analytics and Management	
HSPT-335	Food and Beverage Management	3
MGMT-215	Organizational Behavior	3
MKTG-230	Principles of Marketing	3
NUTR-215	Foundations of Nutritional Sciences	3
SCBI-035	Careers in Business	0
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
	General Education - Natural Science Inquiry Perspective	4
	General Education - Elective	3
Third Year		
COMM-253	Communication	3
DECS-310	Operations Management	3
FINC-220	Financial Management	3
HSPT-375	Customer Experience Management	3
HSPT-485	Restaurant and Event Management	-
HSPT-499	HSPT Co-op (summer)	0
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
STAT-146	General Education - Mathematical Perspective B: STAT - 146 Introduction to Statistics II	4
	General Education - Immersions 1	3
	Open Elective	3
	Hospitality Elective	2
Fourth Year		
HSPT-495	Hospitality Project Planning and Development (WI-PR)	3
MGMT-560	Strategic Management	3
	General Education - Immersion 2,3	6
	Open Electives	9
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in economics, accounting, liberal arts, science, and mathematics
Appropriate associate degree programs for transfer
AS degree in accounting or business administration

Management Information Systems (MIS), BS

www.rit.edu/study/management-information-systems-mis-bs
Matthew Cornwell,
585-475-6916, mcornwell@saunders.rit.edu

Program overview

Technology enhances an organization's operational efficiency. Through analysis of existing business processes, you will be able to improve and design new information systems that can help add value to an existing product and help managers make crucial decisions. The management information systems degree focuses on data analytics, teamwork, leadership skills, customer service, and underlying business theories. An MIS degree gives you the ability to develop innovative systems to solve company problems and improve business intelligence.

The management information systems major prepares students for careers involving leading-edge enterprise technologies and the analysis, design, and management of computer-based information systems. The curriculum provides students with the opportunity to analyze existing business processes and learn to utilize digital technologies to improve and/or design new models. As a result students are able to apply the concepts of enterprise resource planning and work with sophisticated enterprise systems to help companies achieve their goals. Students also are able to design systems that are usable, practical, and cost-effective. Major career directions for graduates include business analysis, enterprise resource planning analysis and consulting, database application development and administration, network design and administration, website development and administration, and the management of information systems projects.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the MIS degree are required to complete at least one block of cooperative education.

Curriculum

Management Information Systems, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	
ACCT-210	Management Accounting	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
INTB-225	General Education - Elective: Global Business Environment	3
MATH-161	General Education - Elective: Applied Calculus	4
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
BANA-255	Data Literacy, Analytics, and Decision Making	3
COMM-253	General Education - Elective: Communication	3
FINC-220	Financial Management	3
MGIS-320	Database Management Systems	3
MGMT-215	Organizational Behavior	3
MKTG-230	Principles of Marketing	3
SCBI-035	Careers in Business	0
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
	Open Elective	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
Third Year		
DECS-310	Operations Management	3
MGIS-330	Systems Analysis and Design	3
MGIS-350	Developing Business Applications	3
MGIS-499	Management Information Systems Co-op (summer)	0
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
	General Education - Immersion 1	3
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Scientific Principles Perspective	3
	MGIS Electives	9
Fourth Year		
MGIS-550	MIS Capstone (WI-PR)	3
MGMT-560	Strategic Management	3
	Open Electives	9
	General Education - Immersion 2,3	6
	General Education - Electives	9
Total Semester Credit Hours		123

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Management Information Systems Electives

MGIS-355	Business Intelligence
MGIS-360	Building a Web Business
MGIS-425	Database Systems Development
MGIS-429	Cyber: Risk and Resilience
MGIS-445	Web Systems Development
MGIS-450	Enterprise Systems
MGIS-489	Seminar in MIS
MGIS-589	Hacking for Defense (H4D)
MGMT-360	Digital Entrepreneurship

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than 5 percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in economics, accounting, liberal arts, science, and mathematics

Appropriate associate degree programs for transfer
AS degree in computer information systems, accounting, or business administration

Marketing, BS

www.rit.edu/study/marketing-bs

Matthew Cornwell,

585-475-6916, mcornwell@saunders.rit.edu

Program overview

Marketing is a critical element in the success of modern business operations. The overall process of entering markets, creating value for customers, and developing profits is the fundamental challenge for the contemporary marketing manager. RIT's marketing degree focuses on the complete business-consumer relationship, from internet marketing, social media, professional selling, international marketing, and consumer behavior. You'll gain competencies in the technical skills of search engine optimization and data analytics as you gain a complete understanding of the dynamic field of marketing and its impact on an organization's success.

What is Marketing?

Marketing is strategic communication between an organization and its customers. And, it can have multiple goals. Marketing can raise awareness of a product or service, help acquire new customers, generate sales leads, build brand reputation, boost brand engagement, establish an organization as a through-leader, reaffirm value for consumers, grow a social media presence, and more.

To be truly effective at marketing, a marketing professional must:

- Understand their audience: Through in-depth consumer research, marketers can gain deep and profound insight into who is buying their products and services, and why.
- Identify the needs/goals of customers: Understanding what consumers need and why can help marketers discern how these opportunities can lead to new or revised product lines and services.
- Build trust and communicate information: Sharing product benefits and value enables consumers to make informed decisions on products and services.
- Boost brand awareness: Engagement in your brand tells you that your audience is listening, watching, and interested in what you're doing.

Marketing Courses

In RIT's marketing degree, you will gain a solid understanding of the business activities that fall under the marketing umbrella. These include learning how to identify and select target markets; the development, placement, and promotion of goods and services; the management of relationships among organizations and their customers, and analyzing the successfulness of marketing campaigns and activities.

You'll study business-consumer relationships from multiple angles as you learn about the power and influence of internet marketing, social media, search engine optimization (SEO), search engine marketing (SEM), and data analytics on consumer awareness and behavior. Course work also covers professional selling and international marketing. You'll also gain practical experience creating strategic marketing plans. Through a range of projects, you'll learn to work independently and in teams to solve marketing challenges. Through classroom experiences and your work on real and simulated business challenges, you'll develop leadership and communication skills. You'll gain proficiency in analyzing and understanding buyers, developing and delivering professional sales presentations, and designing and implementing marketing research projects. You'll graduate ready to create and critically evaluate strategic marketing plans.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the marketing degree are required to complete at least one block of cooperative education.

Careers in Marketing

Careers in marketing are vast, dynamic, and multifaceted. And, with marketing needs in nearly every single industry, you can work in an area in which you have a particular passion, such as higher education, consumer goods, retail, entertainment, law, health care, and so much more. You'll find that there are opportunities in all industries to create value for consumers, to better understand your key audiences, and to create opportunities to build or strengthen brand awareness.

Marketing encompasses a range of career opportunities that span from the creative (content creators, copywriters, storytellers) to the analytical (marketing research, SEO, SEM) to the logistics (sales, media buying/media placement), to the strategy (product/brand managers, chief marketing officers).

Curriculum

Marketing, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
BANA-255	Data Literacy, Analytics, and Decision Making	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
MATH-161	General Education - Elective: Applied Calculus	4
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning, and Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	1
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
COMM-253	General Education - Elective: Communication	3
FINC-220	Financial Management	3
INTB-225	General Education - Elective: Global Business Environment	3
MGMT-215	Organizational Behavior	3
MKTG-230	Principles of Marketing	3
MKTG-320	Digital Marketing (WI-PR)	3
SCBI-035	Careers in Business	0
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
	Open Elective	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
Third Year		
DECS-310	Operations Management	3
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
MKTG-350	Consumer Behavior	3
MKTG-365	Marketing Analytics	3
MKTG-499	Marketing Co-op	0
	General Education - Immersion 1, 2	6
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Scientific Principles Perspective	3
	Marketing Electives	6
Fourth Year		
MGMT-560	Strategic Management	3
MKTG-550	Marketing Strategy (WI-PR)	3
	Open Electives	9
	General Education - Immersion 3	3
	General Education - Electives	9
	Marketing Elective	3

Total Semester Credit Hours 123
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Marketing Electives

COURSE	Web Foundations
ISTE-105	Rapid Online Presence
MAE-305	Cross Media Foundations
MAAT-106	Typography and Page Design
MAAT-107	Imaging
MGIS-360	Building a Web Business
MGMT-360	Digital Entrepreneurship
MKTG-310	Marketing Research
MKTG-330	Global Marketing
MKTG-360	Professional Selling
MKTG-370	Advertising and Promotion Management
MKTG-410	Search Engine Marketing and Analytics
MKTG-430	Social Media Marketing
MKTG-489	Seminar in Marketing

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than 5 percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in economics, accounting, liberal arts, science, and mathematics
Appropriate associate degree programs for transfer
AS degree in accounting or business administration

Supply Chain Management, BS

www.rit.edu/study/supply-chain-management-bs
 Matthew Cornwell,
 585-475-6916, mcornwell@saunders.rit.edu
 Program overview

Many companies and organizations are involved in making supplies and products readily available so producers, manufacturers, and ultimately, consumers, can have them when and where they want them, and at a competitive price. Coordinating and managing all of the organizations and suppliers involved in the activities that move products to the right places and the right times is the goal of supply chain management. More than ever, technology is driving supply chain processes and strategies to help give companies a competitive edge.

What is Supply Chain Management?

It's not often a supply chain gets interrupted to the point where consumers cannot find the products they need. But when it does, people notice.

When Covid-19 created panicked buying at grocery stores around the country, suddenly consumers couldn't find toilet paper, paper towels, canned soup, tuna, rice, or cleaning products. And, as a result of those empty grocery store shelves, we all came to understand the importance of supply chain management in our every day lives.

What is a supply chain? It's a complex and interconnected system that begins with business strategists forecasting or predicting consumer demand for goods and ends with products available for consumers to purchase. In between is a complex web of purchasers and negotiators managing raw materials and suppliers, information systems that manage inventory and data, transportation systems that move and distribute materials and goods between warehouses and retail operations, and retail stores stacking shelves and selling products to you, the consumer.

Supply chain optimization occurs when you manage this intricate, expansive network of suppliers, producers, vendors, warehouses, transportation networks, logistical partners, and retailers. This is the focus of the supply chain manager, the supply chain analyst, and other professionals in the field that deal with the wide range of responsibilities that keep the global supply chain humming along. Gaining the expertise you need to build a career in this dynamic field comes from a degree in supply chain management.

RIT's Supply Chain Management Degree

RIT's supply chain management degree provides students with the knowledge they need to effectively develop, implement and manage efficient global supplier systems in order to maximize customer value. Supply chain management coordinates a wide range of supply chain processes required of both businesses and business partners, including suppliers, to deliver products and services. Students gain a solid understanding of the areas needed to support supply chain management, such as supply chain strategies, logistics, information systems, lean/quality management, customer service, purchasing, negotiations, contracts, forecasting, inventory management, and project management. In addition to business operations, supply chain management plays a critical role in medical missions, disaster relief operations, and other types of service industries.

Supply Chain Management Courses

The degree in supply chain management includes foundational business courses in financial and management accounting, economics, marketing,
business planning, and operations management. Supply chain management courses - in topics that include database management systems, enterprise systems, managing supplier relations, logistics in supply chain management, and Lean Six Sigma fundamentals - prepare you for a range of dynamic careers in the field. You're free to select elective courses that round out your degree and add in-depth study within supply chain management. Elective courses include cross-cultural management, exporting and global sourcing, business intelligence, and negotiations and decision making, to name a few.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the supply chain management degree are required to complete at least one block of cooperative education.

Curriculum

Supply Chain Management, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ACCT-110	Financial Accounting	3
ACCT-210	Management Accounting	3
BANA-255	Data Literacy, Analytics, and Decision Making	3
ECON-101	General Education - Global Perspective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
MATH-161	General Education - Elective: Applied Calculus	4
MGIS-130	Information Systems \& Technology	3
MGMT-101	Business 1: Introduction to Business Communication, Planning, and Analysis	3
MGMT-102	Business 2: Business Planning and Professional Development	1
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
Second Year		
COMM-253	General Education - Elective: Communication	3
DECS-310	Operations Management	3
DECS-435	Supply Chain Management Fundamentals	3
INTB-225	General Education - Elective: Global Business Environment	3
MKTG-230	Principles of Marketing	3
MGMT-215	Organizational Behavior	3
SCBI-035	Careers in Business	0
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	Open Elective	3

COURSE		SEMESTER CREDIT HOURS
Third Year		
DECS-499	Decision Science Co-op (Summer)	0
FINC-220	Financial Management	3
INTB-315	Exporting and Global Sourcing	3
MGMT-340	General Education - Ethical Perspective: Business Ethics and Corporate Social Responsibility	3
	General Education - Immersion 1, 2	6
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
	Open Elective	3
	Supply Chain Management Elective	3
Fourth Year		
DECS-445	Managing Supplier Relations	3
DECS-550	Supply Chain Management Capstone (WI-PR)	3
ISEE-582	Lean Six Sigma Fundamentals	3
MGMT-560	Strategic Management	3
	General Education - Immersion 3	3
	Open Elective	6
	General Education - Electives	6
	Supply Chain Management Elective	3
Total Seme	t Hours	123
Please see General Education Curriculum (GE) for more information.		
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.		
t Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.		
Supply Chain Management Electives		
COURSE		
DECS-350	Project Management	
INTB-300	Cross-Cultural Management	
INTB-550	Competing Globally	
ISEE-626	Contemporary Production Systems	
MGIS-355	Business Intelligence	
MGIS-450	Enterprise Systems	
MGMT-450	Negotiations and Decision-Making	

Accreditation

Saunders College of Business undergraduate and graduate programs are fully accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools. Less than 5 percent of the institutions granting business degrees have received this accreditation.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations
3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in economics, accounting, liberal arts, science, and mathematics

Appropriate associate degree programs for transfer

AS degree in accounting or business administration

Faculty

Dean's Office

Jacqueline R. Mozrall, BS, Rochester Institute of Technology; MS, North Carolina State University; Ph.D., University of New York at Buffalo-Dean; Professor

Qiang (John) Tu, BS, MS, Xi'an Jiaotong University (China); Ph.D., University of Toledo-Senior Associate Dean; Professor

Shalini Khazanchi, BS, South Gujarat University (India); MBA, University of Pune (India); Ph.D., University of Cincinnati-Associate Dean for Research and Graduate Programs; Professor

Lisa Boice, BA, MBA, Long Island University; JD, Hofstra University School of Law—Assistant Dean of Student Services

Shawn Sturgeon, Ph.D., University of Cincinnati-Director of Accreditation and Assessment; Senior Lecturer

Finance and Accounting

Archana Jain, B.Comm. M.Comm., University of Rajasthan (India); MBA, Ph.D., University of Memphis-Interim Department Chair; Associate Professor

Hao Zhang, BA, MA, Xiamen University (China); Ph.D., State University of New York at BuffaloProgram Director; Professor

John Curran, BA, University of Rochester; MS, Syracuse University-Lecturer

Philip C. Gelsomino II, BS, MS, Rochester Institute of Technology; CPA, New York-Senior Lecturer

Chun-Keung (Stan) Hoi, BA, MS, North Texas State University; Ph.D., Arizona State University—Professor

Mehdi Khorram, BS, Shiraz
University (Iran); MS, University of Tehran (Iran); Ph.D., Louisiana State University-Assistant Professor

Zhijian (James) Huang, B.Eng., Shanghai Jiaotong University (China); MS, Michigan State University; M.Eng., Cornell University; Ph.D., Pennsylvania

State University—Associate Professor

Suzanne McCaffrey, BS, University of Maryland, College Park; MS, University of Mississippi-Lecturer

Leonid (Leo) Pugachev, Ph.D., University of Oklahoma-Assistant Professor

Ashok J. Robin, B.Comm, University of Madras (India); MBA, Ph.D., State University of New York at Buffalo-Professor

Qian Song, B.Sc., M.Sc., Qingdao University (China); Ph.D., Washington State UniversityAssociate Professor

Daniel D. Tessoni, BBA, St. John Fisher College; MS, Clarkson College of Technology; Ph.D., Syracuse University; CPA, New York—Daniel D. Tessoni Endowed Professor for Accounting

Dilin Wang, BS, University of Alaska Fairbanks; MS, State University of New York at Buffalo; Ph.D., Oregon State UniversityAssistant Professor

Ke-an Wu, BS, Jiangxi University of Finance and Economics (China); MS, Catholic University Leuven (Belgium); Ph.D., University of Oregon-Associate Professor

Rong Yang, BS, MS, Tianjin University of Finance and Economics (China); MBA, Ph.D., Rutgers University-Professor

Management

Stephen Luxmore, BA, MA, University of Guelph (Canada); Ph.D.; University of Toronto (Canada)—Interim Department Chair; Principal Lecturer

Kristin Bain, BA, University of Northern Colorado; MA, University of Denver; Ph.D., University of Utah, Salt Lake City-Assistant Professor

Steven Carnovale, BS, Ph.D., Rutgers University—Program Director; Associate Professor

Richard DeMartino, BA, Roanoke College; MPA, Ph.D., University of Virginia—Professor

John E. Ettlie, BS, MS, Ph.D., Northwestern University-Professor

Kenan Guler, MS, New York
University; Ph.D., Rutgers University-Assistant Professor

Malarvizhi Hirudayaraj, BA, Fatima College (Trinidad and Tobago); B.Ed., Madurai Kamaraj University (India); MA, Stella Maris College (India); M.Phil., University of Madras (India); Ph.D., Southern Illinois University-Associate Professor

Clyde E. Hull, BA, Yale
University; MBA, Ph.D., Indiana
University-Professor
Shalini Khazanchi, BS, South Gujarat University (India); MBA, University of Pune (India); Ph.D., University of Cincinnati-Associate Dean for Research and Graduate Programs, Professor

Richard M. Lagiewski, BS, MS, Rochester Institute of Technology; Ph.D., Edinburgh Napier University (Scotland)—Assistant Professor
H. Andrew Lawrence, BS, EMBA, Rochester Institute of Technology-Lecturer
Ezekiel Leo, BA, University of California, Berkeley; Ph.D., University of Illinois at Urbana-Champaign-Assistant Professor

Jennifer Matic, BA, Grand Valley State University; MS, Rochester Institute of Technology; Ph.D., University of Bath (United Kingdom)—Principal Lecturer

Molly McGowan, BA, State University College at Geneseo; MPA, State University College at Brockport-Senior Lecturer; Director, The Leadership Academy at Saunders
dt ogilvie, BA , Oberlin College; MBA, Southern Methodist University; Ph.D., University of Texas at Austin-Professor

Joy Olabisi, BS, Georgia Institute of Technology; MS, Ph.D., University of Michigan - Associate Professor

Michael E. Palanski, BS, Grove
City College; MA, Covenant Theological Studies; Ph.D., Binghamton University-Professor

Sandra L. Rothenberg, BS, Syracuse University; MS, Ph.D., Massachusetts Institute of Technology—Professor

Ettore Spadafora, Ph.D., University of South CarolinaAssistant Professor

Torrence E. Sparkman, BS, University of Illinois at Chicago; M.Div., Trinity Evangelical Divinity School; Ph.D., University of Illinois at Urbana-Champaign-Associate Professor

Shawn Sturgeon, Ph.D., University of Cincinnati-Director of Accreditation and Assessment; Senior Lecturer

Laharish Guntuka, B.Tech, Maulana Azad National Institute of Technology (India); MS, Iowa State University; Ph.D., University of Maryland at College ParkAssistant Professor

Zhi Tang, BA, Shandong University (China); MA, Fudan University (China); Ph.D., University of Alabama-Professor

MIS, Marketing, and Analytics

Sean William Hansen, BA, Harvard University; MBA, Ph.D., Case Western Reserve UniversityDepartment Chair; Professor

Duygu (Kayiran) Adkevelioglu, BS, MS, Bilkent University (Turkey); Ph.D., University of California, Irvine-Assistant Professor

Quang (Neo) Bui, BS, MS, Brigham Young University; Ph.D., Bentley University—Associate Professor

Michael Caceci, BA, City
University of New York; MBA, Pace University -Lecturer

Sorim Chung, BJ, MA, University of Missouri, Columbia; MA, Ph.D., University of California, RiversideAssistant Professor

Deborah Colton-Hebert, BA,
State University of New York at Buffalo; MBA, Rochester Institute of Technology; Ph.D., University of South Carolina-Associate Professor

Laurie Dwyer, BS, St. Lawrence University; MBA, Rochester Institute of Technology-Principal Lecturer

Neil Hair, BS, Cardiff University (United Kingdom); DIPM, Chartered Institute of Marketing; MS, Sheffield Hallam University (United Kingdom); Ph.D., Cranfield University (United Kingdom) Associate Professor
Richard M. Lagiewski, BS, MS, Rochester Institute of Technology; Ph.D., Edinburgh Napier University (Scotland) - Principal Lecturer
Saiwu Lin, MS, University of Arizona-Program Director; Associate Professor

Manlu Liu, BS, Jiangsu University (China); MS, Zhejiang University; MBA, The Hong Kong University of Science \& Technology (Hong Kong); Ph.D., University of ArizonaProgram Director; Professor
Richard Mislan, BS, Rochester Institute of Technology; MS, Ferris State University; Ph.D., Nova Southeastern University—Senior Lecturer

Emi Moriuchi, BA, Manchester Metropolitan University (United Kingdom); MA, Hawaii Pacific University; Ph.D., University of Manchester (United Kingdom) Associate Professor

Gijs Overgoor, BS, MS, Ph.D., University of Amsterdam (the Netherlands)-Assistant Professor

Ali Tosyali, BS, Turkish Military Academy (Turkey); MS, Ph.D., Rutgers University-Assistant Professor
Rajendran (Raj) Sriramachandra Murthy, BE, University of Madras (India); MBA, Ph.D., Southern Illinois University-Associate Professor

Victor J. Perotti, BS, MA, MS, Ph.D., The Ohio State University-Professor

Bryan A. Reinicke, BA, College of Wooster; MBA, Kent State University; Ph.D., Indiana University-Associate Professor
Jing Tang, BS, University of Science and Technology of China (China);

MS, University of Chinese Academy of Sciences (China); MPhil., EMLYON Business School (France); Ph.D., Case Western Reserve University-Assistant Professor
Qiang (John) Tu, BS, MS, Xi'an Jiaotong University (China); Ph.D., University of Toledo-Senior Associate Dean; Professor

Keith Weber, MS, California State
University, Fullerton-Senior Lecturer

International Hospitality and Service Innovation

Edwin Torres, MS, Ph.D., Purdue University-Department Chair, Associate Professor

William H. Dresnack, BS, Long Island University; MS, State University of New York at Binghamton; JD, University of Buffalo-MBA Program Director
Edward Ganster; BS, Rochester Institute of Technology-Senior Lecturer

Lorraine E. Hems, BS, Nazareth
College of Rochester; MS, Rochester Institute of Technology; CS, CWESenior Lecturer

Jerrie (Yu-chin) Hsieh, BS, National Taiwan Normal University (Taiwan); MS, Ph.D., Purdue University-Program Director; Professor

Muhammet Kesgin, BSc, MSc, Akdeniz University (Turkey); Ph.D., Coventry University (United Kingdom)—Associate Professor

Anne Zachmeyer, BA, D'Youville College; MS, Rochester Institute of Technology-Adjunct Professor

Distinguished

 Professorships
J. Warren McClure Research

 Professorship in MarketingEstablished: 1977
Donor: Mr. and Mrs. J. Warren McClure

Purpose: To perpetuate Mr.
McClure's professional interest in the field of marketing

Held by: Rajendran Sriramachandra Murthy, Ph.D.

Madelon and Richard Rosett Professorship for Research
 Established: 2000
 Donor: Madelon and Richard Rosett
 Purpose: To support a professorship of a nationally prominent scholar in any field of business
 Held by: Hao Zhang

Benjamin Forman Professorship for Collaborative Research

Established: 2008
Donor: Maurice Foreman in honor of his father, Benjamin Forman

Purpose: To support a professorship of a nationally prominent scholar in Research, Teaching, or Collaboration

Held by: Vic Perotti

Benjamin Forman Professorship for Research

Established: 2008
Donor: Maurice Foreman in honor of his father, Benjamin Forman
Purpose: To support a professorship of a nationally prominent scholar in Research

Held by: Zhi Tang, Rong Yang

Daniel D. Tessoni
Professorship in Accounting
Established: 2015
Donor: Friends and Alumni of Dan Tessoni and Saunders
College of Business
Purpose: To honor Daniel D.
Tessoni for his teaching
contributions and his lifelong impact on students

Held by: Daniel Tessoni, Ph.D.

Golisano College of Computing and Information Sciences

Matt Huenerfauth, Dean
www.rit.edu/computing

Programs of Study\# Computer Science BS58
Computing and Information Technologies BS 62
Computing Exploration 63
\# Computing Security BS 64
\# Game Design and Development BS 67
Human-Centered Computing BS 70
New Media Interactive Development BS 72
\# Software Engineering BS 74
Web and Mobile Computing BS 79
\# Combined Accelerated Bachelor's/Master's degree available.

Please visit the school's website-www.rit.edu/computing-for in depth information on academics, admissions requiremens, faculty, facilities, financial aid and scholarships, research initiatives, and more.

Accreditation

The bachelor of science in computer science program is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org. The bachelor of science in software engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

The Golisano College of Computing and Information Sciences is one of the most comprehensive computing colleges in the United States. With its focus on interdepartmental and intercollege cooperation, the college directs its energy and effort toward discovering new, innovative methods and research opportunities in solving complex, presentday, and future computing challenges.

The college's programs address the growing need for experts in the fields of computational science, human-computer interaction and accessibility, gaming, simulation, computing security, edutainment, management of complex information technology infrastructures, and software engineering. These programs offer the most current thinking in computing and information sciences and technology, and are supported by extensive laboratory facilities and outstanding faculty.

Computer Science, BS

www.rit.edu/study/computer-science-bs
Zachary Butler, Professor
585-475-6155, zxbvcs@rit.edu

Program overview

The computer science degree attracts students who are interested in both the mathematical theory and technical applications of computer science. Most employers look for students who are good computer scientists but also understand the tools and techniques of mathematics, science, and industry, and are able to communicate effectively. The major is for the mathematically adept student who wishes to become a computing professional with knowledge of relevant applications areas. The program also attracts students transferring to RIT with an associate degree in computer science with course work in mathematics and science.

Plan of Study

Computer science covers a wide spectrum of areas within the field of computing, ranging from the theoretical to the practical. A computer scientist can specialize in areas such as intelligent systems (i.e., artificial intelligence), computer graphics, computer theory, data management, distributed and parallel computing, systems software, or computer security. Programming is necessary, but computer scientists also must be adaptable as well as adept at problem-solving and analytical reasoning, able to understand design principles, and fluent in using computers.

Students take a core of computer science courses that provide a solid foundation for advanced work. Building on this base, students explore a variety of specializations in their third, fourth, and fifth years. In addition, students develop a broad appreciation for computer applications and the effect of computers on society via program electives, general education courses, and various free electives, which can be used to complete a minor.

The program provides students with both a broad and deep foundation in theory and modern software and hardware concepts as well as introduces students to numerous programming languages and paradigms. Students have an opportunity to engage in significant programming and software development work (it's not unreasonable to think of computer scientists as technology inventors), but we also offer students more and more opportunities to engage in both traditional and applied research. In addition to required computer science courses, students have an opportunity to take computer science electives in areas such as architecture and operating systems; computer graphics and visualization; data management; distributed systems; artificial intelligence; languages and tools; security; and theory.

Employers not only look for students who have strong technical skills, but who also understand mathematics, science, and the importance of effective communication. The computer science degree provides students with a solid foundation in mathematics, science, liberal arts and an opportunity to take outside electives, complementing the strong technical core that the program offers.

Hands-on Learning

The demands of industry and government require college graduates to master both the fundamentals and the applied aspects of their profession. To meet this requirement, two applied educational experiences are woven into the program. Students are required to complete a cooperative educational experience as well as an extensive set of laboratory experi-
ences, many as members of a team. These experiences not only strengthen a student's technical skills but gives them the ability to communicate clearly and work effectively as part of a team.

Experiential Education

The demands of industry and government require college graduates to master both the fundamentals and the applied aspects of their profession. To meet this requirement, two applied educational experiences-cooperative education and an extensive set of laboratory and small-group experiences-are woven into the major. Students are required to complete a minimum of three blocks of cooperative education. Second, students engage in an extensive set of laboratory and small-group experiences, many as members of a team. These activities are typically held in a setting involving 15 to 20 students each, providing a venue for significant student-faculty interaction.

Program Educational Objectives

Our program educational objectives are broad statements that describe what graduates are expected to attain within a few years of graduation. They will be able to:

- Pursue advanced study in computing or participate in modern software development.
- Collaborate successfully with colleagues and clients.
- Work as ethical and responsible members of the computing profession and society.

Student Outcomes

To allow our BS graduates to meet our long-term program educational objectives, the department has developed seven student outcomes, which are narrower statements used to describe what our students are expected to know and be able to do by graduation. Students graduating from our BS program are able to:

1. Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions (problem solving).
2. Design, implement, and evaluate a computing based solution to meet a given set of computing requirements in the context of the program's discipline (software development/engineering).
3. Communicate effectively in a variety of professional contexts (communication).
4. Recognize professional responsibilities and make informed judgments in computing practices based on legal and ethical principles (ethics/ legal).
5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline (teamwork).
6. Apply computer science theory and software development fundamentals to produce computing-based solutions (theory/application).
7. Demonstrate advanced knowledge of a selected area within the computer science discipline (advanced knowledge).

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.
Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the computer science degree are required to complete three blocks of cooperative education experience.

Curriculum

Computer Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-141	Computer Science I	4
CSCI-142	Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - First-Year Writing (WI)	3
Second Year		
CSCI-099	Undergraduate Cooperative Education Seminar	0
CSCI-243	The Mechanics of Programming	3
CSCl-488	Undergraduate Summer Co-op	0
Choose one of the following:		3
CSCI-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	
Choose one of the following:		3
CSCI-262	Introduction to Computer Science Theory	
CSCl-263	Honors Introduction to Computer Science Theory	
MATH-241	General Education - Elective: Linear Algebra	3
MATH-251	General Education - Elective: Probability and Statistics I	3
SWEN-261	Introduction to Software Engineering	3
	General Education - Natural Science Inquiry Perspective	4
	General Education - Scientific Principles Perspective\#	3
	General Education - Elective \ddagger	4
	General Education - Elective	3
Third Year		
CSCI-250	Concepts of Computer Systems	3
CSCI-320	Principles of Data Management	3
CSCI-331	Introduction to Artificial Intelligence	3
CSCI-499	Computer Science Undergraduate Co-op (spring)	0
	General Education - Electiveך	3
	General Education - Immersion 1 (WI)	3
Fourth Year		
CSCI-251	Concepts of Parallel and Distributed Systems	3
CSCI-344	Programming Language Concepts	3
CSCI-471	Professional Communications (WI-PR)	3
	Open Electives	6
	CS Electives	6
	CS Elective§	3
	General Education - Elective\#	3
	General Education - Immersion 2	3
Fifth Year		
CSCI-499	Computer Science Undergraduate Co-op (fall)	0
	CS Elective§	3
	General Education - Immersion 3	3
	General Education-Elective	3
	Open Electives	

Total Semester Credit Hours 126
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students must complete one of the following lab science sequences: (a) University Physics I, II (PHYS
211, 212); (b) General \& Analytical Chemistry I, II and Labs (CHMG-141, 142, 145, 146); or (c) General Biology I, II, and Labs (BIOL-101, 102, 103, 104). Students are open to choose from approved science electives that either extend or complement their lab science selection
§ Two computer science elective courses must come from the same CS cluster.

Combined Accelerated Bachelor's/Master's Degrees

Computer Science, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-141	Computer Science I	4
CSCI-142	Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
CSCI-099	Undergraduate Cooperative Education Seminar	0
CSCI-243	The Mechanics of Programming	3
CSCI-488	CS Undergraduate Summer Co-op (summer)	0
Choose one of the following:		3
CSCl-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	
Choose one of the following:		3
CSCI-262	Introduction to Computer Science Theory	
CSCI-263	Honors Introduction to Computer Science Theory	
MATH-241	General Education - Elective: Linear Algebra	3
MATH-251	General Education - Elective: Probability and Statistics I	3
SWEN-261	Introduction to Software Engineering	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective \ddagger	3
	General Education - Elective \ddagger	4
	General Education - Elective	3
Third Year		
CSCI-250	Concepts of Computer Systems	3
CSCI-320	Principles of Data Management	3
CSCI-331	Introduction to Artificial Intelligence	3
CSCI-499	Computer Science Undergraduate Co-op (spring)	0
	General Education - Science Elective \ddagger	3
	General Education - Immersion 1 (WI)	3
Fourth Year		
CSCI-251	Concepts of Parallel and Distributed Systems	3
CSCI-344	Programming Language Concepts	3
CSCI-471	Professional Communications (WI-PR)	3
	Open Electives	6
	CS Electives§	9
	General Education - Science Elective \ddagger	3
	General Education - Immersion 2	3
Fifth Year		
CSCI-499	Computer Science Undergraduate Co-op (fall)	0
	CS Elective§	3
	General Education - Immersion 3	3
	General Education - Elective	3
	Open Electives	6
Sixth Year		
CSCI-610	Fundamentals of Computer Graphics	3
CSCI-631	Foundations of Computer Vision	3
CSCI-664	Computational Complexity	3
CSCI-799	Computer Science Graduate Independent Study	6
CSCI-790	Computer Science MS Thesis	6

Total Semester Credit Hours \quad 147†t
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students must complete one of the following lab science sequences: (a) University Physics I, II (PHYS-
211, 212); (b) General \& Analytical Chemistry I, II and Labs (CHMG-141, 142, 145, 146); or (c) General Biology I, II, and Labs (BIOL-101, 102, 103, 104). Students are open to choose from approved science electives that either extend or complement their lab science selection.
§ Two computer science elective courses must come from the same CS cluster.
** Students who complete the MS Project take one more graduate elective than those who complete the MS Thesis.
$\dagger \dagger$ The BS degree requires 126 semester hours; the MS degree requires 30 semester hours; students use 9 semester hours of computer science graduate electives toward both degrees.

Computer Science, BS degree/Computing Security, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCl-141	Computer Science I	
CSCI-142	Computer Science II	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
MATH-190	General Education - Elective: Discrete Mathematics for Computing	
YOPS-10	RIT 365: RIT Connections	
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	
	General Education - Global Perspective	
	General Education - Social Perspective	
	General Education - First Year Writing (WI)	
Second Year		
CSCI-099	Undergraduate Cooperative Education Seminar	
CSCI-243	The Mechanics of Programming	
CSCI-488	Computer Science Undergraduate Co-op (summer)	
Choose one of the following:		
CSCl-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	
Choose one of the following:		
CSCl-262	Introduction to Computer Science Theory	
CSCl-263	Honors Introduction to Computer Science Theory	
MATH-241	General Education - Elective: Linear Algebra	
MATH-251	General Education - Elective: Probability and Statistics I	
SWEN-261	Introduction to Software Engineering	
	General Education - Natural Science Inquiry Perspective \ddagger	
	General Education- Scientific Principles Perspective \ddagger	3
	General Education - Elective: Lab Science Il \ddagger	
	General Education - Elective	
Third Year		
CSCI-250	Concepts of Computer Systems	3
CSCl-320	Principles of Data Management	
CSCI-331	Introduction to Artificial Intelligence	3
CSCI-499	Computer Science Undergraduate Co-op (spring)	
	General Education - Science Elective	
	General Education - Immersion 1 (WI)	
Fourth Year		
CSCI-251	Concepts of Parallel and Distributed Systems	
CSCI-344	Programming Language Concepts	
CSCl-471	Professional Communications (WI-PR)	
	Open Electives	
	CS Electives	
	General Education - Science Elective \ddagger	
	General Education - Immersion 2	
Fifth Year		
CSCl-499	Computer Science Undergraduate Co-op (fall)	
	CSElective	
	General Education - Immersion 3	
	General Education - Elective	
	Open Electives	
Sixth Year		
CSEC-604	Cryptography and Authentication	
CSEC-742	Computer System Security	
CSEC-790	MS Thesis	
	Computing Security Graduate Elective	
	CSEC Research Electives	

Total Semester Credit Hours 147

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science
course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Computer Science, BS degree/Software Engineering, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-141	Computer Science I	4
CSCI-142	Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Second Year		
CSCI-099	Undergraduate Co-operative Education Seminar	0
CSCI-243	The Mechanics of Programming	3
CSCl-488	CS Undergraduate Summer Co-op (summer)	0
Choose one of the following:		3
CSCl-262	Introduction to Computer Science Theory	
CSCI-263	Honors Introduction to Computer Science Theory	
MATH-241	General Education - Elective: Linear Algebra	3
MATH-251	General Education - Elective: Probability and Statistics I	3

Choose one of the following:	3	
CSCl-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	3
SWEN-261	Introduction to Software Engineering	4
	General Education - Elective: Lab Science IIt	3
	General Education - Elective	4
	General Education - Natural Science Perspective: Lab Science l \ddagger	3
Third Year	General Education - Scientific Principles Perspective†	
CSCI-250	Concepts of Computer Systems	3
CSCI-320	Principles of Data Management	3
CSCI-331	Introduction to Artificial Intelligence	3
CSCI-499	Computer Science Undergraduate Co-op (spring)	0
	General Education - Science Elective \ddagger	3
	General Education - Immersion 1 (WI)	3

Fourth Year		
CSCI-251	Concepts of Parallel and Distributed Systems	3
CSCI-344	Programming Language Concepts	3
CSCI-471	Professional Communications (WI-PR)	3
SWEN-732	Collaborative Software Development	3
SWEN-746	Model-Driven Development	3
	General Education - Immersion 2	3
	Computer Science Electives	9
Fifth Year	General Education - Science Elective \ddagger	3
CSCI-499		
	Computer Science Undergraduate Co-op (fall)	0
	Computer Science Elective	3
	General Education - Immersion 3	3
	General Education - Elective	3
Sixth Year	Open Electives	6
SWEN-640	Research Methods	3
SWEN-755	Software Architecture	3
SWEN-777	Software Quality Assurance	3
SWEN-799	Independent Study	3
	Graduate Elective	3
Seventh Year		6
SWEN-790	Thesis	3
	Graduate Elective	6

Total Semester Credit Hours

150Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students must complete one of the following lab science sequences: University Physics I (PHYS-211) and University Physics II (PHYS-212); General \& Analytical Chemistry I (CHMG-141), General \& Analytical Chemistry I Lab (CHMG-145), General \& Analytical Chemistry II (CHMG-142), and General \& Analytical Chemistry II Lab (CHMG-146); or General Biology I (BIOL-101), General Biology I Lab (BIOL-103), General Biology II (BIOL-102), and General Biology II Lab (BIOL-104).
\# Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Accreditation

The BS degree in computer science is accredited by the Computing Accreditation Commission of ABET.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

AS degree in computer science, engineering science, or liberal arts

Computing and Information Technologies, BS

www.rit.edu/study/computing-and-information-technologies-bs
Dan Bogaard, Associate Professor
585-475-5231, Dan.Bogaard@rit.edu

Program overview

Information technology is found in every aspect of our lives: the workplace, our homes, the way we communicate, and in much of the entertainment we consume. IT professionals, therefore, are in great demand and highly valued. IT professionals are solution architects, identifying complex problems and creating custom solutions that help users meet their goals. They play an integral role in any modern organization, working on all phases of IT solutions from conception to development, testing, deployment, security, and management. In this information technology degree, you'll learn to design, implement, and manage complex IT systems.

Students in the computing and information technologies major are characterized by their hands-on approach to technology. They are designers and builders, but primarily they're enablers. Students approach complex problems and create custom solutions that help users meet their goals. They play an integral role in any modern organization, often working behind the scenes to deploy technology where it's needed most.

That versatility is the core principle of our major. People are interacting with computers more than ever before. With that comes a need for professionals that have the broad practical skills to facilitate those interactions across a variety of sectors. Not only do computing and information technology students learn to implement complex systems, but they become well versed in their management as well. Every day, more companies are realizing the benefits that IT professionals bring to the table.

Plan of Study

A defining aspect of the computing and information technologies curriculum is the breadth of technologies and the focus on integration. Students learn how to solve problems and find ways to make it work. Course work prepares students to be not just technical wizards, but also communicators and facilitators, enabling them to be successful throughout their careers. Building on the core courses, students can further their skills in two separate areas or establish even greater depth in a single area. Possible areas of concentration include web administration, database, networking and communications, web development, and enterprise administration. The major requires students to complete two blocks of cooperative education. Students may pursue co-op after completing their second year of study.

Global Opportunities

The computing and information technologies degree is offered at RIT's main campus and at RIT Croatia. Because the curriculum is the same, students may spend a semester abroad learning about the Croatian culture without any impact to their schedule of studies. Furthermore, in their senior year all students take Senior Development Project I, II, a year-long course in which teams are composed of students from RIT and RIT Croatia campuses. Whether students choose to study abroad or remain in Rochester, they will be working side-by-side with their peers from across the world.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's
degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the computing and information technologies degree are required to complete two blocks of cooperative education experience.

Curriculum

Computing and Information Technologies, BS degree, typical course sequence

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Concentrations

Database Applications

Choose three of the following:	
ISTE-330	Database Connectivity and Access
ISTE-432	Database Application Development
ISTE-434	Data Warehousing
ISTE-436	Database Management and Access
ISTE-438	Contemporary Databases
ISTE-470	Data Mining and Exploration

Enterprise Administration

Required Courses	
NSSA-320	Configuration Management
NSSA-322	Systems Administration II
Choose one of the following:	
NSSA-244	Virtualization
NSSA-370	Project Management
NSSA-422	Storage Architectures
NSSA-423	Scalable Computing Architectures
NSSA-425	Data Center Operations
NSSA-427	Scalable Web Services Architectures

Human Centered Computing

Choose three of the following:	
ISTE-262	Foundations of Human Centered Computing
ISTE-264	Prototyping and Usability Testing
ISTE-266	Design for Accessibility

Networking and Communications

Required Course	
NSSA-245	Network Services
Choose two of the following:	
NSSA-242	Wireless Networking
NSSA-342	Large Scale Networking
NSSA-370	Project Management
NSSA-441	Advanced Routing and Switching
NSSA-443	Network Design and Performance

Web Development

ISTE-340	Client Programming
ISTE-341	Server Programming
SWEN-383	Software Design Principles and Patterns

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math are required and pre-calculus is recommended
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

[^3]
Computing Exploration

www.rit.edu/study/computing-exploration
 Michael Yacci, Professor
 585-475-5416, mayici@rit.edu

Program overview

With eight undergraduate computing majors, the computing exploration option is a great way for you to gain an overview of the computing field while you take the time to decide which major best meets your personal and professional aspirations.

The computing exploration option provides students with the opportunity to explore seven of the college's undergraduate computing majors-computer science, computing and information technologies, computing security, human-centered computing, new media interactive development, software engineering, and web and mobile computing. Students complete courses in computer science, computing security, and web development. They may also take additional courses in other computing majors as they decide on which major best fits their career goals and aspirations.

Plan of study

Students may stay in the exploration option for up to two semesters (one academic year). Each student has an assigned academic advisor who provides guidance on the requirements of each major, course selection, minors, and career options. All courses taken in the exploration option are accepted by the seven computing majors; all credits earned are applicable to a student's chosen major and maintain the student's track toward graduation.

The computing exploration option offers students the opportunity to explore the field of computing before declaring a specific major. All students in this undeclared major take a one-credit course, Computing Exploration Seminar, which provides an overview of the seven computing majors. Students learn about the course of study in each program and career opportunities in each field. Through the seminar and courses, they are introduced to the faculty, students, and laboratory facilities in each program.

While in the computing exploration option, each student will take a two-course sequence in both programming and mathematics, appropriate for all degrees. An academic advisor will consult one-on-one to ensure that each student stays on track. Students may choose a major at the end of the fall or spring semester while in the exploration program all course work taken while in the computing exploration option will be applied to the new program of study.

Curriculum

Computing Exploration, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
CINT-101 Computing Exploration Seminar	1
CSEC-140 Foundations of Computing Security	3
ENGL-150 FYW: Future of Writing	3
GCIS-123 Software Development and Problem Solving I	4
GCIS-124 Software Development and Problem Solving II	4
ISTE-140 Web and Mobile	3
MATH-181 Project-based Calculus I	4
MATH-182 Project-based Calculus II	4
MATH-190 Discrete Math for Computing	3
YOPS-10 RIT 365: RIT Connections	0
Choose one of the following:	3
General Education-Ethical Perspective	
General Education-Artistic Perspective	
General Education-Global Perspective	
General Education-Social Perspective	
Choose one of the following:	3
SWEN-250 Personal Software Engineering	
NMDE-111 New Media Design Digital Survey I	
NSSA-241 Introduction to Routing and Switching	
Wellness Education*	0

Total Semester Credit Hours

Please see General Education Framework for more information.

* Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Computing Security, BS

www.rit.edu/study/computing-security-bs
Rob Olson, Senior Lecturer
585-475-4601, rboics@rit.edu

Program overview

The scope and demand of computer systems and networks, and the span of these systems, increases in organizations every day. At the same time, dependence on computer systems security and computing security technologies is growing dramatically, as is the creation of malicious software that attacks computing systems and networks. Computer systems security is now a major concern for organizations large and small to ensure information stays secure for the privacy of client/customer information, efficient business success, and smooth continuity in operations. As a result, there is an urgent demand for highly trained computing security professionals who can secure and protect an organization's digital assets from relentless attack. In addition, there is a critical need for the continued development of advanced computer security technologies, including hardware and software infrastructures, to both house valuable digital assets and ensure their protection.

RIT's Cybersecurity Degree

RIT's computing security BS program is a cybersecurity degree that produces professionals who understand the people and processes that impact computer systems security. In addition to acquiring state-of-theart knowledge in protecting digital assets of large or small organizations, you will learn to proactively identify security vulnerabilities in software, hardware, and infrastructure, and provide and implement actionable solutions that protect the assets of an organization. You will learn to collect digital forensic evidence to reveal network and data breach incidents, attribute the attackers or origin of attack, assess the extent of the damage or loss of information, and design strategies that ensure information is protected from future attacks.

Computing Security Courses

In the first two years of the program, RIT's cybersecurity degree provides you with a solid foundation in computer science and mathematics. Core courses include a programming sequence, an ethics course, a computer networking and system administration sequence, and foundation courses in computer and network security.
Starting in the third year, you will begin an in-depth exploration of a range of aspects of computing security with advanced electives that allow you to design the focus of your cybersecurity degree. You may choose from an extensive selection of advanced topics in the areas of the network and system security, digital forensics and malware, software security, data security and privacy, and cyber analytics and intelligence. You can expand your knowledge of computing security in one of several disciplines, including network and systems security, digital forensics and malware, security software, and security management. You may also use advanced elective courses to create a customized cluster to address an area of professional interest. To help you apply your computing security courses to the real-world, and gain valuable career experience, you'll complete two blocks of cooperative education.

Jobs in Cybersecurity

The computer security field is growing rapidly, with demand for cybersecurity experts outpacing the number of students graduating from computer security degrees nationwide. According to the U.S. Bureau of Labor Statistics, employment in cybersecurity will grow by 31 percent by the year 2029, creating excellent career opportunities for graduates of RIT's cybersecurity degree.

Nearly every single industry needs cybersecurity experts, from aviation and banking, to automotive, health care, energy, retail, education, government, and more. You'll be well prepared for jobs in cybersecurity as a data scientist, data analyst, information security analyst, cybersecurity engineer, cybersecurity specialist, systems engineer, security architect, application security administrator, artificial intelligence security specialist, cloud security architect, cryptographer, cyber operations specialist, cybercrime Investigator, and more.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.
Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the computing security degree are required to complete two blocks of cooperative education experience.

Curriculum

Computing Security, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
NSSA-241	Introduction to Routing and Switching	3
YOPS-10	RIT 365: RIT Connections	0
CSEC-140	Introduction to Cybersecurity	3
GCIS-123	General Education - Elective: Software Development and Problem Solving I	4
GCIS-124	General Education - Elective: Software Development and Problem Solving II	4
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
CSEC-099	Cooperative Education Seminar	0
CSEC-201	Programming for Information Security	3
CSEC-202	Reverse Engineering Fundamentals	3
CSEC-499	Cooperative Education in CSEC (summer)	0
Choose one of the following:		3
MATH-241	General Education - Elective: Linear Algebra	
STAT-257	General Education - Elective: Statistical Interference	
MATH-251	General Education - Elective: Probability and Statistics I	3
NSSA-221	Systems Administration I	3
NSSA-245	Network Services	3
	General Education - Social Perspective	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \dagger	4
	General Education - Scientific Principles Perspective \dagger	4
Third Year		
CSCI-462	Introduction to Cryptography	3
CSEC-380	Principles of Web Application Security	3
CSEC-472	Authentication and Security Models (WI-PR)	3
CSEC-499	Cooperative Education in CSEC (summer)	0
ISTE-230	Introduction to Database and Data Modeling	3
PUBL-363	General Education - Elective: Cyber Security Policy and Law	3
	General Education - Immersion 1	3
	CSEC Electives	6
	Open Electives	6
Fourth Year		
CSEC-490	Capstone in Computing Security (WI-PR)	3
Choose one of the following:		3
PHIL-102	General Education - Elective: Introduction to Moral Issues	
PHIL-202	General Education - Elective: Foundations of Moral Philosophy	
PHIL-306	General Education - Elective: Professional Ethics	
	CSEC Electives	12
	General Education - Immersion 2, 3	6
	Open Electives	6

Total Semester Credit Hours 126
Please see General Education Curriculum (GE) for more information
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students must complete one of the following lab science sequences: (a) University Physics I, II (PHYS-
211, 212); (b) General \& Analytical Chemistry I, II and Labs (CHMG-141, 142, 145, 146); or (c) General Biology I, II, and Labs (BIOL-101, 102, 103, 104). Students are free to choose from approved science electives that either extend or complement their lab science selection.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Golisano College of Computing and Information Sciences

The BS/MS in computing security is an accelerated cybersecurity degree in which you'll earn both degrees in less time that it would take you to complete each one separately. The BS/MS provides you with an opportunity to expand your knowledge of computing security and gain an advanced education in cybersecurity.

Computing Security, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
MATH-190	General Education - Elective: Discrete Mathematics for Computing	
NSSA-241	Introduction to Routing and Switching	
YOPS-10	RIT 365: RIT Connections	
CSEC-140	Introduction to Cybersecurity	
GCIS-123	General Education - Elective: Software Development and Problem Solving I	
GCIS-124	General Education - Elective: Software Development and Problem Solving II	
	General Education - Global Perspective	
	General Education - Ethical Perspective	
	General Education - First Year Writing (WI)	
Second Year		
CSEC-99	Cooperative Education Seminar	
CSEC-201	Programming for Information Security	
CSEC-202	Reverse Engineering Fundamentals	
CSEC-499	Cooperative Education in CSEC (summer)	
Choose one of the following:		
MATH-241	General Education - Elective: Linear Algebra	
STAT-257	General Education - Elective: Statistical Inference	
MATH-251	General Education - Elective: Probability and Statistics I	
NSSA-221	Systems Administration I	
NSSA-245	Network Services	
	General Education - Artistic Perspective	
	General Education - Social Perspective	
	General Education - Natural Science Inquiry Perspective: Lab Science I \dagger	
	General Education - Scientific Principles Perspective: Lab Science II \dagger	
Third Year		
CSEC-380	Principles of Web Application Security	
CSEC-472	Authentication and Security Models (WI-PR)	
CSEC-499	Cooperative Education in CSEC (summer)	
CSCI-462	Introduction to Cryptography	
ISTE-230	Introduction to Database and Data Modeling	
PUBL-363	General Education - Elective: Cyber Security Policy and Law	
	CSEC Undergraduate Elective	
	CSEC Graduate Elective	
	Open Electives	
	General Education - Immersion 1	
Fourth Year		
CSEC-490	Capstone in Computing Security (WI-PR)	
	CSEC Undergraduate Electives	
	CSEC Graduate Elective	
	CSEC Research Elective	
	General Education - Immersion 2, 3	
	Open Electives	
	General Education-Electiveキ	
Fifth Year		
CSEC-742	Computer System Security	
CSEC-790	MS Thesis	
	Computing Security Research Elective	
	Computing Security Graduate Electives	
Total Semester Credit Hours		147
Please see General Education Curriculum (GE) for more information. (WI) Refers to a writing intensive course within the major. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses. \dagger Students must complete one of the following lab science sequences: University Physics I and University Physics II (PHYS-211/212), General \& Analytical Chemistry I, General \& Analytical Chemistry I Lab, General \& Analytical Chemistry II, and General \& Analytical Chemistry II Lab (CHMG-141/142/145/146), or General Biology I, General Biology I Lab, General Biology II, and General Biology II Lab (BIOL101/102/103/104). \ddagger Choose one of the following philosophy courses: Introduction to Moral Issues (PHIL-102), Foundations of Moral Philosophy (PHIL-202), or Professional Ethics (PHIL-306).		

Computing Security, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSEC-140	Introduction to Cybersecurity	3
GCIS-123	Software Development and Problem Solving I	4
GCIS-124	Software Development and Problem Solving II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	Discrete Mathematics for Computing	3
NSSA-241	Introduction to Routing and Switching	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
CSEC-099	Cooperative Education Seminar	0
CSEC-201	Programming for Information Security	3
CSEC-202	Reverse Engineering Fundamentals	3
CSEC-499	Cooperative Education in CSEC (summer)	0
MATH-251	Probability and Statistics I	3
Choose one of the following:		3
MATH-241	Linear Algebra	
STAT-257	Probability and Statistics II	
NSSA-221	Systems Administration I	3
NSSA-245	Network Services	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective \ddagger	4
Third Year		
CSCI-462	Introduction to Cryptography	3
CSEC-380	Principles of Web Application Security	3
CSEC-472	Authentication and Security Models (WI-PR)	3
CSEC-499	Cooperative Education in CSEC (summer)	0
ISTE-230	Introduction to Database and Data Modeling	3
PUBL-363	Cyber Security Policy and Law	3
	CSEC Electives	6
	Open Electives	6
	General Education - Immersion 1	3
Fourth Year		
CSEC-490	Capstone in Computing Security	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
Choose one of the following:		3
PHIL-102	Introduction to Moral Issues	
PHIL-202	Foundations of Moral Philosophy	
PHIL-306	Professional Ethics	
	CSEC Electives	12
	General Education - Immersion 2, 3	6
Fifth Year		
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Public Policy Graduate Electives	6
	Graduate Elective	3
Choose one of the following:		6
PUBL-785	Capstone Research Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam Research plus 2 Graduate electives	

Total Semester Credit Hours

Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Choose one of the following philosophy courses: Introduction to Moral Issues (PHIL-102), Foundations of Moral Philosophy (PHIL-202), or Professional Ethics (PHIL-306).
\# Students must complete one of the following lab science sequences: University Physics I and University
Physics II (PHYS-211/212), General \& Analytical Chemistry I, General \& Analytical Chemistry I Lab,
General \& Analytical Chemistry II, and General \& Analytical Chemistry II Lab (CHMG-141/142/145/146), or General Biology I, General Biology I Lab, General Biology II, and General Biology II Lab (BIOL101/102/103/104).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

AS degree in computer science, engineering science, or liberal arts

Game Design and Development, BS

www.rit.edu/study/game-design-and-development-bs
Elouise Oyzon, Associate Professor
585-475-5910, eroics@rit.edu

Program overview

Game design and development emphasizes game programming within a core computing education to prepare students for careers in the game, simulation, modeling, training, and visualization industries. The emphasis on computing fundamentals gives students more career options and also prepares them for graduate school. Students gain a breadth of knowledge in game design, interactive media, user interaction, animation, modeling, math, science, and design in the context of computational game development. Students can further specialize in engines, graphics, audio, narrative, and more with elective choices that span the entire university.

The game design and development major allows students to explore the entertainment technology landscape and related areas, while still pursuing a broad-based university education. The degree is intended specifically for students who aspire to hold careers within the professional games industry or a related field, such as simulation, edutainment, or visualization. This degree also provides students with a core computing education that prepares them for graduate study or employment in a number of computing fields.

With an emphasis on game programming, the major exposes students to a breadth of development and design processes. Students complete a core of required course work and then pursue advanced studies that can be customized to individual interests and career goals. Students can further specialize their major by taking electives in areas such as game design, production, engines and systems, graphics programming and animation, mobile, web, audio, and more. This depth of course work also enables students to build a robust portfolio of games and other interactive projects. Students are required to complete two blocks of co-op, which may start after their second year of study. Although students usually complete co-ops during the summer term, they may also be completed during the academic year.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top
companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.
Students in the game design degree are required to complete two blocks of cooperative education experience.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Game Design and Development, BS degree,

 typical course sequence| COURSE | | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year | | |
| IGME-105 | General Education - Elective: Game Development and Algorithmic Problem Solving I | 4 |
| IGME-106 | General Education - Elective: Game Development and Algorithmic Problem Solving II | 4 |
| IGME-110 | General Education - Elective: Introduction to Interactive Media | 3 |
| IGME-119 | 2D Animation and Asset Production | 3 |
| MATH-131 | General Education - Mathematical Perspective A: Discrete Mathematics | 4 |
| MATH-185 | General Education - Mathematical Perspective B: Mathematics of Graphical Simulation I | 3 |
| PHYS-111 | General Education - Natural Science Inquiry Perspective: College Physics I | 4 |
| YOPS-010 | RIT 365: RIT Connections | 0 |
| | General Education - First Year Writing (WI) | 3 |
| | General Education - Social Perspective | 3 |
| | General Education - Global Perspective | 3 |
| Second Year | | |
| IGME-099 | Co-op Preparation Workshop | 0 |
| IGME-202 | Interactive Media Development | 3 |
| IGME-209 | Data Structures \& Algorithms for Games \& Simulations I | 3 |
| IGME-219 | 3D Animation and Asset Production | 3 |
| IGME-220 | Game Design \& Development I | 3 |
| IGME-235 | Introduction to Web Technology for Game Developers | 3 |
| IGME-236 | Interaction, Immersion, \& the Media Interface (WI-PR) | 3 |
| IGME-499 | Undergraduate Co-op (summer) | 0 |
| Choose one of the following: | | 3 |
| MATH-171 | Calculus A | |
| MATH-181 | Project-Based Calculus I | |
| MATH-181A | Calculus I | |
| MATH-186 | Mathematics of Graphical Simulation II | |
| | General Education - Ethical Perspective | 3 |
| | General Education - Scientific Principles Perspective | 3 |
| | General Education - Artistic Perspective | 3 |
| Third Year | | |
| IGME-309 | Data Structures \& Algorithms for Games \& Simulations II | 3 |
| IGME-320 | Game Design \& Development II | 3 |
| Choose one of the following: | | 3 |
| IGME-330 | Rich Media Web Application Development I | |
| IGME-330H | Honors Rich Media Web Application Development I | |
| IGME-499 | Undergraduate Co-op (summer) | 0 |
| | General Education - Immersion 1, 2 | 6 |
| | General Education - Electives | 6 |
| | Advanced Elective | 3 |
| | Open Electives | 6 |
| Fourth Year | | |
| | Advanced Electives | 9 |
| | Open Electives | 9 |
| | General Education - Immersion 3 | 3 |
| | General Education - Electives | 9 |
| Total Semester Credit Hours | | 124 |

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.

Advanced Electives

IGME-340	Multi-platform Media App Development
IGME-350	International Game Industry
IGME-382	Maps, Mapping and Geospatial Technologies
IGME-384	Introduction to Geographic Information Systems
IGME-386	Spatial Algorithms and Problem Solving
IGME-420	Level Design
IGME-422	Level Design 2
IGME-423	Games for Change
IGME-430	Rich Media Web Application Development II
IGME-450	Casual Game Development
IGME-451	Systems Concepts for Games and Media
IGME-460	Data Visualization
IGME-470	Physical Computing \& Alternative Interfaces
IGME-480	Current Topics in Interactive Development
IGME-484	Geographic Visualization
IGME-529	Foundations of Interactive Narrative
IGME-531	Aesthetics and Computation
IGME-540	Foundations of Game Graphics Programming
IGME-550	Foundations of Game Engine Design and Development
IGME-560	Artificial Intelligence for Game Environments
IGME-570	Digital Audio Production
IGME-571	Interactive Game and Audio
IGME-580	IGM Production Studio
IGME-582	Humanitarian Free \& Open Source Software Development
IGME-583	Legal and Business Aspects of FOSS
IGME-584	Software Development on Linux Systems
IGME-585	Project in FOSS Development
IGME-588	New Media Interactive Development Capstone II
IGME-589	Research Studio
IGME-590	Undergraduate Seminar in IGM
IGME-599	Independent Study
IGME-601	Game Development Processes
IGME-602	Game Design
IGME-603	Gameplay and Prototyping
IGME-621	Board and Card Game Design and Development
IGME-622	Game Balance
IGME-623	Theory and Design of Role Play and Interactive Narrative
IGME-624	Tabletop Role-Playing Game Design and Development
IGME-670	Digital Audio Production
IGME-671	Interactive Game and Audio
IGME-680	IGM Production Studio
IGME-681	Innovation and Invention
IGME-690	IGM Seminar
ISTE-230	Introduction to Database and Data Modeling
ISTE-454	Mobile Application Development I
ISTE-456	Mobile Application Development II

Combined Accelerated Bachelor's/Master's Degree

Game Design and Development, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
IGME-105	General Education - Elective: Game Development and Algorithmic Problem Solving I	4
IGME-106	General Education - Elective: Game Development and Algorithmic Problem Solving II	4
IGME-110	General Education - Elective: Introduction to Interactive Media	3
IGME-119	2D Animation and Asset Production	3
MATH-131	General Education - Math Perspective A: Discrete Mathematics	4
MATH-185	General Education - Math Perspective B: Mathematics of Graphical Simulation I	3
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Second Year		
IGME-099	Co-op Preparation Workshop	0
IGME-202	Interactive Media Development	3
IGME-209	Data Structures and Algorithms for Games and Simulations I	3
IGME-219	3D Animation and Asset Production	3
IGME-220	Game Design \& Development I	3
IGME-235	Introduction to Web Technology for Game Developers	3
IGME-236	Interaction, Immersion, \& the Media Interface (WI-PR)	3
IGME-499	Undergraduate Co-op (summer)	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Mathematics Course \dagger	3
Third Year		
IGME-309	Data Structures and Algorithms for Games and Simulations II	3
IGME-320	Game Design and Development II	3
Choose one of the following: 3		
IGME-330	Rich Media Web Application Development I	
IGME-330H	Honors Rich Media Web Application Development I	
IGME-499	Undergraduate Co-op	0
	General Education - Immersion 1, 2	6
	General Education - Electives	6
	Advanced Elective	3
	Open Electives	6

Fourth Year		
IGME-795	Game Industry Themes and Perspectives	1
IGME-601	Game Development Processes	3
IGME-602	Game Design	3
IGME-603	Gameplay and Prototyping	3
IGME-695	Colloquium in Game Design and Development	1
	Graduate IGM Electives	6
	Open Elective	3
	General Education - Immersion 3	3
	General Education - Electives	9
Fifth Year		
IGME-695	Colloquium in Game Design and Development	1
IGME-788	Capstone Design	3
IGME-789	Capstone Development	3
	Graduate IGM Electives	9
	Open Electives	6

Total Semester Credit Hours

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Student may select one of the following math courses: Mathematics of Graphical Simulation II (MATH186), Calculus A (MATH-171), Project-Based Calculus I (MATH-181), or Calculus I (MATH-181A)

IGM/Graduate Advanced Electives

IGME-621	Board and Card Game Design and Development
IGME-622	Game Balance
IGME-623	Theory and Design of Role Play and Interactive Narrative
IGME-624	Table Top Role-Playing Game Design and Development
IGME-670	Digital Audio Production
IGME-671	Interactive Game and Audio
IGME-680	IGM Production Studio
IGME-681	Innovation \& Invention
IGME-690	IGM Seminar
IGME-730	Game Design and Development for Casual and Mobile Platforms
IGME-740	Game Graphics Programming
IGME-742	Level Design
IGME-750	Game Engine Design and Development
IGME-753	Console Development
IGME-760	Artificial Intelligence for Gameplay
IGME-790	Graduate Seminar in IGM
IGME-796	Advanced Topics in Game Design
IGME-797	Advanced Topics in Game Development
IGME-799	Independent Study
CSCI-610	Foundations of Computer Graphics
CSCI-711	Global Illumination
CSCI-712	Computer Animation: Algorithms and Techniques
CSCI-713	Applied Perception in Graphics and Visualization

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

AS degree in computer science, engineering science, or liberal arts

Human-Centered Computing, BS

www.rit.edu/study/human-centered-computing-bs
Dan Bogaard, Associate Professor
585-475-5231, Dan.Bogaard@rit.edu

Program overview

With a growing reliance on computing in our daily lives, technology is no longer the exclusive realm of tech-savvy users. With roots in multiple areas of computing, psychology, and design, the human-centered computing degree blends strengths from these varied disciplines to understand the ways in which people use technology, and how technologies can be developed that are more intuitive and usable.

What is Human-Centered Computing?

Fundamental to human-centered computing is a focus on humans as individuals and how they behave with technology. Students in this major find themselves at the intersection of computer advancements and human behavior around technology. Topics of consideration include the design, evaluation, and implementation of interactive computing systems and understanding the ways in which such systems can transform our lives. Given the growing reliance on computing in our everyday lives, technology no longer is the exclusive realm of tech-savvy users; industry has recognized the need to make software and devices that are usable and desirable to everyone. This major prepares you for careers in industry or to pursue graduate study, offering options for you to specialize in different areas of human-centered computing depending on individual interests in computing, design, or psychology.

HCC degrees are about leveraging technology, and exploring and adapting how people access and interact with it. Finding ways to integrate technology with our everyday lives-regardless of our physical capabilities, age, or location-is a key component of the program. HCC professionals are changing the world every day. HHC professionals have pioneered a range of development, including creating ways for computers to reproduce realistic animations of American Sign Language, designing the successor for the Fitbit, or building the next generation of speech recognition software. HCC students are the driving force at the center of the global accessibility effort.

RIT's Human-Centered Computing Degree

The human-computer relationship is constantly evolving, and the days of the singular do everything device is disappearing. New innovations promise a future of multiple, interconnected technologies that respond to our needs in real time. The world needs professionals that are able to design, prototype, implement, and evaluate interactive computing systems. These skills make up the core of the HCC degree.

The HCC major is unique in its foundation of courses grounded in psychology, design, and technology. The curriculum combines courses from three different RIT colleges to ensure students develop a firm understanding of these diverse subjects. Core courses include several foundational classes in technology, cognitive science and psychology, Gestalt, color theory, and creative thinking. This is an interdisciplinary degree with six concentrations, allowing you to immerse yourself in two areas you find most interesting.

- Accessibility: Learn to develop systems that are equally accessible to all people, making the benefits of technology a reality for everyone.
- Design: Learn to integrate elements of imagery, type, actions, color, and more to form a unified graphical interface that is understandable to people everywhere.
- Front End Development: Master programming and development for desktop, web, and mobile computing interfaces, with a focus on efficient code and meeting user needs.
- Instructional Technology: Plan, organize and develop systems to effectively leverage technology to convey knowledge and skills to users.
- Natural Language Processing: Study the interactions between computers and human language. Learn about the latest advances in computational linguistics and how computers derive meaning via natural language processing.
- Psychology: Explore how humans perceive, process, and store information. Study best practices in research and evaluation, and learn how to implement them into your work.
The major also requires students to complete two blocks of cooperative education, which may begin after the second year of study.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the human-centered computing degree are required to complete two blocks of cooperative education experience.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Human-Centered Computing, BS degree, typical course sequence

COURSE	SEMESTER CR	URS
First Year		
ISTE-110	General Education - First-Year Writing: FYW: Ethics in Computing (WI)	3
ISTE-140	Web \& Mobile I	3
ISTE-262	Foundations of Human Centered Computing	3
NMDE-111	New Media Digital Design Survey I	3
PSYC-101	General Education - Scientific Principles Perspective: Introduction to Psychology	3
PSYC-223	General Education - Elective: Cognitive Psychology	3
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	Open Elective	3
Second Year		
GCIS-123	Software Development and Problem Solving I	4
GCIS-124	Software Development and Problem Solving II	4
ISTE-99	School of Information Second Year Seminar	0
ISTE-240	Web \& Mobile II	3
ISTE-264	Prototyping and Usability Testing	3
ISTE-266	Design for Accessibility	3
ISTE-499	Undergraduate Co-op (summer)	0
NMDE-112	New Media Digital Design Survey II	3
PSYC-250	$\begin{aligned} & \text { General Education - Elective: Research Methods } \\ & \text { I (WI-PR) } \end{aligned}$	3
PSYC-251	General Education - Elective: Research Methods II (WI-PR)	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective	3
Third Year		
ISTE-252	Foundations of Mobile Design	3
ISTE-499	Undergraduate Co-op (summer)	0
	HCC Concentration Courses	12
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Immersion 1	3
	Open Electives	6
Fourth Year		
ISTE-500	Senior Development Project I	3
ISTE-501	Senior Development Project II (WI-PR)	3
	HCC Concentration Courses	6
	General Education - Ethical Perspective	3
	General Education - Immersion 2, 3	6
	Open Elective	3
	General Education - Elective	3

Please see General Education Curriculum (GE) for more information.
WI) Refers to a writing intensive course within the major
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Concentrations

Accessibility

ISTE-464	Accessibility Through the Lifespan
ISTE-562	Research in Accessibility
ISTE-563	Access \& Assistive Technology
Design	
NMDE-201	New Media Design Elements II
NMDE-203	New Media Design Interactive II
NMDE-302	New Media Design Graphical User Interface

Front End Development

ISTE-340	Client Programming
ISTE-454	Mobile Application Development I
ISTE-456	Mobile Application Development II
Instructional	Technology
ISTE-560	Fundamentals of Instructional Technology
ISTE-561	Interactive Courseware
PSYC-235	Learning and Behavior

Natural Language Processing

ENGL-351	Language Technology (required)
ENGL-581	Natural Language Processing I (required)
Plus one of the following:	Natural Language Processing I
ENGL-582	Speech Processing II
ENGL-584	
Psychology	
PSYC-430	Memory and Attention
PSYC-431	Language and Thought
PSYC-432	Decision Making, Judgment and Problem Solving

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math are required and pre-calculus is recommended
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology
Appropriate associate degree programs for transfer
AS degree in computer science, engineering science, or liberal arts

New Media Interactive Development, BS
www.rit.edu/study/new-media-interactive-development-bs
Elouise Oyzon, Associate Professor
585-475-5910, eroics@rit.edu

Program overview

The field of new media explores new and evolving digital technologiesthe internet, social software, hand-held and wearable devices, touch and gestural interfaces, the Internet of Things, virtual reality, augmented reality, and more-to create interactive and engaging digital experiences.

In the new media interactive development major, you'll learn the programming and computing skills for multiple interfaces, as well as the interactive design skills needed to create outstanding user interaction. You can focus your studies on a specific area of new media to truly explore your interests and adapt your skills to a range of emerging technologies.

What is New Media?

New media is an ever-changing form of digital communication that engages, immerses, and often entertains users.

The term new media was first coined in the mid-80s to refer to the impact computing was beginning to have on traditional forms of media, like newspapers, radio, and television. But as digital platforms began to evolve beyond the internet, new media came to encompass all types of information and entertainment accessed by our computers, phones, and tablets. New media now encompasses anything that integrates communication, computing, and technology - from social media networks (Facebook, Instagram) and music and television streaming services (Spotify, Hulu, Amazon Prime), to highly interactive digital technologies like wearables (Apple Watch, FitBit), virtual reality, augmented reality, and gaming.

A Dynamic Degree for Interactive Media Design

In the new media interactive development degree, your course work is concentrated on programming and interactive development with in depth classes on topics such as mobile development and alternative interfaces, website design and implementation, physical/wearable computing, game design, game development, design and media production, interactive audio, and more. You'll build professional-quality web sites, apps for mobile devices and tablets, and create social networking applications that connect people with technology and each other. You'll learn to program using current and emerging technologies for interactive web design, touchscreens, wearables, and interactive objects in a digital environment. In addition, course work in design principles will make the interactive experiences you build look polished and captivating. Two blocks of cooperative education experience gives you full-time, paid experience working in industry.

Compelling interactive design requires collaboration with designers. As a new media interactive development student, you'll benefit from a close partnership with students in RIT's new media design major, which focuses heavily on the design aspect of interactive media. Courses in this program address interactive media design from a design perspective and emphasize visual communication, 2D and 4D design, animation, and design strategy. Both programs share core courses in programming and design, enabling students in both majors to develop the complimentary skill sets needed for success in the industry.

Your senior year concludes with New Media Design Capstone I and II, a two-course, two-semester capstone project in which you'll team up with students from the new media interactive development major to
work on a project for a corporate client looking for a solution to a digital challenge their organization faces. You'll gain the teamwork experience needed as you learn to develop, navigate, and leverage the designer-programmer-client relationship. With many courses both project- and team-based, you'll build a robust portfolio of interactive projects, positioning you well to showcase your skills, capabilities, and knowledge to prospective employers upon graduation. View samples of new media team projects to see what our teams have created.

Interested in seeing what our students can do in interaction design? View a collection of student work in the IGM Gallery.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.
Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the new media interactive development degree are required to complete two blocks of cooperative education experience.

Careers in Interactive Design

Interaction designers are in demand. All kinds of companies and organizations seek interaction designers for a range of positions in which an organization needs dynamic and innovative digital experiences and creative design solutions.

A sampling of companies that have hired graduates of RIT's new media interactive development major includes American Greetings, Bottomline Technologies, Fidelity Investments, Forbes Media, GeekHive, IBM, JPMorgan Chase \& Co, LenelS2, M\&T Bank, MassMutual, Southwest Airlines, TD Bank, and Wegmans Food Markets.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

New Media Interactive Development, BS degree, typical course
sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
IGME-101	New Media Interactive Design and Algorithmic Problem Solving I	4
IGME-102	New Media Interactive Design and Algorithmic Problem Solving II	4
IGME-110	Introduction to Interactive Media	3
MATH-131	Discrete Mathematics	4
MATH-185	General Education - Mathematical Perspective A: Mathematics of Graphical Simulation I	3
NMDE-111	New Media Design Digital Survey I	3
NMDE-112	New Media Design Digital Survey II	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Natural Science Inquiry Perspective	3
	General Education - Artistic Perspective	3
Second Year		
IGME-099	Co-op Preparation Workshop	0
IGME-201	New Media Interactive Design and Algorithmic Problem Solving III	3
IGME-202	Interactive Media Development	3
Choose one of the following:		3
IGME-230	Website Design \& Implementation	
IGME-235	Introduction to Web Technology for Game Developers	
IGME-236	Experience Design for Games \& Media (WI-PR)	3
Choose one of the following:		3
IGME-330	Rich Media Web Application Development I	
IGME-330H	Honors Rich Media Web Application Development I	
IGME-499	Undergraduate Co-op (summer)	0
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics \dagger	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective \ddagger	3
	General Education - Ethical Perspective	3
Third Year		
Choose one of the following:		3
IGME-340	Multi-platform Media App Development	
ISTE-454	Mobile Application Development I	
ISTE-456	Mobile Application Development II	
IGME-430	Rich Media Web Application Development II	3
IGME-470	Physical Computing \& Alternative Interfaces	3
IGME-480	Current Topics in Interactive Development	3
IGME-499	Undergraduate Co-op (summer)	0
	Open Electives	6
	General Education - Immersion 1, 2	6
	General Education - Electives	6
Fourth Year		
IGME-588	New Media Interactive Development Capstone II	3
NMDE-401	New Media Design Capstone I	3
	New Media Interactive Development Advanced Electives	6
	Open Electives	9
	General Education - Immersion 3	3
	General Education - Electives	6
Total Semester Credit Hours		123

Please see General Education (GE) for more information.
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
t Students have the option of taking Introduction to Statistics I (STAT-145) or one of the following math courses: Calculus A (MATH-171), Project Based Calculus (MATH-181), or Calculus I (MATH-181A). \ddagger Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.

New Media Interactive Development Advanced Electives

COURSE	Natural Language Processing I
ENGL-581	Composing for Video Games and Interactive Media
FNRT-328	2D Animation and Asset Production
IGME-119	3D Animation and Asset Production
IGME-219	Multi-platform Media App Development
IGME-340	International Game Industry
IGME-350	Spatial Algorithms and Problem Solving
IGME-386	Games for Change
IGME-423	Casual Game Development
IGME-450	Data Visualization
IGME-460	Current Topics in Interactive Development
IGME-480	Foundations of Interactive Narrative
IGME-529	Aesthetics and Computation
IGME-531	IGM Production Studio
IGME-580	Research Studio
IGME-589	Undergraduate Seminar in IGM
IGME-590	Independent Study
IGME-599	Digital Audio Production
IGME-670	Interactive Game and Audio
IGME-671	IGM Production Studio
IGME-680	Innovation \& Invention
IGME-681	IGM Seminar
IGME-690	Introduction to Database and Data Modeling
ISTE-230	Mobile Application Development I
ISTE-454	Mobile Application Development II ISTE-456 Advanced Topics in Wearable \& Ubiquitous Computing ISTE-458 Data Mining and Exploration ISTE-470 New Media Design Elements II NMDE-201 New Media Design Interactive II NMDE-203 New Media Design Graphical User Interface NMDE-302

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

AS degree in computer science, engineering science, or liberal arts

Software Engineering, BS

www.rit.edu/study/software-engineering-bs
Andy Meneely, Associate Professor
585-475-7829, Andy.Meneely@rit.edu

Program overview

As software becomes ever more common in everything from airplanes to appliances, there is an increasing demand for engineering professionals who can develop high-quality, cost-effective software systems. The BS in software engineering combines traditional computer science and engineering with specialized course work in software engineering. This software development degree encompasses technical issues affecting software architecture, design, and implementation as well as process issues that address project management, planning, quality assurance, and product maintenance. Students are prepared for immediate employment and long-term professional growth in a range of software development organizations.

Students learn principles, methods, and techniques for the construction of complex and evolving software systems. The major encompasses technical issues affecting software architecture, design, and implementation as well as process issues that address project management, planning, quality assurance, and product maintenance. Upon graduation, students are prepared for immediate employment and long-term professional growth in software development organizations.

We offer a challenging undergraduate program that prepares students for the demands and challenges of the software industry. The undergraduate degree consists of both core and elective courses that focus on the software engineering lifecycle. In addition, each student must complete a senior project on a team of four or five students.

Plan of Study

The software engineering program has four key elements: engineering design, software product development, teamwork, and communication. The curriculum ensures that the student's coursework balances between software design principles and software process practices. In every course, teamwork is emphasized with a significant part of the final grade being based on team project activities. By the time our students start their senior project, they will have worked on 20 to 25 different student teams in their software engineering courses. Software engineering students also develop their communication skills. In every course, they will be preparing engineering documentation, such as requirements documents, design documents, project plans, burndown charts, and software test plans. Also, at the end of each project cycle, the students make oral presentations on their work and receive critique from the instructor and other students in the class.
The software engineering program focuses on developing skills to:
8. Model and analyze proposed and existing software systems, especially through the use of discrete mathematics and statistics.
9. Apply quality principles to the definition of software systems and processes.
10. Analyze and design complex software systems using contemporary principles such as cohesion and coupling, abstraction and encapsulation, design patterns, frameworks, and architectural styles.
11. Apply contemporary software engineering methods to plan-
ning, management, and development of software systems.
12. Accurately communicate technical material related to all phases of the software life cycle via concise and correct documents, graphics and oral presentations.
13. Work in small teams to develop a software system. This includes the ability to assume distinct operational roles (e.g., configuration management, quality assurance) in addition to design and implementation.
14. Assess the social, environmental, and cultural factors arising from existing software systems as well as potential risks of proposed systems with a clear understanding of the ethical and professional responsibilities necessary for different software product lines.
15. Relate principles of software engineering to at least one application domain where those principles can be applied.
16. Explore new topics in software engineering or related application domains with limited oversight and input from faculty or mentors.
17. Rapidly learn, assess, and adapt to new languages, environments, and paradigms for software development.
With the skills obtained in our program, software engineering students will be able to design and build quality software solutions that meet the customer's requirements, are delivered on time, without defects, and within budget.

An important component of the curriculum is the complementary course work in related disciplines. As with other engineering fields, mathematics and the natural sciences are fundamental. In addition, students must complete courses in related fields of engineering, business, or science. Two engineering electives, plus a three-course sequence in an application domain, enable students to connect software engineering principles to application areas. A required course in economics or finance bridges software engineering with the realities of the business environment.

Students are required to complete 40 weeks of cooperative education prior to graduation. Students typically begin co-op in their third year of study, alternating semesters of study on campus with co-op blocks. To ensure that co-op is integrated with the curriculum, students must complete their final co-op block prior to taking Software Engineering Project I.

Students also complete general education courses in the liberal arts to develop a sense of professionalism and social responsibility in the technical world.

Engineering Electives

Students may choose engineering electives from software engineering, computer science, or majors in the Kate Gleason College of Engineering. Additional rules and restrictions are listed in the curriculum section.

Senior Design Project

A two-course senior design project helps students synthesize and apply the knowledge and experience they have gained in classes and on co-op assignments to an industry-sponsored project. Organizations with challenging technical problems frequently contact faculty seeking assistance in defining a solution. Many of these issues find their resolution via the work of the software engineering senior project teams.

In the first course, students organize themselves into teams, based on the number and complexity of the projects available. The bulk of the semester is devoted to requirements elicitation and architectural design, but also may include detailed design, prototyping, and even production, depending on the nature of the project. In addition, teams are responsible for assigning specific roles to team members and developing a project plan that includes scheduled concrete milestones. In the second course, students work on the tactical issues of development and deploy-
ment. Teams complete the construction and integration of their project, conduct testing, and demonstrate the final outcome to faculty and the sponsoring organization.

Organizations that have sponsored senior projects include Wegmans, Paychex, Moog, Northrup Grumman Security Systems, Intel Corp., Webster Financial Group, Oracle, Nokia, IBM Thomas Watson Research, PaeTec Communications, Alstom Signaling Inc., RIT Information and Technology Services, Harris Corporation (RF Communications Division), the Air Force Research Laboratory, Excellus Blue Cross Blue Shield, Telecom Consulting Group NE Corp. (TCN), and Videk.

Laboratories

Equipped with the latest technology, the software engineering department's facilities include three student instructional studio labs, a specialized embedded systems lab, and a collaboration lab. In addition, freshmen are encouraged to take advantage of the department's mentoring lab. Staffed by advanced software engineering students, this lab offers new students an environment where they can learn from those who have successfully fulfilled most of the major's academic requirements.
Students enrolled in software engineering courses also can use any of the department's eleven team rooms. Equipped with a computer and projector, network connections, a meeting table, seating for six, and generous whiteboard space, these rooms support the department's commitment to teamwork, both inside and outside the classroom.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the software engineering degree are required to complete three blocks (40 weeks) of cooperative education experience.

Curriculum

Software Engineering, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

st Year		
GCIS-123	General Education - Elective: Software Development and Problem Solving I	4
GCIS-124	General Education - Elective: Software Development and Problem Solving II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
SWEN-101	Software Engineering Freshman Seminar	
SWEN-250	Personal Software Engineering	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
ENGL-150	General Education - First-Year Writing: Future of Writing (WI)	3
Second Year		
COMM-253	General Education - Elective: Communication (WI)	3
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	4
PHYS-212	General Education - Scientific Principles Perspective \dagger	4
STAT-205	General Education - Elective: Applied Statistics	3
SWEN-099	Undergraduate Cooperative Education Seminar	0
SWEN-256	Software Process and Project Management	3
SWEN-261	Introduction to Software Engineering	3
SWEN-262	Engineering of Software Subsystems	3
SWEN-344	Engineering of Web Based Software Systems	3
SWEN-488	Software Engineering Summer Co-op	0
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
MATH-241	General Education - Elective: Linear Algebra	3
SWEN-340	Software Design for Computing Systems	3
Choose one of the following:		
SWEN-444	Human-Centered Requirements and Design	
SWEN-445	Honors Human-Centered Requirements and Design	
SWEN-499	Software Engineering Co-op (spring)	0
	General Education - Immersion 1	3
	Software Engineering Process Elective	3
Fourth Year		
Choose one of the following:		
CSCl-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	
SWEN-331	Engineering Secure Software	3
SWEN-440	Software System Requirements and Architecture (WI-PR)	3
SWEN-499	Software Engineering Co-op (spring)	0
	General Education - Immersion 2	3
	General Education - Math/Science Elective	3
Fifth Year		
SWEN-561	Software Engineering Project I	3
SWEN-562	Software Engineering Project II	3
	Engineering Elective	3
	General Education - Immersion 3	3
	General Education - Math/Science Elective	3
	Professional Elective	3
	Software Engineering Design Elective	3
	Open Electives	12
Total Semester Credit Hours		127

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students must complete one of the following lab sciences: University Physics II (PHYS-212); University Physics II: AP-C Electricity \& Magnetism and University Physics II: AP-C Optics (PHYS-208/209); General Chemistry for Engineers and General \& Analytical Chemistry I Lab (CHMG-131/145); General \& Analytical Chemistry I and Lab (CHMG-141/145); General Biology I and Lab (BIOL-101/103); Explorations in Cellular Biology and Evolution and Lab (BIOG-101/103); General Biology II and Lab (BIOL-102/104); or Explorations in Animal and Plant Anatomy and Physiology and Lab (BIOG-102/104).

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Software Engineering, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
GCIS-123	General Education - Elective: Software Development and Problem Solving I	4
GCIS-124	General Education - Elective: Software Development and Problem Solving II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
SWEN-101	Software Engineering Freshman Seminar	1
SWEN-250	Personal Software Engineering	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
Second Year		
COMM-253	General Education - Elective: Communication (WI)	3
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	4
PHYS-212	General Education - Scientific Principles Perspective \dagger	4
STAT-205	General Education - Elective: Applied Statistics	3
SWEN-99	Undergraduate Cooperative Education Seminar	0
SWEN-256	Software Process and Project Management	3
SWEN-261	Introduction to Software Engineering	3
SWEN-262	Engineering of Software Subsystems	3
SWEN-344	Engineering of Web Base Software Systems	3
SWEN-488	Software Engineering Summer Co-op (summer)	0
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
MATH-241	General Education - Elective: Linear Algebra	3
SWEN-340	Software Design for Computing Systems	3
SWEN-444	Human-Centered Requirements and Design	3
SWEN-499	Software Engineering Co-op (spring)	0
	General Education - Immersion 1	3
	Professional Elective	3
Fourth Year		
SWEN-331	Engineering Secure Software	3
SWEN-440	Software System Requirements and Architecture (WI-PR)	3
SWEN-499	Software Engineering Co-op (spring)	0
Choose one of the following:		3
CSCI-261	Analysis of Algorithms	
CSCI-264	Honors Analysis of Algorithms	
	General Education - Math/Science Elective	3
	General Education - Immersion 2	3
Fifth Year		
SWEN-561	Software Engineering Project I	3
SWEN-562	Software Engineering Project II	3
SWEN-640	Research Methods	3
SWEN-732	Collaborative Software Development	3
SWEN-746	Model-Driven Development	3
	Software Engineering Design Elective	3
	General Education - Math/Science Elective	3
	General Education - Immersion 3	3
	Open Electives	12
Sixth Year		
SWEN-755	Software Architecture	3
SWEN-777	Software Quality Assurance	3
SWEN-790	Thesis	6
SWEN-799	Independent Study	3
	Graduate Electives	6

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
*Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students must complete one of the following lab sciences: University Physics II (PHYS-212); University Physics II: AP-C Electricity \& Magnetism and University Physics II: AP-C Optics (PHYS-208/209); General Chemistry for Engineers and General \& Analytical Chemistry I Lab (CHMG-131/145); General \& Analytical Chemistry I and Lab (CHMG-141/145); General Biology I and Lab (BIOL-101/103); Explorations in Cellular Biology and Evolution and Lab (BIOG-101/103); General Biology II and Lab (BIOL-102/104); or Explorations in Animal and Plant Anatomy and Physiology and Lab (BIOG-102/104).

Software Engineering, BS degree/Computing Security, MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
SWEN-101	Software Engineering Freshman Seminar	1
GCIS-123	General Education - Elective: Software Development and Problem Solving I	4
GCIS-124	General Education - Elective: Software Development and Problem Solving II	4
SWEN-250	Personal Software Engineering	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical perspective	3
	General Education - Artistic perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
COMM-253	General Education - Elective: Communication (WI)	3
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	
PHYS-212	General Education - Scientific Principles Perspective \dagger	4
STAT-205	General Education - Elective: Applied Statistics	3
SWEN-99	Undergraduate Cooperative Education Seminar	0
SWEN-256	Software Process and Project Management	3
SWEN-261	Introduction to Software Engineering	3
SWEN-262	Engineering of Software Subsystems	3
SWEN-344	Engineering of Web Based Software Systems	3
SWEN-488	Software Engineering Summer Co-op (summer)	0
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
CSCI-261	Analysis of Algorithms	3
SWEN-444	Human-Centered Requirements and Design	3
SWEN-499	Software Engineering Co-op (spring)	0
	Software Engineering Process Elective	3
	General Education - Immersion 1	3
	General Education - Math/Science Elective	3
Fourth Year		
MATH-241	General Education - Elective: Linear Algebra	3
SWEN-331	Engineering Secure Software	3
SWEN-340	Software Design of Computing Systems	3
SWEN-440	Software System Requirements and Architecture (WI-PR)	3
SWEN-499	Software Engineering Co-op (spring)	0
	General Education - Immersion 2	3
Fifth Year		
SWEN-561	Software Engineering Project I	3
SWEN-562	Software Engineering Project II	3
	Computing Security Graduate Electives	6
	General Education - Immersion 3	3
	Software Engineering Design Elective	3
	Engineering Elective	3
	Open Electives	6
	Professional Elective	3
	General Education - Math/Science Elective	3
Sixth Year		
CSEC-604	Cryptography and Authentication	3
CSEC-742	Computer System Security	3
CSEC-790	MS Thesis	6
	Computing Security Graduate Electives	6
	Computing Security Research Electives	6

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students must complete one of the following lab sciences: University Physics II (PHYS-212); University Physics II: AP-C Electricity \& Magnetism and University Physics II: AP-C Optics (PHYS-208/209); General Chemistry for Engineers and General \& Analytical Chemistry I Lab (CHMG-131/145); General \& Analytical Chemistry I and Lab (CHMG-141/145); General Biology I and Lab (BIOL-101/103); Explorations in Cellular Biology and Evolution and Lab (BIOG-101/103); General Biology II and Lab (BIOL-102/104); or Explorations in Animal and Plant Anatomy and Physiology and Lab (BIOG-102/104).

Software Engineering, BS degree/Computer Science, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
SWEN-101	Software Engineering Freshman Seminar	1
SWEN-123	General Education - Elective: Software Development and Problem Solving I	4
SWEN-124	General Education - Elective: Software Development and Problem Solving II	4
SWEN-250	Personal Software Engineering	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
COMM-253	General Education - Elective: Communication (WI)	3
PHYS-211	General Education - Natural Science Perspective: University Physics I	4
PHYS-212	General Education - Scientific Principles Perspective†	4
STAT-205	General Education - Elective: Applied Statistics	3
SWEN-99	Undergraduate Cooperative Education Seminar	0
SWEN-256	Software Process and Project Management	3
SWEN-261	Introduction to Software Engineering	3
SWEN-262	Engineering of Software Subsystems	3
SWEN-344	Engineering of Web Based Software Systems	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
CSCI-261	Analysis of Algorithms	3
MATH-241	General Education - Elective: Linear Algebra	3
SWEN-444	Human-Centered Requirements and Design	3
SWEN-499	Software Engineering Co-op (fall)	0
	Software Engineering Process Elective	3
	General Education - Immersion 1	3
Fourth Year		
SWEN-331	Engineering Secure Software	3
SWEN-340	Software Design of Computing Systems	3
SWEN-440	Software System Requirements and Architecture (WI-PR)	3
SWEN-488	Software Engineering Summer Co-op (summer)	0
SWEN-499	Software Engineering Co-op (spring)	0
	General Education - Math/Science Elective	3
	General Education - Immersion 2	3
Fifth Year		
SWEN-561	Software Engineering Project I	3
SWEN-562	Software Engineering Project II	3
CSCI-664	Computational Complexity	3
	Graduate Computer Science Foundation Course	3
	General Education - Immersion 3	3
	Software Engineering Design Elective	3
	Open Electives	12
	General Education - Math/Science Elective	3
Sixth Year		
CSCI-620	Introduction to Big Data	3
CSCI-630	Foundations of Artificial Intelligence	3
CSCI-635	Introduction to Machine Learning	3
CSCI-642	Secure Coding	3
CSCI-711	Global Illumination	3
CSCI-788	Computer Science MS Project	3
CSCI-799	Computer Science Graduate Independent Study	6
	Computer Science Graduate Course	3
	Graduate Computer Science Foundations Course	3
Total Semester Credit Hours		157

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\dagger Students must complete one of the following lab sciences: University Physics II (PHYS-212); University Physics II: AP-C Electricity \& Magnetism and University Physics II: AP-C Optics (PHYS-208/209); General Chemistry for Engineers and General \& Analytical Chemistry I Lab (CHMG-131/145); General \& Analytical Chemistry I and Lab (CHMG-141/145); General Biology I and Lab (BIOL-101/103); Explorations in Cellular Biology and Evolution and Lab (BIOG-101/103); General Biology II and Lab (BIOL-102/104); or Explorations in Animal and Plant Anatomy and Physiology and Lab (BIOG-102/104).

Software Engineering Design Electives

	Any course offered by Data Science (DSCI)
SWEN-220	Mathematical Models of Software
SWEN-342	Engineering of Concurrent and Distributed Software Systems
SWEN-343	Engineering of Enterprise Software Systems
SWEN-514	Engineering Cloud Software Systems
SWEN-549	Software Engineering Design Seminar
SWEN-563	Real-Time and Embedded Systems
SWEN-564	Modeling of Real-Time Systems
SWEN-565	Performance Engineering of Real-Time and Embedded Systems
SWEN-567	Hardware/Software Co-Design for Cryptographic Applications
SWEN-711	Engineering Self-Adaptive Software Systems
SWEN-712	Engineering Accessible Software
SWEN-745	Software Modeling
SWEN-746	Model-Driven Development
SWEN-755	Software Architecture
SWEN-789	Graduate Special Topics (Design Focused)

Software Engineering Process Electives

SWEN-350	Software Process and Product Quality
SWEN-352	Software Testing
SWEN-356	Trends in Software Development Processes
SWEN-559	Software Engineering Process Seminar
SWEN-722	Process Engineering
SWEN-732	Collaborative Software Development
SWEN-772	Software Quality Engineering
SWEN-789	Graduate Special Topics (Process Focused)

Engineering Electives

	Any software engineering (SWEN) elective course
	Any undergraduate level computer science (CSCI) course (exceptions apply)
	Any graduate level computer science (CSCI) course (exceptions apply)
Any course offered through the College of Engineering (exceptions apply)	
CSEC-202	Reverse Engineering Fundamentals
CSEC-362	Crypto and Authentication
CSEC-480	Principles of Web Application Security
CSEC-471	Risk Management for Information Security
CSEC-472	Penetration Testing Frameworks \& Methodologies
CSEC-604	Authentication and Security Models
CSEC-731	Cryptography and Authentication
CSEC-733	Web Server and Application Security Audits
CSEC-741	Information Security Risk Management
EEET-261	Internet of Things Security
IGME-320	Fundamentals of Audio Engineering
ISTE-230	Game Design \& Development II
ISE--340	Introduction to Database and Data Modeling
ISTE-341	Client Programming
ISE-456	Server Programming
NSSA-290	Mobile Application Development II

Professional Electives

	Any Engineering elective
ACCT-110	Financial Accounting
BLEG-200	Business Law I
DECS-310	Operations Management
ECON-405	International Trade and Finance
ECON-430	Managerial Economics
FINC-220	Financial Management
FINC-425	Stock Market Algorithmic Trading
HRDE-386	Human Resources Development
INTB-225	Global Business Environment
MGMT-150	Business 1T: An Introduction to Business
MGMT-215	Organizational Behavior
MGMT-350	Entrepreneurship
MGMT-420	Managing Innovation and Technology
MGMT-470	Applied Entrepreneurship and Commercialization
MKTG-230	Principles of Marketing
SOIS-205	Practicing and Assessing Leadership

Math/Science Electives*

BIOG-101	Explorations in Cellular Biology and Evolution
BIOG-102	Explorations in Animal and Plant Anatomy and Physiology
BIOL-101	General Biology I
BIOL-102	General Biology II
BIOL-130	Introduction to Bioinformatics
CHMG-131	General Chemistry for Engineers
CHMG-141	General \& Analytical Chemistry I
CHMG-142	General \& Analytical Chemistry II
ECON-403	Econometrics I
ECON-404	Mathematical Methods: Economics
ENVS-101	Concepts of Environmental Science
ENVS-111	Soil Science
IMGS-111	Imaging Science Fundamentals
IMGS-112	Astronomical Imaging Fundamentals
IMGS-361	Image Processing and Computer Vision I
MATH-219	Multivariable Calculus
MATH-231	Differential Equations
MATH-251	Probability and Statistics I
MATH-311	Linear Optimization
MATH-351	Graph Theory
MATH-367	Codes and Ciphers
MEDG-101	Human Biology I
MEDG-102	Human Biology II
PHYS-213	Modern Physics I
PHYS-220	University Astronomy
STAT-257	Statistical Inference

Accreditation

The bachelor of science in software engineering is accredited by the Engineering Accreditation Commission of ABET.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math including pre-calculus required
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

AS degree in computer science, engineering science, or liberal arts

Web and Mobile Computing, BS

www.rit.edu/study/web-and-mobile-computing-bs
Dan Bogaard, Associate Professor
585-475-5231, Dan.Bogaard@rit.edu

Program overview

The web and mobile computing major is about combining people and technology to bring out the best in both. In this web development degree students learn how to integrate the back end code with the front end user experience, and are able to do it across several languages and platforms, to impact the app design process at all levels. Students are highly valuable to employers seeking today's most skilled application developers.

Web and mobile computing explores ubiquitous application development with a firm focus on the end user experience. Students have an interest in the technology of today (and tomorrow), but they're also interested in how people use that technology. The web and mobile computing major is about combining people and technology to bring out the best in both.

What truly sets our graduates apart is their ability to see the world through the eyes of the user. Creating an impactful App begins with solid code and good design, but understanding user expectations is the cornerstone of that process. In the Web and mobile computing major, students learn a user-centric approach to application creation. That, coupled with a robust developer skillset, enables them to produce applications that connect with multiple users across varied environments.

The curriculum is structured with this in mind. Students learn how to integrate the back end code with the front end UI, and will be able to do it across several languages and platforms. This comprehensive knowledge enables students to impact the App design process at all levels, making them incredibly valuable to employers seeking today's application developers. Students can also specialize on one of four areas, which provides students with the knowledge they need to pursue a professional or personal aspiration.

Plan of Study

A defining aspect of the web and mobile computing curriculum is the depth of study. Students learn a wide variety of languages and platforms so that they can meet the demands of industry and the public. For example, students don't just learn about web services, they learn how to use existing web services, how to create different types of web services, and how to do it in a variety of languages. And that's just part of what they'll learn in one of their courses (ISTE-341 Server Programming). After establishing this strong foundation, students can further their skills by choosing two of the following concentrations: web application development, mobile application development, geographic information systems, and wearable and ubiquitous development. The major also requires students to complete two blocks of cooperative education, which students may begin after completing their second year of study.

Concentrations

- Web Application Development: Want to build the next Ebay, Gmail, or Squarespace? Master the skills needed to push web apps in new directions.
- Database: Data is the lifeblood of modern business. Storage, integrity, access, speed, security - learn how to manage modern data in any environment.
- Mobile Application Development: Learn to write clean, efficient code in multiple languages and to design an impactful user interface on modern mobile platforms.
- Wearable and Ubiquitous Development: Smartwatches, the Internet of Things, and beyond - learn to integrate new and cutting edge tech into the modern world.
- Project Life Cycle: Understand how the entire process works, from initial client discussions to meeting deadlines, managing risks, and producing deliverables.

Global Opportunities

The web and mobile computing degree is offered at RIT's main campus, in Rochester, NY, and at RIT Croatia, which has campuses in Dubrovnik and Zagreb. Because the same curriculum is offered in all three locations, students may spend a semester studying abroad and immersing themselves in the Croatian culture without any negative impact on their schedule of studies. Furthermore, in their senior year all students take Senior Development Project I, II (ISTE-500, 501), a year-long course in which teams are composed of students from RIT's main campus and both RIT Croatia campuses. Whether students choose to study abroad or remain in Rochester, they will be working side-by-side with their peers from across the world.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your computing co-ops will provide hands-on experience that enables you to apply your computing knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the web and mobile computing degree are required to complete two blocks of cooperative education experience.

Creative Industry Day

RIT's Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Web and Mobile Computing, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
ISTE-230	Introduction to Database and Data Modeling	3
ISTE-240	Web \& Mobile II	3
MATH-131	General Education - Mathematical Perspective A: Discrete Mathematics	4
NMDE-111	New Media Design Digital Survey I	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
Second Year		
ISTE-99	School of Information Second Year Seminar	0
ISTE-222	Computational Problem Solving in the Information Domain III	3
ISTE-252	Foundations of Mobile Design	3
ISTE-260	Designing the User Experience	3
ISTE-330	Database Connectivity and Access	3
ISTE-340	Client Programming	3
ISTE-499	Undergraduate Co-op (summer)	0
MATH-161	General Education - Mathematical Perspective B: Applied Calculus	4
NSSA-290	Networking Essentials for Developers	3
SWEN-383	Software Design Principles and Patterns	3
	General Education - Artistic Perspective	3
	General Education-Global Perspective	3
Third Year		
ISTE-341	Server Programming	3
ISTE-422	Application Development Practices	3
ISTE-499	Undergraduate Co-op (summer)	0
	WMC Concentration Courses	6
	General Education - Immersion 1	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	Open Electives	9
Fourth Year		
ISTE-500	Senior Development Project I	3
\|STE-501	Senior Development Project II (WI-PR)	3
	WMC Concentration Courses	6
	General Education - Immersion 2, 3	6
	General Education - Scientific Principles Perspective	4
	Open Elective	3
	General Education - Electives	6

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and the lab portions to fulfill the requirement.

Concentrations

Web Application Development

COURSE	
ISTE-442	Secure Web Application Development
ISTE-444	Web Server Development and Administration

Mobile Application Development

COURSE	
ISTE-454	Mobile Application Development I
ISTE-456	Mobile Application Development II
Wearable \& Ubiquitous Development	
COURSE	
ISTE-358	Foundations of Wearable \& Ubiquitous Computing
ISTE-458	Advanced Topics in Wearable \& Ubiquitous Computing
Project Life Cycle	
COURSE	
NSSA-370	Project Management
ISTE-430	Information Requirements Modeling
Database	
COURSE	
Choose two of the following:	
ISTE-432	Database Application Development
ISTE-438	Contemporary Databases
ISTE-470	Data Mining and Exploration

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math are required and pre-calculus is recommended
- Requires chemistry or physics and strongly recommends both
- Computing electives are recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in computer science, calculus, liberal arts; calculus-based physics, chemistry, or biology

Appropriate associate degree programs for transfer

Faculty

Matt Huenerfauth, MS, University of Delaware; MSc, University College Dublin (Ireland); Ph.D., University of Pennsylvania-Dean; Professor

Michael A. Yacci, BS, Ithaca College; MS, Rochester Institute of Technology; Ph.D., Syracuse University-Senior Associate Dean for Academic Affairs; Professor

Pengcheng Shi, BS, Shanghai Jiao Tong University (China); MS, M Phil, Ph.D., Yale UniversityDoctorate Program Director; Associate Dean for Research and Scholarship; Professor

Computer Science

Zack Butler, BS, Alfred University; Ph.D., Carnegie Mellon UniversityInterim Department Chair; Professor

Reynold Bailey, BS, Midwestern State University; MS, Ph.D., Washington University-Associate Undergraduate Program Director; Professor

Ivona Bezakova, BS, Comenius University (Slovakia); MS, Ph.D., University of Chicago-Professor

Hans-Peter Bischof, BS, MS, University of Ulm (Germany); Ph.D., University of Osnabrück (Germany)-Graduate Program Director; Professor
T.J. Borrelli, BS, St. John Fisher College; MS, Rochester Institute of Technology-Principle Lecturer

Jeremy Brown, BS, Rochester Institute of Technology; MS, Florida Institute of Technology-Lecturer

Ting Cao, BS, Changsha University of Science and Technology (China); MS, University of Edinburgh (United Kingdom)-Lecturer

Warren Carithers, BS, MS, University of Kansas-Associate Professor

Maria Cepeda, BS, Antonio Machado Education Institute (Spain); MS, Rochester Institute of Technology-Lecturer

Christian Chilan, MS, Ph.D., University of Illinois at Urbana-Lecturer

Aaron Deever, BS, Pennsylvania State University; Ph.D., Cornell University-Senior Lecturer, Associate Undergraduate Program Director

Matthew Fluet, BS, Harvey Mudd College; Ph.D., Cornell UniversityAssociate Professor

Joe Geigel, BS, Manhattan College; MS, Stevens Institute of Technology; Ph.D., George Washington University-Professor

James Heliotis, BS, Cornell University; Ph.D., University of Rochester-Professor

Edith Hemaspaandra, BS, MS, Ph.D., University of Amsterdam (Netherlands)-Professor

Christopher Homan, AB, Cornell University; MS, Ph.D , University of Rochester-Associate Professor

Scott Johnson, BS, MS, Rochester Institute of Technology-Senior Lecturer

Thomas Kinsman, BS, University of Delaware; MS, Carnegie Mellon University; Ph.D., Rochester Institute of Technology-Senior Lecturer

Mohan Kumar, BE, Bangalore University (India); MTech, Ph.D., Indian Institute of Science (India)—Professor

Minseok Kwon, BS, MS, Seoul National University (South Korea); Ph.D., Purdue University-Associate Chair; Associate Professor

Xumin Liu, BE, Dalian University of Technology (China); ME, Jinan University (China); Ph.D., Virginia Polytechnic Institute and State University-Associate Professor

Michael Mior, BS, University of Ontario (Canada); MS, University of Toronto (Canada); Ph.D., University of Waterloo (Canada)—Assistant Professor

Arthur Nunes-Harwitt, BS, Brandeis University; MS, University of Pittsburgh; Ph.D., Rochester Institute of Technology-Senior Lecturer

Jansen Orfan, BS, Monmouth University; MS, University of Rochester-Lecturer

Alex Ororbia, BS, Bucknell University; MS, Ph.D., Pennsylvania State University-Assistant Professor

Monika Polak, BS, MS, Ph.D., Maria Curie-Sktodowska University (Poland)-Lecturer

Stanislaw Radziszowski, MS,
Ph.D., University of Warsaw (Poland)-Professor

Muhammed Mustapha Rafique,

BS, National University of Computer and Emerging Sciences (Pakistan); MS, Ph.D. Virginia Tech University -Assistant Professor

Rajendra K. Raj, BS, Indian University of Technology (India); MS, University of Tennessee; Ph.D., University of Washington-Professor

Carlos Rivero Osuna, BS, MS, Ph.D., University of Seville (Spain)-Associate Professor
Leonid Reznik, Degree of Electronics, Leningrad Institute of Aeronautical Construction (Russia); MS, St. Petersburg Aircraft Academy (Russia); Ph.D., St. Petersburg Polytechnic Institute (Russia)—Professor

Ben Steele, BA, Wesleyan
University; MS, Rochester Institute of Technology-Senior Lecturer

Sean Strout, BS, MS, Rochester Institute of Technology-Principal Lecturer

Phil White, BS, Clarkson College; MS, Rochester Institute of Technology-Principle Lecturer

Richard Zanibbi, BA, MS, Ph.D., Queens University (Canada)-Professor

Computing Security

Matthew Wright, BS, Harvey
Mudd College; MS, Ph.D., University of MassachusettsDepartment Chair; Professor

Hrishikesh Bhattacharya, BTech, Indian Institute of Technology
(India); Ph.D., University of Texas at Austin-Assistant Professor

Ivan De Oliveira Nunes, BE,
Federal University of Espirito Santo; MS, Federal University of Minas Gerais; Ph.D., University of California at Irvine-Assistant Professor

Ahmed Hamza, MS, Georgetown University; Ph.D., University of Portsmouth (United Kingdom) Undergraduate Program Director; Lecturer

Yidan Hu, BE, MS, Hangzhou Dianzi University; Ph.D. University of Delaware-Assistant Professor

Daryl Johnson, BS, St. John Fisher College; MS, Rochester Institute of Technology-Associate Professor

Sumita Mishra, BS, Patna
University (India); BS, Ph.D., State University of New York at Buffalo-Professor

Rob Olson, BS, MS, State University College at Fredonia; MS, Nova Southeastern University-Senior Lecturer

Yin Pan, BS, MS, Shanghai Normal University (China); MS, Ph.D., State University of New York at Binghamton-Professor

Gahyun Park, BS, Ewha Womans University (South Korea); MS, Ph.D., Purdue University-Senior Lecturer

Justin M. Pelletier, BS, Stonehill College; MBA, Rochester Institute of Technology; Ph.D., Capella University-Lecturer

Hanif Rahbari, BS, Sharif University of Technology (Iran); MS, Amirkabir University (Iran); Ph.D., University of ArizonaAssistant Professor

William Stackpole, BS, Roberts Wesleyan College; MS, Rochester Institute of Technology—Professor
Jonathan S. Weissman, BS, College of Staten Island; MA, Brooklyn College-Senior Lecturer

Bo Yuan, BS, MS Shanghai Normal University (China); Ph.D., State University of New York at Binghamton-Department Chair; Professor

School of Information

Stephen J. Zilora, BS, University of Rochester; MS, New Jersey Institute of Technology-Interim School Director; Professor

Garret Arcoraci, State University College at Brockport-Lecturer

Catherine I. Beaton, BA, B.Ed., MITE, Dalhousie University (Canada)—Associate Professor

Yusuf Bilgic, BS, Marmara University; MS, Ph.D., Western Michigan University-Lecturer

Daniel S. Bogaard, BFA, Indiana University; MS, Rochester Institute of Technology-Undergraduate Program Director; Associate Professor

Charles B. Border, BA, State University College at Plattsburgh; MBA, Ph.D., State University of New York at Buffalo-Associate Professor

Stephen Cady, BA, Brooks Institute; BA, Antioch University; MFA, University of IllinoisVisiting Lecturer
Bryan French, BA, State University College at Potsdam; MS, Rochester Institute of Technology-Senior Lecturer

Dean Ganskop, BS, MS, Rochester Institute of Technology-Lecturer

Erik Golen, BS, Ph.D., Rochester Institute of Technology-Lecturer

James Habermas, BA, MS, State University College at BrockportVisiting Lecturer

Bruce H. Hartpence, BS,
MS, Rochester Institute of
Technology-Professor
Lawrence Hill, BS, MS, Rochester
Institute of Technology-
Networking and Systems
Administration Program
Coordinator; Associate Professor
Edward Holden, BA, State
University College at Oswego; MBA, Rochester Institute of TechnologyAssociate Professor

Jai Kang, BS, Seoul National University (South Korea); MA, Kent State University; MS, Georgia Institute of Technology; Ph. D., State University of New York at BuffaloAssociate Professor

Jeffrey A. Lasky, BBA, City College of New York; MBA, City University of New York; MS, University of Minnesota- Professor Emeritus

Sharon P. Mason, BS, Ithaca College; MS, Rochester Institute of Technology; Ph.D., University of Buffalo-Professor

Tae (Tom) Oh, BS, Texas Tech University; MS, Ph.D., Southern Methodist University—Professor

Sylvia Perez-Hardy, BS, MBA, Cornell University-Associate Professor

Nirmala Shenoy, BE, ME, University of Madras (India); Ph.D., University of Bremen (Germany)-Professor

Kristen Shinohara, BS, University of Puget Sound; MS, University of Washington-Tacoma; Ph.D., University of Washington-SeattleAssistant Professor

Elissa M. Weeden, BS, MS, Rochester Institute of Technology; Ed.S., Ph.D., Nova Southeastern University-Associate ProfessorAssociate Professor

Qi Yu, BE, Zhejiang University (China); MS, National University of Singapore (Singapore); Ph.D., Virginia Polytechnic Institute and State University-Professor

Interactive Games and Media

David I. Schwartz, BS, MS, Ph.D., University at Buffalo-Director; Associate Professor

Jessica Bayliss, BS, California State University, Fresno; MS, Ph.D., University of Rochester-Professor

John A. Biles, BA, MS, University of Kansas-Professor Emeritus

Alberto Bobadilla Sotelo, BS Universidad Nacional Autonoma de Mexico (Mexico); MS, Rochester Institute of Technology-Senior Lecturer

Yusuf Bilgic, BS, Marmara University; MS, Ph.D., Western Michigan University-Lecturer

Sean Boyle, BS, MS, Rochester Institute of Technology-Principle Lecturer

Christopher Cascioli, BS,
MS, Rochester Institute of Technology-Lecturer

Erin Cascioli, BS, MS, Nazareth College-Lecturer

Carlos Castellanos, BA, San Francisco State University; MFA, San Jose State University; Ph.D., Simon Fraser University- Assistant Professor

Christopher A. Egert, BS, MS, Rochester Institute of Technology; Ph.D., University at BuffaloAssociate Professor

Stephen Kurtz, BA, University of Miami; MFA, MS, Rochester Institute of Technology-Professor Emeritus

Gordon Goodman, BA, State University of New York at Binghamton; MS (instructional technology), MS (computer science), Rochester Institute of Technology-Professor Emeritus

Owen Gottlieb, BS, Dartmouth
College; MA, University of Southern California-Associate Professor
W. Michelle Harris, MPS, New York University-Associate Professor

Jay Alan Jackson, BS, MS, Ph.D., Florida State University-Associate Professor

Stephen Jacobs, BA,
MA, New School for Social Research-Professor

Anthony Jefferson, BS, State University College at Oswego; MS, Rochester Institute of TechnologyPrinciple Lecturer

Elizabeth Lane Lawley, AB, MLS, University of Michigan; Ph.D., University of Alabama-Professor

Sten McKinzie, BS, MS, Rochester Institute of Technology-Lecturer

Erika Mesh, BS, MS, Rochester Institute of Technology-Lecturer
Elouise Oyzon, BFA, MFA,
Rochester Institute of TechnologyAssociate Professor; Undergraduate Program Director

Konstantinos Papangelis, BS, University of Huddersfield (United Kingdom); MS, University of Lancaster (United Kingdom); Ph.D.,

University of Aberdeen (United Kingdom); Fellow of the Royal Society of the Arts-Assistant Professor

Chao Peng, B.Arch., Hebei University of Engineering (China); MFA, University of Alaska Fairbanks; Ph.D., Virginia Polytechnic Institute and State University-Associate Professor

David Simkins, BA, MS, Ph.D., University of Wisconsin-MadisonAssociate Professor

Travis Stodter, BS,
MS, Pennsylvania State
University-Lecturer
Brian Tomaszewski, BA, University of Albany; MA, University at Buffalo; Ph.D., Pennsylvania State University-Professor

Austin Willoughby, BS,
MS, Rochester Institute of
Technology-Lecturer

Software Engineering

Naveen Sharma, MS, Indian Institutes of Science (India); Ph.D., Kent State University-Department Chair; Professor

Bruce Herring, BS, MS Florida State University-Senior Lecturer

Larry Kiser, BS, Roberts Wesleyan College; MS, Rochester Institute of Technology-Senior Lecturer

Samuel Malachowsky, BBA, State University of New York at Buffalo; MBA, Medaille College-Senior Lecturer

Kenn Martinez, BS, Syracuse University; MS, Rensselaer Polytechnic Institute-Senior Lecturer

Andy Meneely, BA, Calvin College; Ph.D., North Carolina Sate University-Undergraduate Program Director; Associate Professor

Kal Rabb, BS, University of Rochester; MS, Rochester Institute of Technology-Lecturer
Sophia Sandhu, BS, Panjab Technical University; MS, University of Toledo-Lecturer

Bob St. Jacques, BS, MS, Rochester Institute of Technology-Senior Lecturer

AbdulMutalib (Abdul) Wahaishi,

BS, University of Tripoli; MS, Ph.D.,
University of Western Ontario-
Visiting Lecturer

Computing and Information Sciences

Pengcheng Shi, BS, Shanghai Jiao Tong University (China); MS, M.Phil., Ph.D., Yale UniversityDoctorate Program Director; Professor; Associate Dean for Research and Scholarship

Linwei Wang, BS, Zhejiang University (China); M.Phil., Hong Kong University of Science and Technology (Hong Kong); Ph.D., Rochester Institute of Technology—Professor

Yu Kong, BS, Anhui University
(China); MS, Ph.D., Beijing Institute of Technology (China) -Assistant Professor

Rui Li, BS, Harbin Institute of Technology (China); MS, Tianjin University of Technology (China); Ph.D., Rochester Institute of Technology—Assistant Professor

Kate Gleason College of Engineering
 Doreen Edwards, Dean

rit.edu/engineering
\# Biomedical Engineering BS 87
\# Chemical Engineering BS 89
\# Computer Engineering BS 94
\# Electrical Engineering BS 97
Engineering Exploration 100
\# Industrial Engineering BS 101
Integrated Electronics Certificate 106
\# Mechanical Engineering BS 106
\# Microelectronic Engineering BS 11087
\# Combined Accelerated Bachelor's/Master's Degree available.

Accreditation

All eligible majors have received national accreditation by ABET (Accreditation Board of Engineering and Technology), which is a prerequisite for licensure as a professional engineer in many states. In their final semester of study, graduating seniors in ABET approved majors are eligible to sit for the NCEES Fundamentals of Engineering (FE) section of the New York State Professional Engineering examination, which is the first step in the process for licensure as a Professional Engineer (PE).

The majors offered by the Kate Gleason College of Engineering prepare students for careers in industry or for graduate study in engineering and related fields. Students develop a strong intellectual foundation for lifelong learning through a balance of course work in the liberal arts, physical sciences, and professional studies. All students participate in a five-year program that integrates a comprehensive four-year academic major with one year of cooperative education experience. After the second year of study, students typically alternate study on campus with cooperative education.

Please visit the college's website-www.rit.edu/engineering-for in depth information on academics, admissions requirements, faculty, facilities, financial aid and scholarships, research initiatives, advising, and more.

Biomedical Engineering, BS

www.rit.edu/study/biomedical-engineering-bs
Steven Day, Associate Professor
585-475-4738, Steven.Day@rit.edu

Program overview

Improving the health and well-being of others is the emphasis of this dynamic biomedical engineering degree. Biomedical engineers support biocompatibility testing, create innovative medical devices, design artificial organs and tissues, develop new drugs and drug delivery systems, and enhance medical imaging techniques.

What is Biomedical Engineering?

Biomedical engineering leverages the vast knowledge base of engineering, biology, and medicine to solve problems focused on health care and the human body. Biomedical engineers design instruments, devices, and software; bring together knowledge from many technical sources to develop new medical products, procedures, and pharmaceuticals; and conduct research needed to solve clinical problems. They often serve as coordinators and big picture problem solvers. By utilizing their expertise in engineering and biological science, biomedical engineers are often the bridge that connects the clinical aspect of medicine with the technological understanding of engineering to design, develop, and implement innovative solutions to health care problems.

Biomedical Engineering Curriculum

RIT's biomedical engineering degree is a five-year program consisting of the following requirements:

- Biomedical engineering core courses - The curriculum consists of a core set of science, technology, engineering, and mathematics (STEM) to give you the ability to apply principles of science and engineering to analyze, model, design, and realize biomedical devices, systems, components, and processes. You will learn to solve biomedical engineering problems including those associated with the interaction between living and non-living systems as well as make measurements on, and interpret data from, living systems.
- Professional technical electives - The program includes two free electives that allow you to choose courses from any college in the university. In the fourth or fifth year of the program, students choose two technical electives specifically related to some aspect of biomedical engineering, such as biomechanics, instrumentation and imaging, or tissue engineering.
- Cooperative education - An important aspect of the biomedical engineering program is one year of cooperative education experience. (See Cooperative Education below.)
- Liberal arts courses - Courses that include writing, communications, and the humanities and social sciences comprise liberal arts course you will complete as part of the program. A three-course immersion is also required. The immersion can enhance your biomedical engineering studies, or be a topic of personal.
- Free electives - Chosen based on your interests, these free electives provide you with the opportunity to select additional course work to enhance a personal or professional interest.
- Multidisciplinary senior design - The biomedical engineering major culminates in the fifth year with a two-course multidisciplinary senior design experience. This capstone design course integrates engineering theory, principles, and processes within a collaborative environment
that bridges engineering disciplines. Learn more by exploring multidisciplinary senior design.
Learn more about the Student Learning Outcomes and Program Educational Objectives for the biomedical engineering BS degree.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (e.g., physician assistant, physical therapy, occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to medical schools and graduate programs in the medical and health professions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

The biomedical engineering degree requires students to complete four blocks (roughly 48 weeks) of cooperative education.

Curriculum

Biomedical Engineering, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIME-181	Intro to Biomedical Engineering	
BIME-191	Introduction to Programming for Biomedical Engineers	3
CHMG-141	General Education - Elective: General \& Analytical Chemistryl	3
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Elective: General \& Analytical Chemistry I Lab	
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - First Year Writing (WI)	3
	General Education - Elective	3
Second Year		
BIME-99	BME Career Seminar	0
BIME-200	Introductory Musculoskeletal Biomechanics	3
BIME-250	Biosystems Process Analysis	3
BIME-320	Fluid Mechanics	3
BIME-370	Introduction to Biomaterials Science	3
BIME-391	Biomechanics and Biomaterials Lab	2
BIOG-140	General Education - Elective: Cell and Molecular Biology for Engineers I	3
BIOG-240	General Education - Elective: Cell and Molecular Biology for Engineers II	3
EGEN-099	Engineering Co-op Preparation	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-231	General Education - Elective: Differential Equations	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Ethical Perspective	3
Third Year		
BIME-360	Biomedical Signal Analysis	3
BIME-407	Medical Device Design	3
BIME-410	Systems Physiology I	3
BIME-499	Co-op (fall and summer)	0
STAT-251	General Education - Elective: Probability and Statistics for Engineers I	3
	General Education-Global Perspective	3
Fourth Year		
BIME-411	Systems Physiology II (WI-PR)	3
BIME-450	Numerical Analysis of Complex Biosystems	3
BIME-491	Quantitative Physiological Signal Analysis Lab	1
BIME-499	Co-op (spring and summer)	0
ISEE-325	Engineering Statistics and Design of Experiments	3
	General Education - Immersion	3
	Open Elective	3
Fifth Year		
BIME-460	Dynamics and Control of Biomedical Systems	3
BIME-492	Systems Physiology Control and Dynamics Lab	1
BIME-497	Multidisciplinary Senior Design I	3
BIME-498	Multidisciplinary Senior Design II	3
	Professional Electives	6
	Open Electives	
	General Education - Social Perspective	3
	General Education-Immersion 2,3	6
Total Semester Credit Hours		129

Please see General Education Curriculum (GE) for more information
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Combined Accelerated Bachelor's/Master's Degree

BS in Biomedical Engineering/MS in Science, Technology and Public Policy Throughout history, technology has been a major driver of social, political , and economic change. Societies around the globe employ public policies to solve problems and achieve their social, economic, and environmental objectives. The spheres of public policy and technology overlap as society is challenged to consider not only the role of new technologies in its quest for improved quality of life, but also how policies affect the development, emergence, and choice of new technologies. Because of the role engineers play in creating new technology, they increasingly have an important role in helping to shape public policy. Moreover, policies affecting how we as a society live and work-such as environmental, industrial, energy, and national security policy, to name a few-demand that engineers be prepared to integrate policy issues into their engineering practice.

Biomedical engineering students may choose to pursue an accelerated dual degree in which they may complete the BS in biomedical engineering and an MS in science, technology and public policy in approximately five years. Many biomedical engineers combine their technical knowledge with the policy skills needed to analyze and advocate for policy change in both private and public organizations. The interdisciplinary nature of the program, in conjunction with the quantitative and qualitative approaches taken to understand and analyze policy, will contribute to your ability to gain exciting leadership roles in a range of the engineering fields.

Biomedical Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIME-181	Intro to Biomedical Engineering	
BIME-191	Introduction to Programming for Biomedical Engineers	3
CHMG-141	General \& Analytical Chemistry I	3
CHMG-142	General \& Analytical Chemistry II	3
CHMG-145	General \& Analytical Chemistry I Lab	1
CHMG-146	General \& Analytical Chemistry II Lab	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Elective	3
	General Education - First Year Writing (WI)	3
Second Year		
BIME-099	BME Career Seminar	0
BIME-200	Introductory Musculoskeletal Biomechanics	3
BIME-250	Biosystems Process Analysis	3
BIME-320	Fluid Mechanics	3
BIME-370	Introduction to Biomaterials Science	3
BIME-391	Biomechanics and Biomaterials Lab	2
BIOG-140	Cell and Molecular Biology for Engineers I	3
BIOG-240	Cell and Molecular Biology for Engineers II	3
EGEN-099	Engineering Co-op Preparation	0
MATH-221	Multivariable and Vector Calculus	4
MATH-231	Differential Equations	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Ethical Perspective	3
Third Year		
BIME-360	Biomedical Signal Analysis	3
BIME-407	Medical Device Design	3
BIME-410	Systems Physiology I	3
BIME-499	Co-op (fall, summer)	0
STAT-251	Probability and Statistics for Engineers I	3
	General Education - Global Perspective	

COURSE		SEMESTER CREDIT HOURS
Fourth Year		
BIME-411	Systems Physiology II (WI-PR)	3
BIME-450	Numerical Analysis of Complex Biosystems	3
BIME-491	Quantitative Physiological Signal Analysis Lab	1
BIME-499	Co-op (summer)	0
ISEE-325	Engineering Statistics and Design of Experiments	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	BIME Professional Elective	3
	General Education - Immersion 1,2	6
	Open Electives	3
	General Education - Social Perspective	3
Fifth Year		
BIME-460	Dynamics and Control of Biomedical Systems	3
BIME-492	Systems Physiology Control and Dynamics Lab	1
BIME-497	Multidisciplinary Senior Design I	3
BIME-498	Multidisciplinary Senior Design II (WI-PR)	3
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
	BIME - Professional Elective	3
	General Education - Immersion 3	3
	Graduate Policy Elective	3
	Open Elective	3
Choose one of the following:		6
PUBL-785	Capstone Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	
Total Semester Credit Hours		150

Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The BS program in biomedical engineering is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required
- Biology required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.

Appropriate associate degree programs for transfer

[^4]
Chemical Engineering, BS

www.rit.edu/study/chemical-engineering-bs

Steven Weinstein, Professor
585-475-4299, sjweme@rit.edu

Program overview

Chemical engineering applies the core scientific disciplines of chemistry, physics, biology, and mathematics to transform raw materials or chemicals into more useful or valuable forms, invariably in processes that involve chemical change. All engineers employ mathematics, physics, and engineering to overcome technical problems in a safe and economical fashion. A chemical engineer provides the critical level of expertise needed to solve problems in which chemical specificity and change have particular relevance. They not only create new, more effective ways to manufacture chemicals, they also work collaboratively with chemists to pioneer the development of high-tech materials for specialized applications. Well-known contributions include the development and commercialization of synthetic rubber, synthetic fiber, pharmaceuticals, and plastics. Chemical engineers contribute significantly to advances in the food industry, alternative energy systems, semiconductor manufacturing, and environmental modeling and remediation. A special focus on process engineering cultivates a systems perspective that makes chemical engineers extremely versatile and capable of handling a wide spectrum of technical problems. Students develop a firm and practical grasp of engineering principles and the underlying science associated with traditional and emerging chemical engineering applications.

How is Chemical Engineering Different from Chemistry?

Virtually every aspect of a modern industrial economy is critically dependent upon chemical engineering for manufacturing bulk and specialty chemicals and high-tech materials needed to create a limitless array of value-added products. Chemical engineering applies the core scientific disciplines of chemistry, physics, biology, and mathematics to transform raw materials or chemicals into more useful or valuable forms, invariably in processes that involve chemical change. They work in multidisciplinary teams to create novel materials that are at the heart of virtually every product and service that enhances our quality of life. Examples include nano-scale composites, pharmaceuticals, plastics, fibers, metals, and ceramics. Key applications include the development of alternative energy systems, biomedical materials and therapies, and strategies to minimize the environmental impact of technological advancements.

The line between the functions of chemists and chemical engineers can be blurred, but a general distinction can be made between the function of the two disciplines. Perhaps the clearest distinction can be made in the area of chemical transformation. Typically, chemists develop new molecules via chemical reaction, examine the underlying mechanisms involved, and make precise measurements of both physical and organic chemistry parameters on a bench scale in small volumes. Chemical engineers utilize the work of chemists to build processes to manufacture and purify chemicals and new materials on a larger scale. Using their knowledge of scientific principles (physical and organic chemistry integrated with physics, mathematics, and biology) and design constraints (such as economics, environmental requirements) chemical engineers develop processes to manufacture raw materials with desired purity on a scale that meets the demands of virtually every industry in our modern society.

Chemical Engineering Curriculum

The core curriculum of the chemical engineering major provides students with a solid foundation in engineering principles and their underlying science. Students choose professional technical electives that provide a more depth examination of the chemical engineering field or provide breadth in other engineering disciplines. These electives may be chosen from those offered within the major, as well as from a department-approved list of engineering courses offered throughout the college. A capstone design experience in the fifth year integrates chemical engineering theory, principles, and processes in a collaborative team environment. Four blocks (approximately one year) of cooperative education experience, mathematics and science courses, free electives, and liberal arts courses round out the curriculum. Learn more about the Student Learning Outcomes and Program Educational Objectives for the chemical engineering BS degree.

Capstone Experience

Students complete a capstone experience that includes two courses: Design with Constraint and Advanced Design Capstone.

Design with Constraint is taught in a workshop structure with lectures and in-class applications of concepts. Students examine typical constraints on design and their integration with technology. Economics, environmental considerations, hazards analysis, ethics, and globalization and supply chain management are considered. Modern examples that integrate knowledge of unit operations and processes with design constraints are also discussed.

In Advanced Design Capstone students work in teams to design and simulate a realistic chemical manufacturing plant. An assigned project requires students to draw upon, and integrate, the knowledge they have acquired from all core chemical engineering courses taken over the previous five years. The course is taught in the Chemical Engineering Computer Lab and makes extensive use of both chemical process simulation software (ChemCad), software for drawing piping and instrumentation diagrams (P\&ID's), and online resources that chemical engineers use to size and select parts and equipment. The course constitutes a project-based application of concepts and skills developed throughout the curriculum.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (e.g., physician assistant, physical therapy, occupational therapy, etc.) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the chemical engineering degree are required to complete four blocks (48 weeks) of cooperative education. This work experience, coupled with the professional networks created by our students and alumni, often translates into job opportunities after graduation. Additionally, for those students who develop an interest in research and demonstrate aptitude in the classroom, a limited number of co-op opportunities are possible in which students will work alongside professors as they conduct research in the chemical engineering field.

Curriculum

Chemical Engineering, BS degree, typical course sequence

COURSE SEMESTER CREDIT HOURS

First Year		
CHME-181	Chemical Engineering Insights I	
CHME-182	Chemical Engineering Insights II	
CHMG-141	General Education - Elective: General \& Analytical Chemistry I	
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	
CHMG-145	General Education - Elective: General \& Analytical Chemistry I Lab	
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	
	General Education - First-Year Writing (WI)	
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	
Second Year		
CHME-230	Chemical Process Analysis	3
CHME-310	Applied Thermodynamics	
CHME-320	Continuum Mechanics I	
CHME-391	Chemical Engineering Principles Lab	
CHMO-231	General Education - Elective: Organic Chemistry I	
CHMO-235	General Education - Elective: Organic Chemistry Labl	
EGEN-099	Engineering Co-op Preparation	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-231	General Education - Elective: Differential Equations	
STAT-205	General Education - Elective: Applied Statistics	
	General Education - Global Perspective	
	Open Elective	
Third Year		
CHMA-231	General Education - Elective: Chemical Instrumental Analysis for Engineers	3
CHME-301	Analytical Techniques for Chemical Engineering I	
CHME-321	Continuum Mechanics II	
CHME-330	Mass Transfer Operations	
CHME-499	Co-op (fall and summer)	
	General Education - Social Perspective	
	General Education - Immersion	
Fourth Year		
CHME-302	Analytical Techniques for Chemical Engineering II	3
CHME-340	Reaction Engineering	
CHME-350	Multiple Scale Material Science	
CHME-491	Chemical Engineering Processes Lab (WI-PR)	
CHME-499	Co-op (spring and summer)	
	General Education - Immersion 2, 3	
Fifth Year		
CHME-401	System Dynamics and Control	3
CHME-451	Analysis of MultiScale Processes	
CHME-490	Design with Constraint	3
CHME-492	Advanced Design Capstone	
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	
	Professional Technical Electives	
	Open Electives	

Total Semester Credit Hours 129
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
${ }^{*}$ Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Combined Accelerated Bachelor's/Master's Degrees

BS in Chemical Engineering/MS in Science, Technology, and Public Policy Throughout history, technology has been a major driver of social, political , and economic change. Societies around the globe employ public policies to solve problems and achieve their social, economic, and environmental objectives. The spheres of public policy and technology overlap as society is challenged to consider not only the role of new technologies in its quest for improved quality of life, but also how policies affect the development, emergence, and choice of new technologies. Because of the role engineers play in creating new technology, they increasingly have an important role in helping to shape public policy. Moreover, policies affecting how we as a society live and work-such as environmental, industrial, energy, and national security policy, to name a few-demand
that engineers be prepared to integrate policy issues into their engineering practice.

This accelerated dual degree option allows students to earn a BS in chemical engineering and an MS in science, technology, and public policy in approximately five years. The program is a natural fit that enables qualified students enrolled in chemical engineering, who also have an interested in public policy issues, with an opportunity to pursue a graduate level degree in a field that combines their engineering and public policy interests.

Chemical Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE	SEMESTER CREDIT	
First Year		
CHME-181	Chemical Engineering Insights I	1
CHME-182	Chemical Engineering Insights II	1
CHMG-141	General \& Analytical Chemistry I	3
CHMG-142	General \& Analytical Chemistry II	3
CHMG-145	General \& Analytical Chemistry I Lab	1
CHMG-146	General \& Analytical Chemistry II Lab	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
Second Year		
CHME-230	Chemical Process Analysis	3
CHME-310	Applied Thermodynamics	3
CHME-320	Continuum Mechanics I	3
CHME-391	Chemical Engineering Principles Lab	2
CHMO-231	Organic Chemistry I	3
CHMO-235	Organic Chemistry Lab I	1
EGEN-099	Engineering Co-op Preparation	0
MATH-221	Multivariable and Vector Calculus	4
MATH-231	Differential Equations	3
STAT-205	Applied Statistics	3
	General Education - Global Perspective	3
	Open Elective	3
Third Year		
CHMA-231	Chemical Instrumental Analysis for Engineers	3
CHME-301	Analytical Techniques for Chemical Engineering I	3
CHME-321	Continuum Mechanics II	3
CHME-330	Mass Transfer Operations	3
CHME-499	Co-op (fall)	0
	General Education - Social Perspective	3
	General Education - Immersion 1	3
Fourth Year		
CHME-302	Analytical Techniques for Chemical Engineering II	3
CHME-340	Reaction Engineering	4
CHME-350	Multiple Scale Material Science	3
CHME-491	Chemical Engineering Processes Lab (WI-PR)	2
CHME-499	Co-op (summer)	0
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	General Education - Immersion 1, 2	6
	Professional/Technical/STPP Elective	3
Fifth Year		
CHME-401	System Dynamics and Control	3
CHME-451	Analysis of MultiScale Processes	3
CHME-490	Design with Constraint	3
CHME-492	Advanced Design Capstone	3
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
	Professional/Technical/STPP Electives	6
	Open Electives	3
	General Education - Immersion 3	3
Choose one of the following:		6
PUBL-785	Capstone Experience	
PUBL-799	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

BS in Chemical Engineering/MS in Materials Science and Engineering In research and development, chemical engineers not only create new, more effective ways to manufacture chemicals, but also work collaboratively with chemists and material scientists to pioneer the development of new high-tech materials for specialized applications. High performance materials are needed across all industry sectors including aerospace, automotive, biomedical, electronic, environmental, space, and military applications.

This accelerated dual degree option allows students to earn a BS in chemical engineering and an MS in materials science in approximately five years. This option educates students to not only be able to scale up and manufacture materials (by virtue of their BS degree in chemical engineering), but also manipulate novel soft and hard materials on the bench scale as they are developed. Upon graduation, BS/MS students will be immediate contributors to the material science industries and will be well prepared for employment opportunities ranging from research and development to manufacturing.

Chemical Engineering, BS degree/Materials Science and Engineering (thesis option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHME-181	Chemical Engineering Insights I	
CHME-182	Chemical Engineering Insights II	
CHMG-141	General Education - Elective: General \& Analytical Chemistry I	
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Elective: General \& Analytical Chemistry Labl	
CHMG-146	General Education - Elective: General \& Analytical Chemistry Lab II	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	
YOPS-010	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
CHME-230	Chemical Process Analysis	3
CHME-310	Applied Thermodynamics	
CHME-320	Continuum Mechanics I	3
CHME-391	Chemical Engineering Principles Lab	
CHMO-231	General Education - Elective: Organic Chemistry I	
CHMO-235	General Education - Elective: Organic Chemistry Labl	
EGEN-099	Engineering Co-op Preparation	
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-231	General Education - Elective: Differential Equations	3
STAT-205	General Education - Elective: Applied Statistics	
	General Education-Global Perspective	
	Open Elective	3
Third Year		
CHMA-231	Chemical Instrumental Analysis for Engineers	
CHME-301	Analytical Techniques for Chemical Engineering I	
CHME-321	Continuum Mechanics II	
CHME-330	Mass Transfer Operations	
CHME-499	Co-op (fall)	
	General Education - Social Perspective	
	General Education - Immersion 1	3
Fourth Year		
CHME-302	Analytical Techniques for Chemical Engineering II	3
CHME-340	Reaction Engineering	
CHME-350	Multiple Scale Material Science	
CHME-491	Chemical Engineering Processes Lab (WI-PR)	
MTSE-705	Experimental Techniques	
MTSE-790	Research \& Thesis	
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	
	General Education - Immersion 2, 3	
	Professional Technical Electives (MTSE)	9
Fifth Year		
CHME-401	System Dynamics and Control	
CHME-451	Analysis of MultiScale Processes	
CHME-490	Design With Constraint	
CHME-492	Advanced Design Capstone	3
MTSE-601	Materials Science	3
MTSE-704	Theoretical Methods in Materials Science and Engineering	
MTSE-790	Research \& Thesis	
	Professional Technical Elective (MTSE)	
	Open Electives	

Please see General Education Curriculum (GE) for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Chemical Engineering, BS degree/Materials Science and Engineering (project option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHME-181	Chemical Engineering Insights I	1
CHME-182	Chemical Engineering Insights II	1
CHMG-141	General Education - Elective: General \& Analytical Chemistryl	3
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Elective: General \& Analytical Chemistry Lab I	1
CHMG-146	General Education - Elective: General \& Analytical Chemistry Lab II	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
CHME-230	Chemical Process Analysis	3
CHME-310	Applied Thermodynamics	3
CHME-320	Continuum Mechanics I	3
CHME-391	Chemical Engineering Principles Lab	2
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	1
EGEN-099	Engineering Co-op Preparation	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-231	General Education - Elective: Differential Equations	3
STAT-205	General Education - Elective: Applied Statistics	3
	General Education - Global Perspective	3
	Open Elective	3
Third Year		
CHMA-231	Chemical Instrumental Analysis for Engineers	3
CHME-301	Analytical Techniques for Chemical Engineering I	3
CHME-321	Continuum Mechanics II	3
CHME-330	Mass Transfer Operations	3
CHME-499	Co-op (fall, summer)	0
	General Education - Social Perspective	3
	General Education - Immersion 1	3
Fourth Year		
CHME-302	Analytical Techniques for Chemical Engineering II	3
CHME-340	Reaction Engineering	4
CHME-350	Multiple Scale Material Science	3
CHME-491	Chemical Engineering Processes Lab (WI-PR)	2
MTSE-705	Experimental Techniques	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Immersion 2, 3	6
	Professional Technical Electives (MTSE)	9
Fifth Year		
CHME-401	System Dynamics and Control	3
CHME-451	Analysis of MultiScale Processes	3
CHME-490	Design With Constraint	3
CHME-492	Advanced Design Capstone	3
MTSE-601	Materials Science	3
MTSE-704	Theoretical Methods in Materials Science and Engineering	3
MTSE-777	Graduate Project	3
	Professional Technical Electives (MTSE)	9
	Open Electives	6
Total Seme	t Hours	150

[^5]* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The BS program in chemical engineering is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer

Computer Engineering, BS

www.rit.edu/study/computer-engineering-bs
Roy Melton, Principal Lecturer
585-475-7698, Roy.Melton@mail.rit.edu

Program overview

In the computer industry, rapid innovation is the name of the game, and there is a great demand for computer engineers who can do it all-from designing high performance computer hardware components and software to developing next-generation intelligent, resilient and sustainable products and appliances that contain embedded systems.

As computer technology becomes more essential to commerce and daily life, companies will need computer engineers who possess a welldeveloped set of skills and who can quickly adapt to changes. To meet the challenges of the future, these companies will turn to computer engineers for innovative solutions and technological leadership. Graduates of RIT's computer engineering degree are well prepared to enter industry to meet these new challenges, and they are well positioned to continue their studies in high-quality graduate degree programs.

Computer Engineering Curriculum

Studying computer engineering begins with the fundamental math, science, and technology courses that are essential to the curriculum. Emphasis is placed on selected areas of computer science, software engineering, and electrical engineering, including data structures, object-oriented programming languages, circuits, electronics, and principles of software engineering. Professional and ethical responsibility is gained through seminars and cooperative education experience. Upper-level computer engineering courses prepare students to integrate hardware and software by formulating complete system solutions. This is achieved through courses on computer architecture, digital systems, interfacing, computer networks, and digital signal processing, as well as professional electives students select from concentration areas. All students are required to complete a two-semester senior design sequence during their last year of study and approximately one year (48 weeks) of cooperative education. Learn more about the Student Learning Outcomes and Program Educational Objectives for the computer engineering BS degree.

Concentration Areas

Concentration areas provide students with an opportunity to gain additional in-depth knowledge in an area of particular interest within computer engineering. Students can choose among the following concentration areas: software, high performance computing, computer architecture, integrated circuits and systems, networks and security, computer vision and machine intelligence, or signal processing, control and embedded systems. Students interested in research are highly encouraged to choose a concentration area and consult with faculty members in the corresponding area.

Senior Design Capstone Experience

Computer engineering students complete a senior project that consists of a two-semester capstone design experience. Students typically work in multidisciplinary design project teams of four to seven students from different engineering majors, including biomedical, computer, electrical, industrial, and mechanical engineering. Students are assigned to projects before the start of the first course. Most projects are initiated by industry sponsors, community partners, or faculty members; however, students may also propose their own project ideas. While completing their senior
design projects, students develop engineering management and project organization skills, learn to communicate their ideas effectively within a multidisciplinary team, and present their project and ideas to a diverse audience of students, faculty, and industrial partners.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

The computer engineering degree requires students to complete four blocks (48 weeks) of cooperative education experience. After completing the first two years of course work, you'll spend the next two years alternating course work on campus with cooperative education experience. This employment not only adds real experience to your resume, but prepares you for more sophisticated academic work. Students have completed co-ops at companies as Motorola, Intel, Advanced Micro Devices, IBM, Hewlett Packard, Eastman Kodak Company, and for the federal government, as well as a host of smaller companies. Co-op has taken our students from the high-tech corridors of New England and California to businesses close to their hometowns. Students have worked on product development teams for companies like IBM, Intel, Hewlett-Packard, Lucent Technologies, and Kodak. They have also worked on software projects for smaller companies and the government.

During co-op experiences, computer engineering students have been on product development teams for new computers and electronic imaging systems as well as a variety of large software projects for industry and government.

Curriculum

COURSE		SEMESTER CREDIT HOURS
First Year		
CMPE-110	Introduction to Computer Engineering	1
CMPE-160	Digital System Design I	3
CSCI-141	General Education - Elective: Computer Science I	4
CSCI-142	General Education - Elective: Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
Second Year		
CMPE-250	Assembly and Embedded Programming	3
CMPE-260	Digital System Design II	4
EEEE-281	Circuits 1	3
EGEN-99	Engineering Co-op Preparation	0
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
MATH-241	General Education - Elective: Linear Algebra	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
SWEN-261	Introduction to Software Engineering	3
	General Education - Ethical Perspective	3
Third Year		
CMPE-350	Computer Organization	3
CMPE-380	Applied Programming in C	3
CMPE-499	Co-op (spring and summer)	0
EEEE-282	Circuits II	3
EEEE-380	Digital Electronics	3
	General Education - Global Perspective	3
Fourth Year		
CMPE-460	Interface and Digital Electronics (WI-PR)	4
CMPE-480	Digital Signal Processing	3
CMPE-499	Co-op (fall and summer)	0
CMPE-550	Computer Architecture	3
MATH-251	General Education - Elective: Probability and Statistics	3
	General Education - Immersion	3
Fifth Year		
CMPE-497	Multidisciplinary Senior Design I	3
CMPE-498	Multidisciplinary Senior Design II	3
CMPE-570	Data and Communication Networks	3
	General Education - Immersion 2, 3	6
	Professional Electives	6
	Open Electives	9

Total Semester Credit Hours 129

Please see General Education Curriculum (GE) for more information
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Combined Accelerated Bachelor's/Master's Degrees

Computer Engineering, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CMPE-110	Introduction to Computer Engineering	1
CMPE-160	Digital System Design I	3
CSCI-141	General Education - Elective: Computer Science I	4
CSCI-142	General Education - Elective: Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
Second Year		
CMPE-250	Assembly and Embedded Programming	3
CMPE-260	Digital System Design II	4
EEEE-281	Circuits I	3
EGEN-99	Engineering Co-op Preparation	0
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
MATH-241	General Education - Elective: Linear Algebra I	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
SWEN-261	Introduction to Software Engineering	3
	General Education - Ethical Perspective	3
Third Year		
CMPE-350	Computer Organization	3
CMPE-380	Applied Programming in C	3
CMPE-499	Co-op (spring and summer)	0
EEEE-282	Circuits II	3
EEEE-380	Digital Electronics	3
MATH-251	General Education - Elective: Probability and Statistics	3
	General Education - Global Perspective	3
Fourth Year		
CMPE-460	Interface and Digital Electronics (WI-PR)	4
CMPE-480	Digital Signal Processing	3
CMPE-497	Multidisciplinary Senior Design I	3
CMPE-499	Co-op (summer)	0
CMPE-550	Computer Architecture	3
CMPE-610	Analytical Topics in Computer Engineering	3
Choose one of	wing:	3
CMPE-630	Digital Integrated Circuit Design	
CMPE-660	Reconfigurable Computing	
CMPE-755	High Performance Architectures	
CMPE-670	Data and Communication Networks	3
CMPE-795	Graduate Seminar	0
	Professional Elective	3
	General Education - Immersion 1, 2	6
	Open Elective	3
Fifth Year		
CMPE-498	Multidisciplinary Senior Design II	3
	Graduate Electives	12
	General Education - Immersion 3	3
	Open Elective	3
Choose one of the following:		9
CMPE-790	Thesis	
CMPE-792	Graduate Project plus two additional Project Focus Electives	
	Graduate Elective plus two additional Flexible Core Courses \dagger	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
*Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Completing this option requires passing a comprehensive examination.

Computer Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CMPE-110	Introduction to Computer Engineering	1
CMPE-160	Digital System Design I	3
CSCI-141	Computer Science I	4
CSCI-142	Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
Second Year		
CMPE-250	Assembly and Embedded Programming	3
CMPE-260	Digital System Design II	4
EEEE-281	Circuits I	3
EGEN-099	Engineering Co-op Preparation	0
MATH-190	Discrete Mathematics for Computing	3
MATH-219	Multivariable Calculus	3
MATH-231	Differential Equations	3
MATH-241	Linear Algebra	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
SWEN-261	Introduction to Software Engineering	3
	General Education - Ethical Perspective	3
Third Year		
CMPE-350	Computer Organization	3
CMPE-380	Applied Programming in C	3
CMPE-499	Co-op (spring)	0
EEEE-282	Circuits II	3
EEEE-380	Digital Electronics	3
	General Education - Global Perspective	3
Fourth Year		
CMPE-460	Interface and Digital Electronics (WI-PR)	4
CMPE-480	Digital Signal Processing	3
CMPE-499	Co-op (summer)	0
CMPE-550	Computer Architecture	3
CMPE-570	Data and Communication Networks	3
MATH-251	Probability and Statistics	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	Graduate Professional Elective: Policy Elective	3
	Open Elective	3
	General Education - Immersion 1	3
Fifth Year		
Choose one of the following:		
CMPE-495	Computer Engineering Senior Projects I	
CMPE-497	Multidisciplinary Senior Design I	
Choose one of the following:		
CMPE-496	Computer Engineering Senior Projects II	
CMPE-498	Multidisciplinary Senior Design II	
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Professional Elective/Graduate Policy Elective	3
	Policy Graduate Elective	
	General Education - Immersion 2, 3	6
	Open Elective	3
Choose one of the following:		
PUBL-785	Capstone Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

Total Semester Credit Hours

 150Please see General Education Curriculum for more information

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The BS program in computer engineering is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer

Electrical Engineering, BS

www.rit.edu/study/electrical-engineering-bs
Ferat Sahin, Professor
5854752175, feseee@rit.edu

Program overview

Electrical engineers synthesize science, mathematics, technology, and application-oriented designs into world-class consumer products, timely microprocessors, state-of-the-art computers, advanced electronic components, and much more. From cutting-edge technology revolutions to real life applications, the innovations of electrical engineers continue to lead the future and elevate the standards in the marketplace. With a shortage of electrical engineering talent in the job market, the demand for graduates with an electrical engineering degree remains at an all-time high.

Electrical engineering addresses the high-technology needs of business and industry by offering a rich academic program that includes analog and digital integrated circuits, digital signal processing, radiation and propagation, power electronics, control systems, communications, circuit theory, computer architecture, computer-aided design, embedded systems, solid-state devices, microelectromechanical systems (MEMs), and robotics.

Electrical Engineering Curriculum

The BS in electrical engineering consists of an in depth curriculum, cooperative education, and facilities designed to prepare you for exciting careers within the varied electrical engineering and allied disciplines and for positions in business management. Since the ability to design is an essential part of electrical engineering, students are presented with challenging design problems in a number of courses, beginning in the first year with Freshman Practicum.

To strengthen students' applied knowledge, laboratories are an integral part of many courses. A number of classes are studio-style lecture labs, where the instructor presents the lecture in a fully instrumented room that allows immediate observation and implementation of important engineering ideas. Many of our alumni report that the college's facilities are comparable to the best in the industry.

The first two years of the curriculum are devoted to establishing a foundation in mathematics and the physical sciences, which is essential to the study of electrical engineering. In other courses, students learn about electrical engineering principles such as circuits and digital systems. Practicum courses introduce students to electrical engineering practice and computer-aided design (CAD) tools that are used throughout the five-year program.

In the third and fourth years, students focus on the subjects that form the core of electrical engineering. Courses in circuits, electronics, linear systems, electromagnetic fields, semiconductor devices, communication systems, control systems, and microelectromechanical systems are taught.

During the fifth year, students specialize in an area of professional interest and complete a senior design project as part of the graduation requirements.

Learn more about the Student Learning Outcomes and Program Educational Objectives for the electrical engineering BS degree.

Options

Students may select an option area that provides in-depth study in an area of electrical engineering. Students complete all the required courses
for the BS in electrical engineering and choose their free and professional electives from a specified set of courses in one of the following option areas.

Artificial Intelligence: The field of artificial intelligence (AI) has produced significant innovations that impact our everyday lives. From autonomous vehicles, smart assistants, automated financial investing, to smart cities, health care, and logistics; AI has laid the foundation to push human civilization forward. The AI option provides you with the theoretical and practical skills necessary to design ethical intelligent agents that continue to advance our society. The programming-focused curriculum allows you to study how agents can solve complex problems, make inferences and decisions, learn from data (classical and deep learning), and evolve over time while understanding the ethical implications and societal impacts of your designs. Learn more about the artificial intelligence option.

Clean and Renewable Energy: Because of the environmental impact, it has become critical that electrical energy be developed from sources that do not pollute the atmosphere, preferably from renewable sources like wind and solar energy. It is equally important that existing electrical generation and distribution systems become more efficient. In the future, research and development in clean and renewable energy will grow at a rate much faster than other areas. Both industry and the federal government are increasing their efforts and financial investment in this area. Learn more about the clean and renewable energy option.

Computer Engineering: The computer engineering option is ideal for students interested in designing modern computing systems. Students gain knowledge in areas ranging from C programming, object-oriented programming, assembly language, microprocessor interfacing, and logic design to data structures and computer operating systems. Learn more about the computer engineering option.

Robotics: The robotics option provides students with the theoretical and practical skills required to design robots and robotic devices. Students study advanced programming, robotic systems, principles of robotics, advanced robotics, kinematics and dynamics of robotics manipulators, mobile robots, locomotion types, and complete experiments using various arm and mobile robots. Advanced robotics courses include the dynamics of manipulators and the dynamics of mobile robots with advanced locomotion techniques and path planning. Learn more about the robotics option.

Multidisciplinary Senior Design

A highlight of the applied engineering experience is the senior project. Students work on a challenging project under the tutelage of an experienced faculty advisor. While experiencing the satisfaction of completing an interesting project and exploring the latest in technology, students develop engineering management and project organization skills, learn to communicate their ideas effectively within a multidisciplinary team, and present their project and ideas to a diverse audience of students, faculty, and industrial partners.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the electrical engineering degree are required to complete four blocks (48 weeks) of cooperative education experience.

Curriculum

Electrical Engineering, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Chemistry for Engineers	3
EEEE-105	Freshman Practicum	1
EEEE-120	Digital Systems I	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
Second Year		
CMPR-271	Computational Problem Solving for Engineers	3
EEEE-220	Digital Systems II	3
EEEE-260	Introduction to Semiconductor Devices	3
EEEE-281	Circuits I	3
EEEE-282	Circuits II	3
EEEE-346	Advanced Programming	3
EGEN-99	Engineering Co-op Preparation	0
MATH-221	Multivariable and Vector Calculus	4
MATH-231	Differential Equations	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Ethical Perspective	3

COURSE		SEMESTER CREDIT HOURS
Third Year		
EEEE-353	Linear Systems	4
EEEE-374	EM Fields and Transmission Lines	4
EEEE-380	Digital Electronics	3
EEEE-499	Co-op (fall and summer)	0
MATH-381	Complex Variables	3
	General Education - Immersion	3
Fourth Year		
EEEE-414	Classical Control	3
EEEE-420	Embedded Systems Design	3
EEEE-480	Analog Electronics	4
EEEE-499	Co-op (spring and summer)	0
MATH-251	Probability and Statistics	3
Fifth Year	Open Elective	3
EEEE-484	Communication Systems (WI-PR)	3
EEEE-497	Multidisciplinary Senior Design I	3
EEEE-498	Multidisciplinary Senior Design II	3
	Professional Electives	9
	General Education - Immersion 2,	$\mathbf{3}$
Open Electives	$\mathbf{6}$	
Total Semester Credit Hours	$\mathbf{1 2 9}$	

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Professional Options

Students who elect to pursue a Professional Option may use any combination of Open and Professional Electives to complete one of the options listed below:

Artificial Intelligence

Required Courses	
EEEE-447	Introduction to Artificial Intelligence
EEEE-547	Artificial Intelligence Explorations
EEEE-536	Biorobotics/Cybernetics

Clean and Renewable Energy

Required Courses	
EEEE-221	Clean \& Renewable Energy Systems \& Sources
EEEE-321	Energy Conversion
EEEE-522	Electric Power Transmission \& Distribution
EEEE-546	Power Electronics

Computer Engineering

Required Courses	
EEEE-520	Design of Digital Systems
EEEE-521	EE/CE/CS Restricted Elective
Robotics	
Required Courses	Robotic Systems
EEEE-485	Principles of Robotics
EEEE-585	Advanced Robotics

Combined Accelerated Bachelor's/Master's Degrees

Electrical Engineering, BS/MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
CHMG-131	General Chemistry for Engineers	3
EEEE-105	Freshman Practicum	1
EEEE-120	Digital Systems I	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Second Year		
CMPR-271	Computational Problem Solving for Engineers	3
EGEN-099	Engineering Co-op Preparation	0
EEEE-220	Digital Systems II	3
EEEE-260	Introduction to Semiconductor Devices	3
EEEE-281	Circuits I	3
EEEE-282	Circuits II	3
EEEE-346	Advanced Programming	3
MATH-221	Multivariable and Vector Calculus	4
MATH-231	General Education - Elective: Differential Equations	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Ethical Perspective	3
Third Year		
EEEE-353	Linear Systems	4
EEEE-374	EM Fields and Transmission Lines	4
EEEE-380	Digital Electronics	3
EEEE-499	Co-op (fall and summer)	0
MATH-381	Complex Variables	3
	General Education - Immersion 1	3
Fourth Year		
EEEE-414	Classical Control	3
EEEE-420	Embedded Systems Design	3
EEEE-480	Analog Electronics	4
EEEE-484	Communication Systems (WI-PR)	3
EEEE-497	Senior Design Project I	3
EEEE-499	Co-op (summer)	0
EEEE-602	Random Signals and Noise	3
EEEE-707	Engineering Analysis	3
EEEE-795	Graduate Seminar	0
MATH-251	Probability and Statistics	3
	General Education - Immersion 2	3
	Open Elective	3
Fifth Year		
EEEE-498	Senior Design Project II	3
EEEE-709	Advanced Engineering Mathematics	3
Choose one of the following:		
EEEE-790	Thesis	
EEEE-792	Graduate Paper plus 1 Graduate Elective	
EEEE-795	Graduate Seminar	0
	Open Elective	6
	Professional Electives	9
	Graduate Electives	6
	General Education - Immersion 3	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information
WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Electrical Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Chemistry for Engineers	3
EEEE-105	Freshman Practicum	1
EEEE-120	Digital Systems I	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
Second Year		
CMPR-271	Computational Problem Solving for Engineers	3
EEEE-220	Digital Systems II	3
EEEE-260	Introduction to Semiconductor Devices	3
EEEE-281	Circuits I	3
EEEE-282	Circuits II	3
EEEE-346	Advanced Programming	3
EGEN-099	Engineering Co-op Preparation	0
MATH-221	Multivariable and Vector Calculus	4
MATH-231	Differential Equations	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Ethical Perspective	3
Third Year		
EEEE-353	Linear Systems	4
EEEE-374	EM Fields and Transmission Lines	4
EEEE-380	Digital Electronics	3
EEEE-499	Co-op (fall)	0
MATH-381	Complex Variables	3
	General Education - Immersion 1	3
Fourth Year		
EEEE-414	Classical Control	3
EEEE-420	Embedded Systems Design	3
EEEE-480	Analog Electronics	4
EEEE-499	Co-op (summer)	0
MATH-251	Probability and Statistics	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	Professional Electives	6
	General Education-Immersion 2,3	6
Fifth Year		
EEEE-484	Communication Systems (WI-PR)	3
EEEE-497	Multidisciplinary Senior Design Project I	3
EEEE-498	Multidisciplinary Senior Design Project II	3
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Public Policy Electives	6
	Open Elective	3
Choose one of the following:		6
PUBL-785	Capstone Research Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The BS in electrical engineering program is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree
Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.

Appropriate associate degree programs for transfer

AS degree in engineering science

Engineering Exploration

www.rit.edu/study/engineering-exploration
 Matthew Marshall, Associate Dean of Undergraduate Programs 585-475-7142, mmmeie@rit.edu

Program overview

If you are passionate about engineering and all it encompasses - from science, mathematics, innovation, and design to processes and operations - but aren't sure which major best matches your interests and career goals, the engineering exploration option is for you. Through a seminar offered in your first semester, you will gain an in-depth understanding of each engineering major, enabling you to identify the program that best meets your interests and career aspirations. You will have a full academic year to make an informed decision about the engineering career path that's best for you as you remain on pace to graduate on time.

The engineering exploration option is for students who would like additional time to fully explore RIT's portfolio of engineering majors before committing to a program of study. Students may choose a major anytime during the first year.

What You'll Study

During your first semester, you'll take a one-credit course, Engineering Exploration Seminar, which provides an overview of RIT's engineering programs and the career opportunities in each field. Since each engineering program shares similar first-year course offerings, the course work you take as an engineering exploration student will transfer into all engineering programs without any loss of time toward graduation.

Students in the engineering exploration program are guaranteed admission into any engineering program in the Kate Gleason College, provided the student is in good academic standing and has successfully completed Calculus I.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Curriculum

Engineering Exploration, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	Project-Based Calculus I	4
CHMG-131	General Chemistry for Engineers	3
EGEN-100	Engineering Exploration Seminar (fall)	1
	General Education- First Year Writing	2
MATH-182	General Education Perspective Courses	$9-12$
PHYS-211	Project-Based Calculus II	4
	University Physics I	4
YOPS-10	Engineering Course \ddagger	$3-6$
	RIT 365: RIT Connections	0
Total Semester Credit Hours	Wellness Education*	$\mathbf{0}$

Please see General Education Framework for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\ddagger Students choose one or two engineering courses in consultation with their adviser.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required
- Biology required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer

[^6]
Industrial Engineering, BS

$w w w . r i t . e d u / s t u d y / i n d u s t r i a l-e n g i n e e r i n g-b s$
 Iris Rivero, Professor
 585-475-3952, Iris.Rivero@rit.edu

Program overview

The industrial engineering degree is for students interested in optimizing, designing, and managing the processes by which goods are made and distributed, and services are efficiently provided. Industrial engineering also ensures that high-quality products and services are delivered in a cost-effective manner. Industrial engineers aid companies globally, balancing sustainable design with skillful construction of systems. Graduates of the industrial engineering degree are able to address big-picture design and engineering questions, such as how engineers can simultaneously increase efficiency and quality.

What is Industrial Engineering?

Industrial engineers design, optimize, and manage the process by which products are made and distributed across the world (i.e., global supply chain), or the way services are delivered in industries such as banking, health care, energy, or entertainment. Industrial engineers ensure that high-quality products and services are delivered in a cost-effective manner.

Industrial engineering is ideal for those who enjoy both technology and working with people. Industrial engineers frequently spend as much time interacting with other engineers and product users as they do at their desks and computers. Typical work involves developing applied models and simulations of processes to evaluate overall system efficiency.

A degree in industrial engineering offers students a significant opportunity for a flexible long-term career. Employers have consistently praised the quality of RIT's industrial engineering graduates, noting that the range of their abilities includes both strong technical knowledge and communication skills. Graduates have used their technical base as a springboard to careers in management, consulting, manufacturing, sales, health care, law, and education.

As described by the Institute of Industrial and Systems Engineers on the organization's website:
"Industrial engineering is about choices. Other engineering disciplines apply skills to very specific areas. IE gives practitioners the opportunity to work in a variety of businesses.
Many practitioners say that industrial engineering education offers the best of both worlds: an education in both engineering and business.

The most distinctive aspect of industrial engineering is the flexibility it offers. Whether it's shortening a roller coaster line, streamlining an operating room, distributing products worldwide, or manufacturing superior automobiles, these challenges share the common goal of saving companies money and increasing efficiencies.

As companies adopt management philosophies of continuous productivity and quality improvement to survive in the increasingly competitive world market, the need for industrial engineers is growing. Why? Industrial engineers are the only engineering professionals trained specifically to be productivity and quality improvement specialists.

Industrial engineers figure out how to do things better. They engineer processes and systems that improve quality and productivity. They work to eliminate waste of time, money, materials, energy and other commodities. This is why many industrial engineers end up being promoted into management positions.

Many people are misled by the term industrial engineer. It's not just about manufacturing. It also encompasses service industries, with many IEs employed in entertainment industries, shipping and logistics businesses, and health care organizations."

Industrial engineers are "big-picture" thinkers, much like systems integrators. IEs spend most of their time out in the work environment, using scientific approaches to solve today's problems while they develop solutions for the future.

Industrial Engineering Curriculum

Because of the flexible nature of the industrial engineering degree, students gain a breadth of knowledge in many different areas of industrial engineering, including advanced manufacturing, distribution/logistics, ergonomics/human factors, modeling/simulation, and sustainable design and development. Students may choose free and professional electives for this purpose.

The curriculum for the BS in industrial engineering covers the principal concepts of engineering economics and project management, facilities planning, human performance, mathematical and simulation modeling, production control, applied statistics and quality, and contemporary manufacturing production processes that are applied to solve the challenges presented by the global environment and economy of today. Courses in industrial engineering stress the application of contemporary tools and techniques in solving engineering problems. Learn more about Student Learning Outcomes and Program Educational Objectives for the industrial engineering BS degree.

Options

Students in the industrial engineering major may pursue an option in ergonomics/human factors, Lean Six Sigma, manufacturing, or supply chain management.

Industrial Engineering Careers

In order to optimize processes and systems, industrial engineers apply their knowledge in a wide range of areas, including systems simulation modeling, quality, logistics and supply chain management, ergonomics and human factors, facilities layout, production planning and control, manufacturing, management information systems, and project management. Upon graduation, our students work for a wide array of fields (ranging from manufacturing and distribution/logistics to health care, energy and other services) and companies (including Boeing, IBM, Toyota, Xerox, Intel, General Electric, Hershey, Walt Disney World, Tesla, Ortho-McNeil Pharmaceutical, Lockheed Martin, and Wegmans Food Markets, to name a few.)

Balance, as well as specialization, has allowed our graduates to pursue varied paths. Examples of the diversity, along with the roles in which an industrial engineer might function, are reflected in the following list of sample industrial engineering co-op assignments.

In manufacturing industries:

- Perform product life studies
- Lay out and improve work areas
- Design production processes to improve productivity
- Investigate and analyze the cost of purchasing new vs. repairing existing equipment
- Investigate delivery service, including scheduling, route modification, and material handling
- Create computer programs to track pricing policies and truck scheduling
- Perform downtime studies of various operations using time study and work sampling
- Develop and computerize a forecasting model
- Perform ergonomic studies and evaluations of workstations and product designs
- Participate in the design process of products and processes to ensure ease of manufacture, maintenance, and remanufacture or recycling
In service industries:
- Design information systems
- Monitor safety and health programs
- Manage hazardous and toxic materials storage and disposal programs
- Manage a facility's projects to ensure they are completed on time and on budget
- Conduct cost analysis of procedures to support decision making
- Schedule operations and manage information flow
- Design supply-ordering systems
- Improve processes in a hospital
- Evaluate waiting time and space utilization in an amusement park

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the industrial engineering degree are required to complete four blocks (48 weeks) of cooperative education experience.

Curriculum

Industrial Engineering, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
ISEE-120	Fundamentals of Industrial Engineering	3
ISEE-140	Materials Processing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
Second Year		
EGEN-99	Engineering Co-op Preparation	0
ISEE-200	General Education - Elective: Computing for Engineers	3
ISEE-325	Engineering Statistics and Design of Experiments	3
ISEE-345	Engineering Economy	3
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
MATH-251	General Education - Elective: Probability and Statistics	3
MECE-200	Fundamentals of Mechanics	4
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
ISEE-301	Operations Research	4
ISEE-304	Fundamentals of Materials Science	3
ISEE-323	Systems and Facilities Planning	3
ISEE-330	Ergonomics and Human Factors (WI-PR)	4
ISEE-350	Engineering Management	3
ISEE-499	Co-op (fall and summer)	0
Fourth Year		
ISEE-420	Production Planning/Scheduling	3
ISEE-499	Co-op (spring and summer)	0
ISEE-510	Systems Simulation	3
ISEE-560	Applied Statistical Quality Control	3
	Professional Elective	3
	General Education - Immersion	3
Fifth Year		
ISEE-497	Multidisciplinary Senior Design I	3
ISEE-498	Multidisciplinary Senior Design II	3
ISEE-561	Linear Regression Analysis	3
	Professional Electives	6
	Open Electives	
	General Education - Immersion 2, 3	

Please see General Education Curriculum (GE) for more information.

(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Industrial Engineering, BS degree/Industrial and Systems
Engineering, MS degree, typical course sequence
Engineering, MS degree, typical course sequence
SEOURSE
SEMETER CREDIT HOURS

COURSE		
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
ISEE-120	Fundamentals of Industrial Engineering	3
ISEE-140	Materials Processing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education-Elective	3
Second Year		
EGEN-99	Engineering Co-op Preparation	0
ISEE-200	General Education - Elective: Computing for Engineers	3
ISEE-325	Engineering Statistics and Design of Experiments	3
ISEE-345	Engineering Economy	3
ISEE-499	Co-op (summer)	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
MATH-251	General Education - Elective: Probability and Statistics	3
MECE-200	Fundamentals of Mechanics	4
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
ISEE-301	Operations Research	4
ISEE-304	Fundamentals of Materials Science	3
ISEE-323	Systems and Facilities Planning	3
ISEE-330	Ergonomics and Human Factors (WI-PR)	4
ISEE-350	Engineering Management	3
ISEE-499	Co-op (fall, summer)	0
Fourth Year		
ISEE-420	Production Planning/Scheduling	3
ISEE-499	Co-op (summer)	0
ISEE-510	Systems Simulation	3
ISEE-560	Applied Statistical Quality Control	3
ISEE-760	Design of Experiments	3
ISEE-795	Graduate Seminar (fall and spring)	0
	Professional Electives	9
	Open Electives	9
	General Education - Immersion 1, 2	6
Fifth Year		
ISEE-497	Multidisciplinary Senior Design I	3
ISEE-498	Multidisciplinary Senior Design II	3
ISEE-561	Linear Regression Analysis	3
\|SEE-771	Engineering of Systems I	3
Choose one of the following:		6
ISEE-788	Project with Paper plus 1 additional Graduate Elective	
ISEE-790	Thesis	
ISEE-792	Engineering Capstone plus 1 additional Graduate Elective	
	Graduate Electives	9
	General Education - Immersion 3	3
otal Semester Credit Hours		150

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
*Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Industrial Engineering, BS degree/Sustainable Engineering, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
ISEE-120	Fundamentals of Industrial Engineering	3
ISEE-140	Materials Processing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Elective	3
Second Year		
EGEN-99	Engineering Co-op Preparation	0
ISEE-200	General Education - Elective: Computing for Engineers	3
ISEE-325	Engineering Statistics and Design of Experiments	3
ISEE-345	Engineering Economy	3
ISEE-499	Co-op (summer)	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
MATH-251	General Education - Elective: Probability and Statistics	3
MECE-200	Fundamentals of Mechanics	4
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
ISEE-301	Operations Research	4
ISEE-304	Fundamentals of Materials Science	3
ISEE-323	Systems and Facilities Planning	3
ISEE-330	Ergonomics and Human Factors (WI-PR)	4
\|SEE-350	Engineering Management	3
ISEE-499	Co-op Education (fall, summer)	0
Fourth Year		
ISEE-420	Production Planning/Scheduling	3
ISEE-499	Co-op (summer)	0
\|SEE-510	Systems Simulation	3
ISEE-560	Applied Statistical Quality Control	3
ISEE-795	Graduate Seminar (fall and spring)	0
	Professional Electives	6
	Open Electives	9
	Technology Elective	3
	Social Context Elective	3
	General Education - Immersion 1, 2	6
Fifth Year		
ISEE-497	Multidisciplinary Senior Design I	3
ISEE-498	Multidisciplinary Senior Design II	3
ISEE-561	Linear Regression Analysis	3
\|SEE-771	Engineering of Systems I	3
ISEE-785	Fundamentals of Sustainable Engineering	3
ISEE-786	Lifecycle Assessment	3
Choose one of the following:		
ISEE-788	Project with Paper plus 1 additional Professional Elective	
ISEE-790	Thesis	
ISEE-792	Engineering Capstone plus 1 additional Professional Elective	
MECE-629	Renewable Energy Systems	3
	General Education - Immersion 3	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Industrial Engineering, BS degree/Engineering Management, ME degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	
ISEE-120	Fundamentals of Industrial Engineering	
ISEE-140	Materials Processing	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	
YOPS-010	RIT 365: RIT Connections	
	General Education - First Year Writing (WI)	
	General Education - Artistic Perspective	
	General Education - Ethical Perspective	
	General Education - Elective	
Second Year		
EGEN-99	Engineering Co-op Preparation	
ISEE-200	General Education - Elective: Computing for Engineers	
ISEE-325	Engineering Statistics and Design of Experiments	
ISEE-345	Engineering Economy	
ISEE-499	Co-op (summer)	
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-233	General Education - Elective: Linear Systems and Differential Equations	
MATH-251	General Education - Elective: Probability and Statistics	3
MECE-200	Fundamentals of Mechanics	
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
ISEE-301	Operations Research	
ISEE-304	Fundamentals of Materials Science	
ISEE-323	Systems and Facilities Planning	
ISEE-330	Ergonomics and Human Factors (WI-PR)	
ISEE-350	Engineering Management	3
ISEE-499	Co-op (fall, summer)	
Fourth Year		
ISEE-420	Production Planning/Scheduling	
ISEE-499	Co-op (summer)	
ISEE-510	Systems Simulation	3
ISEE-560	Applied Statistical Quality Control	
ISEE-760	Design of Experiments	
	Professional Electives	
	Open Electives	
	Professional Elective/Engineering Management Elective	
	General Education - Immersion 1, 2	
Fifth Year		
ACCT-794	Cost Management in Technical Organizations	
ISEE-497	Multidisciplinary Senior Design I	
ISEE-498	Multidisciplinary Senior Design II	
ISEE-561	Linear Regression Analysis	
ISEE-750	Systems and Project Management	
ISEE-771	Engineering of Systems I	
Choose one of the following:		
ISEE-792	Engineering Capstone	
ISEE-794	Leadership Capstone plus 1 additional Engineering Elective	
	Engineering Management Electives	
	General Education - Immersion 3	

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Industrial Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
ISEE-120	Fundamentals of Industrial Engineering	3
ISEE-140	Materials Processing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
Second Year		
ISEE-200	General Education - Elective: Computing for Engineers	3
ISEE-325	Engineering Statistics and Design of Experiments	3
ISEE-345	Engineering Economy	3
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
MATH-251	General Education - Elective: Probability and Statistics	3
MECE-200	Fundamentals of Mechanics	4
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
ISEE-301	Operations Research	4
ISEE-304	Fundamentals of Materials Science	3
ISEE-323	Systems and Facilities Planning	3
ISEE-330	Ergonomics and Human Factors (WI-PR)	4
ISEE-350	Engineering Management	3
ISEE-499	Co-op (fall, summer)	0
Fourth Year		
ISEE-420	Production Planning/Scheduling	3
ISEE-560	Applied Statistical Quality Control	3
ISEE-499	Co-op (summer)	0
ISEE-510	Systems Simulation	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	General Education - Immersion 1, 2, 3	9
	Professional Elective	3
	Professional Elective/Public Policy Elective	3
Fifth Year		
ISEE-497	Multidisciplinary Senior Design I	3
ISEE-498	Multidisciplinary Senior Design II	3
ISEE-561	Linear Regression Analysis	3
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Open Electives	6
	Public Policy Electives	3
	Professional Elective/Public Policy Elective	3
Choose one of the following: 6		
PUBL-785	Capstone Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

The industrial engineering BS/Industrial and systems engineering ME is no longer accepting applications for admission.

Accreditation

The BS program in industrial engineering is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer

Integrated Electronics, Certificate

www.rit.edu/study/integrated-electronics-certificate
Ferat Sahin, Professor
5854752175, feseee@rit.edu

Program overview

The certificate in integrated electronics offers a comprehensive curriculum in the design of state-of-the-art electronic circuits for professionals active in the electrical engineering field. Course work builds on an introductory understanding of semiconductor device physics and basic circuit theory. The design of analog and mixed-signal circuits are addressed in study focusing on issues and trade-offs involved in widely used circuits. In addition, the certificate offers an advanced in-depth understanding of all processes involved in designing a modern integrated circuit, including electronic design automation.

This certificate primarily targets people already active in the electrical engineering field and allows experienced technicians and physical designers to become more cross-functional and stronger contributors to multidisciplinary teams. The curriculum provides them with a path for professional growth.

Curriculum

Integrated Electronics, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
EEEE-285	Introduction to Circuit Theory	3
EEEE-380	Digital Electronics	3
EEEE-480	Analog Electronics	4
EEEE-726	Mixed-Signal IC Design	3
Total Semester Credit Hours	$\mathbf{1 3}$	

Mechanical Engineering, BS

www.rit.edu/study/mechanical-engineering-bs

Alan Nye, Professor

585-475-6121, ahneme@rit.edu

Program overview

Wherever there is motion or energy, mechanical engineers have played a role in the innovations that define modern life. RIT's mechanical engineering degree provides students with a broad academic base complemented by hands-on laboratory activities and cooperative education experience. Students may also choose to concentrate their studies with professional electives focusing on aerospace engineering, automotive engineering, energy and the environment, bioengineering, or manufacturing and design.

Mechanical engineering is perhaps the most comprehensive of the engineering disciplines. The mechanical engineer's interests encompass the design of automotive and aerospace systems, bioengineering devices, and energy-related technologies. The spectrum of professional activity for the mechanical engineering graduate runs from research through design and development to manufacturing and sales. Because of their comprehensive training and education, mechanical engineers often are called upon to assume management positions.
The mechanical engineering department offers professional courses in bioengineering, energy systems, applied mechanics, manufacturing, materials science, systems analysis, computer-aided graphics and design, robotics, and automotive and aerospace engineering. The department's laboratories are equipped to provide extensive experimentation in these areas. Laboratory facilities include a well-instrumented wind tunnel, a particle imaging velocimetry laser system for flow visualization, advanced heat transfer systems, robotics, a proton exchange membrane fuel cell, engine dynamometers, fluid flow loops, refrigeration systems, tensile testers, compression testers, torsion testers, hardness testers, X-ray diffractometer, atomic force microscope, dynamic system simulators, a spectrum analyzer, and a well-equipped machine shop.

Mechanical Engineering Course Work

The mechanical engineering BS degree provides students with a broad academic base complemented by hands-on laboratory activities and cooperative education experience. Students devote their first two years to the study of mathematics, physical sciences, liberal arts, and engineering sciences, while the third and fourth years emphasize engineering science, design, and systems.

A student may then specialize by choosing appropriate technical and free elective courses in an area of interest. Each of the listed professional electives includes a significant design project. In the fifth year, students are required to complete Multidisciplinary Senior Design I and II, a twocourse capstone design experience.

Students complete liberal arts general education courses in the various perspectives to round out their education. During the course of their studies, students must demonstrate writing competency of the English language by successfully completing a Contemporary Issues course offered by the mechanical engineering department.

Options

Students in the mechanical engineering BS may pursue an option in aerospace engineering, automotive engineering, bioengineering, and energy and environment. These options enable students to gain specialized study in a particular area of mechanical engineering.

Aerospace Engineering: The aerospace engineering option allows for specialized study in all engineering aspects of air- and space-borne vehicles.

Automotive Engineering: In the automotive engineering option, students are immersed in modern automotive engineering, including the design of engines and automotive components such as braking, powertrain systems, vehicle dynamics, lighting systems, transmission, and fuel economy.

Bioengineering: In the bioengineering option, students explore the application of engineering fundamentals to the principles of biology, the life sciences, and the physical sciences.

Energy and Environment: The energy and environment option is focused on the contemporary issues facing the fields of energy and the environment and how engineers can best develop modern technologies that are kinder to the environment while providing the energy resources we need.

Educational Objectives

The objectives of the mechanical engineering degree are to prepare graduates to:

- practice mechanical engineering in support of the design of engineered systems through the application of the fundamental knowledge, skills, and tools of mechanical engineering.
- enhance their skills through formal education and training, independent inquiry, and professional development.
- work independently as well as collaboratively with others, while demonstrating the professional and ethical responsibilities of the engineering profession.
- successfully pursue graduate degrees at the master's and/or doctoral levels, should they choose.

High-Performance Teams and Professional Organizations

Many of mechanical engineering students participate in high-octane performance teams, including the RIT Formula SAE Racing Team, the SAE Aerodesign Club, the RIT Baja SAE Team, RIT SAE Clean Snowmobile Team, and the Human-Powered Vehicle Competition team. They also are encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers, the Society of Women Engineers, the National Society of Black Engineers, the Society of Hispanic Professional Engineers, the American Institute of Aeronautics and Astronautics, and the Society of Automotive Engineers.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?
What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn
more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the mechanical engineering degree are required to complete four blocks (48 weeks) of cooperative education.

Curriculum

Mechanical Engineering, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MECE-102	Engineering Mechanics Laboratory	3
MECE-103	Statics	3
MECE-104	Engineering Design Tools	3
MECE-117	Introduction to Programming for Engineers	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Elective	3

Second Year		
EGEN-099	Engineering Co-op Preparation	0
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
MECE-110	Thermodynamics I	3
MECE-203	Strength of Materials I	3
MECE-204	Strength of Materials I Laboratory	1
MECE-205	Dynamics	3
MECE-210	Fluid Mechanics I	3
MECE-211	Engineering Measurements Lab (WI-PR)	2
	General Education - Global Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Social Perspective	3
	General Education - Immersion	3
Third Year		3
EEEE-281	Circuits I	3
MATH-326	General Education - Elective: Boundary Value Problems	3
MECE-305	Materials Science with Applications	3
MECE-306	Materials Science with Applications Laboratory	3
MECE-320	System Dynamics	3
MECE-499	Co-op (fall and summer)	4
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
Fourth Year		3
MATH-241	General Education - Elective: Linear Algebra	2
MECE-301	Engineering Applications Laboratory	3
MECE-310	Heat Transfer I	3
MECE-348	Contemporary Issues (WI-PR)	3
		3

COURSE	SEMESTER CREDIT HOURS	
MECE-499	Co-op (fall and summer)	0
	General Education - ME Approved Science Elective	3
	ME Extended Core Elective	3
Fifth Year		
MECE-497	Multidisciplinary Senior Design I	3
MECE-498	Multidisciplinary Senior Design II	3
STAT-205	General Education - Elective: Applied Statistics	3
	ME Applied Elective	3
	ME Extended Core or Applied Elective	3
	General Education - Immersion 2,3	6
	Open Electives	9

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Options

Students who elect to pursue a Professional Option may use a combination of Extended and Applied Core Electives to complete one of the options listed below:

Aerospace

Required Courses	
MECE-3XX	Extended Core-Aerospace option
MECE-4XX	Applied Core-Aerospace option
MECE-4XX	Applied Core-Aerospace option
Automotive	
Required Courses	
MECE-3XX	Extended Core-Automotive option
MECE-4XX	Applied Core-Automotive option
MECE-4XX	Applied Core-Automotive option
Bioengineering	

Required Courses

MECE-3XX
MECE-4XX
MECE-4XX
Extended Core-Bioengineering Option
Applied CoreBioengineering Option Applied Core- Bioengineering Option

Energy and Environment

Required Courses	
MECE-3XX	Extended Core-Energy and Environment option
MECE-4XX	Applied Core-Energy and Environment option
MECE-4XX	Applied Core-Energy and Environment option

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Mechanical Engineering, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS	
First Year			
MATH-181	General Education - Mathematical Perspective A: Pro	ect-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II		
MECE-102	Engineering Mechanics Laboratory		
MECE-103	Statics		
MECE-104	Engineering Design Tools		
MECE-117	Introduction to Programming for Engineers		
YOPS-010	RIT 365: RIT Connections		
	General Education - First-Year Writing (WI)		
	General Education - Artistic Perspective		
	General Education - Ethical Perspective		
	General Education - Elective		
Second Year			
EGEN-099	Engineering Co-op Preparation		
MATH-219	General Education - Elective: Multivariable Calculus		
MATH-231	General Education - Elective: Differential Equations		
MECE-110	Thermodynamics I		
MECE-203	Strength of Materials I		
MECE-204	Strength of Materials I Laboratory		
MECE-205	Dynamics		
MECE-210	Fluid Mechanics I		
MECE-211	Engineering Measurements Lab (WI-PR)		
	General Education - Global Perspective		
	General Education - Social Perspective		
	General Education - Scientific Principles Perspective		
	General Education - Immersion 1		
Third Year			
EEEE-281	Circuits I		
MATH-326	General Education - Elective: Boundary Value Problems		
MECE-305	Materials Science with Applications		
MECE-306	Materials Science with Applications Laboratory		
MECE-320	System Dynamics		
MECE-499	Cooperative Education (fall and summer)		
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II		
Fourth Year			
MATH-241	General Education - Elective: Linear Algebra		
MECE-301	Engineering Applications Laboratory		
MECE-310	Heat Transfer I		
MECE-348	Contemporary Issues (WI-PR)		
MECE-499	Cooperative Education (summer)		
MECE-707	Engineering Analysis		
MECE-795	Graduate Seminar (fall and spring)		
STAT-205	General Education - Elective: Applied Statistics		
	General Education - ME Approved Science Elective		
	ME Extended Core Elective		
	Graduate Focus Area Course		
	Open Elective		
	Graduate Electives		
Fifth Year			
MECE-497	Multidisciplinary Sr. Design I		
MECE-498	Multidisciplinary Sr. Design II		
MECE-709	Advanced Engineering Mathematics		
MECE-790	Thesis		
General Education - Immersion 2, 3			
Graduate Focus Area Courses			
	Graduate Electives		

Total Semester Credit Hours 150
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Mechanical Engineering, BS/ME degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MECE-102	Engineering Mechanics Laboratory	3
MECE-103	Statics	3
MECE-104	Engineering Design Tools	3
MECE-117	Introduction to Programming for Engineers	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
Second Year		
EGEN-099	Engineering Co-op Preparation	0
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
MECE-110	Thermodynamics I	3
MECE-203	Strength of Materials I	3
MECE-204	Strength of Materials I Laboratory	1
MECE-205	Dynamics	3
MECE-210	Fluid Mechanics I	3
MECE-211	Engineering Measurements Lab (WI-PR)	2
	General Education - Global Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Social Perspective	3
	General Education - Immersion 1	3
Third Year		
EEEE-281	Circuits I	3
MATH-326	General Education - Elective: Boundary Value Problems	3
MECE-305	Materials Science with Applications	3
MECE-306	Materials Science with Applications Laboratory	1
MECE-320	System Dynamics	3
MECE-499	Cooperative Education (fall and summer)	0
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
Fourth Year		
MATH-241	General Education - Elective: Linear Algebra	3
MECE-301	Engineering Applications Laboratory	2
MECE-310	Heat Transfer I	3
MECE-348	Contemporary Issues (WI-PR)	3
MECE-499	Cooperative Education (summer)	0
MECE-707	Engineering Analysis	3
MECE-730	Design Project Leadership	3
MECE-795	Graduate Seminar (fall and spring)	0
STAT-205	General Education - Elective: Applied Statistics	3
	General Education - ME Approved Science Elective	3
	ME Extended Core Elective	3
	Open Elective	3
	Graduate Electives	6
Fifth Year		
MECE-497	Multidisciplinary Sr. Design I	3
MECE-498	Multidisciplinary Sr. Design II	3
MECE-709	Advanced Engineering Mathematics	3
	General Education - Immersion 2, 3	6
	Open Elective	3
	Graduate Focus Area Courses	9
	Graduate Electives	6

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Mechanical Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MECE-102	Engineering Mechanics Laboratory	3
MECE-103	Statics	3
MECE-104	Engineering Design Tools	3
MECE-117	Introduction to Programming for Engineers	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
Second Year		
EGEN-099	Engineering Co-op Preparation	0
MATH-219	Multivariable Calculus	3
MATH-231	Differential Equations	3
MECE-110	Thermodynamics I	3
MECE-203	Strength of Materials I	3
MECE-204	Strength of Materials I Laboratory	1
MECE-205	Dynamics	3
MECE-210	Fluid Mechanics I	3
MECE-211	Engineering Measurements Lab (WI-PR)	2
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Immersion 1	3
Third Year		
EEEE-281	Circuits I	3
MECE-305	Materials Science with Applications	3
MECE-306	Materials Science with Applications Laboratory	1
MECE-320	System Dynamics	3
MATH-326	Boundary Value Problems	3
MECE-499	Cooperative Education (fall, summer)	0
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
Fourth Year		
MATH-241	Linear Algebra	3
MECE-301	Engineering Applications Laboratory	2
MECE-310	Heat Transfer I	3
MECE-348	Contemporary Issues	3
MECE-499	Cooperative Education (summer)	0
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
STAT-205	Applied Statistics	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	ME Extended Core Elective	3
	General Education - ME Approved Science Elective	3
	General Education - Immersion 2	3
	Open Elective	3
Fifth Year		
MECE-497	Multidisciplinary Sr. Design I	3
MECE-498	Multidisciplinary Sr. Design II	3
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
	Open Elective	3
	Applied Elective/Public Policy Electives	6
	Open Elective/Public Policy Elective	3
	General Education - Immersion 3	3
Choose one of the following:		6
PUBL-785	Capstone Research Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

Please see General Education Curriculum for more information.
WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Accreditation

The BS in mechanical engineering major is accredited by the Engineering Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer

[^7]
Microelectronic Engineering, BS

www.rit.edu/study/microelectronic-engineering-bs
Sean Rommel, Professor
585-475-4723, slremc@rit.edu

Program overview

Semiconductor and photonic devices impact virtually every aspect of human life, from communication, entertainment, and transportation, to health, solid-state lighting, and solar cells. There is an ever increasing need for talented engineers that not only understand the design of these amazing devices but can direct and optimize their fabrication. Microelectronic engineering is at the cutting edge of science education. Integrated nanoelectronic and microelectronic circuits and sensors drive our global economy, increase our productivity, and help improve our quality of life. RIT's microelectronic engineering degree is the only accredited bachelor of science degree of its kind in the U.S. and is considered a world leader in the education of semiconductor process engineers.

RIT's Microelectronic Engineering Degree

The worldwide semiconductor industry growing at an astounding pace. RIT's microelectronic engineering degree offers you an unparalleled opportunity to prepare for professional challenges and success in a leading, high-growth area of engineering.

Your curriculum begins with introductory courses in microelectronic engineering and nanolithography (nanopatterning) for integrated circuits. In the first year, you'll build a solid foundation in mathematics, physics, and chemistry, and courses will cover important issues such as technology development, ethics, societal impact, and global perspectives. The fundamentals of statistics and their application in the design of experiments, semiconductor device physics and operation, and integrated circuit technology are covered in the second year.

The third year comprises the electrical engineering course work necessary for understanding semiconductor devices and integrated circuits. The fourth and fifth years are dedicated to optics, nanolithography systems and materials, semiconductor processing, professional electives, and a two-course capstone senior project.
Modern, Hands-On Labs: You will gain hands-on experience in the design, fabrication, and testing of the integrated circuits (microchips), the vital component in almost every advanced electronic product manufactured today. RIT's undergraduate microelectronics engineering laboratories, which include modern integrated circuit fabrication (clean room) and test facilities, are among the best in the nation. At present, the major is supported by a 150 mm complementary metal oxide semiconductor line equipped with diffusion; ion implantation, plasma, and chemical vapor deposition (CVD) processes; chemical mechanical planarization; and device design, modeling, and test laboratories. The microlithography facilities include a ASML i-line and GCA g-line wafer steppers, and both optical and electron beam mask writers.

Professional Electives: A choice of professional electives and the senior project offer you an opportunity to build a concentration in areas such as advanced CMOS, VLSI chip design, analog circuit design, electronic materials science, microelectromechanical systems (MEMS), or nanotechnology. Free elective courses allow you to develop an expertise in a related discipline.

Senior Capstone Project: In the capstone course, you'll propose and conduct individual research/design projects and present your work at the Annual Microelectronic Engineering Conference, which is organized by the department of electrical and microelectronic engineering and is wellattended by industrial representatives.

World-Class Faculty: Faculty committed to quality engineering educations, state-of-the-art laboratories, strong industrial support, co-op opportunities with national companies, and smaller class sizes make this one of the most value-added programs in the nation.

Learn more about the Student Learning Outcomes and Program Educational Objectives for the microelectronic engineering BS degree.

Semiconductor Jobs

One of the great challenges in integrated circuit manufacturing is the need to draw on scientific principles and engineering developments from such an extraordinarily wide range of disciplines. The design of microelectronic circuits requires a sound knowledge of electronics and circuit analysis. Optical lithography tools, which print microscopic patterns on wafers, represent one of the most advanced applications of the principles of Fourier optics. Plasma etching involves some of the most complex chemistry used in manufacturing today. Ion implantation draws upon understanding from research in high-energy physics. Thin films on semiconductor surfaces exhibit complex mechanical and electrical behavior that stretches our understanding of basic materials properties.

Scientists and engineers who work in the semiconductor field need a broad understanding of and the ability to seek out, integrate, and use ideas from many disciplines. The major provides the broad interdisciplinary background in electrical and computer engineering, solid-state electronics, physics, chemistry, materials science, optics, and applied math and statistics necessary for success in the semiconductor industry.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?
What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early
and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the microelectronic engineering degree are required to complete four blocks (48 weeks) of cooperative education. Co-ops may begin after the second year of study. Students find co-op employment in the semiconductor and nanofabrication industries, and in areas such as nanotechnology, microelectromechanical systems, photonics, photovoltaics, and microsystems. Students complete co-ops at some of the world's leading electronics companies, including Intel, Samsung, Texas Instruments, and Motorola.

Curriculum

Microelectronic Engineering, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
CMPR-271	General Education - Elective: Computational Problem Solving for Engineers	3
EEEE-120	Digital Systems I	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MCEE-101	Introduction to Nanoelectronics	1
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education-Elective	3
Second Year		
EEEE-281	Circuits I	3
EEEE-282	Circuits II	3
EGEN-99	Engineering Co-op Preparation	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-231	General Education - Elective: Differential Equations	3
MCEE-201	IC Technology	3
MCEE-205	General Education - Elective: Statistics and Design of Experiments	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective: Restricted STEM Elective	3
Third Year		
EEEE-380	Digital Electronics	3
MCEE-320	E\&M Fields for Microelectronics	3
MCEE-360	Semiconductor Devices for Microelectronic Engineers	3
MCEE-499	Microelectronic Engineering Co-op (fall and summer)	0
MCEE-502	Semiconductor Process Integration	3
	General Education - Immersion	3
Fourth Year		
EEEE-353	Linear Systems	4
EEEE-480	Analog Electronics	4
MCEE-499	Microelectronic Engineering Co-op (spring and summer)	0
MCEE-503	Thin Films (WI-PR)	3
MCEE-505	Lithography Materials and Processes	3
	General Education - Immersion	3
Fifth Year		
MCEE-495	Senior Design I	3
MCEE-496	Senior Design II	3
MCEE-550	CMOS Processing	4
	General Education - Immersion	3
	Open Electives	9
	Professional Electives	9
Total Seme	it Hours	129

Total Semester Credit Hours

(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Microelectronic Engineering, BS degree/Materials Science and Engineering, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
CMPR-271	General Education - Elective: Computational Problem Solving for Engineers	
EEEE-120	Digital Systems I	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MCEE-101	Introduction to Nanoelectronics	
PHYS-211	General Education - Scientific Principles Perspective: University Physics I	4
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar (WI)	3
YOPS-10	RIT 365: RIT Connections	
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Elective	3
Second Year		
EEEE-281	Circuits I	3
EEEE-282	Circuits II	3
EGEN-99	Engineering Co-op Preparation	0
MATH-221	General Education - Elective: Multivariable and Vector Calculus	4
MATH-231	General Education - Elective: Differential Equations	
MCEE-201	IC Technology	
MCEE-205	General Education - Elective: Statistics and Design of Experiments	3
PHYS-212	General Education - Natural Science Inquiry Perspective: University Physics II	4
	Restricted STEM Elective \dagger	3
	General Education - Social Perspective	3
	General Education-Global Perspective	3
Third Year		
MCEE-320	E\&M Fields for Microelectronics	3
MCEE-360	Semiconductor Devices for Microelectronic Engineers	3
EEEE-380	Digital Electronics	3
MCEE-499	Microelectronic Engineering Co-op (fall, summer)	0
MCEE-502	Semiconductor Process Integration	3
	General Education - Immersion 1	
Fourth Year		
EEEE-353	Linear Systems	4
EEEE-480	Analog Electronics	
MCEE-605	Lithography Materials and Processes	3
MCEE-603	Thin Films (WI-PR)	3
MTSE-601	Materials Science	3
MTSE-704	Theoretical Methods in Materials Science and Engineering	3
MTSE-705	Experimental Techniques	3
Choose one of the following:		
MTSE-790	Research \& Thesis	
MTSE-777	Graduate Project	
	General Education - Immersion 2, 3	6
	MTSE Graduate Elective	3
Fifth Year		
MCEE-495	Senior Design I	3
MCEE-496	Senior Design II	3
MCEE-550	CMOS Processing	
Choose one of the following:		
MTSE-790	Research \& Thesis	
MTSE Graduate Electives		
	Professional Electives (Graduate courses)	
	Open Electives	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Courses for the restricted STEM elective include: PHYS-213 (Modern Physics I), MATH-241 (Linear Algebra), MATH-251 (Probability and Statistics I), CHMG-142 (General \& Analytic Chemistry II), CHMG-201 (Introduction to Organic Polymer Technology), BIOG-140 (Cell and Molecular Biology for Engineers I).

Microelectronic Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Chemistry for Engineers	
CMPR-271	Computational Problem Solving for Engineers	
EEEE-120	Digital Systems I	
MATH-181	General Education - Mathematical Perspective A: Proj	ect-Based Calculus I
MATH-182	General Education - Mathematical Perspective B: Proj	ct-Based Calculus II
MCEE-101	Introduction to Nanoelectronics	
PHYS-211	General Education - Scientific Principles Perspective:	University Physics I
YOPS-010	RIT 365: RIT Connections	0
UWRT-150	General Education - First Year Writing: FYW: Writing S	minar (WI)
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	3
	General Education Elective	
Second Year		
EEEE-281	Circuits I	
EEEE-282	Circuits II	
EGEN-099	Engineering Co-op Preparation	0
MATH-221	Multivariable and Vector Calculus	
MATH-231	Differential Equations	
MCEE-201	IC Technology	
MCEE-205	Statistics and Design of Experiments	
PHYS-212	General Education - Natural Science Inquiry Perspectiver	ve: University Physics II 4
	General Education - Global Perspective	
	General Education - Social Perspective	
	Restricted STEM Elective	3
Third Year		
EEEE-380	Digital Electronics	
MCEE-320	E\&M Fields for Microelectronics	3
MCEE-360	Semiconductor Devices for Microelectronic Engineers	
MCEE-499	Microelectronic Engineering Co-op (fall, summer)	0
MCEE-502	Semiconductor Process Integration	3
	General Education - Immersion 1	3
Fourth Year		
EEEE-353	Linear Systems	
EEEE-480	Analog Electronics	
MCEE-499	Microelectronic Engineering Co-op (summer)	0
MCEE-503	Thin Films	3
MCEE-505	Lithography Materials and Processes	
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	Graduate Professional Electives/Policy Electives	
	General Education - Immersion 2	3
	Open Elective	3
Fifth Year		
EEEE-496	Senior Design II	3
MCEE-495	Senior Design I	3
MCEE-550	CMOS Processing	
PUBL-700	Readings in Public Policy	
PUBL-703	Evaluation and Research Design	
STSO-710	Graduate Science and Technology Policy Seminar	
	Public Policy Elective	
	Professional Elective	
	General Education - Immersion 3	
Choose one of the following:		
PUBL-785	Capstone Research Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	

Please see General Education Curriculum for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The BS in microelectronic engineering major is accredited by the EAC Accreditation Commission of ABET, http://www.abet.org. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 4 years of math required; including pre-calculus or above
- Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.
Appropriate associate degree programs for transfer
AS degree in engineering science

Faculty

Dean's Office

Doreen Edwards, BS, South
Dakota School of Mines and Technology; Ph.D., Northwestern University-Dean; Professor

Edward Hensel, BS, Clarkson University; Ph.D., New Mexico State University-Associate Dean of Graduate Studies

Matthew M. Marshall, BS, Rochester Institute of Technology; MS, Ph.D., University of Michigan Associate Dean Undergraduate Studies

Biomedical Engineering

Steven Day, BS, Ph.D., University of Virginia; Diploma, von Karman Institute for Fluid Mechanics (Belgium)-Department Head; Professor

Vinay Abhyankar, BS, Binghamton University; MS, Ph.D., University of Wisconsin-Madison-Assistant Professor

Iris Asllani, B.Sc., Nuclear Physics, University of Tirana (Albania); M.Sc., Ph.D., University of Washington-Associate Research Professor

Jennifer Bailey, BS, Ph.D., Purdue University-Principal Lecturer

Edward E. Brown Jr., BS, University of Pennsylvania; MS, Ph.D., Vanderbilt UniversityAssociate Professor

Thomas Gaborski, BS, Cornell
University; MS, Ph.D., University of Rochester-Professor

Blanca Lapizco-Encinas, BS, Instituto Tecnologico de Sonora (Mexico); MS, Instituto Tecnologico de Celaya (Mexico); Ph.D., University of Cincinnati-Professor

Cristian Linte, BS, University of Windsor (Canada); MS, Ph.D., University of Western Ontario (Canada)—Associate Professor

Daniel B. Phillips, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Associate Professor

Michael Richards, BS, University
of Rochester; Ph.D., Boston University-Assistant Professor

Iris V. Rivero, BS, MS, Ph.D., Pennsylvania State UniversityKate Gleason Professor

Cory Stiehl, BS, University of Rochester; Ph.D., University of Massachusetts, Amherst-Senior Lecturer

Karin Wuertz, BS, MS, University of Regensburg (Germany); MBA, University of Cumbria (United Kingdom); Ph.D., University of Ulm (Germany)-Kate Gleason Professor

Zhi (Jenny) Zheng, BS, Xidian University (China); MS, Ph.D., Vanderbilt University—Assistant Professor

Chemical Engineering

Steven J. Weinstein, BS, University of Rochester; MS, Ph.D., University of Pennsylvania-Department Head; Professor

Jairo A. Diaz, BSE, National University of Columbia (Columbia); Ph.D., Purdue University—Assistant Professor

Matt Ganter, BS, St. John Fisher College; MS, Ph.D., Rochester Institute of Technology-Assistant Research Professor

Nicole Hill, BS, Ph.D., Rochester Institute of Technology-Visiting Lecturer

Karuna Koppula, B.Tech., Andhra University (India); MS, University of New Hampshire; Ph.D., Michigan State University—Principal Lecturer
Brian J. Landi, BS, MS,
Ph.D., Rochester Institute of Technology—Professor
Poornima Padmanabhan, B.Tech., Indian Institute of Technology (India); Ph.D., Cornell UniversityAssistant Professor

Alexander D. Roth, BS, ME, Cornell University; MS, The Ohio State University; Ph.D., Cleveland State University-Lecturer

Patricia Taboada-Serrano, BS,
Mayor de San Andres University (Bolivia); MS, Simon Bolivar University (Venezuela); Ph.D., Georgia Institute of TechnologyAssociate Professor

Xiangcheng Sun, BE, Harbin Institute of Technology; MS, University of Chinese Academy of Sciences (China); Ph.D., University of Connecticut-Assistant Professor

Obioma Uche, BS, University of California, Berkeley; MS, Ph.D., Princeton University-Assistant Professor

Computer Engineering

Amlan Ganguly, BTech., Indian Institute of Technology (India); MS, Ph.D., Washington State University-Department Head; Professor

Andrés Kwasinski, M.Sc., Ph.D., University of Maryland at College Park-Professor

Dongfang Liu, Ph.D., Purdue University-Assistant Professor

Sonia Lopez Alarcon, B.Sc., Ph.D., Complutense University of Madrid (Spain)—Associate Professor

Alexander C. Loui, B.Sc., M.Sc., Ph.D., University of Toronto (Canada)—Professor of Practice

Marcin Lukowiak, M.Sc., Ph.D., Poznan University of Technology (Poland)—Professor

Roy W. Melton, BEE, MS, Ph.D., Georgia Institute of TechnologyPrincipal Lecturer

Cory Merkel, BS, MS, Ph.D., Rochester Institute of TechnologyAssistant Professor

Raymond Ptucha, M.Sc., Ph.D., Rochester Institute of TechnologyAssociate Professor

Andreas E. Savakis, B.Sc., MS, Old Dominion University; Ph.D., North Carolina State University—Professor

Muhammad E. Shaaban, BS, MS, University of Petroleum and Minerals (Saudi Arabia); Ph.D., University of Southern CaliforniaAssociate Professor

Shanchieh J. Yang, B.Sc., National Chiao-Tung University (Taiwan);

MS, Ph.D., University of Texas at Austin-Professor

Electrical and Microelectronic Engineering

Ferat Sahin, BS, Istanbul Technical University (Turkey); MS, Ph.D., Virginia Polytechnic Institute and State University-Department Head; Professor

Mustafa A. G. Abushagur, BS, Tripoli University (Libya); MS, Ph.D., California Institute of Technology—Professor

Carlos Barrios, BS, MS Rochester Institute of Technology-Lecturer

David A. Borkholder,
BS, Rochester Institute of Technology; MS, Ph.D., Stanford University-Professor
Sohail A. Dianat, BS, Aria-Mehr University of Technology (Iran); MS, Ph.D., George Washington University-Professor

Lynn F. Fuller, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at BuffaloProfessor Emeritus

Jamison Heard, BS, University of Evansville; MS, Ph.D., Vanderbilt University-Assistant Professor

Karl D. Hirschman, BS, MS, Rochester Institute of Technology; Ph.D., University of RochesterMicron Technology Professor; Associate Department Head, Microelectronic Engineering Programs

Christopher R. Hoople, BS, Union College; Ph.D., Cornell UniversitySenior Lecturer

Jason Hoople, BS, MS, Rochester Institute of Technology; Ph.D., Cornell University-Lecturer

Mark Indovina, MS, Rochester Institute of Technology - Director of Outreach and Facilities; Senior Lecturer

Michael A. Jackson, BS, MS, Ph.D., State University of New York at Buffalo-Associate Professor

Santosh K. Kurinec, BS, MS, Ph.D., University of Delhi (India)—Professor

Sergey E. Lyshevski, MS, Ph.D., Kiev Polytechnic Institute (Ukraine)—Professor

James E. Moon, BS, Carnegie Mellon University; MBA, University of Rochester; MS, Ph.D., University of California at Berkeley-Professor

Parsian Katal Mohseni, BS, Ph.D., McMaster University (Canada) Associate Professor
P. R. Mukund, BS, MS, Ph.D., University of Tennessee-Professor Emeritus

Kai Ni, BS, University of Science and Technology of China (China); MS, Ph.D., Vanderbilt UniversityAssistant Professor

Dorin Patru, BS, MS, Technical University of Cluj-Napoca (Romania); Ph.D., Washington State University-Associate Professor

Robert E. Pearson, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Associate Professor

Daniel B. Phillips, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Associate Professor
Stefan Preble, BS, Rochester Institute of Technology; Ph.D., Cornell University-Professor
Ivan Puchades, BS, MS, Ph.D., Rochester Institute of TechnologyAssociate Professor
Majid Rabbani, BS, Aria-Mehr University of Technology (Iran); MS, Ph.D., University of Wisconsin-Madison-Professor of Practice

Sean L. Rommel, BS, Ph.D., University of Delaware-Director, Microelectronic Engineering Program, Professor

Eli Saber, BS, State University of New York at Buffalo; MS, Ph.D., University of Rochester-Professor

Bruce W. Smith, BS, MS, Ph.D., Rochester Institute of TechnologyDistinguished Professor

Gill R. Tsouri, B.Sc., M.Sc., Ph.D., Ben-Gurion University (Israel)—Professor

Jayanti Venkataraman, BS, MS, Bangalore University (India); Ph.D.,

Indian Institute of Science (India) Associate Department Head,
Electrical Engineering Programs; Professor

Bing Yan, BS, Renmin University of China (China); MS, Ph.D., University of ConnecticutAssistant Professor

Jing Zhang, BS, Huazhong University (China); Ph.D., Lehigh University-Associate Professor

Industrial and Systems Engineering

Iris V. Rivero, BS, MS, Ph.D., Pennsylvania State UniversityDepartment Head, Kate Gleason Professor

Nasibeh Azadeh Fard, BS, Iran University of Science and Technology, MS, Ph.D., Virginia Polytechnic Institute and State University-Assistant Professor
John Bonzo, BS, ME, Rochester Institute of Technology-Lecturer

Robin R. Borkholder, BS, MS, State University of New York at BuffaloPrincipal Lecturer

Denis R. Cormier, BS, University of Pennsylvania; MS, State University of New York at Buffalo; Ph.D., North Carolina State University-Earl W. Brinkman Professor

Patricia A. Cyr, BS, University of Pittsburgh; MS, Rochester Institute of Technology-Senior Lecturer

Anthony DiVasta, BS,
MS, Rochester Institute of Technology-Lecturer
Michael E. Kuhl, BS, Bradley University; MS, Ph.D., North Carolina State University-Professor

Rui Liu, BS, Beijing University (China); MS, Northeastern University; Ph.D., Georgia Institute of Technology-Assistant Professor

Katie McConky, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at BuffaloAssociate Professor
Rubén A. Proaño, BS, Universidad San Francisco de Quito (Ecuador); MS, Ph.D., University of Illinois at Urbana-Champaign-Associate Professor

Esa M. Rantanen, BS, MS, EmbryRiddle Aeronautical University; MS, Ph.D., Pennsylvania State University-Associate Professor

Ehsan Rashedi, BS, MS, Sharif University of Technology (Iran); MS, Ph.D., Virginia Polytechnic Institute and State UniversityAssistant Professor

Brian K. Thorn, BS, Rochester Institute of Technology; MS, Ph.D., Georgia Institute of Technology-Professor

Yunbo "Will" Zhang, BS, Shandong University; MS, Huazhong University of Science \& Technology; Ph.D., The Chinese Univeristy of Hong Kong-Assistant Professor

Mechanical Engineering

Risa J. Robinson, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Department Head; Professor

Margaret B. Bailey, BS, Pennsylvania State University; Ph.D., University of Colorado at Boulder; PE—Professor

Stephen Boedo, BA, State University of New York at Buffalo; MS, Ph.D., Cornell University-Professor

Robert Carter, BS, University of Maine; Ph.D., Cornell UniversityAssociate Department Head; Senior Lecturer
Anthony Chirico, BS, University at Buffalo; MS, Rochester Institute of Technology-Senior Lecturer
Agamemnon L. Crassidis, BS, MS, Ph.D., State University of New York at Buffalo—Professor

Steven Day, BS, Ph.D., University of Virginia-Professor

Elizabeth A. DeBartolo, BS, Duke University; MS, Ph.D., Purdue University-Associate Professor

Ghazal Dehghani, BS, Sharif University of Technology (Iran); MS, University of Arizona-Visiting Lecturer

Amy Engelbrecht-Wiggans, BS, University of Illinois; Ph.D., Cornell University-Assistant Professor

Bernhard Fischer, MS,
Technical University of Munich (Germany); Ph.D., Cranfield Institute of Technology (United Kingdom)-Lecturer
Gerald W. Fly, BS, MS,
Massachusetts Institute of Technology-Lecturer
Alfonso Fuentes-Aznar, MS,
University of Murcia (Spain); Ph.D., National University of Distance Education (Spain)-Associate Professor

Hany A. Ghoneim, BS, MS, Cairo University (Egypt); Ph.D., Rutgers University-Professor

Amitabha Ghosh, B.Tech.,
M.Tech., Indian Institute of Technology (India); Ph.D., Mississippi State University-Professor
Mario W. Gomes, BsE, Cornell University; MS, Georgia Institute of Technology; Ph.D., Cornell University-Senior Lecturer

Surendra K. Gupta, B.Tech., Indian Institute of Technology (India); MS, University of Notre Dame; Ph.D., University of Rochester-Professor
Edward C. Hensel, BS, Clarkson University; Ph.D., New Mexico State University-Professor; PE
William A. Humphrey, BS, MS, Case Western Reserve UniversitySenior Lecturer

Phillip Hutton, BS, University of Pittsburgh; MS, Old Dominion University; MS, Carnegie Mellon University; Ph.D., University of North Dakota-Lecturer

Omar Ibrahim, BS, MS, University of Mosul (Iraq), MS, Newcastle University (United Kingdom); Ph.D., Mississippi State University-Lecturer
Patricia Iglesias Victoria, BS, Ph.D., Polytechnic University of Cartagena (Spain)—Associate Professor

Sarilyn Ivancic, BS, MS, Ph.D., University of Rochester-Graduate Program Director; Senior Lecturer

Satish G. Kandlikar, BE,
Marathwada University (India); M.Tech., Ph.D., Indian Institute of Technology (India)-James E. Gleason Professor

Jason R. Kolodziej, BS, MS, Ph.D., State University of New York at Buffalo-Associate Professor

Margaretha J. Lam, BS, MS, State University of New York at Buffalo; Ph.D., Virginia Polytechnic Institute and State UniversityUndergraduate Program Director; Principal Lecturer
Kathleen Lamkin-Kennard, BS, Worcester Polytechnic Institute; MS, Ph.D., Drexel University-Associate Professor

Timothy P. Landschoot, BS, MS, Rochester Institute of Technology; MBA, University of RochesterPrincipal Lecturer
Kate Leipold, BS, MS, Rochester Institute of Technology-Principal Lecturer

Rui Liu, BS, Beijing University (China); MS, Northeastern University; Ph.D., Georgia Institute of Technology-Assistant Professor

Ali Ogut, B.Ch.E., Hacettepe University (Turkey); MS, Ph.D., University of Maryland-Professor
Isaac Perez-Raya, BS, University of Guanajuato (Mexico); Ph.D., Rochester Institute of Technology -Assistant Professor

Howard Qingsong Tu, BS/MS, Beijing Institute of Technology (China);Ph.D., University of California Berkeley-Assistant Professor

Michael Schertzer, BS, MS, McMaster University (Canada); Ph.D., University of Toronto (Canada)-Associate Professor

Michael Schrlau, BS, University of Pittsburgh; Ph.D., University of Pennsylvania-Associate Professor

Robert J. Stevens, BS, Swarthmore College; MS, North Carolina State University; Ph.D., University of Virginia-Associate Professor
John D. Wellin, BS, Rochester Institute of Technology; MS, University of Rochester-Senior Lecturer

Distinguished Professorships

James E. Gleason Professorship in Mechanical Engineering

Established: 1967
Donor: Estate of James E. Gleason
Purpose: To provide a permanent memorial to Mr. James E. Gleason, who was president of Gleason Works from 1922-1947 and was awarded 36 patents for his many inventions in bevel gear design and manufacturing James E. Gleason served on the RIT Board of Trustees for 65 years (1899 until 1964), including 20 years as its chairman, and was an enthusiastic supporter of the relocation of RIT to the Henrietta campus. The professorship is targeted to strengthen RIT in the filed in which he received his education.

Held by: Satish G. Kandlikar

Kate Gleason Professorship

Established: 1999
Donor: Gleason Foundation
Purpose: To build upon the tradition of Kate Gleason as a role model for women in engineering by supporting the College's continuing commitment to diversity, its strategic goals and overall mission. Among her many notable achievements, Kate Gleason was the first woman admitted to study engineering at Cornell University, the first woman elected to full membership in the American Society of Mechanical Engineers, the first woman bank president in the US.

Held by: Jing Zhang, Iris Rivero, Karin Wuertz

Earl W. Brinkman Professor of Machining and Manufacturing

Established: 1995
Donor: Brinkman Family Charitable Trust and an anonymous foundation

Purpose: To support a professorship in engineering and create a lasting memorial to Earl W. Brinkman, an innovator and leader in the screw machine industry. Mr. Brinkman
started in the industry at the age of 17 , worked his way up the ranks to become Chief Engineer of the Davenport Machine Company in Rochester, N.Y., in 1937, and became president of the company from 1996 until his retirement in 1979, after devoting 53 years to the company.
Held by: Denis R. Cormier

Bausch and Lomb Endowed Chair in Microsystems Engineering
Established: 2007
Donor: Bausch and Lomb Foundation
Purpose: To support a professorship in Microsystems Engineering and aid in the development of microsystems technologies for health care and biomedical applications to enhance the quality of life for future generations.

Held by: David A. Borkholder

Micron Professorship in Microelectronic Engineering

Established: 2007
Purpose: As a global leader in the design, development, and fabrication of flash memory devices, Micron Corp. provides annual support for a faculty member, and related research and teaching activities, to enhance the body of knowledge in semiconductor fabrication technologies and manufacturing.

Held by: Karl D. Hirschman

College of Engineering Technology
 S. Manian Ramkumar, Dean

www.rit.edu/engineeringtechnology

Programs of Study

Civil Engineering Technology BS	119
\# Computer Engineering Technology BS	121
Electrical Engineering Technology BS	124
Engineering Technology Exploration	126
\# Environmental Sustainability, Health and Safety BS	127
\# Mechanical Engineering Technology BS	130
Mechatronics Engineering Technology	133
Media Arts and Technology BS	135
Packaging Science BS	137

\# Combined Accelerated Bachelor's/Master's Degree available

The College of Engineering Technology provides programs that stress technology in a variety of environments and improve the careers of traditional and nontraditional students. Modern technology, whether in the development, integration, or implementation stages, is a focal point in each of the college's programs. This technology may be used to provide productive manufacturing and distribution of durable and consumable goods, the proper flow of information worldwide, the protection of the environment, or the enhancement of customer satisfaction in the service sector.

Through its dynamic program offerings, the college is committed to preparing graduates to be innovative, technologically advanced, and entrepreneurial. Degree programs are offered at the baccalaureate and master's degree levels. A number of minors are available. The college also includes the departments of military science (Army ROTC) and aerospace studies (Air Force ROTC), and the Center for Electronic Manufacturing Assembly (CEMA).

Please visit the college's website-www.rit.edu/engineering-technology-for in depth information on academics, admissions requirements, faculty, facilities, financial aid and scholsrships, research initiatives, advising services, and more.

Accreditation

The following degree programs are accredited by the Engineering Technology Accreditation Commission of ABET (abet.org): civil engineering technology, computer engineering technology, electrical engineering technology, electrical/mechanical engineering technology, manufacturing engineering technology, and mechanical engineering technology.

Civil Engineering Technology, BS

www.rit.edu/study/civil-engineering-technology-bs
Amanda Bao, Associate Professor
585-475-4956, axbite@rit.edu

Program overview

When infrastructure works, no one notices. But when clean water fails to come out of faucets, when roads and bridges crumble, or when dams break and flood communities, suddenly our attention shifts to infrastructure and how its failure significantly impacts our lives.

The people who make infrastructure their top priority are civil engineers who are charged with analyzing problems and designing solutions to our nation's growing infrastructure needs. In RIT's civil engineering technology degree, you'll learn to design bridges and buildings, analyze traffic flow, manage the construction of complex structures, and address environmental issues such as clean drinking water and effective wastewater management.

RIT's Degree in Civil Engineering Technology

RIT's civil engineering technology degree supports the growing need for civil engineers to analyze, design, build, and retrofit new and existing infrastructure needs. There is also demand for civil engineers to develop and integrate modern technical innovations into their infrastructure solutions to address sustainable practices that are protective of the environment.

In the civil engineering technology major, you'll begin with a foundation in structural mechanics, physics, calculus, and the liberal arts. In the first two years of the program, technical subjects are taught concurrently with mathematics and science, helping you to understand applications while studying scientific fundamentals. The third and fourth years expand on these fundamentals with advanced course work in structural design, water and wastewater management and treatment, transportation systems, foundation engineering, and additional liberal arts courses. In the fifth year, you'll complete a capstone project that includes the complete design of a major civil engineering project.

With a choice of professional electives, you can complete course sequences in structural design, construction management, geotechnical engineering, transportation engineering, and water resources management. Electives also are available in other technical disciplines. The major allows you to specialize while also obtaining a broad background in civil engineering and construction management.

While an option is not required, you may choose to pursue one of three professional options to gain a deeper understanding in one of these areas: - Construction management option-For students interested in the business, management, and project planning aspects related to construction, including sustainable building design.

- Structural design option-For students interested in structural design and the use of different types of materials (masonry, steel, reinforced concrete, etc.) in constructing roads, bridges, and buildings.
- Water resources option-For students interested in water treatment, wastewater treatment, hydrology, stormwater management, and the environment.
With four required cooperative education experiences, you'll gain fulltime, hands-on career experience working for a range of companies and organizations in construction, transportation, water/wastewater management, renewable energy, and more. You'll gain the practical theory, knowledge, and hands-on technical skills you'll need to become an expert in applying today's technologies to the solution of civil engineering and construction problems.

Throughout the civil engineering degree, you'll spend time in labs where you'll use experimental methods to solve engineering challenges and actively put theory and technology to work. You'll work on state-of-the-art equipment and in sophisticated laboratories that allow for a wealth of hands-on experience. You'll have access to laboratories and equipment for soil mechanics, construction materials, surveying, water and wastewater analysis and treatment, hydraulic systems, and mechanics. You'll also have access to our Design and Drafting Laboratory with state-of-the-practice hardware and software such as AutoCAD, Revit, STAAD, HydroCAD, Civil3D, and much more.

With a BS degree in civil engineering technology, you'll also be prepared to take the Fundamentals of Engineering exam, the first step in becoming licensed as a professional engineer (PE).

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the civil engineering technology degree are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate periods of full-time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Careers in Civil Engineering Technology

Civil engineers are in demand. Our nation's growing infrastructure needs-coupled with a focus on addressing the environment as a key component in infrastructure solutions-have created ample career opportunities for civil engineers. And, with a 95% outcomes rate, graduates of our degree in civil engineering technology are employed with top organizations in areas as diverse as environmental engineering, geotech-
nical engineering, engineering management, transportation engineering, water resources engineering, and more.

Civil Engineering Career Fair

RIT's Office of Career Services and Cooperative Education hosts a civil engineering career fair that connects civil engineering technology majors with employers in civil engineering, infrastructure, construction, and more. During this event, you'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Civil Engineering Technology, BS degree, typical course sequence

COURSE	SEMESTER CRED	
First Year		
CVET-140	Materials of Construction	2
CVET-141	Materials of Construction Laboratory	1
CVET-150	Computer Aided Design and Drafting	2
CVET-180	Civil Engineering Graphics	2
CVET-181	Civil Engineering Graphics Lab	1
CVET-210	Statics	3
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
PHYS-112	General Education - Elective: College Physics II	4
	General Education - First Year Writing (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
Second Year		
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CVET-160	Surveying	3
CVET-161	Surveying Laboratory	1
CVET-220	Strength of Materials	4
CVET-240	Elementary Soil Mechanics	3
CVET-241	Elementary Soil Mechanics Lab	1
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
MECA-436	Engineering Economics	2
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Elective	6
Third Year		
COMM-142	General Education - Elective: Introduction to Technical Communication	3
CVET-250	Hydraulics	3
CVET-251	Hydraulics Lab	1
CVET-300	Land Development Computer Applications	2
CVET-332	Structural Analysis and Modeling	4
CVET-499	Civil Engineering Technology Co-op (spring, summer)	0
ENGT-95	Career Seminar	0
	General Education - Social Perspective	3
Fourth Year		
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CVET-431	Structural Steel Design	3
CVET-432	Reinforced Concrete Design	3
CVET-350	Highway Design	2
CVET-351	Highway Design Lab	2
CVET-437	Principles of Dynamics in Civil Engineering Technology	2
CVET-440	Foundation Engineering	3
CVET-450	Principles of Water and Wastewater Treatment	3
CVET-499	Civil Engineering Technology Co-op (summer)	0
	Open Elective	6
	General Education - Immersion 1,2	6
Fifth Year		
CVET-499	Civil Engineering Technology Co-op (fall)	0
CVET-500	Civil Engineering Technology Capstone (WI-PR)	3
	Technical Elective	3
	Open Elective	3
	General Education - Elective	3
	General Education - Immersion	3
Total Semester Credit Hours		128

Total Semester Credit Hours

(WI) Re
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Professional Options

Students who elect to pursue a Professional Option may use any combination of Open and Technical Electives to complete one of the options listed below:

Construction Management

Choose two of the following:	
CVET-462	Construction Project Management
CVET-464	Construction Planning, Scheduling and Control
CVET-561	Construction Cost Analysis and Management
Choose one additional course from above or below:	
CVET-424	Building Information Modeling with Revit
CVET-465	Contracts and Specifications
CVET-505	Sustainable Building Design \& Construction
ESHS-225	Construction Safety

Structural Design

Required Courses	
Choose three of the following:	
CVET-424	Building Information Modeling with Revit
CVET-433	Structural Timber Design
CVET-434	Design of Highway Bridges
CVET-435	Prestressed Concrete
CVET-436	Masonry Structures

Water Resources

Choose three of the following:	
CVET-423	GIS for CETEMS
CVET-451	Design of Water \& Wastewater Treatment Facilities
CVET-452	Groundwater Hydraulics
CVET-453	Stormwater Management

Accreditation

The civil engineering technology major is accredited by the Engineering Technology Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree
Courses in mathematics, science, engineering science, and engineering technology

Appropriate associate degree programs for transfer

Civil, construction, environmental, architectural, transportation, or surveying technology; engineering science

Computer Engineering Technology, BS

www.rit.edu/study/computer-engineering-technology-bs
Jeanne Christman, Associate Professor
585-475-6609, jxciee@rit.edu

Program overview

Medical diagnostic equipment, digital cameras, missile guidance systems, anti-lock brakes, autonomous vehicles, network routers, and smartphones. What do all of these have in common? They're all examples of tech that use embedded systems. And, they are all examples of tech developed by computer engineers who have an in-depth knowledge of hardware design, programming, and problem-solving.

RIT's Computer Engineering Technology Degree

When you study computer engineering technology, you'll design embedded systems for a range of applications such as medical diagnostic equipment, digital cameras, missile guidance systems, anti-lock brakes, autonomous vehicles, network routers, and smartphones, small appliances, and more. The embedded systems designer must be proficient in hardware design, programming, and problem-solving. The major is designed to meet the industry's ever-increasing need for engineers with an in-depth knowledge of hardware and software design. The curriculum bridges the gap between hardware and software by providing a solid foundation in each and integrating them with intensive classroom and laboratory experiences.

The Perfect Combination of Hardware and Software

The computer engineering technology degree is designed to meet today's ever-increasing need for engineers with an in-depth knowledge of hardware and software design. The curriculum bridges the gap between hardware and software by providing a solid foundation in each and integrating them with intensive classroom and laboratory experiences.

From a software perspective, you'll gain experience in cutting-edge development with programming languages currently used in industry. You'll immerse yourself in industry standards for application software development, understand the process for creating development application code, and master state-of-the-art problem-solving techniques. In numerous courses you'll utilize embedded "C" real-time operating systems programming.

The hardware focus is on digital systems design and development. From low-level gate design to high-end microprocessors, you'll gain an architectural understanding of computer systems. The curriculum includes in-depth design and analysis of combinational logic, sequential logic and state machines, micro-controller systems, and microprocessor systems. You'll perform FPGA development and design in a hardware description language using industry-standard computer-aided engineering tools.

Elective courses may be used to pursue a four-course option in audio or telecommunications, or you may use electives to specialize in a particular area of industry or pursue a personal interest.

Through a capstone experience in your fifth year, you'll integrate what you've learned throughout the curriculum, as well as on your co-ops, to a team-based project. Past capstone projects include autonomous rovers and self-guided drones.

Our emphasis on hardware and software design, along with a solid foundation in math, science, and the liberal arts, produces students who are well-prepared to enter the workforce as design engineers or to pursue advanced degrees. Through required cooperative education, you'll gradu-
ate with real, hands-on engineering experience in the field. Computer engineering technology majors gain in-depth knowledge and a breadth of experience that inspires them to pursue successful careers in their chosen professional field and embark on a path of lifelong learning.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the computer engineering technology degree are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate periods of full-time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Computer Engineering Technology, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CPET-121	General Education - Elective: Computational Problem Solving I	3
CPET-133	Introduction to Digital and Microcontroller Systems	3
EEET-115	Circuits I	3
EEET-116	Circuits I Lab	1
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
MCET-101	Fundamental of Engineering	3
	General Education - First Year Writing (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
Second Year		
CPET-233	Digital Systems Design	3
CPET-253	Microcontroller Systems	3
EEET-125	Circuits II	3
EEET-126	Circuits II Lab	1
EEET-213	Electronic Devices	3
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Math/Science Elective	3
	General Education - Natural Science Inquiry Perspective	4
Third Year		
CPET-281	Networking Technologies	3
CPET-321	General Education - Elective: Computational Problem Solving II	3
CPET-499	Cooperative Education - Computer Engineering Technology (spring and summer)	0
EEET-299	EET Career Orientation	1
EEET-331	Signals, Systems and Transforms	3
EEET-332	Signals, Systems \& Transforms Lab	1
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Immersion 1	3
Fourth Year		
CPET-343	Hardware Description Language	3
CPET-461	Real Time Operating Systems	3
CPET-499	Cooperative Education - Computer Engineering Technology (summer)	0
CPET-561	Embedded Systems Design I	4
EEET-425	Digital Signal Processing (WI-PR)	4
	General Education - Immersion 2, 3	6
	Technical Electives	3
	Open Electives	9
Fifth Year		
CPET-499	Cooperative Education - Computer Engineering Technology (fall)	0
CPET-563	Embedded Systems Design II	3
	General Education - Elective	4
	Open Elective	3
	Technical Elective	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Options

Students who elect to pursue a degree option may use any combination of Open and Technical Electives to complete one of the options listed below:

Audio

EEET-261	Fundamentals of Audio Engineering
EEET-361	Modern Audio Production
Choose two of the following:	
CPET-421	Applied Audio Programming
EEET-451	3D Audio: Theory and Practice
EEET-461	Introduction to Acoustics
EEET-561	Audio Power Amplifier

Telecommunications

CPET-281	Networking Technologies
EEET-313	Communications Electronics
EEET-525	Wireless RF Systems
EEET-531	Fiber Optic Technology

Combined Accelerated Bachelor's/Master's Degree

Computer Engineering Technology, BS degree/Computer science,

 MS degree, typical course sequence| COURSE | | SEMESTER CREDIT HOURS |
| :---: | :---: | :---: |
| First Year | | |
| CPET-121 | General Education - Elective: Computational Problem Solving I | 3 |
| CPET-133 | Introduction to Digital and Microcontroller Systems | 3 |
| EEET-115 | Circuits I | 3 |
| EEET-116 | Circuits I Lab | 1 |
| MATH-171 | General Education - Mathematical Perspective A: Calculus A | 3 |
| MATH-172 | General Education - Mathematical Perspective B: Calculus B | 3 |
| MCET-101 | Fundamentals of Engineering | 3 |
| UWRT-150 | ```General Education - First Year Writing: FYW: Writing Seminar (WI)``` | 3 |
| YOPS-10 | RIT 365: RIT Connections | 0 |
| | General Education - Elective | 3 |
| | General Education - Ethical Perspective | 3 |
| | General Education - Artistic Perspective | 3 |
| Second Year | | |
| CPET-233 | Digital Systems Design | 3 |
| CPET-253 | Microcontrollers Systems | 3 |
| EEET-125 | Circuits II | 3 |
| EEET-126 | Circuits II Lab | 1 |
| EEET-213 | Electronic Devices | 3 |
| MATH-211 | General Education - Elective: Elements of Multivariable Calculus and Differential Equations | 3 |
| PHYS-111 | General Education - Scientific Principles Perspective: College Physics I | 4 |
| | General Education - Global Perspective | 3 |
| | General Education - Social Perspective | 3 |
| | General Education - Math/Science Elective | 3 |
| | General Education - Natural Science Inquiry Perspective | 4 |
| Third Year | | |
| CPET-281 | Networking Technologies | 3 |
| CPET-321 | General Education - Elective: Computational Problem Solving II | 3 |
| CPET-499 | Cooperative Education - Computer Engineering Technology (spring/summer) | 0 |
| EEET-299 | EET Career Orientation | 1 |
| EEET-331 | Signals, Systems and Transforms | 3 |
| EEET-332 | Signals, Systems and Transforms Lab | 1 |
| STAT-145 | General Education - Elective: Introduction to Statistics I | 3 |
| | General Education - Immersion 1 | 3 |
| Fourth Year | | |
| CPET-343 | Hardware Description Language | 3 |
| CPET-461 | Real Time Operating Systems | 3 |
| CPET-499 | Cooperative Education: Computer Engineering Technology (summer) | 0 |
| CPET-561 | Embedded Systems Design I | 4 |
| CSCI-665 | Foundations of Algorithms | 3 |
| EEET-425 | Digital Signal Processing (WI-PR) | 4 |
| | General Education - Immersion 2, 3 | 6 |
| | Open Elective | 9 |
| Fifth Year | | |
| CPET-499 | Cooperative Education - Computer Engineering Technology (fall) | |
| CPET-563 | Embedded Systems Design II | 3 |
| | Open Elective | 3 |
| | Technical Elective | 3 |
| | General Education - Elective | 4 |
| Sixth Year | | |
| CSCI-610 | Fundamentals of Computer Graphics | 3 |
| CSCI-630 | Foundations of Artificial Intelligence | 3 |
| CSCI-631 | Foundations of Computer Vision | 3 |
| CSCI-790 | Computer Science MS Thesis | 6 |
| CSLI-799 | Computer Science Graduate Independent Study | 6 |

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The computer engineering technology major is accredited by the Engineering Technology Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree
Courses in computer science, math, science, engineering science, and engineering technology
Appropriate associate degree programs for transfer
Computer technology, electrical or electronic technology, or computer science

Electrical Engineering Technology, BS

www.rit.edu/study/electrical-engineering-technology-bs
James Lee, Associate Professor
585-475-2899, jhleme@rit.edu

Program overview

Electrical engineering technology is designed to meet industry's ever-increasing need for engineers with an in-depth understanding of electrical and electronics theory. The degree provides students with the ability to specialize in specific areas of the discipline. Graduates work as engineers in a variety of industries including automotive, medical devices, power and energy, audio, telecommunications, and more.

RIT's Electrical Engineering Technology Degree

The BS in electrical engineering technology degree provides students with a foundation in circuits, analog, and digital electronics, physics, and calculus. The third and fourth years expand on fundamental courses with more advanced courses in advanced circuits and electronics, transform methods, control systems, analog, and digital electronics, and applied differential equations. Students are able to choose from multiple electives to round out their degree. Electives include sequences in power systems, electronic communications, embedded systems, telecommunications, networking, and optics. Electives are also available in other technical disciplines, and the student's academic advisor can assist in determining the best choices to meet career goals and objectives. The major provides a viable option for students who have already completed an associate degree and wish to complete a bachelor of science degree.

Core courses are introduced in the first year of study to provide students with a solid foundation in circuits, analog and digital electronics, computer programming, and calculus. The curriculum expands in later years to feature advanced study in advanced circuits and electronics, transform methods, control systems, analog, and digital electronics, and applied differential equations. Elective courses enable students to choose from a wide range of course options to further enhance their program of study and prepare them to archive their career goals. The major provides a viable option for students who have already completed an associate degree and wish to complete a bachelor of science degree.

A solid foundation in math, science, and the liberal arts, coupled with specialization in students' particular areas of interest prepares graduates to immediately enter the workforce as design engineers or pursue advanced degrees. Electrical engineering technology majors will gain indepth knowledge and a breadth of experience that inspire them to pursue successful careers in their chosen professional field and embark on a path of lifelong learning.
Students will also complete required cooperative education experiences designed to provide real, hands-on engineering experience in industry.

Electrical Engineering Technology Program Options

Students who wish to specialize in a particular area of industry, or those who desire to pursue a personal interest, may elect to use electives to complete a four-course option in audio or telecommunications.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differ-
ences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the electrical engineering technology degree are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate periods of full-time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Electrical Engineering Technology, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CPET-121	General Education - Elective: Computational Problem Solving I	3
CPET-133	Introduction to Digital and Microcontroller Systems	3
EEET-115	Circuits I	3
EEET-116	Circuits I Lab	1
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
MCET-101	Fundamentals of Engineering	3
	General Education - First Year Writing: FYW (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
Second Year		
CPET-233	Digital Systems Design	3
CPET-253	Microcontroller Systems	3
EEET-125	Circuits II	3
EEET-126	Circuits II Lab	1
EEET-213	Electronic Devices	3
EEET-299	EET Career Orientation	1
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
	General Education- Global Perspective	3
	General Education - Social Perspective	3
	General Education - Math / Science Elective	3
	General Education - Natural Science Inquiry Perspective	4
Third Year		
EEET-223	Advanced Electronics	4
EEET-331	Signals, Systems and Transforms	3
EEET-332	Signals, Systems \& Transforms Lab	1
EEET-499	Cooperative Education - Electrical Engineering Technology (spring, summer)	0
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Immersion 1	3
	Open Elective	3
Fourth Year		
EEET-241	Electrical Machines and Transformers	2
EEET-242	Electrical Machines and Transformers	1
EEET-313	Communications Electronics	3
EEET-425	Digital Signal Processing (WI-PR)	4
EEET-427	Control Systems	4
EEET-499	Cooperative Education - Electrical Engineering Technology (summer)	0
	General Education - Elective	3
	Technical Elective	3
	General Education - Immersion 2, 3	6
	Open Electives	6
Fifth Year		
EEET-433	Transmission Lines	3
EEET-499	Cooperative Education - Electrical Engineering Technology (fall)	0
	General Education - Elective	4
	Open Elective	3
	Technical Elective	3

Total Semester Credit Hours
(WI) Re General Education Curriculum (GE) for more information
I) Refers to a writing intensive course within the major.
degrees are required to complete two different Wellness courses.

Options

Students may elect to use any combination of Open and Technical Electives to complete the one of the options listed below:

Audio	
EEET-261	Fundamentals of Audio Engineering
EEET-361	Modern Audio Production
Choose two of the following:	
CPET-421	Applied Audio Programming
EEET-451	3D Audio:Theory and Practice
EEET-461	Introduction to Acoustics
EEET-561	Audio Power Amplifiers

Telecommunications

CPET-281	Networking Technologies
EEET-313	Communication Electronics
EEET-525	Wireless RF Systems
EEET-531	Fiber Optics Technology

Accreditation

The electrical engineering technology major is accredited by the Engineering Technology Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Courses in mathematics, science, engineering science, and engineering technology

Appropriate associate degree programs for transfer
Electrical technology, electronic technology, engineering science

Engineering Technology Exploration

www.rit.edu/study/engineering-technology-exploration

Mike Eastman, Professor
 585-475-7787, mgeiee@rit.edu

Program overview

Are you passionate about engineering, science, technology, robotics, mechatronics, or manufacturing?

Are you seeking ways to help make a big contribution toward saving the environment?

Are you looking for ways to combine your interests in technology and graphic design?

Engineering technology exploration gives you an opportunity to explore all your interests while you identify which major in the College of Engineering Technology can best help you reach your career aspirations.

Engineering Technology Courses: What You'll Study

Throughout your first year in engineering technology exploration, you will complete foundational courses that introduce you to multiple areas of engineering technology, and our degree programs that focus on the environment and graphic communications. You'll also gain an in-depth understanding of each of our majors, enabling you to identify which one best meets your interests and career aspirations. Ultimately, you will gain a better understanding of the career path you want to pursue. You'll spend up to one year exploring our majors while earning course credit that may be applied to any of our majors.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Curriculum

Engineering technology exploration, typical course sequence

COURSE		SEMESTER CREDIT HOURS
Fall Semester		
ENGT-110	Engineering Technology Exploration Seminar	1
EEET-111	DC Circuits	3
EEET-112	DC Circuits Lab	1
MCET-101	Fundamentals of Engineering	3
MFET-105	Machine Tools Lab	1
	General Education-First Year Writing	3
	General Education Perspective	3
ACSC-010	Year One	0
	Wellness Education*	0
Spring Semester		
Choose two courses from the following majors:		
Electrical Engineering Technology		
Mechanical Engineering Technology		
Electrical/Mechanical Engineering Technology		
Computer Engineering Technology		
Civil Engineering Technology		
Environmental Sustainability, Health and Safety		
Packaging Science		
	General Education Perspective	3
Choose one of the following: 4		
MATH 171 Calculus A		
Math Sequence		
PHYS-111	General Education: College Physics I	4

Total Semester Credit Hours
Please see General Education Framework for more information.

* Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Environmental Sustainability, Health and Safety, BS

www.rit.edu/study/environmental-sustainability-health-and-safety-bs
Josh Goldowitz, Professor
585-475-7018, jxgctp@rit.edu

Program overview

The environmental sustainability, health and safety major prepares you to be an effective champion of environmental sustainability and of health and safety in order to change our world for the better. You will learn to lead efforts that make industries cleaner and communities safer, all while contributing toward global stewardship of our natural resources. The major emphasizes globally sustainable approaches and prepares you to become a professional leader in moving toward a more sustainable and socially responsible future.

Environment Health and Safety Courses

With a comprehensive curriculum that pairs environmental health and safety courses with sustainability, you will gain not only the technical knowledge to limit waste, remediate contaminated areas, reduce air and water pollution, and make workplaces and communities safer and healthier, but you'll also move beyond compliance toward proactive sustainability. It's these approaches that make significant impacts on our environment, our use of natural resources, and the health and safety of our communities. Through required cooperative education (co-op), you'll gain full-time, paid, hands-on experience in industry as you work with professionals to learn how environmental sustainability practices directly affect the way organizations produce products, manage their facilities, and balance resources. Through these experiences, gained both in and out of the classroom, you'll become a champion of industrial and manufacturing processes that use less energy and fewer of our environment's precious resources.

Environmental Sustainability Careers

As a graduate of the environmental sustainability, health and safety major, you will find yourself in demand. Those entering the workforce command strong starting salaries and find employment in environmental protection organizations, Fortune 100 companies, environmental consultancies, universities, and government agencies such as the EPA, OSHA, and NYSDEC. Students who decide to advance their education with a graduate degree are accepted at top-tier, competitive universities including Massachusetts Institute of Technology, University of Pennsylvania, and Yale University.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the environmental sustainability, health and safety degree are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate periods of fulltime study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Environmental Sustainability, Health and Safety, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	1
ESHS-150	Principles of Environmental Sustainability, Health and Safety	3
ESHS-350	Greenhouse Gas Management	3
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
	General Education - First Year Writing: FYW (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
Second Year		
BIOL-101	General Education - Elective: General Biology I	3
BIOL-103	General Education - Elective: General Biology I Lab	1
ESHS-201	Environmental Monitoring and Measurement I	2
ESHS-210	Sustainable Earth Resources	3
ESHS-251	Environmental Monitoring and Measurement II	2
ESHS-290	Social Responsibility and Environmental Sustainability (WI-PR)	3
ESHS-300	Environmental, Health, and Safety Professional Communication	3
ESHS-310	Solid and Hazardous Waste Management	3
ESHS-320	Occupational Safety	3
ESHS-360	Sustainable World Water Supply	3
PHYS-112	General Education - Elective: College Physics II	4

COURSE		SEMESTER CREDIT HOURS
Third Year		
ENGT-95	Career Seminar	0
ESHS-330	Industrial Wastewater Management	3
ESHS-499	ESHS Co-op (spring, summer)	0
ESHS-511	Occupational Health	3
ESHS-512	Occupational Health Lab	1
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Elective	3
	General Education - Immersion 1	3
Fourth Year		
BIOL-102	General Education - Elective: General Biology II	3
BIOL-104	General Education - Elective: General Biology II Lab	1
ESHS-460	EHS Accident Causation and Prevention	3
ESHS-480	EHS Law	3
ESHS-499	ESHS Co-op (summer)	0
ESHS-525	Air Emissions Management	3
	Open Electives	6
	Professional Electives	6
	General Education - Immersion 2, 3	6
Fifth Year		
ESHS-499	ESHS Co-op (fall)	0
ESHS-515	Corporate EHS Management	3
ESHS-590	Capstone Project	3
	General Education - Social Perspective	3
	Open Electives	6
Total Semester Credit Hours		126

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Options

Students who elect to pursue a Degree Option may use any combination of Open and Professional Electives to complete one of the options listed below:

Environmental sustainability
Complete 9 credits from the following courses:

ESHS-370	Sustainable Food Systems
ESHS-544	Remedial Investigation \& Corrective Action
ESHS-565	Sustainable Product Stewardship

Occupational Health and Safety

Complete 9 credits from the following courses:	
ESHS-225	Construction Safety
ESHS-501	Fire Protection
ESHS-530	Mechanical and Electrical Safeguarding
ESHS-565	Sustainable Product Stewardship

Surveying and Geospatial Analysis

Complete 10 credits from the following courses:	
CVET-160	Surveying
CVET-161	Surveying Laboratory
CVET-423	GIS for CETEMS
IGME-382	Maps, Mapping and Geospatial Technologies

Combined Accelerated Bachelor's/Master's Degrees
 Environmental Sustainability, Health and Safety, BS degree/ Environmental Health and Safety Management, MS degree (project option), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-145	$\begin{aligned} & \text { General Education - Natural Science Inquiry } \\ & \text { Perspective: General \& Analytical Chemistry I Lab } \end{aligned}$	
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	
ESHS-150	Principles of Environmental Sustainability, Health and Safety	3
ESHS-350	Greenhouse Gas Management	
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	
UWRT-150	```General Education - First-Year Writing: FYW: Writing Seminar (WI)```	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	
	General Education - Global Perspective	3
Second Year		
BIOL-101	General Education - Elective: General Biology I	
BIOL-103	General Education - Elective: General Biology I Lab	
ENGT-95	Career Seminar	
ESHS-201	Environmental Monitoring and Measurement I	
ESHS-210	Sustainable Earth Resources	
ESHS-251	Environmental Monitoring and Measurement II	
ESHS-290	Social Responsibility and Environmental Sustainability (WI)	3
ESHS-300	Environmental, Health and Safety Professional Communication	3
ESHS-310	Solid and Hazardous Waste Management	3
ESHS-320	Occupational Safety	
ESHS-360	Sustainable World Water Supply	
ESHS-499	ESHS Co-op (summer)	0
PHYS-112	General Education - Elective: College Physics II	
Third Year		
BIOL-102	General Education - Elective: General Biology II	
BIOL-104	General Education - Elective: General Biology II Lab	
ESHS-330	Industrial Wastewater Management	
ESHS-480	EHS Law	
ESHS-499	ESHS Co-op (summer)	
ESHS-511	Occupational Health	
ESHS-512	Occupational Health Lab	
ESHS-525	Air Emissions Management	
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	
	General Education - Elective	3
	Open Elective	3
	General Education - Immersion 1, 2	6
Fourth Year		
ESHS-460	EHS Accident Causation and Prevention	3
ESHS-499	ESHS Co-op (summer)	0
ESHS-515	Corporate EHS Management	3
ESHS-720	Environmental, Health and Safety Management	3
GRCS-701	Research Methods	
	Professional Elective	
	General Education - Immersion 3	
	General Education - Social Perspective	3
	Open Electives	
Fifth Year		
ESHS-740	EHS Management System Design	
ESHS-755	Corporate Social Responsibility	
ESHS-760	Integrating EHS Management	3
ESHS-780	EHS Internal Auditing	
ESHS-797	Graduate Project	
	Professional Electives (Graduate)	
Total Seme	it Hours	150

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Environmental Sustainability, Health and Safety, BS degree/ Environmental Health and Safety Management, MS degree (thesis option), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Elective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	1
ESHS-150	Principles of Environmental Sustainability, Health and Safety	3
ESHS-350	Greenhouse Gas Management	3
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
UWRT-150	```General Education - First-Year Writing: FYW: Writing Seminar (WI)```	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
Second Year		
BIOL-101	General Education - Elective: General Biology I	3
BIOL-103	General Education - Elective: General Biology I Lab	1
ENGT-95	Career Seminar	0
ESHS-201	Environmental Monitoring and Measurement I	2
ESHS-210	Sustainable Earth Resources	3
ESHS-251	Environmental Monitoring and Measurement II	2
ESHS-290	Social Responsibility and Environmental Sustainability (WI)	3
ESHS-300	Environmental, Health and Safety Professional Communication	3
ESHS-310	Solid and Hazardous Waste Management	3
ESHS-320	Occupational Safety	3
ESHS-360	Sustainable World Water Supply	3
ESHS-499	ESHS Co-op (summer)	0
PHYS-112	General Education - Elective: College Physics II	4
Third Year		
BIOL-102	General Education - Elective: General Biology II	3
BIOL-104	General Education - Elective: General Biology II Lab	1
ESHS-330	Industrial Wastewater Management	3
ESHS-480	EHS Law	3
ESHS-499	ESHS Co-op (summer)	0
ESHS-511	Occupational Health	3
ESHS-512	Occupational Health Lab	1
ESHS-525	Air Emissions Management	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Immersion 1,2	6
	General Education - Elective	3
	Open Elective	3
Fourth Year		
ESHS-460	EHS Accident Causation and Prevention	3
ESHS-499	ESHS Co-op (summer)	0
ESHS-515	Corporate EHS Management	3
ESHS-720	Environmental, Health and Safety Management	3
GRCS-701	Research Methods	3
	General Education - Immersion 3	3
	General Education - Social Perspective	3
	Open Electives	9
	Professional Elective	3
Fifth Year		
ESHS-740	EHS Management System Design	3
ESHS-755	Corporate Social Responsibility	3
ESHS-760	Integrating EHS Management	3
ESHS-780	EHS Internal Auditing	3
ESHS-788	Thesis Planning	3
ESHS-790	Thesis	3
	Professional Electives (Graduate)	6

ease see General Education Curriculum (GE) for more information
lof Re a writing intensive course within the major.
degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Math through Calculus I, micro and macroeconomics, introductory courses in biology, chemistry, and physics

Appropriate associate degree programs for transfer
Biology, chemistry, or environmental sciences; business or public administration; liberal arts with math/ science

Mechanical Engineering Technology, BS

www.rit.edu/study/mechanical-engineering-technology-bs
Beth Carle, Professor
5854756752, easmet@rit.edu

Program overview

From consumer products to high-performance automobiles, aerospace systems, bioengineered devices, and energy technologies, mechanical engineering technology has an enormous influence on our society. Understanding how products and machinery work, as well as how to design, manufacture, or use technology to develop mechanical systems is the focus of RIT's mechanical engineering technology degree.

Mechanical engineering technology involves understanding how products and machinery work and how to design, make or use them. From aerospace systems (rockets, jets, drones) to high-performance automobiles (electric vehicles, autonomous driving), smartphones and robotics, mechanical engineering technology have changed society for the better.

RIT's Mechanical Engineering Technology Degree

In our mechanical engineering technology degree, you'll study the foundations of mechanics, materials, and energy. You will learn technical skills such as computer-aided design (CAD), generative design, materials characterization, mechanical system analysis and design, thermal-fluid system design, and product design and development. You also will learn to apply these principles and skills to the various fields of mechanical engineering technology--such as product and machine design, power generation, energy management, and advanced manufacturing--through laboratories and design projects. Full-time students gain valuable industrial experience through the required cooperative education program. Students may select an option in robotics and automation or product design.

The major develops well-rounded engineers as lifelong learners with the ability to adapt, grow, and succeed in a highly competitive workplace. The required cooperative education experience enables students to be well-prepared to step into professional positions after graduation and be immediately productive in jobs that include product development, machine design, and analysis, alternative energy, manufacturing engineering, or systems engineering.

Concentrations

The mechanical engineering technology degree offers select concentrations in one of the following areas: alternative energy, heating/ventilating/air conditioning (HVAC), machine design and analysis, materials engineering, product development, or thermofluids engineering. The curriculum offers some flexibility in enabling you to customize your own concentration based on your career objectives or personal interests.

Jobs in Mechanical Engineering Technology

A mechanical engineering technology degree can lead to a range of exciting jobs in mechanical engineering technology, including positions such as mechanical engineer, digital manufacturing engineer, process engineer, quality engineer, algorithm engineer, sales engineer, and more. Graduates are in demand, and companies such as GE, General Motors, Stanley Black \& Decker, Thermo Fisher Scientific, and many others seek out our graduates.

High-Performance Teams and Professional Organizations

Many of mechanical engineering students participate in high-octane performance teams, including the RIT Formula SAE Racing Team, the SAE Aerodesign Club, the RIT Baja SAE Team, RIT SAE Clean Snowmobile Team, and the Human-Powered Vehicle Competition team. They also are encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers, the Society of Women Engineers, the National Society of Black Engineers, the Society of Hispanic Professional Engineers, the American Institute of Aeronautics and Astronautics, and the Society of Automotive Engineers.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the mechanical engineering technology degree are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate periods of full-time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Mechanical Engineering Technology, BS degree, typical course

 sequence| COURSE | | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year | | |
| CHMG-131 | General Education - Scientific Principles Perspective:
 General Chemistry for Engineers | 3 |
| MATH-171 | General Education - Mathematical Perspective A:
 Calculus A | 3 |
| MATH-172 | General Education - Mathematical Perspective B: | 3 |
| Calculus B | | |
| MCET-101 | Fundamentals of Engineering | 3 |
| MCET-110 | Foundations of Metals | 2 |
| MCET-111 | Characterization of Metals Lab | 1 |
| MCET-150 | Engineering Communication and Tolerancing | 3 |
| MFET-105 | Machine Tools Lab | 1 |
| MFET-120 | Manufacturing Processes | 3 |
| PHYS-111 | General Education - Natural Science Inquiry | 4 |
| | Perspective: College Physics I | |
| YOPS-10 | General Education - First Year Writing: FYW (WI) | 3 |
| | RIT 365: RIT Connections | 0 |

Second Year		
EEET-115	Circuits I	3
EEET-116	Circuits I Lab	1
ENGT-95	Career Seminar	0
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
MCET-210	Foundations of Non-Metallic Materials	2
MCET-211	Characterization of Non-Metallic Materials Lab	1
MCET-220	Principles of Statics	3
MCET-221	Strength of Materials	4
PHYS-112	General Education - Elective: College Physics II	4
STAT-145	General Education - Elective: Introduction to Statistics I	3
Choose one of the following:		3
COMM-142	Introduction to Technical Communication (WI)	
COMM-221	Public Relations Writing (WI)	
COMM-253	Communication (WI)	
ENGL-360	Written Argument (WI)	
ENGL-361	Technical Writing (WI)	
SOIS-325	Business Communication (WI)	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
Third Year		
MCET-320	Mechanical Dynamics with Applications	3
MCET-330	Fluid Mechanics \& Fluid Power	3
MCET-499	MCET Co-op (spring, summer)	0
STAT-146	General Education - Elective: Introduction to Statistics II	4
	General Education - Elective	3
	General Education - Social Perspective	3
Fourth Year		
MCET-430	Thermal Fluid Science I	3
MCET-450	Mechanical Analysis \& Design I (WI-PR)	3
MCET-499	MCET Co-op (summer)	0
MCET-520	Measurement Systems \& Controls	3
MCET-530	Thermal Fluid Science II	3
MCET-550	Mechanical Analysis \& Design II	3
MCET-551	Mechanical Analysis \& Design II Lab	1
	General Education - Elective	3
	Open Electives	6
	General Education - Immersion 1, 2	6
Fifth Year		
MCET-499	MCET Co-op (fall)	0
MCET-535	Thermal Fluid Systems Project	2
	Technical Electives	6
	Open Electives	6
	General Education - Immersion 3	3

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Options

Students may elect to pursue a Degree Option by using Open Electives to complete one of the options below:

Robotics and Automation

Complete 9 credits from the following courses:	
MFET-545	Electronics Manufacturing
RMET-340	Automation Control Systems
RMET-341	Automation Control Systems Lab
RMET-571	Advanced Automation Systems and Control
RMET-585	Robots \& Automation
RMET-587	Robotics: Sensors and Vision

Product Design Option

Complete 9 credits from the following courses:	
MCET-582	Robust Design
MCET-583	Plastics Product Design
MCET-585	Product Ideation
MCET-586	Product Innovation
MCET-595	Applied Finite Element Analysis
MFET-460	Integrated Design for Manufacture \& Assembly
MFET-650	Manufacturing and Mechanical Systems Fundamentals

Accelerated Bachelor's/Master's Degrees

Accelerated bachelor's/master's degrees are for undergraduate students with outstanding academic records. You can apply to a combined bachelor's and master's degree at the end of your second year of study. Learn more about accelerated bachelor's/master's degrees and how they prepare you for success.

Mechanical Engineering Technology, BS degree/Manufacturing and Mechanical Systems Integration, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Scientific Principles Perspective: General Chemistry for Engineers	
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
MCET-101	Fundamentals of Engineering	3
MCET-110	Foundations of Metals	
MCET-111	Characterization of Metals Lab	
MCET-150	Engineering Communication and Tolerancing	3
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	
RMET-105	Machine Tools Lab	
RMET-120	Manufacturing Processes	3
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar (WI)	
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
Second Year		
EEET-115	Circuits I	3
EEET-116	Circuits I Laboratory	
ENGT-95	Career Seminar	0
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
MCET-210	Foundations of Non-Metallic Materials	2
MCET-211	Characterization of Non-Metallic Materials Lab	
MCET-220	Principles of Statics	3
MCET-221	Strength of Materials	3
MCET-499	MCET Co-op (summer)	0
PHYS-112	General Education - Elective: College Physics II	4
STAT-145	General Education - Elective: Introduction to Statistics I	3
Choose one of the following:		3
COMM-142	General Education - Elective: Introduction to Technical Communication	
COMM-221	General Education - Elective: Public Relations Writing	
COMM-253	General Education - Elective: Communication	
ENGL-360	General Education - Elective: Written Argument	
ENGL-361	General Education - Elective: Technical Writing	
SOIS-325	General Education - Elective: Business Communication	
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
Third Year		
MCET-320	Mechanical Dynamics with Applications	3
MCET-430	Thermal Fluid Science I	3
MCET-499	MCET Co-op (summer)	0
MCET-530	Thermal Fluid Science II	3
MFET-600	MMSI Graduate Seminar	0
MFET-650	Manufacturing and Mechanical Systems Fundamentals	3
MFET-730	Six Sigma for Design and Manufacturing	3
STAT-146	General Education - Elective: Introduction to Statistics II	4
	General Education - Social Perspective	3
	MMET Concentration Course	3
	Open Elective	3
	General Education - Immersion 1	3
Fourth Year		
MCET-330	Fluid Mechanics \& Fluid Power	3
MCET-450	Mechanical Analysis \& Design I (WI-PR)	3
MCET-499	MCET Co-op (summer)	
MCET-520	Measurement Systems \& Controls	
MCET-535	Thermal Fluid Systems Project	
MCET-550	Mechanical Analysis \& Design II	3
MCET-551	Mechanical Analysis \& Design II Lab	
STAT-670	Design of Experiments	3
	General Education - Immersion 2	3
	General Education - Electives	
	MMET Concentration Course	

COURSE	SEMESTER CREDIT HOURS
Fifth Year	
DECS-744 Project Management	3
MMET Concentration Course	3
MMET Elective	3
Open Electives	9
General Education - Immersion 3	3
ACCT-603 Accounting for Decision Makers	3
Choose one of the following:	3
MMET Elective	
MFET-788 MMSI Thesis Preparation	
Choose one of the following:	3
MFET-797 MMSI Capstone Project	
MFET-790 MMSI Thesis	
MFET-795 MMSI Comprehensive Exam and MMSI Elective	
Total Semester Credit Hours	155

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Options

Robotics and Automation

Complete 9 credits from the following courses:	
MFET-545	Electronics Manufacturing
RMET-340	Automation Control Systems
RMET-341	Automation Control Systems Lab
RMET-571	Advanced Automation Systems and Control
RMET-585	Robots \& Automation
RMET-587	Robotics: Sensors and Vision
Product Design	
Complete 9 credits from the following courses:	
MCET-582	Robust Design
MCET-583	Plastics Product Design
MCET-585	Product Ideation
MCET-586	Product Innovation
MCET-595	Applied Finite Element Analysis
MFET-460	Integrated Design for Manufacture and Assembly
MFET-650	Manufacturing and Mechanical Systems Fundamentals

Accreditation

The mechanical engineering technology major is accredited by the Engineering Technology Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Courses in mathematics, science, engineering science, and engineering technology

Appropriate associate degree programs for transfer

Electrical or mechanical technology, electronic technology, engineering science

Mechatronics Engineering Technology, BS

www.rit.edu/study/mechatronics-engineering-technology-bs
Robert Garrick, Professor
585-475-4288, rdgmet@rit.edu

Program overview

- Airplanes are complex mechanical systems with thousands of embedded computers and electrical systems that coordinate and monitor everything from the flight control system, navigational system, and air speeds to interior lights, wing flaps, and communication systems.
- Sorting and packaging systems on production lines combine manufacturing efficiencies with computer systems that can effectively scan, sort, and package products.
- Smart doorbells integrate motion sensing, real-time video capture, facial recognition, and voice control, all controlled by an app on your phone.
- Drones combine electrical, computer, and mechanical engineering with control systems and imaging technologies in order to take off and land, capture photos and videos, gather and communicate data, and accurately aim and launch projectiles.
These are just a sampling of the dynamic capabilities of mechatronic engineering. And students who earn a mechatronics engineering degree are at the forefront of developing and integrating the technologies that influence how we work, play, learn, and live.

What is Mechatronics Engineering?

Mechatronics engineering combines electrical, computer, and mechanical engineering along with systems integration and project management. It focuses on mechanics, electronics, robotics, automation, imaging and sensing technologies, and computing to design and develop smart products and smart manufacturing systems. Mechatronics engineering is the design and development of the entire system in mind, not just one component.

There is a growing need for mechatronic engineers who have a strong foundation in the key areas - electrical engineering, computer engineering, mechanical engineering, programming, systems design, manufacturing processes, robotics, and automation - that influence the design and development of products with the whole system in mind, not just one component.

A degree in mechatronics engineering technology integrates these key areas into one program that prepares students for careers in designing and developing the products of the future. The degree takes a systems approach, analyzing the whole system and breaking it down into subsystems and their individual components to prepare graduates for the innovative design solutions that will be required of them.

RIT's Degree in Mechatronics Engineering Technology

In the BS degree in mechatronics engineering technology, students develop skills in courses that build a foundation of knowledge in electrical, computer, and mechanical engineering. You'll also study circuits and electronics, computing and programming, manufacturing materials, microprocessors and digital systems, automation and robotics, and control systems.

Adding a minor in a complementary area of study deepens your expertise in a core area of mechatronics and broadens your skill set for a career in this dynamic field. These minors support the mechatronics engineering technology program:

- applied statistics
- business administration
- computer science
- computing security
- engineering management
- manufacturing systems
- plastics engineering and technology
- surface mount electronics manufacturing
- sustainable product development

Four blocks, or approximately one year, of cooperative education provides full-time, paid experience in industry. A senior design project in your final year is a team-based experience where you will combine your course work and co-op experiences to work on a design project focused on the development of mechatronic technologies, such as components and systems.

High-Performance Teams and Professional Organizations

Many of mechanical engineering students participate in high-octane performance teams, including the RIT Formula SAE Racing Team, the SAE Aerodesign Club, the RIT Baja SAE Team, RIT SAE Clean Snowmobile Team, and the Human-Powered Vehicle Competition team. They also are encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers, the Society of Women Engineers, the National Society of Black Engineers, the Society of Hispanic Professional Engineers, the American Institute of Aeronautics and Astronautics, and the Society of Automotive Engineers.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.
Students in the mechatronics engineering technology degree are required to complete four co-op blocks. You'll alternate periods of full-
time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Mechatronics Engineering Technology, BS degree, typical course sequence

COURSE	SEMESTER CREDIT	
First Year		
CHMG-131	General Education - Scientific Principles Perspective: General Chemistry for Engineers	3
CPET-121	General Education - Elective: Computational Problem Solving I	3
EEET-115	Circuits I	3
EEET-116	Circuits I Laboratory	1
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
MCET-101	Fundamentals of Engineering	3
MCET-110	Foundations of Metals	2
MCET-111	Characterization of Metals Lab	
RMET-105	Machine Tools Lab	1
RMET-120	Manufacturing Processes	3
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
	General Education - First-Year Writing: FYW (WI)	3
YOPS-10	RIT 365: RIT Connections	0
Second Year		
CPET-133	Introduction to Digital and Microcontroller Systems	3
EEET-213	Electronic Devices	3
ENGT-95	Career Seminar	0
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
MCET-150	Engineering Communication and Tolerancing	3
MCET-220	Principles of Statics	3
MECA-290	Mechanics for Mechatronics	3
PHYS-112	General Education - Elective: College Physics II	4
Choose one of the following:		
COMM-142	Introduction to Technical Communication (WI)	
COMM-221	Public Relations Writing (WI)	
COMM-253	Communication (WI)	
ENGL-360	Written Argument (WI)	
ENGL-361	Technical Writing (WI)	
SOIS-325	Business Communication (WI)	
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
Third Year		
EMET-499	EMET Co-op (spring, summer)	0
MFET-340	Automation Control Systems	2
MFET-341	Automation Control Systems Lab	1
MFET-585	Robots \& Automation	2
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
Fourth Year		
EEET-427	Control Systems	4
EMET-499	EMET Co-op (spring, summer)	0
MCET-430	Thermal Fluid Science I	3
STAT-146	Introduction to Statistics II	4
	General Education - Immersion 1	3
	Open Elective	3
Fifth Year		
EEET-241	Electrical Machines and Transformers	2
EEET-242	Electrical Machines and Transformers Lab	1
MCET-530	Thermal Fluid Science II	3
MECA-518	Mechatronics ET Capstone Prep	
MECA-519	Mechatronics ET Capstone (WI-PR)	
MECA-436	Engineering Economics	2
	General Education - Immersion 2, 3	6
	General Education - Elective	3
	Open Electives	

Total Semester Credit Hours 126

The proposed curriculum outline provides an overview of the course work/topic areas in this new program and is subject to change.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Mechatronics Engineering Technology, BS degree/Manufacturing and Mechanical Systems Integration, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Scientific Principles Perspective: General Chemistry for Engineers	3
CPET-121	General Education - Elective: Computational Problem Solving I	3
EEET-115	Circuits I	3
EEET-116	Circuits I Lab	1
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
MCET-101	Fundamentals of Engineering	3
MCET-110	Foundations of Metals	2
MCET-111	Characterization of Metals Lab	1
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
RMET-105	Machine Tools	1
RMET-120	Manufacturing Processes	3
UWRT-150	```General Education - First Year Writing: FYW: Writing Seminar (WI)```	3
YOPS-10	RIT 365: RIT Connections	0
Second Year		
CPET-133	Introduction to Digital and Microcontroller Systems	3
EEET-213	Electronic Devices	3
EMET-499	EMET Co-op (summer)	0
ENGT-95	Career Seminar	0
MATH-211	General Education - Elective: Elements of Multivariable Calculus and Differential Equations	3
MCET-150	Engineering Communication and Tolerancing	3
MCET-220	Principles of Statics	3
MECA-290	Mechanics for Mechatronics	3
PHYS-112	General Education - Elective: College Physics II	4
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
Choose one of the following:		3
COMM-142	General Education - Elective: Introduction to Technical Communication	
COMM-221	General Education - Elective: Public Relations Writing	
COMM-253	General Education - Elective: Communication	
ENGL-360	General Education - Elective: Written Argument	
ENGL-361	General Education - Elective: Technical Writing	
SOIS-325	General Education - Elective: Business Communication	
Third Year		
EEET-241	Electrical Machines and Transformers	2
EEET-242	Electrical Machines and Transformers Lab	1
EEET-427	Control Systems	4
EMET-499	EMET Co-op (summer)	0
MFET-600	MMSI Graduate Seminar	0
MFET-650	Manufacturing and Mechanical Systems Fundamentals	3
MFET-730	Six Sigma for Design and Manufacturing	3
RMET-340	Automation Control Systems	2
RMET-341	Automation Control Systems Lab	1
RMET-585	Robots \& Automation	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Ethical Perspective	3
	General Education - Social Perspective	3
	MMET Concentration Course	3

COURSE		SEMESTER CREDIT HOURS
Fourth Year		
EMET-499	EMET Co-op (summer)	0
MECA-518	Mechatronics ET Capstone Prep	1
MECA-519	Mechatronics ET Capstone (WI-PR)	3
MCET-430	Thermal Fluid Science I	3
MCET-530	Thermal Fluid Science II	3
STAT-146	```General Education - Elective: Introduction to Statistics II```	4
STAT-670	Design of Experiments	3
	MMET Concentration Course	3
	General Education - Elective	3
	Open Elective	3
	General Education - Immersion 1, 2	6
Fifth Year		
DECS-744	Project Management	3
MECA-436	Engineering Economics	2
	MMET Concentration Course	3
ACCT-603	Accounting for Decision Makers	3
Choose one of the following:		3
MFET-788 MMSI Thesis Planning		
MMET Elective Course		
Choose one of the following:		3
MFET-797	MMSI Capstone Project	
MFET-790	MMSI Thesis	
MFET-795	MMSI Comprehensive Exam and MMET Elective	
	MMET Elective	3
	General Education - Immersion 3	3
	Open Elective	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Courses in mathematics, science, engineering science, and engineering technology

Appropriate associate degree programs for transfer

Manufacturing, mechanical, drafting and design, robotics, or electromechanical technology; engineering science

Media Arts and Technology, BS

www.rit.edu/study/media-arts-and-technology-bs
Bruce Myers, Associate Professor
585-475-5224, blmppr@rit.edu

Program overview

Graphic communications-including advertising, publications, packaging, and signage delivered through print and digital communications, package, and so much more-represents a vibrant industry that is ideal for you if you are interested in applied technology with a creative flair.
Brand owners, marketers, and content creators need to reach audiences to effectively communicate their information and messages. RIT's media arts degree prepares you to manage content from concept through distribution across multiple platforms, including print, web, mobile, and social media. In the media arts and technology major, a breadth of cross-channel graphic media production skills are taught, preparing your for leadership roles in graphic communications. You will learn skills in computer graphics, color science, imaging, and business that will prepare you for success in a dynamic and robust industry.

Media arts and technology is a unique major. It reflects the convergence of technologies that allow content to be created, formatted, stored, and then shared as digital assets, printed material, and various forms of interactive media. This approach enables you to build skills not only in traditional publishing but also in database management, new media production, networking, and mobile communications. You will gain flexibility in producing content across multiple types of traditional and digital media.

The media arts major also allows you to explore other areas of study, including advertising and media strategy, contemporary publishing, content management, digital imaging and pre-media, print production, print quality, and 3D computer graphics.

As part of the curriculum, you will complete in two cooperative education experiences, where you will gain hands-on experience in the graphics and publishing industries. These full-time, paid work experiences prepare you to work with photographers, graphic designers, advertisers, and publishers to create cross-media communications that inform, entertain, and persuade. Graduates of our media arts degree have found positions in advertising production, digital imaging, print production, content creation, and web design and development.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings
while you make valuable connections between classwork and real-world applications.

Students in the media arts and technology degree are required to complete two cooperative education experiences.

Curriculum

COURSE		SEMESTER CREDIT HOURS
First Year		
MAAT-101	Cross Media Foundations	3
MAAT-106	Typography and Page Design	3
MAAT-206	Print Production	
MAAT-271	Webpage Production I	3
MAAT-272	Webpage Production II	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
	General Education - First Year Writing: FYW (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Electives	6
Second Year		
MAAT-10	Co-op Orientation	0
MAAT-107	Imaging	3
MAAT-223	Production Workflow	3
MAAT-301	Database Publishing	3
MATT-499	Media Arts and Technology Co-op (summer)	0
Choose one of the following:		3
MAAT-302	Professional and Technical Writing (WI-PR)	
PACK-420	Technical Communications (WI-PR)	
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
STAT-146	General Education - Elective: Introduction to Statistics II	4
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	Open Elective	3
Third Year		
MAAT-306	Information Architecture Publishing	3
MAAT-307	Media Business Management	3
MAAT-499	Media Arts and Technology Co-op (summer)	0
	General Education - Natural Science Inquiry Perspective \ddagger	3
	General Education - Scientific Principles Perspective \ddagger	3
	General Education - Immersion 1, 2	6
	General Education - Electives	6
	Professional/Technical Electives	6
Fourth Year		
MAAT-401	Team Project	3
	General Education - Immersion 3	3
	General Education - Electives	9
	Professional/Technical Electives	6
	Open Electives	9
Total Semester Credit Hours		121

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Professional/Technical Electives

COURSE	
MAAT-355	Media Law
MAAT-356	Strategies in Multimedia
MAAT-359	Media Distribution and Transmission
MAAT-368	Gravure and Flexography
MAAT-376	Lithographic Process
MAAT-377	Advanced Retouching and Restoration
MAAT-446	Magazine Publishing
MAAT-541	Digital Print Processes
MAAT-544	Color Management Systems
MAAT-550	Topics in Media Arts, Sciences and Technology
MAAT-551	Lab Topics Media Arts, Sciences \& Technology
MAAT-558	Package Printing
MAAT-563	Building Profit into Media Projects
MAAT-571	Digital Asset Management

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required
- Chemistry or physics required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, college math, physics and chemistry, business

Appropriate associate degree programs for transfer

Transfer from associate degree programs considered on an individual basis

Packaging Science, BS

www.rit.edu/study/packaging-science-bs

Erin Aaron,

585-475-2278, eeaast@rit.edu

Program overview

Product packaging is increasingly related to total marketing concepts. It has an even greater dependence on new developments in materials and processes as eco-friendly product packaging has emerged as a growing way for companies to reduce the environmental impacts and the ecological footprints of product packaging. As a result, the packaging industry requires professionals-packaging engineers, packaging designers, product developers, and more-with a strong background in engineering, design, and business to infuse the industry with creativity and innovation.

What is Packaging Science?

Packaging science is a dynamic major that integrates engineering, design, and business to develop and design product packaging for a range of consumer goods. Packaging engineers and packaging designers focus on understanding the packaging needs of a product and what it must accomplish. These needs can range from maintaining food freshness and safety, keeping products safe from damage during transportation, appealing to consumers at the point of purchase, communicating product information, sustaining transportation efficiency, complying with sustainable practices for post-use recycling and reuse, and more. It's the role of packaging engineers and packaging designers to responsibility weigh these factors into the conceptualization, design, and development of product packaging.

RIT's Packaging Science Degree

RIT's packaging science degree is one of the most unique and well respected in the country. You'll study course work in three key areas:

- Engineering: Physics, packaging materials and biopolymers, shock and vibration, packaging for pharmaceuticals and medical products.
- Design: Packaging design, protective packaging, product packaging, sustainable packaging.
- Business: Packaging for distribution, packaging and the supply chain, packaging regulations, marketing, operations, and communications. The packaging science degree also includes extensive laboratory work. You'll explore packaging solutions and tackle real-life problem-solving in hands-on lab assignments that take place in state-of-the-art facilities, including the Packaging Materials Lab, Packaging Science Dynamics Lab, and the American Packaging Corporation Center for Packaging Innovation.

Two blocks of required cooperative education experience in the packaging industry is also part of the curriculum. RIT's packaging science degree is the only program in the country that requires its students to complete cooperative education.

Packaging Science Industry Advisory Board

The Industry Advisory Board contributes professional and technical expertise to the packaging science degree, which strengthens and develops the curriculum to reflect the dynamics and growth of the industry.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

In the packaging science degree, you'll complete two required blocks of co-op. You'll gain extensive career experience through full-time, paid co-op positions in companies that design and develop packaging for cosmetics and health products, pharmaceuticals and medical products, food and beverages, tools and equipment for manufacturing, toys, and other consumer goods, and more. You'll also develop your professional skills and broaden your industry contacts.

Companies that employ our packaging science students for co-ops include Colgate-Palmolive, CONMED, CooperVision, GlaxoSmithKline, Hammer Packaging, Hasbro, Honda of America Manufacturing, Inc., Johnson \& Johnson Family of Companies, Merck \& Co., Inc., Milwaukee Tool, PepsiCo, Revlon, and Stanley Black \& Decker, to name a few.

Jobs for Packaging Engineers and Packaging Designers

RIT's packaging science degree prepares you for employment in areas such as package development, packaging design, sales, purchasing, structural design, production, research, and marketing. The major was developed as a result of a close and long-established relationship between the packaging industry and RIT. This multi-billion-dollar industry is experiencing dynamic growth and packaging engineers and packaging designers with wide-ranging skills and expertise are in demand.

Packaging Science Career Fair

RIT hosts a packaging science-specific career fair that connects packaging science majors with corporations, organizations, design firms, and more, who hire packaging professionals. During this day-long event, you'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Curriculum

Packaging Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-123	General Education - Elective: Chemistry of Materials	3
CHMG-141	General Education - Elective: General \& Analytical Chemistry I	3
CHMG-145	General Education - Elective: General \& Analytical Chemistry I Lab	1
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
PACK-101	Introduction to Packaging	1
PACK-151	Packaging Design I	3
PACK-152	Packaging Design II	3
	General Education - First Year Writing: FYW (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
Second Year		
CHMG-201	General Education - Elective: Introduction to Organic Polymer Technology	${ }^{3}$
PACK-95	Career Seminar	0
PACK-211	Packaging Metals \& Plastics	3
PACK-212	Packaging Paper \& Glass	3
PACK-311	Containers I	3
PACK-312	Containers II	3
PACK-499	Co-op Work Experience	0
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Environmental Elective \dagger	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
MEDG-106	General Education - Scientific Principles Perspective: Microbiology of Health And Disease	3
MKTG-230	Principles of Marketing	3
PACK-420	Technical Communications (WI-PR)	3
PACK-421	Packaging for Distribution	3
PACK-422	Dynamics and Protective Packaging	3
PACK-430	Packaging Regulations	3
PACK-499	Co-op Work Experience	0
STAT-146	General Education - Elective: Introduction to Statistics II	4
	General Education - Immersion 1	3
	General Education - Elective	3
	Open Elective	3
Fourth Year		
PACK-470	Food Packaging	3
PACK-481	Packaging for Marketing and End Use	3
Choose one of the following:		3
DECS-310	Operations Management	
PACK-471	Packaging Supply Chain	
Choose one of the following:		3
MAAT-368	Gravure and Flexography	
MAAT-541	Digital Print Processes	
MAAT-558	Package Printing	
	Packaging Electives	6
	General Education - Immersion 2, 3	6
	Open Electives	
Total Semester Credit Hours		121

Please see General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
Students must complete two blocks of cooperative education in addition to course work.
† Students may choose one of the following environmental elective courses: Concepts of Environmental
Science (ENVS-101), Environment and Society (STSO-220), or Environmental Policy (STSO-421).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Courses in business, mathematics, science, liberal arts, statistics, or computer science

Appropriate associate degree programs for transfer

Business administration, marketing, management, graphic arts, engineering science, liberal arts with math/science

Robotics and Manufacturing Engineering Technology, BS

www.rit.edu/study/robotics-and-manufacturing-engineering-technology-bs

Beth Carle, Professor
5854756752, easmet@rit.edu

Program overview

Innovations in industrial automation and manufacturing robotics are creating an increased demand for highly skilled robotics and manufacturing engineers. RIT's robotics and manufacturing engineering technology major prepares you to become an engineer well-versed in advanced manufacturing technologies. Right now, the demand for robotics engineers, manufacturing engineers, and those skilled in designing and integrating automation into manufacturing processes is outweighing the number of students graduating with degrees in robotics engineering, resulting in outstanding employment opportunities for our graduates.

Robotics in the Manufacturing Industry

The future of robotics in manufacturing has arrived. Today's manufacturing industry has evolved and its focus is now on advanced manufacturing, which emphasizes:

- automation and advanced robotics to increase productivity and execute the precise maneuvers required to assemble small electronic parts.
- big data and cloud computing to help manufacturers track and analyze trends and statistics, monitor productivity, and engage in data-supported decision-making.
- 3D printing to decrease waste and improve output, and to reduce time needed for replacement parts.
- artificial intelligence and the Internet of Things, which connects machines and devices and revolutionizes the way machines communicate and function.
- augmented reality to create visual designs and simulations.

To meet the needs of the evolving manufacturing industry, RIT's degree in robotics engineering focuses on preparing you to lead in this dynamic, ever-changing industry.

Robotics Engineering Courses

Students in the robotics and manufacturing engineering technology degree acquire skills in a wide variety of disciplines, including course work in automation and robotics, electronics manufacturing, mechatronics, advanced manufacturing processes, and integrated design. The degree's comprehensive curriculum also includes traditional and non-traditional manufacturing processes, materials technology, computer-aided design, computer-aided manufacturing, controls for manufacturing automation, microprocessors, electrical and electronics principles, surface mount electronics manufacturing, quality control, lean manufacturing, engineering economics, and production and operations management. The uniqueness of this program is its combination of robotics and manufacturing courses and its emphasis on project-based, hands-on education.

Adding a minor in a complementary area of study deepens your expertise in the core areas of robotics manufacturing and broadens your skill set for a career in this dynamic field. These minors enhance the robotics and manufacturing engineering technology program:

- applied statistics
- business analytics
- computer science
- computing security
- engineering management
- manufacturing systems
- plastics engineering and technology
- surface mount electronics manufacturing
- sustainable product development

High-Performance Teams and Professional Organizations

Many of mechanical engineering students participate in high-octane performance teams, including the RIT Formula SAE Racing Team, the SAE Aerodesign Club, the RIT Baja SAE Team, RIT SAE Clean Snowmobile Team, and the Human-Powered Vehicle Competition team. They also are encouraged to participate in the student chapters of professional societies such as the American Society of Mechanical Engineers, the Society of Women Engineers, the National Society of Black Engineers, the Society of Hispanic Professional Engineers, the American Institute of Aeronautics and Astronautics, and the Society of Automotive Engineers.

Engineering vs. Engineering Technology

Two dynamic areas of study, both with outstanding outcomes rates. Which do you choose?

What's the difference between engineering and engineering technology? It's a question we're asked all the time. While there are subtle differences in the course work between the two, choosing a major in engineering vs. engineering technology is more about identifying what you like to do and how you like to do it.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Your engineering co-ops will provide hands-on experience that enables you to apply your engineering knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the robotics and manufacturing engineering technology program are required to complete four co-op blocks. This typically includes one spring, one fall, and two summer blocks. You'll alternate
periods of full-time study with full-time paid work experience in your career field. In some circumstances, other forms of experiential education (e.g., study abroad, research, military service) may be used to fulfill part of the co-op requirement. Each student is assigned a co-op advisor to assist in identifying and applying to co-op opportunities.

Curriculum

Robotics and Manufacturing Engineering Technology, BS degree, typical course sequence

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Robotics and Manufacturing Engineering Technology, BS degree/ Manufacturing and Mechanical Systems Integration, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
Fifth Year		
DECS-744	Project Management	3
ACCT-603	Accounting for Decision Makers	3
Choose one of the following:		
MFET-788	MMSIThesis Planning	
MMET Elective Course		
Choose one of the following:		
MFET-797	MMSI Capstone Project	
MFET-790	MMSI Thesis	
MFET-795 MMSI Comprehensive Exam and MMET Elective		
	Open Elective	3
	General Education - Immersion 2, 3	6
	General Education - Elective	3
	MMET Concentration Course	3
	MMET Elective Course	3
Total Semester Credit Hours 154		

Please see General Education Curriculum (GE) for more information.
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The robotics and manufacturing engineering technology major is accredited by the Engineering Technology Accreditation Commission of ABET. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required; biology recommended
- Technology electives desirable

Transfer Admission

Transfer course recommendations without associate degree

Courses in mathematics, science, engineering science, and engineering technology

Appropriate associate degree programs for transfer

Faculty

Dean's Office

S. Manian Ramkumar, BE, PSG, College of Technology-Bharathiar (India); ME, Rochester Institute of Technology; Ph.D., State University of New York at Binghamton-Dean

Linda A. Tolan, BS, State University College at Geneseo; MS, Rochester Institute of Technology; Ph.D., Andrews University; NCC—Senior Associate Dean for Curriculum Innovation, Human Resources and Engagement; Professor

Michael Eastman, BS, MS, Rochester Institute of Technology, Ph.D., University at BuffaloAssociate Dean for Academic Programs and Continuous Improvement; Professor

Rebecca L. Sumner, AB, Franklin and Marshall College; MA, Ph.D., University of Rochester-Assistant Dean for Research Development

Melissa Aponte, BA, Ithaca College; MA, Teachers College, Columbia University; Ed.D., St. John Fisher College-Assistant Dean for Students

School of Engineering Technology

Civil Engineering Technology

Lu Sun, BS, Ph.D., Southeast
University (China); Ph.D., University of Texas at AustinDepartment Chair, Civil
Engineering Technology, Environmental Management and Safety

Yewande Abraham, BS, MS, Cardiff University (United Kingdom); Ph.D., Pennsylvania State University-Assistant Professor

Amanda Bao, BS, MS, Tianjin University (China); Ph.D., University of Colorado at Boulder-Undergraduate Program Coordinator; Associate Professor

Harry G. Cooke, BS, Northwestern University; MSCE, University of Texas; Ph.D., Virginia Polytechnic Institute and State University; PEAssociate Professor

Lucio Salles de Salles, BS, Federal University of Santa Maria (Brazil); MS, Doctor of Science, University of São Paulo (Brazil)—Assistant Professor
G. Todd Dunn, BS, Dartmouth College; MSCE, University of California; PE—Associate Professor Emeritus

Abdullah Faruque, B.Sc., Bangladesh University of Engineering and Technology (India); M.A.Sc., Ph.D., University of Windsor (Canada); PEAssociate Professor

Robert E. McGrath Jr., BCE, Rensselaer Polytechnic Institute; MSCE, Syracuse University; PEProfessor Emeritus

Mark Pitterman, MCE, Odessa Marine Engineers Institute (Ukraine)-Professor Emeritus

Rizk Sinada, BS, MS, Rochester Institute of Technology-Senior Lecturer

Yi Su, Bachelor of Management, East China University of Science and Technology (China); ME, Chongqing Jiaotong University (China); Ph.D., The Catholic University of America-Visiting Lecturer

Maureen S. Valentine, BSCE, Tufts University; MECE, Virginia Polytechnic Institute and State University; PE—Professor Emerita

Scott B. Wolcott, BS, MS, State University of New York at Buffalo; Ph.D., State University of New York College of Environmental Science and Forestry; PE-College of Engineering Technology Faculty Associate for Study Abroad Initiatives; Associate Department Chair; Professor

Teresa Wolcott, BS, State University of New York at Buffalo; MS, Rochester Institute of Technology-Principle Lecturer
Gretchen L. Wainwright, BS, MS,
Rensselaer Polytechnic Institute; PE—Principle Lecturer

Environmental Sustainability,

Health and Safety

Grant J. Esler, BS, Boston
University; MPH, University of Michigan; CIH, CPE, CSPProfessor of Practice

Josh Goldowitz, BS, State
University of New York at Binghamton; MS, University of Arizona-Undergraduate Program Coordinator; Professor

Lisa Greenwood, BS, Rochester Institute of Technology; MS, University of New Haven; Ph.D., State University of New York College of Environmental Science and Forestry-Assistant Professor

John Morelli, BS, Syracuse University; MS, Ph.D., State University of New York College of Environmental Science and Forestry; PE—Professor Emeritus

Joseph M. Rosenbeck, BS, MS, Central Missouri State University; CSP—Graduate Program Director; Professor

Jennifer L. Schneider, BA, Roberts
Wesleyan College; MS, University of Rochester; Ph.D., University of Massachusetts; CIH-Eugene H. Fram Chair in Applied Critical Thinking; Professor

Lu Sun, BS, Ph.D., Southeast University (China), Ph.D., University of Texas at AustinProfessor, Department Chair

Electrical and Computer Engineering Technology

Miguel Bazdresch, BE, Western Institute of Technology and Higher Studies (Mexico); ME, National Polytechnic Institute (Mexico); Ph.D., National Higher School of Telecommunications (France)Associate Professor

Christopher Brown, BS, MS, Rochester Institute of TechnologyVisiting Lecturer

Steven A. Ciccarelli, BS, MS, Rochester Institute of TechnologyAssociate Professor

Jeanne Christman, BS, Clarkson University; MS, University of Texas at Dallas; Ph.D., University at Buffalo-Associate Department Chair; Associate Professor

Richard C. Cliver, BS, Rochester Institute of Technology; MSEE, University of Rochester-Associate Professor

Holly Dickens, BS, MS, Rochester Institute of Technology-Lecturer

Thomas Dingman, BS, MS, Rochester Institute of TechnologyProfessor Emeritus

Clark Hochgraf, BS, State University of New York at Buffalo; Ph.D., University of Wisconsin at Madison-Associate Professor

Mark J. Indelicato, BEEE, Manhattan College; MS, Polytechnic University-Associate Professor

William P. Johnson, BA, Kings College; BSEE, MSEE, Syracuse University; JD, University at Buffalo Law School-Professor Emeritus

Daniel S. Kaputa, BS, MS, Ph.D., University at Buffalo-Assistant Professor

Sungyoung Kim, BE, Sogang University (Korea); MM, Ph.D., McGill University (Canada) Associate Professor

Warren L. G. Koontz, BSEE, University of Maryland; MSEE, Massachusetts Institute of Technology; Ph.D., Purdue University-Professor Emeritus

James H. Lee, BS, California Polytechnic State University; MS, Ph.D., Texas A\&M University; PEActing Department Chair; Associate Professor

Yangming Li, BS, MS, Hefei University of Technology (China); Ph.D., University of Science and Technology of China (China)Assistant Professor

Drew Maywar, BS, MS, Ph.D., University of Rochester-Professor

Jorge Carlos Mex-Perera,

BS Technological Institute of Merida (Mexico); M.Sc. National Polytechnic Institute (Mexico); Ph.D, University of Bradford (United Kingdom)—Assistant Professor

Carol Richardson, BSEE,
University of Wyoming; MSEE, Union College-Professor Emerita

John T. Schueckler, AAS, State University College at Canton; BS, Rochester Institute of Technology;

MS, Rensselaer Polytechnic Institute-Senior Lecturer

Hwan Shim, BS, Ph.D., Seoul National University-Assistant Professor

George H. Zion, BS, MS, Rochester Institute of Technology; Ph.D., University at Buffalo-Professor

Manufacturing and Mechanical Engineering Technology

Ronald F. Amberger, BME, Rensselaer Polytechnic Institute; ME, Pennsylvania State University; PE-Professor Emeritus

Martin Anselm, BS, State University College at Geneseo; MS, Clarkson University; Ph.D., Binghamton University-Graduate Program Director; Associate Professor

Duane Beck, AS, Monroe Community College; BS, Empire State College; MS, Rochester Institute of Technology; Ph.D., LaSalle University-Professor of Practice

Michael R. Caldwell, BS, MS, Rochester Institute of Technology -Lecturer

Beth A. Carle, BSE, University of Pittsburgh; MS, Ph .D ., University of Illinois; EIT Professional Certification-Program Director for Undergraduate Studies; Professor

Gary DeAngelis, BS, MS, University of Lowell-Lecturer

Elizabeth M. Dell, BSME, General Motors Institute; MS, University of Michigan-Director, AdvanceRIT; Professor

Robert D. Garrick, BSEE, GMI Engineering and Management Institute; MBA, Rochester Institute of Technology; MS, University of Rochester; Ph.D., University of South Carolina-Department Chair; Professor

Martin Gordon, BSME, MSME, MBA, State University of New York at Buffalo; PE-Professor

Spencer H. Kim, BS, Hanyang University (South Korea); MS, Ph.D., University of IllinoisAssociate Professor

Christopher Lewis, BS,
Pennsylvania College of Technology; MS, University of Texas; Ph.D., University of Rochester-Assistant Professor

Carl A. Lundgren, BS, Rensselaer Polytechnic Institute; MBA, University of Rochester-Professor Emeritus

Michael P. Medlar, BS, MS, Rochester Institute of TechnologyAssistant Professor

Robert A. Merrill, BS, Clarkson College; MS, Northeastern University; PE—Professor Emeritus
Jennifer Mallory O'Neil, BS, University of Rochester; Ph.D., Purdue University-Assistant Professor

Michael J. Parthum Sr., BS, MS, Rochester Institute of TechnologyAssociate Professor

Brian Rice, BS, University of Buffalo; MS, Ph.D., University of Rochester-Assistant Professor

Michael J. Slifka, AAS, Niagara County Community College; BS, MS, Rochester Institute of Technology-Senior Lecturer
John A. Stratton, BS, Rochester Institute of Technology; MS, Rensselaer Polytechnic Institute; PE-Professor Emeritus

Renae Veneziano, MS, Rochester Institute of Technology-Lecturer
Larry A. Villasmil, BSME, Universidad del Tachira (Venezuela); MSME, Ph.D., Texas A\&M University-Associate Professor

Packaging and Graphic Media Science

Bilge N. Altay, BS, MS, Marmara University (Turkey); MS, Ph.D., Western Michigan UniversityAssistant Professor

Carlos A. Diaz-Acosta, BS, MS, Universidad de los Andes (Colombia); Ph.D., Michigan State University-Associate Professor

Kyle Dunno, BS, MS, Ph.D., Clemson University—Assistant Professor

Robert J. Eller, AB, MA, University of Missouri-Professor Emeritus

Changfeng Ge, BSME, MSME, Tongji University (China); Ph.D., University of Dortmund (Germany)-Graduate Program Director; Professor

Daniel L. Goodwin, BS, MS, Ph.D., Michigan State UniversityProfessor Emeritus

Deanna M. Jacob, BS, State University College at Plattsburgh; MA, State University College at Geneseo; MS, Rochester Institute of Technology-Professor Emeritus

Daniel P. Johnson, BS, MS, Rochester Institute of Technology; M.Ed., University of BuffaloInterim Department Chair; Professor

Irma Abu-Jumah, BS, Dr. Jose Matias Delgado University (El
Salvador); MS, Rochester Institute of Technology-Lecturer

Malcolm Keif, BS, California
Polytechnic State
University; MA, California State University; Ph.D., University of Missouri-Professor of Practice
Bruce Myers, BFA, Montclair State University; MS, Ph.D., New York University-Associate Professor
Karen L. Proctor, BS, Michigan State University; MBA, Rochester Institute of Technology-Professor
Alexis Rich, BS, ME, Rochester Institute of Technology-Enterprise Lab Manager; Senior Lecturer

Distinguished Professorships

Russell C. McCarthy Professorship in Engineering Technology
Established: 1979
Donor: The Russell C . McCarthy endowed chair was created in 1980 by a group of six donors to augment the creation of the RIT School of Applied Industrial Studies. The endowed chair now resides in the College of Applied Science and Technology and reports to the college dean.
Purpose: To build relationships between the college and industrial and professional communities worldwide that share the college's interests, goals, and values.

Held by: open

College of Health Sciences and Technology

Yong Tai Wang, Dean
rit.edu/healthsciences

Programs of Study

Biomedical Sciences BS 145
Diagnostic Medical Sonography (Ultrasound) BS 147
Diagnostic Medical Sonography (Ultrasound) Certificate 150
Dietetics and Nutrition BS 151
Echocardiography (Cardiac Ultrasound) Certificate 155
Exercise Science BS 156
Exercise Science Certificate 159
Health Systems Administration Certificate 159
» Nutritional Sciences BS 160
\# Physician Assistant BS/MS 164
\# Combined Accelerated Bachelor's/Master's Degree required.» Combined Accelerated Bachelor's/Master's Degree available.

RIT's College of Health Sciences and Technology responds to the growing need for well-educated professionals in the health care field. The United States faces a looming shortage of many types of health care professionals, including nurses, physicians, dentists, pharmacists, and allied health workers. The college, housed in the Institute of Health Sciences and Technology, serves as an independent academic and research entity designed to provide a focused, interdisciplinary, and systems approach to innovative health care education, applied/translational research, and community outreach. The institute incorporates three major thrusts: the College of Health Sciences and Technology, the Health Science Research Center, and the Health Science Community Collaboration and Outreach Center.

Please visit the college's website-www.rit.edu/healthsciencesfor in depth information on academics, admission requirement, faculty, facilities, financial aid and scholarships, research initiatives, and more.

Accreditation

The college offers several professional programs, which are all fully accredited through national accrediting organizations.

The diagnostic medical sonography program (ultrasound) is accredited by the Commission on Accreditation of Allied Health Education Programs (caahep.org) upon the recommendation of the Joint Review Committee on Education in Diagnostic Medical Sonography (JRC-DMS), 25400 U.S. Hwy 19N, Suite 158, Clearwater, FL 33763, (727) 210-2350, www.caahep.org.

The physician assistant program is accredited through the Accreditation Review Commission on Education for the Physician Assistant, Inc. (ARC-PA).

The nutrition management program is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics.

Biomedical Sciences, BS

www.rit.edu/study/biomedical-sciences-bs
Robert Osgood, Associate Professor
585-475-7902, rcoscl@rit.edu

Program overview

The biomedical sciences degree prepares students for advanced study in various areas of health care (e.g. medicine, dentistry, nursing, public health) or research. The diverse curriculum includes a broad array of elective courses and offers students career-relevant experiential learning opportunities where they can apply the knowledge they gain in the classroom to real-world experiences. Comprehensive academic and faculty advising is complemented by a pre-medical/pre-health professions advising system that provides guidance to students in their selection of course work and in completing the requirements necessary for admission to advanced degree programs.

What is Biomedical Science?

The field of biomedical science combines biology and medicine to maintain and promote the health of both humans and animals. It is also an investigative field in which you will conduct hands-on research in order to solve pressing health problems. The biomedical sciences will provide you with a solid foundation to pursue medicine, health care professions, and research in areas such as anatomy, biology, chemistry, biochemistry, nutrition, physiology and kinesiology, epidemiology, diseases, immunology, epidemiology, pharmacology, and more.

RIT's Bachelor's in Biomedical Sciences

The bachelor's in biomedical sciences is a comprehensive program of study that consists of a life sciences core combined with a broad range of flexible elective options that enable you to customize your education to pursue your professional areas of interest. The life sciences core provides students with a strong grounding in mathematics and science with a complement of liberal arts in preparation for entry into medical and dental schools, graduate studies in the health professions, or direct entry into a research position in an applied area of biomedical science. In consultation with an academic adviser, and using a basic course schedule as a guideline, you will select from elective courses relevant to one of these career paths or design your own set of science track electives.

Biomedical sciences majors may also choose elective courses to engage in undergraduate research or independent study with a faculty mentor. These opportunities are not limited to the biomedical sciences faculty or their laboratories. Many of our students participate in highly interdisciplinary research with faculty from the College of Science, the Kate Gleason College of Engineering, the Golisano College of Computing and Information Sciences, and other centers and colleges at RIT. We strongly encourage you to explore the world beyond RIT-through study abroad, community service, experiential learning, and summer research internships. In addition, a minor in one of more than 100 areas of study allow you to pursue a secondary field of interest. The goal of the bachelor's in biomedical sciences is for you to develop the multidisciplinary skills, self-confidence, and cross-disciplinary literacy that allows you to thrive in the dynamic, rapidly changing world of biomedicine and biomedical sciences.

Learn more about program goals and learning outcomes for RIT's bachelor's in biomedical sciences.

Careers in Biomedical Sciences

Dynamic career opportunities in the biomedical sciences continue to grow. This increase in demand is due, in part, to advances in biotechnology, the need for more researchers studying health care problems, medical procedures, and diseases, better treatments for current and emerging health issues, and public policy challenges.

With its grounding in the sciences and mathematics, along with a complement of liberal arts courses, the bachelor's in biomedical sciences is the perfect preparation for a range of career preparation.

Medical School and Graduate Programs in the Health Sciences: The bachelor's in biomedical sciences offers excellent undergraduate preparation for careers in medicine (allopathic and osteopathic), biomedical research, exercise science, pathology, pharmacy, pharmacology and drug development, toxicology, neuroscience, and genetic counseling.

Direct Entry Into Research Positions: Along with course work related to your curriculum, you will also have vast opportunities for handson research experiences in a range of areas. These opportunities will prepare you well for direct entry into research positions where you will investigate and explore solutions to a range of medical and health care problems.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (e.g., physician assistant, physical therapy, occupational therapy, etc.) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

Pre-Vet Advising Program

Being accepted into veterinary school requires a strong academic record, GRE preparation, and accruing hours of direct animal care under the supervision of a veterinarian (DVM), researcher (Ph.D.), or other animal health professional. RIT's Pre-Vet Advising Program provides you with individual, personalized support to helps you fulfill the veterinary school requirements needed for you to become a competitive candidate for admission to veterinary school. The program also helps you acquire the research and real-world experiences required for careers in veterinary medicine.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

A broad and demanding curriculum is the foundation for the career areas supported by the biomedical sciences degree. Yet, all of these areas also require some element of learning that occurs outside of the classroom. Hands-on, experiential learning allows students to explore new areas of study, solidify career goals, and acquire critical extracurricular credentials that increase the competitiveness of graduate and medical school applications and significantly enhance employment opportunities after graduation.

The program strongly encourages students to actively seek out new experiences and to expand their expertise to areas outside of the traditional classroom. These opportunities may include paid employment on campus, study abroad, volunteer work and community service, K-12 outreach and enrichment, professional career shadowing and careerrelevant employment, on-campus undergraduate research, Research Experiences for Undergraduates (REUs), summer research internships, and other paid cooperative education. Students receive collaborative advising from faculty and staff in order to systematically build towards their own career goals. In addition, the RIT/Rochester Regional Health Alliance is dedicated to innovation in medical care, education, and research for the betterment of individuals in both respective institutions and the greater Rochester community. RIT is Rochester Regional Health's official academic affiliate and Rochester Regional Health is the university's official affiliated clinical partner.

Curriculum

Biomedical Sciences, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	General Education - Elective: Introduction to Biology: Organisms and Ecosystems	3
BIOL-125	General Education - Elective: Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-124	General Education - Elective: Introduction to Biology: Molecules and Cells	3
BIOL-126	General Education - Elective: Introduction to Biology Laboratory: Molecules and Cells	1
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	1
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	3
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	1
MEDS-242	Cell Structure \& Function	4
YOPS-10	RIT 365: RIT Connections	3
	General Education - Elective	0
	General Education - First-Year Writing (WI)	3

Second Year

Second	Molecular Biology	3
BIOL-206	Molecular Biology Laboratory	1
MEDS-216	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	4
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Elective: Chemistry Sequence Course 1*	4
	Chemistry Sequence Course 2*	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
Third Year	General Education - Global Perspective	3
	Program Elective Requirements	12
	Professional Electives	9
	Professional Elective (WI-PR)	3
	General Education - Social Perspective	3
	General Education - Immersion 1	3
		6
	Program Elective Requirements	6
	Professional Electives	12
	Open Electives	6
	General Education - Immersion 2, 3	120

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

* Students must choose one of the chemistry sequences below depending on their anticipated career path. For those interested in the pursuit of most allied health career paths: (CHMO-231 Organic Chemistry I, CHMO-235 Organic Chemistry Lab I and CHMB-240 Biochemistry for Health Sciences) or (CHMO-231 Organic Chemistry I, CHMO-235 Organic Chemistry Lab I and CHMB-402 Biochemistry I). For those applying to medical/dental, DPT, PharmD, graduate (research-focused MS/PhD): CHMO-231 Organic Chemistry I, CHMO-235 Organic Chemistry Lab I, CHMO-232 Organic Chemistry II and CHMO236 Organic Chemistry Lab II.

Electives

Biomedical sciences program electives
Each student must choose a minimum of two courses from each category (for a minimum total of 18 SCH) of Program Electives below. One course cannot be used more than once to this requirement. Additional courses from the list below of from the list of professional electives may be used to meet professional elective requirements.

Medical foundations

COURSE	
MEDS-417	Clinical Microbiology
MEDS-418	Clinical Microbiology Lab
MEDS-422	Endocrinology
MEDS-425	Introduction to Neuroscience
MEDS-520	Histology \& Histopathology
MEDS-530	Human Immunology

Medicine and disease

COURSE	
MEDS-245	Medical Genetics
MEDS-313	Introduction to Infectious Diseases
MEDS-421	Parasitology
MEDS-430	Epidemiology
MEDS-515	Medical Pathophysiology

Medicine and health

COURSE	
EXSC-320	Coaching Healthy Behavior
MEDS-402	Biomedical Ethics
Choose one of the following:	
MEDS-360	Placebo, Suggestion, Research and Health
MEDS-361	Applied Psychophysiology and Self-Regulation
Choose one of the following:	
MEDS-311	Diagnosing the Criminal Mind
MEDS-426	Addiction Pharmacology
Choose one of the following:	
NUTR-215	Foundations of Nutrition Sciences
NUTR-300	Sports Nutrition

Biomedical sciences professional electives

COURSE	
BIOL-265	Evolutionary Biology
BIOL-302	Cell Biology
BIOL-303	Cell Physiology
BIOL-306	Food Microbiology
BIOL-308	Biology of Cancers
BIOL-314	Tissue Culture
BIOL-321	Genetics
BIOL-322	Developmental Biology
BIOL-340	Genomics
BIOL-365	Introduction to Population Genetics
BIOL-375	Advanced Immunology
BIOL-412	Human Genetics
BIL-415	Virology
BIL-420	Bacterial-Host Interactions: Microbiomes of the World
BIOL-427	Microbial and Viral Genetics
BIOL-428	Eukaryotic Gene Regulation and Disease
BIOL-450	Genetic Engineering
BIOL-601	Genetic Diseases and Disorders
CHMA-261	Instrumental Analysis
CHMB-240	Biochemistry for Health Sciences
CHMB-402	Biochemistry I
CHMB-405	Biochemistry Lab
CHMO-231	Organic Chemistry I
CHMO-232	Organic Chemistry II
CHMO-235	Organic Chemistry Lab I
CHMO-236	Organic Chemistry Lab II
EXSC-205	Sports Physiology \& Life Fitness
EXSC-206	Fitness Prescription
EXSC-207	Exercise for Special Populations
EXSC-280	Strength Training for Performance
EXSC-320	Coaching Healthy Behavior
EXSC-410	Kinesiology
EXSC-430	Theory of Athletic Injury
EXSC-480	Training High Performance Athletes
EXSC-550	Exercise Physiology
MEDS-201	Language of Medicine

COURSE	
MEDS-240	History of Medicine
MEDS-245	Medical Genetics
MEDS-290	Biomedical Research
MEDS-300	Premedical Studies Seminar
MEDS-310	Introduction to Pharmacology
MEDS-311	Diagnosing the Criminal Mind
MEDS-313	Introduction to Infectious Diseases
MEDS-333	Patient Care
MEDS-345	Care-Based Genetic Counseling
MEDS-355	Introduction to Global Health
MEDS-356	Field Studies in Molecular Epidemiology
MEDS-360	Placebo, Suggestion, Research and Health
MEDS-361	Applied Psychophysiology and Self-Regulation
MEDS-370	Community Healthcare
MEDS-402	Biomedical Ethics
MEDS-403	US Healthcare
MEDS-411	Researching the Criminal Mind
MEDS-415	Pathophysiology of Organ Systems I
MEDS-416	Pathophysiology of Organ Systems II
MEDS-417	Clinical Microbiology
MEDS-418	Clinical Microbiology Lab
MEDS-421	Parasitology
MEDS-422	Endocrinology
MEDSS25	Introduction to Neuroscience
MEDSS26	Addiction Pharmacology
MEDSS30	Epidemiology
MEDSS40H	Cardiac Imaging
MEDS-470	Examining the Clinical Experience
MEDS-475	Health Coach Practicum
MEDS-490	Human Gross Anatomy
MEDS-499	Biomedical Sciences Co-op
MEDS-501	Human Development
MEDS-510	Biomedical Research
MEDS-511	Interdisciplinary Research
MEDS-515	Medical Pathophysiology
MEDS-518	Oral Microbiology
MEDS-520	Histology \& Histopathology
MEDS-525	Advanced Clinical Neuroanatomy
MEDS-530	Human Immunology
MEDS-599	Independent Study
NUTR-215	Foundations of Nutrition Sciences
NUTR-300	Sports Nutrition
PHSS-111	College Physics I
PHYS 112	College Physics II

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math is required. Pre-calculus is recommended
- Biology and Chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in biology or liberal arts with biology option

Diagnostic Medical Sonography (Ultrasound), BS

www.rit.edu/study/diagnostic-medical-sonography-ultrasound-bs
Hamad Ghazle, Professor
585-475-2241, hhgscl@rit.edu

Program overview

Imagine the possibilities that can result from attending a nationallyranked ultrasound program that houses a modern, state-of-the-art scanning suite where classes are taught by outstanding faculty who are leaders in their field. The outcome is a first-rate educational experience, complete with one year of on-site clinical training, that sets you a path for success in a dynamic health care field.

What is Diagnostic Medical Sonography?

Diagnostic medical sonography, also referred to as ultrasound, has revolutionized the field of medicine. It offers a unique opportunity in the diagnosis, evaluation, and treatment of medical diseases and conditions without the use of surgery, injection of dyes, or radiation. Diagnostic medical sonography is a noninvasive, nontoxic diagnostic medical imaging tool in which high-frequency sound waves are used to produce images of the human body. Ultrasound is readily used to image the heart, blood flow, and abdominal organs as well as the developing fetus and male/female reproductive organs. But ultrasound has found itself to be a critical health care tool beyond radiology, OB/GYN, vascular, and cardiology. It is now used in areas such as emergency medicine, orthopedics, sports medicine, ophthalmology, rheumatology, pain medicine, intensive care, and more. The profession has grown rapidly in the last 20 years and careers in diagnostic medical sonography are expected to continue to grow over the next several decades. Evaluation of the job market, advancements in medical technology, and a survey of current employers all indicate a strong demand for well-trained sonographers.

How to Become a Diagnostic Medical Sonographer

Our diagnostic medical sonography degree is a four-year program that includes a one year clinical internship. RIT is one of very few colleges with ultrasound programs in the U.S. that lead to a bachelor of science in diagnostic medical sonography.

RIT's ultrasound program provides comprehensive sonography education. The program begins with a solid foundation in biology, human anatomy and physiology, and human cross-sectional anatomy. Sonography courses include extensive didactic lectures with full immersion ultrasound scanning in our state-of-the-art Ultrasound Scanning Suite, where students have hands-on instruction in sonography instrumentation and sonographic scanning skills and techniques for vascular evaluation, obstetrics, gynecology, and abdominal and small parts sonography. These courses occur before a one-year clinical internship, where students work in a range of health care settings (hospitals, outpatient centers, physician offices, etc.) where they complete their sonography education with mentors, physicians, and other medical professionals. Courses in patient care and the liberal arts round out your studies. In addition to the development of scanning and diagnostic abilities that focus on relevancy to clinical practice, the program also emphasizes skills in administration, leadership, and research. You will be prepared for careers in diagnostic medical sonography and related medical fields, as well as for medical school and graduate programs in the health sciences. This is a program that provides a high-quality, comprehensive diagnostic medical sonog-
raphy education. You will graduate well-prepared, well-trained, and sought-after in the workplace.

Apply Your Knowledge

With a rigorous hands-on approach, coupled with an emphasis placed on experiential learning, you will gain a wealth of experience applying what you've learned in classroom lectures and lab experiences to a variety of real-life situations. A dedicated faculty is both engaged and passionate about your education and is fully committed to the development of exceptional sonographers and leaders.

Graduates are prepared to pursue a variety of careers in diagnostic medical sonography, nationally and internationally, in medical, industrial, and educational settings. Graduates can be found in a wide range of supervisory and administrative positions in hospitals, clinics, private physicians' offices, teaching, research, sales, and industry. Graduates also can work as freelance sonographers or for mobile services.

Medical Community Support

Our diagnostic medical sonography degree benefits from a comprehensive, supportive medical community comprised of highly-trained radiologists, physicians, sonologists, sonographers, and echocardiographers that guide, educate, and train our students. Many of these professionals are involved in teaching our students both on-campus and at off-campus clinical sites. Our partner clinical sites also employ many of our graduates. Through these interactions, you are exposed to generous and dedicated health care professionals who will enhance your education through professional development, increase your awareness of community needs, and share a sense of cooperative spirit in which medicine is practiced. In addition, many of our clinical instructors, echocardiographers, and sonographers are alumni of our program and are familiar with the standards, expectations, and rigor of the ultrasound program. Learn more about the program's affiliated faculty.

Ultrasound Program Outcomes and Attrition Rate

RIT's diagnostic medical sonography degree has exceptional passing rates on the national examinations:

- OB/GYN: 100%
- Abdomen: 95%
- Cardiac: 100%

The program has a very low attrition rate (0%) and a retention rate of 100%. Job placement is also 100%.

Additional Sonography Education Opportunities

In addition to the bachelor of science in diagnostic medical sonography, RIT also offers two diagnostic medical sonography certificate programs: a certificate in diagnostic medical sonography and a certificate in echocardiography (cardiac ultrasound). Both of these options are not only designed to meet the growing needs of the national and international medical communities but also the needs of individuals who:

- Hold a degree in the life sciences and other closely related degrees who are interested in that may be approved by the program director. Additional pre-requisite course work may be required for any type and level of degree.
- Have a current, active license or registry in an area of medical or allied health sciences, some examples of medical or allied health sciences areas include respiratory therapy, nuclear medicine, physical therapy, radiography (x-rays), nursing, and more. Any of the more than 200 medical or allied health sciences fields also will be considered.

Sonography as a Pre-Med Option

Being accepted into a medical graduate program requires certain qualifications, including completing prerequisite courses, a strong academic record, acquiring pertinent experiences in the field, and developing key intrapersonal and interpersonal qualities. The Premedical and Health Professions Advisory Program works with all students on an individual basis to help them become competitive candidates for admission to graduate programs in the medical and health professions.

The diagnostic medical sonography degree has assisted students in entering the worlds of medicine and dentistry. With the addition of a few courses, and without extending your time at RIT, the ultrasound program can prepare you for medical, dental, or other graduate school programs in the medical or health sciences. Graduates of the ultrasound program have gone on to become physicians, dentists, chiropractors, and more. Learn more about how a diagnostic medical sonography degree can be used as a pre-med option.

Sonography Education Resources

Program Policy and Procedures Handbook/Technical Standards
Please refer to these two documents for more information:

- Program Policy and Procedures Handbook
- Technical Standards
- Program Goals, Objectives, and Outcomes

Prospective students are invited to view the diagnostic medical sonography program brochure.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Clinical Internships

The one-year clinical internship provides hands-on experience at two or more approved medical facilities. After completing the pre-internship course work, all students begin the internship by attending an intensive two-week experience on campus. During this time they enhance and polish the skills they previously learned, prepare to perform complete sonographic examinations as performed in real clinical settings, and advance their knowledge in recognizing anatomy and disease states using a variety of equipment in the Ultrasound Scanning Suite. Students also learn about hospital, departmental, and administrative operations. After completing these requirements, candidates are assigned to a medical training site for their clinical experience. At these facilities, students work side-by-side with sonographers, physicians, and other health care professionals to learn, develop, apply, and sharpen the necessary skills to perform general ultrasound examinations. Students' clinical progress and performance are closely monitored by the program's clinical coordinator and program director, who have regular communication and make periodic visits to the clinical internship sites. Additionally, students return to campus each month for three days of lectures, presentations, projects, and testing. Students may complete their clinical internships at any approved regional or national medical ultrasound facility, with approval of the program director.

Curriculum

Diagnostic Medical Sonography, BS degree, typical course
sequence sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-101	General Education - Elective: General Biology I	3
BIOL-102	General Education - Elective: General Biology II	3
BIOL-103	General Education - Elective: General Biology I Lab	1
BIOL-104	General Education - Elective: General Biology II Lab	1
MATH-111	General Education - Mathematical Perspective A: Precalculus	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education-Global Perspective	3
	General Education - First Year Writing (WI)	3
Second Year		
MEDS-201	General Education - Elective: Language of Medicine	3
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	4
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
PHYS-112	General Education - Scientific Principles Perspective: College Physics II	4
	General Education - Immersion 1	3
	General Education - Immersion 2	3
	Open Electives	6
Third Year		
DMSO-301	Sonographic Scanning Skills and Techniques I	3
DMSO-302	Sonographic Scanning Skills and Techniques II	3
DMSO-309	Sonography Physics and Instrumentation I	3
DMSO-310	Sonography Physics and Instrumentation II	3
DMSO-312	Human Cross-Sectional Anatomy	3
MEDS-333	Patient Care	2
MEDS-415	Pathophysiology of Organ Systems I	3
	General Education - Immersion 3	3
	Open Electives	6
Fourth Year		
DMSO-414	Sonographic Vascular Evaluation	3
DMSO-452	Obstetrical Sonography I	3
DMSO-453	Gynecological Sonography	3
DMSO-454	Obstetrical Sonography II	3
DMSO-456	Abdominal and Small Parts Sonography I	3
DMSO-457	Abdominal and Small Parts Sonography II	3
DMSO-460	Administration and Research in Sonography (WI-PR)	3
DMSO-570	Clinical Sonography I	7
DMSO-571	Clinical Sonography II	5

Total Semester Credit Hours 125

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The Abdomen-Extended, Obstetrics and Gynecology, and Adult Cardiac DMS Program at Rochester Institute of Technology is accredited by the Commission on Accreditation of Allied Health Education Programs (www.caahep.org) upon the recommendation of the Joint Review on Education in Diagnostic Medical Sonography (JRC-DMS).

CAAHEP
$9355-113$ th St. N, \#7709
Seminole, FL 33775
$727-210-2350$
www.caahep.org
JRC-DMS
6021 University Blvd., Suite 500
Ellicott City, MD 21043
443-973-3251
www.jrcdms.org

9355-113th St. N, \#7709
Seminole, FL 33775
727-210-2350
www.caahep.org
6021 University Blvd., Suite 500
Ellicott City, MD 21043
www.jrcdms.org

It is noteworthy to mention that the diagnostic medical sonography degree is institutionally accredited and programmatically accredited. This type of dual accreditation meets both professional and employer requirements and also allows our graduates to immediately sit for the national board examinations administered by the American Registry of Diagnostic Medical Sonography (ARDMS).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math is required. Pre-calculus is recommended
- Biology is required. Physics recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in liberal arts with science option; allied health; radiologic technology

Diagnostic Medical Sonography (Ultrasound), Certificate

www.rit.edu/study/diagnostic-medical-sonography-ultrasound-certificate
Hamad Ghazle, Professor
585-475-2241, hhgscl@rit.edu

Program overview

The diagnostic medical sonography certificate is an 18-month program that includes a clinical internship. The program-which focuses on various abdominal, gynecological, obstetrical, and small parts examinations including certain vascular studies-has been designed to meet and exceed the objectives of the Joint Review Committee on Education in Diagnostic Medical Sonography of the Commission on Accreditation of Allied Health Education Programs (CAAHEP). It was created to produce competent, compassionate, and responsible ultrasound professionals and leaders. The certificate is available to all registered allied health practitioners as well as to those holding an associate or bachelor's degree in a relevant discipline. The program includes lectures and course work integrated with a clinical internship. Dependent on a student's previous degree, certain prerequisite courses may be required prior to enrollment. Required prerequisite courses include one year of anatomy and physiology with laboratories and one year of college or general physics with laboratories.

Graduates earning the certificate will:

- be prepared as competent entry-level general sonographers in the cognitive (knowledge), psychomotor (skills), and affective (behavior) learning domains;
- gain a thorough working knowledge of ultrasound scanning techniques;
- be skilled in the operation of ultrasound instrumentation and laboratory equipment;
- acquire the proper manner in working with patients; and
- under the guidance of faculty and professional staff, be capable of scheduling and performing the daily workload of ultrasound procedures, evaluating new procedures where necessary, and supervising other technical personnel.

Plan of Study

During the first academic year, students complete all the prerequisite courses required to enter the clinical internship phase of the program. Students also apply, polish, and test their clinical skills and techniques in the on-campus ultrasound scanning suite, which is equipped with a variety of ultrasound equipment. Following a required two-week pre-clinical internship orientation session, students begin their training at the first of two assigned clinical training sites.

Experiential Learning

Clinical Internships

The one-year clinical internship provides hands-on experience at two or more approved medical facilities. After completing the pre-internship course work, all students begin the internship by attending an intensive two-week experience on campus. During this time they enhance and polish the skills they previously learned, prepare to perform complete sonographic examinations as performed in real clinical settings, and advance their knowledge in recognizing anatomy and disease states using a variety of equipment in the Ultrasound Scanning Suite. Students also learn about hospital, departmental, and administrative operations. After completing these requirements, candidates are assigned to a medical
training site for their clinical experience. At these facilities, students work side-by-side with sonographers, physicians, and other health care professionals to learn, develop, apply, and sharpen the necessary skills to perform general ultrasound examinations. Students' clinical progress and performance are closely monitored by the program's clinical coordinator and program director, who have regular communication and make periodic visits to the clinical internship sites. Additionally, students return to campus each month for three days of lectures, presentations, projects, and testing. Students may complete their clinical internships at any approved regional or national medical ultrasound facility, with approval of the program director.

Curriculum

Diagnostic Medical Sonography, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
DMSO-301	Sonographic Scanning Skills and Techniques I	3
DMSO-302	Sonographic Scanning Skills and Techniques II	3
DMSO-309	Sonography Physics and Instrumentation I	3
DMSO-310	Sonography Physics and Instrumentation II	3
DMSO-312	Human Cross-Sectional Anatomy	3
MEDS-333	Patient Care	2
MEDS-415	Pathophysiology of Organ Systems I	3
Second Year		
DMSO-414	Sonographic Vascular Evaluation	3
DMSO-452	Obstetrical Sonography I	3
DMSO-453	Gynecological Sonography	3
DMSO-454	Obstetrical Sonography II	3
DMSO-456	Abdominal and Small Parts Sonography I	3
DMSO-457	Abdominal and Small Parts Sonography II	3
DMSO-460	Administration and Research in Sonography (WI-PR)	3
DMSO-570	Clinical Sonography I	7
DMSO-571	Clinical Sonography II	5
Total Semester Credit Hours	$\mathbf{5 3}$	

Accreditation

The Abdomen-Extended, Obstetrics and Gynecology, and Adult Cardiac DMS Program at Rochester Institute of Technology is accredited by the Commission on Accreditation of Allied Health Education Programs (www.caahep.org) upon the recommendation of the Joint Review on Education in Diagnostic Medical Sonography (JRC-DMS).

CAAHEP

9355-113th St. N, \#7709
Seminole, FL 33775
727-210-2350
www.caahep.org
JRC-DMS
6021 University Blvd., Suite 500
Ellicott City, MD 21043
443-973-3251
www.jrcdms.org
It is noteworthy to mention that the diagnostic medical sonography degree is institutionally accredited and programmatically accredited. This type of dual accreditation meets both professional and employer requirements and also allows our graduates to immediately sit for the national board examinations administered by the American Registry of Diagnostic Medical Sonography (ARDMS).

Dietetics and Nutrition, BS

www.rit.edu/study/dietetics-and-nutrition-bs
Elizabeth Ruder, Associate Professor
585-475-2402, ehrihst@rit.edu

Program overview

Public interest in nutrition for maintaining good health throughout life has never been stronger. Completing a degree in dietetics and nutrition is your first step to becoming a Registered Dietitian Nutritionist (RDN; also known as an RD). RDNs work with people of all ages, cultures, and economic means. They are credentialed health professionals who apply nutritional science to individuals, families, communities, and beyond to help their clients address nutritional needs.

People are increasingly interested in the nutritional requirements for obtaining good health and long life. Registered dietitian nutritionists (RDNs) work with people of all ages, cultures, and economic means. They learn to understand people as individuals, thereby helping their clients solve their nutritional needs. RDNs are health professionals who apply the art and science of food and nutrition.

The major leads to a BS degree that meets the educational requirements of the Academy of Nutrition and Dietetics. The pre-professional phase (years 1 and 2) involves core courses in science, food science, basic nutrition, mathematics, liberal arts, and business. The professional phase (years 3 and 4) includes practicum experiences in various upper-division courses. Three cooperative work experiences, including one position in health care food and nutrition services, are a requirement of the major. Students also have the opportunity to acquire a certificate or minor in a variety of content areas, including exercise science. To become credentialed as an RDN students also need to complete an accredited supervised practice after graduation and pass the National Registration Exam for Dietitian Nutritionists.

Part of the Wegmans School of Health and Nutrition, the BS program in dietetics and nutrition is a challenging curriculum that prepares students to become RDNs and to practice in diverse settings such as hospitals, clinical practices, other health care facilities, universities, government agencies, research facilities, food and pharmaceutical companies, public health organizations, public wellness programs, school foodservice, commercial foodservice, journalism, marketing, sports nutrition, and corporate wellness programs. (Additional information is available in the Dietetics and Nutrition Program Handbook.)

Program Strengths

- RIT/Rochester Regional Health Alliance: RIT is Rochester Regional Health's official academic affiliate and Rochester Regional is the university's official affiliated clinical partner. We work together to improve the quality and cost of health care delivery and to demonstrably improve the health of the people of Western New York and the Finger Lakes. The alliance provides a primary network of health care opportunities for student work experiences (co-ops), practicums, and research.
- A successful program with significant history at RIT. The dietetics and nutrition program originated in 1892 as a food program under RIT's predecessor, Mechanics Institute.
- Our alumni include Dr. Judith Brown, author of a nationally used nutrition text; Dr. Penny Kris-Etherton, Distinguished professor at The Pennsylvania State University and winner of several awards for research including dietary fats and health benefits of dark chocolate.
- Active support and interaction with Rochester nutrition and health care communities provide significant opportunities for experiential learning activities in upper-division courses
- Faculty with strong teaching and research skills who have won awards for teaching and conducting research. They have presented research at national and international conferences and routinely publish in peerreviewed science and health journals.
- Historical relationship with RIT's hospitality and tourism management major emphasizes culinary expertise, management, and leadership training, fostering a unique skill set for the Registered Dietitian Nutritionist
- Excellent first-time pass rate on RD exam puts RIT in the 88th percentile of all DPD-programs for first-attempt pass rate.
- Excellent supervised practice (dietetic internship) placement rate (Over past five years, 100% of graduates who seek supervised practice are placed within 12 months of graduating)
- Excellent employment rate (100% of graduates over the past five years are employed in the field within six months of completing dietetic internship)
- The curriculum equally emphasizes clinical nutrition, community nutrition, and food management, which prepares students for diverse employment opportunities
- Small program size and dedicated faculty members ensure individualized student attention
- Strong undergraduate research component: Each student completes two individual and one group research projects with frequent dissemination of student research at the annual meeting of the New York State Academy of Nutrition \& Dietetics
- Requirement of co-op work experiences in food and nutrition supported by Office of Career Services and Cooperative Education
- New state of the art facility includes significant opportunities for interdisciplinary experiences with other health care programs and real-world experience for students via actual health clinics and simulation laboratory
- Inclusion of physical-focused assessment using a simulation laboratory.
- Multiple opportunities for international study experiences, including faculty-led programs to study the Mediterranean Diet in Croatia and childhood anemia in Ghana. Study abroad opportunities at RIT's global campuses in China, Croatia, Dubai, and Kosovo, or through affiliate programs at other universities

Mission

The mission of RIT's dietetics and nutrition major is based on the philosophy that a college graduate should have a broad-based education. This encompasses meeting the current and future needs of students for supervised practice leading to eligibility for the CDR credentialing exam to become a RDN and practice careers in the changing food and nutrition environment to better serve society.

Goals of the Dietetics and Nutrition Program

1. Prepare graduates for successful application to accredited supervised practice programs and to become competent, entry-level Registered Dietitian Nutritionists.
2. Prepare graduates to continually participate in professional development.

Objectives/Outcomes of the Dietetics and Nutrition

Program

Objective:

The program's one-year pass rate (graduates who pass the registration exam within one year of first attempt) on the CDR credentialing exam for dietitian nutritionists is at least 80%.

Outcome:

100\% one-year pass rate for exam administered from January-December 2020

Objective:

80% of program graduates are admitted to a supervised practice program within 12 months of graduation.

Outcome:

100% acceptance into a supervised practice program within 12 months of graduation.

Objective:

85% of program graduates apply for admission to a supervised practice program prior to or within 12 months of graduation.

Outcome:

100% applied to supervised practice program prior to or within 12 months of graduation.

Objective:

At least 80\% of program students complete program/degree requirements within 6 years (150\% of program length).

Outcome:

100% of students complete the program within 6 years (150% of program length).

Objective:

At least 90% of supervised practice directors who answer a survey will agree or strongly agree with the statement: "This RIT graduate was adequately prepared for supervised practice."

Outcome:

Data under collection, outcome forthcoming.

Objective:

95% of graduates who responded to a survey and have completed or are completing supervised practice will verify that they were prepared.

Outcome:

100% of graduate survey responders felt they were prepared for supervised practice.

Objective:

100% of students in the third and fourth year of the program will be members of the Academy of Nutrition and Dietetics (AND).

Outcome:

100% of third- and fourth-year students are AND members.

Objective:

100% of all graduates who become RDNs will participate in professional development activities required
for maintenance of RDN status

Outcome:

100% of supervised practice directors surveyed indicated they agreed or strongly agreed that RIT graduates were adequately prepared for supervised practice

Becoming a Registered Dietitian Nutritionist (RDN)

The following are the steps necessary to become a Registered Dietitian Nutritionist:

- Successful completion of the BS in dietetics and nutrition degree requirements; including three blocks of approved cooperative education experience.
- Complete an ACEND accredited 1,200 hour supervised practice program, such as a dietetic internship or coordinated master's program after graduation.
- Pass the CDR Credentialing Exam for Dietitians.

In addition to the professional credential of the RDN, forty-six states currently have statutory provisions (licensure/certification) regarding professional regulation of dietitians and/or nutritionists. Information regarding statutes of individual states is provided by the Academy of Nutrition and Dietetics.

Effective January 1, 2024, the Commission on Dietetic Registration (CDR) will require a minimum of a master's degree to be eligible to take the credentialing exam to become a registered dietitian nutritionist (RDN). In order to be approved for registration examination eligibility with a bachelor's degree, an individual must meet all eligibility requirements and be submitted into CDR's Registration Eligibility Processing System (REPS) before 12:00 midnight Central Time, December 31, 2023. For more information about this requirement visit CDR's website. In addition, CDR requires that individuals complete course work and supervised practice in program(s) accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). Graduates who successfully complete the ACEND-accredited Didactic program at Rochester Institute of Technology are eligible to apply to an ACEND-accredited supervised practice program. In most states, graduates also must obtain licensure or certification to practice. Visit the Commission on Dietetic Registration for more information on state licensure requirements.

RIT's dietetics and nutrition program will be compliant with these new requirements for accreditation.

Visit the Academy of Nutrition and Dietetics for more information about educational pathways to become a RDN.

Career Opportunities for a Registered Dietitian Nutritionist

A Registered Dietitian Nutritionist advises and counsels others on food, nutrition, and lifestyle. They may explain nutrition issues, assess a client's dietary and health needs, develop meal plans, gauge the effects of these meal plans, conduct research, and promote nutrition through public speaking and community outreach programs. Salary information for dietitians and nutritionists is available from the Bureau of Labor Statistics. Specialties within the Registered Dietitian Nutritionist profession include:

- Hospitals, HMOs, or other health care facilities: Educating patients about nutrition and administering medical nutrition therapy as part of the health care team. RDNs may also manage the foodservice operations in these settings, as well as in schools, day-care centers, and correctional facilities, overseeing everything from food purchasing and preparation to managing staff.
- Sports nutrition and corporate wellness programs: Educating clients about the connection between food, fitness, and health.
- Food and nutrition-related businesses and industries: Working in communications, consumer affairs, public relations, marketing, or product development.
- Private practice, working under contract with health care or food companies, or in their own business: RDNs may provide services to foodservice or restaurant managers, food vendors and distributors, athletes, nursing home residents, or company employees.
- Community and public health settings: RDNs teach, monitor, and advise the public, and help to improve quality of life through healthy eating habits.
- Universities and medical centers: Teaching physicians, nurses, dietetics students, and others the sophisticated science of food and nutrition.
- Research areas: In food and pharmaceutical companies, universities and hospitals, directing or conducting experiments to answer critical nutrition questions and find alternative foods or nutrition recommendations for the public.

Student Dietetics and Nutrition Association

The Student Dietetics and Nutrition Association is a student club comprised of dietetics and nutrition students and supports experiential learning outside of the classroom. The club promotes health and nutrition on campus as well as volunteer opportunities with local organizations. Club activities include volunteering at local food banks and schools, presenting health related information at RIT events, and educational activities for members.

Community Partners

As a dietetics and nutrition student, the Rochester metropolitan area is your lab for hands-on, experience-based learning. The program has a rich history in the community and partners with a variety of organizations throughout the area to expose students to a wide range of nutritionrelated settings. These organizations represent a small sampling of the over 50 community partners with whom we collaborate:

- Abbott Nutrition
- American Dairy Association and Dairy Council
- American Heart Association
- Food and Drug Administration
- Foodlink
- Gates-Chili School District
- Heritage Christian Services
- Hillside Family of Agencies
- Jewish Senior Life
- Genesee Dietetic Association
- On Nutrition
- Ortho-Clinical Diagnostics
- RIT
- RIT Dining Services
- Rochester Psychiatric Center
- Rochester Regional Health
- University of Rochester Medical Center
- Wegmans
- WIC
- YMCA of Greater Rochester

2+2 Transfer Options

The dietetics and nutrition program has articulation agreements with a number of colleges that enable you to seamlessly transfer into the dietetics and nutrition program upon the successful completion of your associate degree at one of the following schools. For more information regarding these $2+2$ transfer options, please contact Undergraduate Admissions or the program director.

- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- SUNY Erie
- Monroe Community College
- Onondaga Community College

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Nutritional Sciences Minor

Housed in the Wegmans School of Health and Nutrition, students may enhance their primary course of study by minoring in nutritional sciences, which focuses on nutrients and human nutrition issues. The study of nutrients includes knowledge about food sources, metabolism, and relationship to health. Nutrition influences and is affected by health, cultural issues, exercise science, food systems, hospitality, and behavior. For more information, visit the nutritional sciences minor page.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

Co-op is a full-time paid work experience for at least 400 hours in an industry related to food and nutrition. Students register for co-op just like a class but do not pay tuition. The course is graded as pass/fail. Students are required to complete three co-op experiences to receive their BS degree in dietetics and nutrition and the majority complete their co-op experiences in the summer. One co-op must be completed in a health care environment. For more information, please visit the Office of Career Service and Cooperative Education.
Students often complete co-ops with job titles such as diet clerk, health/nutrition educator, nutrition assistant, cook, food service worker, prep cook/worker, and patient care technician, among others.

A sample of co-op employers in the Rochester area includes Wegmans, Rochester General Hospital, Strong Memorial Hospital, Highland Hospital, St. John's Home, RIT Dining Services, and Monroe Community Hospital. Students may complete co-ops in their hometown area as well as in other locations throughout the United States and while studying abroad.

Beyond the Classroom

Students engage in experiential learning with a variety of Rochesterbased organizations.
Study abroad: Success in today's global society requires experience and leadership that drives education beyond traditional boundaries. RIT is committed to expanding opportunities for global education, international connections, work experience, and cultural exchanges. Studying abroad can fulfill a co-op experience, supporting a student's desire to study abroad while satisfying graduation requirements. For information on study abroad opportunities, please visit RIT Global.

The dietetics and nutrition department offers faculty-led international experiences such as studying the Mediterranean diet in Croatia and traveling to conduct a research project on childhood anemia in Ghana.

Curriculum

Dietetics and Nutrition, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Natural Science Inquiry Perspective: General Chemistry for Engineers	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	1
ECON-101	General Education - Elective: Principles of Microeconomics	3
HSPT-215	Principles of Food Production and Service	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
MEDG-106	General Education - Scientific Principles Perspective: Microbiology of Health And Disease	3
NUTR-100	Nutr \& Dietetics as a Health Profession	1
NUTR-215	Foundations of Nutrition Sciences	3
NUTR-499	Cooperative Education Experience (summer)	0
PSYC-101	General Education - Elective: Introduction to Psychology	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
ACCT-110	Financial Accounting	3
CHMB-402	General Education - Elective: Biochemistry I	3
HSPT-335	Food and Beverage Management	3
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	4
NUTR-223	Food \& Beverage Management Lab	1
NUTR-499	Cooperative Education Experience (summer)	0
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	Open Elective	4
	General Education - Immersion 1	3
	General Education - Ethical Perspective	3
Third Year		
HRDE-380	Human Resource Management	3
HSPT-325	Food Innovation Development	3
HSPT-375	Customer Experience Management	3
MGMT-215	Organizational Behavior	3
NUTR-333	Techniques of Dietetics Education	3
NUTR-402	Dietetic Environment	3
NUTR-499	Cooperative Education Experience (summer)	0
NUTR-555	Nutrition Throughout the Lifecycle	3
	General Education - Immersion 2	3
	General Education - Immersion 3	3
	General Education-Global Perspective	3
Fourth Year		
NUTR-497	Dietetic Internship Seminar	1
NUTR-510	Integrative Approaches to Health	1
NUTR-525	Medical Nutrition Therapy I	3
NUTR-526	Medical Nutrition Therapy II	3
NUTR-550	Community Nutrition	3
NUTR-560	Health and Nutrition Research Foundations (WI-PR)	3
	Open Electives	9
	General Education - Artistic Perspective	3
	General Education - Social Perspective	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

The dietetics and nutrition major is accredited through June 2023 by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) of the Academy of Nutrition and Dietetics (AND), 120 South Riverside Plaza, Suite 2000, Chicago, IL 60606-6995.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math is required.
- Biology and chemistry required.

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, sciences, and math. Science courses required.

Appropriate associate degree programs for transfer

Dietetics or nutrition, food service management, or liberal arts.
Please note: The dietetics and nutrition program has articulation agreements with the following institutions.

- Erie Community College
- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- Monroe Community College
- Onondaga Community College

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Echocardiography (Cardiac Ultrasound), Certificate

www.rit.edu/study/echocardiography-cardiac-ultrasound-certificate
Hamad Ghazle, Professor
585-475-2241, hhgscl@rit.edu

Program overview

Echocardiography focuses on the evaluation of the heart, its valves and chambers, and associated vessels. The echocardiography certificate produces competent, compassionate, and responsible professionals and leaders who are skilled in ultrasound scanning techniques and the operation of ultrasound instrumentation.

The certificate in echocardiography is an 18 -month program that includes a clinical internship. The program, which focuses on the evaluation of the heart, its valves and chambers, and associated vessels, has been designed to exceed the objectives of the Joint Review Committee on Education in Diagnostic Medical Sonography. The program produces competent, compassionate, and responsible echocardiography professionals and leaders. This certificate is available to all registered allied health practitioners as well as those holding an associate or bachelor's degree in a relevant discipline. The certificate includes lectures and course work integrated with a clinical internship. Dependent on the previous degree, certain prerequisite courses may be required prior to enrollment. Required prerequisite courses include one year of anatomy and physiology with laboratories, one year of college or general physics with laboratories. A patient care course/experience may be required prior to or during enrollment. For more information on the prerequisite courses and completion time, please contact the program director. We will be glad to assist you and provide you with detailed information dependent on your situation.

Graduates earning the certificate will:

- be prepared as competent entry-level adult cardiac sonographers in the cognitive (knowledge), psychomotor (skills), and affective (behavior) learning domains.
- gain a thorough working knowledge of ultrasound scanning techniques;
- be skilled in the operation of ultrasound instrumentation and laboratory equipment;
- acquire the proper manner in working with patients; and
- under the guidance of faculty and professional staff, be capable of scheduling and performing the daily workload of ultrasound procedures, evaluating new procedures where necessary, and supervising other technical personnel.

Plan of Study

During the first academic year, students complete all the prerequisite courses required to enter the clinical internship phase of the program. Students also apply, polish, and test their clinical skills and techniques in the on-campus Ultrasound Scanning Suite, which is equipped with a variety of ultrasound equipment. Following a required two-week preclinical internship orientation session, students begin their training at the first of two assigned clinical training sites.

In addition to the echocardiography certificate, RIT also offers a bachelor of science degree and a certificate in diagnostic medical sonography. Both of these options are designed to meet the growing needs of the national and international medical communities.

Experiential Learning

Clinical Internships

The one-year clinical internship provides hands-on experience at two or more approved medical facilities. After completing the pre-internship course work, all students begin the internship by attending an intensive two-week experience on campus. During this time they enhance and polish the skills they previously learned, prepare to perform complete sonographic examinations as performed in real clinical settings, and advance their knowledge in recognizing anatomy and disease states using a variety of equipment in the Ultrasound Scanning Suite. Students also learn about hospital, departmental, and administrative operations. After completing these requirements, candidates are assigned to a medical training site for their clinical experience. At these facilities, students work side-by-side with sonographers, physicians, and other health care professionals to learn, develop, apply, and sharpen the necessary skills to perform general ultrasound examinations. Students' clinical progress and performance are closely monitored by the program's clinical coordinator and program director, who have regular communication and make periodic visits to the clinical internship sites. Additionally, students return to campus each month for three days of lectures, presentations, projects, and testing. Students may complete their clinical internships at any approved regional or national medical ultrasound facility, with approval of the program director.

Curriculum

Echocardiography, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ECHO-305	Cardiac Sectional Anatomy and Physiology	3
ECHO-307	Echocardiographic Scanning Skills and Techniques I	1
ECHO-308	Echocardiographic Scanning Skills and Techniques II	1
ECHO-320	Electrophysiology and Cardiac Pharmacology	2
DMSO-309	Sonography Physics and Instrumentation I	3
DMSO-310	Sonography Physics and Instrumentation II	3
MEDS-415	Pathophysiology of Organ Systems I	3
Second Year		2
ECHO-401	Echocardiography I	3
ECHO-402	Echocardiography II	3
ECHO-410	Ischemic Heart Disease: Stress Echocardiography	2
ECHO-415	Cardiac M-Mode	2
ECHO-420	Clinical Echocardiography I	4
ECHO-421	Clinical Echocardiography II	4
ECHO-425	Seminar in Echocardiography	2
ECHO-430	Congenital Heart Disease I	2
ECHO-431	Congenital Heart Disease II	2
ECHO-465	Echocardiography Special Procedures	2
Total Semester	dit Hours	4

Accreditation

The Abdomen-Extended, Obstetrics and Gynecology, and Adult Cardiac DMS Program at Rochester Institute of Technology is accredited by the Commission on Accreditation of Allied Health Education Programs (www.caahep.org) upon the recommendation of the Joint Review on Education in Diagnostic Medical Sonography (JRC-DMS).
CAAHEP
9355-113th St. N, \#7709
Seminole, FL 33775
727-210-2350
www.caahep.org
JRC-DMS
6021 University Blvd., Suite 500
Ellicott City, MD 21043
443-973-3251
www.jrcdms.org

It is noteworthy to mention that the diagnostic medical sonography degree is institutionally accredited and programmatically accredited. This type of dual accreditation meets both professional and employer requirements and also allows our graduates to immediately sit for the national board examinations administered by the American Registry of Diagnostic Medical Sonography (ARDMS).

Exercise Science, BS

www.rit.edu/study/exercise-science-bs
\section*{William Brewer, Senior Lecturer}
585-475-2476, wsbscl@rit.edu

Program overview

As an exercise science major you will learn to scientifically address issues of health and fitness as well as human performance as part of a rapidly growing field. A clinical track focuses on helping people recover from the unhealthy effects of a sedentary lifestyle and an athletic track focuses on training athletes to extend and expand their capacity for exceptional human performance.

RIT's exercise science degree is designed to be completed in four years and is offered at RIT as an on-campus learning experience. The program also offers clinical and athletic tracks.

The clinical track is designed for students interested in using exercise as therapy. Clinical exercise medicine is an emerging field that is poised to grow as the population ages. This field is for students who see the opportunity to provide exercise/fitness services as an integrated medical service. With an entrepreneurial spirit, students prepare themselves to become the newest practitioners in the health care field. Clinical exercise physiologists perform fitness assessments, design exercise prescriptions, and implement therapeutic exercise programs for health promotion.

The athletic track is for students who want to raise the bar of performance for athletes at all levels. A scientific approach to athletic conditioning improves performance while maintaining the health of athletes. Athletic track courses allow students to learn how to better train and maintain athletes, especially those performing at intense levels of competition. Skilled strength and conditioning specialists are in demand at all levels of sports and the prevalence of private-sector sports-specific training facilities has never been higher. Students interested in a career to train athletes and enhance the capabilities of those who play sports will be well prepared to advise and guide the next generation of athletic performers.

Program Goals and Student Learning Outcomes

The exercise science program has set the following student goals and learning outcomes:

Integrate scientific information and research into practice

- Demonstrate how to locate, interpret, evaluate, and use professional literature to make ethical practice decisions.
- Use current information technologies to locate and apply evidencebased guidelines and protocols.
Develop communication skills and professional behaviors for entry into pre-professional practice
- Demonstrate effective and professional oral and written communication
- Demonstrate assertiveness, advocacy, and negotiation skills appropriate to the situation
- Demonstrate counseling techniques to facilitate behavior change
- Apply established guidelines to professional practice
- Describe the professional roles that collaborate with an exercise physiologist in the delivery of fitness services
Develop and deliver information and clinical customer services
- Use the fitness assessment process to make decisions, identify problems and evaluate fitness interventions
- Apply knowledge of the role of the environment, exercise, and lifestyle choices to develop interventions to affect change and enhance wellness in diverse individuals and groups
- Utilize knowledge of education and behavior change theories to develop an educational session or program for a target population
Demonstrate foundational knowledge of core sciences
- Demonstrate knowledge of physical, chemical, and biological sciences Prepare students for successful completion of National Fitness Certification Exams
- Acquire the knowledge, skills, and abilities required for successful completion of an advanced certification with an organization accredited by the National Commission for Certifying Agencies (NCCA). Examples include the American College of Sports Medicine (ACSM), Certified Exercise Physiologist, and the National Strength and Conditioning Association (NSCA), Certified Strength and Conditioning Specialist.

Minor in Exercise Science

The exercise science minor is designed to prepare students to take an accredited certification exam and to become a professionally credentialed personal trainer. The minor is open to all RIT students, except those majoring in exercise science.

Certificate in Exercise Science

Completion of the certificate in exercise science prepares you for employment as an entry-level service provider in a fitness facility. To enroll in the certificate program, you do not need to be a matriculated student at RIT. The certificate requires the completion of three courses. For additional information, including curriculum and admissions information, please visit the exercise science certificate program page.

Certification

Students who complete the athletic track are prepared to achieve professional certification through the National Strength and Conditioning Association (NSCA) as a Certified Strength and Conditioning Specialist (CSCS). The CSCS is a highly respected and sought-after credential in the field of strength conditioning. Students completing the clinical track are well prepared to take the American College of Sports Medicine (ACSM) Certified Exercise Physiologist exam. This certification validates the knowledge, skills, and abilities of fitness and exercise practitioners who are prepared to work with people diagnosed with chronic diseases.

Exercise Science as a Pathway to Medical School

An exercise science degree can allow to pursue your passion for human performance and prepare you to apply to medical school.

Physicians who understand the value of regular exercise in the management of chronic disease conditions such as coronary artery disease and diabetes are often successful providers in future models of health care. An undergraduate education in exercise science is an ideal way to develop this knowledge while preparing for entrance to medical school. RIT's exercise science major also prepares you for certification as an ACSM Exercise Physiologist, a credential that verifies your knowledge, skills, and abilities in exercise prescription and qualifies you for employment in a number of growing areas of fitness provision.

The exercise science major also provides you with an excellent education that serves as a strong foundation for a medical career that follows the principles of Exercise is Medicine, a global health initiative managed by the American College of Sports Medicine (ACSM), which seeks to increase the use of exercise as a primacy therapeutic modality for the management of chronic disease.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (such as physician assistant, physical therapy, and occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

2+2 Transfer Options

The exercise science program has articulation agreements with a number of colleges that enable you to seamlessly transfer into the exercise science program upon the successful completion of your associate degree at one of the following schools. For more information regarding these $2+2$ transfer options, please contact Undergraduate Admissions or the program director.

- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- Morrisville State College
- SUNY Erie
- Monroe Community College

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

Cooperative education and internships are work experience in your field of study. And they set RIT graduates apart from their competitors. It's ex-posure-early and often-to a variety of professional work environments, career paths, and industries. Cooperative education and internships are designed for your success.

Cooperative education and internships are optional but strongly encouraged for students in the exercise science major.

Curriculum

Exercise Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-101	General Education - Elective: General Biology I	
BIOL-102	General Education - Elective: General Biology II	
BIOL-103	General Education - Elective: General Biology I Lab	
BIOL-104	General Education - Elective: General Biology II Lab	
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-142	General Education - Scientific Principles Perspective General \& Analytical Chemistry II	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
CHMG-146	General Education - Scientific Principles Perspective General \& Analytical Chemistry II Lab	
EXSC-101	Seminar in Exercise Science	
EXSC-150	Introduction to Exercise Science	
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	
MEDS-242	Cell Structure \& Function	
YOPS-10	RIT 365: RIT Connections	
	General Education - First-Year Writing (WI)	
	General Education-Elective	
Second Year		
EXSC-206	Fitness Prescription	
EXSC-210	Human Motor Behavior	
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	
PHYS-111	General Education - Elective: College Physics I	4
PHYS-112	General Education - Elective: College Physics II	
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	
	General Education - Artistic Perspective	
	General Education - Ethical Perspective	
	General Education-Global Perspective	
Third Year		
EXSC-410	Kinesiology	
EXSC-420	Biomechanics	
EXSC-550	Exercise Physiology	
	Professional Electives	
	General Education - Social Perspective	3
	General Education - Immersion 1	
Fourth Year		
EXSC-270	Group Exercise	3
EXSC-320	Coaching Healthy Behavior	3
NUTR-560	Health and Nutrition Research Foundations (WI-PR)	
	Open Electives	12
	General Education - Immersion 2,3	
Total Semester Credit Hours		121
Please see General Education Curriculum (GE) for more information. (WI) Refers to a writing-intensive course within the major. Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.		
Electives		
COURSE		
EXSC-207 Exercise for Special Populations		
EXSC-280 Strength Training for Performance		
EXSC-360 Worksite Health Promotion		
EXSC-370 Senior Adult Fitness		
EXSC-380 Sports Psychology		
EXSC-430 Theory of Athletic Injuries		
EXSC-440 Cardiac Rehabilitation		
EXSC-480 Training High Performance Athletes		
EXSC-587 Experiential Topics in Exercise Science		
EXSC-589 Topics in Exercise Science		
EXSC-590	Exercise Science Research (WI-PR)	

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math is required. Pre-calculus is recommended
- Biology and Chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in liberal arts with science option
Please note: The exercise science program has articulation agreements with the following institutions:

- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- Monroe Community College
- Morrisville State College
- SUNY Erie

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Exercise Science, Certificate

www.rit.edu/study/exercise-science-certificate
William Brewer, Senior Lecturer
585-475-2476, wsbscl@rit.edu

Program overview

A certificate in exercise science prepares you for employment as an entry-level service provider in a fitness facility. It can also complement other programs such as the biomedical sciences, nutritional sciences, or dietetics and nutrition, as it bolsters your knowledge of exercise, in particular, strength and conditioning.

College-level knowledge and professional certification are increasingly required for those who wish to work in the fitness industry, whether fullor part-time, in an athletic club, or sports medicine facility. Knowledge of and professional certification in fitness instruction and programming also are of increasing value to allied health professionals who wish to augment their care or practice with the ability to prescribe exercise programs that address special medical needs.

The certificate in exercise science covers the basic principles of exercise physiology, fitness assessment, the preparation of fitness programs and prescriptions, and the development of exercise prescriptions for individuals with medical or other significant limitations. Students who successfully complete all three courses are prepared to sit for professional certification examinations from the American College of Sports Medicine, American Council on Exercise, and the American Academy of Health and Fitness Professionals, as well as for certifications from the Cooper Institute for Aerobic Research, the National Academy of Sports Medicine, and a number of other recognized organizations.

Curriculum

Exercise Science, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
EXSC-205	Sports Physiology \& Life Fitness	3
EXSC-206	Fitness Prescription	3
EXSC-207	Exercise for Special Populations	3

Total Semester Credit Hours

Health Systems Administration, Certificate

www.rit.edu/study/health-systems-administration-certificate

Carla Stebbins, Senior Lecturer
 585-475-4761, casihst@rit.edu

Program overview

The health systems administration certificate introduces students to the complexity of the U.S. health care system. You will learn how health care organizations plan for and deliver effective health care services, how various services are financed as well as other financial management strategies, and how to effectively lead these highly complex, mission-driven organizations that serve people throughout their lives.

Students working on undergraduate degrees in the health sciences or those considering a career within the health care industry, would benefit from this certificate program, as it provides an excellent orientation to the health care industry as a whole.

The health systems administration certificate is designed for three types individuals:

- Students who have completed their associate degree or are in the process of completing a bachelor's degree who are considering careers in health care but desire an orientation to the US health system;
- Working professionals, without a bachelor's degree, who are interested in exploring the health care delivery system; and
- Professionals that have invested in clinical degrees, but their primary programs fell short of a completed bachelor's degree who desire to understand the business side of health care.

Program Goals

There are three primary goals for the health systems administration certificate program:
3. Understand the role of the US health care system, how it compares to other countries systems, in achieving health and wellness;
4. Appreciate the complexity of the system and the related organizations that respond to the needs of their communities and the populations within them; and
5. Assess the leadership potential of those interested in careers within the design and delivery of high-quality health service systems.

Flexible, Online Curriculum

Each of the certificate's four courses are delivered online during the 14week, fall and spring semesters. Most courses are taught by faculty who also teach in the master of science degree in health systems management.

Curriculum

Health Systems Administration, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
HLTH-325	Health Care Leadership	3
HLTH-328	Finance for Health Care Professionals	3
HLTH-330	Health Care Planning And Program Development	3
HLTH-508	Integrated Health Systems and Population Health	3
Total Semester Credit Hours	$\mathbf{1 2}$	

Admission requirements

Certain countries are subject to comprehensive embargoes under US Export Controls, which prohibit virtually ALL exports, imports, and other transactions without a license or other US Government authorization. Learners from Syria, Sudan, North Korea, the Crimea region of the Ukraine, Iran, and Cuba may not register for RIT online courses. Nor may individuals on the United States Treasury Department's list of

Specially Designated Nationals or the United States Commerce Department's table of Deny Orders. By registering for RIT online courses, you represent and warrant that you are not located in, under the control of, or a national or resident of any such country or on any such list.

Nutritional Sciences, BS

www.rit.edu/study/nutritional-sciences-bs

Elizabeth Ruder, Associate Professor

585-475-2402, ehrihst@rit.edu

Program overview

Understanding nutrition, especially nutritional content, can have a remarkable impact on our health. Educating the public about the benefits of nutrition, and the various ways healthy living can improve our wellbeing, is the focus of the BS degree in nutritional sciences.

The nutritional sciences degree blends biological, chemical, and behavioral sciences to help health professionals, administrators of nutrition and health promotion programs, and the general public better understand and translate the science of food into policy and practice. Nutritionists and nutrition scientists apply their knowledge to help businesses offer employee wellness programs; assist food systems administrators and engineers involved in food innovation and technology; and oversee government programs addressing food insecurity and population health issues.

Part of the Wegmans School of Health and Nutrition, the major offers a challenging curriculum that prepares students with an in-depth understanding of nutrition as an important moderator of health. Students are well prepared to apply to professional programs, such as medical school, enter graduate school for further biomedical studies, or provide expertise in nutrition to the general public in a range of diverse settings (e.g., sports fitness programs, hospitality industry, nutrition writing, and federal nutrition programs).

An effective nutritional scientist is skilled in working with people to address behavioral issues, teach clients about nutrition and health properties in food, and offer nutrition supervision. The major offers a comprehensive curriculum that provides a solid foundation in nutritional sciences as well as leadership skills that include communication, problem solving, team dynamics, and interaction with the community. Additional information is available in the Nutritional Sciences handbook.

Program Goals and Outcomes

6. Prepare students to apply nutrition principles, concepts, and practices to domains aligned with health and wellbeing.
7. Demonstrate ability to integrate science-based nutrition information and research into practice.
8. Develop communication skills and professional behaviors for entry into professional practice.
9. Apply principles of management and systems to deliver nutrition programs and services.
10. Prepare students for successful application to graduate and professional schools or professional employment in health and nutrition careers.
11. Demonstrate knowledge and skills for customer service including: development and delivery of information, products and services to individuals, groups, and populations.

Program Strengths

- RIT/Rochester Regional Health Alliance: RIT is Rochester Regional Health's official academic affiliate and Rochester Regional is the university's official affiliated clinical partner. We work together to improve the quality and cost of health care delivery, and to demonstrably improve the health of the people of Western New York and the Finger Lakes. The alliance provides a primary network of health care
opportunities for student work experiences (co-ops), practicums, and research.
- Our alumni include Dr. Judith Brown, author of a nationally used nutrition text; Dr. Penny Kris-Etherton, Distinguished professor at The Pennsylvania State University and winner of several award for research including dietary fats and health benefits of dark chocolate.
- Active support and interaction with Rochester nutrition and health care communities provide significant opportunities for experiential learning activities in upper division courses
- Articulation with pre-medicine enables completion of all pre-med requirements.
- Faculty with strong teaching and research skills who have won awards for teaching and conducting research. They have presented at national and international conferences and routinely publish in peer-reviewed science and health journals.
- Small program size and dedicated faculty members ensure individualized student attention
- Strong undergraduate research component.
- Requirement of co-op work experiences in food and nutrition supported by Office of Career Services and Cooperative Education
- New state of the art facility includes significant opportunities for interdisciplinary experiences with other health care programs and real-world experience for students via actual health clinics and simulation laboratory
- Inclusion of physical-focused assessment using a simulation laboratory.
- Multiple opportunities for international study experiences, including faculty-led programs to study the Mediterranean Diet in Croatia and childhood anemia in Ghana. Study abroad opportunities at RIT's global campuses in China, Croatia, Dubai, and Kosovo, or through affiliate programs at other universities

Student Dietetics and Nutrition Association

The Student Dietetics and Nutrition Association is a student club comprised of dietetics and nutrition students and supports experiential learning outside of the classroom. The club promotes health and nutrition on campus as well as volunteer opportunities with local organizations. Club activities include volunteering at local food banks and schools, presenting health related information at RIT events, and educational activities for members.

Career Opportunities

Careers in nutrition are diverse, ranging from policy development, communications, and social and community services. You can choose to select electives to become eligible to sit for the Certified Health Education Specialist (CHES), a respected credential in health care education. You will also be well prepared to pursue graduate study for a career in medicine, allied health, or research.

Community Partners

As a dietetics and nutrition student, the Rochester metropolitan area is your lab for hands-on, experience-based learning. The program has a rich history in the community and partners with a variety of organizations throughout the area to expose students to a wide range of nutritionrelated settings. These organizations represent a small sampling of the over 50 community partners with whom we collaborate:

- Abbott Nutrition
- American Dairy Association and Dairy Council
- American Heart Association
- Food and Drug Administration
- Foodlink
- Gates-Chili School District
- Heritage Christian Services
- Hillside Family of Agencies
- Jewish Senior Life
- Genesee Dietetic Association
- On Nutrition
- Ortho-Clinical Diagnostics
- RIT
- RIT Dining Services
- Rochester Psychiatric Center
- Rochester Regional Health
- University of Rochester Medical Center
- Wegmans
- WIC
- YMCA of Greater Rochester

Nutritional Sciences as a Pathway to Medical School

Nutrition is a powerful tool in managing health. By making positive nutritional changes to one's lifestyle, people suffering from a host of medical issues-from obesity and diabetes to heart disease-can treat and manage them effectively. Diet can also play a powerful role in preventing disease.
In medical school, very few courses-less than 20 hours of instruction over four years-are dedicated to the role of nutrition in medical care. Medical school curriculum has not been revised to reflect the impact of lifestyle-related chronic disease. As a result, the level of nutrition courses in medical school fail to address this growing public health concern. An undergraduate degree in nutritional sciences is an excellent pre-med major. First, it fulfills the pre-med requirements for course work in biological and physical sciences. Second, and just as important, it provides you with the comprehensive knowledge of nutrition and its powerful role in treating and managing health issues. A background in nutrition, paired with a medical degree, positions you well for providing comprehensive patient care as a medical professional. You will be able to address a patient's care from both a medical and nutritional perspective, providing complete and thorough advice and guidance to your patients.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (such as physician assistant, physical therapy, and occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

2+2 Transfer Options

The nutritional sciences program has articulation agreements with a number of colleges that enable you to seamlessly transfer into the nutritional sciences program upon the successful completion of your associate degree at one of the following schools. For more information regarding these $2+2$ transfer options, please contact Undergraduate Admissions or the program director.

- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- SUNY Erie
- Monroe Community College
- Onondaga Community College

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Note: The nutritional sciences major does not meet the educational requirements of the Academy of Nutrition and Dietetics that lead to eligibility to become a Registered Dietitian Nutritionist.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

The nutritional sciences program requires a 400 -hour cooperative education experience in an industry setting related to food and nutrition. Coop is paid, full-time employment in your field of study. Students do not pay tuition during co-op experiences. Students are required to complete two co-op experiences to receive their BS degree in nutritional sciences and the majority of students complete their co-ops in the summer. For transfer students possessing at least an associate's degree, one co-op may be waived.

Students often complete co-ops with job titles such as diet clerk, health/nutrition educator, nutrition assistant, cook, food service worker, prep cook/worker, and patient care technician, among others.

A sample of co-op employers in the Rochester area includes Wegmans, Rochester General Hospital, Strong Memorial Hospital, Highland Hospital, St. John's Home, RIT Dining Services, and Monroe Community Hospital. Students are allowed to complete co-ops in their hometown area as well as in other locations throughout the United States and while studying abroad.

Beyond the Classroom

Students engage in experiential learning with a variety of Rochesterbased organizations.

Study abroad: Success in today's global society requires experience and leadership that drives education beyond traditional boundaries. RIT is committed to expanding opportunities for global education, international connections, work experience and cultural exchanges. Study abroad can fulfill a co-op experience, supporting a student's desire to study abroad while satisfying graduation requirements. For information on study abroad opportunities, please visit RIT Global.

The nutritional sciences department offers faculty-led international experiences such as studying the Mediterranean diet in Croatia and travel to conduct a research project on childhood anemia in Ghana.

Curriculum

Nutritional Sciences, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Natural Science Inquiry Perspective: General Chemistry for Engineers	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	1
HSPT-215	Principles of Food Production and Service	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
NUTR-100	Nutr \& Dietetics as a Health Profession	1
NUTR-215	Foundations of Nutrition Sciences	3
NUTR-499	Cooperative Education Experience (Summer)	0
PSYC-101	General Education - Elective: Introduction to Psychology	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
Second Year		
CHMB-402	General Education - Elective: Biochemistry I	3
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	4
NUTR-499	Cooperative Education Experience (Summer)	0
SOCI-102	General Education - Elective: Foundations of Sociology	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Ethical Perspective	3
	General Education - Immersion 1	3
	Major Electives	6
	Open Elective	3
Third Year		
NUTR-333	Techniques of Dietetics Education	3
NUTR-499	Cooperative Education Experience (Summer) \dagger	0
NUTR-555	Nutrition Throughout the Lifecycle	3
	General Education - Immersion 2	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	Major Electives	12
	Open Elective	3
Fourth Year		
NUTR-510	Integrative Approaches to Health	1
NUTR-525	Medical Nutrition Therapy 1	3
NUTR-550	Community Nutrition	3
NUTR-560	Health and Nutrition Research Foundations (WI-PR)	3
	Open Electives	6
	General Education - Elective	3
	General Education - Immersion 3	3
	Major Electives	6

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
t Cooperative Education (NUTR-499) in the third year is optional. It is required only if co-op in the first and second year is not completed.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Nutritional Sciences, BS degree/Dietetics and Nutrition, MS
degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-101	General Education - Elective: General Biology I	3
BIOL-103	General Biology I Lab	1
BIOL-102	General Biology II	3
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-142	General Education- Scientific Principles Perspectives: General \& Analytical Chemistry II	3
CHMG-146	General Education- Elective: General \& Analytical Chemistry II Lab	1
ECON-101	Principles of Microeconomics	3
HSPT-215	Principles of Food Production and Service	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
NUTR-100	Nutr \& Dietetics as a Health Profession	1
NUTR-215	Foundations of Nutrition Sciences	3
NUTR-499	Cooperative Education Experience (Summer)	0
PSYC-101	```General Education - Elective: Introduction to Psychology```	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Second Year		
ACCT-110	Financial Accounting	3
CHMB-402	Biochemistry I	3
CHMO-231	Organic Chemistry 1	3
CHMO-235	Organic Chemistry Labl	1
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	4
MGMT-215	Organizational Behavior	3
NUTR-499	Cooperative Education Experience (Summer)	0
	General Education - Ethical Perspective	3
	General Education - Immersion 1	3
	Open Elective	6
Third Year		
HRDE-380	Human Resource Management	3
HSPT-325	Food Innovation Development	3
HSPT-375	Customer Experience Management	3
MEDG-106	Microbiology of Health and Disease	3
NUTR-333	Nutrition Education for Health Professionals (WI)	3
NUTR-510	Integrative Approaches to Health	1
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Immersion 2,3	6
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	Open Elective	7
Fourth Year		
NUTR-550	Community Nutrition	3
NUTR-625	Medical Nutrition Therapy I	3
NUTR-626	Medical Nutrition Therapy II	3
NUTR-655	Nutrition Throughout the Lifecycle	3
WSHN-624	Advanced Nutrition Science	3
WSHN-700	Research Methods in Health and Well-being	3
WSHN-710	Health Risk Identification and Management	3
WSHN-715	Food Systems Management	3
WSHN-770	Community and Public Health Supervised Experiential Learning	3
WSHN-775	Culinary and Food Systems Management Supervised Experiential Learning	3
	Graduate Program Elective	3
Fifth Year		
HLTH-746	Leading Health Systems II	3
WSHN-702	Dissemination and Implementation Science for Health and Well-being	3
WSHN-730	Nutritional Assessment and Counseling	3
WSHN-780	Clinical Nutrition Supervised Experiential Learning	6
WSHN-790	Health \& Well-being Management Thesis	6
	Statistics Elective \dagger	3
Total Seme	it Hours	165

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Statistics Elective can be fulfilled with either STAT-614, MATH-655, or PSYC-640.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math is required.
- Biology and chemistry required.

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math. Science courses required for nutritional sciences major.

Appropriate associate degree programs for transfer

Dietetics or nutrition, food service management, or liberal arts
Please note: The nutritional sciences program has articulation agreements with the following institutions:

- Erie Community College
- Finger Lakes Community College
- Genesee Community College
- Hudson Valley Community College
- Monroe Community College
- Onondaga Community College

Learn more about transferring credits and additional information about transferring to RIT by visiting the Transfer Admissions website.

Physician Assistant, BS/MS

www.rit.edu/study/physician-assistant-bs-ms
Zach Anderson,
585-475-5151, zjachp@rit.edu

Program overview

RIT's physician assistant program prepares you to elicit medical histories, conduct physical examinations, order laboratory and radiological testing, diagnose common illnesses, determine treatment, provide medical advice, counsel and educate patients, promote wellness and disease prevention, assist in surgery, and perform casting and suturing.

Physician assistant duties vary depending on the state and specialty in which they practice. In most states, including New York, physician assistants may prescribe medication. Examples of specialties include (but are not limited to): internal medicine, family medicine, emergency medicine, geriatrics, pediatrics, women's health, behavioral health, general surgery, orthopedics, neurosurgery, and neonatology. Clinical rotations (internships) during students' last year provide the opportunity to explore these varied disciplines.

Obtaining the skills and knowledge to practice as a physician assistant is a complex process. A carefully planned course of study has been developed to offer a balance of didactic and clinical knowledge. A significant component of the educational process is the socialization of the student to the character, performance, and role of a provider of medical care. The evaluation of the student's adaptation to this role depends on the experienced judgment of individual faculty members. It is important to recognize that these subjective judgments may transcend or be independent of traditional paper and pencil tests and other similar objective measures of academic performance. Physician assistant education involves instruction from practicing clinicians with unpredictable schedules.

Many opportunities, in the form of evaluations, are provided for the measurement of progress by both faculty and student. In addition to a fully staffed Academic Support Center, individual instruction and tutoring may be provided in certain instances. Every effort is made to provide a complete learning environment. Even though a variety of experiences, learning situations, and tools are provided by the Program, the single greatest factor, motivation, is essentially up to the student.

- Accreditation Update-November 6, 2019
- Physician Assistant Program Goals
- Physician Assistant Program Successes
- NCCPA Pass Rate Report
- Physician Assistant Student Attrition Table

Mission

RIT's physician assistant program provides a foundation of science and liberal arts; and prepares students to provide compassionate, patientcentered healthcare. The program is committed to developing the ethical values, medical knowledge, professionalism, and interpersonal communication skills essential for inter-professional, team-based, clinical practice.

Goals

Medical Knowledge: Graduates will demonstrate core medical knowledge of established and evolving biomedical and clinical sciences and apply this knowledge to patient care.

Interpersonal and Communication Skills: Graduates will demonstrate interpersonal and communication skills that result in effective informa-
tion exchange with patients, families, physicians, and other members of the healthcare team.

Patient Care: Graduates will provide effective, safe, high-quality, and equitable patient care in diverse settings and across the life span.

Professionalism: Graduates will practice with integrity, ethical and legal responsibility, and sensitivity to diverse patient populations.

Practice-based Learning and Improvement: Graduates will critically analyze their practice experiences with Evidence-Based Medicine (EBM) and quality assurance processes to improve patient care.

Systems-based Practice: Graduates will demonstrate awareness of and responsiveness to healthcare systems while keeping the patient at the center of cost-effective, safe care. (Adapted from the Competencies for the Physician Assistant Profession, written by the AAPA, ARC-PA, PAEA, and NCCPA, 2012)

Philosophy: The educational philosophy of the physician assistant program is to provide all students with the necessary liberal arts and basic science foundation necessary to build solid medical knowledge and humanistic skills by which to ultimately provide high-quality patient care to future patients. The faculty views the responsibilities of role modeling and mentoring as critical to the success of assimilating students to the realities and responsibilities of medicine today. The educational philosophy incorporates the attitudes of respect for individual patients into critical decision-making through the assimilation of appropriate interpersonal skills, compassion, and respect and reverence for the position of physician assistant.

Plan of Study

The physician assistant major is offered as a BS/MS degree program, which enables students to earn both a bachelor's degree and a master's degree in five years. The curriculum is divided into a pre-professional phase (years 1 and 2), which includes course work in the basic sciences, mathematics, general education, and liberal arts; and a professional phase, (years 3, 4, and 5), which features didactic medical education and culminates in clinical rotations in which students apply their medical knowledge in a series of rotations through various disciplines of medicine.

Technical Standards

Students in the physician assistant program must possess certain capabilities and skills, with or without reasonable accommodation. These include the intellectual ability to learn, integrate, analyze, and synthesize data. They must have a functional use, with or without accommodation, of the senses of vision, hearing, and equilibrium. Learn more about the technical standards required of a successful physician assistant major.

Graduate Competencies

The physician assistant program has outlined functions and tasks for performing a range of skills you are expected to master as a graduate of the program. Learn more about graduate competencies required of a successful physician assistant major.

Program Progression

Students are matriculated into one of the first three years, upon their acceptance into the physician assistant major. Students must complete academic requirements to progress on to the next academic year. Students must meet all program academic requirements, policies, and standards to advance from the pre-professional phase to the professional phase of the program. Once matriculated into the pre-professional phase, students are permitted to take a limited number of courses at another institution during the summer, pending program approval. It is important, however, that students take core science courses at RIT to ensure a consistent
educational experience. Students are not permitted to skip class years (i.e. first to third year) once matriculated in the major.

Experiential Learning

Clinical Rotations

Clinical rotations include a five-week experience in various disciplines of medicine, providing students with the opportunity to apply the basic principles of medicine to hospital-based and ambulatory patient care settings. Students are assigned to a primary preceptor (physician/physician assistant) and are exposed to a wide variety of acute and chronic medical problems. The emphasis is on data gathering, physical examination, differential diagnosis, patient management, maintenance of medical records, performance of diagnostic and therapeutic procedures, and the provision of patient education and counseling. Mandatory rotations are in the fields of internal medicine, family medicine, geriatrics, orthopedics, emergency medicine, women's health, pediatrics, general surgery, and behavioral health. Students also select one elective rotation, which enables them to customize their experience according to their medical area of interest.

The clinical rotations represent the integration and combination of the didactic and clinical phases of the physician assistant program. A great deal of planning has gone into creating a learning environment that will allow the student to obtain the high-level skills required for practice as a physician assistant. The affiliates (hospitals and office-practices) are busy places offering a variety of services. It is the responsibility of the student to explore and learn as much as possible during this very important year. You will be assigned a preceptor for each rotation by the program. This will generally be a physician, physician assistant program, or nurse practitioner who is responsible for your actions and educational experience. In general, the student is expected to participate in each and every aspect of the department or office where assigned.

The physician assistant program is fortunate to have the support of the local and neighboring medical communities for providing clinical sites offering a wide array of clinical experiences. Program faculty provides rotation assignments for all students. The program cannot assure the student assignment to a clinical affiliate within the immediate Rochester area or other desired area. Several of these sites are located some distance from the RIT main campus. The physician assistant program makes every attempt to assist the student in finding suitable housing. However, ultimately the responsibility for housing, travel, and food are the student's responsibility.

Curriculum

Physician Assistant, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year (Pre-professional)		
BIOL-101	General Education - Elective: General Biology I	3
BIOL-102	General Education - Elective: General Biology II	3
BIOL-103	General Education - Elective: General Biology I Lab	1
BIOL-104	General Education - Elective: General Biology II Lab	1
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing	3
	General Education - Elective	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3

Second Year (Pre-professional)		
CHMB-240	General Education - Elective: Biochemistry for Health Sciences	3
MEDS-250	General Education - Elective: Human Anatomy and Physiology I	4
MEDS-251	General Education - Elective: Human Anatomy and Physiology II	
MEDS-417	Clinical Microbiology	4
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	
	Open Elective	3
	General Education - Social Perspective	3
General Education - Immersions 1,2,3	3	
Third Year (Professional)	3	
PHYA-401	History \& Physical Diagnosis I	9
PHYA-402	History \& Physical Diagnosis II	4
PHYA-405	Pathophysiology I	4
PHYA-406	Pathophysiology II	2
PHYA-415	Pharmacology I	2
PHYA-416	Pharmacology II	1
PHYA-419	Advanced Gross Anatomy	2
PHYA-420	PA Seminar	2
PHYA-422	Clinical Medicine I	1
PHYA-423	Clinical Medicine II	5
PHYA-430	Clinical Genetics	5

Fourth Year (Professional)		
PHYA-409	Clinical Lab Medicine	1
PHYA-417	Pharmacology III	2
PHYA-421	Diagnostic Imaging	2
PHYA-424	Clinical Medicine III	5
PHYA-440	Society and Behavioral Medicine	3
PHYA-510	Hospital Practice	4
PHYA-520	Clinical Integration	4
PHYA-530	Clinical Research Methods (WI-PR)	2
PHYA-550	Procedural Clinical Skills	3
PHYA-560	Healthcare Policy \& Law	2
PHYA-710	Graduate Project I (WI-PR)	2
PHYA-750	Pediatrics	4
PHYA-751	Internal Medicine	4
PHYA-752	Women's Health	4
PHYA-761	Professional Practice I	2
	Open Electives	6
Fifth Year (Professional)	2	
PHYA-720	Graduate Project II	4
PHYA-753	Emergency Medicine	4
PHYA-754	Surgery	4
PHYA-755	Orthopedics	4
PHYA-757	Behavioral Health	4
PHYA-758	Family Medicine	4
PHYA-759	Elective Rotation	8
PHYA-762	Professional Practice II	$\mathbf{4}$
PHYA-763	Professional Practice III	$\mathbf{2}$
Total Semester Credit Hours	2	

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
*Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accreditation

Physician Assistant Accreditation Update

The RIT physician assistant program had an accreditation site visit in June 2019 and the Accreditation Review Commission on Education for Physician Assistants (ARC-PA) met in late September 2019. The following is the official ARC-PA announcement regarding RIT's accreditation status:

The Accreditation Review Commission on Education for the Physician Assistant, Inc. (ARC-PA) has granted Accreditation-Continued status to the Rochester Institute of Technology Physician Assistant Program sponsored by Rochester Institute of Technology. Accreditation-Continued is an accreditation status granted when a currently accredited program is in compliance with the ARC-PA Standards.

Accreditation remains in effect until the program closes or withdraws from the accreditation process or until accreditation is withdrawn for failure to comply with the Standards. The approximate date for the next validation review of the program by the ARC-PA will be September 2027. The review date is contingent upon continued compliance with the Accreditation Standards and ARC-PA policy.

The program's accreditation history can be viewed on the ARC-PA website.

Admission requirements

The physician assistant program is a highly competitive. The number of openings for all students is limited by accreditation standards.

In addition to the university's general admission procedures, the physician assistant major requires the completion of a supplemental data packet, application, and a personal admission interview (by invitation). The program requires a personal interview prior to admission. Interviews are by invitation only. Not all applicants are extended an invitation and not all applicants who are invited to interview are accepted into the program. The interview performance is viewed as one of the most important aspects of your application to the program. Careful attention is given to ranking and interviewing freshman and transfer applicants in comparison to their peers. In addition, the program strongly encourages applicants to have participated in some degree of patient care experience and/or shadowing of physician assistants.

There are approximately 30-36 students enrolled in each class year of the program. Therefore, the number of openings for all students is limited and competitive. All prospective applicants must have a minimum cumulative GPA of 3.0 (on a 4.0 scale) to qualify for admission and must maintain a minimum GPA of 3.0 once enrolled in the program.

It also is important to note that the minimum grade point average for acceptance into the physician assistant major is 3.0 (on the basis of a 4.0 maximum) for both high school and transfer students. In order to graduate from the major, a GPA of 3.0 or better must be maintained.

Health Care Experience

While health care experience is not an absolute requirement for admission, the program faculty highly suggest that candidates volunteer in hospitals, nursing homes, hospice and/or health care facilities, as applicable. In addition, shadowing health care professionals (PAs, MDs) in clinical arenas is highly suggested as a means of observing the role of PAs and other members of the health care team in providing care to patients.

Transfer Admission

Qualified transfer students are accepted into the major, on a space available basis. Prior health care experience and/or shadowing are strongly recommended. Transcript evaluations and rendering of transfer credit are addressed at the time of admission only. Anatomy and physiology courses must be taken within the last five years prior to matriculation to be eligible for transfer. All pre-professional course work must be completed to continue on, or to be considered for entry, into the professional phase of the major. Please contact the Office of Undergraduate Admissions for information on transfer requirements.

Advanced Placement

In the pre-professional phase, advanced placement (AP) credit for general education courses is evaluated and approved by the academic advisors. AP credit for calculus, statistics, and university electives is awarded, as applicable, within the major. AP credit is not accepted for biology and chemistry as course substitutions. Advanced placement or credit for experiential learning is not awarded for courses in the professional phase of the major.

Physician Assistant Student Employment and Cocurricular Activities

Many PA students work during the first two years of the program. Most of these students find that balancing academics, co-curricular activities, and working 8-10 hours/week is possible. Nonetheless, attention must always remain focused on the academic expectations of the PA program, which require students to maintain a minimum term and cumulative GPA of 3.0 (BS/MS degree) throughout the program. Given the rigorous program of study, students in the professional phase of the program are strongly advised meet with their academic advisor to discuss their participation in outside employment and co-curricular activities. Students in the professional phase, including clinical rotations, must ensure that employment and/or co-curricular activities do not interfere with academic preparation, performance, clinical responsibilities, and scheduling as per clinical affiliates and program requirements. Outside commitments that are not managed effectively can dramatically affect successful progression within the program and on clinical rotations. Given the rapidly changing environment in day-to-day clinical activities and responsibilities, patient cases and/or clinical responsibilities must be given paramount priority.

Service Work

PA students participating in clinical service work are responsible for ensuring that those with whom they come into contact understand their role as PA students. At no time should PA students, participating in clinical service work, represent themselves, take the responsibility of, or the place, of qualified staff. The exception is when the student is under the guidance and direction of their instructor/preceptor for that given rotation block in which students' status must be disclosed. PA students are never to serve as substitutions for regular staff and/or health professionals.

Tuition Fee Rates

- Current tuition rates can be found at: https://www.rit.edu/sfs/ tuition-and-fees
- RIT Refund policies can be found at: https://www.rit.edu/fa/sfs/refund

Physician Assistant Program Summary of Costs

Aside from tuition costs, there are additional costs that are incurred within the professional phase of the program. A summary of costs is provided below, but these calculations are current estimates, and are subject to change.

Housing Expenses-In the fifth year of the program, students complete ten clinical rotations which require, from time to time, that the student be away from the Rochester area. Sometimes these clinical sites are within driving distance, but other times, the student will need to stay near the clinical site for the five weeks of the rotation. Because of this, there may be slightly elevated housing costs during this fifth year. The PA program assists students in finding suitable housing during this clinical year, but ultimately the responsibility for housing, travel, and food, is that of the student. Students are not reimbursed during their time on clinical rotations. Senior students are considered full time during this clinical training year and are responsible for tuition costs. These costs vary according to the needs of individual students. Suitable living on-campus (dorms, apartments, etc.) are generally available for average housing fees. Please refer to RIT Housing for more information.

Transportation and Parking-In the professional phase of the program (years $3,4,5$), students can expect to be off campus a portion of the time. The student is responsible for transportation during these years. Because of this, a car is recommended in the start of the third year, and certainly during the fifth year. Parking fees may be incurred as students begin clinical training in hospitals. Car-pooling is recommended, when applicable.
Textbooks-In the professional phase of the PA Program (years 3, 4, 5), the coursework and clinical experiences are exclusively medical in nature. Additional textbooks are required in various areas of didactic and clinical instruction. These additional books and reference materials typically run around $\$ 2,000$, but vary from student to student.

Diagnostic Equipment-Each student is required to purchase diagnostic equipment for the start of the professional phase (year 3) of the program. The student is expected to bring his/her own equipment to classes in good working order. The PA program works with various medical suppliers to ensure that equipment costs to the third year students will be the lowest possible, while ensuring their quality. If buying new equipment, it would be wise to wait until this time to purchase the equipment. These items generally range $\$ 800$ to $\$ 1,200$. This will be a one-time only cost, and these items will be useful for many years to come in the clinical fields of medicine.
PA Clinical Knowledge Rating and Assessment Tool (PACKRAT) Exams-A written competency examination will be given to students in the fourth and fifth years of the Program. The Physician Assistant Clinical Knowledge Rating and Assessment Tool (PACKRAT) is a nationally recognized competency examination for PA students. This standardized examination provides excellent feedback to students and faculty regarding comprehensive knowledge bases and problem-solving abilities of the students. The content and approach has been created to simulate the computer-based Physician Assistant National Certifying Exam (PANCE). Many students have found this to be excellent preparation for clinical rotations and the PANCE. The cost to each student is currently $\$ 45 /$ exam.

End of Rotation Exams-A written exam will be given to students at the completion of each core rotation. The End of Rotation Exam ${ }^{\mathrm{mw}}$ is a computerized, standardized exam assessing medical knowledge of the student. The cost is currently $\$ 35 /$ exam.

End of Curriculum Exam-All PA students must demonstrate the knowledge, professionalism, interpersonal and patient care skills required for entry into the PA profession. This evaluation, facilitated by our program faculty, will be done within four months prior to graduation
from the program. This summative evaluation will comprise assessments in the following patient care areas: clinical and technical skills, clinical reasoning and problem-solving abilities, interpersonal skills, medical knowledge, and professional behaviors. In addition, an evaluation of medical knowledge will be completed by each student as part of the Summative Evaluation. The Physician Assistant Education Association (PAEA) End of Curriculum ${ }^{\text {m" }}$ exam is a computerized, standardized exam. The cost to each student is currently $\$ 99$.

PANCE Board Review Course-A three-day PANCE exam review course is arranged by the program and attendance is required. This course will provide a system-based approach review and over 1,000 practice board questions with a 100 percent guarantee. The cost is currently \$245.

Criminal Background Check-In accordance with various state laws and regulations, most of our clinical affiliates require PA students to undergo a criminal background check prior to beginning a clinical rotation. A PA student may not be allowed to participate in a clinical rotation(s), by the clinical affiliates, based on the results of a criminal background check. As a PA professional advances in his/her health care career, s / he can expect regular criminal background checks and credential verification as part of the participation, hiring, and employment process. The RIT PA Program requires that all PA students have an initial criminal background check prior to entering the professional phase of the program (year 3) and once again prior to the start of clinical rotations (end of year 4). The cost to each student for these screenings is approximately \$150.

Drug Testing-In accordance with various state laws and regulations, some clinical affiliates may require PA students to undergo drug testing prior to beginning a clinical rotation. These additional authorizations and their associated fees must be completed by the student at the students' expense. A PA student may not be allowed to participate in a clinical rotation(s), by the clinical affiliates, based on the results of this drug testing. As a PA professional advances in his/her health care career, s / he can expect regular, random drug testing, and credential verification as part of the participation, hiring, and employment process.

Basic and Advanced Cardiac Life Support (BLS/ACLS) CertificationStudents are required to have current CPR /ACLS certification prior to the start of clinical rotations in the fifth year. This training is arranged through the PA Program in conjunction with the American Heart Association and hospital affiliates. The cost for this certification is $\$ 70$ to $\$ 150$.

Clinical Affiliate Registration/Subscription-Beginning May 2021, each senior student on clinical rotations will be required to pay approximately $\$ 60$ as a registration/subscription fee for the administrative services rendered by the clinical affiliate. This fee will cover the ten clinical rotations required.

Physical Examinations and Immunizations-A history and physical examination (including various blood work, titers, TB testing, and current immunizations) are required prior to the start of clinical rotations. TB testing is also required prior to the start of the third year. Students must arrange for these examinations several months in advance of the start of clinical rotations. Costs may range from $\$ 300$ to $\$ 400$ depending on insurance coverage. Although the PA program cannot mandate that each student obtain the Hepatitis B vaccine, however it is very strongly recommended prior to the start of the third year. Lack of this vaccination may preclude students from most clinical training sites. Students may obtain this three injection vaccination series at the RIT Student Health Center or through private medical coverage. Costs may vary dependent upon health insurance coverage.

FIT Testing-Prior to the start of clinical rotations students are required to undergo FIT testing which tests the actual size and provider's ability to use a respirator mask device that protects healthcare workers
from inhaling harmful substances. The FIT testing will cost approximate-
ly $\$ 60$ and students in some clinical disciplines will need to purchase personal I-95 protective masks for a nominal cost prior to beginning clinical rotations.

Optional Costs

Student memberships to the following professional organizations:

- Rochester Regional PA Association (RRPAA)-\$10 annually
- New York State Society of PAs (NYSSPA)-\$75 for the duration of your student enrollment
- American Academy of PAs (AAPA)-\$75 for the duration of your student enrollment

Faculty

Dean's Office

Yong "Tai" Wang, BS, MS, Wuhan Sports University (China); MA, Ball State University at Muncie; Ph.D., University of Illinois at Urbana-Champaign-Dean; Professor

Rebecca Fletcher Roberts, BS, State University College at Brockport: MS, Syracuse University-Assistant Dean for Advising and Student Success

Carla Stebbins, BA, University of Northern Iowa; MHA, Des Moines University; Ph.D., Iowa State University-Associate Dean

Department of Clinical Health Professions

Hamad Ghazle, BS, RDMS, RVT, APS, Rochester Institute of Technology; MS, Ed.D., University of Rochester-Head, Department of Clinical Health Professions; Program Director/Professor, Diagnostic Medical Sonography Program

Cassandra Berbary, BA, State University College at Geneseo; MS.Ed., Ph.D., Duquesne University-Research Assistant Professor, Priority Behavioral Health and Clinical Psychology Internship Program

Cory Crane, BA (anthropology), BA (psychology), University of Michigan; MS, Ph.D., Purdue University-Associate Professor, Priority Behavioral Health and Clinical Psychology Internship Program

Caroline Easton, BS, Rochester Institute of Technology; Ph.D., University of Connecticut/Yale School of Medicine-Professor, Priority Behavioral Health and Clinical Psychology Internship Program
Jodie Crowley, BS, RDMS, Rochester Institute of TechnologyClinical Coordinator; Lecturer, Diagnostic Medical Sonography Program

Melanie Geiger, BS, MS, PA-C, Daemen College; MSBA, University of Rochester-Assistant Clinical Coordinator; Lecturer, Physician Assistant Program

Heather Grotke, BS, Rochester Institute of Technology; MS, PA-C, Daemen College-Senior Lecturer, Physician Assistant Program

Rupa Kalahasthi, BA, St. Xaviers's College Mumbai (India); MA, University of Mumbai (India); M.Psy., Psy.D., George Washington University-Research Assistant Professor; Priority Behavioral Health and Clinical Psychology Internship Program
BethRae King, BS, RDCS, State University College at Brockport; MS, Rochester Institute of TechnologyEchocardiography Concentration Coordinator; Lecturer, Diagnostic Medical Sonography Program

Lyle Larson, BS, PA-C, University of Texas Health Science Center at Dallas; MPAS, University of Nebraska; Ph.D., Columbus University-Program Director/ Associate Professor, Physician Assistant Program

Heidi Miller, BS, PA-C, Alderson Broaddus College; MPH, University of Rochester-Professor, Physician Assistant Program

Ashley Nichols, BS, MS, PAC, Daemen College-Clinical Coordinator; Lecturer, Physician Assistant Program
John B. Oliphant, BA, ATC, Messiah College; M.S.Ed., Elmira College; MHP, PA-C, Northeastern University; Ph.D., Niagara University-Associate Professor, Physician Assistant Program

Daniel B. Ornt, BA, Colgate University; MD, University of Rochester- Professor, Physician Assistant Program

Celeste Sangiorgio, B.A., Hunter College; M.A., Ph.D., St. John's University-Post Doctoral Researcher, Priority Behavioral Health and Clinical Psychology Internship Program

Janice M. Shirley, PA-C, Albany Medical College; BS, SUNY Empire State College; MBA, University of Massachusetts Isenberg; MPH, John Hopkins University; Ph.D., Nova Southeastern University; DFAAPA-Assistant Professor, Physician Assistant Program

Courtney Stevens, BS, RDMS, RDCS, Rochester Institute of Technology-Clinical Coordinator; Lecturer, Diagnostic Medical Sonography Program

Jonathan Tory Toole, BA (psychology), BA (religion), University of Georgia; MA, New York University; MS, Ph.D., Nova Southeastern University-Research Assistant Professor, Priority Behavioral Health and Clinical Psychology Internship Program

Nancy Valentage, BS, PA-C, Gannon University; MS, Rochester Institute of Technology-Associate Director; Professor, Physician Assistant Program

Department of Medical Sciences, Health, and Management

Richard L. Doolittle, BA, University of Bridgeport; MS, Ph.D., University of Rochester-Professor, Biomedical Sciences Program

Michele Lennox, AAS, Rochester Institute of Technology-Lecturer, Biomedical Sciences Program

Robert Osgood, BS, Jackson State University; MS, Ph.D., University of Southern Mississippi-Program Director; Associate Professor, Biomedical Sciences Program

Elizabeth Perry, BS, State University College at Brockport; MS, Ph.D., University of RochesterSenior Lecturer, Biomedical Sciences Program

Patricia Poteat, BA, University of Rochester; MS, Rochester Institute of Technology; Ph.D., University of Rochester-Senior Lecturer, Health Systems Management Program

Carla Stebbins, BA, University of Northern Iowa; MHA, Des Moines University; Ph.D., Iowa State University-Program Director; Senior Lecturer, Health Systems Management Program

Laurence I. Sugarman, BA, Washington University in St. Louis; PA-C, St. Louis University; MD, University of Missouri-ColumbiaResearch Professor, Biomedical Sciences Program

Bolaji N. Thomas, BSc, MSc, Ph.D., University of Lagos (Nigeria) Professor, Biomedical Sciences Program

Wegmans School of Health and Nutrition

Barbara A. Lohse, BS, University of Wisconsin-Eau Claire; MS, RD, University of Wisconsin-Stout; Ph.D., University of Wisconsin-Madison-Head, Wegmans School of Health and Nutrition; Professor

Brenda Ariba Zarhari Abu, BSc, University for Development Studies (Ghana); MPhil, University of Ghana (Ghana); Ph.D., University of the Free State (South Africa); RD, Iowa State University-Assistant Professor

Zachary W. Bevilacqua, BS, State University College at Brockport; MS, University at Buffalo; Ph.D., Indiana University Bloomington-Visiting Assistant Professor

William S. Brewer, BS, State
University College at Cortland; MS, Empire State College-Program Director; Senior Lecturer

Elizabeth A. Kmiecinski, BS,
The Ohio State University; RD, Charleston Area Medical Center; MS, University of KentuckyAssociate Professor
Elizabeth H. Ruder, BS, Cornell University; RD, Cleveland Clinic Foundation; Ph.D., Pennsylvania State University; MPH, Johns Hopkins University-Program Director, Associate Professor

University Studies
 James Hall, Dean of University Studies; Executive Director, School of Individualized Study
 rit.edu/universitystudies/

Programs of Study

Applied Arts and Sciences AAS
Applied Arts and Sciences BS 172

Applied Arts and Sciences Diploma
Organizational Change and Leadership Certificate 174

University Studies is a collaboratory of high touch, student-first programs that emphasize autonomy, leadership, service, and the pursuit of a fulfilling personal and professional life. Partner programs meet students where they are and assist in the articulation of short and long term goals and assist them in the making of curricular and extra-curricular choices that enhance opportunities. Students who take advantage of University Studies' opportunities build out high quality professional networks that promote resilience and life satisfaction. University Studies is comprised of:

- The School of Individualized Study
- The RIT Honors Program
- Veterans Upward Bound
- ROTC-Army
- ROTC-Air Force

School of Individualized Study

Through the School of Individualized Study, students interested in more than one area of study have the option of creating personalized undergraduate programs directly related to their interests and aspirations

The diverse nature of these customized degree programs values student's ideas and provides an interdisciplinary approach to learning that can be applied to the professional environment.

Like the school itself, students participating in the school are anything but typical. Some are full-time undergraduate students with nontraditional ideas about what they want in a college degree, while others are adults with families and careers attending classes online or in the evening. The school offers a BS degree, an AAS degree, and a diploma.

Please visit the school's website-www.rit.edu/sois-for in depth information on academics, advising, faculty, facilites, and more.

Admission requirements

For information on undergraduate admission, including freshman and transfer admission guidelines, please refer to the Undergraduate Admission section of this bulletin.

In addition to the admission requirements of the university, the school has added enrollment policies that must be followed.

Enrollment policies: The school allows a student to enroll in any course for which he or she has sufficient background. Many courses have prerequisites that students are expected to meet before enrolling.

Academic advisors are available throughout the year to answe questions regarding course or program choices. In support of and in compliance with RIT's policy of assuring competency in written communication, all students matriculated in a BS degree program must satisfy a writing competency requirement. Information about this requirement, and the various methods for satisfying it, is available at the SOIS office or by visiting the school's website.

Students matriculated in the school's baccalaureate degree program are expected to complete the degree within seven years.

Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

Applied Arts and Sciences, AAS

www.rit.edu/study/applied-arts-and-sciences-aas
School of Individualized Study
585-475-2234, sois@rit.edu

Program overview

The AAS degree in applied arts and sciences offers students the opportunity to create an individualized undergraduate major. The degree requires students to complete at least 60 credit hours of course work comprising 24 credit hours in general education along with 36 credit hours in one or two professional concentrations. Each concentration is customized by the student with guidance and advice from their academic adviser. A professional concentration is at least 20 credit hours and can be designed from most of RIT's majors.

The applied arts and science degree may be completed on campus, online, or by combining on-campus and online course work.

The following chart represents a sample of a typical course sequence for two concentrations in management and economics. Students will work with an adviser to craft a personal pan of study based on their chosen concentration areas.

Curriculum

Applied Arts and Science, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
SOIS-101	Individualized Study Seminar	1
UWRT-150	General Education - First Year Writing: FYW: Writing	3
	Seminar (WI)	6
	General Education - Electives	3
	General Education - Artistic Perspective	3
Second Year	General Education - Social Perspective	14
	Professional Core Courses	3
		3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	15
Total Semester Credit Hours	General Education - Scientific Principles Perspective	6
	Professional Core Courses	$\mathbf{6 0}$

Please see General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.

Admission requirements

Freshman Admissions

This degree offers students the opportunity to create individualized undergraduate programs of technical and professional study. Applicants should speak directly to an admissions counselor in the Office of Undergraduate Admissions for more information.

Transfer Admissions

This program offers students the opportunity to create individualized undergraduate programs of technical and professional study through its applied arts and science program. The applied arts and science program is particularly appropriate for individuals who have prior college-level learning, are interested in changing majors, have unique ideas about how they want to design their academic areas of study, or want to prepare themselves for a career that requires skills and expertise from several disciplines. Applicants should speak directly to an admissions counselor in the Office of Undergraduate Admissions for more information.

Applied Arts and Sciences, BS

www.rit.edu/study/applied-arts-and-sciences-bs
School of Individualized Study
585-475-2234, sois@rit.edu

Program overview

You may know what you want to do, but you also may find yourself drawn to a collection of interests that doesn't fit neatly into a conventional academic program. RIT's BS in applied arts and sciences is an individualized studies degree, which means your education is designed by you. You are free to customize an academic program crafted around your interests, goals, and career aspirations. All in a place-the School of Individualized Study-dedicated to bringing your unique vision to life.

Create Your Own Individualized Studies Degree

In the BS in applied arts and sciences, you'll create your own major by customizing your academic degree around your interests and career goals. With RIT's rich and diverse academic portfolio-which includes more than $100+$ undergraduate programs, options, and concentrationsyou can blend a range of courses to create concentrations that provide you with the skills and knowledge you need to accomplish your professional aspirations.

How Does Individualized Study Work?

Individualized study is all about you. It's focused on your interests, your passions, and your career goals. And, it's an opportunity for you to create a specialized degree that's tailored around the knowledge and skills you want to learn, and that fit your personal ambitions.

Students in the School of Individualized Study are unique. But they all share one common trait: their interests don't fit neatly into a traditional degree program. They have ideas about what they want to study, and where they want to go after they graduate. They need a roadmap on how to structure a degree program that gets them where they want to go.

Creating your own major sounds complicated. In reality, it more about identifying your interests, selecting the courses that fit what you want to do, and putting the plan in motion.

You'll start out by meeting with one of the academic advisors in the School of Individualized Study, who will spend time learning about you. They'll talk to you about topics of study that you like and don't like, and listen as you share your career goals and aspirations. Next, they'll talk to you about course selection, and identify what classes you need to take to gain the skills you're looking to acquire. Our advisors will connect you to faculty members so you can learn about exciting career options. As we work together to map out your individualized studies bachelor's degree, your advisors will help you select courses and guide you on extracurricular activities-from co-ops and internships, to research opportunities, study abroad, and more-that will help round out your education. And, as your interests change, or expand into new areas, advisors will work with you to adjust your plan of study to accommodate your evolving goals.

High-Touch, Hands-On Advising

An individualized studies degree needs more than traditional advising. Our academic advising process that's all about you. We want to get to know you and your interests. What are your career goals? What do you want out of your education? By getting to know who you are and what you want to do, we can help you craft an educational journey that's personalized to your aspirations.

Our advising process is continual, high-touch, and customized to your individual career goals. We'll help you:

- Design your own major comprised of hand-picked courses from RIT's dynamic academic portfolio
- Arrange introductions with RIT's faculty, staff, and alumni, Rochester community partners, and beyond
- Mentor you on your academic path
- Connect you to university resources
- Support you through program completion

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's applied arts and sciences BS degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.
Students in the BS in applied arts and sciences are strongly encouraged to participate in cooperative education and internships.

Curriculum

Applied Arts and Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
SOIS-101	Individualized Study Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education - Mathematical Perspective A	3
	Professional Concentration Courses	12
	General Education - Electives	6
	General Education - First Year Writing (WI)	3
Second Year		
	Professional Concentration Courses	12
	General Education - Ethical Perspective	3
	General Education - Natural Science Inquiry Perspective	3
	General Education - Mathematical Perspective B	3
	General Education - Scientific Principles Perspective	3
	Open Elective	3
	General Education - Elective (WI-GE)	3
Third Year		
	General Education - Global Perspective	3
	Professional Concentration Courses	18
	General Education - Immersion 1, 2	6
	General Education - Elective	3
Fourth Year		
SOIS-510	Multidisciplinary Life (WI-PR)	3
	General Education - Immersion 3	3
	Professional Concentration Courses	5
	General Education - Electives	12
	Open Electives	6
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admissions

This degree offers students the opportunity to create individualized undergraduate programs. Applicants should speak directly to a freshman admissions counselor in the Office of Undergraduate Admissions for more information.

Transfer Admissions

This program offers students the opportunity to create individualized undergraduate programs of technical and professional study through its applied arts and science program. The applied arts and science program is particularly appropriate for individuals who have prior college-level learning, are interested in changing majors, have unique ideas about how they want to design their academic areas of study, or want to prepare themselves for a career that requires skills and expertise from several disciplines. Applicants should speak directly to a transfer admissions counselor in the Office of Undergraduate Admissions for more information.

Applied Arts and Sciences, Diploma

www.rit.edu/study/applied-arts-and-sciences-diploma
School of Individualized Study
585-475-2234, sois@rit.edu

Program overview

The applied arts and sciences major offers students the opportunity to create individualized undergraduate programs of study through three levels of study: a bachelor of science degree, an associate of applied science degree, and a diploma. Further information for all three levels can be found under the applied arts and sciences BS program.

Curriculum

Applied Arts and Science, DP degree, typical course sequence

COURSE	SEMESTER CREDIT HOURS	
First Year		
	Professional Concentration Courses	24
Total Semester Credit Hours	$\mathbf{2 4}$	

Admission requirements

Freshman Admissions

This program offers students the opportunity to create individualized undergraduate programs of technical and professional study. Applicants should speak directly to an admissions counselor in the Office of Undergraduate Admissions for more information.

Organizational Change and Leadership, Certificate

www.rit.edu/study/organizational-change-and-leadership-certificate
School of Individualized Study Advising Team
585-475-2234, sois@rit.edu

Program overview

Profound and ongoing changes are taking place in organizations, and individuals need to be flexible and proactive in their response. The organizational change and leadership certificate helps students understand corporate culture and develop skills necessary to manage organizational and individual change. Through the study of leadership, corporate culture, change management, organizational behavior, and team dynamics, individuals understand and obtain the skills necessary to proactively manage workplace change.

Curriculum

Organizational Change and Leadership, certificate, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year SOIS-205 Practicing and Assessing Leadership 3 SOIS-233 Teams and Team Development 3 SOIS-335 Global Forces and Trends 3 SOIS-431 Understanding Organizational Culture 3 Second Year SOIS-432 Managing Organizational Change 3 SOIS-442 Learning Organization $\mathbf{3}$ Total Semester Credit Hours $\mathbf{1 8}$		

University Writing Program

www.rit.edu/writing/

The University Writing Program is designed to both teach and support students as they write in various phases of their RIT career, in various disciplines across the university, from the first year on into graduate studies. It is also a resource for faculty who teach writing intensive courses throughout the curriculum.

The University Writing Program is grounded in writing studies, an academic field that is invested in college-level instruction of student reading, writing, and interdisciplinary literacies. Our curriculum is built on five foundational assumptions that reflect essential disciplinary knowledge about the learning processes of student writers. Taken together, they emphasize research and inquiry, the rhetorical nature of meaning-making, genre awareness, identity and power, and revision and reflection. Through these threshold concepts, the program supports students as they develop new orientations to writing while they discover how diverse literacies shape the university's many disciplines and discourse communities.

RIT Honors Program

www.rit.edu/honors/overview

The RIT Honors Program is dedicated to providing educational richness that promotes an enterprising spirit and creative approaches to modern challenges by combining professional development at a high-tech university with attention to the impact that decisions have on our shared society and individual humanity. We position students to meet the nuanced problems of a rapidly changing and complex world as responsible citizens, dynamic professionals, and positive leaders.

Veterans Upward Bound

www.rit.edu/universitystudies/vub

The Veterans Upward Bound program is a pre-college program which assists veterans and military service members with enrolling in school, which can be any college or training program, not just RIT. This free program assists in all aspects of the college admissions process, including applying for and understanding financial aid benefits, providing refresher courses, one-on-one tutoring, laptop loans, and connections to local resources. The primary goal of the program is to increase the rate at which participants enroll in and complete postsecondary education programs. VUB helps veterans and service members of all ages navigate the education system, gain access to information about college and career exploration, and improve academic skills needed for successful entry into education.

ROTC-Air Force

www.rit.edu/universitystudies/airforcerotc

We offer a challenging in-college program to develop quality leaders for the Department of the Air Force with graduates. While commissioning as Second Lieutenants and, serving in a variety of career fields, the Air Force and Space Force have to offer including Aviation, Cyberspace Operations, Space Operations, Developmental Engineering, Intelligence, Special Operations, Medical, and over 100 more.

AFROTC cadets prepare to become officers while completing traditional degree requirements. You will improve your leadership, time-management skills, analytical skills, and physical fitness. Requirements include Leadership Laboratory, Physical Training, and Aerospace Studies Classes.

ROTC-Army

www.rit.edu/universitystudies/armyrotc
Army ROTC offers the broadest path for young men and women seeking to serve the nation as Army Officers to achieve their goal. Its graduates comprise the majority of the newly commissioned Lieutenants entering the Active Army each year.

Since 1968, Army ROTC at the Rochester Institute of Technology has provided students with the opportunity to combine world class leadership and management training with their other academic studies. The state-of-the-art curriculum which consists of a series of classroom and hands-on leadership training experiences. This gives students the necessary foundation to serve successfully in positions of responsibility in either America's Army or the corporate world.

Students with a strong academic background, who are physically fit, have an active mind set and the ability to rapidly assimilate information thrive in the program. These scholar-athlete-leaders (SALs) note that the leadership skills developed through their participation in the program are further honed during their period of service as Army Officers.

Faculty	University Writing Program	Capt Zachary Deats, BS, Rochester
	Pamela Kincheloe, BA, Rollins	Professor
Individualized Education	College; MA, University of North Carolina at Chapel Hill; Ph.D.,	1st Lt Alexander Stoenner, BS,
James Hall, BA, MA, Wilfrid	Southern Illinois University-	Professor
Laurier University (Canada); MTS,	Professor and University Writing	
Waterloo Lutheran Seminary	Program Director	RIT Honors Program
of Iowa-Dean, University Studies	University; MA, Ph.D., University of	
Division and Executive Director,	Connecticut-Lecturer	Carl Lutzer, BS, Michigan State University; MA, Ph.D., University
	Luke Daly, BA, State University	of Kentucky-Director, Honors
Stephen Aldersley, BS, University	College at Fredonia; MFA,	Program; Professor
of Surrey (United Kingdom);	Minnesota State University at	
MS, University of Lancaster	Mankato-Lecturer	
(United Kingdom); Graduate Education Certificate, St. Martin's (United Kingdom); MS, College of St. Rose; Ed.D., University of Rochester-Professor	Matthew Houdek, BS, University of Wisconsin-Stout; MA, Syracuse University; Ph.D., University of Iowa-Lecturer	
Makini Beck, BA, State University	Andrew Perry, BA, State University	
College at Old Westbury; M.S.Ed.,	College at Oswego; MA, State	
St. Bonaventure University; Ph.D.,	University College at Brockport-	
University of Rochester-Assistant		
Professor	Phil Shaw, BA, MA, University of	
Peter Boyd, BA, Nazareth College;	Denver-Senior Lecturer	
MA, Columbia University-Senior	Thomas Stone, BA, Northern	
Lecturer and Graduate Program	Arizon University; MA, Bucknell	
Coordinator	University; Ph.D., University of	
Hannah Davis, BA, Indiana	Rochester-Lecturer	
University; MA, Western Kentucky	David Yockel, BA, State	
University-Professor of Practice	University College at Fredonia;	
Leonie Fernandes, BS, University	MA, State University College	
of Michigan; MS, Rochester Institute of Technology; PMI—Project	Brockport-Lecturer	
Management Coordinator; Senior Lecturer	Reserve Officer's Training	
Joel Gallegos Greenwich, BA,		
Ouachita Baptist University; MA,	LTC Jacob Jendrey, BA, Old	
Fuller Seminary; MS, University	Dominion University; MA, Webster	
of Rochester; Ph.D., University of	University-Professor	
Rochester-Professor of Practice	CPT Douglas Munroe, BS,	
Thomas Hanney, Certificate,	Norwich University-Assistant	
Rochester Institute of Technology;	Professor	
BA, St. John Fisher College;	CPT Kraig Bergner, BS, Colorado	
MPA, State University College at	State University; MS, Webster	
Brockport-Principal Lecturer	University-Assistant Professor	
Clarence Sheffield, BS, University	CPT Samuel Lombardo, BA,	
of Utah; MA, University of Colorado	Waynesburg University; MA,	
at Boulder; Ph.D., Bryn Mawr	Webster University-Assistant	
College-Professor	Professor	
David P. Wick, BS, ME, MS, Ph.D.,		
Clarkson University-Associate	Reserve Officer's Training	
Professor	Corp-AIR FORCE	
	Lt Col Christopher Denzer, BS,	
	University of Maryland; MS, North	
	Carolina State University-Professor	

College of Liberal Arts
 Anna Westerstahl Stenport, Dean

rit.edu/liberalarts

Programs of Study	
\# Advertising and Public Relations BS	177
Applied Modern Language and Culture BS	180
Communication BS	182
Criminal Justice BS	185
Digital Humanities and Social Sciences	196
Economics BS	187
English BS	191
History BS	193
International and Global Studies BS	198
Journalism BS	202
Liberal Arts Exploration	204
Museum Studies BS	205
Philosophy BS	207
Political Science BS	209
Psychology BS	212
Public Policy BS	215
Sociology and Anthropology BS	217
Combined Accelerated Bachelor's/Master's Degree available	

The College of Liberal Arts plays three important roles at RIT: it offers a variety of undergraduate and graduate degree programs in the social sciences and humanities; it provides general education courses required of all students pursuing baccalaureate and associate degrees; and it creates opportunities for students and the RIT community to participate in cultural and academic experiences such as theater, music, creative writing, public speaking, and lectures.

Recognizing that future leaders will work in an increasingly interconnected and complex world, the College of Liberal Arts provides students with a rigorous curriculum in the liberal arts. This curriculum is designed to help them forge comprehensive
links between a major field of study and the ethical, social, cultural, and communicative demands of the contemporary world. As a result, the general education requirements for undergraduate students include introductory and upper-level courses in the humanities and the social and behavioral sciences.
Please visit the college's website-rit.edu/liberalarts-for in depth information on academics, faculty, facilities, research initiatives, advising services, and more.

Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to individual program descriptions and the Undergraduate Admission section of this bulletin.

Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

Advertising and Public Relations, BS

www.rit.edu/study/advertising-and-public-relations-bs
Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

In RIT's advertising degree you'll be prepared to create persuasive messages for a variety of traditional and emerging media platforms, including social media. Analyze audiences, write copy, select media platforms, and manage campaigns. The degree combines courses in communication, advertising, public relations, and marketing to prepare you for the overlapping roles of advertising and public relations professionals.
The fields of advertising and public relations are rapidly changing now that the Internet and mobile devices like smart phones and tablets have influenced the way professionals reach audiences. Unique opportunities and exciting challenges lie ahead in the advertising and public relations field. The major combines advertising, public relations, and marketing to address the overlapping roles of communication professionals.
Students will learn how to create persuasive messages for a variety of traditional and emerging media platforms. They will analyze audiences, write copy, select media, and manage campaigns. The major also features a senior thesis and one semester of cooperative education or internship experience.
Students develop skills through a core of required communication courses, which cover communication theory, visual communication, public relations, advertising, writing, campaign planning and management, media planning, public speaking, and digital design. A professional core of three marketing courses, chosen by the student, provides a deeper understanding and appreciation of marketing. Electives and liberal arts courses complete the curriculum.

Senior Thesis: Students conduct original research on a subject of their choosing. Two faculty members serve as advisors and guide each student on how to investigate a topic, select a research method, implement the
project, and present their findings. Students often present their research at conferences.

Advising: Every student in the School of Communication is assigned a professional academic advisor and a faculty mentor. Professional advisors assist with course planning and registration. Faculty mentors provide advising on career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level advertising and public relations students, are also available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective. For more information, please refer to the college's academic advising page.

Communication Master's Degree

The School of Communication offers an MS degree in communication.

RIT's Pre-Law Program

Law schools welcome applications from students majoring in a wide range of academic programs. RIT's pre-law program will help you navigate the admission process for law school, explore a range of legal careers, and guide you through course selection to ensure you build the skills and competencies required of competitive law school applicants. The program is open to students in all majors who are interested in pursuing a career in law.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a juris doctorate degree in six years. In the $3+3$ option, students interested in the following RIT majors-advertising and public relations, communication, criminal justice, economics, English, history, international and global studies, journalism, philosophy, political science, psychology, public policy, and sociology and anthropology-may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the advertising degree are required to complete one cooperative education or internship experience.

Curriculum

Advertising and Public Relations, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
COMM-105	Foundations of Communication	3
COMM-201	General Education - Elective: Public Speaking	3
COMM-211	Principles of Advertising	3
COMM-212	Public Relations	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Natural Science Inquiry Perspective	3
	General Education - Elective	3
Second Year		
COMM-202	General Education - Elective: Mass Communications	3
COMM-221	Public Relations Writing (WI-GE, WI-PR)	3
COMM-223	Digital Design in Communication	3
COMM-304	Intercultural Communication	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
	Open Elective	3
Third Year		
COMM-301	Theories of Communication	3
COMM-321	Copywriting and Visualization	3
COMM-401	Quantitative Research Methods	3
COMM-421	Media Planning	3
COMM-499	Communication Co-op (summer)	0
MKTG-230	Principles of Marketing	3
	General Education - Immersion 1, 2, 3	9
	General Education - Electives	6
Fourth Year		
COMM-322	Campaign Management and Planning	3
COMM-402	Qualitative Research Methods	3
COMM-497	Communication Portfolio	0
COMM-501	Senior Thesis in Communication (WI-PR)	3
	Professional Core Courses	6
	General Education - Electives	6
	Open Electives	9
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Professional Core Courses

Students choose two of the following:

MKTG-320	Digital Marketing
MKTG-330	Global Marketing
MKTG-350	Consumer Behavior
MKTG-360	Professional Selling
MKTG-370	Advertising and Promotion Management
MKTG-430	Social Media Marketing

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in advertising, marketing, communications, liberal arts, and science
Appropriate associate degree programs for transfer
Advertising, business/marketing, communications, public relations, or liberal arts

Applied Modern Language and Culture, BS

www.rit.edu/study/applied-modern-language-and-culture-bs
Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Today's workforce is increasingly global, and career opportunities may arise in exciting international locations where a solid understanding of your career field includes proficiency in a second language and its culture. The BS degree in applied modern language and culture is a distinctive, dynamic foreign language degree in which you'll study Chinese, Japanese, or Spanish. It prepares you to actively apply your knowledge of language and culture to a technical or professional discipline of your choice, such as science, business, communication, computing and information technology, engineering, the arts, and more. You'll gain proficiency in your chosen language while learning to articulate your technical or professional discipline in that language.

Applied modern language and culture is not a traditional foreign language degree. Instead, the major provides advanced study of languages and cultures that most directly apply to the global workplace and the global economy in which you'll work. Students choose one of three language tracks-Chinese, Japanese, or Spanish-where they'll immerse themselves in that region's language and culture. Students learn to speak, understand, read, and write in their chosen language, as well as gain a proficiency in the culture and traditions surrounding the language and geographic region. In addition, students choose a secondary major of study or a minor in a technical or professional discipline, such as computing, information technology, engineering, business, the arts, or the sciences.

The major is unique in that it provides extensive study of a specific language and culture and its direct application to a career field. Students learn how the integration of language skills, cultural awareness, and professional fluency impacts their work in science, computing, communication, engineering, business, the arts, and more.

In the final year, students engage in an interdisciplinary capstone seminar that integrates their chosen linguistic/cultural discipline with the professional or technical field they have chosen to pursue. This capstone seminar culminates in a senior project presentation.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

International Experience

The applied modern language and culture major includes a required international experience where students live, study, or work in an international location. Through study abroad or an international co-op, students immerse themselves in their chosen language, engage in cultural customs and traditions, and broaden their global perspective and understanding.

Curriculum

Applied Modern Language and Culture (Chinese track), BS degree, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
Choose one of the following:	3
MLCH-201 Beginning Chinese I	
General Education - Global Perspective	
Choose one of the following:	3
MLCH-202 Beginning Chinese II	
General Education - Global Perspective	
YOPS-10 RIT 365: RIT Connections	0
General Education - Artistic Perspective	3
General Education - Ethical Perspective	3
General Education - First-Year Writing (WI)	3
General Education - Social Perspective	3
General Education - Natural Science Inquiry Perspective	3
General Education - Scientific Principles Perspective	3
General Education - Electives	6
Second Year	
MLCH-301 Intermediate Chinese I	3
MLCH-302 Intermediate Chinese II	3
MLCH-310 Intermediate Conversational Chinese	3
MLCH-315 Intermediate Reading and Writing in Chinese	3
General Education - Mathematical Perspective A	3
General Education - Mathematical Perspective B	3
General Education - Immersion 1, 2	6
MLC Focus Area Courses	6
Third Yeart	
MLCH-410 Chinese for Science and Technology	3
Advanced Chinese Language Courses	6
General Education - Immersion 3	3
General Education - Electives	9
MLC Focus Area Course	3
MLC Program Elective	3
Open Elective	3
Fourth Year	
MLCH-415 Professional Chinese	3
MLCU-549 $\begin{aligned} & \text { Capstone Seminar in Applied Modern Language } \\ & \text { and Culture }\end{aligned}$	3
General Education - Electives	6
MLC Focus Area Courses	6
Open Electives	12
Total Semester Credit Hours	120

Please see General Education Curriculum (GE)for more information.

(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
t Students complete Study Abroad and Work Abroad requirements in the third year of study. Prior to studying abroad, MLCH-201, MLCH-202, MLCH-301, MLCH-302, and two Intermediate Enhancement Courses.

Applied Modern Language and Culture (French track), BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		3
MLFR-201	Beginning French I	
	General Education - Global Perspective	
Choose one of the following:		3
MLFR-202	Beginning French II	
	General Education - Global Perspective	
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Electives	6
Second Year		
MLFR-301	Intermediate French I	3
MLFR-302	Intermediate French II	3
MLFR-310	French Oral Communication	3
MLFR-315	French Reading and Writing Proficiency	3
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - Immersion 1, 2	6
	MLC Focus Area Courses	6
Third Yeart		
MLFR-410	French for Science and Technology	3
	Advanced French Language Courses	6
	General Education - Immersion 3	3
	General Education - Electives	9
	MLC Focus Area Course	3
	MLC Program Elective	3
	Open Elective	3
Fourth Year		
MLFR-415	Professional French	3
MLCU-549	Capstone Seminar in Applied Modern Language and Culture (WI-PR)	3
	General Education - Electives	6
	MLC Focus Area Courses	6
	Open Electives	12

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students complete Study Abroad and Work Abroad requirements in the third year of study. Prior to studying abroad, MLFR-201, MLFR-202, MLFR-301, MLFR-302, and two Intermediate Enhancement Courses.

Applied Modern Language and Culture (Japanese track), BS degree, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
Choose one of the following:	3
MLJP-201 Beginning Japanese I	
General Education - Global Perspective	
Choose one of the following:	3
MLJP-202 Beginning Japanese II	
General Education - Global Perspective	
YOPS-10 RIT 365: RIT Connections	0
General Education - Artistic Perspective	3
General Education - Ethical Perspective	3
General Education - First-Year Writing (WI)	3
General Education - Social Perspective	3
General Education - Natural Science Inquiry Perspective	3
General Education - Scientific Principles Perspective	3
General Education - Electives	6
Second Year	
MLJP-301 Intermediate Japanese I	3
MLJP-302 Intermediate Japanese II	3
MLJP-310 Practical Reading and Speaking in Japanese	3
MLJP-315 Practical Writing and Speaking in Japanese	3
General Education - Mathematical Perspective A	3
General Education - Mathematical Perspective B	3
General Education - Immersion 1, 2	6
MLC Focus Area Courses	6
Third Yeart	
MLJP-410 Japanese for Science and Technology	3
Advanced Japanese Language Courses	6
General Education - Immersion 3	3
General Education - Electives	9
MLC Focus Area Course	3
MLC Program Elective	3
Open Elective	3
Fourth Year	
MLJP-415 Professional Japanese	3
MLCU-549Capstone Seminar in Applied Modern Language and Culture	3
General Education - Electives	6
MLC Focus Area Courses	6
Open Electives	12

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.
*Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students complete Study Abroad and Work Abroad requirements in the third year of study. Prior to studying abroad, MLJP-201, MLJP-202, MLJP-301, MLJP-302, and two Intermediate Enhancement Courses.

Applied Modern Language and Culture (Spanish track), BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		3
MLSP-201A	Beginning Spanish IA	
General Education - Global Perspective		
Choose one of the following:		3
MLSP-202	Beginning Spanish II	
General Education - Global Perspective		
YOPS-10	RIT 365: RIT Connections	0
General Education - Artistic Perspective		3
General Education - Ethical Perspective		3
General Education - First-Year Writing (WI)		3
General Education - Social Perspective		3
General Education - Natural Science Inquiry Perspective		3
General Education - Scientific Principles Perspective		3
General Education - Electives		6
Second Year		
MLSP-301	Intermediate Spanish I	3
MLSP-302	Intermediate Spanish II	3
MLSP-310	Spanish Grammar Review	3
MLSP-315	Hispanic Culture \& Civilization	3
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - Immersion 1, 2	6
MLC Focus Area Courses		6
Third Yeart		
MLSP-410	Spanish for Science and Technology	3
Advanced Spanish Language Courses		6
General Education - Electives		9
General Education - Immersion 3		3
MLC Focus Area Course		3
MLC Program Elective		3
Open Elective		3
Fourth Year		
MLSP-415	Professional Spanish	3
MLCU-549	Capstone Seminar in Applied Modern Language and Culture	3
	General Education-Electives	6
	MLC Focus Area Courses	6
	Open Electives	12
Total Seme	it Hours	120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students complete Study Abroad and Work Abroad requirements in the third year of study. Prior to studying abroad, MLSP-201, MLSP-202, MLSP-301, MLSP-302, and two Intermediate Enhancement Courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, science, and foreign language

Appropriate associate degree programs for transfer
Liberal arts with social sciences, sciences, or languages

Communication, BS

www.rit.edu/study/communication-bs
Amy Lyman,
585-475-4137, axlgla@rit.edu

Program overview

Developing productive relationships, managing teams, analyzing audiences, creating effective messages, and understanding media are key competencies needed for successful communication professionals. RIT's communications degree prepares you in the theory, research, and practical application needed to develop these skills. You will graduate ready for a successful career as a communication specialist. The degree's strong focus on undergraduate research also prepares you for graduate work in communication and related academic disciplines.

RIT's Communication Bachelor Degree

Customize your bachelor of communication by taking professional core courses from RIT's nine colleges, in areas as diverse as design, photography, marketing, health care, programming, and engineering, to name a few. This unique combination of course work allows you to explore the breadth of the communication field while studying other subject areas of professional or personal interest. You will be prepared for a variety of careers, ranging from traditional corporate communication to entrepreneurial start-up environments.

Classes

Take courses in communication theory, visual communication, public speaking, mass communication, communication law and ethics, technology-mediated communication, and research methods. Complete a professional core from one of the many minors across the university or you may design your own. Electives and liberal arts courses complete the curriculum. Complement your classroom work by completing one semester of cooperative education that deepens your knowledge of the communication field while you gain hands-on work experience that prepares you for a full-time position after graduation.

Advising

Every student in the School of Communication is assigned a professional academic advisor and a faculty mentor. Professional advisors assist with course planning and registration. The faculty mentor provides advising on career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level advertising and public relations students, are also available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective. For more information, please refer to the college's academic advising page.

Communication Master's Degree

The School of Communication offers an MS degree in communication.

RIT's Pre-Law Program

Law schools welcome applications from students majoring in a wide range of academic programs. RIT's pre-law program will help you navigate the admission process for law school, explore a range of legal careers, and guide you through course selection to ensure you build the skills and competencies required of competitive law school applicants. The program is open to students in all majors who are interested in pursuing a career in law.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a juris doctorate degree in six years. In the $3+3$ option, students interested in the following RIT majors-advertising and public relations, communication, criminal justice, economics, English, history, international and global studies, journalism, philosophy, political science, psychology, public policy, and sociology and anthropology-may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the communication degree are required to complete one cooperative education experience.

Curriculum

Communication, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
COMM-101	General Education - Elective: Human Communication	3
COMM-105	Foundations of Communication	3
COMM-201	General Education - Elective: Public Speaking	3
COMM-202	Mass Communications	3
MATH-101	General Education - Mathematical Perspective A: College Algebra	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Elective	3
Second Year		
COMM-341	Visual Communication	3
COMM-342	Communication Law and Ethics	3
Choose one of the following:		
COMM-302	Interpersonal Communication	
COMM-303	Small Group Communication	
COMM-304	Intercultural Communication	
COMM-343	Technology-Mediated Communication	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
	General Education - Immersion 1	3
	General Education - Scientific Principles Perspective	3
	General Education - Social Perspective	3
	Open Elective	3
	Professional Core \ddagger	3
Third Year		
COMM-301	Theories of Communication	3
COMM-401	Quantitative Research Methods	3
COMM-499	Communication Co-op (summer)	0
	General Education - Natural Science Inquiry Perspective§	3
	General Education - Immersion 2, 3	6
	Communication Elective	3
	Open Electives	6
	Professional Core \ddagger	6
Fourth Year		
COMM-402	Qualitative Research Methods	3
COMM-497	Communication Portfolio	0
COMM-501	Senior Thesis in Communication (WI-PR)	3
	Communication Elective	3
	Professional Core \ddagger	3
	General Education - Electives	15
	Open Elective	3
Total Semes	it Hours	120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Professional core may be fulfilled by selecting a 300-level (or higher) course from a discipline outside the liberal arts.
§ Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, math, science, and computer science

Appropriate associate degree programs for transfer

Liberal arts with emphasis in communication and a technical field such as business, photography, or computer science

Criminal Justice, BS

www.rit.edu/study/criminal-justice-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axlgla@rit.edu

Program overview

Majoring in criminal justice provides you with a broad education that speaks to your interest in law and justice. You will be prepared for a wide range of careers in federal and local criminal justice agencies. The major also provides continuing education for professionals already employed in criminal justice positions and offers a strong academic foundation for graduate or law school. The criminal justice BS is unique in its broad core curriculum, the scope of professional course offerings, an intensive field experience where students blend knowledge gained in the classroom with a career-oriented internship, and opportunities for cooperative education.

RIT's Criminal Justice BS

Develop your understanding of crime and the criminal justice system responses. You will explore contemporary public safety issues, especially those involving technology, and evaluate the intended and unintended consequences. This framework offers opportunities to consider policy responses and engage in hands-on research in local agencies. A focus on theory and social science provides you with the problem-solving skills necessary for addressing today's most pressing social issues.

RIT's approach to the study of criminal justice combines theoretical perspectives with practical experience. The emphasis within the areas of crime, criminal behavior, social control mechanisms, administration, planning, and management is on problem-solving techniques based on the growing body of research in the field as well as students' own guided research.

Advising

Students are assigned a faculty advisor who assists in formulating career goals and planning a field of study to achieve professional aspirations. Through core courses, students are exposed to the widest possible range of perspectives from which to view crime and the nature of criminal justice administration, thus broadening their career options.

Center for Public Safety Initiatives

The Center for Public Safety Initiatives is housed in the criminal justice department and works with the Rochester Police Department and other community groups. Several students work at CPSI and gain valuable experience working with crime mapping, data gathering, and data analysis. Students work closely with faculty on various projects, including Operation IMPACT, Ceasefire and Project Safe Neighborhoods, and the Rochester Police Department. The CPSI supports the development, implementation, and evaluation of criminal justice and communitybased anti-crime and anti-violence interventions.

Careers in Criminal Justice

Many graduates are engaged in law enforcement careers in agencies at all levels of government, including the Federal Bureau of Investigation, Secret Service, U.S. Marshals Service, Naval Intelligence Service, U.S. Customs and Border Patrol, Immigration and Naturalization Service, Centers for Disease Control, Department of the Interior, and the National Park Service, among others. The Rochester Police Department, Monroe County Sheriff's Department, and suburban departments
throughout the greater Rochester area employ our graduates. A number have advanced in rank to positions of command, including several chiefs and deputy chiefs.

Other alumni work as correctional officers, counselors, probation officers, and parole officers; with many advancing to administrative positions. A significant number of alumni have used the program as a foundation for law school and have entered the legal profession as prosecutors, public defenders, and private practice lawyers. Many graduates serve in U.S. Attorneys General offices. Others serve the legal profession as investigators or paralegals.

Consistent with the liberal arts/social science nature of the major, some graduates have attained advanced degrees in related areas and entered teaching careers at the secondary and college levels. Others have become psychologists, social workers, drug and alcoholism counselors, youth service specialists, and victim assistance/rape crisis counselors. Many have completed advanced degrees in business, public policy, public administration, criminology, and criminal justice.

Pre-Law Advising Program

Law schools welcome applications from students majoring in a wide range of academic programs. If you are interested in pursuing law school, RIT's Pre-Law Advising Program is designed to maximize your chances of admission to law school. The program includes personalized advising, LSAT preparation, academic counseling, and a time table for law school admission.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a juris doctorate degree in six years. In the $3+3$ option, students interested in the following RIT majors-advertising and public relations, communication, criminal justice, economics, English, history, international and global studies, journalism, philosophy, political science, psychology, public policy, and sociology and anthropology-may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the criminal justice degree have the opportunity to participate in cooperative education and may apply for co-op placements after two semesters of full-time study. Cooperative education provides a working experience in a criminal justice-related field but does not carry academic credit hours.

Field Experience

During their senior year, students have the opportunity to complete an internship at a number of agencies and organizations in the areas of law, law enforcement, institutional and non-institutional corrections, courts, juvenile advocacy and counseling programs, and security. For one semester, students work 25-hours-a-week under an agency field supervisor and meet regularly with advisors and peers who are doing field placements in other agencies. Placements are individualized to fit a student's career objectives.

Curriculum

Criminal Justice, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CRIM-100	Seminar in Criminal Justice	3
CRIM-110	Introduction to Criminal Justice	3
YOPS-10	RIT 365: RIT Connections	0
	Criminal Justice Elective	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education-Global Perspective	3
	General Education - Natural Science Inquiry Perspective¥	3
	General Education - Social Perspective	3
	General Education - Elective	3
Second Year		
CRIM-300	Quantitative Methods for Criminal Justice	3
CRIM-350	Theories of Crime and Criminality	3
CRIM-400	Research Methods	3
	Criminal Justice Elective	3
	General Education - Immersion 1, 2	6
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	
Third Year		
	Criminal Justice Electives	9
	General Education - Electives	9
	General Education - Immersion 3	3
	Open Electives	9
Fourth Year		
CRIM-500	Seminar in Criminal Justice and Public Policy (WI-PR)	3
CRIM-550	Field Experience	
	Criminal Justice Electives	9
	General Education - Electives	9
	Open Electives	6

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Criminal Justice Electives

COURSE	
CRIM-210	Technology in Criminal Justice
CRIM-215	Law and Society
CRIM-220	Corrections
CRIM-225	Criminal Law
CRIM-230	Juvenile Justice
CRIM-235	Crime, Justice and Communities
CRIM-240	Law Enforcement in Society
CRIM-245	Prostitution and Vice
CRIM-250	Domestic Violence
CRIM-255	Seminar on Sexual Violence
CRIM-260	Courts
CRIM-265	Women and Crime
CRIM-270	Current Issues in Criminal Justice
CRIM-275	Crime and Violence
CRIM-285	Minority Groups and the Criminal Justice System
CRIM-290	Computer Crime
CRIM-299	Crime, Justice, and Ethics
CRIM-310	Seminar in Law
CRIM-315	Evidence
CRIM-489	Major Issues in Criminal Justice

Combined Accelerated Bachelor's/Master's Degree

An accelerated criminal justice bachelor's/master's degree provides an opportunity for students who are looking to develop a stronger foundation in criminological, criminal justice theory, and social scientific research skills. Graduates are well positioned for careers in the policy analysis arena or to be able to easily transition into a criminal justice doctoral program.

Criminal Justice, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CRIM-100	Seminar in Criminal Justice	3
CRIM-110	Introduction to Criminal Justice	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective¥	3
	General Education - First Year Writing (WI)	3
	General Education - Elective	3
	Criminal Justice Elective	3
Second Year		
CRIM-300	Quantitative Methods for Criminal Justice	3
CRIM-350	Theories of Crime and Criminality	3
CRIM-400	Research Methods	3
	Criminal Justice Elective	3
	General Education - Scientific Principles Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - Elective	3
	General Education - Immersion 1, 2	6
Third Year		
	Criminal Justice Electives	9
	General Education - Electives	9
	General Education - Immersion 3	3
	Open Electives	9
Fourth Year		
CRIM-500	Seminar in Criminal Justice and Public Policy (WI-PR)	3
CRIM-550	Field Experience	3
CRIM-700	Pro-Seminar In Criminal Justice Theory	3
CRIM-703	Advanced Criminology	3
	General Education - Electives	9
	Open Electives	6
	Criminal Justice Elective	3
Fifth Year		
CRIM-701	Statistics	3
CRIM-702	Pro-Seminar in Research Methods	3
CRIM-704	Crime, Justice and Community	3
CRIM-705	Interventions and Change in Criminal Justice	3
CRIM-775	Criminal Justice Capstone	3
	Electives	9

Total Semester Credit Hours144

Please see General Education Curriculum for more information.
WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in criminal justice or related areas, liberal arts, math, and science

Economics, BS

www.rit.edu/study/economics-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Economists play a role in a range of industries, from business and law to social sciences, agriculture, and environmental studies. They study how society distributes its resources - from land, labor, raw materials, and machinery - to produce a range of goods and services. They also conduct research, collect and analyze information, monitor economic trends, and develop forecasts to guide industries in making critical decisions. For students who have strong math skills, but are also interested in impacting policy and social issues, an economics degree is an exciting, dynamic major. RIT's economics degree develops your communication, computational, and management skills in addition to refining your economic reasoning and quantitative abilities. You'll be prepared to apply economic analysis to help solve real-world problems.

The economics degree emphasizes the quantitative analytical approach to dealing with economic problems in both the public and private sectors, providing students with marketable skills and the intellectual foundation for career growth. Graduates are prepared for entry-level managerial and analytical positions in both industry and government and to pursue graduate studies in economics, business, and law.

Plan of Study

The economics curriculum develops communication, computational, and management skills in addition to economic reasoning and quantitative abilities. Required courses develop students' abilities to apply economic analysis to real-world problems. Liberal arts courses enhance oral and written communication skills. Business courses include accounting and finance. Quantitative analytical skills are developed by a course sequence that includes computer science, mathematics, and statistics. Free electives allow students to pursue advanced study in their individual areas of interest and/or develop a double major. Along with finance, marketing, mathematics, statistics, or computer science, there are many other possibilities. Faculty advisors help students develop professional options that assist them in attaining their career goals.

Tracks

Students choose one of the following tracks: economic theory, environmental economics, or managerial economics.

Capstone Experience

Students are required to complete a creative capstone experience. Students may publish a paper in a refereed journal, present a paper at a professional conference or at an RIT-sponsored conference, present research at an approved exhibit at Imagine RIT: Creativity and Innovation Festival, or fulfill a comparable creative capstone requirement in the student's primary major (if economics is the secondary major).

Double Majors

The economics curriculum is flexible and allows students to pursue a double major in a secondary field of study. Even with a double major, students are able to graduate in four years.

Academic Enrichment Opportunities

Economics faculty members serve as mentors and are available to enhance students' personal and professional growth. Students may work as teaching assistants for professors in economics courses or learn about research techniques as research assistants for faculty. For both of these activities, students receive a stipend. Finally, students can engage in independent or joint research with a faculty member, receiving academic credit and obtaining funding for their research needs.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's economics degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the economics degree are strongly encouraged to participate in cooperative education.

Curriculum

Economics, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ECON-100	Foundational Seminar in Economics	0
ECON-101	Principles of Microeconomics	3
ECON-201	Principles of Macroeconomics	3
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Elective	3
Second Year		
ECON-402	Intermediate Macroeconomic Theory	3
ECON-403	Econometrics I (WI-PR)	3
Choose one of the following:		3
ECON-405	International Trade and Finance	
ECON-406	Global Economic Issues	
	General Education - Global Perspective	3
	General Education - Immersion 1	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Open Elective	3
	Track Courses	6
Third Year		
ECON-401	Intermediate Microeconomic Theory	3
ECON-404	Mathematical Methods: Economics	3
Choose one of the following:		3
ISCH-110	Principles of Computing	
ISTE-105	Web Foundations	
	General Education - Immersion 2, 3	6
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
	Open Electives	6
	Track Course	3
Fourth Year		
ECON-407	Industrial Organization	3
ECON-510	Economics Capstone Experience	0
	General Education - Electives	12
	Open Electives	6
	Track Courses	9

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the ecture and lab portions to satisfy the requirement.

Tracks

Economic Theory and Policy

COURSE	Game Theory with Economic Applications
\quad UpCON-410	Uper Division Economics Elective Choose any combination offour of the following:
	Upper Division Economics Elective (from approved list)
	Computing Elective (from approved list)

Environmental Economics

COURSE	Natural Resource Economics
ECON-421	Benefit-Cost Analysis
ECON-422	Environmental Economics
	Upper Division Economics Elective or Computing Elective or Mathematics Elective (from approved lists)
	Two Environmental Electives (from approved list)

Managerial Economics

COURSE	
ACCT-110	Financial Accounting
ECON-410	Game Theory with Economic Applications
ECON-430	Managerial Economics
Choose one of the following:	
FINC-22	Financial Management
ECON-431	Monetary Analysis and Policy
ECON-433	Financial Economics
Choose one of the following:	International Trade and Finance
ECON-405	Global Economic Issues
ECON-406	Upper Division Economics Elective or Computing Elective or Mathematics Elective (from approved lists)

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Economics, BS degree/Sustainable Systems, MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
ECON-100	Foundational Seminar in Economics	0
ECON-101	Principles of Microeconomics	3
ECON-201	Principles of Macroeconomics	3
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Elective	3
Second Year		
ECON-402	Intermediate Macroeconomic Theory	3
ECON-403	Econometrics I (WI-PR)	3
Choose one of the following:		
ECON-405	International Trade and Finance	
ECON-406	Global Economic Issues	
	General Education - Global Perspective	3
	General Education - Immersion 1	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Open Elective	3
	Track Courses	6
Third Year		
ECON-401	Intermediate Microeconomic Theory	3
ECON-404	Mathematical Methods: Economics	3
Choose one of the following:		
ISCH-110	Principles of Computing	
ISTE-105 Web Foundations		
	General Education - Immersion 2, 3	6
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
	Open Electives	6
	Track Course	3
Fourth Year		
ECON-407	Industrial Organization	3
ECON-510	Economics Capstone Experience	0
Choose one of the following:		
ISUS-702	Fundamentals of Sustainability Science	
ISUS-706	Economics of Sustainable Systems	
ISUS-806	Risk Analysis	
Choose one of the following:		
ISUS-704	Industrial Ecology	
ISUS-808	Multicriteria Sustainable Systems	
PUBL-810	Technology, Policy and Sustainability (or approved substitute)	
	General Education - Electives	12
	Open Electives	6
	Track Courses	3
Fifth Year		
Choose two of the following:		
ISUS-702	Fundamentals of Sustainability Science	
ISUS-706	Economics of Sustainable Systems	
ISUS-806	Risk Analysis	
Choose two of the following: 6		
ISUS-704	Industrial Ecology	
ISUS-808	Multicriteria Sustainable Systems	
PUBL-810	Technology, Policy and Sustainability (or approved substitute)	
Choose one of the following:		
ISUS-780	Capstone	
ISUS-790	Thesis	
	Approved Sustainability Electives	6

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.

Economics, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ECON-100	Foundational Seminar in Economics	0
ECON-101	Principles of Microeconomics	3
ECON-201	Principles of Macroeconomics	3
MATH-171	General Education - Mathematical Perspective A: Calculus A	3
MATH-172	General Education - Mathematical Perspective B: Calculus B	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Natural Science Inquiry Perspective \dagger	3
	General Education - Elective	3
Second Year		
ECON-402	Intermediate Macroeconomic Theory	3
ECON-403	Econometrics I (WI-PR)	3
Choose one of the following:		
ECON-405	International Trade and Finance	
ECON-406	Global Economic Issues	
	General Education-Global Perspective	3
	General Education - Immersion 1	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Open Elective	3
	Track Courses	6
Third Year		
ECON-401	Intermediate Microeconomic Theory	3
ECON-404	Mathematical Methods: Economics	3
Choose one of the following:		
ISCH-110	Principles of Computing	
ISTE-105	Web Foundations	
	General Education - Immersion 2, 3	6
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
	Open Electives	6
	Track Course	3
Fourth Year		
ECON-407	Industrial Organization	3
ECON-510	Economics Capstone Experience	0
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	General Education - Electives	12
	Open Electives	6
	Track Course	3
Fifth Year		
PUBL-700	Readings in Public Policy	3
PUBL-703	Program Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Graduate Electives	9
Choose one of the following:		6
PUBL-785	Capstone Research	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam plus 2 Graduate Electives	
Total Semester Credit Hours		144

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree
Courses in business, liberal arts, math, science, and computer science

Appropriate associate degree programs for transfer

[^8]
English, BS

www.rit.edu/study/english-bs
Robert Glick, Associate Professor
585-475-4618, rdggla@rit.edu

Program overview

Are you interested in a 21st-century English degree?

Technology affects how we write, tell stories, and analyze literature. And there's no better place to explore the fusion of technology and English than at RIT. Our English bachelor's degree grounds you in critical thinking, writing, and making, all while preparing you with digital tools as well as the soft and hard skills that impress employers. With concentrations in creative writing, linguistics, or literature and media, the English major offers more than 70 courses for you to choose from. In addition to traditional literature, you'll study what interests you.

Our faculty offer exploration in fantasy worlds, sentiment analysis, Twitter bots, social justice, Afrofuturism, transgender poetics, graphic novels, Twine interactive game fictions, speech technologies, the rhetoric of science and terror, digital poems, and dangerous texts. You'll gain expertise in articulating your innovative ideas, building collaborative teams, managing projects, creating powerful messaging that gets results, providing critiques and feedback, making intelligent and ethical arguments and decisions, and speaking in ways that make you stand out.

Preparing You for Today's Dynamic Careers

Today's emerging careers require English language expertise, writing, and analytic skills paired with computer science, new media, linguistics, animation, and more. Today's writers are also content creators who use digital tools to communicate a range of messages across a variety of platforms and collaborate with game designers, animators, scientists, engineers, and digital media strategists.

In the English bachelor's degree, we introduce you to digital tools which interface with the study of language, literature, and media. Additionally, your English degree includes professional electives in any area you choose, which empowers you to customize your English degree around your career goals. You'll have access to a range of computing and tech courses and the world-renowned faculty who teach them.

Are you interested in writing for video games? Your professional courses can come from RIT's BS degree in game design and development.

Do you have a passion for science? Choose professional electives from our majors in biology, biomedical sciences, physics, and more.

In RIT's English degree, you will learn:

- Writing-Gain a complete command of the English language, including grammar, rhetoric, and argument. This gives you an edge in all types of writing, from effective presentations to video game text, and everything in between.
- Storytelling-Learn to tell smart, moving stories about yourself, your organization, your clients, or the products you're tasked with selling.
- Digital Creation and Literacy-Become an expert in creating, reading, and interpreting digital content, developing skills that combine writing and tech, using digital tools for textural analysis, and more.
- Close Reading, Critical Analysis, Interpretation-Articulate deep knowledge and understanding of all kinds of media, concepts, and theories, as you interpret difficult concepts, analyze and defend positions, and provide and accept constructive criticism.
- Communication-Gain expertise in nuance and subtext, and the different modes of writing and speaking in traditional and digital formats. You'll also understand how to assess different audiences in order to strike the proper tone and articulate ideas in clear yet sophisticated ways.
- Cultural Literacy-Learn about the power of language and its role in creating cultural meaning. You'll learn how different social and cultural contexts affect language and meaning, and learn about different cultures through their media traditions, from major literary works and genres to critical traditions.
- Computational Linguistics-Learn how to develop computer systems that deal with human language.
- Research-Master a variety of research methods, including digital tools and data methodologies, specific to English majors, as well as presentation techniques.
- Organization-Attain the skills needed to work independently and in teams, manage projects, set schedules, meet and manage deadlines, organize projects, execute planning and research, lead and participate in discussions, and present ideas and information.

Concentrations

RIT's English BS offers three concentrations that provide you with an opportunity to tailor your degree around your interest and career aspirations.

Creative Writing-At RIT, creative writing is more than writing poetry, fiction, and non-fiction. We analyze, write, and revise the traditional and innovative writing that inspires you. With a concentration in Creative Writing, you'll learn how to analyze and write in multiple genres and forms, including worldbuilding, digital creative writing, and playwriting. You'll roll dice to create characters and build your own scent bags to enhance your perceptual capabilities. With our organizational affiliations to RIT Storytellers, Mental Graffiti, Signatures Arts and Literary Magazine, and the digital literature journal gl-ph, you can gain valuable professional experience at the same time that you expand and refine your writing horizons.

Linguistics-Linguistics is the scientific study of language and how it's shaped by social factors, how the human brain processes language, how languages developed over time and human evolution, and more. In RIT's English department, our faculty are experts in computational linguistics, a cutting-edge and highly paid field at the intersection of language, linguistics, and computing.

Literature and Media-Literature involves reading and analyzing meaningful works of writing to dissect and understand their historical, cultural and literary significance. In this concentration, you'll examine a range of works, both classical and contemporary, to expand your critical thinking, analytical, and interpretive knowledge of writing and text. While you'll study Shakespeare, Austen, and Morrison, you'll also dive into everything from graphic novels to banned books, from anime to the works of rapper and Pulitzer Prize winner Kendrick Lamar. Add to that hands-on experience with the digital tools that English majors need, and you'll be able to pursue your specific interests at the same time you're setting yourself up for professional life.

English as a Double Major

Are you interested in pairing an English degree with your interests in programming, computing, law, foreign language, business, or the arts? With its focus on writing, critical thinking, and communication, an English degree deepens your expertise in both areas and broadens your skill set for a career in a range of dynamic fields. An English degree can complement the following RIT majors:

- Applied Modern Language and Culture
- Business Degrees
- Computer Science BS
- Criminal Justice BS
- Digital Humanities and Social Sciences BS
- Film and Animation BFA
- Game Design and Development BS
- Human-Centered Computing BS
- Illustration BFA
- Marketing BS
- New Media Interactive Development BS

In addition, an English bachelor's degree is an excellent major for those wishing to pursue careers in law or medicine. RIT's Pre-Law and Pre-Med programs provide academic advising and guidance on course selection to help you build the core competencies needed to become a strong candidate for admission to law school, medical school, or graduate programs in the health professions.

Study Abroad

Opportunities to study abroad enhance your understanding of global cultures. Students may study full-time at a variety of host schools and are able to select courses in their major as well as liberal arts courses. Visit RIT Global to learn more about the range of study abroad programs available, including opportunities at RIT's global campuses in China, Croatia, Kosovo, and Dubai. Recent English study abroad programs have taken place in France, Croatia, and Portugal.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's English degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education and internships are optional but strongly encouraged for students in the English major.

Curriculum

English, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ENGL-101	English Studies	1
ENGL-210	Literature and Cultural Studies (WI-GE)	3
ENGL-215	Text \& Code (WI-GE)	3
YOPS-10	RIT 365: RIT Connections	0
Choose one of the following:		3
ENGL-211	Introduction to Creative Writing: Prose and Poetry (WI-GE)	
ENGL-212	Introduction to Creative Writing: Forms and Styles (WI-PR)	
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Open Elective	2
Second Year		
ENGL-214	Introduction to Linguistics	3
ENGL-250	Data Methods for English Majors	3
ENGL-275	Storytelling: [Genre/Theme]	3
	English Concentration Course 1, 2 §	6
	General Education - Natural Science Inquiry Perspective \ddagger	3
	General Education - Scientific Principles Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Immersion 1, 2	6
Third Year		
	Professional Elective Course 1	3
	English Concentration Course 3, 4, 5 §	9
	General Education - Mathematical Perspective B	3
	General Education - Immersion 3	3
	General Education - Electives	9
	Open Elective	3
Fourth Year		
ENGL-500	Capstone in English	3
	Professional Elective Course 2, 3, 4	9
	English Concentration Course 6 §	3
	General Education - Electives	6
	Open Electives	9
Total Seme	it Hours	120

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger English Internship (ENGL-498) or English Co-op (ENGL-499) is recommended in the summer prior to the final year of study.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and the lab portion.
§ Students are required to complete at least one course at the 400-level or above as part of the concentration.

English Concentrations §

Literature \& Media

ENGL-301	The Art of Poetry
ENGL-302	The Short Story
ENGL-304	Drama \& Theater
ENGL-307	Mythology \& Literature
ENGL-308	Shakespeare Drama
ENGL-309	Topics in Literary Forms
ENGL-312	American Literature
ENGL-313	British Literature
ENGL-314	Ethics in the Graphic Memoir
ENGL-315	Digital Literature
ENGL-316	Global Literature
ENGL-320	Popular Literature
ENGL-322	Genre Fiction
ENGL-328	Literary Geographies
ENGL-333	Rhetoric of Science
ENGL-345	Rhetoric of Terrorism
ENGL-353	History of Madness
ENGL-360	Fantasy
ENGL-361	Written Argument
ENGL-373	Technical Writing
ENGL-374	Media Adaptation

ENGL-376	Experimental Writing
ENGL-377	Transmedia Storyworlds
ENGL-381	Science Writing
ENGL-391	Dangerous Texts
ENGL-400	Literary \& Cultural Studies
ENGL-410	Film Studies
ENGL-411	American Literature
ENGL-413	African-American Literature
ENGL-418	Topics in Women's and Gender Studies
ENGL-419	Great Authors
ENGL-422	Literature and Technology
ENGL-450	Maps, Spaces and Places

Creative Writing

ENGL-386	World-Building Workshop
ENGL-389	Digital Creative Writing Workshop
ENGL-390	Creative Writing Workshop
ENGL-490	Advanced Creative Writing Workshop
ENGL-511	Advanced Topics in Creative Writing

Linguistics

ENGL-310	Introduction to Language Science
ENGL-351	Language Technology
ENGL-356	Meaning in Language
ENGL-370	Evolving English Language
ENGL-482	Speech Processing I
ENGL-581	Natural Language Processing I
ENGL-582	Natural Language Processing II
ENGL-584	Speech Processing II
MLCU-301	Psycholinguistics
MLJP-451	Introduction to Syntax

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without an associate degree
Courses in liberal arts, math, science, and computer science

Appropriate associate degree programs for transfer

Liberal arts with an emphasis in communication and a technical field such as business, photography, or computer science

History, BS

www.rit.edu/study/history-bs
 Tamar Carroll, Associate Professor
 585-475-6913, twcgsh@rit.edu

Program overview

The past will always shape the future as our understanding of who we are and what we value continues to evolve. The ability to reflect on history, examine the human condition, and critically analyze the past as a guide to the present and future is part of what it means to be human and to live in human communities. The study of history not only encourages you to develop a lifelong passion for critical thinking, but also leads you to become a better local and global citizen, an effective communicator, an active participant in civil discourse, and an informed creator and consumer of media and technology. RIT's BS in history will equip you to understand the past and the means by which it shapes the present.

As a history major, you will be prepared to not only become a historian, but also to succeed in fields as diverse as business, education, government, journalism, law, and public service. Students of history focus on acquiring content knowledge and mastering historical methodologies. Understanding content provides intricate expertise in eras, fields, and topics-all of which are not only important in their own right but also are relevant to other disciplines that incorporate historical themes. The study of historical methodologies enables you to conduct your own research-to collect, evaluate, analyze, synthesize, and interpret evidence and data.

Central to RIT's history program is your acquisition of the technological expertise necessary to study and craft history in the digital age. These skills separate RIT's history graduates from graduates at other institutions. As a result, you will learn to:

- Collect, organize, and critically appraise a variety of evidence and data (primary and secondary sources).
- Construct effective interpretations, arguments, and presentations based on the analysis of evidence and data.
- Manage projects based on research, analysis, and the communication of findings and results.
- Become well-prepared for graduate-level study in history or a related field, such as business, education, government, journalism, law, and public service.
The study of history will prepare you for a variety of careers and for study at the graduate level. Nearly half of those who major in history pursue graduate school in a related discipline. The American Community Survey of the U.S. Census Bureau shows that a significant number of history majors work in fields other than history, including law, management, and primary/secondary education. In fact, 48 percent of history majors go to graduate school.

These statistics further demonstrate how the study of history serves as strong preparation for graduate training in several different academic and professional fields.

Thematic Specializations

You will choose one of four thematic specializations in which you'll gain a deeper understanding in a particular area of history. Thematic specializations include:

- U.S. History
- Global History
- Deaf and Disability Studies
- History of the Environment, Science, and Technology

Capstone Project

The capstone project is the final core requirement of the history degree and serves as an opportunity to further develop and sharpen your practice and understanding of history. You'll work with faculty to conceive and develop a senior thesis, and present your research project in front of your peers and program faculty.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's history degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

As a history major, you'll complete one co-op or internship, where you will work in a professional setting related to history. You will gain career experience while you apply what you're learning in the classroom to a professional setting.

Curriculum

History, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
HIST-101	Making History	3
YOPS-10	RIT 365: RIT Connections	0
	Non-Western/Indigenous History Course 1 \dagger	3
	Thematic Specialization 1, 2	6
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
	General Education - Mathematical Perspective B	3
Second Year		
ISCH-110	Principles of Computing	3
ISCH-370	Principles of Data Science	3
Choose one of the following:		0
HIST-498	History Internship	
HIST-499	History Co-operative Education	
	Non-Western/Indigenous History Course $2 \dagger$	3
	Thematic Specialization 3	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education-Immersion 1, 2	6
	General Education - Elective	3
Year Three		
HIST-326	Digital History	3
HIST-421	Hands-on History (WI-GE)	3
	Thematic Specialization 4	3
	Program Elective 1,2	6
	General Education - Immersion 3	3
	General Education - Electives	6
	Open Electives	6
Year Four		
HIST-501	Capstone Seminar (WI-PR)	3
	Program Elective 3, 4, 5, 6	12
	General Education - Electives	9
	Open Electives	6
Total Sem	t Hours	120
Please see General Education Curriculum (GE) for more information. (WI-PR) Refers to a writing intensive course within the major. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses. \# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and the lab portion.		
†Non-Western or Indigenous History Courses		
ANTH-260 Native North Americans		
ANTH-265	Native Americans in Film	
ANTH-335	Culture and Politics in Latin America	
HIST-140	History of the Modern Middle East	
HIST-150	World History since 1500	
HIST-160	History of Modern East Asia	
HIST-201	Histories of Globalization	
HIST-210	Culture and Politics in Urban Africa	
HIST-252	The United States and Japan	
HIST-260	History of Premodern China	
HIST-261	History of Modern China	
HIST-265	History of Modern Japan	
HIST-266	History of Premodern Japan	
HIST-310	Global Slavery and Human Trafficking	
HIST-360	A Global History of Baseball	
HIST-365	Conflict in Modern East Asia	
HIST-370	Global History of Religions	
HIST-450	Japan in History, Fiction, and Film	
HIST-462	East-West Encounters	
$\begin{aligned} & \hline \text { HIST-465 } \\ & \hline \text { HIST-470 } \\ & \hline \end{aligned}$	Samurai in Word and Image	
	Science, Technology and Imperialism: 1800-19	

Thematic Specializations

U.S. History

ANTH-385	Anthropology and History
HIST-102	Themes in U.S. History
HIST-103	The City in History
HIST-125	Public History and Public Debate
HIST-180	Information Revolution
HIST-190	American Women's and Gender History
HIST-191	The History of Families and Children in the U.S.
HIST-199	Survey of American Military History
HIST-221	Introduction to Public History
HIST-230	American Deaf History
HIST-240	Civil War America
HIST-242	The American Revolutionary Era
HIST-245	American Slavery and Freedom
HIST-250	Origins of U.S. Foreign Relations
HIST-251	Modern U.S. Foreign Relations
HIST-252	The United States and Japan
HIST-255	History of World War II
HIST-282	Women, Gender, and Computing
HIST-290	U.S. History since 1945
HIST-301	Great Debates in U.S. History
HIST-322	Monuments and Memory
HIST-323	America's National Parks
HIST-324	Oral History
HIST-325	Museums and History
HIST-340	Rochester Reformers: Changing the World
HIST-350	Terrorism, Intelligence, and War
HIST-351	The Vietnam War
HIST-383	Technology and Global Relations in the American Century
HIST-390	Medicine and Public Health in American History
HIST-439	Biography as History

Global History

ANTH-385	Anthropology and History
HIST-103	The City in History
HIST-104	Themes in European History
HIST-140	History of the Modern Middle East
HIST-150	World History since 1500
HIST-160	History of Modern East Asia
HIST-170	Twentieth Century Europe
HIST-201	Histories of Globalization
HIST-210	Culture and Politics in Urban Africa
HIST-251	Deaf People in Global Perspective
HIST-255	The United States and Japan
HIST-260	History of World War II
HIST-261	History of Premodern China
HIST-265	History of Modern China
IHST-266	History of Modern Japan
HIST-270	History of Premodern Japan
HIST-275	History of Modern France
HIST-280	Screening the Trenches: The History of WWI through Film
HIST-281	History of Modern Germany
HIST-310	Global History of Technology
HIST-322	Global Slavery and Human Trafficking
HIST-350	Monuments and Memory
HIST-351	Terrorism, Intelligence, and War
HIST-355	The Vietnam War
HIST-360	The Holocaust: Event, History, Memory
HIST-365	A Global History of Baseball
HIST-369	Conflict in Modern East Asia
HIST-370	Histories of Christianity
HIST-380	Global History of Religions
HIST-439	International Business History
HIST-450	Technology and Global Relations in the American Century
HIST-462	Sapan in History, Fiction, and Film
HIST-465	Science, Technology, and Imperialism: 1800-1965 Encounters
HIST-470	Jast

Deaf and Disability Studies

HIST-230	American Deaf History
HIST-231	Deaf People in Global Perspective
HIST-238	History of Disability
HIST-330	Technology and the Deaf Community
HIST-333	Diversity in the Deaf Community
HIST-430	Women and the Deaf Community
HIST-431	Deaf Spaces

History of the Environment, Science, and Technology

HIST-180	Information Revolution
HIST-281	Global History of Technology
HIST-282	Women, Gender, and Computing
HIST-323	America's National Parks
HIST-330	Deafness and Technology
HIST-345	Environmental Disasters
HIST-383	Technology and Global Relations in the American Century
HIST-390	Medicine and Public Health in American History
HIST-470	Science, Technology, and Imperialism
HIST-480	Global Information Age
STSO-246	History of Women in Science and Engineering
STSO-325	History of the Environmental Sciences
STSO-326	History of Ecology and Environmentalism
STSO-335	Industry, Environment, and Community in Rochester
STSO-345	Makers of Modern Science
STSO-346	Technology in American History
STSO-425	Nature and Quantification
STSO-445	The Natural Sciences in Western History

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without an associate degree
Courses in liberal arts, science, foreign language, and history

Appropriate associate degree programs for transfer
Liberal arts with social sciences, sciences, or languages

Digital Humanities and Social Sciences, BS

www.rit.edu/study/humanities-computing-and-design-bs
Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Humanities, computing, and design is a dynamic field of study that integrates the traditional liberals arts-anthropology, art, communication, English, history, literature, linguistics, museum studies, philosophy, and political science-with advanced digital skills found in computing, information sciences, game design and development, digital technology, human-computer interaction, database management, data analytics, geographic information technologies, and interactivity in new media. The purpose of a digital humanities major is to create a bridge between the traditional liberals arts and the digital world, where critical thinking, cultural awareness, and communication must now integrate with digital technologies. The major prepares you for dynamic new career opportunities that are emerging as professionals find new and exciting ways to combine digital technologies and computing into everything from business and communications to education, history, museum studies, politics, public policy, and more.

What is Digital Humanities and Social Sciences?

Digital humanities and social sciences pairs digital tools with computing to further anthropology, communication, culture, history, journalism, literature, and the arts. It creates new possibilities for these traditional liberal arts fields by integrating digital technologies, computing skills, visual communication, data analytics, and more.

Career opportunities encompass endless ways to pair digital technologies with the liberal arts. For example:

- Journalists must have a strong foundation in social media and web content strategy as people turn to their digital devices to consume news and information.
- Advertising and marketing on social media are created using traditional market research to identify a target audience and advanced digital technologies to engage and track the behaviors of those users.
- Storytelling in gaming requires a writer to understand the function and gameplay of a particular interactive world as well as the creative writing skills to craft a captivating story.
- Visual communication (infographics, interactive content, motion graphics) is used to present evidence in court cases, to sell products in stores, and to communicate instructions or directions. It must be dynamic, compelling, and effective.
- Museums and cultural institutions are creating new and exciting ways to integrate digital technologies to educate the public, engage visitors, and enhance the guest experience.
- Hotels, amusement parks, and resorts are turning to interactive apps that plan and manage guest experiences, wearables that unlock guest room doors and serve as your admission ticket, and a host of digital tools that enable online check-in, food ordering, and more.

RIT's Digital Humanities and Social Sciences Program

This major is uniquely interdisciplinary. You'll pair course work in three of RIT's colleges-College of Liberal Arts, the Golisano College of Computing and Information Sciences, and the College of Art and De-sign-to understand the historical and cultural contexts for, and to think critically about, how new technologies can impact traditional areas of the liberal arts. Our partnerships within RIT, with the Wallace Center, The Cary Graphic Arts Collection, and The RIT Press, as well as the Library Company of Philadelphia and Malmö University in Sweden, provide distinctive opportunities for imagination and application.

As a student in the major, you will learn to employ a range of tools and techniques, including 3D design visualization, geospatial technology, and electronic literature. The major also fosters critical analysis of digital culture, social media, and digital games. Team-based projects and public engagement are hallmarks of the program.

A Unique Pairing of Courses

The major combines information science and technologies with the liberal arts to provide you with the integrative literacy increasingly necessary for careers in cultural institutions, government, educational institutions, and technology firms. You'll take courses in new media design, web and mobile design and development, database and data modeling, and computing. Professional electives enable you to gain knowledge in areas you can apply directly to your professional pursuits, such as multi-platform journalism, digital design in communication, gaming and literature, 2D animation and asset production, museums in the digital age, and more.

You'll gain broad knowledge as well as expertise in a specialization area. A minor or immersion adds a secondary area of study. You'll also benefit from experiential learning opportunities through cooperative education or internships, team-based projects, and lab courses. A capstone experience culminates in a project that is unique to your professional aspirations. This is a degree program where every student's plan of study is tailored around their professional pursuits. You also will be encouraged to study abroad or pursue an international co-op in order to enhance your understanding of global cultures.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the digital humanities and social sciences major are required to complete at least one cooperative education or internship experience.

Curriculum

Digital Humanities and Social Sciences, BS degree, typical course
sequence
COURSE SEMESTER CREDIT HOURS

First Year		
DHSS-101	Computation and Culture	3
DHSS-102	Industrial Origins of the Digital Age	3
GCIS-123	Software Development and Problem Solving I	4
ISTE-140	Web \& Mobile I	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3

Second Year		
DHSS-103	Ethics in the Digital Era	3
ISTE-230	Introduction to Database and Data Modeling	3

ISTE-230	Introduction to Database and Data Modeling	3
ISTE-240	Web \& Mobile II	3

NMDE-111	New Media Design Digital Survey I	3
NMDE-112	New Media Design Digital Survey II	3

STAT-145	General Education - Mathematical Perspective A:	3

Introduction to Statistics I	
General Education - Immersion 1, 2	6

General Education - Mathematical Perspective B	3
General Education - Natural Science Inquiry	4

Third Year	
DHSS-377	Media Narrative (WI-PR)

DHSS-377	Media Narrative (WI-PR)	3
DHSS-499	DHSS Co-Op (summer)	0

IGME-382	Maps, Mapping and Geospatial Technologies	3

General Education - Immersion 3	3
General Education - Scientific Principles Perspective	3
General Education - Electives	6
Professional Electives	6

Project Courses	6

Fourth Year		3
DHSS-489	DHSS Capstone I	3

DHSS-489	DHSS Capstone I	3
DHSS-490	DHSS Capstone II	3

General Education - Electives	9

Open Electives

Open Electives	12
Professional Elective	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Professional Electives

COMM-223	Digital Design in Communication
COMM-263	Data Journalism
COMM-343	Technology-Mediated Communication
COMM-356	Critical Practice in Social Media
COMM-357	Communication, Gender, and Media
COMM-461	Multiplatform Journalism
CRIM-290	Computer Crime
DHSS-488	Special Topics
ENGL-215	Text \& Code
ENGL-315	Digital Literature
ENGL-351	Language Technology
ENGL-373	Media Adaptation
ENGL-374	Games and Literature
ENGL-375	Storytelling Across Media
ENGL-386	World Building Workshop
ENGL-389	Digital Creative Writing Workshop
ENGL-450	Free \& Open Source Culture
ENGL-543	Game-Based Fiction Workshop
ENGL-581	Intro to Natural Language Processing
FNRT-383	Traumatic Images
HIST-324	Oral History
HIST-326	Digital History
HIST-480	Global Information Age
IGME-101	New Media Interactive Design Algorithmic Problem Solving I
IGME-102	New Media Interactive Design Algorithmic Problem Solving II
IGME-119	2D Animation and Asset Production
IGME-220	Game Design \& Development I
IGME-320	Game Design \& Development II
MUSE-225	Museums \& the Digital Age
MUSE-359	Cultural Informatics
MUSE-360	Visitor Engagement \& Museum Technologies
PHIL-307	Philosophy of Technology
PHIL-314	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century
STSO-441	

Project Courses

ENGL-386	World Building Workshop
ENGL-422	Maps, Spaces, and Places
ENGL-543	Game-Based Fiction Workshop
FNRT-377	Imag(in)ing Rochester
FNRT-383	Traumatic Images
FNRT-384	Art of Dying
IGME-580	IGM Production Studio
IGME-581	Innovation \& Invention
IGME-589	Research Studio
MUSE-354	Exhibition Design
NMDE-201	New Media Design Elements II
NMDE-203	New Media Design Interactive II
NMDE-302	New Media Design Graphical User Interface

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Liberal arts courses and basic information technology or computer science course work

Appropriate associate degree programs for transfer

Liberal arts with web development courses, and some information technology or computer science course work

International and Global Studies, BS

www.rit.edu/study/international-and-global-studies-bs
Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axlgla@rit.edu

Program overview

The impact of global change is dramatic and far-reaching, altering the dynamics of everyday life. The international studies major aims to transform students into global experts who can assess and analyze the salient issues of worldwide transformation, including consumer capitalism, media culture, economic development and migration, gender and health, political conflict, sustainable futures, and the predicaments of democracy and civil society. Students in the international studies major are well-prepared for careers that demand an understanding of global cultural, social, economic, political, and environmental processes.

The BS in international and global studies offers an exciting range of courses from anthropology, economics, performing arts and visual culture, history, international business, linguistics, global works of literature, modern languages and culture studies, philosophy, political science, public policy, and sociology. This disciplinary diversity pledges not only to deliver a solid education in international studies but also introduces students to cutting-edge knowledge and expertise in global issues and world problems that will boost career opportunities.

All students complete a core concentration in globalization and choose a field specialization in one of the following areas: African studies; Asian studies; European studies; gender studies; Global Justice, Peace, and Conflict Studies; Indigenous studies; international business; Latina American studies; Middle Eastern studies; or sustainable futures. In addition, students complete an integrated international experience that encourages students to participate in a study abroad opportunity, an internship, or a cooperative educational experience in the selected world region of study.

Enhanced Career Opportunities

Building on the core curriculum, the range of choices of specialization allows students to flexibly develop the expertise required for successful career options: whether employment in state and federal agencies, private enterprise, and non-profit organizations or graduate studies. Our students are well prepared for graduate studies in fields like international law, international development, global education, administration, public policy, and the social sciences.

Pre-Law Advising Program

Law schools welcome applications from students majoring in a wide range of academic programs. If you are interested in pursuing law school, RIT's Pre-Law Advising Program is designed to maximize your chances of admission to law school. The program includes personalized advising, LSAT preparation, academic counseling, and a time table for law school admission.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a juris doctorate degree in six years. In the $3+3$ option, students interested in the following RIT majors-advertising and public relations, communication, criminal justice, economics, English, history, international and global studies, journalism, philosophy, political science, psychology, public policy, and sociology and anthropology-may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

The major encourages students to participate in a study abroad opportunity, an internship, or a cooperative educational experience in the selected world region of study.

Internships may also be available with organizations that are engaged with global issues, human rights, or international populations, including refugees and immigrants. A number of students have worked as interns under the supervision of human rights lawyers for the New York State Division of Human Rights in Rochester, NY, and for the United Nations Association of Rochester. These international experiences enhance employment prospects after graduation.

Integrated International Experience

Students have lived and studied in diverse locations such as Japan, Australia, Senegal, France, Denmark, Germany, France, Italy, Spain, Brazil, and Costa Rica, or at one of RIT's global campuses: RIT China, RIT Croatia, RIT Dubai, or RIT Kosovo.

Curriculum

International and Global Studies, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
INGS-101	Global Studies	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
	General Education - Mathematical Perspective A	3
UWRT-150	```General Education - First-Year Writing: FYW: Writing Seminar (WI)```	3
	General Education - Electives	6
	Globalization Concentration Elective	3
	Open Elective	3
Second Year§		
	General Education - Mathematical Perspective B	3
	General Education - Immersion 1	3
	General Education - Social Perspective	3
	General Education Elective	3
	Modern Language Courses (intermediate level) \ddagger	6
	Field Specialization Elective	3
	Globalization Concentration Electives	9
Third Year§		
	Advanced Study Course	3
	General Education - Immersion 2, 3	6
	General Education - Natural Science Inquiry Perspective \dagger	3
	Globalization Concentration Elective	3
	Field Specialization Electives	6
	General Education - Elective	3
	INTLSTU Methods Elective 1,2	6
Fourth Year§		
INGS-501	Capstone Seminar (WI-PR)	3
	General Education - Scientific Principles Perspective	3
	General Education - Electives	12
	Field Specialization Elective	3
	Open Electives	9
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.
\ddagger Modern language courses: Students without prior proficiency in a foreign language should take the beginning level language sequence as prerequisite(s) for the intermediate level in the LAS electives.
§ After the first year students are highly encouraged to complete an international experience by choosing a study abroad experience or an internship or co-op. The experience may be completed during the summer or during the academic year.

Methods Electives

Choose two of the following:

ECON-403

SCH-403 Qualitative Resea
Principles of Computing
ISTE-140 Web and Mobile

SOCI-303	Statistics in the Social Sciences
SOCI-361	Sociology of Numbers

STAT-145 Introdu

Concentrations
Students in the major will select five electives in the Core Concentration in Globalization.

Globalization

ANTH-210	Culture and Globalization
ANTH-235	Immigration to the U.S.
ANTH-270	Cuisine, Culture, and Power
ANTH-295	Global Public Health
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-360	Humans and their Environment
ANTH-410	Global Cities
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-455	Economics of Native America
COMM-346	Global Media
ECON-201	Principles of Macroeconomics
ECON-405	International Trade and Finance
ECON-406	Global Economic Issues
ECON-448	Development Economics
HIST-201	Histories of Globalization
HIST-281	Global History of Technology
HIST-383	Technology and Global Relations in the American Century
HIST-480	Global Information Age
INGS-201	Histories of globalization
INGS-489	Topics in Global Studies
POLS-210	Comparative Politics
POLS-220	Global Political Economy
POLS-325	International Law and Organizations
POLS-330	Human Rights in Global Perspectives
POLS-335	Politics in Developing Countries
POLS-360	International Political Thought
SOCI-295	Global Public Health
SOCI-355	CyberActivism
SOCI-395	Borders: Humans, Boundaries, and Empires

Field Specializations

Students in the major will choose one of the following ten tracks or "field specializations" and select four courses from the track electives.

African studies

ANTH-310	African Film
ANTH-345	Genocide and Transitional Justice
FNRT-323	Survey of African American Music
HIST-210	Culture and Politics in Urban Africa
HIST-245	American Slavery and Freedom
INGS-210	Culture and Politics in Urban Africa
INGS-489	Topics in Global Studies*
SOCI-210	Black America-Culture \& HipHop
	Modern Language Elective† (beyond intermediate)

* INGS-489 may be used when the topic is pertinent to African studies.
\dagger Modern Language Elective may be used when the language is pertinent to the region.

Asian Studies

HIST-160	History of Modern East Asia
HIST-252	The U.S. and Japan
HIST-260	History of Premodern China
HIST-261	History of Modern China
HIST-265	History of Modern Japan
HIST-266	History of Premodern Japan
HIST-351	The Vietnam War
HIST-365	Conflict in Modern East Asia
HIST-450	Modern Japan in History, Fiction, and Film
HIST-465	East-West Encounters
INGS-489	Samurai in Word and Image
MLIPP51	Topics in Global Studies*
MLCH-151	Languages in Japanese Society
PHIL-311	Food, Art \& Thought in Chinese Culture
POLS-350	East Asian Philosophy
POLS-351	Politics of East Asia
	Politics of China

* INGS-489 may be used when the topic is pertinent to Asian studies
† Modern Language Elective may be used when the language is pertinent to the region.

European Studies

ENGL-316	Global Literature
HIST-170	Twentieth-Century Europe
HIST-270	History of Modern France
HIST-280	History of Modern Germany
HIST-369	Histories of Christianity
INGS-489	Topics in Global Studies*
MLFR-151	Film, Comics, and French Culture
MLFR-351	French Film and Hollywood
MLFR-352	The French Heritage in Films
MLGR-351	Modern German Culture through Film
MLIT-351	Italian Cinema from Neorealism to the New Millennium
MLSP-315	Hispanic Culture \& Civilization
PHIL-201	Ancient Philosophy
PHIL-203	Modern Philosophy
PHIL-317	Renaissance Philosophy
PHIL-408	Critical Social Theory
PHIL-409	Existentialism
PHIL-410	Medieval Philosophy
PHIL-412	Nineteenth-Century Philosophy
PHIL-417	Continental Philosophy
	Modern Language Electivet (beyond intermediate)

* INGS-489 may be used when the topic is pertinent to European studies.
\dagger Modern Language Elective may be used when the language is pertinent to the region.

Gender Studies

ANTH-246	Gender and Health
ANTH-325	Bodies and Culture
ANTH-425	Global Sexualities
ECON-451	Economics of Women and the Family
ENGL-414	Women and Gender in Literature and Media
FNRT-206	Queer Looks
INGS-489	Topics in Global Studies*
PHIL-309	Feminist Theory
SOCI-235	Women, Work, and Culture
SOCI-246	Gender and Health
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
SOCI-451	Economics of Women and the Family
STSO-342	Gender, Science, and Technology

* INGS-489 may be used when the topic is pertinent to gender studies.

Global Justice, Peace, and Conflict Studies

ANTH-345	Genocide \& Transitional Justice
COMM-304	Intercultural Communication
HIST-251	Modern U.S. Foreign Relations
HIST-351	The Vietnam War
HIST-350	Terrorism, Intelligence, and War
INGS-489	Science, Technology, \& European Imperialism: 1800-1965
MLSP-353	Topics in Global Studies*
PHIL-304	Trauma and Survival in First Person Narrative
PHIL-305	Philosophy of Law
PHIL-403	Philosophy of Peace
POLS-210	Social and Political Philosophy
POLS-325	Comparative Politics
POLS-440	International Law and Organizations
POLS-445	War and the State
SOCI-305	Terrorism and Political Violence
SOCI-395	Crime and Human Rights: Sociology of Atrocities
* INGS-489 may be used when the topic is pertinent to global justice, peace, and conflict studies.	

Indigenous Studies

ANTH-220	Language and Culture: Introduction to Linguistic Anthropology
ANTH-255	Regional Archaeology*
ANTH-260	Native North Americans
ANTH-265	Native Americans in Film
ANTH-285	American Indian Languages
ANTH-312	People before Cities
ANTH-335	Culture and Politics in Latin America
ANTH-345	Genocide and Transitional Justice
ANTH-361	Digitizing People
ANTH-375	Native American Cultural Resources and Rights
ANTH-430	Visual Anthropology
ANTH-455	Economics of Native America
ECON-451	Economics of Native America
INGS-455	Economics of Native America
INGS-489	Topics in Global Studies \dagger
SOCI-361	Digitizing People

* ANTH-255 may be used when the topic is North America or Mesoamerica. \dagger INGS-489 may be used when the topic is pertinent to Indigenous studies.

International Business

ECON-405	International Trade and Finance
ECON-406	Global Economic Issues
HIST-380	International Business History
INTB-225	Global Business Environment
INTB-300	Cross-Cultural Management
INTB-310	Regional Business Studies
INTB-489	Seminar in International Business
INTB-550	Global Entry and Competition Strategies
MKTG-330	Global Marketing
POLS-220	Global Political Economy

Latin American Studies

ANTH-235	Immigration to the U.S.
RNTH-255	Regional Archaeology: Mesoamerica
ANTH-285	American Indian Languages
ANTH-315	Archaeology of Cities
ANTH-335	Culture and Politics in Latin America
ANTH-410	Global Cities
ENGL-316	Topics in Global Literatures*
INGS-489	Topics in Global Studiest
MLSP-315	Hispanic Civilization \& Culture
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
MLSP-353	Trauma and Survival in the First-Person Narrative
POLS-335	Politics in Developing Countries
	Modern Language Elective (beyond intermediate)

* ENGL-316 may be used when the topic is pertinent to Latin American studies
\dagger INGS-489 may be used when the topic is pertinent to Latin American studies.
\ddagger Modern Language Elective may be used when the language is pertinent to the region.

Middle Eastern Studies

ANTH-255	Regional Archaeology: Middle East
ANTH-275	Global Islam
ANTH-315	Archaeology of Cities
ANTH-365	Culture and Politics in the Middle East
INGS-489	Topics in Global Studies*
POLS-335	Politics in Developing Countries
	Arabic Modern Language Elective (beyond intermediate)

* INGS-489 may be used when the topic is pertinent to Middle Eastern studies.

Sustainable Futures

ANTH-270	Cuisine, Culture, and Power
ANTH-285	American Indian Languages
ANTH-295	Global Public Health
ANTH-360	Humans and their Environment
ANTH-410	Global Cities
ECON-448	Development Economics
IGME-382	Maps, Mapping, and Geospatial Technologies
IGME-384	Introduction to Geographic Information Systems
INGS-489	Topics in Global Studies*
PHIL-308	Environmental Philosophy
POLS-220	Global Political Economy
POLS-335	Politics in Developing Countries
SOCI-295	Global Public Health
SOCI-322	Health and Society
STSO-220	Environment and Society
STSO-330	Energy \& the Environment
STSO-341	Biomedical Issues: Science and Technology
STSO-441	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century

* INGS-489 may be used when the topic is pertinent to sustainable futures.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

International and Global Studies, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
INGS-101	Global Studies	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - Global Perspective	3
	General Education - Electives	6
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Mathematical Perspective A	3
UWRT-150	General Education - First Year Writing: FYW Writing Seminar (WI)	3
	INTLSTU Globalization Concentration Elective	3
	Open Elective	3
Second Year		
	INTLSTU Globalization Concentration Elective	9
	INTLSTU Methods Elective 1	3
	Modern Language Intermediate Courses	6
	Field Specialization Elective	3
	General Education - Social Perspective	3
	General Education - Mathematical Perspective B	3
	General Education - Immersion 1	3
Third Year		
	General Education - Immersions 2, 3	6
	Field Specialization Electives	6
	Globalization Concentration Elective	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
	Advanced Study Option	3
	General Education - Elective	3
	INTLSTU Methods Elective	3
	Open Elective	3
Fourth Year		
INGS-501	Capstone Seminar (WI-PR)	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
	Field Specialization Elective	3
	General Education - Scientific Principles Perspective	3
	General Education - Electives	15
Fifth Year		
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Public Policy Electives	9
Choose one of the following:		6
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam (plus 2 Graduate Electives)	
PUBL-785	Capstone Research Experience	

Total Semester Credit Hours
Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, students must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, science, foreign language, and history
Appropriate associate degree programs for transfer
Liberal arts with social sciences, sciences, or languages

Journalism, BS

www.rit.edu/study/journalism-bs
 Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axlgla@rit.edu

Program overview

The journalism degree prepares students to gather, critically analyze, and synthesize verbal and visual information to communicate accurate and clear news stories across multiple media platforms. In addition to writing and reporting, students prepare audio and visual content for dissemination in a variety of media, making them a valuable asset to any future employer specializing in news reporting and factual storytelling.

The major is enhanced by RIT's reputation for using cutting-edge technology, yet is grounded in the traditional reporting and writing skills needed by professional journalists. The journalism degree prepares students for a converged digital media world. They learn the conceptual and practical skills demanded by the digital newsroom through a combination of journalism, communication, and applied professional courses, along with a professional core of courses. Students are also required to complete one block of cooperative education experience.

Plan of Study

Students develop skills through a core of required communication courses, which cover news writing, news editing, multi-platform journalism, communication theory, mass communications, law and press ethics, and computer-assisted reporting. A professional core of four courses, chosen from the colleges of Art and Design, Business, or Computing and Information Sciences, introduces students to photojournalism, multimedia, web development, digital entrepreneurship, and building a web business. Journalism electives, free electives, and liberal arts courses complete the curriculum.

Senior Project: In a senior capstone course students apply what they've learned to a project similar to one they would encounter in their profession. Students produce a long-form piece of journalism, a website, and a digital portfolio of selected works.

Advising

Every student is assigned a professional academic advisor and a faculty mentor in the department of communication. The professional advisor assists with course planning and registration; the faculty mentor provides advising about career development and planning, including information about research opportunities, graduate school, and jobs. Peer mentors, who are upper-level journalism students, are available to answer questions about classes, clubs on campus, student-run activities, and other matters from the student's perspective. For more information, please refer to the college's academic advising page.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a juris doctorate degree in six years. In the $3+3$ option, students interested in the following RIT majors-advertising and public relations, communication, criminal justice, economics, English, history, international and global studies, journalism, philosophy, political science, psychology, public policy, and sociology and anthropology-may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the journalism degree are required to complete one semester of cooperative education or an internship experience.

Curriculum

Journalism, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		
COMM-261	History of Journalism	
COMM-271	Introduction to Journalism	
COMM-272	Reporting and Writing I (WI-PR)	3
COMM-280	Community Journalism	
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective \dagger	
	General Education - Ethical Perspective \dagger	
	General Education - First-Year Writing (WI)	
	General Education - Global Perspective	
	General Education - Social Perspective	
	General Education - Elective	
	Professional Core Course	
Second Year		
COMM-105	Foundations of Communication	
COMM-263	Data Journalism	
COMM-374	Opinion Media	
	General Education - Mathematical Perspective A	
	General Education - Mathematical Perspective B	
	General Education - Natural Science Inquiry Perspective \ddagger	
	General Education - Scientific Principles Perspective	
	General Education - Immersion 1, 2	
	Professional Core Course	
Third Year		
COMM-342	Communication Law and Ethics	
COMM-370	Ethnic Press in the United States	
COMM-450	Multiplatform Production and Publishing	
COMM-499	Communication Co-Op (summer)	0
	Professional Core Course	
	General Education - Immersion 3	
	General Education - Electives	
	Open Electives	6
Fourth Year		
COMM-497	Communication Portfolio	0
COMM-561	Senior Project	
	Professional Core Courses	
	General Education - Electives	12
	Open Electives	

Total Semester Credit Hours 120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
† Students may elect to enroll in VISL-388, Gender and Contemporary Art, for the General Education Artistic Perspective, and either UWRT-365, Writing, Public Speaking and Civil Engagement, or VISL-320, Contemporary Cinema: Fact and Fiction, for the General Education Ethical Perspective, if such courses are of interest to them.
\# Students will satisfy this requirement by taking either a 3 or 4 credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and the lab portion.

Professional Core

Required courses	
COMM-223	Digital Design in Communication
COMM-291	Communication for Social Change
PHAR-203	Elements of Photojournalism
PHPJ-315	Non-Fiction Multimedia
Choose one of the following:	
PROF-221	New Venture Development
COMM-489	Topics in Communication
DDDD-101	Intro to 3D Modeling and Animation
HIST-301	Great Debates in US History
MGIS-360	Building a Web Business
MGMT-360	Digital Entrepreneurship

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Journalism, BS degree/Communication, MS degree, typical course sequence

Total Semester Credit Hour

Please see General Education Curriculum for more information.
WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3-or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, math, science, and computer science

Appropriate associate degree programs for transfer

Liberal arts with emphasis in communication and a technical field such as business, photography, or computer science

Liberal Arts Exploration

www.rit.edu/study/liberal-arts-exploration
 Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Many students excel in the humanities, and they love the history, English, and social science courses they took in high school. But some are unsure which direction to choose when it comes to picking a college major. Liberal arts exploration gives you the time to figure out who you are and better understand the kind of work you love to do. Through intensive one-on-one advising, meetings with faculty members, and hundreds of courses to choose from, you can take the time to explore your personal and career interests before committing to a major. You'll gain a better understanding of your goals and interests, as well as your career aspirations, as you remain on track to graduate in four years.

Liberal arts exploration is an undeclared option designed to allow students to complete required liberal arts, mathematics, and science courses while actively pursuing career exploration and receiving individualized academic advising. Students may stay in the option for up to two years (or 60 credit hours) before they must choose a major. The option offers students the flexibility and time to explore a variety of majors within the College of Liberal Arts without delaying their graduation.

Curriculum

Liberal arts exploration, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
YOPS-10	RIT 365: RIT Connections	0
ITDL-101	Career Exploration Seminar	1
	General Education Perspectives	15
	First Year General Education-Elective	3
	General Education-First Year Writing	3
	General Education-Electives	9
Second Year	Wellness Education*	0
CSCl-101	Principles of Computing	3
	General Education Perspectives	6
	General Education-Immersion 1, 2,	9
Total Semester Credit Hours	General Education-Electives	$\mathbf{6}$
Please see General Education Framework for more information. * Please see Wellness Education Requirements for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.		

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Museum Studies, BS

www.rit.edu/study/museum-studies-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Museums, archives, libraries, and other cultural institutions seek emerging professionals who can help develop and implement strategies to digitize, exhibit, manage, curate, and interpret their artistic, cultural, historical , and scientific collections, and to make them available to the public in interactive and engaging ways. The museum studies degree provides a thorough grounding in the history, theory, and practice of institutional collecting, exhibition development and design, multi-platform technologies, collection management, fundraising, and grant writing. You'll be prepared to help institutions share their collections, engage with their communities, and enhance, assess, and improve the visitor experience.

RIT's Museum Studies Program

Museum studies is an interdisciplinary, technology-infused major that prepares you for careers in museums, archives, libraries, galleries, historical societies, and other cultural organizations. The museum studies degree at RIT includes a set of introductory core courses to familiarize you with the history, theory, and practice of institutional collecting. These courses are bolstered by classes in exhibition development, education and interpretation, and multi-platform interpretation and design. To broaden and deepen your knowledge, you will choose a professional track in libraries, archives, and museums or in public history. You also are required to complete one cooperative education or internship experience in a cultural institution or similar entity.

The museum studies degree offers two tracks: (1) museums, libraries, and archives and (2) public history. Both tracks provide you with the skills of critical reflection, sound argumentation, and presentation of information in a meaningful way to a public audience. They also include course work that meets the criteria established by professionals in the field and reflects current opinion about necessary skill sets, as held by the Museum Studies Network (MSN) of the American Alliance of Museums (AAM), International Council of Museums (ICOM), and the National Council on Public History (NCPH).

Jobs in Art Museums... and Historical Sites, Cultural Institutions, Archives, and So Much More

Upon graduation you will be prepared to work in institutions such as museums, historical sites, historical societies, libraries, archives, and corporations or other organizations with cultural repositories that develop and implement strategies to digitize, exhibit, manage, curate, and interpret their artistic, cultural, historical, and scientific collections, and to make them available to the public in interactive and engaging ways. You may also wish to further your education in graduate programs in museum studies, library and information studies, archival studies, informatics, or a number of disciplines including art history, history, business.

Advising

All museum studies students meet with the program director, who serves as their faculty advisor, each semester for program advising, preparation for internship experiences, and applications to graduate school and professional programs. In addition to meeting with the program director each semester, you are welcome to seek consultation from any faculty member in museum studies degree, all of whom hold the highest degrees in their field and have been published within their areas of expertise. In addition, you will meet with an academic advisor for general academic advising, including progress toward graduation. For more information, please refer to the college's academic advising page.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the museum studies degree are required to complete one cooperative education (co-op) or internship experience in a cultural institution. Co-op is full-time, paid work experience in your field of study. Co-ops are usually a summer or semester in duration. Internships may be full- or part-time and are often completed during the semester. They vary in duration depending on the organization. Both co-ops and internships may be completed locally, nationally, or internationally.

Curriculum

Museum Studies (Museums, Libraries and Archives track), BS degree, typical course sequence

COURSE		SEMESTER CREDIT
First Year		
ARTH-135	General Education - Elective: Survey: Ancient to Medieval Art	
ARTH-136	General Education - Elective: Survey: Renaissance to Modern Art	3
MUSE-220	General Education - Elective: Introduction to	3
MUSE-221	Inseums \& Collecting	

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.

Museum Studies (Public History track), BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
HIST-101	Making History	
MUSE-220	General Education - Elective: Introduction to Museums \& Collecting	
MUSE-221	General Education - Elective: Introduction to Public History	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Social Perspective	3
Second Year		
HIST-125	Public History and Public Debate	3
HIST-324	Oral History	3
MUSE-224	History \& Theory of Exhibitions	3
MUSE-225	Museums \& the Digital Age	3
MUSE-341	General Education - Elective: Museum Education \& Interpretation	3
MUSE-358	Legal and Ethical Issues for Collecting Institutions	
	General Education - Immersion 1, 2	
	General Education - Mathematical Perspective B	
	General Education - Scientific Principles Perspective	3
Third Year		
HIST-325	Museums and History	3
MUSE-354	Exhibition Design	
MUSE-355	Fundraising, Grant Writing, \& Marketing for Nonprofit Institutions	
MUSE-357	Collections Management \& Museum Administration	3
MUSE-359	Cultural Informatics	3
MUSE-360	Visitor Engagement \& Museum Technologies	3
	Public History Elective	
	General Education - Immersion 3	3
	General Education - Electives	6
Choose one of the following:		
MUSE-497	Museum Studies Internship (summer)	
MUSE-498	Museum Studies Co-Op Part Time (summer)	
MUSE-499	Museum Studies Co-op (summer)	
Fourth Year		
MUSE-489	Research Methods (WI-PR)	3
MUSE-490	Senior Thesis in Museum Studies (WI-PR)	
	General Education - Electives	9
	Open Electives	15

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, the student must take both the lecture and lab portions to satisfy the requirement.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, art history, studio arts, photography, business, and chemistry

Appropriate associate degree programs for transfer

Philosophy, BS

www.rit.edu/study/philosophy-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Most of the skills required for student and career success-how to learn, how to apply that learning in professional and personal environments, and how to communicate that knowledge-are central to philosophy. Philosophy students are taught to evaluate complex problems, identify and examine underlying principles, investigate issues from diverse perspectives, and communicate clearly in both written and oral forms. The philosophy degree provides a thorough grounding in core areas of philosophy, such as the history of philosophy, ethics, and logical argumentation, as well as a core competence in another discipline, encouraging students to creatively pursue cross-disciplinary studies.

The philosophy degree provides a thorough grounding in core areas of philosophy (history of philosophy, ethics, and logical argumentation), as well as a four-course specialization within philosophy. Students combine philosophy with a core competence (or even a double major) in another discipline, encouraging them to creatively pursue cross-disciplinary studies. The major concludes with an optional Senior Thesis.

Plan of Study

Students develop skills through a core of philosophy courses which cover the history of philosophy, ethics, and logical argumentation. Students also choose four courses in a specialization, such as: philosophy of mind and cognitive science, philosophy of science and technology, applied ethics, philosophy of the social sciences and political philosophy, philosophy of art and aesthetics, history of philosophy, and philosophy of law. Additionally, students complete a professional core of courses designed to provide foundational knowledge in a professional/technical discipline outside of philosophy, which complements their studies. Seminar in Philosophy (PHIL-416) examines a selected area or topic in philosophy at an advanced undergraduate level. Senior Thesis in Philosophy (PHIL-595), which is optional for students, provides an opportunity to integrate philosophy with various fields of application. Philosophy electives, general electives, and liberal arts courses complete the curriculum.

Specializations

Philosophy of mind and cognitive science: Examine the philosophical issues involved in studying intelligence, cognition, identity, consciousness, rationality, creativity and emotion, especially as such concepts and categories are invoked by computer and cognitive scientists, and as they are applied in relation to natural and artificial systems.

Philosophy of science and technology: Examine the concepts, methodologies, and philosophical implications of science and technology, and explores the underlying theories, practices, and consequences of science and technology and their role in shaping societies and their values.

Applied ethics: Examine the ethical underpinnings of different professions as well as the ethical presuppositions and implications of technology, engineering, science, management, and other disciplines. Attention is also given to ethics education within the professions and to the role professional ethicists can play in different professional and organizational settings.

Philosophy of social sciences and political philosophy: Examine philosophical issues arising from social and political life as well as the disciplines that study them.

Philosophy of art and aesthetics: Examine how different philosophical frameworks conceive of the various arts and crafts and the forms of creative experience and production with which they are engaged; explores the relationship between aesthetic perception and other forms of experience and judgment, between art and society, between art and ethics, and between art and technology.

History of philosophy: Explores the development and connection of philosophical ideas, concepts, and movements throughout time through an in-depth analysis of major transformative moments and figures, and examines how philosophical positions result from an ongoing conversation with previous thinkers.

Philosophy and law: Prepares for law school and other advanced studies by focusing on the skills and topics important to the study of the law. The courses provide an examination of the theoretical and ethical foundations of the law and an understanding of the logical and epistemological skills useful in evaluating and constructing legal arguments. In addition, a grounding in these topics and skills is valuable in a range of professions outside the legal field.

Advising

Each student is assigned a faculty advisor who assists in planning course schedules, professional/technical core requirements, and a philosophy specialization area. For more information, please refer to the college's academic advising page.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated $3+3 \mathrm{BS} / \mathrm{JD}$ option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's philosophy degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1 \mathrm{MBA}$ option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education is optional but strongly encouraged for philosophy majors.

Curriculum

Philosophy, BS degree, typical course sequence

course		SEMESTER CREDIT HOURS
First Year		
PHIL-201	General Education - Global Perspective: Ancient Philosophy	3
PHIL-202	Foundations of Moral Philosophy	3
PHIL-203	General Education - Ethical Perspective: Modern Philosophy	3
PHIL-205	Symbolic Logic	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Mathematical Perspective A	3
	General Education - Immersion 1	3
	General Education - Elective	3
	Professional/Technical Core Course	3
Second Year		
	General Education - Social Perspective	3
	General Education - Mathematical Perspective B	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
	General Education - Immersion 2	3
	Program Electives	9
	Professional/Technical Core Courses	9
Third Year		
	General Education - Scientific Principles Perspective	3
	General Education - Electives	9
	Open Electives	6
	Program Elective	3
	Professional/Technical Core Course	3
	Track Courses	6
Fourth Year		
PHIL-416	Seminar in Philosophy (WI-PR)	3
PHIL-595	Senior Thesis in Philosophyt (WI-PR)	3
	General Education - Immersion 3	3
	General Education - Electives	9
	Open Electives	6
	Track Courses	

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's - Students may complete Senior Thesis in Philosophy or they may choose a 400-level philosophy course \ddagger Students will satisfy this requirement by taking either a 3 - or 4 -credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.

Tracks

Philosophy of mind and cognitive science

COURSE	
Electives	
Choose four of the following	
PHIL-315	Responsible Knowing
PHIL-401	Great Thinkers*
PHIL-402	Philosophy of Science
PHIL-404	Philosophy of Mind
PHIL-407	Philosophy of Action
PHIL-411	Metaphysics
PHIL-414	Philosophy of Language
PHIL-416	Seminar in Philosoph**
PHIL-449	Topics in Philosophy*

Philosophy of science and technology

course

Electives

Choose four of the following	
PHIL-307	Philosophy of Technology
PHIL-310	Theories of Knowledge
PHIL-314	Philosophy of Vision and Imaging
PHIL-315	Responsible Knowing
PHIL-316	Bioethics and Society
PHIL-317	Renaissance Philosophy
PHIL-401	Great Thinkers*
PHIL-402	Philosophy of Science

COURSE	
PHIL-405	Philosophy of the Social Sciences
PHIL-408	Critical Social Theory
PHIL-416	Seminar in Philosophy*
PHIL-449	Topics in Philosophy*
Applied ethics	
COURSE	
Electives	
Choose four of the following	
PHIL-304	Philosophy of Law
PHIL-305	Philosophy of Peace
PHIL-306	Professional Ethics
PHIL-307	Philosophy of Technology
PHIL-308	Environmental Philosophy
PHIL-309	Feminist Theory
PHIL-315	Responsible Knowing
PHIL-316	Bioethics and Society
PHIL-318	Philosophy of Love, Sex, and Gender
PHIL-401	Great Thinkers*
PHIL-403	Social and Political Philosophy
PHIL-415	Ethical Theory
PHIL-416	Seminar in Philosophy*
PHIL-449	Topics in Philosophy*
Social and political philosophy	
COURSE	
Electives	
Choose four of the following	
PHIL-304	Philosophy of Law
PHIL-305	Philosophy of Peace
PHIL-308	Environmental Philosophy
PHIL-309	Feminist Theory
PHIL-311	East Asian Philosophy
PHIL-315	Responsible Knowing
PHIL-316	Bioethics and Society
PHIL-317	Renaissance Philosophy
PHIL-318	Philosophy of Love, Sex, and Gender
PHIL-401	Great Thinkers*
PHIL-403	Social and Political Philosophy
PHIL-405	Philosophy of the Social Sciences
PHIL-408	Critical Social Theory
PHIL-416	Seminar in Philosophy*
PHIL 449	Topics in Philosophy*

Philosophy of art and aesthetics
COURSE
Electives

Choose four of the following	
PHIL-303	Philosophy of Art/Aesthetics
PHIL-313	Philosophy of Film
PHIL-314	Philosophy of Vision and Imaging
PHIL-317	Renaissance Philosophy
PHIL-401	Great Thinkers*
PHIL-408	Critical Social Theory
PHIL-413	Philosophy of Literature
PHIL-416	Seminar in Philosophy*
PHIL-417	Continental Philosophy
PHIL-449	Topics in Philosophy*

History of philosophy

Course

Electives

Choose four of the following	
PHIL-301	Philosophy of Religion
PHIL-311	East Asian Philosophy
PHIL-312	American Philosophy
PHIL-317	Renaissance Philosophy
PHIL-401	Great Thinkers*
PHIL-406	Contemporary Philosophy
PHIL-408	Critical Social Theory
PHIL-409	Existentialism
PHIL-410	Medieval Philosophy
PHIL-412	Nineteenth Century Philosophy
PHIL-416	Seminar in Philosophy*
PHIL-417	Continental Philosophy
PHIL-449	Topics in Philosophy*

Philosophy and law

COURSE	
Electives	
Choose four of the following	
PHIL-304	Philosophy of Law
PHIL-305	Philosophy of Peace
PHIL-306	Professional Ethics
PHIL-310	Theories of Knowledge
PHIL-315	Responsible Knowing
PHIL-316	Bioethics and Society
PHIL-401	Great Thinkers*
PHIL 403	Social and Political Philosophy
PHIL-405	Philosophy of the Social Sciences
PHIL-407	Philosophy of Action
PHIL-416	Seminar in Philosophy*
PHIL-449	Topics in Philosophy*

Metaphysics \& Epistemology

course

Electives

Choose four of the following	
PHIL-301	Philosophy of Religion
PHIL-310	Theories of Knowledge
PHIL-311	East Asian Philosophy
PHIL-312	American Philosophy
PHIL-314	Philosophy of Vision and Imaging
PHIL-315	Responsible Knowing
PHIL-317	Renaissance Philosophy
PHIL-401	Great Thinkers*
PHIL-402	Philosophy of Science
PHIL-404	Philosophy of Mind
PHIL-405	Philosophy of the Social Sciences
PHIL-406	Contemporary Philosophy
PHIL-407	Philosophy of Action
PHIL-410	Medieval Philosophy
PHIL-411	Metaphysics
PHIL-412	Nineteenth Century Philosophy
PHIL-414	Philosophy of Language
PHIL-416	Seminar in Philosophy*
PHIL-417	Continental Philosophy
PHIL-449	Topics in Philosophy*

* These courses are eligible only when their topic is relevant. Permission to include these courses in a specialization must be approved by the department.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, math, science, philosophy, and ethics

Appropriate associate degree programs for transfer
Liberal arts

Political Science, BS

www.rit.edu/study/political-science-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

The political science major integrates the fields of American government and international relations in order to prepare students for a life and career in an increasingly globalized world. The major includes three tracks of study - politics and life sciences, digital politics and organization, and political institutions. Students can study the influence of biology and biotechnology on how we understand ourselves as human beings and citizens, or they can examine the use of information technology for political purposes. The major prepares principled leaders and responsible citizens for careers in the public and private sectors.
Through exciting tracks in politics and life sciences, digital politics and organization, and political institutions, students study the influence of recent advances in biology and biotechnology on how we understand ourselves as human beings and citizens, or the use of information technology for political organization and communication. There are few undergraduate political science majors in the country that so fully incorporate both these fields into their curricula, including the opportunity to take courses from the biology and information technology departments as part of their program requirements.

Core Courses

The major consists of four core courses designed to introduce students to the general themes of political science. The major culminates in a capstone course, which ties together the themes of the program through a seminar and significant writing project.

Program Tracks

The overarching goal of the political science major is to prepare students for the challenges of life and a career in a world that is increasingly globalized, where the application of biotechnology and biomedicine have become common, and where social computing shapes and influences democratic government and the wider community. Students are required to choose one track-in politics and life sciences, digital politics and organization, or political institutions-for an in-depth study on the political impact of modern biology and biotechnology, the changing role of political institutions in a globalized world, or the development and implementation of technologies that increasingly influence political organization and communication.

Political Science Electives

Students are required to take seven political science electives from the department's American politics and international relations/comparative government offerings with a minimum of three courses from each area. The areas are (1) statecraft, emerging democracies, and global governance and (2) deliberative democracy and national government. This requirement recognizes the increasing interdependence of domestic and international politics in this era of globalization.

Double Majors

Students may pursue a double major in political science and a secondary area of study. Students have combined political science with a double major in diverse fields such as computer science, criminal justice, economics, and philosophy.

Advising

Each student is assigned a faculty advisor who assists with course registration, scheduling, course selection, academic concerns, and career counseling. For more information, please refer to the college's academic advising page.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's political science degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the political science major are encouraged to complete a cooperative education, internship, or study abroad experience.

Beginning in the third year, you may participate in cooperative education or an internship, both of which provide you with hands-on experience in a variety of environments, from government agencies, nonprofits, and non-governmental agencies to political campaigns. Through these experiences, you will gain employment experience as well as the opportunity to further develop skills in their chosen profession.

Opportunities to study abroad enhance your understanding of global politics and culture. You may study full-time at a variety of host schools and are able to select courses in their major as well as liberal arts courses. Visit RIT Global to learn more about the range of study abroad programs and opportunities available.

Curriculum

Political Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
POLS-110	American Politics	3
POLS-120	Introduction to International Relations	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - Elective	3
	Political Science Elective	3
Second Year		
POLS-290	Politics and the Life Sciences	3
POLS-295	Cyberpolitics	3
	Political Science Electives	6
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
	General Education - Immersion 1, 2	6
	Open Elective	3
Third Year		
	Political Science Track Courses	6
	Political Science Electives	6
	Open Electives	6
	General Education - Immersion 3	3
	General Education - Electives	9
Fourth Year		
POLS-530	Political Science Capstone (WI-PR)	3
	Political Science Track Course	3
	Political Science Electives	6
	General Education - Electives	12
	Open Electives	6
Total Semester Credit Hours		120

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.

Program Tracks

Politics \& the Life Sciences

POLS-215	Tech, Ethics, \& Global Politics
POLS-285	Environmental Ethics and Political Ecology
POLS-340	Medicine, Morality, and Law
POLS-410	Evolutionary International Relations
POLS-415	Evolution and the Law
POLS-420	Primate Politics
BIOL-201	Cellular and Molecular Biology
BIOL-265	Evolutionary Biology
BIOL-293	Evolution and Creationism
BIOL-321	Genetics
STSO-421	Environmental Policy

Digital Politics \& Organization

POLS-280	Artificial Intelligence and the Political Good
POLS-305	Political Parties and Voting
POLS-365	Anarchy, Technology \& Utopia
POLS-370	Cyberwar, Robots, \& the Future of Conflict
COMM-343	Technology-Mediated Communication
ISTE-140	Web \& Mobile I
ISTE-230	Introduction to Database and Data Modeling
ISTE-240	Web \& Mobile II
ISTE-305	Rapid Online Presence
ISTE-330	Database Connectivity and Access
MGIS-320	Database Management Systems
MGIS-425	Database Systems Development

Political Institutions

POLS-210	Comparative Politics
POLS-220	Global Political Economy
POLS-310	The Congress
POLS-315	The Presidency
POLS-325	International Law and Organizations
POLS-425	Constitutional Law

Economics and Public Policy

POLS-220	Global Political Economy
POLS-335	Politics in Developing Countries
POLS-345	Politics and Public Policy
POLS-445	Terrorism and Political Violence
ECON-101	Principles of Microeconomics
ECON-201	Principles of Macroeconomics
ECON-401	Intermediate Microeconomic Theory
ECON-402	Intermediate Macroeconomic Theory
ECON-422	Benefit-Cost Analysis
PUBL-101	Managerial Economics
PUBL-210	Foundations of Public Policy
PUBL-301	Introduction to Qualitative Policy Analysis
PUBL-302	Public Policy Analysis
PUBL-530	Decision Analysis

Political Science Electives

Students are required to take seven courses (21 semester-credits) from the following two areas, with a minimum of three courses (9 semestercredits) in each area.

Statecraft, Emerging Democracies, \& Global Governance

POLS-205	Ethics in International Politics
POLS-210	Comparative Politics
POLS-215	Tech, Ethics \& Global Politics
POLS-220	Global Political Economy
POLS-280	Artificial Intelligence and the Political Good
POLS-285	Environmental Ethics and Political Ecology
POLS-320	American Foreign Policy
POLS-325	International Law and Organizations
POLS-330	Human Rights in Global Perspective
POLS-333	The Rhetoric of Terrorism
POLS-335	Politics in Developing Countries
POLS-350	Politics of East Asia
POLS-351	Politics of China
POLS-360	International Political Thought
POLS-370	Cyberwar, Robots, \& the Future of Conflict
POLS-375	Grand Strategy
POLS-390	Greece and the Political Imagination
POLS-390H	Greece and the Political Imagination
POLS-440	War and the State
POLS-445	Terrorism and Political Violence
POLS-455	Comparative Public Policy
POLS-525	Special Topics in Political Science
POLS-541	Peacekeeping and Conflict Transformation
POLS-542	War, Diplomacy, and State-Building

Deliberative Democracy \& National Government

POLS-115	Ethical Debates Amer Politics
POLS-200	Law \& Society
POLS-250	State \& Local Politics
POLS-280	Artificial Intelligence and the Political Good
POLS-300	Rhetoric \& Political Deliberation
POLS-305	Political Parties and Voting
POLS-310	The Congress
POLS-315	The Presidency
POLS-340	Medicine, Morality, and Law
POLS-345	Politics and Public Policy
POLS-355	Political Leadership
POLS-425	Constitutional Law
POLS-430	Constitutional Rights and Liberties
POLS-435	American Political Thought
POLS-460	Classical Constitutionalism, Virtue \& Law
POLS-465	Modern Constitutionalism, Liberty \& Equality
POLS-485	Women in Politics
POLS-490	Politics Through Fiction
POLS-525	Politics Through Film

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, science, foreign language, and history

Appropriate associate degree programs for transfer

Liberal arts with social sciences, sciences, or languages

Psychology, BS

www.rit.edu/study/psychology-bs
 Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

Psychology is the scientific study of the brain and focuses on observing, experimenting, and analyzing the behavior in multiple situations. To answer questions about what drives behavior, psychologists observe evolutionary factors, social and cultural inputs, and biological aspects of behavior.

RIT's psychology degree provides students with a strong grounding in the discipline of psychology, integrated with a technological focus. Students study behavior to understand the mind, but also look at the brain itself, with the use of new technologies allowing for a deeper study of psychological processes. Curriculum planning and career discussions occur with each student's faculty mentor.

Plan of Study

The major is unique and encompasses four key elements: a choice of five upper-level interdisciplinary tracks, a solid grounding in experimental methodology and statistics, the capstone sequence of courses, and a required cooperative education, internship, or research experience.

Interdisciplinary Tracks

Students choose two of the following interdisciplinary tracks: biopsychology, clinical psychology, cognitive psychology, social psychology, or visual perception. Current research and technology are integrated into these tracks to produce a focused and career-oriented psychology program. The tracks represent active fields of research in psychology, and students receive an education that provides a strong foundation for graduate school and employment in related fields.

Career Opportunities

The unique requirements of this major ensure that each student is wellprepared for advanced study in psychology or a related field, employment in industry or in human service agencies, or other career opportunities.

Pre-Law Advising Program

Law schools welcome applications from students majoring in a wide range of academic programs. If you are interested in pursuing law school, RIT's Pre-Law Advising Program is designed to maximize your chances of admission to law school. The program includes personalized advising, LSAT preparation, academic counseling, and a time table for law school admission.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated 3+3 BS/JD option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's psychology degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the psychology degree are required to complete a cooperative education, internship, or research experience (see Research). This is normally completed during the summer after the junior year but can be done in any semester after the second year. The co-op experience is completed in a psychology-related field and does not carry academic credit.

Curriculum

Psychology, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
PSYC-101	Introduction to Psychology	3
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	Open Elective	3
	Psychology Breadth Course	3
	Psychology Pre-track Course	3
Second Year		
BIOG-101	General Education - Natural Science Inquiry Perspective: Explorations in Cellular Biology and Evolution	3
BIOG-103	General Education - Natural Science Inquiry Perspective: Explorations in Cell Biology \& Evolution Lab	1
BIOG-102	General Education - Scientific Principles Perspective: Explorations in Animal and Plant Anatomy and Physiology	3
BIOG-104	General Education - Scientific Principles Perspective: Explorations in Animal \& Plant Anatomy \& Physiology Lab	1
PSYC-250	Research Methods I (WI-PR)	3
PSYC-251	Research Methods II (WI-PR)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Psychology Breadth Course	3
	Psychology Pre-track Courses	6
Third Year		
PSYC-301	Junior Seminar in Psychology	1
Choose one of the following: 0		
PSYC-498	Internship (summer)	
PSYC-499	Psychology Co-op (summer)	
PSYC-550	Undergraduate Research Experience (summer)	
	General Education - Electives	9
	General Education - Immersions 1, 2, 3	9
	Psychology Breadth Course	3
	Psychology Track Courses	9
Fourth Year		
Choose two of the following: 6		
PSYC-501	Senior Capstone Proposal	
PSYC-502	Seminar in Psychology	
PSYC-510	Senior Project in Psychology	
	General Education - Electives	9
	Open Electives	12
	Psychology Track Course	3

Total Semester Credit Hours $\mathbf{1 2 4}$
Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Pre-track courses

PSYC-221	Abnormal Psychology
PSYC-221H	Honors Abnormal Psychology
PSYC-222	Biopsychology
PSYC-223	Cognitive Psychology
PSYC-224	Perception
PSYC-224H	Honors Perception
PSYC-225	Social Psychology
PSYC-226	Developmental Psychology

Breadth courses

PSYC-226	Developmental Psychology
PSYC-231	Death and Dying
PSYC-233	History \& Systems in Psychology
PSYC-234	Industrial and Organizational Psychology
PSYC-235	Learning and Behavior
PSYC-236	Personality
PSYC-237	Psychology of Women
PSYC-238	Psychology of Religion
PSYC-239	Positive Psychology
PSYC-241	Human Sexuality
PSYC-242	Health Psychology
PSYC-300	Cultural Psychology
PSYC-313	Topics in Psychology
Tracks	
Biopensic Psychology PSYC-410 PSYC-411 PSYC-412 Psychophysiology	

Clinical Psychology

PSYC-420	Clinical Psychology
PSYC-421	Psychological Testing
PSYC-422	Psychotherapy

Cognitive Psychology

PSYC-430	Memory and Attention
PSYC-431	Language and Thought
PSYC-432	Decision Making, Judgment, and Problem Solving

Developmental Psychology

PSYC-460	Developmental Psychopathology
PSYC-461	Social and Emotional Development
PSYC-462	Cognitive and Perceptual Development
Social Psychology	
PSYC-440	Interpersonal Relationships
PSYC-441	Group Processes
PSYC-442	
Visual Perception	
PSYC-450	
PSYC-451	Visual System \& Psychophysics Social Cognition
PSYC-452	Color, Form \& Object Perception

Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Psychology, BS degree/Experimental Psychology, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
PSYC-101	Introduction to Psychology	3
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	Open Elective	3
	Psychology Breadth Course	3
	Psychology Pre-track Course	3
Second Year		
BIOG-101	General Education - Natural Science Inquiry Perspective: Explorations in Cellular Biology and Evolution	3
BIOG-103	General Education - Natural Science Inquiry Perspective: Explorations in Cell Biology \& Evolution Lab	1
BIOG-102	General Education - Scientific Principles Perspective: Explorations in Animal and Plant Anatomy and Physiology	3
BIOG-104	General Education - Scientific Principles Perspective: Explorations in Animal \& Plant Anatomy \& Physiology Lab	1
PSYC-250	Research Methods I (WI-PR)	3
PSYC-251	Research Methods II (WI-PR)	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
	Psychology Breadth Course	3
	Psychology Pre-track Courses	6
Third Year		
PSYC-301	Junior Seminar in Psychology	1
PSYC-501	Senior Capstone Proposal	3
Choose one of the following:		
PSYC-498	Internship (summer)	
PSYC-499	Psychology Co-op (summer)	
PSYC-550	Undergraduate Research Experience (summer)	
	General Education - Electives	9
	General Education - Immersions 1, 2, 3	9
	Psychology Breadth Course	3
	Psychology Track Courses	6
Fourth Year		
PSYC-640	Graduate Statistics	3
Choose one of the following:		3
PSYC-752	Thesis Proposal	
PSYC Graduate Program Elective (non-thesis track)		
	General Education - Electives	9
	Open Electives	12
	PSYC Graduate Program Elective	3
Fifth Year		
Choose one of the following:		3
PSYC-641	Applied Psychology Methods	
PSYC-642	Graduate Research Methods	
Choose one of the following:		3
PSYC-753	Thesis	
	PSYC Graduate Program Elective or Graduate Elective relevant to career goals (non-thesis track)	
	PSYC Graduate Program Electives	6
	Graduate Electives	6
	PSYC Graduate Program Elective or Graduate Elective	3
Total Semester Credit Hours		145
Please see General Education Curriculum (GE) for more information. (WI-PR) Refers to a writing intensive course within the major. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.		

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, sciences, social sciences
Appropriate associate degree programs for transfer
Liberal arts with science or social science

Public Policy, BS

www.rit.edu/study/public-policy-bs

Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axlgla@rit.edu

Program overview

Policy plays a critical role in addressing the many environmental, social, economic, and technological challenges facing society. The public policy degree provides students with the skills and knowledge needed to analyze and advocate for policy change in both private and public organizations.

Plan of Study

Students will develop the skills needed to fully comprehend the impact of public policy on an increasingly technology-based society. The curriculum is designed to provide a foundation in analyzing policy in terms of complex, interconnected systems. Students integrate their interests in government, science, technology, economics, and other social science fields by taking courses with a broad disciplinary range.

The public policy degree combines an understanding of these fields with the analytical tools needed to study the impact of public policy on society. Courses help you attain a deep understanding of the ethical, political, and social dimensions of policy issues and help students develop strong policy analysis skills. The major has many key features, including:

Interdisciplinary-Public policy core courses ensure the major provides integration of diverse disciplines and enables students to integrate diverse subjects and apply them to the analysis of public policy.

Integrated qualitative and quantitative skills-The major balances both quantitative and qualitative approaches to the analysis of public policy so that students are able to achieve a full systems-level grasp of policy issues.

Customizable concentrations-Through customizable concentrations students are trained in the vernacular, methodologies, and problem-solving approaches of the sciences and technologies relevant to their chosen are of policy study, and develop a well-grounded familiarity in that area.

Solid grounding in liberal arts-While students acquire quantitative and qualitative training, by the end of their academic career they also complete liberal arts courses with a broad disciplinary range. It is this grounding in humanistic values, combined with technology and science, that makes the major both balanced and unique.

Applied experience-The major provides opportunities for optional cooperative education experiences after the student's third year of study. Students work directly with policy analysts and policymakers in legislative offices, nonprofit organizations, special interest groups, industry organizations, or corporate public affairs departments and gain paid professional experience in their field. In their senior year, students work closely with RIT faculty on research as part of a capstone senior project, which provides an applied research or consulting experience that uses many of the skills developed throughout the program.

Concentrations

Students must complete a five course concentration in an area of study. Sample concentrations include biotechnology policy, computer crime policy, computer software policy, energy policy, engineering policy, environmental policy, and information and telecommunications policy. With the help of a faculty adviser, students can customize a concentration based on their interests and professional aspirations. Students apply skills acquired in general public policy courses to specific policy areas. Many concentration courses, including those that provide a firm grounding in science and technology, are offered through other majors at RIT. This
gives students an opportunity to interact and study with researchers and faculty from a broad range of disciplines.

Faculty

Faculty have extensive experience in the classroom and as practitioners in their respective fields. In addition to public policy, faculty members have a broad range of backgrounds, including physics, engineering, law, environmental science, energy management, and information technology.

Pre-Law Advising Program

Law schools welcome applications from students majoring in a wide range of academic programs. If you are interested in pursuing law school, RIT's Pre-Law Advising Program is designed to maximize your chances of admission to law school. The program includes personalized advising, LSAT preparation, academic counseling, and a time table for law school admission.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated $3+3 \mathrm{BS} / \mathrm{JD}$ option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's public policy degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law $3+3$ Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Cooperative education is optional, but strongly encouraged for students in the public policy degree. Students may complete a co-op or internship within the private, public, or nonprofit sectors.

Curriculum

Public Policy, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ECON-101	General Education - Elective: Principles of Microeconomics	3
ECON-201	General Education - Elective: Principles of Macroeconomics	3
PUBL-101	Foundations of Public Policy	3
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
STSO-201	Science and Technology Policy	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - First-Year Writing (WI)	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	3
Second Year		
PUBL-201	Ethics, Values, \& Public Policy	3
PUBL-210	Introduction to Qualitative Policy Analysis	3
Choose one of the following:		4
MATH-161	General Education - Mathematical Perspective B: Applied Calculus	
MATH-171	General Education - Mathematical Perspective B: Calculus A	
MATH-181	General Education - Mathematical Perspective B: Project-based Calculus I	
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	
	Concentration Course	3
	General Education - Global Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
	General Education - Social Perspective	3
	General Education - Immersion 1	3
	Open Electives	6
Third Year		
PUBL-301	Public Policy Analysis	3
PUBL-302	Decision Analysis	3
Choose one of the following:		3
POLS-210	Comparative Politics	
POLS-325	International Law and Organizations	
POLS-455	Comparative Public Policy	
	Concentration Courses	6
	General Education - Elective	3
	General Education - Immersion 2	3
	Open Electives	6
	Public Policy Elective	3
Fourth Year		
PUBL-500	Senior Project (WI-PR)	3
PUBL-510	Technological Innovation and Public Policy	3
	Concentration Courses	6
	General Education - Immersion 3	3
	General Education - Electives	9
	Open Electives	6
Total Semester Credit Hours		121

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Public Policy, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ECON-101	Principles of Microeconomics	
ECON-201	Principles of Macroeconomics	
PUBL-101	Foundations of Public Policy	
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	
STSO-201	Science and Technology Policy	
YOPS-010	RIT 365: RIT Connections	
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	
	General Education - Scientific Principles Perspective \ddagger	
	General Education - Elective	
	General Education - First Year Writing (WI)	
Second Year		
PUBL-201	Ethics, Values \& Public Policy	
PUBL-210	Introduction to Qualitative Policy Analysis	
Choose one of the following:		
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	
	General Education - Mathematical Perspective B: Calculus Based Math Course	
	General Education - Global Perspective	
	General Education - Social Perspective	
	General Education - Natural Science Inquiry Perspective	3
	Open Electives	
	Track Course	
	General Education - Immersion 1	
Third Year		
PUBL-301	Public Policy Analysis	
PUBL-302	Decision Analysis	
	General Education - Immersion 2	
	Open Electives	
	General Education - Elective	
	Track Courses	
	POLS Course	
	PUBL Elective	
Fourth Year		
PUBL-500	Senior Project (WI)	
PUBL-610	Technological Innovation and Public Policy/Graduate Elective	3
	General Education - Immersion 3	3
	Track Course	
	Track Course/Graduate Elective	
	Open Electives	
	General Education - Electives	
Fifth Year		
PUBL-700	Readings in Public Policy	
PUBL-701	Graduate Policy Analysis	3
PUBL-703	Evaluation and Research Design	
STSO-710	Graduate Science and Technology Policy Seminar	
	Graduate Electives	
Choose one of the following:		
PUBL-790	Public Policy Thesis	
	Two graduate electives plus PUBL-798 Comprehensive Exam	
PUBL-785	Capstone Research Experience	

Total Semester Credit Hours

Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.
§ Students who choose to complete the comprehensive exam will take an additional two graduate electives.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required
- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math
Appropriate associate degree programs for transfer
Liberal arts, environmental studies, economics, government, science

Sociology and Anthropology, BS

www.rit.edu/study/sociology-and-anthropology-bs
Amy Lyman, Associate Director of Recruitment and Outreach 585-475-4137, axIgla@rit.edu

Program overview

With a deep commitment to the broader values of justice and human rights, the sociology and anthropology major focuses on understanding social and cultural complexity and diversity. The program examines critical issues such as the economy, politics, gender and sexuality, race and ethnicity, urban living, the family, and health as they are shaped by social forces and cultural values. You'll gain insight from a wide range of theoretical perspectives and you'll develop the necessary research skills to further examine topics of critical importance in society. Students in the sociology and anthropology program build a strong foundation to pursue a wide range of career options both in the United States and abroad.

The sociology and anthropology major is dedicated to understanding and appreciating social and cultural complexity and diversity across the globe and through time. Students are exposed to critical perspectives, theories, and research skills that are necessary to engage in complex global and local issues that crosscut the economy, politics, society, gender, ethnicity, and culture. Understanding societies both past and present better prepares us to face the challenges of a rapidly changing world and to assume positions of leadership that promote vision and equity.

Plan of Study

This integrated, multidisciplinary degree program explores the common scholarly roots and creative differences of sociology and anthropology, through which students gain a synergistic set of perspectives and skills that prepare them for social analysis in the widest array of social and cultural settings. Students choose one of the following specializations: archaeology, cultural anthropology, sociology, or thematic.

Graduates pursue careers in medicine and public health, law, business, international development, the not-for-profit sector, urban planning, architecture, social work, education, and government, among other possibilities.

Pre-Law Advising Program

Law schools welcome applications from students majoring in a wide range of academic programs. If you are interested in pursuing law school, RIT's Pre-Law Advising Program is designed to maximize your chances of admission to law school. The program includes personalized advising, LSAT preparation, academic counseling, and a time table for law school admission.

RIT/Syracuse University College of Law 3+3 Option

RIT has partnered with Syracuse University's College of Law to offer an accelerated $3+3 \mathrm{BS} / \mathrm{JD}$ option for highly capable students. This option provides a fast-track pathway to law school in which students earn a bachelor's degree and a Juris Doctorate degree in six years. In the $3+3$ option, students may apply to the option directly. Successful applicants are offered admission to RIT and given conditional acceptance into Syracuse University's College of Law.

RIT's sociology and anthropology degree is one of the approved majors for the $3+3$ option. Learn more about the RIT/Syracuse University College of Law 3+3 Option, including admission requirements and frequently asked questions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the sociology and anthropology degree are required to complete one cooperative education experience.

Additional Hands-On Learning Opportunities

In addition to a required cooperative education experience, students may apply their classroom knowledge with opportunities for hands-on learning through archaeological, ethnographic, or linguistic fieldwork, laboratory analysis, and study abroad.

Curriculum

Sociology and Anthropology, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		3
ANTH-102	Cultural Anthropology	
ANTH-102H	Honors Cultural Anthropology	
ANTH-103	Archaeology and the Human Past	
Choose one of the following:		3
SOCI-102	Foundations of Sociology	
SOCI-102H	Honors Sociology	
UWRT-150	General Education - First-Year Writing: FYW: Writing Seminar (WI)	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	
	General Education-Global Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Natural Science Inquiry Perspective \ddagger	3
	Track Course	3
	Open Elective	3
Second Year		
	General Education - Elective	3
	General Education - Immersion 1	3
	General Education - Mathematical Perspective B	3
	General Education - Scientific Principles Perspective	3
	General Education - Social Perspective	3
	SOCANT Methods Course	3
	Track Courses	9
	Open Elective	3

ANTH-303	Statistics in the Social Sciences
ANTH-305	Comparative and Historical Linguistics
ANTH-310	African Film
ANTH-320	Practicing Anthropology
ANTH-325	Bodies and Culture
ANTH-328	Heritage and Tourism
ANTH-330	Cultural Images of War and Terror
ANTH-335	Culture and Politics in Latin America
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-365	Culture and Politics in the Middle East
ANTH-370	Media and Globalization
ANTH-375	Native American Cultural Resources and Rights
ANTH-380	Nationalism and Identity
ANTH-385	Anthropology and History
ANTH-410	Global Cities
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-455	Economics of Native America
ANTH-489	Topics in Anthropology
ANTH-498	Practicum
ANTH-503	Scholar's Thesis II
INGSS-101	Global Studies
INGSS-270	Cuisine, Culture, and Power
INGS-455	Economics of Native America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-302	Qualitative Research
SOCI-303	Statistics in the Social Sciences
SOCI-361	Sociology of Numbers

Sociology

Electives-Choose seven of the following	
ANTH-246	Gender and Health
ANTH-295	Global Public Health
ANTH-302	Qualitative Research
ANTH-303	Statistics in the Social Sciences
ANTH-361	Sociology of Numbers
SOCI-210	Black America: Culture \& HipHop
SOCI-215	The Changing Family
SOCI-220	Minority Group Relations
SOCI-225	Social Inequality
SOCI-230	Sociology of Work
SOCI-235	Women, Work, and Culture
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-300	Sociology of American Life
SOCI-302	Qualitative Research
SOCI-303	Statistics in the Social Sciences
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOCI-322	Health and Society
SOCI-330	Urban (In) Justice
SOCI-345	Urban Poverty
SOCI-350	Social Change
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
SOCI-361	Sociology of Numbers
SOCI-395	Borders: Humans, Boundaries, and Empires
SOCI-451	Economics of Women and the Family
SOCI-489	Topics in Sociology
SOCI-498	Practicum
SOCI-503	Scholar's Thesis II

Thematic

Students choose two thematic modules of three courses each, along with one 3-credit elective, from modules approved by the department.

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Sociology and Anthropology, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:	3	
ANTH-102	Cultural Anthropology	
ANTH-102H	Honors Cultural Anthropology	3
ANTH-103	Archaeology and the Human Past	
Choose one of the following:	Foundations of Sociology	3
SOCI-102	Honors Sociology	3
SOCI-102H	General Education - First-Year Writing: FYW: Writing Seminar (WI)	
UWRT-150	RIT 365: RIT Connections	3
YOPS-10	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	3
	SOCANT Track Course	3
	Open Elective	3

Second Year

Choose one of the following:	3	
ANTH-302	Qualitative Research	
SOCI-302	Qualitative Research	3
Choose one of the following:		
ANTH-303	Statistics in the Social Sciences	
SOCI-303	Statistics in the Social Sciences	9
	Track Courses	3
PUBL-101	General Education - Social Perspective: Foundations of Public Policy	3
	General Education - Scientific Principles Perspective	4
STAT-146	General Education - Mathematical Perspective B: Introduction to Statistics II	3
	General Education - Immersion 1	3

Third Year

Choose one of the following:		3
ANTH-301	Social and Cultural Theory	
SOCI-301	Social and Cultural Theory	9
	Track Courses	6
	General Education - Immersion 2,3	6
	General Education - Electives	6
Fourth Year	Open Elective	
Choose one of the following:	3	
ANTH-501	Senior Research Project	
SOCI-501	Senior Research Project	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	15
	General Education - Electives	6

Fifth Year		3
PUBL-700	Readings in Public Policy	3
PUBL-703	Program Evaluation and Research Design	3
STSO-710	Graduate Science and Technology Policy Seminar	9
Choose one of the following:		
PUBL-790	Public Policy Thesis	6
	Two graduate electives plus PUBL-798	
	Comprehensive Exam	
PUBL-785	Capstone Research Experience	

Total Semester Credit Hours
Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a
science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.
§ Students who choose to complete the comprehensive exam will take an additional two graduate electives.

COURSE	SEMESTER		
First Year			
Choose one of the following:		3	
ANTH-102	Cultural Anthropology		
ANTH-103	Archaeology and the Human Past		
SOCI-102	Foundations of Sociology	3	
UWRT-150	General Education - First-Year Writing: FYW: Writing Seminar (WI)	3	
YOPS-10	RIT 365: RIT Connections	3	
	General Education - Artistic Perspective	3	
	General Education-Ethical Perspective	3	
	General Education-Global Perspective	3	
	General Education - Natural Science Inquiry Perspective \ddagger	3	
	General Education - Mathematical Perspective A	3	
	Open Elective		
	SOCANT Track course	3	
Second Year			
	SOCANT Track Courses	9	
SOCANT Methods Course			
	General Education-Social Perspective	3	
	General Education - Scientific Principles Perspective	3	
	General Education - Mathematical Perspective B	3	
	General Education - Immersion 1	3	
	General Education - Elective	3	
	Open Elective	3	
Third Year			
Choose one of the following:		3	
ANTH-301	Social and Cultural Theory		
SOCl-301	Social and Cultural Theory		
SOCANT Track Courses		9	
SOCANT Methods Courses		3	
General Education - Immersion 2, 3		6	
General Education-Electives		6	
Open Elective		3	
Fourth Year			
Choose one of the following:		3	
ANTH-501	Senior Research Project		
ANTH-502	Scholar's Thesis I		
SOCI-501	Senior Research Project		
SOC1-502	Scholar's Thesis I		
COMM-714	Strategic Communication	3	
		3	
General Education - Electives		15	
Open Elective		6	
Fifth Year			
COMM-702	Communication Theories	3	
COMM-703	Research Methods in Communication	3	
COMM-720	Thesis Preparation Seminar	0	
COMM-800	Communication Thesis/Project	6	
	Communication Elective	3	
	Professional Core	9	
Total Semester Credit Hours		144	
Please see General Education Curriculum for more information. (WI) Refers to a writing intensive course within the major. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses. \ddagger Students will satisfy this requirement by taking either a 3- or 4-credit hour lab science course. If a science course consists of separate lecture and laboratory sections, student must take both the lecture and lab portions to satisfy the requirement.			

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English and social studies is expected

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer
Liberal arts, environmental studies, economics, government, science

Faculty

Dean's Office

Anna Westerstahl Stenport, BA,
MA, Uppsala University (Sweden); Ph.D., University of CaliforniaBerkeley—Dean; Professor

Michael Laver, BA, Purdue University; MA, Ph.D., University of Pennsylvania-Associate Dean; Professor

Kelly Norris Martin, BA, John Carroll University; MS, Ph.D., North Carolina State University-Associate Dean; Professor

John S. Smithgall, BA, Roberts Wesleyan College; MS, University of Rochester-Assistant Dean for Student Services

School of Communication

Tracy R. Worrell, BA, Otterbein College; MA, University of Cincinnati; Ph.D., Michigan State University- Director, School of Communication; Professor

Kelly Norris Martin, BA, John Carroll University; MS, Ph.D., North Carolina State University-Associate Dean; Professor

Bruce A. Austin, BA, Rider College; MS, Illinois State University; Ph.D., Temple University-Professor

Keri Barone, BA, MA, State University College at BrockportPrincipal Lecturer; Director of Undergraduate Studies:
Communication
Donathan Brown, BA, Illinois College; MA, Syracuse University; Ph.D., Texas A\&M UniversityAssistant Provost and AVP for Faculty Diversity and Recruitment; Associate Professor

Claudia Bucciferro, BA, MA, University of Concepcion (Chile); Ph.D.,University of Colorado at Boulder-Assistant Professor

Kari Cameron, BS, M.Ed., Nazareth College of Rochester; MS, Rochester Institute of Technology-Director of Undergraduate Studies: Advertising
and Public Relations; Senior Lecturer

Grant C. Cos, BA, University of Massachusetts at Amherst; MA, Emerson College; Ph.D., Kent State University-Professor

Rebecca DeRoo, BA, Bryn Mawr College; MA, Ph.D., University of Chicago-Associate Professor

Thomas Dooley, BA, State University of New York at Geneseo; MA, University of Bolton (United Kingdom)-Lecturer

Nickesia Gordon, BA, University of the West Indies (Jamaica); MA, Clark University; Ph.D., Howard University-Associate Professor
Keith B. Jenkins, BA, University of Arkansas; MA, Ph.D., Florida State University-Vice President and Associate Provost for Diversity and Inclusion; Professor

Eun Sook Kwon, BA, Hannam University (Korea); MA, University of Texas at Austin; Ph.D., University of Georgia-Director of Graduate Programs; Associate Professor

Hinda Mandell, BA, Brandeis University; MA, Harvard University; Ph.D., Syracuse University-Professor

Julie Napieralski, BS, Kent State University; MS, Syracuse University-Senior Lecturer

David R. Neumann, BA, Ithaca College; MA, Ph.D., Bowling Green State University-Professor

Rudy Pugliese, BA, State University College at Oneonta; MA, State University College at Brockport; Ph.D., Temple University-Professor

Elizabeth Reeves O'Connor, BS, MS, Rochester Institute of Technology-Principal Lecturer

Katrina Overby, BA, Rust College; MS, Oklahoma State University; Ph.D., Indiana University, Bloomington-Assistant Professor

Jonathan E. Schroeder, BA, University of Michigan; MA, Ph.D., University of California at Berkeley-William A. Kern Professor in Communications

Xiao Wang, BA, Beijing University of Aeronautics and Astronautics (China); MA, Marquette

University; Ph.D., Florida State University-Professor
Tracy R. Worrell, BA, Otterbein University; MA, University of Cincinnati; Ph.D., Michigan State University-Director of Undergraduate Studies: Communication; Professor

Criminal Justice

Christopher Schreck, BA,
University of Florida; MA, University of Arizona; Ph.D., Pennsylvania State UniversityDepartment Chair; Professor

Irshad Altheimer, BA, Alabama State University; MA, Ph.D., Washington State University-Professor

John McCluskey, BA, MA, Ph.D., State University of New York at Albany-Professor

LaVerne McQuiller Williams, BS,
Rochester Institute of Technology;
JD, Albany Law School of Union
University; MA, Buffalo State
College; Ph.D., University at Buffalo-Professor; Associate Provost for Faculty Affairs

Judy Porter, BA, University of Northern Colorado; MA, New Mexico State University; Ph.D., University of Nebraska at OmahaUndergraduate Program Director: Criminal Justice; Professor
O. Nicholas Robertson, BA, State University College at Geneseo; MA, State University College at Brockport; Ph.D., State University of New York at Buffalo-Assistant Professor

Jason Scott, BS, Roberts Wesleyan College; MA, Ph.D., State University of New York at Albany-Graduate Program Director; Associate Professor

Tony Smith, BA, MA, Ph.D., State University of New York at AlbanyAssociate Professor

Joe Williams, BS, Rochester Institute of Technology; MA, State University College at BrockportField Experience Coordinator; Public Policy Program Director; Senior Lecturer

Economics

Javier Espinosa, BS, Miami University; MA, Ph.D., University of Maryland at College ParkDepartment Chair; Associate Professor

Amit Batabyal, BS, Cornell University; MS, University of Minnesota; Ph.D., University of California at Berkeley-Arthur J. Gosnell Professor in Economics

Bharat Bhole, BA, MA, University of Mumbai (India); Ph.D., University of Southern CaliforniaAssociate Professor

Bridget Gleeson Hanna, BComm, National University College Galway (Ireland); MA, University College at Dublin (Ireland); MA, University of Wisconsin at Madison-Associate Professor

Priti Kalsi, BA, University of Maryland at College Park; MA, Ph.D., University of Colorado Boulder-Assistant Professor

Nikolaus Kasimatis, BA, MA, Ph.D., Simon Fraser UniversityAssociate Professor

Eumni Ko, BA, BS, MA, Seoul National University (South Korea); MA, Ph.D., University of Rochester-Assistant Professor

Eddery Lam, BA, MA, Boston University; MA, University of Massachusetts at Amherst; Ph.D., Kansas State University-Associate Professor

Jeannette C. Mitchell, BA, Westminster College; Ph.D., University of Utah-Undergraduate Program Director; Associate Professor

Selhan Sahin, BSc., Middle East Technical University (Turkey); ABD, Virginia Polytechnic Institute and State University-Senior Lecturer
M. Jeffrey Wagner, AB,

University of Missouri; MS, Ph.D., University of Illinois at Urbana-Champaign-Professor

Yiwei Wang, BS, Fudan University (China); MS, University of Michigan; Ph.D., Cornell University-Lecturer

English

Sean Grass, BA, Bucknell University; MA, Ph.D., Penn State University-Department Chair; Professor
A.J. Caschetta, BA, Nazareth College of Rochester; MA, University of Missouri; Ph.D., New York University-Principal Lecturer

Robert Glick, BA, University of California at Berkeley; MA, San Francisco State University; Ph.D., University of Utah- Undergraduate Program Director; Associate Professor

Trent Hergenrader, BA, University of Wisconsin-Madison; MA, Ph.D., University of Wisconsin-Milwaukee-Associate Professor

Lisa M. Hermsen, BA, Briar Cliff University; MA, University of Missouri at Columbia; MA, Ph.D., Iowa State University—Professor
Julie Johannes, BA, State University College at Geneseo; MA, University of Rochester-Principal Lecturer

Katherine Mayberry, BA, Smith College; MA, Ph.D., University of Rochester-Professor

David S. Martins, BA, St. Olaf College; MA, Northern Arizona University; Ph.D., Michigan Technological University-Associate Professor

Cecilia Ovesdotter Alm, BA, Universitat Wien (Austria); MA, Ph.D., University of IllinoisAssociate Professor

Danielle Pafunda, BA, Bard College; MFA, The New School; Ph.D., University of GeorgiaAssistant Professor

Emily T. Prud'hommeaux, AB, Harvard College; MA, University of California; Ph.D., Oregon Health \& Science University-Assistant Professor

Amit Ray, BA, State University of New York at Buffalo; MA, Ph.D., University of Michigan-Associate Professor

Anne M. Royston, BA, Williams College; MA, Ph.D., University of Utah-Assistant Professor

Richard Santana, AA, LaGuardia Community College; BA, City College of New York; MA, Hunter College; Ph.D., City University of New York Graduate School and University Center-Associate Professor

Laura Shackelford, BA, University of Minnesota-Minneapolis; MA, Ph.D. Indiana University-Director, Center for Engaged Storycraft; Professor

Whitney Sperrazza, BA, State University of New York at Albany; MA, University of Chicago; Ph.D., Indiana University BloomingtonAssistant Professor

Elena Rakhimova-Sommers, BA, MA, Moscow State Pedagogical University (Russia); MA, University of Notre Dame; Ph.D., University of Rochester-Provost's Faculty Associate for Non-Tenure-Track Faculty; Principal Lecturer

Thomas M. Stone, BA, Northern Arizona University; MA, Bucknell University; Ph.D., University of Rochester-Lecturer

Karen vanMeenen, BA, Binghamton University; CAPF, International Federation for Biblio/ Poetry Therapy; MA, Vermont College; MA, The New School; ABD, Ph.D., The European Graduate School (Switzerland)-Senior Lecturer

Performing Arts

Erica Haskell, BA, Mills College; MA, Ph.D., Brown UniversityDirector, School of Performing Arts; Professor

Jonathan Kruger, BA, Carthage College; MM, DMA, Eastman School of Music—Professor

Elizabeth Goins, BA, University of Delaware; Ph.D., University of London-Associate Professor

Andy Head, BS, Bradley University; MFA, Michigan State UniversityAssistant Professor

Kelley Holley, BA, Emerson College; MA, San Diego State University; Ph.D., University of Maryland-Assistant Professor
David Hult, BA, Eastman School of Music; MM, DMA, Juilliard School of Music-Visiting Professor,

Director of Performing Arts Scholars Program
Joel Hunt, BM, State University College at Fredonia; MA, Ph.D., University of California, Santa Barbara-Visiting Assistant Professor

Jessica Lieberman, BA, University of Pennsylvania; Ph.D., University of Michigan—Program Director, Digital Humanities and Social Sciences; Associate Professor

Yunn-Shan Ma, BM, MS, National Taiwan Normal University (China); DMA, Eastman School of MusicAssistant Professor

David McCarthy, BM, MA, Eastman School of Music; MM, Houghton College-Visiting Lecturer

Michael E. Ruhling, BA, Goshen College; MA, University of Notre Dame; MM, University of Missouri; Ph.D., Catholic University of America-Professor

Alexa Scott-Flaherty, BA, Vassar College-Visiting Lecturer

Karl Stabnau, BA, Lafayette
College; BM, Eastman School of Music; MA, MM, Syracuse University-Visiting Lecturer

Ryan Underbakke, BA, University of Minnesota; MFA, London School of Performing Arts via Naropa University-Visiting Assistant Professor

Modern Languages and Cultures

Sara Scott Armengot, BA, Oberlin College; MA, Ph.D., Pennsylvania State University-Department Chair; Associate Professor; Spanish Program Director
Philippe Chavasse, BA, MA, Université Lyon 2 (France); Ph.D., University of Oregon-Associate Professor; French Program Director
Zhong Chen, BA, Nanjing Normal University (China); MA, Ph.D., Cornell University-Associate Professor; Chinese Program Director

Elisabetta D'Amanda, BA, State University of New York; MA, Nazareth College of Rochester;

Ph.D., Middlebury CollegePrincipal Lecturer

Diane J. Forbes, BA, State University College at Geneseo; MA, Ph.D., Pennsylvania State University-Associate Professor

Yuhan Huang, BA, Beijing Foreign Studies University (China); MA, Ph.D., Purdue University-Assistant Professor

Kévin Le Blévec, BA, License, MA, M.Ed., Université de Rennes 2 (France)-Senior Lecturer; Modern Language Technology Specialist
Yukiko Maru, BA, Keio University (Japan); MA, MS, University of Illinois at Urbana-ChampaignPrincipal Lecturer

Godys Armengot Mejía, BA, Pennsylvania State University; M.Ed., University of MarylandSenior Lecturer

Masako Murakami, BA, Portland State University; MA, The Ohio State University-Principal Lecturer

Ulrike Stroszeck, BA, University of Akron; MA, Auburn University; Ph.D., University of North Carolina at Chapel Hill-Principal Lecturer
Hiroko Yamashita, BA, University of Southern Mississippi; MA, Ph.D., The Ohio State UniversityProfessor; Japanese Program Director

History

Tamar W. Carroll, BA, University of Massachusetts; MA, Ph.D., University of MichiganDepartment Chair, Associate Professor

Michael Brown, BS, Cornell University; M.Sc., London School of Economics and Political Science (United Kingdom); Ph.D., University of Rochester-Associate Professor

Juilee Decker, BA, Wittenberg University; MA, University of Illinois Urbana Champaign; Ph.D., Case Western Reserve UniversityProgram Director, Museum Studies; Professor

Rebecca A. R. Edwards, BA, College of the Holy Cross; Ph.D., University of Rochester-Professor

Joseph M. Henning, BA, Colorado College; MIA, Columbia University; Ph.D., American UniversityUndergraduate Program Director, History; Associate Professor

Christine Keiner, BA, Western Maryland College; Ph.D., Johns Hopkins University-Professor; Department Chair, Science, Technology and Public Policy

Michael Laver, BA, Purdue University; MA, Ph.D., University of Pennsylvania-Associate Dean; Professor

Richard Newman, BA, State University of New York at Buffalo; MA, Brown University; Ph.D., State University of New York at Buffalo—Professor

James S. Rankine, BA, University of Queensland (Australia); MA, Ph.D., University of RochesterVisiting Lecturer

Rebecca Scales, BA, Hollins College; MA, University of Georgia; Ph.D., Rutgers UniversityAssociate Professor

Corinna Schlombs, Diploma, Bielefeld University (Germany); MA, Ph.D., University of Pennsylvania-Associate Professor

Siyan Zhao, BA, MA, Fudan University (China); Ph.D., Binghamton University-Visiting Assistant Professor

Philosophy

Brian Schroeder, BA, Edinboro
College; M.Div., Princeton Theological Seminary; MA, Ph.D., Stony Brook UniversityDepartment Chair; Professor

Jesús Aguilar, BA, Hampshire College and Universidad Veracruzana (Mexico); MA, Universidad Nacional Autónoma de México (Mexico); Ph.D., McGill University (Canada) - Professor

Silvia Benso, Laurea, University of Torino (Italy); MA, Ph.D., Pennsylvania State UniversityDirector, Women's and Gender Studies Program; Professor

Evelyn Brister, BA, Austin College; Ph.D., Northwestern University-Professor

John Capps, BA, St. John's College; MA, Ph.D., Northwestern University-Professor; Interim Program Director

Colin Mathers, BA, DePauw University; MA, Ph.D., University of Rochester-Lecturer

Irina Mikhalevich, BA, University of California at Berkley; Ph.D., Boston University-Assistant Professor

Wade L. Robison, BA, University of Maryland; Ph.D., University of Wisconsin-Ezra A. Hale Professor in Applied Ethics
John T. Sanders, BA, Purdue University; MA, Ph.D., Boston University-Professor

Evan Selinger, BA, Binghamton University; MA, University of Memphis; Ph.D., Stony Brook University—Professor

Katie Terezakis, BA, Central Connecticut State University and Heidelberg University (Germany); MA, Ph.D., New School for Social Research-Professor

Lawrence G. Torcello, BA, State University College at Brockport; MA, Ph.D., State University of New York at Buffalo-Associate Professor

Political Science

Lauren Hall, BA, State University of New York at Binghamton; MA, Ph.D., Northern Illinois University—Department Chair; Professor

Nathan M. Dinneen, BA, MA, University of North Texas; Ph.D., Northern Illinois UniversityUndergraduate Program Director; Associate Professor

Benjamin R. Banta, BA, Purdue University; MA, Ph.D., University of Delaware-Undergraduate Program Director; Associate Professor

Sarah Burns, BA, University of Toronto (Canada); MA, Ph.D., Claremont Graduate UniversityAssociate Professor

Michelle Chun, BA, Harvard University; JD, Ph.D., Columbia University-Assistant Professor

Joseph Fornieri, BA, State
University College at Geneseo; MA, Boston College; Ph.D., Catholic University of America-Professor

Dongryul Kim, BA, MA, Seoul University (South Korea); Ph.D., University of Virginia-Program Director, International and Global Studies; Associate Professor

Stephen Sims, BA, Thomas
Aquinas College; MA, Ph.D., Baylor University-Assistant Professor

Sean Sutton, B.Econ., University of Queensland (Australia); MA, Ph.D., University of Dallas-Professor

Psychology

Joseph S. Baschnagel, BA, MA, Ph.D., State University of New York at Buffalo-Department Chair; Associate Professor

Suzanne Bamonto, AA, Finger Lakes Community College; BA, State University College at Geneseo; Ph.D., University of OregonAssociate Professor

Robert Bowen, BA, MA, State University College at Brockport; M.Ed., Ph.D., University of Rochester-Lecturer

A. Eleanor Chand-Matzke, BA,

State University College at Geneseo; MA, The New School for Social Research; Ph.D., University of Massachusetts-Lecturer

Jessamy Comer, BA, Baylor University; MA, Ph.D., University of Rochester-Lecturer

Kirsten Condry, BA, Swarthmore College; Ph.D., University of Minnesota-Associate Professor

Caroline M. DeLong, BA,
New College of Florida; MA, Ph.D., University of HawaiiUndergraduate Program Director; Professor

John E. Edlund, BS, MA,
Ph.D., Northern Illinois
University—Professor
Allison Fitch, BA, University of Connecticut; Ph.D., University of Massachusetts Boston-Assistant Professor

Stephanie A. Godleski, BA, Hamilton College; MA, Ph.D.,

University of Buffalo-Associate Professor

Andrew M. Herbert, BS, McGill University (Canada); MA, Ph.D., University of Western Ontario (Canada)—Professor

Rebecca Houston, BS, University of Arkansas at Little Rock; MA, Ph.D., University of New Orleans, Louisiana-Associate Professor

Cecilia Ovesdotter Alm, BA, Universitat Wien (Austria); MA, Ph.D., University of Illinois-Professor

Vincent Pandolfi, BA, Lafayette College; MA, Ph.D., Hofstra University-Graduate Program Director, School Psychology; Associate Professor

Marjorie Prokosch, BA, Florida State University; MS, Ph.D., Texas Christian University-Assistant Professor

Esa M. Rantanen, BS, MS, EmbryRiddle Aeronautical University; MS, Ph.D., Pennsylvania State University-Associate Professor

Lindsay Schenkel, BA, St. John Fisher College; MA, Ph.D., University of Nebraska at LincolnAssociate Professor

Alan Smerbeck, BA, University of Rochester; Ph.D., State University of New York at Buffalo-Associate Professor

Tina Sutton, BS, Union College; MA, Ph.D., State University of New York at Albany-Graduate Program Director, Experimental Psychology; Associate Professor

Public Policy

Sandra Rothenberg, BS, Syracuse University; MS, Ph.D., Massachusetts Institute of Technology—Department Chair; Professor

Eric Hittinger, BS, MS, Case Western Reserve University; Ph.D., Carnegie Mellon UniversityGraduate Program Director; Associate Professor

Nathan Lee, BS, University of Pennsylvania; MS, Massachusetts Institute of Technology; Ph.D., Stanford University—Assistant Professor

Qing Miao, BA, Nanjing
University (China); MS, University
of Michigan; Ph.D., Syracuse
University-Assistant Professor

Science, Technology, and Society

Christine Keiner, BA, Western Maryland College; Ph.D., Johns Hopkins University-Department Chair; Professor

Deborah Blizzard, BA, Smith College; MS, Ph.D., Rensselaer Polytechnic Institute—Professor

Thomas Cornell, BA, Rhodes College; MS, Georgia Institute of Technology; Ph.D., Johns Hopkins University-Professor
M. Ann Howard, BS, Cornell University; JD, Rutgers
University-Professor
Jessica W. Pardee, BA, MA, Ph.D. Tulane University-Associate Professor

Kaitlin Stack Whitney, BS, Cornell University; Ph.D., University of Wisconsin-Madison-Assistant Professor

Kristoffer J. Whitney, BS, Rochester Institute of Technology; Ph.D., University of PennsylvaniaAssociate Professor

Sociology and
 Anthropology

Uli Linke, BA, Macalester College; MA, Ph.D., University of California at Berkeley-Department Chair; Professor

Brian P. Barry, BA, St. John Fisher College; MS, Ph.D., Syracuse University-Associate Professor

Makini Beck, BA, State University College at Old Westbury; MSED, St. Bonaventure University; Ph.D., University of Rochester-Assistant Professor

Jeffrey Burnette, BA, State University of Albany; MA, Ph.D., State University of New York at Buffalo-Assistant Professor

Conerly Casey, BA, University of Vermont; MS, University of Southern California; Ph.D.,

University of California at Los Angeles-Associate Professor
Kijana Crawford, BA, Tougaloo College; MSW, Atlanta University; MA, Ed.D., University of Rochester-Professor

Ellen Granberg, BA, University of California, Davis; MA, Ph.D., Vanderbilt University-Provost; Professor

Jessica Hardin, BA, Fordham University; MA, Ph.D., Brandeis University-Assistant Professor

Anthony Jimenez, BA, MA, The University of Texas at El Paso; Ph.D., University of Minnesota-Assistant Professor

Christine Kray, BA, New Mexico State University; Ph.D., University of Pennsylvania-Undergraduate Program Director; Professor

Wenji Liao, BS, China Foreign Affairs University (China); MS, Ph.D., University of MinnesotaAssistant Professor

David C. Meiggs, BA, University of Colorado at Boulder; MS, Ph.D., University of Wisconsin at Madison-Associate Professor
William D. Middleton, BA, University of California at San Diego; MA, San Francisco State University; Ph.D., University of Wisconsin at Madison-Associate Professor

Vincent Serravallo, BA, State University College at Oswego; MA, University of Kansas; Ph.D., City University of New York Graduate Center-Associate Professor

Robert C. Ulin, BA, Whittier
College; MA, Ph.D., New School for Social Research-Professor

Distinguished Professorships

Caroline Werner Gannett Professorship in the Humanities

Established: 1974
Donor: Mrs. Frank E. Gannett
Purpose: To perpetuate Mrs. Gannett's lifelong interest in education, especially in those fields
of study that have a humanistic perspective
Held by: Open

Arthur J. Gosnell Professorship in Economics

Established: 1985
Donor: Family and friends of Arthur J. Gosnell

Purpose: To perpetuate the memory of Arthur J. Gosnell through recognition of the importance of good teaching in economics and by facilitating research into public policy questions

Held by: Amit Batabyal

Ezra A. Hale Professorship in

 Applied EthicsEstablished: 1989
Donors: William B. and Patricia F. Hale and Lawyers Cooperative Publishing Company

Purpose: To establish a permanent memorial to a long-time and valued friend of RIT, Ezra A. Hale, and to provide instruction in applied ethics in keeping with his beliefs in sportsman-like conduct, fair play and honesty

Held by: Wade L. Robison

William A. Kern Professorship in Communication
 Established: 1971

Donor: Rochester Telephone Corporation

Purpose: To commemorate the 100th anniversary of that company and to provide a memorial for a former president of the company and a man who served as an RIT trustee from 1959 to 1964

Held by: Jonathan E. Schroeder
Barber B. Conable Jr. Professorship in International Studies

Established: 2004
Donor: The Starr Foundation
Purpose: To honor the late statesman and former World Bank President and ensure that Barber Conable's legacy of principled and innovative
leadership in the national and international arenas will be preserved for all time.

Held by: Dongryul Kim

National Technical Institute for the Deaf

Gerard Buckley, President, NTID; Vice President and Dean, RIT

www.rit.edu/ntid

Programs of Study

3D Graphics Technology AAS	235
Accounting Technology AAS	236
Administrative Support Technology AAS	238
Applied Computer Technology AAS	239
Applied Computer Technology AOS	241
Applied Computer Technology AS	243
Applied Liberal Arts AS	245
Applied Mechanical Technology AAS	246
Architectural and Civil Drafting Technology AAS	247
Architectural and Civil Drafting Technology AOS	249
ASL-English Interpretation BS	250
Business Administration AAS	251
Business AS	253
Business Technology AOS	254
Career Exploration Studies	255
Civil Technology AAS	256
Community Development and Inclusive Leadership, BS	57
Deaf Cultural Studies-ASL Certificate	259
Design and Imaging Technology AAS	259
Design and Imaging Technology AOS	260
General Science AS	262
Laboratory Science Technology AAS	264
Laboratory Science Technology AOS	265
Mobile Application Development AAS	266
Performing Arts Certificate	268
Pre-Baccalaureate in Engineering	268
Pre-Baccalaureate in Liberal Arts	269
Pre-Baccalaureate in Science and Mathematics	270
Pre-Baccalaureate in Visual Communications	271
Precision Manufacturing Technology AOS	272

The National Technical Institute for the Deaf (NTID), one of RIT's nine colleges, provides deaf and hard-of-hearing students with careerfocused educational programs and also prepares deaf, hard-of-hearing, and hearing professionals for work in fields related to deafness. RIT/ NTID serves more than 1,100 deaf and hard-of-hearing students from across the United States and the world. The college offers the most accessible educational community in the world, including faculty and staff who specialize in educating deaf and hard-of-hearing students, and a rich environment where students can fit in, feel comfortable, pursue their dreams, and fulfill their potential.
NTID offers more than 20 accredited associate and bachelor's degree programs that lead to employment. Deaf and hard-of-hearing students can earn an associate degree that readies them for technical careers in a diverse set of fields. At the bachelor's level, NTID prepares students in programs dedicated to community development and inclusive leadership and, separately, to American Sign Language-English interpretation. Qualified deaf and hard-of-hearing students can also earn bachelor's, master's, or doctoral degrees in professional programs offered by RIT's eight mainstream colleges and two degree-granting units: Art and Design, Business, Computing and Information Sciences, Engineering, Engineering Technology, Health Sciences and Technology, Liberal Arts, Science, the School of Individualized Study, and the Golisano Institute for Sustainability.

In support of its national mission, NTID has research, teaching, and learning activities that focus on understanding and enhancing the educational, social, and communication opportunities for deaf and hard-of-hearing individuals. NTID provides services and programs that enhance teaching and learning within the NTID community and beyond via broad-based research activities and dissemination strategies, curriculum development, instructional design and evaluation, and instructional media services.

Over the past five years, 95 percent of deaf and hard-of-hearing graduates who chose to enter the workforce have found employment.

NTID's academic programs

NTID provides student-oriented academic programming to ensure a rich, coherent set of educational experiences for students. NTID offers Associate+Bachelor's degree programs and career-focused associate degrees as well as general education course work in a variety of disciplines.

Bachelor's Degrees: NTID offers two bachelor of science (BS) programs. The BS in community development and inclusive leadership is an innovative, interdisciplinary program in which students gain the skills needed by dynamic leaders. The BS in ASL-English interpretation major prepares sign language interpreters for work in settings where deaf, hard-of-hearing, and hearing people interact and communicate.

Associate+Bachelor's Degree Programs: NTID offers

Associate+Bachelor's degree and pre-baccalaureate programs. Associate in science (AS) degrees in applied computer technology, applied liberal arts, business, and general science provide a transition
to baccalaureate programs in the colleges of Art and Design, Business, Computing and Information Sciences, Health Sciences and Technology, Liberal Arts, Science, and the School of Individualized Study. In addition, several of our associate in applied science (AAS) degree programs, such as 3D graphics technology, accounting technology, administrative support technology, applied mechanical technology, business administration, civil technology, laboratory science technology, and mobile application development provide students with the necessary skills to enroll in other RIT colleges. Pre-baccalaureate studies programs are designed to prepare qualified students for several specific bachelor's degree programs in other colleges of RIT.

Career-Focused Programs: Numerous career-focused options and concentrations, designed to lead directly to employment, are available within the following areas: 3D graphics technology, accounting technology, administrative support technology, applied computer technology, architectural and civil drafting technology, business administration, business technology, design and imaging technology, laboratory science technology, mobile application development, and precision manufacturing technology. Laboratories are equipped with the latest technology and maintain a curriculum that represents current industry trends and requirements, based on routine feedback from business and industry advisory groups. These programs lead to the associate in applied science degree and the associate in occupational studies degree. All career-focused programs require one cooperative education experience, typically a minimum of 350 hours scheduled over a 10 -week period.

General Education: NTID offers an array of general education courses to a broad-based population of students, including those who are undecided about, or underprepared for, matriculation into a program. In addition, NTID provides a comprehensive sign language education program for students, faculty, and staff members..

Educational opportunities through NTID

Bachelor's Degree Programs

Bachelor of science degree (BS) programs offered by NTID require the completion of 120-123 semester credit hours of course work that includes 60 credits of general education courses, 12 credits of open electives, and at least 48 credits of major-specific courses.

Associate+Bachelor's Degree Programs

Associate+Bachelor's degree programs offered through NTID prepare qualified students to enroll in baccalaureate degree programs in the college of NTID as well as in the other colleges of RIT.

Associate in science degree (AS) and selected associate in applied science degrees (AAS): Certification at this level requires the completion of 30-31 semester credit hours of technical course work, 30-32 semester credit hours in general education courses and other courses as appropriate to the degree. The majority of courses are offered through the other colleges of RIT. These degrees prepare students to enter and complete bachelor's degree programs in the colleges of Art and Design, Business, Computing and Information Sciences, Health Sciences and Technology, Liberal Arts, Science, and the School of Individualized Study.

Pre-baccalaureate studies: The pre-baccalaureate studies programs are available as a bridge to baccalaureate degree programs for students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program. Pre-baccalaureate programs are offered through the engineering studies, liberal studies, science and mathematics, and visual communications studies departments. The career exploration studies program is available to students who are undecided as to their program of study.

Pre-baccalaureate studies programs are appropriate for students who need to further develop mathematics, English, or disciplinerelated skills. This academic option is flexible and individualized and enables students to focus on needed skills while they progress toward their chosen field of study. Students take courses taught by NTID instructional/support faculty along with entry-level courses taught in other RIT colleges.

Career-focused programs

Career-focused programs offered through NTID lead to the associate in applied science degree or the associate in occupational studies degree. These programs permit students to enter their careers directly.

Associate in applied science degree (AAS): Certification at this level requires 48-52 semester credit hours of technical instruction. In addition, students must complete 24 semester credit hours in general education courses as well as other required semester credit hours determined by the program of study. In some programs, this degree prepares students to apply for entry to bachelor's degree programs in other colleges of RIT.

Associate in occupational studies degree (AOS): Certification at this level requires 45-52 semester credit hours of technical instruction. In addition to satisfactorily completing technical courses, students must complete 15 semester credit hours in the NTID general education curriculum, as well as other required semester credit hours determined by the program of study.

Career exploration studies

The career exploration studies program offers opportunities for students to collect information about NTID majors and career paths before deciding on a program of study. It also assists students who need additional academic preparation and study in order to be ready for their chosen major.

A counselor/academic advisor is assigned to help students evaluate the information and make career decisions. Students can remain in the career exploration studies program for up to two academic semesters.

Support and access services

For students who take courses at NTID, faculty members will communicate directly with them using a variety of communication strategies, which may include sign language with voice, sign language without voice, spoken language (FM systems are available), fingerspelling, printed/visual aids, web-based instructional materials, and individual tutoring.

In cases where classroom communication strategies do not appropriately meet a student's needs, students can request access services from the Department of Access Services for courses at NTID via the myaccess.rit.edu website.

Students taking NTID courses will have access to a state-of-theart learning center staffed by professional and peer tutors. Assigned
counselors will work closely with students to help them plan their collegiate experience and provide them with personal, social, career, and academic advising and counseling services.

CAREER-FOCUSED AND ASSOCIATE+BACHELOR'S DEGREE PROGRAMS OF NTID

Leading to associate degrees
program in another RIT college must meet that college's admission requirements. Furthermore, deaf and hard-of-hearing students supported by NTID also must meet NTID admission requirements, submit an audiological record completed by a certified audiologist (CCC-A), and complete standard RIT admission forms. Please see the Admissions section for more information. Qualified students may choose to enroll in courses taught through the other colleges of RIT for several reasons: as part of the elective requirements in their NTID programs; to complete their programs of study at NTID, then continue their education at another RIT college; to enter a program of another RIT college directly from high school; or to enroll directly into a program in one of RIT's colleges from another postsecondary program.

Support and access services

If students qualify to take courses in other RIT colleges, RIT will provide the educational access services students need. Students can choose from among sign language interpreting services, FM systems, notetaking, or real-time captioning services. Alternative services also may be provided. Students also have access to a unique array of educational support services, including experienced faculty tutors, personal and career counseling, and academic advising. Academic advising services are provided by the student's home college.

First-Year Experiences Programming

NTID programs

Beginning with a summer pre-orientation program, NTID provides a special array of curricular and co-curricular activities to help maximize each student's potential for success in the first year. These experiences are designed to enhance students' bonding with the community while providing time and support to select and enter into a major and/or progress within a career program.

First-year and transfer students entering an NTID associate degree, associate+bachelor's degree, pre-baccalaureate, or career exploration studies program in the fall semester are required to participate in a summer orientation program called the Summer Vestibule Program (SVP). This program includes:

- placement testing in English and mathematics
- orientation/transition to college life activities
- career sampling
- counseling
- application to a career-focused or Associate+Bachelor's degree program, career exploration studies, pre-baccalaureate studies, or baccalaureate program
This summer program is followed by additional first-year experiences that allow students to work to select courses and activities that meet individual goals and needs. Components of first-year experiences programming include:
- enrollment in the Freshman Seminar (NCAR-010) during the first semester; this course helps students identify personal, social, and academic skills that lead to a successful college experience
- completion of preparatory courses, as needed
- work with an academic advisor and counselor
- participation in career exploration and introductory courses, when and if appropriate
- completion of degree requirements, as appropriate
- participation in co-curricular and mentoring activities of choice
- if undecided, declaring a major and degree level by the end of the first year
Similar activities are available for students who are starting their studies in the spring semester.

RIT's other colleges

Students who qualify to enter baccalaureate programs in other colleges of RIT participate in the first-year programming and activities designed by the affiliated instructional/support faculty and the colleges. Most first-year students enrolled in colleges other than NTID are required to:

- participate in summer orientation options and in RIT's New Student Orientation program as well as NTID's Support Services Orientation workshops
- enroll in the RIT 365: RIT Connections (YOPS-010) course during the first semester
- participate in opportunities to explore and select a major, if needed

NTID General Education Curriculum

The NTID general education curriculum-liberal arts and sciences (LAS) supports the preparation of associate-degree seeking students for lifelong learning, for success in their chosen fields, and for their role in society as well-educated and knowledgeable citizens. The general education curriculum provides for a broad academic base of courses, with some organized into foundation and perspective categories. In general, AOS students complete all of their general education requirements through course work in the college of NTID, whereas students in the AAS and AS programs complete some required course work in the other colleges of RIT.

Students must complete a minimum number of general education credits for each degree. The general education distribution requirements chart shows the credit hour and distribution requirements for NTID AS, AAS, and AOS degrees. Students enrolled in colleges other than NTID should consult with their program departments about required general education courses.

NTID General Education Requirements

	AS Degree	AAS Degree	AOS Degree
Foundation	6^{*}	6^{*}	$9 \dagger$
ASL-Deaf Cultural Studies	-	$(3) \ddagger$	-
Perspectives	$15 \S$	$15 \S$	$6^{* *}$
Electives	$9 \dagger \dagger$	$3 \not \ddagger \ddagger$	-
Minimum Total General Education Semester Credit Hours	$\mathbf{3 0}$	$\mathbf{2 4}$	$\mathbf{1 5}$

[^9]artistic, global, social, and scientific principles. The scientific principles course should be NSCI-250 level or higher for AS; NSCI-120 level or higher for AAS
** Two courses from NTID general education perspective categories: ASL-Deaf cultural studies; communication, social, and global awareness; creative and innovative exploration; and scientific processes. See program for specific requirements. $t+$ One NTID mathematics course (NMTH-250 and higher) or a College of Science mathematics course, plus two General Education Committee-approved elective courses. $\ddagger \ddagger$ One NTID mathematics course (NMTH-120 or higher).

AS and AAS foundation and perspectives-RIT's framework for general education specifies the requirements for NTID AS and AAS students, including foundation and perspective courses. (See NTID general education requirements chart.)

All AS and AAS students are required to take two foundation courses: a First Year Writing (FYW) course approved by the RIT University Writing Program, and a General Education Elective; NTID AS and AAS students are advised to take First Year Writing: Writing Seminar (UWRT-150). This course provides students with experience in writing, reading and critical thinking techniques needed for success in LAS general education courses. Deaf and hard-of-hearing students are advised to earn a passing grade in the First Year Writing course before taking any general education courses, other than science and mathematics.

Placement into a University Writing course, such as FYW: Writing Seminar (UWRT-150) or Critical Reading and Writing (UWRT-100), is based on the NTID placement tests. Students who qualify will have the opportunity to choose to take UWRT-100 or UWRT-150.

Deaf and hard-of-hearing students enrolled in AS and AAS degree programs are required to take courses that satisfy RIT's general education perspectives in five areas: ethical, artistic, global, social, and scientific principles. (See RIT graduation requirements for a description of the perspective categories.) For many of the perspective courses, students can choose between sections taught by either NTID faculty members or by faculty members from other colleges of RIT, including the College of Liberal Arts.

Where general education courses are taught by NTID faculty members, instructors communicate directly with students utilizing a variety of strategies that may include sign language without voice, sign language with voice, spoken language (FM systems are available), fingerspelling, printed/visual aids, Web-based instructional materials and individual tutoring. In cases where a faculty member's communication strategies do not appropriately meet a student's needs, students can request access services from the Department of Access Services for courses at NTID via the myaccess.rit.edu website.

General education courses in the other colleges of RIT include both deaf and hearing students. Educational access services, such as sign language interpreting services, FM systems, notetaking, or real-time captioning services may be requested by NTID-supported deaf and hard-of-hearing students. Alternative services also may be provided. Students also may request educational support services such as tutoring or academic advising.

NTID AOS General Education Framework

AOS students take three NTID foundation courses and two NTID perspective courses, following the specific requirements determined by each AOS program. Approved student learning outcomes associated
with the NTID AOS general education framework ensure that students are provided with courses and experiences consistent with NTID's mission, strategic direction, and values. General education AOS courses typically also incorporate aspects of ASL-Deaf cultural studies, critical thinking, and communication. To the extent possible and when appropriate, AOS courses promote community service, active learning, and literacy development.

NTID AOS General Education Foundation Courses

Career English courses expose students to basic reading and writing that might be encountered in the workplace. Mathematics courses help students to identify and understand the role that mathematics plays in the world and on the job.

NTID AOS Perspective Courses

Communication, Social, and Global Awareness-Courses in this category promote an understanding of self and advocacy in relation to one's interactions with others in personal, professional, and civic lives. Courses address social dynamics as they vary across communities, ranging from local to global. Courses introduce students to contrasting cultural approaches to allow communication in situations such as face-to face, electronic format (such as e-mail or text), and group presentation situations.

Creative and Innovation Exploration-Courses in this category explore the creative process that leads to technological innovation, artistic expression and their products, in a variety of forms, while examining the influence of society and culture on the process and its end results. These courses provide insight into the creative process through innovative approaches to assignments or projects.

Scientific Processes-Courses in this category apply methods of scientific inquiry and problem solving in a laboratory or field experience. Science is more than a collection of facts, so students will be expected to participate in the processes of science as they collect and analyze data, and state conclusions.

Course placement

The goal of assessment for course placement is to ensure that students begin their studies at the appropriate level. Assessment for initial course placement will be made during orientation in the following areas: mathematics, American Sign Language, and writing and reading.

NTID science and mathematics curriculum

AS and AAS students are required to take a science course that satisfies the RIT scientific principles perspective general education requirement as well as a mathematics course that satisfies a general education elective. AS students typically take at least two additional mathematics and/or science courses as electives. All AOS programs require an NTID mathematics foundation course and some require an NTID scientific processes perspective course.

AS and AAS students, as well as AOS students, typically take mathematics and science courses in the college of NTID. These courses foster the reasoning and problem-solving skills that are a part of the foundation of their technical studies. In addition, the NTID science and mathematics curriculum provides an opportunity to develop the mathematical and scientific literacy demanded
in today's society. (See typical courses listings in each program for specific requirements.)

American Sign Language-Deaf Cultural Studies curriculum

NTID deaf and hard-of-hearing students have an opportunity to study American Sign Language and learn about their heritage as Deaf people through the ASL-Deaf cultural studies (ASL-DCS) curriculum. An ASL-Deaf cultural studies (AASASLDCS) course is required for AAS students for graduation. It can be taken in any semester and can be taken at NTID or another RIT college. In order to fulfill this requirement as part of the credits in the program, it should be a course that has both the AASASLDCS and the General Education Perspective designations.

NTID English program

The NTID English program is designed to enable students to develop their English literacy skills. The program includes course sequences that offer instruction in reading and writing.

Students who plan to graduate with the AOS degree are required to complete 6 credits of English. Career English I and II (NENG-212 and 213) provide the English literacy skills needed for career-focused associate degrees. Students who enter NTID with English skills below the level required for their degree of choice will need to successfully complete additional courses before taking the required English courses.

The course sequence Analytical Reading \& Writing I and II (NENG-221 and 222) and Bridge to College English I and II (NENG-231 and 232) is for students who demonstrate strong potential for improving their skills sufficiently to access the University Writing Program's curriculum for the AS and AAS degrees.

NTID Student Life

NTID Resources

www.rit.edu/ntid/sas
The National Technical Institute for the Deaf offers an array of educational and service activities for deaf and hard-of-hearing students. These activities and services include career and mental health counseling, student-life programming, and communication skills development in the form of speech-language instruction, speechreading, and listening/audiological services, as well as a state-of-the-art learning center.

NTID Learning Consortium

www.rit.edu/ntid/nlc/
The NTID Learning Consortium is a partnership among RIT and NTID academic departments and educational programs. The goal is to support student success in the college curriculum. A primary resource of the Learning Consortium is the NTID Learning Center (NLC).

The NLC represents a creative combination of human, physical, and technological resources through which partnerships can be realized. Resources include:

- regular tutorial support from faculty and advanced students directly tied to discipline-specific curricula and classroom activities. Tutoring is offered in a range of disciplines, including

English, math, and technical program majors. Tutorial support for students is available on a walk-in, scheduled, or assigned basis, either individually or in small groups;

- computers supporting tutorial activities and course assignments as well as independent student work;
- designated areas for individual and small-group tutoring and studying, and
- designated areas for faculty/staff/students to record and edit videos for classroom materials and activities. The Video Production Studio hosts state-of-the-art hardware, HD cameras, a blue-screen backdrop, and editing software to facilitate optimal video quality. The NLC also sponsors the Sprint Relay Experimental Distance Learning/Access Demonstration Lab. The Sprint Relay Lab is an RIT-wide resource for experimenting with innovative technologies
in support of remote learners. Key features of the lab include:
- focusing on both instructional activities and access strategies for deaf and hard-of-hearing learners participating in remote educational experiences;
- evaluating alternative technologies in the context of varied educational objectives, access goals, and student and teacher preferences;
- serving as a beta testing site where instructional and access technologies in support of remote learning can be developed, refined, and exported for use throughout RIT. For example, during AY18-19, a Revolution Lightboard was purchased and is being used to record immersive presentations for online instructional materials.
- providing a forum for information exchange; exploration of new instructional and access strategies; and training among teachers, students, access service providers, instructional designers and technologists, and researchers; and
- sponsoring vendor-display/consumer-testing for new products related to instructional and access technologies.
The lab includes two side-by-side short-throw interactive projectors; a central projector/display system; a matrix router enabling versatile distribution of information to computer monitors and wall-mounted displays throughout the room; and four wall-mounted video cameras to record in various settings and configurations. The lab supports the creation of online course materials for oncampus and online courses.

Communication Studies and Services

www.ntid.rit.edu/css
NTID strongly encourages all students to expand their communication skills to communicate with diverse audiences in educational, civic, and professional settings. Communication studies focuses on the effective expression of ideas independent of the language (ASL or English) that the student chooses to use. The communication studies and services department, the department of American Sign Language and interpreting education, and the department of cultural and creative studies provide intensive support and instruction for the development of communication competencies needed to enhance students' professional and personal success. The faculty and staff of the communication studies program conduct assessments and provide course work, workshops, and individualized instruction. They also work in collaboration with faculty and staff across the university.

Speech and language services: Speech-language pathologists provide learning activities that focus on the development of a full range of communication competencies. These activities include individual speech-language assessment and instruction, speechlanguage lab activities that support technical vocabulary/communication and second-language learning, and individualized use of multimedia and computerized visual feedback systems. Through these activities, students can work on conversational interactions, job-related communication skills, technical and formal presentations, and job interviews.

These services are open to all RIT students and are available through individual appointments with pathologists or on a walk-in basis through the Speech \& Language Center (Johnson Hall, room 3225). This lab has individual private rooms for pronunciation practice, computers for speech and language practice and visual feedback, and stations for digital recording and playback. There is no charge for utilizing these services. The faculty and staff in the department are certified by the American Speech-Language-Hearing Association.

Audiology services: The audiology faculty and staff offer a variety of services and information related to hearing aids, cochlear implants, communication strategies, telecommunications, assistive technologies, auditory training, speechreading, and job interviewing. Hearing and hearing-aid evaluations are available through the Audiology Center (Johnson Hall, room 3130). Evaluations are provided by audiologists certified by the American Speech-LanguageHearing Association and licensed through the State of New York. Faculty and staff are available daily in the center to discuss issues related to hearing loss, tinnitus, cochlear implants, and other areas. FM and Roger systems can be loaned to students for the academic year at no cost.

Students can go to the Audiology Center to purchase hearing aid and cochlear implant accessories, including batteries, earhooks, and earmolds, and for hearing aid or cochlear implant repairs, as well as other services. In addition, students can schedule appointments for audiology and cochlear implant clinics with faculty and staff as well as with consultant ophthalmologists and otolaryngologists in the Eye and Ear Clinic. Services are available to all students, and most are provided at no cost.

NTID Counseling and Academic Advising Services

www.ntid.rit.edu/caas
(585) 475-6468 (V), (585) 286-3485 (VP)

NTID Counseling and Academic Advising Services (CAAS) is committed to supporting students to realize their full potential for a successful college experience. In pursuit of this goal, each NTIDsupported associate level student is assigned a Counselor/Academic Advisor (CAA). Each CAA is trained in providing a full complement of academic advising, career counseling, personal counseling, and referral services. NTID-supported bachelor level students receive all the services listed above with the exception of academic advising. This is provided by the primary academic advisor in their college. CAA's assist with student orientation, educational and career planning, adjustment to college life, study-skills development,
personal and interpersonal concerns, and referral to on-campus and community resources.

NTID Counseling and Psychological Services (NCaPS)

(585) 475-2261 or (855) 436-1245 (after hours)

The NTID Counseling and Psychological Services (NCaPS) office is comprised of licensed mental health professionals who provide confidential mental health counseling to all NTID supported students (Deaf, hard of hearing, and hearing). Treatment plans may include individual counseling, therapy groups, workshops, and referrals for psychiatric services, as well as support from programs at NTID/RIT and/or the community. NCaPS works closely with RIT's Counseling and Psychological Services, Student Health Center, the Center for Residence Life, NTID's Student and Academic Services, the NTID Counseling and Academic Advising Services department, Public Safety, and related campus units to provide 24-hour emergency crisis intervention service to students.

NTID Student Life Team

(585) 250-1197 (videophone)

The Student Life Team (SLT) is committed to providing deaf and hard-of-hearing students with resources and support for success throughout college and after graduation. SLT builds connections with students by providing co-curricular and late-night programming, impactful workshop events, and training to help students enhance their quality of life, sense of relevancy of their studies, and overall satisfaction with college. Through collaboration with other units within NTID and RIT, SLT incorporates creative program strategies involving student paraprofessionals. SLT facilitates cultural diversity awareness, BIPOC student support, leadership development, and exposure to Deaf Culture, ASL, and other communication modes. SLT also addresses contemporary social issues that impact college students.

NTID Summer Vestibule Program

www.rit.edu/ntid/svp

The Summer Vestibule Program (SVP) is NTID's required orientation program for new deaf and hard-of-hearing students who have been accepted into RIT. A student's SVP experience begins upon payment of the admissions deposit. Students will start to make connections with various people on campus and will receive guidance in areas such as career awareness, decision making, and assessments of academic skills and competencies. Prior to arriving on campus, students admitted to NTID associate degree, pre-baccalaureate, and career exploration programs will take placement assessments in mathematics and English, meet with their department chair to review and confirm their major, and design their individual academic plans. Students will also meet their NTID counselor and academic advisor to discuss their goals as well as any support that they may need.

Acceptance into SVP does not automatically guarantee admission to the program the student selects. The final decision on acceptance into a program of study for the fall semester is the responsibility of each academic department. Admission to a program depends on
successfully completing SVP, having requisite skills to begin the program of study, and availability of space in that program.

Upon arrival to campus for SVP/RIT Orientation, deaf and hard-of-hearing students participate in various activities, including orientation to college services and academic expectations. Recreational and social activities also are a part of the program as they transition to life in college.

NTID Wellness and Intramural Athletics

www.rit.edu/studentaffairs/criw/
(585) 475-6559

NTID provides services that maximize access and success for deaf and hard-of-hearing students engaged in health/wellness seminar discipline courses and other programs offered by the Center for Wellness Education and Center for Recreation \& Intramurals. Support services ensure that education, consultation, communication, and resource opportunities are available to deaf and hard-of-hearing students taking courses, engaging in programs, or participating in intramural athletics, such as Deaf Basketball Association or Deaf Volleyball Association.

Varsity Intercollegiate Athletics

www.ntid.rit.edu/athletes/athlete-development/program (585) 371-7044

NTID established the RIT/NTID Athlete Development Program to provide support and training to improve the quality of NTID-supported student-athletes' experience as key members of their respective varsity athletic programs. Services offered for NTID-supported student-athletes and members of the athletic department include: academic support, career development, educational workshops, mentoring, leadership training, and access services.

NTID Support Services Orientation Workshops

www.rit.edu/ntid/ssorientation
The Support Services Orientation (SSO) occurs as a part of the RIT New Student Orientation week of activities. SSO workshops provide deaf and hard-of-hearing students who have been accepted into an RIT bachelor's degree program with important information on NTID's educational access and support services. At SSO, students learn how to make requests for these services, become acquainted with RIT's campus and services, and meet their designated NTID Support Coordinator who will assist with obtaining support services throughout the academic year.

NTID Student Congress

The NTID Student Congress (NSC) is a Representative Student Organization (RSO) for NTID-supported students and for numerous deaf and hard-of-hearing clubs and organizations at Rochester Institute of Technology (RIT). NSC provides activities and programs for the community; helps interested students communicate their needs, idea, and concerns about campus life to faculty members, administrators, and other student clubs/organizations within RIT; provides opportunities for developing leadership skills; and encourages students with opportunities to interact with their peers socially, academically, ath-
letically, and culturally. Students interested in getting involved may stop in at the NSC office in the CSD Student Development Center.

NTID Performing Arts

www.rit.edu/ntid/performing-arts
NTID Performing Arts provides academic programs and extracurricular activities that enrich students' college experience. For all students, the department offers a certificate in performing arts as well as a wide variety of courses that satisfy undergraduate general education requirements. For bachelor level students, the department offers the theatre design and stagecraft minor and immersion. Courses are open to all deaf, hard-of-hearing, and hearing students. The department also produces several plays, musicals, and dance shows each semester. We collaborate frequently with School of Performing Arts faculty from RIT's College of Liberal Arts. All students are welcome to be involved with our productions, whether onstage or backstage. Deaf and hard-of-hearing students who take department courses or are involved in productions are eligible to receive tuition scholarships. For more information, contact Jill Bradbury, department chair, at jmbnpa1@rit.edu.

NTID Admission Information

Costs of attending RIT through NTID

The total cost of attending RIT through NTID sponsorship includes tuition, room, board, and fees. Charges to NTID-supported students are updated each year. The cost of books and supplies is students' responsibility. These costs vary depending on each student's program of study.

New students attending the Summer Vestibule Program will be charged a fee. Students participating in cooperative education are not charged tuition or fees for that particular term. They will be charged room, board, and residence hall fees, however, if they live on campus while participating in a co-op.

All students are required to carry accident and health insurance. Students may choose insurance coverage through RIT, or they may waive this coverage if they provide evidence of other insurance coverage. Waiver cards will be sent to all accepted students during the summer and will be available at registration.

For information about NTID tuition, room and board, and fees, please see the RIT/NTID website www.rit.edu/sfs/tuition-and-fees.

Deaf and hard-of-hearing applicants

There is one unified process for deaf and hard-of-hearing students to apply to enter any of RIT's nine colleges. Deaf and hard-of-hearing applicants should indicate their status on the RIT application form and must submit an audiogram to qualify for NTID's federally supported tuition rate and to be eligible for a variety of campus resources and support services. See join.rit.edu/apply for application instructions as well as the information in the Undergraduate Admission section of this bulletin.

Transfer credit

As part of the transfer application process, RIT requires official transcripts from all colleges and universities a student has previously attended. An evaluation of transfer credits and an estimated timeline
to graduation will be provided following the offer of admission. High school students with completed college course work as well as AP and IB credit may have their transcript/scores submitted prior to enrollment to be evaluated for transfer credit.

Campus visits

Deaf and hard-of-hearing students who wish to visit RIT may contact NTID's Office of Admissions at (585) 475-6700 (voice), by videophone at (585) 743-1366, or via e-mail at visitNTID@rit.edu. Students may take tours of campus and arrange personal interviews. Both of these are strongly encouraged but are not required for admission.

Facilities

A modern academic and residential building complex on the RIT campus is designed to meet the specific needs of deaf and hard-ofhearing students. Lyndon Baines Johnson Hall and Hugh L. Carey Hall house laboratories, offices, communication studies and services centers, classrooms, and a theater. These classrooms and laboratories support the latest technologies for teaching and include high-resolution projection displays, digital document displays, DVDs, FM systems, Internet access, smart display boards, and other computerbased services. In addition, classrooms are specifically designed to meet the unique needs of both students and teachers.
The Communication Service for the Deaf (CSD) Student Development Center, interconnecting Johnson Hall and The Commons, which is an adjacent dining hall, is the focal point for students, faculty, and staff to engage in social events and community activities. In addition to a large multipurpose space for formal and informal lectures, small meeting rooms and offices provide workspace for student government groups, clubs, and organizations.

Sebastian and Lenore Rosica Hall, adjoining The Commons, is NTID's center for sponsored research. Rosica Hall is the home for several research centers which promote collaboration between faculty and staff. Rosica Hall also boasts an Innovation Center, a place where students, faculty, and mentors work together using multidisciplinary collaborative innovation teams to turn their ideas into reality.

NTID's main academic building, Johnson Hall, boasts a state-of-the-art learning center. Using the latest technologies available, this center provides academic experiences, tutorial services, and course enrichment opportunities for all students. It provides students with access to networked computer workstations, videoconferencing capability, and a special technology-centered classroom.
One of the features of Johnson Hall is the Joseph F. and Helen C. Dyer Arts Center. This 7,000-square-foot facility features art exhibits as well as NTID's permanent art collection. The center also incorporates art-related educational activities, such as lectures and demonstrations, while serving as a multiuse facility. Johnson Hall also includes the Panara Theatre, a 500-seat facility where theatrical productions are produced simultaneously in American Sign Language and English. The theater also hosts a wide range of cultural activities from all over the world, enriching student life and broadening students' world view.

All residence hall rooms, campus apartments, classrooms, laboratories, and administrative areas can access the campuswide computer network with wired or wireless connections.
All RIT and NTID residence halls are aggressively maintained and provide students with an appealing, highly functional living environment. Special rooms have been created to serve physically challenged students. Students are encouraged to bring their own computers to connect to the campus network and Internet from their rooms. A selection of apartment units also is available. Visual emergency strobe lights and visual doorbells are present throughout residence halls, apartments, and academic buildings.
Television, a basic part of the college's communication network, is used for both education and entertainment. RIT provides a streaming service that provides the ability to watch live television and record shows for future viewing. All students living in RIT housing with access to RIT's network will have access to 64 channels as well as HBO, HBO Go, and Cinemax through their RIT student login.
A well-equipped television facility provides studio services to produce class and self-instruction media for use within the university.

NATIONAL TECHNICAL INSTITUTE FOR THE DEAF FIXED CHARGES 2022-2022 (DOMESTIC STUDENTS)

	Summer Vestible Program Aug. 11-13, 2022	SSO Aug. 14-21, 2022	Fall Semester Aug. 22-Dec. 14, 2022	Spring Semester Jan. 17-May 10, 2023
Tuition	$\$ 0$	$\$ 0$	$\$ 9,463$	$\$ 9,463$
Room	$\$ 0$	$\$ 0$	$\$ 4,364$	$\$ 4,364$
Board (standard meal plan)	$\$ 0$	$\$ 0$	$\$ 3,125$	$\$ 3,125$
Student Fees \dagger	$\$ 0$	$\$ 0$	$\$ 399$	$\$ 399$
Orientation Fee \ddagger	$\$ 0$	$\$ 0$	$\$ 335$	$\$ 0$
Total	$\mathbf{\$ 0}$	$\mathbf{\$ 0}$	$\mathbf{\$ 1 7 , 6 8 6}$	$\mathbf{\$ 1 7 , 3 5 1}$

[^10]Notes: Required books and supplies will impact these figures.

[^11]
Telecommunications

NTID students can access telephone services through VRS and computer-based relay services. CapTel service also is available in New York state. Public videophones are available to students in several on campus locations. Students who have their own videophones are encouraged to bring them to campus at move-in, and students who do not yet have videophones will be encouraged to work with the VRS provider of their choice to acquire one.

Communication skills

Communication competence is considered an important component of the student's educational experience at NTID. Students have opportunities to develop skills through a wide range of curricular and co-curricular activities that promote communication success in educational, social, and work situations. The communication studies and services department, and the department of American Sign Language and interpreting education provide intensive support and instruction for the development of communication skills. Faculty and staff conduct assessments and provide coursework, workshops, and individualized instruction. They also work collaboratively with instructional/support faculty and professional staff.

The Audiology Center

The NTID Audiology Center provides the RIT community with services related to hearing loss, hearing aids, cochlear implants, and accessories. Students may visit the center to receive information or to schedule clinical appointments, obtain new ear molds and batteries, have equipment repaired and other services. The center is located in Johnson Hall, room 3130 and can be contacted by calling (585) 475-6473 (voice) or by emailing audiology@rit.edu.

NTID Counseling and Academic Advising Services

Each NTID-supported student is assigned a Counselor/Academic Advisor (CAA) in NTID Counseling \& Academic Advising Services (CAAS). CAA's provide career and personal counseling to all of their advisees as well as academic advising to students enrolled in NTID programs. CAAS offers career assessments to all NTID-supported students. CAAS also serves as a confidential Title IX site. Additionally, CAA's work closely with students and faculty toward the goal of helping students achieve academic success. CAA's consult and network with on-campus and community resources to support students with their academic, career, and personal aspirations. CAA's also teach Freshman Seminar to assist students with their transition to college. Students can contact their assigned CAA to schedule an appointment.

NTID Counseling and Psychological Services (NCaPS)

The NTID Counseling and Psychological Services (NCaPS) office is comprised of licensed mental health professionals who provide confidential mental health counseling to all NTID supported students (Deaf, hard of hearing, and hearing). NCaPS counselors communicate in the mode that is most comfortable for the student (sign language, sign-supported speech, or spoken English). Counselors meet with students to understand their unique needs and work with students to develop a plan to meet their goals for emotional and mental well-being. Treatment plans may include
individual counseling, therapy groups, workshops, and referrals for psychiatric services, as well as support from programs at NTID/ RIT and/or in the community.

Some of the typical concerns that students bring to NCaPS include depression, anxiety, family conflicts, problems with friends and romantic relationships, sexual orientation, gender identity, suicidal thoughts and self-harming behaviors, trauma from personal history and from social injustices and oppression, as well as many other issues. A 24-hour emergency crisis intervention service is also available for students experiencing unmanageable emotional distress or who feel unsafe for any reason.

Cooperative Education

A feature of most RIT academic programs, including those offered through NTID, is cooperative education. Co-op provides students with the opportunity to gain hands-on experience in their chosen career field. NTID AAS and AOS programs require a co-op education experience. A majority of students complete the co-op experience during the summer. However, co-op can be completed any time during the year, consistent with a student's course schedule.

Employment

Employment of deaf and hard-of-hearing graduates is a high priority for NTID. To help ensure that graduates obtain programrelated employment, NTID Co-op and Career Center assigns each new student an advisor experienced in employment assistance in the various academic concentrations. To help prepare them for obtaining cooperative education experiences and full-time employment, students in AAS and AOS programs take required job preparation courses.

The employment advisors are in constant contact with potential employers throughout the United States. In addition, the center hosts an annual career fair attended by national employers. Such services have contributed to a high employment rate of deaf and hard-of-hearing graduates. Over the past five years, 95 percent of deaf and hard-of-hearing graduates who chose to enter the workforce have found employment.

Research

NTID has been at the forefront of research on deaf education since its inception. While research on this topic, especially at the postsecondary level, remains central to NTID's mission, an increasing amount and diversity of research foci have emerged at NTID in recent years. Today, NTID faculty explore a wide variety of research topics pertaining to the deaf experience, including education, occupational dynamics, linguistics, early childhood development, cognition, culture, sign language interpreting, health disparities, healthcare systemic barriers, and access technology. Other NTID faculty explore discipline-specific topics in fields such as astrophysics, psychology, chemistry, history, and engineering as befits their academic training. NTID students are deeply engaged in all of these areas of research as an invaluable part of their education. Faculty strive to provide students with mentored hands-on scholarship experiences and paid positions as research assistants. Other forms of support are available to students such as funds for summer research projects and travel funds for presenting at professional conferences.

3D Graphics Technology, AAS

www.rit.edu/study/3d-graphics-technology-aas

Edward Mineck, Chairperson

585-475-6341, enmnvc@rit.eduKurt Stoskopf, Program Director 585-286-5345 (VP), kwsnda@rit.edu

Program overview

The associate in applied science (AAS) degree in 3D graphics technology introduces concepts related to three dimensional (3D) graphics, and teaches you the creative and technical skills required to produce 3D graphics, 3D prints, environmental renderings that range from artistic to photorealistic in quality, and 3D models used in multimedia and animation. A combination of traditional design skills and digital design techniques are taught, along with the representation of concepts of time, motion, and lighting principles. This program prepares you for one of two options: entering the 3D graphics industry after graduation or continuing your studies in the 3D digital design BFA program offered by RIT's College of Art and Design. This program is available for qualified deaf and hard of hearing students.

The program's curriculum prepares and trains you for entry-level employment in the 3D graphics industry. The 3D graphics technology program, offered by RIT's National Technical Institute for the Deaf, covers the artistic and technical sides of the industry, with a specific focus on the modeling, animation, and visualization processes in 3D graphics. You acquire the creative and technical skills required to create 3 D graphics, 3D printouts, environmental visualization graphics, and 3D models used in multimedia and animation.
The program also requires you to acquire skills in traditional media drawing and painting, as well as in animation, modeling, 3D printing, and reading and understanding design plans and blueprints. You acquire computer-based skills in 2D and 3D graphics software. In addition, you'll learn skills related to project management and teamwork.

The capstone course offered in the final semester provides you with an opportunity to utilize your skills on an applied skill-focused project that is completed with advice and guidance of faculty from the visual communications studies department. The structure of the capstone course is that of a self-directed, semester-long project that is completed either on an individual basis or as part of a team-based project.

You gain real work experience through one term of required cooperative education employment. You also complete a required portfolio workshop course in which you refine and complete your portfolio as needed for application to the BFA program in 3D digital design in RIT's College of Art and Design, or for an employment search.

The 3D graphics technology program is available as an associate of applied science (AAS) degree or as an Associate+Bachelor's Degree Program.

The AAS degree in 3D graphics technology is a career-focused degree program that leads to immediate entry into well-paying careers in the graphic arts industry.

The Associate+Bachelor's Degree Program in 3D graphics technology prepares you to complete an RIT's bachelor's degree. In this option, upon successful completion of the AAS degree in 3D graphics technology, provided you have a 3.0 or higher grade point average in the program and a strong portfolio, you will enroll into RIT's College of Arts and Design where you can pursue a bachelor's degree in 3D digital design.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

STEM and the 3D graphics technology program

Education in STEM (science, technology, engineering, math) careers is a major emphasis for students, parents, and counselors as they consider which college programs match students' interests and aptitudes. Funding for STEM career preparation is often a driving factor. The NTID 3D graphics technology program is a STEM career program. 3D graphics is listed in the technology/computer science STEM disciplines. 3D graphics and production for 3D printing, print media, and digital media cannot happen without immersion in computer technology.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the 3D graphics technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

3D Graphics Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
N3DG-100	Design Drawing	3
N3DG-110	Basic 3D Modeling	3
N3DG-115	Intermediate 3D Modeling and Techniques	3
N3DG-140	3D Lighting and Materials	3
NAIS-120	Principles of Design and Color	3
NAIS-130	Raster and Vector Graphics	3
NCAR-010	Freshman Seminar	0
UWRT-150	General Education-First Year Writing: FYW: Writing Seminar	3
	General Education - Elective \dagger	3
	General Education - Electiveł	3
Second Year		
ARTH-135	General Education - Artistic Perspective: Survey: Ancient to Medieval	3
ARTH-136	General Education - Global Perspective: Survey: Renaissance to Modern	3
N3DG-210	Advanced 3D Modeling and Techniques	3
N3DG-220	Principles of 4D Design	3
N3DG-225	3D Motion	3
N3DG-230	3D Printing	3
N3DG-260	Professional Practices	3
NAIS-201	Employment Seminar	3
NAIS-299	Co-op Visual Communication Studies	0
	NGRD or NGRP Electives	6
Third Year		
N3DG-270	Capstone	3
NAIS-292	Portfolio Workshop	3
	General Education - Ethical Perspective \dagger	3
	General Education-Social Perspective \dagger	3
	General Education - Scientific Principles Perspective§	3
Total Semester Credit Hours		72

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective.
\ddagger Any mathematics course numbered NMTH-10 or higher.
§ Any science course numbers NSCI-120 or higher.

Admission requirements

For the career-focused AAS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS Degree Leading to Bachelor's Degree (Associate+Bachelor's Program)

- 2 years of high school math preferred
- 1 year of high school science preferred
- English language skills as evidenced by application materials determine acceptance into the AAS or the AOS program
Specific English, Mathematics, and Science Requirements and other Recommendations

Successful completion of the Summer Vestibule Program is required.

- English: Placement into the Critical Reading and Writing (UWRT100) course.
- Mathematics: Placement into the Mathematics in Society (NMTH140) course. Typically, students entering this major will have completed at least two years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

Accounting Technology, AAS

www.rit.edu/study/accounting-technology-aas
Mark Pfuntner, Chairperson
585-286-4640 (V/VP), mjpnvd@rit.edu

Program overview

The accounting technology program prepares you for a career in accounting-related occupations. You'll learn the functions of the complete accounting cycle for service, merchandising, and manufacturing businesses. As a graduate of the program, you'll use computers to maintain and reconcile various financial records, verify business records, and perform other clerical and administrative duties. This program is available for qualified deaf and hard of hearing students.

Accounting technology, offered by RIT's National Technical Institute for the Deaf, is available as an associate in applied science (AAS) degree or as an Associate+Bachelor's Degree Program.

The AAS degree in accounting technology is a career-focused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level.

The Associate+Bachelor's Degree Program in accounting technology prepares you to complete an RIT bachelor's degree. In this option, upon successful completion of the AAS degree in accounting technology, provided you maintain a 2.5 or higher grade point average in the program, you will enroll into RIT's School of Individualized Study where you can pursue a bachelor's degree in applied arts and science.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Microsoft Certification

NTID's business studies department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the accounting technology program are required to complete a cooperative education experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Accounting Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACC-130	Personal Finance	3
NACC-201	Accounting 1	3
NAST-140	Essential Document Production	3
NAST-150	Advanced Document Production	3
NAST-160	Fundamentals of Spreadsheet Applications	3
NBUS-200	Orientation to Business	3
NCAR-010	Freshman Seminar	0
	General Education - Elective*	3
	General Education - Electivet	3
	General Education - Ethical Perspective*	3
	General Education - First Year Writing (WI)	3
Second Year		3
NACC-202	Accounting 2	3
NACC-203	Accounting 3	3
NACC-299	Co-op: Accounting Technology/Business Technology	0
NSAT-210	Essentials of Business Communication	3
NAST-215	Integrated Document Production	3
NAST-220	Fundamentals of Database Applications	3
NBUS-213	Applied Ethics	3
NBUS-217	Fundamentals of Management	3
	General Education - Artistic Perspective*	3
	General Education - Global Perspective	3
	General Education - Social Perspective*	3
Third Year		
NACC-204	Accounting Capstone	3
NBUS-220	Introduction to Economics	3
NBUS-223	Fundamentals of Marketing	3
	Open Elective*	3
	General Education - Scientific Principles Perspective	3
Total Semester Credit Hours	$\mathbf{3}$	
		3

Please see the NTID General Education Curriculum (GE) for more information
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course

* An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective or it can be used to fulfill an Open Elective. \dagger Any mathematics course numbered NMTH-140 or higher.

Admission requirements

For the career-focused AAS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 130 or higher on the NTID Reading Test and writing scores of 67 or higher on the NTID Writing

Test. However, students who complete AAS degrees typically enter NTID with reading scores above 98 on the NTID Reading Test and writing scores above 50 on the NTID Writing Test.

- Mathematics: Any math course numbered NMTH-140 or higher is required. Typically, students entering this program will have completed at least two years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT: For the Career-Focused AAS degree, the ACT middle 50% composite score is 14-17. For the Associate+Bachelor AAS degree, the ACT middle 50% composite score is 18-21 (optional).

Administrative Support Technology, AAS

www.rit.edu/study/administrative-support-technology-aas
 Mark Pfuntner, Chairperson
 585-286-4640 (V/VP), mjpnvd@rit.edu

Program overview

In the administrative support technology program you will receive a foundation in computer software applications, business office procedures, and document preparation as well as opportunities to develop appropriate professional interpersonal and human relations skills. You'll be prepared for a career in a variety of business settings that include government, education, corporate settings, health care, and more This program is available for qualified deaf and hard of hearing students.

The administrative support technology program, offered by RIT's National Technical Institute for the Deaf, provides students with opportunities to develop skills needed in processing information using a variety of integrated office software applications as well as appropriate professional interpersonal communication skills. Graduates will input, manipulate, and retrieve data; use interactive office software and e-mail; learn information processing skills for applications such as word processing, spreadsheet, presentation, and database; and perform other office duties.

The administrative support technology is available as an associate in applied science (AAS) degree or as an Associate+Bachelor's Degree Program.

The AAS degree in administrative support technology is a careerfocused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level.

The Associate+Bachelor's Degree Program in administrative support technology prepares you to complete an RIT bachelor's degree. In this option, upon successful completion of the AAS degree in administrative support technology, provided you maintain a 2.5 or higher grade point average in the program, you will enroll into RIT's School of Individualized Study, where you can pursue a bachelor's degree in applied arts and science.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Microsoft Certification

NTID's business studies department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the administrative support technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your secondyear academic requirements.

Curriculum

Administrative Support Technology, AAS degree, typical course

 sequence| COURSE | | SEMESTER CREDIT HOURS |
| :--- | :--- | :--- |
| First Year | | |
| NACC-130 | Personal Finance | 3 |
| NACC-201 | Accounting 1 | 3 |
| NAST-140 | Essential Document Production | 3 |
| NAST-150 | Advanced Document Production | 3 |
| NAST-160 | Fundamentals of Spreadsheet Applications | 3 |
| NBUS-200 | Orientation to Business | 3 |
| NCAR-010 | Freshman Seminar | 0 |
| | General Education - Elective* | 3 |
| | General Education - Electivet | 3 |
| | General Education - Ethical Perspective* | 3 |
| | General Education - First Year Writing (WI) | 3 |

Second Year		
NAST-210	Essentials of Business Communication	3
NAST-215	Integrated Document Production	3
NAST-220	Fundamentals of Database Applications	3
NAST-225	Fundamentals of Graphic Applications	3
NAST-240	Administrative Support Technology Seminar	3
NAST-299	Co-op: Administrative Support Technology/Business Technology	0
NBUS-213	Applied Ethics	3
NBUS-217	Fundamentals of Management	3
	General Education - Global Perspective*	3
	General Education - Social Perspective*	3
Third Year	General Education - Scientific Principles Perspective	3
NAST-230	Fundamentals of Desktop Publishing	3
NBUS-221	Essentials of Human Resource Management	3
NBUS-223	Fundamentals of Marketing	3
	Open Elective	3
	General Education - Artistic Perspective*	3

Total Semester Credit Hours
Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.

* An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective or it can be used to fulfill an Open Elective.
\dagger Any mathematics course numbered NMTH-140 or higher.

Admission requirements

For the career-focused AAS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills, as evidenced by application materials, determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 130 or higher on the NTID

Reading Test and writing scores of 67 or higher on the NTID Writing Test. However, students who complete AAS degrees typically enter NTID with reading scores above 98 on the NTID Reading Test and writing scores above 50 on the NTID Writing Test.

- Mathematics: Mathematics course NMTH-140 or higher is required. Typically, students entering this program will have completed at least two years of high school mathematics.
- Science: Typically, students entering this program will have completed at least two years of high school science.
- ACT: For the Career-Focused AAS degree, the ACT middle 50\% composite score is $14-17$. For the Associate+Bachelor AAS degree, the ACT middle 50% composite score is 18-21 (optional).

Applied Computer Technology, AAS

www.rit.edu/study/applied-computer-technology-aas

Brian Trager, Associate Professor

585-286-5318, Brian.Trager@rit.edu

Program overview

Computers are important to all parts of the economy, and the number of careers that involve work with computers is constantly expanding. Students in the associate in applied science (AAS) degree program in applied computer technology take courses to prepare them for careers that involve maintaining computer software and hardware, installing and maintaining computer networks, and working with a variety of computer applications. This program is available for qualified deaf and hard of hearing students.

The associate in applied science (AAS) degree in applied computer technology, offered by RIT's National Technical Institute for the Deaf, leads to immediate entry-level positions in the computing industry. It prepares you for a career in computer support occupations that involves:

- Installing, maintaining, upgrading and repairing computer hardware and software.
- Networking and security that allows computers to be secured and safely communicate and share resources with one another.

Concentrations

As a student in the applied computer technology program, you will select an area to specialize in by choosing a program concentration in either computer technical support or networking and cyber security.

Computer Technical Support Concentration: If you select this concentration, you will develop skills specific to working with people to solve their computer-related problems. These skills prepare you to work at a help desk responding to client's computer problems, and perform setup, upgrades and repairs to computers and computer peripherals.

Networking and Cyber Security Concentration: If you select this concentration, you will develop skills specific to network and network security support, including server set-up, support and administration; network set-up, troubleshooting and repair; identifying and implementing security policies; and installing appropriate hardware and software to support a secure and robust network.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the applied computer technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Applied Computer Technology (computer technical support concentration), AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACT-150	Intro to PC Hardware	
NACT-151	Windows Operating Systems	
NACT-155	Non-Windows Operating Systems	
NACT-160	Networking Essentials	
NACT-161	Client-Server Networks	
NACT-170	Intro to Web Development	
NCAR-010	Freshman Seminar	
UWRT-150	```General Education - First Year Writing: FYW: Writing Seminar (WI)```	
	General Education - Elective \dagger	
	General Education - Electiveł	
	General Education - Ethical Perspective \dagger	
Second Year		
NACT-200	Help Desk Support	
NACT-230	Introduction to Programming	
NACT-235	Intro to Database Applications	
NACT-240	The World of Work	
NACT-250	Computer and Data Security	
NACT-251	Digital Systems Integration	
NACT-295	ACT Technical Capstone	
NACT-299	Co-op: Applied Computer Tech	
	General Education - Artistic Perspective \dagger	
	General Education - Global Perspective \dagger	
	General Education - Social Perspectivet	
Third Year		
NACT-252	Server Management and Security	
	ACT Program Electives**	
	General Education - Scientific Principles Perspective	
Total Seme	it Hours	72

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part
of the credit hours in the program, it can be a course approved for both AASASLDCS and General Education - Perspective or General Education - Elective
\ddagger NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140
Mathematics in Society.
${ }^{* *}$ Please see list of ACT program electives below.

Applied Computer Technology (networking and cyber security concentration), AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACT-150	Intro to PC Hardware	
NACT-151	Windows Operating Systems	
NACT-155	Non-Windows Operating Systems	
NACT-160	Networking Essentials	
NACT-161	Client-Server Networks	
NACT-170	Intro to Web Development	
NCAR-010	Freshman Seminar	
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar (WI)	
	General Education - Elective \dagger	
	General Education - Elective \ddagger	
	General Education - Ethical Perspective \dagger	3
Second Year		
NACT-200	Help Desk Support	
NACT-230	Introduction to Programming	
NACT-235	Intro to Database Applications	
NACT-240	The World of Work	
NACT-260	LAN WAN Design	
NACT-261	Network Security	
NACT-295	ACT Technical Capstone	
NACT-299	Co-op: Applied Computer Tech	0
	General Education - Artistic Perspective†	
	General Education - Global Perspective \dagger	3
	General Education - Social Perspective \dagger	
Third Year		
NACT-262	Fundamentals of System Administration	
	ACT Program Electives**	
	General Education - Scientific Principles Perspective	

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and General Education - Perspective or General Education - Elective.
\ddagger NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140
Mathematics in Society.
** Please see list of ACT program electives below.

ACT program electives

NACC-130	Personal Finance
NACT-250	Computer and Data Security§
NACT-251	Digital Systems Integration§
NACT-255	A+ Certification Prep
NACT-260	LAN WAN Designt
NACT-261	Network Security
NACT-265	Network+ Certification Prep
NACT-266	Network Defense Technologies
NACT-270	Web Applications
NAIS-271	Client-Side Scripting
NAIS-160	Raster and Vector Graphics
NBUS-200	Web Design I
NBUS-227	Orientation to Business
NGRP-220	Principles of Marketing

§ Students taking the NCS concentration may take this course from the CTS concentration as an elective. \dagger Students taking the CTS concentration may take this course from the NCS concentration as an elective.

Admission requirements

For the career-focused AAS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics and science requirements and other

 recommendationsSuccessful completion of a sampling experience in applied computer technology, either through the Summer Vestibule Program or equivalent career exploration course, is a prerequisite for this program, as are the following:

- English: Placement into a First Year Writing course, such as the FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 130 or higher on the NTID Reading Test and writing scores of 67 or higher on the NTID Writing Test. However, students who complete AAS degrees typically enter NTID with reading scores above 98 on the NTID Reading Test and writing scores above 50 on the NTID Writing Test.
- Mathematics: Placement into Mathematics in Society (NMTH-140) or a higher-level course. Typically, students entering this program will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

Applied Computer Technology, AOS

www.rit.edu/study/applied-computer-technology-aos
Brian Trager, Associate Professor
585-286-5318, Brian.Trager@rit.edu

Program overview

Computers are important to all parts of the economy, and the number of careers that involve work with computers is constantly expanding. Students in the associate in occupational studies (AOS) degree program in applied computer technology take courses to prepare them for careers that involve maintaining computer software and hardware, installing and maintaining computer networks, and working with a variety of computer applications. This program is available for qualified deaf and hard of hearing students.
The associate in occupational studies (AOS) degree in applied computer technology, offered by RIT's National Technical Institute for the Deaf, leads to immediate entry-level positions in the computing industry. It prepares you for a career in computer support occupations that involves:

- Installing, maintaining, upgrading and repairing computer hardware and software.
- Networking and security that allows computers to be secured and safely communicate and share resources with one another.

Concentrations

As a student in the applied computer technology program, you will select an area to specialize in by choosing a program concentration in either computer technical support or networking and cyber security.

Computer Technical Support Concentration: If you select this concentration, you will develop skills specific to working with people to solve their computer-related problems. These skills prepare you to work at a help desk responding to client's computer problems, and perform setup, upgrades and repairs to computers and computer peripherals.

Networking and Cyber Security Concentration: If you select this concentration, you will develop skills specific to network and network security support, including server set-up, support and administration; network set-up, troubleshooting and repair; identifying and implementing security policies; and installing appropriate hardware and software to support a secure and robust network.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.
Students in the applied computer technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Applied Computer Technology (computer technical support concentration), AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACT-150	Intro to PC Hardware	3
NACT-151	Windows Operating Systems	
NACT-155	Non-Windows Operating Systems	
NACT-160	Networking Essentials	
NACT-161	Client-Server Networks	3
NACT-170	Intro to Web Development	3
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English: Career English I	3^{3}
NENG-213	NTID General Education Foundation - Career English: Career English II	3
	NTID General Education Foundation - Mathematics \dagger	3
Second Year		
NACT-200	Help Desk Support	3
NACT-230	Introduction to Programming	3
NACT-235	Intro to Database Applications	3
NACT-240	The World of Work	3
NACT-250	Computer and Data Security	
NACT-251	Digital Systems Integration	
NACT-295	ACT Technical Capstone	
NACT-299	Co-op: Applied Computer Tech	
	NTID General Education - Perspective \ddagger	3
Third Year		
NACT-252	Server Management and Security	
	ACT Program Electives§	6
	NTID General Education - Perspective \ddagger	
Total Semester Credit Hours 63		

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degree are required to complete one Wellness course.

+ NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140 Mathematics in Society. Students who place above NMTH-140 can take math or a 3-credit course from any non-science perspective category.
\ddagger NTID General Education Perspective courses may be from any of these three Perspective categories ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration
§ Please see list of ACT program electives below.

Applied Computer Technology (networking and cyber security concentration), AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACT-150	Intro to PC Hardware	3
NACT-151	Windows Operating Systems	3
NACT-155	Non-Windows Operating Systems	3
NACT-160	Networking Essentials	3
NACT-161	Client-Server Networks	3
NACT-170	Intro to Web Development	3
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English:	3
Career English 1		

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degree are required to complete one Wellness course
\dagger NTID mathematics course NMTH-120 or higher. It is recommended that students take NMTH-140
Mathematics in Society. Students who place above NMTH-140 can take math or a 3 credit-course from any non-science perspective category
\ddagger NTID General Education Perspective courses may be from any of these three Perspective categories
ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative
Exploration.
§ Please see list of ACT program electives below.

ACT program electives

NACC-130	Personal Finance
NACT-250	Computer and Data Security§
NACT-251	Digital Systems Integration§
NACT-255	A+ Certification Prep
NACT-260	LAN WAN Designt
NACT-261	Network Security
NACT-265	Network+ Certification Prep
NACT-266	Network Defense Technologies
NACT-270	Web Applications
NACT-271	Client-Side Scripting

NAIS-130	Raster and Vector Graphics
NAIS-160	Web Design I
NBUS-200	Orientation to Business
NBUS-227	Principles of Marketing
NGRP-220	Videography
§ Students taking the NCS concentration may take this course from the CTS concentration as an elective. + Students taking the CTS concentration may take this course from the NCS concentration as an elective.	

Admission requirements

For the career-focused AOS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

Successful completion of a sampling experience in applied computer technology, either through the Summer Vestibule Program or equivalent career exploration course, is a prerequisite for this program, as are the following:

- English: Placement into Career English I (NENG-212) or above. Students successfully completing the AOS degree typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Placement into Mathematics in Society (NMTH-140) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

Applied Computer Technology, AS

www.rit.edu/study/applied-computer-technology-as

Brian Trager, Associate Professor

585-286-5318, Brian.Trager@rit.edu

Program overview

The associate in science (AS) in applied computer technology is an associate+bachelor's degree program designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree in RIT's Golisano College of Computing and Information Sciences. This program is available for qualified deaf and hard of hearing students.

The associate of science degree in applied computer technology is an Associate+Bachelor's Degree Program, offered by RIT's National Technical Institute for the Deaf, that prepares students to enter and successfully complete a bachelor's degree program. The program offers you unparalleled academic support and students strengthen their skills by taking courses taught by NTID faculty.
You start with an AS is applied computer technology that provides you with the courses and credit you need to enroll in and successfully complete a bachelor's degree program. Upon completion of your AS in applied computer technology, provided you maintain a 2.8 or higher grade point average in the program, you will enroll in RIT's Golisano College of Computing and Information Sciences, where you can choose to complete a bachelor's degree in computing and information technologies, human-centered computing, or web and mobile computing.*
As a graduate of the Associate+Bachelor's Degree Program, you will be prepared for a variety of entry-level jobs in the computer support area including:

- Networking and System Administrator
- Web and Multimedia Content Developer
- Programming and Application Developer
- Wireless Data Networking Administrator
* Effective as of academic year 2018-2019 the web and mobile computing concentration in the applied computer technology AS program will not be offered. Students interested in a bachelor's degree in web and mobile computing should begin their studies through enrollment in the mobile application development AAS program.

Curriculum

Applied Computer Technology (computing and information technologies concentration), AS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-131	General Education - Elective: Discrete Mathematics	4
NACA-160	Programming Fundamentals I	3
NACA-161	Programming Fundamentals II	3
NACA-172	Website Development	3
NCAR-010	Freshman Seminar	0
NMTH-275	General Education - Elective: Advanced Mathematics	3
NSSA-102	Computer Systems Concepts	3
	General Education - Elective \dagger	3
	General Education - Artistic Perspective	3
	General Education - Scientific Principles Perspective	3
Choose one of the following:		3
ISTE-110	General Education - First Year Writing: FYW: Ethics in Computing	
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar	
Second Year		
ISTE-121	Computational Problem Solving in the Information Domain II	4
ISTE-190	Foundations of Modern Information Processing	3
ISTE-230	Introduction to Database and Data Modeling	3
ISTE-240	Web \& Mobile II	3
MATH-161	General Education - Elective: Applied Calculus	4
NSSA-220	Task Automation Using Interpretive Languages	3
NSSA-241	Introduction to Routing and Switching	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3

Total Semester Credit Hours

Please see the NTID General Education Curriculum (GE) for more information
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† Critical Reading and Writing (UWRT-100) may be required based on placement. Students who satisfy the placement requirement may take any General Education Elective.

Applied computer technology (human-centered computing concentration), AS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACA-160	Programming Fundamentals I	
NACA-161	Programming Fundamentals II	
NACA-172	Website Development	
NCAR-010	Freshman Seminar	
NMDE-111	New Media Design Digital Survey $1 \ddagger$	
NMTH-275	General Education - Elective: Advanced Mathematics	
PSYC-223	General Education - Elective: Cognitive Psychology	
PSYC-101	General Education - Scientific Principles Perspective: Introduction to Psychology	
STAT-145	General Education - Elective: Introduction to Statistics I	
	General Education - Elective \dagger	
Choose one of the following:		
ISTE-110	General Education - First Year Writing: FYW: Ethics in Computing (WI)	
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar	
Second Year		
ISTE-121	Computational Problem Solving in the Information Domain II	
ISTE-240	Web \& Mobile II	
ISTE-252	Foundations of Mobile Design	
ISTE-262	Foundations of Human Centered Computing	
PSYC-250	Research Methods I	
STAT-146	General Education - Elective: Introduction to Statistics II	
	General Education - Ethical Perspective	
	General Education - Artistic Perspective	
	General Education - Global Perspective	
	General Education - Social Perspective	
Total Semester Credit Hours		
Please see the NTID General Education Curriculum (GE) for more information. Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course. \dagger Critical Reading and Writing (UWRT-100) may be required based on placement. Students who satisfy the placement requirement may take any General Education Elective. \ddagger Raster and Vector Graphics (NAIS-130) AS/BS Section (only) may be substituted for NMDE-111.		

Applied Computer Technology (web and mobile computing concentration), AS degree, typical course sequence \ddagger

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-131	General Education - Elective: Discrete Mathematics	4
NACA-160	Programming Fundamentals I	3
NACA-161	Programming Fundamentals II	3
NACA-172	Website Development	3
NCAR-010	Freshman Seminar	0
NMDE-111	New Media Design Digital Survey I§	3
NMTH-275	General Education - Elective: Advanced Mathematics	3
	General Education - Elective \dagger	3
	General Education - Artistic Perspective	3
	General Education - Scientific Principles Perspective	3
Choose one of the following:		3
ISTE-110	General Education - First Year Writing: FYW: Ethics in Computing	
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar	
Second Year		
ISTE-121	Computational Problem Solving in the Information Domain II	4
ISTE-222	Computational Problem Solving in the Information Domain III	3
ISTE-230	Introduction to Database and Data Modeling	3
ISTE-240	Web \& Mobile II	3
ISTE-260	Designing the User Experience	3
MATH-161	General Education - Elective: Applied Calculus	3
NSSA-290	Networking Essentials for Developers	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Total Semester Credit Hours		62

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† Critical Reading and Writing (UWRT-100) may be required based on placement. Students who satisfy the placement requirement may take any General Education Elective.
\ddagger Effective as of academic year 2018-19, the web and mobile computing concentration in the applied computer technology AS program will not be offered. Students interested in a bachelor's degree in web and mobile computing should begin their studies through enrollment in the mobile application development AAS program.
§ Raster and Vector Graphics (NAIS-130) AS/BS Section (only) may be substituted for NMDE-111.

Admission requirements

For the AS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.

Specific English and mathematics requirements and other recommendations

The following prerequisites are necessary for admission into the applied computer technology AS major:

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150).
- Mathematics: Entrance into NTID's NMTH-275 Advanced Math.
- ACT (optional): The ACT middle 50% composite score is 18-21.

Applied Liberal Arts, AS

www.rit.edu/study/applied-liberal-arts-as
Jess Cuculick, Associate Professor
585-286-4569, jalnap@rit.edu

Program overview

The associate in science (AS) degree in applied liberal arts is designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree in RIT's College of Liberal Arts or in NTID's community development and inclusive leadership BS degree. This program is available for qualified deaf and hard of hearing students.

Applied liberal arts is an Associate+Bachelor's Degree Program, offered by RIT's National Technical Institute for the Deaf, that prepares you to enter and successfully complete a bachelor's degree. The program offers you unparalleled academic support and you will strengthen your skills by taking courses taught by NTID faculty.

By the end of the first year, you will choose a bachelor's degree you wish to enroll in after completing the AS degree. During the second year, you'll take four professional courses in your chosen major. In addition, as a part of the AS degree, you'll complete mathematics, science, and other courses to meet the graduation requirements of your major.
You'll start with an AS in applied liberal arts, which provides you with the courses and credits you need to enroll in and successfully complete a bachelor's degree program. Upon completion of your AS program, provided you earn a cumulative grade point average of 2.5 or higher, you can choose to complete a bachelor's degree in advertising and public relations, applied modern language and culture, communication, community development and inclusive leadership, criminal justice, digital humanities and social sciences, economics, international and global studies, journalism, museum studies, philosophy, political science, psychology, public policy, or sociology and anthropology.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Curriculum

Applied Liberal Arts, AS degree, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
NCAR-010 Freshman Seminar	0
NMTH-250 General Education - Elective: Elementary Statistics	3
General Education - Scientific Principles Perspective \dagger	3
NTID - Mathematics Elective \ddagger	3
NTID Liberal Arts Elective	3
General Education - Elective*	6
General Education - First Year Writing (WI)	3
General Education - Artistic Perspective	3
General Education - Global Perspective	3
General Education - Social Perspective	3
Second Year	
Professional Electives**	12
General Education - Ethical Perspective	3
General Education - Electives \ddagger	6
General Education - Immersion 1, 2, 3	9
Total Semester Credit Hours	60
Please see the NTID General Education Curriculum (GE) for more information.	
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.	
\dagger NTID science course numbered NSCI- 250 or higher, or College of Science course required by chosen professional area.	
\ddagger Mathematics and science courses as required by chosen professional area.	
* Students may need to take UWRT-100 Critical Reading \& Writing, dependin of the General Education Electives.	on placement to satisfy one

Admission requirements

For the AS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

- English: Placement into Critical Reading and Writing (UWRT100), or a First Year Writing course, such as FYW: Writing Seminar (UWRT-150).
- Mathematics: Placement into NMTH-250 or higher from NTID, RIT's College of Science, or another RIT college. Students will enroll in the mathematics course required by their prospective baccalaureate program. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Readiness for NSCI-250 or higher from NTID, RIT's College of Science, or another RIT college. Students will enroll in the science course required by their prospective baccalaureate program. Typically, students entering this program will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 18-21.

Applied Mechanical Technology, AAS

www.rit.edu/study/applied-mechanical-technology-aas
Karen Beiter, Chairperson
585-286-4546, kjbndp@ntid.rit.edu

Program overview

The associate in applied science (AAS) in applied mechanical technology is an Associate+Bachelor's degree program that prepares students to enter and successfully complete a bachelor's degree program in RIT's College of Engineering Technology. The program offers you unparalleled academic support and students strengthen their skills by taking courses taught by NTID faculty. This program is available for qualified deaf and hard of hearing students.

You'll start with an AAS degree in applied mechanical technology through RIT's National Technical Institute for the Deaf, which provides you with the courses and credit you need to enroll in an RIT bachelor's degree program. Upon completion of your AAS program, provided you maintain a 2.5 grade point average or higher, you will enroll in RIT's College of Engineering Technology, where you can major either in mechanical engineering technology, mechatronics engineering technology, or robotics and manufacturing engineering technology.

Students who graduate in good standing and have maintained a grade of C or better in the six "NETS" courses should be well prepared for RIT's College of Engineering Technology.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Curriculum

Applied Mechanical Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-131	General Education - Elective: General Chemistry for Engineers	3
MATH-171	General Education - Elective: Calculus A	3
MATH-172	General Education - Elective: Calculus B	3
NCAR-010	Freshman Seminar	0
NETS-101	Fundamentals of Engineering	3
NETS-110	Foundations of Materials	2
NETS-111	Foundations of Materials Lab	1
NETS-120	Manufacturing Processes	3
NETS-150	Mechanical Design \& Fabrication	3
NETS-151	Mechanical Design \& Fabrication Lab	1
PHYS-111	General Education - Scientific Principles Perspective: College Physics I	4
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar (WI)	3
	Program Elective	3
Second Year		
EEET-115	Circuits I	2
EEET-116	Circuits I Laboratory	1
MATH-211	Elements of Multivariable Calculus and Differential Equations	3
MCET-210	Foundations of Non-Metallic Materials	2
MCET-211	Characterization of Non-Metallic Materials Lab	1
MCET-220	Principles of Statics	3
Choose one of the following:		
MCET-221	Strength of Materials	
MECA-290	Mechanics for Mechatronics	
PHYS-112	General Education - Elective: College Physics II	4
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3

Total Semester Credit Hours 64
Please see the NTID General Education Curriculum (GE) for more information.

Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course

Admission requirements

For the AAS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills, as evidenced by application materials, determine associate degree options.

Specific requirements

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150) or Critical Reading and Writing (UWRT-100).
- Mathematics: Entrance into NTID's Advanced Math (NMTH-275) or higher, such as Pre-calculus (MATH-111).
- Science: Entrance into the College of Science's College Physics I (PHYS-111) course; however, students who did not take physics in high school are recommended to take a bridging physics course at NTID, such as Concepts of College Physics (NSCI-270).
- ACT (optional): The ACT middle 50\% composite score is 18-21.

Architectural and Civil Drafting Technology, AAS

www.rit.edu/study/architectural-and-civil-drafting-technology-aas
Karen Beiter, Chairperson
585-286-4546, kjbndp@ntid.rit.edu

Program overview

People who work in architectural and civil drafting technology use their skills to create two- and three-dimensional drawings on the computer. These drawings are used to visually represent buildings, bridges, canals, and houses. This program is available for qualified deaf and hard of hearing students.

The associate in applied science (AAS) in architectural and civil drafting technology, offered by RIT's National Technical Institute for the Deaf, will prepare you for a rewarding career as a CAD technician. The program provides you with the skills to become a support technician in the architecture, engineering and construction field. You might work with architects or engineers on projects such as buildings, highways, or bridges. Construction companies and building suppliers also hire CAD technicians.

CAD operators, also called CAD technicians, take the sketches of an engineer, architect, or designer and produce a set of technical drawings. In addition to a strong emphasis on computer-aided drafting, the major provides you with a background in mathematics, building systems, construction regulations, site utilities, and materials and methods used in the architecture, engineering, and construction industries.
The AAS degree in architectural and civil drafting technology prepares students to find immediate employment upon graduation or to continue their education by working towards a bachelor's degree. Transfer requirements into RIT's bachelor degree programs vary by program.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the architectural and civil drafting technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your secondyear academic requirements.

Curriculum

Architectural and Civil Drafting Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAD-108	Data Collection \& Analysis	3
NCAD-112	Computing Tools for Engineering Technology	3
NCAD-150	Engineering Graphics in AEC	3
NCAD-170	Construction CADI	
NCAD-180	Civil Technology Graphics	3
NCAR-010	Freshman Seminar	0
NMTH-220	General Education - Elective: Trigonometry	3
NMTH-275	Advanced Mathematics	3
	General Education - Elective*	3
	General Education - Ethical Perspective*	3
	General Education - First-Year Writing (WI)	3
Second Year		
NCAD-201	Job Search Process for CADT	3
NCAD-220	Construction CAD II	3
NCAD-230	Construction CAD III	3
NCAD-245	Energy Modeling for Sustainable Construction	3
NCAD-255	Construction Material and Methods I	
NCAD-265	Construction Materials and Methods II	
NCAD-275	Principles of Structural Systems	
NCAD-285	MEP Systems	
NCAD-299	Co-op: CADT	
NSCI-201	General Education - Scientific Principles Perspectiver	Principles of Physics
	General Education - Artistic Perspective*	
Third Year		
NCAD-240	Advanced Construction CAD	
NCAD-250	Presentation Graphics	3
	Technical Elective \dagger	3
	General Education - Global Perspective*	
	General Education - Social Perspective*	3
Total Semester Credit Hours 75		

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.

* An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective.
\dagger Choose one from the following list of courses, or another course by departmental approval, Principles of Design and Color (NAIS-120), Raster and Vector Graphics (NAIS-130), Scenic and Lighting Technology (PRFN-203), Materials of Construction (CVET-140) and Materials of Construction Laboratory (CVET-141), Surveying (CVET-160) and Surveying Laboratory (CVET-161), Theatre Practicum (Lighting [PRFN-218-02] and/or Set Construction [PRFN-218-08]), GIS Fundamentals (NCAD-280). Permission required for CVET140, 141 and CVET-160, 161.

Admission requirements

For the career-focused AAS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.
Specific English, mathematics, and science requirements and other recommendations
- English: Placement in a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First Year Writing with reading scores equivalent to 130 or higher on the NTID Reading Test and writing scores of 67 or higher on the NTID Writing Test. However, students who complete AAS degrees typically enter NTID with reading scores above 98 on the NTID Reading Test and writing scores above 50 on the NTID Writing Test.
- Mathematics: Placement in Trigonometry (NMTH-220). Typically, students entering this program will have completed at least three years of high school mathematics.
- Science: Placement into Principles of Physics (NSCI-201) or a higher level course. Typically, students entering this program will have com-
pleted at least three years of high school science. High school physics would be beneficial.
- ACT (optional): The ACT middle 50\% composite score is 14-17.

Architectural and Civil Drafting Technology, AOS

www.rit.edu/study/architectural-and-civil-drafting-technology-aos
Karen Beiter, Chairperson
585-286-4546, kjbndp@ntid.rit.edu

Program overview

People who work in architectural and civil drafting technology use their skills to create two- and three-dimensional drawings on the computer. These drawings are used to visually represent buildings, bridges, canals, and houses. This program is available for qualified deaf and hard of hearing students.

The associate in occupational studies (AOS) in architectural and civil drafting technology, offered by RIT's National Technical Institute for the Deaf, will prepare you for a rewarding career as a CAD technician. The program provides you with the skills to become a support technician in the architecture, engineering and construction field. You might work with architects or engineers on projects such as buildings, highways, or bridges. Construction companies and building suppliers also hire CAD technicians.

CAD operators, also called CAD technicians, take the sketches of an engineer, architect, or designer and produce a set of technical drawings. In addition to a strong emphasis on computer-aided drafting, the program provides you with a background in mathematics, building systems, construction regulations, site utilities, and materials and methods used in the architecture, engineering, and construction industries.

Graduates will enter businesses and industries that need technical employees with skills in computer aided drafting technology and a broad knowledge of applications and procedures. Graduates find work in a variety of settings, including engineering firms, government agencies, and architectural and construction firms. Positions for which graduates qualify include drafters/technicians for architectural, highway design, and civil environments.

The AOS degree in architectural and civil drafting technology prepares you to find immediate employment upon graduation.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the architectural and civil drafting technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your secondyear academic requirements.

Curriculum

Architectural and Civil Drafting Technology, AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAD-108	Data Collection \& Analysis	3
NCAD-112	Computing Tools for Engineering Technology	3
NCAD-150	Engineering Graphics in AEC	3
NCAD-170	Construction CAD I	3
NCAD-180	Civil Technology Graphics	3
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English: Career English I	3
NENG-213	NTID General Education Foundation - Career English: Career English II	3
NMTH-212	NTID General Education Foundation - Mathematics: Integrated Algebra	3
NMTH-220	Trigonometry	3
Second Year		3
NCAD-201	Job Search Process for CADT	3
NCAD-220	Construction CAD II	3
NCAD-230	Construction CAD III	3
NCAD-245	Energy Modeling for Sustainable Construction	3
NCAD-255	Construction Material and Methods I	3
NCAD-265	Construction Materials and Methods II	3
NCAD-275	Principles of Structural Systems	3
NCAD-285	MEP Systems	3
NCAD-299	Co-op: CADT	0
NSCI-154	NTID General Education - Scientific Processes Perspective: Physics of Matter	3
Third Year		
NCAD-240	Advanced Construction CAD	3
NCAD-250	Presentation Graphics	3
	Technical Elective	3
	NTID General Education - Perspectivet	3
Total Semester Credit Hours	$\mathbf{6 6}$	

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
† NTID General Education Perspective course may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.
\ddagger Choose one from the following list of courses, or another course by departmental approval, Principles of Design and Color (NAIS-120), Raster and Vector Graphics (NAIS-130), Scenic and Lighting Technology (PRFN-203), Materials of Construction (CVET-140) and Materials of Construction Laboratory (CVET-141), Surveying (CVET-160) and Surveying Laboratory (CVET-161), Theatre Practicum (Lighting [PRFN-218-02] and/or Set Construction [PRFN-218-08]), NCAD-280 GIS Fundamentals. Permission required for CVET140, 141 and CVET-160, 161.

Admission requirements

For the career-focused AOS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.
Specific English, mathematics and science requirements and other recommendations

Successful completion of a sampling experience either through the Summer Vestibule Program or an equivalent career exploration course is a prerequisite, as are the following:

- English: Placement into Career English I (NENG-212) or above. Students successfully completing an AOS degree typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Placement into Integrated Algebra (NMTH-212) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Placement into Physics of Matter (NSCI-154) or a higher-level course. Typically, students entering this major will have completed at least three years of high school science. High school physics would be beneficial.
- ACT (optional): The ACT middle 50% composite score is 14-17.

ASL-English Interpretation, BS

www.rit.edu/study/asl-english-interpretation-bs

Keith Cagle, Associate Professor
 kmcnss@rit.edu

Program overview

The ASL-English interpretation major prepares sign language interpreters for work in settings where deaf, hard-of-hearing, and hearing people interact and communicate. This degree allows students to develop foundation skills for general interpreting, with opportunities to explore specialized fields such as those in educational and medical settings, and/ or community interpreting.

The program is accredited through the Commission on Collegiate Interpreter Education and is one of only 16 accredited bachelor's degree interpreting programs in the United States.

The bachelor of science degree program in American Sign Language (ASL)-English interpretation provides specialized preparation for you to develop interpreting skills as well as practical experience and course work. The program is designed to provide graduates with a solid foundation on which to develop the skills needed to pass the National Interpreter Certification exam offered through the Registry of Interpreters for the Deaf or the Educational Interpreting Performance Assessment.

Interpreting students enjoy small class sizes and one-on-one discussions and advisement with knowledgeable faculty. By keeping classes small, our instructors are able to focus on you, building your strengths and developing your skills. Faculty and staff members work with you on all aspects of interpreting. As an interpreting student, you will have practicum experiences which provide the opportunity to work with a professional interpreter acting as a mentor in a college, school, or in the community. These practicums give you real-world experiences as an interpreter. There is no better place to prepare for a career in sign language interpreting than at the National Technical Institute for the Deaf (NTID).

To succeed in this program, students must be able to understand a speaker who is behind them; understand a speaker who is far away; focus on what a speaker is saying in a noisy room; and understand recorded voices through headphones. To see a list of the major skills and abilities needed to study sign language interpreting, see "Is Interpreting the Career for Me".

Why Should You Pursue Your Interpreting Degree at RIT/NTID?

- More than 1,100 Deaf and hard-of-hearing students live, study and socialize on the RIT campus with more than 8,000 hearing students, providing interpreting students like you with excellent opportunities to interact with students and enhance your language and interpreting skills as well as your experience with Deaf culture.
- The faculty of NTID's Department of American Sign Language and Interpreting Education are nationally respected interpreter educators. All of our American Sign Language classes are taught by Deaf faculty members who are certified by the American Sign Language Teachers Association, and all of our interpreting instructors are certified as sign language interpreters by the Registry of Interpreters for the Deaf and are active in the Conference of Interpreter Trainers.
- Our labs are state-of-the-art facilities with a wealth of interpreting and sign language materials.
- RIT/NTID receives special federal support for students in the interpreting program, you pay less than one-half of RIT's regular tuition rate.
- You have access to more than 100 interpreters on campus and more than 300 off campus in the Rochester community.
- Rochester has one of the largest concentrations of Deaf and hard-ofhearing residents in the United States. As an interpreting student at RIT/NTID, there are many opportunities for you to interact with Deaf and hard-of-hearing people, including numerous Deaf student clubs and sports, the Rochester Recreation Club for the Deaf, Deaf theater and much more. Deaf culture programs also are held throughout the year on campus and at various venues in the community.
- Rochester is home to a local chapter of the Registry of Interpreters for the Deaf, which offers many skill development workshops.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Curriculum

ASL-English Interpretation, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
INTP-125	General Education - Elective: American Sign Language II	4
INTP-126	General Education - Elective: American Sign Language III	4
INTP-210	Introduction to the Field of Interpreting	3
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Mathematical Perspective A	3
	General Education - Mathematical Perspective B	3
	General Education - First-Year Writing (WI)	3
Second Year		
INTP-215	Processing Skills Development	3
INTP-225	American Sign Language IV	3
INTP-226	American Sign Language V	3
MLAS-351	General Education - Elective: Linguistics of American Sign Language	3
	General Education - Elective: Deaf Cultural Studies Elective \dagger	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective	3
	Open Elective	3
Third Year		
INTP-310	Interpreting I	3
INTP-315	Practical and Ethical Applications	3
INTP-325	American Sign Language VI	3
INTP-326	American Sign Language VII	3
INTP-335	Interpreting II: English to ASL	3
INTP-336	Interpreting II: ASL to English	3
	General Education - Immersion 1	3
	General Education - Elective	3
	Open Elective	6
Fourth Year		
INTP-350	Practicum and Seminar I	3
INTP-435	Interpreting III: English to ASL	3
INTP-436	Interpreting III: ASL to English	3
INTP-455	Practicum II	4
INTP-456	Seminar II	2
INTP-460	Issues in Interpreting (WI-PR)	3
	Open Elective	3
	Professional Elective	3
	General Education - Immersion 2	3
	General Education - Immersion 3	3
Total Seme	t Hours	123

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI-PR) refers to writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Deaf Cultural Studies courses include: American Sign Language Literature (MLAS-352), Deaf Art \& Cinema (FNRT-440), Deaf Culture in America (SOCI-240), American Deaf History (HIST-230), Deaf People
in Global Perspective (HIST-231), Deafness and Technology (HIST-330), Diversity in the Deaf Community (HIST-333), Oppression in the Lives of Deaf People (HIST-334), Women and the Deaf Community (HIST335).
\# Students will satisfy this requirement by taking a 4-credit hour lab science course. Students may select one of the lab science courses listed below to fulfill this requirement. Both the lecture and the laboratory sections must be taken. Human Biology I (MEDG-101) and Human Biology Lab I (MEDG-103) Human Biology II (MEDG-102) and Human Biology Lab II (MEDG-104), Field Biology (BIOG-110), General Biology I (BIOL-101) and General Biology Lab I (BIOL-103), General Biology II (BIOL-102) and General Biology Lab II (BIOL-104), Introductory Biology I (BIOL-121), Introductory Biology II (BIOL-122), General-Organic-Biochemistry I (CHMG-111), College Physics I (PHYS-111), College Physics II (PHYS-112),

Accreditation

The BS degree in ASL-English Interpretation is accredited by the Commission on Collegiate Interpreter Education.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 4 years of English (minimum B average)
- 3 years of math and science required
- 2 years of a foreign language recommended
- Must demonstrate beginning ASL competency equivalent to ASL I

For those applicants who have had college experience, college transcripts should document a GPA of 3.0 or better, with evidence of very good performance in English courses. A writing sample will be judged on vocabulary, grammar, structure, style, and creativity.

Transfer Admission

Transfer course recommendations without associate degree
Transfer requirements vary by program
Appropriate associate degree programs for transfer
Transfer requirements vary by program.
Please note: In addition to RIT's general admissions procedures, the ASL-English interpretation major requires applicants to complete additional admission materials from the NTID Admissions Office.

Business Administration, AAS

www.rit.edu/study/business-administration-aas
Mark Pfuntner, Chairperson
585-286-4640 (V/VP), mjpnvd@rit.edu

Program overview

The business administration program focuses on general business operations and the critical decision-making process required for success in today's fast-paced work environment. Students learn the fundamentals of business planning, interpersonal skills, and communication skills needed to succeed on the job. This program is available for qualified deaf and hard of hearing students.

The business administration program, offered by RIT's National Technical Institute for the Deaf, blends practical business experiences with theory and teaches you how to apply these concepts in actual business situations through case studies, interactive sessions, and cooperative education work experience. This degree is for students contemplating careers in marketing, sales, retail, advertising, banking, management, human resources, hospitality, and other related fields. You'll receive leadership training in addition to becoming proficient in the use of computer software applications necessary to succeed in the business world. Decision-making skills will be stressed throughout the program as well as consensus-building skills that support working in team situations.

Business administration is available as an associate in applied science (AAS) degree or as an Associate+Bachelor's Degree Program.

The AAS degree in business administration is a career-focused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level.

The Associate+Bachelor's Degree Program in business administration prepares you to complete an RIT bachelor's degree. In this option, upon successful completion of the AAS degree in business administration, provided you maintain a 2.5 or higher grade point average in the program, you will enroll into RIT's School of Individualized Study, where you can pursue a bachelor's degree in applied arts and science.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Microsoft Certification

NTID's business studies department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the business administration program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Business Administration, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACC-130	Personal Finance	3
NACC-201	Accounting 1	3
NACT-170	Intro to Web Development	3
NAST-160	Fundamentals of Spreadsheet Applications	3
NBUS-200	Orientation to Business	3
NBUS-217	Fundamentals of Management	3
NCAR-010	Freshman Seminar	0
UWRT-150	General Education - First-Year Writing: FYW: Writing Seminar (WI)	3
	General Education - Electiveł	3
	General Education - Elective \dagger	3
	General Education - Scientific Principles Perspective	3
Second Year		
NACC-202	Accounting 2	3
NAST-210	Essentials of Business Communication	3
NAST-220	Fundamentals of Database Applications	3
NBUS-213	Applied Ethics	3
NBUS-221	Essentials of Human Resource Management	3
NBUS-223	Fundamentals of Marketing	3
NBUS-224	Business Law	3
NBUS-226	Introduction to Organizational Behavior	3
NBUS-299	Co-op: Business Administration	0
	General Education - Global Perspective \ddagger	3
	General Education - Social Perspective \ddagger	3
Third Year		
NBUS-220	Introduction to Economics	3
NBUS-228	Leadership Essentials	3
	General Education - Ethical Perspective¥	3
	General Education - Artistic Perspective¥	3
	Open Elective\#	3
Total Semester Credit Hours		75

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger Must be a General Education Elective course NMTH-140 or higher.
\ddagger An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective or it can be used to fulfill an Open Elective.

Admission requirements

For the career-focused AAS degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students who qualify for Critical

Reading and Writing (UWRT-100) will be considered for admission if they are at NMTH-250 or higher in mathematics.

- Mathematics: Placement into mathematics NMTH-140 or higher. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Placement into science NSCI-250 or higher. Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): For the Career-Focused AAS degree, the ACT middle 50% composite score is 14-17. For the Associate+Bachelor AAS degree, the ACT middle 50% composite score is 18-21.

Business, AS

www.rit.edu/study/business-as

Mark Pfuntner, Chairperson
585-286-4640 (V/VP), mjpnvd@rit.edu

Program overview

The associate in science (AS) degree in business is an
Associate+Bachelor's degree program designed to prepare deaf and hard-of-hearing students to enter and successfully complete a bachelor's degree program in RIT's Saunders College of Business. The program offers you unparalleled academic support and students strengthen their skills by taking courses taught by faculty in RIT's National Technical Institute for the Deaf (NTID). Admission to this major is available during the fall semester only. This program is available for qualified deaf and hard of hearing students.

You'll start with an AS degree in business, which provides you with the courses and credits you need to enroll in an RIT bachelor's degree program.

Upon completion of your AS program, provided you have earned a 2.5 or higher cumulative grade point average in the program, you will enroll into RIT's Saunders College of Business in one of the following bachelor's degree programs: accounting, finance, hospitality and tourism management, international business, management, management information systems, marketing, or supply chain management.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Microsoft Certification

NTID's business studies department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

Curriculum

Business, AS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MGIS-101	Computer-based Analysis	1
NBUS-211	World of Business \& Innovation	3
NBUS-225	Introduction to Entrepreneurship	3
NBUS-227	Principles of Marketing	3
NCAR-010	Freshman Seminar	0
STAT-145	General Education - Elective: Introduction to	3
STAT-146	Statistics I	General Education - Elective: Introduction to
	Statistics II	4
	General Education - First Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
Second Year	General Education - Scientific Principles Perspective*	3
COMM-253	General Education - Elective	3
ECON-101	Communication	3
ECON-201	Principles of Microeconomics	3
INTB-225	Principles of Macroeconomics	3
MATH-161	Global Business Environment	3
MGMT-215	General Education - Elective: Applied Calculus	4
NACC-205	Organizational Behavior	3
NACC-206	Financial Accounting	3
	Managerial Accounting	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3

Total Semester Credit Hours
Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees
are required to complete one Wellness course.

* Any science course numbered NSCI-250 or higher may fulfill this requirement.

Accreditation

Undergraduate and graduate programs in Saunders College of Business are accredited by the Association to Advance Collegiate Schools of Business (AACSB) International, the premier accrediting organization for business schools.

Admission requirements

For the AS degree leading to bachelor's degree (Associate+Bachelor's program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.

Specific English, mathematics, and science requirements and other recommendations

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students who qualify for Critical Reading and Writing (UWRT-100) will be considered for admission if they are at NMTH-250 or higher in mathematics.
- Mathematics: Placement into mathematics NMTH-250 or higher. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Placement into science NSCI-250 or higher. Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 18-21.

Business Technology, AOS

www.rit.edu/study/business-technology-aos

Mark Pfuntner, Chairperson
 585-286-4640 (V/VP), mjpnvd@rit.edu

Program overview

The business technology program prepares you for a career in general business operations. You'll learn the fundamentals of business planning, interpersonal skills, and communication skills needed to succeed on the job. You'll also receive leadership training in addition to becoming proficient in the use of computer software applications necessary to succeed in the business world. This degree is for students interested in the fields of marketing, sales, retail, advertising, banking, management, human resources, hospitality, and other related business disciplines. This program is available for qualified deaf and hard of hearing students.

The associate in occupational studies (AOS) in business technology, offered by RIT's National Technical Institute for the Deaf, will prepare you for a career in a variety of settings, including business, industry, government, and schools. You will take courses in accounting, payroll procedures, general office procedures, and document preparation, and you may also elect to complete a sequence of courses that provide a concentration in either accounting technology or administrative support technology.

This is a non-transfer occupational program, with primary emphasis on preparation for immediate employment upon graduation.

Microsoft Certification

NTID's business studies department operates an authorized testing center for Microsoft Office Specialist. Preparatory courses are offered for several exams each semester.

Experiential Learning

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the business technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Business Technology (administrative support technology option), AOS degree, typical course sequence
COURSE

First Year		
NACC-130	Personal Finance	3
NACC-201	Accounting 1	3
NAST-140	Essential Document Production	3
NAST-150	Advanced Document Production	3
NAST-160	Fundamentals of Spreadsheet Applications	3
NBUS-200	Orientation to Business	3
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English:	
	Career English I	

Total Semester Credit Hours 63
Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information.
\dagger Any mathematics course numbered NMTH-140 or higher. Students who place above NMTH-140 can take math or a 3-credit course from any non-science perspective category.
\# NTID General Education Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.

Business Technology (accounting technology option), AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACC-130	Personal Finance	3
NACC-201	Accounting 1	3
NAST-140	Essential Document Production	3
NAST-150	Advanced Document Production	3
NAST-160	Fundamentals of Spreadsheet Applications	3
NBUS-200	Orientation to Business	3
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English: Career English I	3
NENG-213	NTID General Education Foundation - Career English: Career English II	3
	NTID General Education Foundation - Mathematics \dagger	3
Second Year		
NACC-202	Accounting 2	3
NACC-203	Accounting 3	3
NACC-299	Co-op: Accounting Technology/Business Technology	0
NAST-210	Essentials of Business Communication	3
NAST-215	Integrated Document Production	3
NAST-220	Fundamentals of Database Applications	3
NBUS-213	Applied Ethics	3
NBUS-217	Fundamentals of Management	3
	NTID General Education - Perspective \ddagger	3
Third Year		
NACC-204	Accounting Capstone	3
NBUS-223	Fundamentals of Marketing	3
	NTID General Education - Perspective \ddagger	3
	Open Elective	3

Total Semester Credit Hours
Please see the NTID General Education Curriculum (GE) for more information
Please see Wellness Education Requirement for more information.
\dagger Any mathematics course numbered NMTH-140 or higher. Students who place above NMTH-140 can take math or a 3-credit course from any non-science perspective category.
$\not \ddagger$ NTID General Education Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.

Admission requirements

For the career-focused AOS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

Specific English, Mathematics, and Science Requirements and other Recommendations

- English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Math course (NMTH-140) or higher is required. Typically, students entering this major will have completed at least two years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

Career Exploration Studies, Undeclared

www.rit.edu/study/career-exploration-studies
Kiersten Blankley,
585-475-5285, kesnhd@rit.edu

Program overview

The career exploration studies program allows you to collect information about associate degree programs in the National Technical Institute for the Deaf (NTID) and career paths before deciding on a major. It also supports deaf and hard-of-hearing students who need additional academic preparation to be ready for their chosen program of study.

This option allows students the opportunity to do an intensive career search while they develop a better understanding of themselves through career and personal counseling; intensive sampling of various majors at RIT/NTID; use of a computer guidance program in the Career Resource and Testing Center; interest testing; and interpretation of aptitude, ability, and achievement tests. In addition, students take courses in mathematics, English, and other liberal arts and sciences. Some students also take introductory courses in specific programs of study and are involved in extracurricular or other college-oriented activities.

A counselor/academic advisor is assigned to help you evaluate the information and make career decisions. You can remain in the career exploration studies program for up to two academic semesters.

Curriculum

Career Exploration Studies, typical course sequence

COURSE	SEMESTER CREDIT HOURS		
First Year			
NCAR-010	Freshman Seminar		
Choose one of the following:			
NCOM-120	Problem Solving		
NCOM-206	Effective Teams		
	Introductory Course in major	9	
	English*	6	
Math*	6		

[^12]
Civil Technology, AAS

www.rit.edu/study/civil-technology-aas
Karen Beiter, Chairperson
585-286-4546, kjbndp@ntid.rit.edu

Program overview

The associate in applied science (AAS) in civil technology is an Associate+Bachelor's degree program that prepares students to enter and successfully complete a bachelor's degree program in civil engineering technology in RIT's College of Engineering Technology. The program offers you unparalleled academic support and students strengthen their skills by taking courses taught by NTID faculty. This program is available for qualified deaf and hard of hearing students.

Students receive a comprehensive foundation in civil engineering fundamentals: engineering graphics, computer aided design applications, construction materials and methods, surveying, statics, strength of materials, and elements of building construction.

You'll start with an AAS degree in civil technology in RIT's National Technical Institute for the Deaf, which provides you with the courses and credit you need to enroll in a bachelor's degree program.

Upon completion of your AAS program with a 2.5 or higher grade point average in the program, you will enroll in RIT's College of Engineering Technology, where you can major in civil engineering technology.

Students must graduate in good standing to enroll in the College of Engineering Technology. Transfer credit will be awarded for courses completed with a grade of B or better for courses coded "NCAD" and "NMTH" and a grade of C or better for other courses.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Curriculum

Civil Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
MATH-171	Calculus A	3
NCAD-150	Engineering Graphics in AEC	3
NCAD-180	Civil Technology Graphics	3
NCAD-255	Construction Materials and Methods I	3
NCAR-010	Freshman Seminar	0
NMTH-275	General Education - Elective: Advanced Mathematics	3
PHYS-111	General Education - Scientific Principles Perspective:	4
UWRT-150	College Physics I	
	General Education - First Year Writing: FYW: Writing	3
	Seminar (WI)	3
	Program Elective	3
	General Education - Elective	3
Second Year	General Education - Ethical Perspective	3
CHMG-141	General \& Analytical Chemistry I	3
CHMG-145	General \& Analytical Chemistry I Lab	3
CVET-160	Surveying	1
CVET-161	Surveying Laboratory	3
CVET-170	Elements of Building Construction	3
MATH-172	Calculus B	3
MCET-220	Principles of Statics	3
MCET-221	Strength of Materials	4
PHYS-112	College Physics II	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	$\mathbf{6 4}$
Total Semester Credit Hours		

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees
are required to complete one Wellness course.

Admission requirements

For the AAS Degree Leading to Bachelor's Degree (Associate+Bachelor's Program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills, as evidenced by application materials, determine associate degree options.

Specific English, Mathematics and Science Requirements and other Recommendations

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150) or Critical Reading and Writing (UWRT-100).
- Mathematics: Placement into NTID's Advanced Math (NMTH-275) course or higher
- Science: Readiness after a single NTID science course, Concepts of College Physics (NSCI-270), for entry into RIT's College of Science Physics I (PHYS-111) course.
- ACT (optional): The ACT middle 50\% composite score is 18-21 (20 Math, 16 Reading).

Community Development and Inclusive Leadership, BS

www.rit.edu/study/community-development-and-inclusive-leadership-bs

Jess Cuculick, Associate Professor
585-286-4569, jalnap@rit.edu

Program overview

The bachelor of science degree in community development and inclusive leadership is an innovative, interdisciplinary program in which students gain skills in leadership, interpersonal communication, research, and data management-all of which are needed by dynamic leaders at the helm of 21 st century organizations. This is a multidisciplinary degree offered by RIT's National Technical Institute for the Deaf, in partnership with Saunders College of Business, the College of Liberal Arts, the College of Health Sciences and Technology, and the School of Individualized Study.

A comprehensive curriculum ensures that students in the program will be able to:

- Identify and analyze traits, skills, communication styles, and best practices of domestic, international, historical, and modern-day community leaders.
- Examine their personal leadership strengths and weaknesses.
- Learn and apply qualitative and quantitative research methods to help identify and address community needs, develop and implement strategies, and assess outcomes.
- Recognize and value multicultural, accessible, and inclusive community members and groups.
- Determine strategies for dialoguing, identifying, and addressing social justice issues, concerning ability, race, gender, class, religion, sexual orientation, and gender identity within different communities.
- Identify and utilize best leadership practices in individual, group, and social media communication skills to advance community inclusion, consensus, and productivity.
- Integrate grant writing and grant management skills into development of community strategic planning.
- Apply core theoretical foundations of inclusive leadership and community development to a variety of government, education, business, and not-for-profit agencies.
Students are well prepared for leadership opportunities and will be adept at meeting the demands of the rapidly changing needs of workplaces and community organizations. The program will also prepare students for advanced study in graduate degree programs in a range of areas. (Additional information is available in the Community Development and Inclusive Leadership Program Handbook.)

Concentrations

Students choose one of six concentrations in the following areas: deaf leadership, business management, public policy, community health, political science, or psychology.

Careers

Students will be prepared to assume entrepreneurial, managerial, and advocacy leadership roles in government, public, private, and educational organizations. Students will graduate with a leadership e-portfolio that demonstrates qualitative and quantitative research acumen, grant writing and leadership experience, multicultural competency, and social media management skills as well as a strong foundation in leadership theory and best practices in community development. These transferable and
sought-after skills will ensure graduates will have success in the workforce or in an advanced graduate program.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education and Internships

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.
Students in the BS in community development and inclusive leadership are strongly encouraged to participate in cooperative education and internships.

Curriculum

Community Development and Inclusive Leadership, BS degree,
typical course sequence typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
LEAD-101	General Education - Social Perspective: Introduction to Community Leadership and Development	3
LEAD-102	Inclusive Leadership	3
LEAD-103	Introduction to Intersectionality	3
Choose one of the following:		3
NMTH-250	General Education - Mathematical Perspective A: Elementary Statistics	
STAT-145	General Education - Mathematical Perspective A: Introduction to Statistics I	
UWRT-150	General Education - First Year Writing: FYW: Writing Seminar	3
YOPS-010	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Scientific Principles Perspective	3
	General Education - Elective	9
Second Year		
LEAD-200	General Education - Ethical Perspective: Dimensions for Ethical Community Leadership	3
LEAD-201	Shaping Educational and Legal Policy	3
LEAD-203	Foundation of Dialogue: Black Deaf Experiences	3
	LEAD Concentration Course	3
	General Education - Global Perspective	3
	General Education - Natural Science Inquiry Perspective	3
	General Education - Mathematical Perspective B	3
	General Education - Elective	3
	General Education - Immersion 1, 2	6
Third Year		
LEAD-350	Introduction to Qualitative Research	3
LEAD-351	Introduction to Quantitative Research	3
LEAD-500	Experiential Learning in Community Development and Inclusive Leadership	0
NAST-220	Fundamentals of Database Applications	3
	LEAD Concentration Course 2, 3, 4, 5	12
	General Education - Elective	3
	Open Electives	6
Fourth Year		
LEAD-501	Capstone Seminar (WI)	3
	LEAD Concentration Course 6, 7, 8, 9	12
	General Education - Immersion	3
	General Education - Electives	6
	Open Electives	6

Total Semester Credit Hours

The proposed curriculum outline provides an overview of the course work/topic areas in this new program and is subject to change.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses

Concentrations

Deaf Leadership

FNRT-355	Fundraising, Grant Writing, \& Marketing for Nonprofit Institutions
LEAD-300	Rhetoric of Leadership
LEAD-301	Social Media Communication and Leadership
LEAD-302	Community Development in Athletics
LEAD-303	Literatures of Intersectionality
LEAD-304	Conflict Resolution: Negotiation and Mediation
LEAD-305	International Deaf Leadership and Community Development
LEAD-306	Leadership in the Deaf Community
LEAD-307	Leadership \& Accessible Tech
LEAD-309	Current Trends in Community Development and Leadership
LEAD-310	Dialogue: Race and Ethnicity
LEAD-311	Dialogue: Gender
LEAD-312	Dialogue: Deaf, DeafBlind, DeafDisabled, Hard-of-Hearing
LEAD-313	Dialogue: LGBTQIA

Business Management Concentration

ACCT-110	Financial Accounting
NACC-205	Financial Accounting
ACCT-210	Management Accounting
NACC-206	Managerial Accounting
DECS-310	Operations Management
MGMT-215	Organizational Behavior
MGMT-310	Leading High-Performance Teams
MGMT-320	Organizational Effectiveness Skills
MGIS-130	Information Systems \& Technology
MGIS-330	Systems Analysis and Design
MGIS-320	Database Management Systems
MGIS-350	Developing Business Applications
MGIS-450	Enterprise Systems
MKTG-230	Principles of Marketing
NBUS-227	Principles of Marketing
MKTG-320	Global Marketing
MKTG-350	Consumer Behavior
MKTG-360	Professional Selling
MKTG-370	Advertising and Promotion Management
MKTG-410	Search Engine Marketing and Analytics

Public Policy Concentration

FNRT-355	Fundraising, Grant Writing \& Marketing for Nonprofit Institutions
PUBL-201	Ethics, Values \& Public Policy
PUBL-301	Public Policy Analysis
PUBL-363	Cyber Security Policy and Law
PUBL-510	Technological Innovation and Public Policy
PUBL-520	Information \& Communications Policy
PUBL-530	Energy Policy
PUBL-531	Climate Change: Science, Technology and Policy
PUBL-589	Topics in Public Policy
STSO-201	Science and Technology Policy
STSO-341	Biomedical Issues: Science and Technology
STSO-421	Environmental Policy

Community Health Concentration

ANTH-435	The Archaeology of Death
COMM-344	Health Communication
CRIM-245	Prostitution and Vice
CRIM-275	Crime and Violence
HLTH-315	Reinventing Health Care
HLTH-320	Legal Aspects of Health Care
HLTH-325	Health Care Leadership
HLTH-330	Health Planning And Program Development
FNRT-355	Fundraising, Grant Writing \& Marketing for Nonprofit Institutions
PSYC-221	Abnormal Psychology
PSYC-221H	Honors Abnormal Psychology
PSYC-231	Death and Dying
PSYC-241	Health Psychology
SOCI-102	Foundations of Sociology
ANTH-246	Gender and Health
SOCI-322	Gender and Health
STSO-341	Health and Society

Political Science Concentration

FNRT-355 Fundraising, Grant Writing \& Marketing for Nonprofit Institutions
POLS-110 American Politics

POLS-120	Introduction to International Relations
POLS-215	Tech, Ethics \& Global Politics
POLS-250	State \& Local Politics
POLS-290	Politics and the Life Sciences
POLS-295	Cyberpolitics
POLS-305	Political Parties and Voting
POLS-310	The Congress
POLS-320	American Foreign Policy
POLS-325	International Law and Organizations
POLS-333	Human Rights in Global Perspective
POLS-355	The Rhetoric of Terrorism
POLS-365	Political Leadership

Psychology Concentration

Required Courses	
Choose one of the following:	
PSYC-101	Introduction to Psychology
PSYC-101H	Honors Introduction to Psychology
Choose one of the following:	
PSYC-221	Abnormal Psychology
PSYC-221H	Honors Abnormal Psychology
PSYC-223	Cognitive Psychology
PSYC-226	Developmental Psychology
Electives	
FNRT-355	Fundraising, Grant Writing \& Marketing for Nonprofit Institutions
POLS-250	State \& Local Politics
POLS-310	The Congress
POLS-355	Political Leadership
PUBL-201	Ethics, Values \& Public Policy
PUBL-520	Information \& Communication Policy

Admission requirements

All students (hearing, deaf, and hard of hearing) are invited to apply for the program. Hearing students accepted into the program will be in the Deaf Leadership concentration. All hearing students will be required to complete a Sign Language Proficiency Interview (SLPI) assessment. Once your application and other required materials have been submitted, your assigned counselor will work with you to schedule the SLPI. Deaf and hard-of-hearing students do not need to complete the SLPI assessment.

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- Strong performance in English is expected

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, science, foreign language, and history

Appropriate associate degree programs for transfer

Liberal arts, with social sciences, sciences, or languages

Deaf Cultural Studies-American Sign Language, Certificate

www.rit.edu/study/deaf-cultural-studies-american-sign-language-certificate
 Jillian Sinclair,
 jlsnts@rit.edu

Program overview

The Deaf cultural studies-American Sign Language certificate offers deaf, hard-of-hearing, and hearing students the opportunity to understand the deaf community as an entity unto itself and within the context of society as a whole.

Knowledge, skills, and abilities learned through this program of study include: understanding the structure of ASL and the application of linguistic principles to other languages (specifically English); enhancement of bilingual skills to improve communication; increased knowledge of Deaf culture and Deaf history; a heightened sense of self-concept, selfesteem, and self-confidence; improved presentation skills; and enhanced literacy and critical thinking skills.

The certificate in Deaf cultural studies/ASL is offered to students enrolled in degree programs at RIT's National Technical Institute for the Deaf (NTID) and the other RIT colleges as an enhancement to their portfolio of general academic, career, and technical skills. It is not a stand-alone certification. The certificate offers you an opportunity to learn about historical, anthropological, linguistic, literary, artistic, and multicultural aspects of deaf people's lives. Courses expose you to a breadth and depth of topics in Deaf cultural studies and ASL, and address NTID General Education goals for critical thinking, writing, and public presentations.

The overall program goals of the Deaf cultural studies/ASL certificate are to:

- study the Deaf experience from the perspective of a disenfranchised minority group
- understand and appreciate Deaf culture
- promote the development of English and ASL literacy
- promote the development of critical thinking skills
- promote the development of communication skills

Curriculum

Deaf Cultural Studies - American Sign Language, certificate, typical course sequence

Admission requirements

Applicants for the Deaf cultural studies-American Sign Language certificate must be students in good standing in an undergraduate program at RIT, or hold an undergraduate degree from RIT.

Candidates must complete or have already completed an undergraduate degree program from RIT to receive this certificate.

Design and Imaging Technology, AAS

www.rit.edu/study/design-and-imaging-technology-aas
Edward Mineck, Professor
585-475-6341, enmnvc@rit.edu

Program overview

People who work in the design and imaging field are responsible for designing, organizing, and producing print and Web-based media for business, communication, publishing, manufacturing, entertainment, and advertising markets. This is a large, exciting field that requires a variety of computer-based and traditional visual skills. The design and imaging technology program provides opportunities for students to enter various careers ranging from creative to highly technical positions at various degree levels. This program is available for qualified deaf and hard of hearing students.

As a student in the associate in applied science (AAS) degree in design and imaging technology, offered by RIT's National Technical Institute for the Deaf, you may choose a concentration in digital media, graphic design, or graphic production.

You will gain work experience through a required cooperative education experience. Depending on your specific program concentration and elective course selection, you will use traditional and computer-based methods to produce drawings, layouts, illustrations and digital photographic images; prepare documents for print, Web and digital distribution; produce interactive digital media; perform digital retouching and restoration of photographic images; produce composite digital images; design and produce websites; produce computer animations; plan and produce short-edited videos; and operate electrophotographic digital printing and inkjet systems.

Education in STEM (science, technology, engineering, math) careers is a major emphasis for students, parents and counselors as they consider which college programs match the students interests and aptitudes. Funding for STEM career preparation is often a driving factor. The design and imaging technology program is considered a STEM-career program. Graphic design and production for print, Web and digital media cannot happen without the use and application of technology and computing skills.

Read about the Career Skills you can learn in the design and imaging technology program.
O^{*} Net Online lists STEM career clusters and graphic design is listed as being part of the Computer Science STEM disciplines.

The associate in applied science (AAS) degree in design and imaging technology is a career-focused program, designed to prepare you for direct employment in well-paying careers, following graduation. As a graduate of the AAS degree program, you also may apply for admission to a bachelor of fine arts degree program or a bachelor of science degree program in RIT's College of Art and Design after completing the AAS degree course of study.

We prepare students for jobs in the large visual communications industry which includes graphic design, commercial digital printing, website design and development, videography, animation, packaging design, photography, and specialty graphics. Jobs have evolved from a skilled trade craft to a high-tech digital design and production workflow.

The visual communications industry changes rapidly with the advent of new technologies and software programs. The world depends on text, graphics, illustrations, video and photos for communication using printed materials, web sites, and electronic media. There will always be a demand for graduates with skills in the visual communications field.

Some industry job outlook projections include:

- Summary Report for Web Developers
- Summary Report for Graphic Designers
- Summary Report for Multimedia Artists and Animators

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the design and imaging technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Design and Imaging Technology, AAS degree, typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
Choose one of the following:	3
NAIS-120 Principles of Design and Color $\ddagger / \S \S$	
NGRP-120 Principles of Graphic Production§	
NAIS-130 Raster and Vector Graphics	3
NAIS-140 Graphic Design and Typography I	3
NAIS-150 Page Layout I	3
NAIS-160 Web Design I	3
NCAR-010 Freshman Seminar	0
Choose one of the following:	3
NGRD-111 Drawing l / §§	
NGRP-110 Digital Photography I§ / §§	
General Education - Scientific Principles Perspectivet†	3
General Education - Elective**	3
General Education - Elective \dagger	3
General Education - First-Year Writing (WI)	3
Second Year	
NAIS-201 Employment Seminar	3
NAIS-299 Co-op: Visual Communications Studies	0
Choose two of the following:	6
N3DG-220 Principles of 4D Design	
NGRD-221 History of Graphic Design \ddagger	
NGRP-231 Image Preparation§	
NGRD-240 Graphic Design and Typography Il \ddagger	
NGRP-245 Color Theory and Management§	
Choose three of the following:	9
NAIS-292 Portfolio Workshop \ddagger / §§	
NGRD-255 Publication Design \ddagger	
NGRD-256 Identity Design \ddagger	
NGRD-257 Animation	
NGRP-220 Videography §§	
NGRP-250 Page Layout II§	
NGRP-252 PDF Production and Workflow§	
NGRP-270 Specialty Graphics Imaging	
Concentration Elective	3
General Education - Ethical Perspective \dagger	3
General Education - Artistic Perspective \dagger	3
General Education - Global Perspective \dagger	3
Third Year	
Choose one of the following:	3
NAIS-291 Production Workshop	
NGRD-230 Digital Illustration \ddagger	
NGRP-261 Interactive Digital Media §§	
Concentration Elective	6
General Education - Social Perspective \dagger	3
Total Semester Credit Hours	72

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General
Education - Perspective or General Education - Elective.
\ddagger NGRD courses/Graphic Design concentration
§ NGRP courses/Graphic Production concentration
§§ Digital Media Concentration
** Any mathematics course numbered NMTH-140 or higher.
$\dagger \dagger$ Any science course numbered NSCI-153 or higher.

Electives

COURSE	
Graphic Design Concentration	
N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
N3DG-220	Principles of 4D Design
NAIS-199	Independent Study-Visual Communications Studies
NAIS-289	Special Topics-Visual Communications Studies
NGRD-115	Visual Idea Development
NGRD-211	Drawing II
NGRD-258	Cartooning
NGRP-110	Digital Photography I
NGRP-210	Digital Photography II
NGRP-220	Videography
NGRP-232	Image Manipulation
NGRP-251	Publication Production
NGRP-260	Web Design II
NGRP-275	Digital Printing Systems
Graphic Production Concentration	
N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
NAIS-199	Independent Study - Visual Communications Studies
NAIS-289	Special Topics - Visual Communications Studies
NGRD-115	Visual Idea Development
NGRP-210	Digital Photography II
NGRP-220	Videography
NGRP-232	Image Manipulation
NGRP-251	Publication Production
NGRP-275	Digital Printing Systems
Digital Media Concentration	
N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
NAIS-199	Independent Study-Visual Communications Studies
NAIS-289	Special Topics - Visual Communications Studies
NGRD-211	Drawing II
NGRR-258	Cartooning
NGRP-2110	Digital Photography I Photography II

Admission requirements

For the career-focused AAS Degree

- 2 years of high school math preferred
- 1 year of high school science preferred
- English language skills as evidenced by application materials determine acceptance into the AAS or the AOS program.
Specific English, Mathematics, and Science Requirements and other
Recommendations
Successful completion of the Summer Vestibule Program is required
- English: Placement into the Critical Reading and Writing (UWRT100) course.
- Mathematics: Placement into the Mathematics in Society (NMTH140) course. Typically, students entering this major will have completed at least two years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

Design and Imaging Technology, AOS

www.rit.edu/study/design-and-imaging-technology-aos
Edward Mineck, Professor
585-475-6341, enmnvc@rit.edu

Program overview

People who work in the design and imaging field are responsible for designing, organizing, and producing print and Web-based media for business, communication, publishing, manufacturing, entertainment, and advertising markets. This is a large, exciting field that requires a variety of computer-based and traditional visual skills. The design and imaging technology program provides opportunities for students to enter various careers ranging from creative to highly technical positions at various degree levels. This program is available for qualified deaf and hard of hearing students.

As a student in the associate in occupational studies (AOS) degree in design and imaging technology, offered by RIT's National Technical Institute for the Deaf, you may choose a concentration in digital media, graphic design, or graphic production.

You will gain work experience through a required cooperative education experience. Depending on your specific program concentration and elective course selection, you will use traditional and computer-based methods to produce drawings, layouts, illustrations and digital photographic images; prepare documents for print, Web and digital distribution; produce interactive digital media; perform digital retouching and restoration of photographic images; produce composite digital images; design and produce websites; produce computer animations; plan and produce short-edited videos; and operate electrophotographic digital printing and inkjet systems.

Education in STEM (Science, Technology, Engineering, Math) careers is a major emphasis for students, parents and counselors as they consider which college programs match the students interests and aptitudes. Funding for STEM career preparation is often a driving factor. The design and imaging technology program is considered a STEM-career program. Graphic design and production for print, Web and digital media cannot happen without the use and application of technology and computing skills.

Read about the Career Skills you can learn in the design and imaging technology program.
O^{*} Net Online lists STEM career clusters and graphic design is listed as being part of the Computer Science STEM disciplines.

The associate in occupational studies (AOS) degree in design and imaging technology program is a career-focused program, designed to prepare you for direct employment in well-paying careers, following graduation.

We prepare students for jobs in the large visual communications industry which includes graphic design, commercial digital printing, website design and development, videography, animation, packaging design, photography, and specialty graphics. Jobs have evolved from a skilled trade craft to a high-tech digital design and production workflow.

The visual communications industry changes rapidly with the advent of new technologies and software programs. The world depends on text, graphics, illustrations, video and photos for communication using printed materials, web sites, and electronic media. There will always be a demand for graduates with skills in the visual communications field.

Some industry job outlook projections include:

- Summary Report for Web Developers
- Summary Report for Graphic Designers
- Summary Report for Multimedia Artists and Animators

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Students in the design and imaging technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Design and Imaging Technology, AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS	
First Year			
Choose one of the following:			3
NAIS-120	Principles of Design and Color \ddagger / §§		
NGRP-120	Principles of Graphic Production§		
NAIS-130	Raster and Vector Graphics		3
NAIS-140	Graphic Design and Typography I		3
NAIS-150	Page Layout I		3
NAIS-160	Web Design I		3
NCAR-010	Freshman Seminar		
NENG-212	NTID General Education Foundation - Career English: Career English I		3
NENG-213	NTID General Education Foundation - Career English: Career English II		3
Choose one of the following:			3
NGRD-111	Drawing l / §§		
NGRP-110	Digital Photography I§ / §§		
NTID General Education Foundation - Mathematics \dagger			3
Second Year			
NAIS-201	Employment Seminar		3
NAIS-299	Co-op Visual Communications Studies		0
Choose two of the following:			6
NGRD-240	Graphic Design and Typography II \ddagger		
NGRD-221	History of Graphic Design \ddagger		
N3DG-220	Principles of 4D Design §§		
NGRP-231	Image Preparation§		
NGRP-245	Color Theory and Management§		
Choose three of the following:			9
NAIS-292	Portfolio Workshop $\ddagger /$ / §		
NGRD-255	Publication Design \ddagger		
NGRD-256	Identity Design \ddagger		
NGRD-257	Animation §§		
NGRP-220	Videography §§		
NGRP-252	PDF Production and Workflow§		
NGRP-250	Page Layout II§		
NGRP-270	Specialty Graphics Imaging§		
Concentration Elective			3
NTID General Education - Perspective**			3
Third Year			
Choose one of the following:			3
NGRD-230	Digital Illustration \ddagger		
NAIS-291	Production Workshop		
NGRP-261	Interactive Digital Media		
Concentration Elective			6
NTID General Education - Perspective**			3
Total Seme	it Hours		63
Please see the NTID General Education Curriculum (GE) for more information.			
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course. \ddagger NGRD courses/Graphic Design concentration § NGRP courses/Graphic Production concentration §§ N3DG courses/Digital Media Concentration			

\dagger Any mathematics course numbered NMTH-120 or higher; students who place above NMTH-140 can take math or a 3-credit course from any of the four NTID LAS Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; Creative and Innovative Exploration; and Scientific Processes.
** NTID General Education Perspective courses may be from any of these three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration.

Electives

Course
 Graphic Design Concentration

N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
N3DG-220	Principles of 4D Design
NAIS-199	Independent Study-Visual Communications Studies
NAIS-289	Special Topics-Visual Communications Studies
NGRD-115	Visual Idea Development
NGRD-211	Drawing II
NGRD-258	Cartooning
NGRP-110	Digital Photography I
NGRP-220	Digital Photography II
NGRP-232	Videography
NGRP-251	Image Manipulation
NGRP-260	Publication Production
NGRP-275	Web Design II

Graphic Production Concentration	
N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
NAIS-199	Independent Study - Visual Communications Studies
NAIS-289	Special Topics - Visual Communications Studies
NGRD-115	Visual Idea Development
NGRP-210	Digital Photography II
NGRP-220	Videography
NGRP-232	Image Manipulation
NGRP-251	Publication Production
NGRP-275	Digital Printing Systems

NGRP-275 Digital Printing Systems

N3DG-110	Basic 3D Modeling
N3DG-115	Intermediate 3D Modeling and Techniques
NAIS-199	Independent Study- Visual Communications Studies
NAIS-289	Special Topics - Visual Communications Studies
NGRD-211	Drawing II
NGRD-258	Cartooning
NGRP-110	Digital Photography I
NGRP-210	Digital Photography II
NGRP-232	Image Manipulation
NGRP-260	Web Design II

Admission requirements

For the career-focused AOS Degree

- 2 years of high school math preferred
- 1 year of high school science preferred
- English language skills as evidenced by application materials determine acceptance into the AAS or the AOS program.
Specific English, Mathematics and Science Requirements and other

Recommendations

Successful completion of the Summer Vestibule Program is required.

- English: Placement into Career English I (NENG-212) or above Students successfully completing AOS degrees typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Placement into the Mathematics in Society (NMTH140) course. Typically, students entering this major will have completed at least two years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is $14-17$.

General Science, AS

www.rit.edu/study/general-science-as
Matthew A. Lynn, Chairperson
585-475-5923 (V), 585-286-4751 (VP), maIntm@rit.edu

Program overview

The associate in science (AS) degree in general science is designed to prepare deaf and hard-of-hearing students who are close to, but not fully ready for, direct entry into a bachelor's-level program in the sciences. The degree is a pathway for completing the course work taken during the first two years of a BS degree program in RIT's College of Science or RIT's College of Health Sciences and Technology. This program is available for qualified deaf and hard of hearing students.

This AS degree, offered by RIT's National Technical Institute for the Deaf, serves as a bridge program for qualified students based on academic transcripts, admission test scores, and other evidence that support a reasonable expectation of success in the baccalaureate program. By combining preparatory studies in math and English with bachelor's-level science, math, and liberal arts courses, students can qualify to transfer as juniors into a BS program depending on the course work taken for the AS degree. Students acquire the foundational skills necessary for success in the scientific field of their choice as they also develop skills and knowledge in communication, critical thinking, problem-solving, and mathematics.

You'll start with an AS in general science, which provides you with the courses and credits you need to enroll in and successfully complete a bachelor's degree program. Qualified students who complete the AS in general science degree will be admitted to a bachelor's degree as juniors.

Upon successful completion of your AS program in general science, you will have several options from which to choose. You can enroll in RIT's College of Science, where you can pursue a bachelor's degree in biochemistry, biology, biotechnology and molecular bioscience, chemistry, or environmental science Or you can enroll in RIT's College of Health Sciences and Technology, where you can work towards a bachelor's degree in biomedical sciences.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Qualified students also may go on to enroll in graduate or professional school upon completion of the bachelor's degree.

Curriculum

General Science, AS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
NMTH-275	General Education - Elective: Advanced Mathematics	3
UWRT-150	```General Education - First-Year Writing: FYW: Writing Seminar (WI)```	3
Choose one of the following course sequences:		8
CHMG-141	General Education - Scientific Principles Perspective: General \& Analytical Chemistry I	
CHMG-142	General \& Analytical Chemistry II	
CHMG-145	General \& Analytical Chemistry I Lab	
CHMG-146	General \& Analytical Chemistry II Lab	
or		
BIOL-101	General Education - Scientific Principles Perspective: General Biology I	
BIOL-102	General Biology II	
BIOL-103	General Biology I Lab	
BIOL-104	General Biology II Lab	
Choose one of the following:		3
NMTH-220	Trigonometry	
NMTH-250	Elementary Statistics	
	General Education - Electives	6
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
Second Year		
	Professional Elective Labs \ddagger	4
	Professional Electives \ddagger	15
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Electives	3
	General Education - Electives \dagger	3

Total Semester Credit Hours
Please see the NTID General Education Curriculum (GE) for more information
Please see Wellness Education Requirement for more information. Students completing associate's
degrees are required to complete one Wellness course.

+ Students take Calculus A (MATH-171) or Introduction to Statistics I (STAT-145) depending on their focus area. Students may need to take additional math coursework upon entry to the BS program as required by the specified major.
\ddagger These electives fulfill course work that aligns with the desired College of Science or College of Health Sciences and Technology BS degree program chosen by the student

Admission requirements

For the AS Degree Leading to Bachelor's Degree (Associate+Bachelor's Program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.
Specific English, Mathematics and Science Requirements and other Recommendations
The proposed admission requirements are the same as those already established for admitting students into the NTID science pre-baccalaureate program.
- English: Placement into Critical Reading and Writing (UWRT100) or a First Year Writing course, such as FYW: Writing Seminar (UWRT-150);
- Mathematics: NTID Math Placement score greater than or equal to 40, which equates to placement into Advanced Mathematics (NMTH275). Students will enroll in the mathematics courses required by the intended bachelor's program. Typically, students entering this program will have completed at least three years of high school mathematics. Once in the program, students will take math courses that are appropriate for their intended focus area.
- Science: Students will enroll in science courses that lead to their intended bachelor's program. Typically, students entering this program will have completed at least three years of high school science.
- ACT (optional): The ACT middle 50% composite score is $18-21$ with no sub-scores less than 19 .

Laboratory Science Technology, AAS

www.rit.edu/study/laboratory-science-technology-aas
Matthew A. Lynn, Chairperson
585-475-5923 (V), 585-286-4751 (VP), maIntm@rit.edu

Program overview

The laboratory science technology program, with its foundation of course sequences in chemistry, biology, and instrumental analysis, was developed primarily from an industry perspective to prepare students for employment as laboratory technicians. The program has several significant factors that set it apart, including the application of real-world analyses and a state-of-the-art instrumentation laboratory. Graduates are prepared to work in a broad range of fields, including chemical, biological, biotechnical, pharmaceutical, environmental, industrial, forensic, and food analysis. This program is available for qualified deaf and hard of hearing students.

If you're interested in doing scientific analysis and lab work in chemical, biological, biotechnical, pharmaceutical, environmental, forensic, food or industrial fields, then the laboratory science technology program is for you. You will study in laboratory settings with experienced faculty and learn to use state-of-the-art laboratory equipment for scientific analysis. Our advanced, high-tech analytical instrumentation is equivalent to that used by scientists on the job. You get hands-on experience using this instrumentation daily.

Laboratory science technology, offered by RIT's National Technical Institute for the Deaf, is available as an associate in applied science (AAS) degree or as an Associate+Bachelor's Degree Program.

The AAS degree in laboratory science technology is a career-focused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level in municipal, public, private and industrial laboratories. Technicians are involved with the collection and preparation of samples and standards. They also perform instrumental, volumetric, gravimetric, and biological analyses. Additional job responsibilities may include the interpretation and reporting of experimental results and data.

The Associate+Bachelor's Degree Program in laboratory science technology prepares you to complete an RIT bachelor's degree. In this option, upon successful completion of the AAS in laboratory science technology, provided you maintain a 3.0 or higher grade point average, you will have several bachelor's degree options from which to choose. You can enroll in RIT's School of Individualized Study, where you can pursue a bachelor's degree in applied arts and science. Or you may enroll in RIT's College of Science, where you can work towards a bachelor's degree in biochemistry, biology, biotechnology and molecular bioscience, chemistry, or environmental science. Qualified laboratory science technology students also have continued their education in other majors in RIT's College of Science and College of Health Sciences and Technology upon completion of the laboratory science technology program. The length of time required to obtain a bachelor's degree upon completion of the AAS program and the number of credits transferred from the laboratory science technology curriculum vary by program.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the laboratory science technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Laboratory Science Technology, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
NLST-120	Laboratory Tools	3
NLST-171	Fundamentals of Chemistry I	3
NLST-172	Fundamentals of Chemistry II	3
NLST-220	Analytical Chemistry	3
NMTH-212	General Education - Elective: Integrated Algebraf	3
NSCI-161	General Education - Scientific Principles Perspective:	3
NSCI-162	Fundamentals of Biology I	3
	Fundamentals of Biology II	3
	General Education - First Year Writing (WI)	3
	General Education - Electivet	3
Second Year	General Education - Ethical Perspectivet	
NLST-225	Laboratory Applications	3
NLST-230	Principles of Organic Chemistry	4
NLST-232	Laboratory Mathematics	3
NLST-235	Principles of Biochemistry	3
NLST-240	Biotechnology I	3
NLST-245	Biotechnology II	3
NLST-250	Quantitative Instrumental Analysis	4
NLST-255	Chemical Separations \& Chromatography	4
NLST-260	Laboratory Methods	3
NLST-299	Co-op: Laboratory Science Technology	0
	General Education - Artistic Perspective	3
Third Year		Technical Electives§
	General Education - Global Perspectivet	6
	General Education - Social Perspectivet	3
		76

Total Semester Credit Hours
See NTID General Education Curriculum (GE) requirements for more information.
See Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective.
\# Students placing above NMTH-212 must take a higher-level NMTH or MATH (College of Science) course as appropriate.
§ Please see list of professional /technical electives below.

Professional/Technical electives*

BIOL-101	General Biology I
BIOL-121	Introductory Biology I
CHEM-130	Chemical Connections
CHEM-151	General Chemistry
CHEM-155	Chemistry Workshop
CHMG-141	General \& Analytical Chemistry I
MATH-161	Applied Calculus
MATH-171	Calculus A
MATH-181	Project-Based Calculus I
MEDG-101	Human Biology I
MEDS-250	Language of Medicine
NLST-270	Human Anatomy and Physiology I
NLST-285	Chemical Technology
STAT-145	Undergraduate Research: Laboratory Science Technology
	Introduction to Statistics I
	NMTH-220 or above
Some of these courses may require department approval. Additional courses may be used as electives,	

[^13]
Admission requirements

For the career-focused AAS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS Degree Leading to Bachelor's Degree (Associate+Bachelor's Program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills as evidenced by application materials determine associate degree options.
Specific English, Mathematics, and Science Requirements and other Recommendations
- English: Placement in a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students typically enter First-Year Writing with reading scores equivalent to 130 or higher on the NTID Reading Test and writing scores of 67 or higher on the NTID Writing Test. However, students who complete AAS degrees typically enter NTID with reading scores above 98 on the NTID Reading Test and writing scores above 50 on the NTID Writing Test.
- Mathematics: Placement in Integrated Algebra (NMTH-212) or higher. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science. Completion of high school chemistry is required.
- ACT (optional): The ACT middle 50% composite score is 18-21.

Laboratory Science Technology, AOS

www.rit.edu/study/laboratory-science-technology-aos
 Matthew A. Lynn, Chairperson
 585-475-5923 (V), 585-286-4751 (VP), maIntm@rit.edu

Program overview

The laboratory science technology program, with its foundation of course sequences in chemistry, biology, and instrumental analysis, was developed primarily from an industry perspective to prepare students for employment as laboratory technicians. The program has several significant factors that set it apart, including the application of real-world analyses and a state-of-the-art instrumentation laboratory. Graduates are prepared to work in a broad range of fields, including chemical, biological, biotechnical, pharmaceutical, environmental, industrial, forensic, and food analysis. This program is available for qualified deaf and hard of hearing students.

If you're interested in doing scientific analysis and lab work in chemical, biological, biotechnical, pharmaceutical, environmental, forensic, food or industrial fields, then the laboratory science technology program is for you. You will study in laboratory settings with experienced faculty and learn to use state-of-the-art laboratory equipment for scientific analysis. Our advanced, high-tech analytical instrumentation is equivalent to that used by scientists on the job. You get hands-on experience using this instrumentation daily.

The associate in occupational studies (AOS) degree in laboratory science technology, offered by RIT's National Technical Institute for the Deaf, is a career-focused degree program that leads to immediate entry into well-paying careers at the paraprofessional or technician level in municipal, public, private and industrial laboratories. Technicians are involved with the collection and preparation of samples and standards. They also perform instrumental, volumetric, gravimetric, and biological analyses. Additional job responsibilities may include the interpretation and reporting of experimental results and data.

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the laboratory science technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Laboratory Science Technology, AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
NENG-212	NTID General Education Foundation - Career English: Career English I	3
NENG-213	NTID General Education Foundation - Career English: Career English II	3
NLST-120	Laboratory Tools	3
NLST-171	Fundamentals of Chemistry I	3
NLST-172	Fundamentals of Chemistry II	3
NLST-220	Analytical Chemistry	4
NMTH-212	NTID General Education Foundation - Mathematics: Integrated Algebrat	3
NSCl-161	NTID General Education - Scientific Processes Perspective: Fundamentals of Biology I	3
NSCI-162	Fundamentals of Biology II	3
Second Year		
NLST-225	Laboratory Applications	3
NLST-230	Principles of Organic Chemistry	4
NLST-235	Principles of Biochemistry	3
NLST-240	Biotechnology I	3
NLST-245	Biotechnology II	3
NLST-250	Quantitative Instrumental Analysis	4
NLST-255	Chemical Separations \& Chromatography	4
NLST-260	Laboratory Methods	3
NLST-299	Co-op: Laboratory Science Technology	0

Third Year		3
NLST-232	Laboratory Mathematics	6
	Technical Electives \ddagger	3

Total Semester Credit Hours

See NTID General Education Curriculum (GE) requirements for more information
See Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course

+ Students placing above NMTH-212 can take a higher-level NMTH course or any course from a nonscience GE Perspective area
\ddagger Courses that may be used as a technical elective include: Chemical Technology (NLST-270), Undergraduate Research: Laboratory Science Technology (NLST-285, with department approval), NSCI120 or above with department approval, or NMTH-220 or above with department approval.
§ This GE Perspective course may be from any of the following three Perspective categories: ASL-Deaf Cultural Studies; Communication, Social \& Global Awareness; or Creative and Innovative Exploration.

Admission requirements

For the career-focused AOS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.
Specific English, Mathematics, and Science Requirements and other Recommendations
- English: Placement into Career English I (NENG-212) or above Students successfully completing AOS degrees typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Placement into Integrated Algebra (NMTH-212) or above. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science. Completion of high school chemistry is required.
- ACT (optional): The ACT middle 50% composite score is $14-17$.

Mobile Application Development, AAS

www.rit.edu/study/mobile-application-development-aas

Brian Trager, Associate Professor

585-286-5318, Brian.Trager@rit.edu

Program overview

The associate in applied science (AAS) degree in mobile application development prepares you for work in the software development industry with a focus on application design and development for mobile platforms. Mobile app development is a field that brings concepts in programming, web development, and interface design together. Using current and emerging technologies, you develop skills in app design, learn relevant programming languages for application development on a variety of smart-devices, and learn the policies and procedures for submitting apps for distribution. This program is available for qualified deaf and hard of hearing students.

Courses you will take cover multiple aspects of internet, mobile-related technologies, including programming languages and web markup, server side technologies and tools, mobile web development, responsive design, and application optimization for mobile devices.

Graduates of this program may work independently or with a team of programmers writing and developing software programs for mobile applications for contemporary devices. This requires skills in information gathering, user-centered design, effective deployment practices on a range of devices, and strong communication skills.

Mobile application development is available as AAS or as an Associate+Bachelor's Degree Program.

The AAS degree in mobile application development, offered by RIT's National Technical Institute for the Deaf, is a career-focused degree program that leads to immediate entry into the workforce.

The Associate+Bachelor's Degree Program in mobile application development prepares you to complete an RIT bachelor's degree. You start with an AAS in mobile application development, which provides you with the foundational courses and credits you need to enroll in and successfully complete a bachelor's degree program in RIT's Golisano College of Computing and Information Sciences. Upon completion of your AAS program, you will enroll in the Golisano College where you will complete a bachelor's degree in web and mobile computing.

Learn more about the benefits of pursuing an Associate+Bachelor's Degree Program.

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the mobile application development program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your second-year academic requirements.

Curriculum

Mobile Application Development, AAS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NACA-172	Website Developmentł	3
NCAR-010	Freshman Seminar	0
NMAD-155	Survey of Emerging Visual Design	3
NMAD-180	Programming Fundamentals s: Mobile Domain	4
NMAD-181	Programming Fundamentals II: Mobile Domain	4
NMAD-182	Software Analysis and Design	3
NMAD-250	Mobile User Experience	3
NMTH-275	General Education - Elective: Advanced Mathematics	3
UWRT-150	```General Education - First-Year Writing: FYW: Writing Seminar (WI)```	3
	General Education - Elective*	3
Second Year		
ISTE-230	Introduction to Database and Data Modeling	3
ISTE-240	Web \& Mobile II	3
NACT-240	The World of Work	3
NMAD-252	Mobile User Interfaces	3
NMAD-260	Mobile App Development I	4
NMAD-261	Mobile App Development II	4
NMAD-262	Web Services and Data Storage Technologies	3
NMAD-299	Mobile Application Development Co-op	0
	General Education-Ethical Perspective*	3
	General Education - Social Perspective*	3
	General Education - Scientific Principles Perspective	3
Third Year		
NBUS-225	Introduction to Entrepreneurship	3
NMAD-290	Mobile Applications Development Capstone Projects	3
	Open Elective*	3
	General Education - Artistic Perspective*	3
	General Education - Global Perspective*	3

Total Semester Credit Hours

Please see the NTID General Education Curriculum (GE) for more information
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course

* An ASL-Deaf Cultural Studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another college of RIT. In order to fulfill this requirement as part of the credit hours in the program, it can be a course approved for both AASASLDCS and a General Education - Perspective or General Education - Elective.
\ddagger NACA-172 and ISTE-140 are equivalents.

Admission requirements

For the career-focused AAS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.

For the AAS Degree Leading to Bachelor's Degree (Associate+Bachelor's Program)

- 2 years of math required; students interested in engineering, math and science transfer programs should have three or more years of math.
- 1 year of science required; students interested in engineering, math and science transfer programs should have two or more years of science.
- Physics is recommended for students interested in engineering.
- English language skills, as evidenced by application materials, determine associate degree options.
Specific English, Mathematics and Science Requirements and other Recommendations
- English: Placement in a First Year Writing course such as FYW: Writing Seminar (UWRT-150). Students that place into Critical Reading and Writing (UWRT-100) would also be considered.
- Mathematics: Placement into NTID Introduction to Discrete Mathematics (NMTH-255) or higher. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 18-21 with minimum scores of 18 in Mathematics, 16 in English, and 19 in Reading.

Performing Arts, Certificate

www.rit.edu/study/performing-arts-certificate

Erin Auble, Senior Lecturer

585-475-7048, emtnpa@rit.edu

Program overview

The performing arts certificate program offers deaf and hard-of-hearing students the opportunity to develop knowledge of standard theatrical operating procedures as well as principles and practices of theater accessibility for deaf people. Students completing this certificate often go on to work in professional and community theater. The certificate also provides a solid foundation for those who wish to pursue further education in the performing arts. The certificate is offered to students enrolled in AOS and AAS degree programs at NTID. It is not a stand-alone certificate. Students must take three 3-credit courses from the NTID Department of Performing Arts and at least one credit of Theatre Practicum (PRFN 218) to meet the certificate requirements.

Curriculum

Performing Arts, certificate, typical course sequence

COURSE	SEMESTER CREDIT HOURS	
PRFN-218	Theatre Practicum	1
Choose three of the following:	9	
PRFN-100	Introduction to Performing Arts	
PRFN-102	Introduction to Stagecraft	
PRFN-111	Sign Mime, Creative Movement, and Visual Theatre	
PRFN-199	Independent Study: Performing Arts	
PRFN-200	Appreciation of Theatrical Design	
PRFN-201	Appreciation of Media in Performance	
PRFN-204	Scenic Painting and Props	
PRFN-206	Stage Makeup	$\mathbf{1 0}$
PRFN-207	Appreciation of Theatrical Costumes	
PRFN-208	Appreciation of Theatrical Scenery	
Total Semester Credit Hours		

Admission requirements

Applicants for the performing arts certificate must be students in good standing in an undergraduate program at RIT, or hold an undergraduate degree from RIT.

Candidates must complete or have already completed an undergraduate degree program from RIT to receive this certificate.

Pre-Baccalaureate Studies in Engineering

www.rit.edu/study/pre-baccalaureate-studies-engineering
Karen Beiter, Associate Professor
585-286-4546, kjbndp@rit.edu

Program overview

The pre-baccalaureate studies program is available to students who are accepted by RIT's National Technical Institute for the Deaf (NTID) and are close to, but not fully ready for, direct entry into a baccalaureate-level program through one of the other colleges of RIT. It is a bridge program for qualified students, based on academic transcripts, scores on admissions tests, and other evidence that supports a reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to a program of study may choose the career exploration studies program.

Enrollment in the pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or discipline-related skills. The academic program is flexible and individualized and allows students to focus on needed skills while concurrently progressing toward their chosen field of study. Students may take courses taught by NTID faculty, as well as entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students cannot receive a degree in pre-baccalaureate studies. Rather, they will apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to a degree-granting program in NTID or one of the other colleges of RIT.

Curriculum

Pre-baccalaureate Studies, Engineering Option, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
PHYS-211	University Physics I	4
PHYS-212	University Physics II	4
MATH-181	Project-Based Calculus $\ddagger \ddagger$	4
MATH-182	Project-Based Calculus IIf	4
	General Education Courses	6
	Pre-baccalaureate Courses \dagger	0-3
	Major Courses	6
	General Education - Elective	3
Total Seme	t Hours	31-34
Please see the General Education Curriculum (GE) in the Graduation Requirements section of this bulletin for more information.		
\# Alternative mathematics courses may be required as prerequisites, depending on placement. If pursuing the physics option, students must choose the physics sequence.		

Pre-baccalaureate Studies, Engineering Technology Option, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
PHYS-111	College Physics I	4
MATH-111	Precalculus	3
MATH-171	Calculus A \ddagger	3
MATH-172	Calculus B \ddagger	3
	General Education - Elective	3
	Pre-baccalaureate Courses \dagger	$0-3$
	Undeclared Engineering Technology Seminar	1
	Major Courses	6
	General Education Courses	6

Total Semester Credit Hours \quad 29-32
Please see the General Education Curriculum (GE) in the Graduation Requirements section of this bulletin for more information.
\dagger Pre-baccalaureate courses strengthen students' skills in critical thinking, learning strategies, and specific discipline areas
\neq Alternative mathematics courses may be required as prerequisites, depending on placement. If pursuing the physics option, students must choose the physics sequence.

Admission requirements

Specific English, Mathematics and Science Requirements and other Recommendations

Students entering pre-baccalaureate studies in engineering will typically be required to have:

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150), or Critical Reading and Writing (UWRT-100).
- Mathematics: Placement into NTID's Advanced Math (NMTH-275) course or higher, such as Pre-calculus (MATH-111).
- Science: Readiness after a single NTID science course, Concepts of College Physics (NSCI-270), for entry into RIT's College of Science Physics I (PHYS-111) course.
- ACT (optional): The ACT middle 50% composite score is 18-21 (20 Math, 18 Reading).

Pre-Baccalaureate Studies in Liberal Studies

www.rit.edu/study/pre-baccalaureate-studies-liberal-studies Jennifer Gravitz,
 jlgnge@rit.edu

Program overview

The pre-baccalaureate studies program is available to students who are accepted by NTID and are close to direct entry into a baccalaureate-level program through one of the other colleges of RIT. It is a bridge program for qualified students, based on academic transcripts, scores on admissions tests, and other evidence that supports a reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to a program of study may choose the career exploration studies program.
Enrollment in the pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or discipline-related skills. The academic program is flexible and individualized and allows students to focus on needed skills while concurrently progressing toward their chosen field of study. Students may take courses taught by NTID faculty, as well as entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students cannot receive a degree in pre-baccalaureate studies. Rather, they will apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to a degree-granting program in NTID or one of the other colleges of RIT.

Curriculum

Pre-baccalaureate Studies, Liberal Studies, typical course sequence

COURSE	SEMESTER CREDIT HOURS	
First Year		
NCAR-010	Freshman Seminar	0
	First Year Major Courses	6
	General Education Courses*	$6-9$
	Mathematics or Science Course \ddagger	3
NTID Humanities or Social Science Courses§	3	
Pre-Baccalaureate Courses \dagger	$6-9$	
Total Semester Credit Hours	$\mathbf{2 4 - 3 0}$	

* Please see the NTID General Education Curriculum (GE) for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or a First Year Writing course, such as FYW: Writing Seminar (UWRT-150). Students should also choose a course that satisfies one of the RIT General Education Perspectives: ethical, artistic, global, or social.
\dagger Pre-baccalaureate courses strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.
\# Students may choose one of the following: NMTH-210, NMTH-250, NMTH-260, or a science course numbered $\mathrm{NSCI}-250$ or higher
§ Students may choose one of the following: any communication studies course numbered NCOM-201 or higher, or any humanities and social sciences course numbered NHSS-260 or higher.

Admission requirements

Specific English, and Mathematics Requirements and other Recommendations

Students entering pre-baccalaureate studies in liberal studies will typically be required to have:

- English: Placement into Critical Reading and Writing (UWRT-100)
- Mathematics: Placement into the NTID Advanced Mathematics (NMTH-275) course or higher
- ACT (optional): The ACT middle 50% composite score is $18-21$ with a reading score of 20 and all other skill area scores of 18 or higher.

Pre-Baccalaureate Studies in Science and Mathematics

www.rit.edu/study/pre-baccalaureate-studies-science-and-mathematics
Matthew Lynn, Professor
585-475-5923, malntm@rit.edu

Program overview

The pre-baccalaureate studies program is available to students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program through one of the other colleges of RIT. It is a bridge program for qualified students, based on academic transcripts, scores on admissions tests, and other evidence that supports a reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to a program of study may choose the career exploration studies program.

Enrollment in the pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or discipline-related skills. The academic program is flexible and individualized and allows students to focus on needed skills while concurrently progressing toward their chosen field of study. Students may take courses taught by NTID faculty, as well as entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students cannot receive a degree in pre-baccalaureate studies. Rather, they will apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to a degree-granting program in NTID or one of the other colleges of RIT.

Curriculum

Pre-Baccalaureate Studies (Biology, Biotechnology, Environmental Science, Environmental Management or Medical Sciences), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year BIOL-101 General Biology I 3 BIOL-102 General Biology II 3 BIOL-103 General Biology I Lab 1 BIOL-104 General Biology II Lab 1 MATH-101 College Algebra 3 MATH-161 Applied Calculus \ddagger 4 NCAR-010 Freshman Seminar 0 Pre-baccalaureate courses* $3-6$ General Education Courses \dagger $\mathbf{2 7 - 3 0}$ Total Semester Credit Hours * Pre-baccalaureate courses are an available option to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. t Please see General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150). \ddagger Alternative mathematics courses may be required as prerequisites, depending on placement.		

Pre-Baccalaureate Studies in Science (Chemistry Option), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHMG-141	General \& Analytical Chemistry I	3
CHMG-142	General \& Analytical Chemistry II	3
CHMG-145	General \& Analytical Chemistry I Lab	1
CHMG-146	General \& Analytical Chemistry II Lab	1
MATH-181	Project-Based Calculus I	4
MATH-182	Project-Based Calculus II	4
NCAR-010	Freshman Seminar	0
	General Education Courses*	9
	Pre-baccalaureate coursest	$\mathbf{4 - 6}$
Total Semester Credit Hours	$\mathbf{2 8 - 3 1}$	

* Please see General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150).
\dagger Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.

Pre-Baccalaureate Studies in Science (Math or Physics Option), typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
NCAR-010 Freshman Seminar	0
Choose one of the following course sequences:§	8
CHMG-141 General \& Analytical Chemistry I	
CHMG-142 General \& Analytical Chemistry II	
CHMG-145 General \& Analytical Chemistry I Lab	
CHMG-146 General \& Analytical Chemistry ILab	
or	
PHYS-211 University Physics I	
PHYS-212 University Physics II	
Choose one of the following course sequences: \ddagger	6-8
MATH-171 Calculus A	
MATH-172 Calculus B	
or	
MATH-181 Project-Based Calculus I	
MATH-182 Project-Based Calculus II	
General Education Courses*	9
Pre-baccalaureate Coursest	3-6
Total Semester Credit Hours	26-31

* Please see General Education Requirements for more information. Depending on placement, the writing sequence may begin with Critical Reading and Writing (UWRT-100) or FYW: Writing Seminar (UWRT-150).
\dagger Pre-baccalaureate courses are an option to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas.
\# Alternate mathematics courses may be required as prerequisites, depending on placement. § If pursuing the physics option, students must choose the physics sequence

Admission requirements

Specific English and Mathematics Requirements and other Recommendations

Students entering pre-baccalaureate studies in science or mathematics will typically be required to have:

- English: Placement into Critical Reading and Writing (UWRT-100)
- Mathematics: Placement in NTID Advanced Mathematics (NMTH275) course or higher
- ACT (optional): The ACT middle 50% composite score is $18-21$ with subscores of at least 19 .

Pre-Baccalaureate Studies in Visual Communications

www.rit.edu/study/pre-baccalaureate-studies-visual-communications

Edward Mineck, Professor
585-475-6341, enmnvc@rit.edu

Program overview

The pre-baccalaureate studies program is available to students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program through one of the other colleges of RIT. It is a bridge program for qualified students, based on academic transcripts, scores on admissions tests, and other evidence that supports a reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to a program of study may choose the career exploration studies program.

Enrollment in the pre-baccalaureate studies program is appropriate for students who need to further develop mathematics, English, or discipline-related skills. The academic program is flexible and individualized and allows students to focus on needed skills while concurrently progressing toward their chosen field of study. Students may take courses taught by NTID faculty, as well as entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students cannot receive a degree in pre-baccalaureate studies. Rather, they will apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to a degree-granting program in NTID or one of the other colleges of RIT.

Curriculum

Pre-Baccalaureate Studies, Visual Communications Studies (American Crafts, Art, and Design), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NAIS-120	Principles of Design and Color	3
NAIS-130	Raster and Vector Graphics	3
NAIS-140	Graphic Design and Typography I	3
NCAR-010	Freshman Seminar	0
NGRD-111	Drawing I	3
NGRD-115	Visual Idea Development	3
NGRD-211	Drawing II	3
	General Education Courses	12
	Elective	3

Total Semester Credit Hours 33
Please see the General Education Requirements for more information.
Note: Portfolio of original artwork is required to determine admission. See the College of Art and Design support coordinator for further information.

Pre-Baccalaureate Studies, Visual Communications Studies (Photographic Arts and Sciences, BFA degree), typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NAIS-120	Principles of Design and Color	3
NAIS-130	Raster and Vector Graphics	3
NAIS-140	Graphic Design and Topography I	3
NCAR-010	Freshman Seminar	0
NGRD-111	Drawing I	3
NGRD-115	Visual Idea Development	3
NGRP-110	Digital Photography I	3
NGRP-210	Digital Photography II	3
	General Education Courses	12
Total Semester Credit Hours	$\mathbf{3 3}$	

Please see the General Education Requirements for more information.

Pre-Baccalaureate Studies, Visual Communications Studies (Photographic Arts and Sciences, BS degree), typical course sequence

COURSE SEMESTER CREDIT HOURS

First Year		
NAIS-120	Principles of Design and Color	3
NAIS-130	Raster and Vector Graphics	3
NCAR-010	Freshman Seminar	0
NGRP-110	Digital Photography I	3
NGRP-231	Image Preparation	3
NGRP-232	Image Manipulation	3
	General Education Courses	12
	Math Course*	3
Total Semester Credit Hours	Science Course†	3

Please see the General Education Requirements for more information.

* Students may choose any mathematics course numbered NMTH-120 or higher
† Students may choose any science course numbered NSCI-120 or higher.
Pre-Baccalaureate Studies, Visual Communications Studies (Film and Animation Option), typical course sequence

COURSE		SEMESTER CREDIT
HOURS		
First Year		
NCAR-010	Freshman Seminar	0
NGRP-220	Videography	3
SOFA-107	Principles of Animation	3
SOFA-103	Introduction to Imaging and Video Systems	3
	Theatre Electives/Performing Artst	$3-9$
	General Education Courses	12
Total Semester Credit Hours	$\mathbf{2 4 - 3 0}$	

Please see the General Education Requirements for more information.
\dagger Please see the College of Art and Design support coordinator for a list of current theatre electives.
Pre-Baccalaureate Studies, Visual Communications Studies (Graphic Media Science and Technology), typical course sequence

COURSE	SEMESTER CREDIT HOURS
First Year	
NAIS-130 Raster and Vector Graphics	3
NAIS-150 Page Layout I	
NCAR-010 Freshman Seminar	
NGRP-231 Image Preparation	
NGRP-232 Image Manipulation	
NGRP-245 Color Theory and Management	
Math Courset	
Science Course \ddagger	
General Education Courses	12
Total Semester Credit Hours	33

Please see the General Education Requirements for more information.
† Students may choose any mathematics course numbered NMTH-120 or higher.
\ddagger Students may choose any science course numbered NSCI-120 or higher.

Admission requirements

Specific English, Mathematics, and Science Requirements and other Recommendations

Students entering pre-baccalaureate studies in visual communications will typically be required to have:

- English: Placement into a First Year Writing course, such as FYW: Writing Seminar (UWRT-150)
- Mathematics: Placement into mathematics course NMTH-120 or higher for BFA degrees or NMTH-250 or higher for BS degrees
- Science: Placement into science NSCI-120 or higher for BFA degrees or NSCI-250 or higher for BS degrees
- ACT (optional): The ACT middle 50% composite score is $18-21$

Precision Manufacturing Technology, AOS

www.rit.edu/study/precision-manufacturing-technology-aos
Karen Beiter, Chairperson
585-286-4546, kjbndp@ntid.rit.edu

Program overview

Students in the associate in occupational studies (AOS) degree in precision manufacturing technology are prepared for employment in precision machining and/or precision optics manufacturing occupations. These include tool and die making, mold making, instrument making, manufacturing of optical elements, and computer numerical control machining (CNC). Graduates are successfully employed in both large manufacturing corporations and small contract manufacturing shops. This program is available for qualified deaf and hard of hearing students.

The precision manufacturing technology program, offered by RIT's National Technical Institute for the Deaf, prepares you for immediate employment upon graduation. Some of the job responsibilities for graduates include: set up and operate lathes, milling machine tools, grinders, polishers, computer numerical controlled machine tools, and computeraided manufacturing (i.e., 5 -axis); shape material into precision parts by conventional and nonconventional processes; follow blueprints; and use advanced measuring techniques to inspect work.

Cooperative Education

Cooperative education, or co-op for short, is full-time, paid work experience in your field of study. And it sets RIT graduates apart from their competitors. It's exposure-early and often-to a variety of professional work environments, career paths, and industries. RIT co-op is designed for your success.

Students in the precision manufacturing technology program are required to complete a cooperative education work experience prior to graduation. You may schedule your co-op after completing your secondyear academic requirements.

Curriculum

Precision Manufacturing Technology, AOS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
NCAR-010	Freshman Seminar	0
NPMT-101	Blueprint Reading I	3
NPMT-121	Precision Measurement I	3
NPMT-131	Precision Manufacturing Technology I	3
NPMT-132	Precision Manufacturing Technology II	3
NPMT-214	CAD Applications	3
NENG-212	NTID General Education Foundation - Career English:	
Career English I		

Please see the NTID General Education Curriculum (GE) for more information.
Please see Wellness Education Requirement for more information. Students completing associate degrees are required to complete one Wellness course.
\dagger Any mathematics course numbered NMTH-180 or higher
\ddagger NTID LAS Perspective course may be from any of these three Perspective categories: ASL-Deaf Cultural
Studies; Communication, Social \& Global Awareness; and Creative and Innovative Exploration
§ Any scientific processes course NSCl-120 or higher.

Electives

course

NPMT-102
NPMT-237
NPMT-242
NPMT-253 Blueprint Reading I Precision Grinding Precision Optics Manufacturing II Advanced CNC Concepts

Admission requirements

For the career-focused AOS Degree

- 2 years of math required
- 1 year of science required
- English language skills as evidenced by application materials determine associate degree options.
Specific English, Mathematics and Science Requirements and other Recommendations

Successful completion of a sampling experience either through the Summer Vestibule Program or an equivalent career exploration course is a prerequisite, as are the following:

- English: Placement into Career English I (NENG-212) or above. Students successfully completing AOS degrees typically enter with reading scores of 79 or higher on the NTID Reading Test and writing scores of 39 or higher on the NTID Writing Test.
- Mathematics: Placement into Foundations of Algebra (NMTH-180) or a higher-level course. Typically, students entering this major will have completed at least three years of high school mathematics.
- Science: Typically, students entering this major will have completed at least two years of high school science.
- ACT (optional): The ACT middle 50% composite score is 14-17.

National Technical Institute for the Deaf

Faculty

Gerard J. Buckley, BS, Rochester Institute of Technology; MSW, University of Missouri; Ed.D., University of Kansas-President, NTID and Vice President and Dean, RIT; Associate Professor

Academic Affairs

Gary W. Behm, AAS, BS, Rochester Institute of Technology; MS, Lehigh University-Associate Vice President for Academic Affairs; Associate Professor

Linda M. Bryant, BS, Nazareth College of Rochester; MS, Gallaudet University; Ed.D., University of Rochester-Director, NTID Learning Consortium and Online Learning Initiatives; Associate Professor

Joseph H. Bochner, BA, City University of New York at Queens College; MA, Ph.D., University of Wisconsin-Researcher; Professor

Jessica A. Cuculick, BS, MS, Rochester Institute of Technology; MSW, East Carolina University; Ed.D., University of RochesterAssociate Dean for Academic Administration; Professor

Ann M. Hager, BS, Nazareth College of Rochester; MS, University of Rochester-Interim Assistant Dean for Cross-Registered Academic Services; Associate Professor

Peter C. Hauser, BA, Central Connecticut State University; MA, Ph.D., Gallaudet UniversityInterim Associate Dean of Research; Professor

Joseph Hill, BS, Miami University; MA, Ph.D., Gallaudet UniversityAssistant Dean of NTID Faculty Recruitment and Retention; Associate Professor

Dino J. Laury, AAS, BS, MS, Rochester Institute of Technology; Ed.D., University of RochesterAssociate Director of Professional Workforce Education; Associate Professor

Matthew A. Lynn, BS, The Ohio State University; MS, Indiana University; Ph.D., University of Arizona-Associate Dean for Curricular Affairs; Professor

Thomastine Sarchet, BS, MS, Rochester Institute of Technology; Ed.D., University of RochesterAssistant Dean for International Educational Outreach; Assistant Professor

American Sign Language and Interpreting Education

Keith M. Cagle, BS, Rochester Institute of Technology; MA, California State University at Northridge; Ph.D., University of New Mexico at AlbuquerqueChairperson; Associate Professor

Leisa R. Boling, AAS, BFA, MS, Rochester Institute of TechnologyASL Program Director, American Sign Language and Interpreting Education; Assistant Professor

Sandra Bradley, BS, Gallaudet University; MS, Rochester Institute of Technology-Senior Lecturer

Marguerite F. Carrillo, BS, MS, Rochester Institute of TechnologySenior Lecturer

Robyn K. Dean, BA, Maryville College; MA, Colgate Rochester Crozer Divinity School; Ph.D., Heriot-Watt University (United Kingdom)-Associate Professor

Elayne Fife-Collier, BA, Utah Valley University; MA, Gallaudet University; MS, McDaniel College-Lecturer

Barry M. Haywood, BA, Keuka College-Lecturer
Lisa Johnston, BA, MA, Gallaudet University; MA, University of Arizona at Tucson-Senior Lecturer

Baldev Kaur Khalsa, BA, M Ed., McDaniel College-Associate Professor

Kim B. Kurz, BS, MS, Rochester Institute of Technology; Ph.D. University of Kansas-Professor

Jason Listman, BS, MS, Rochester Institute of Technology; Ed.D., St. John Fisher College- Program CoDirector, American Sign LanguageEnglish Interpretation; Associate Professor

Daniel V. Maffia, BS, Rochester Institute of Technology; MA, Western Oregon UniversityProgram Co-Director, American Sign Language-English Interpretation; Senior Lecturer
Samantha Moore, BS, Rochester Institute of Technology; MA, Western Oregon University-Lecturer

Kierstin Muroski, BA, Mercyhurst College; MA, Ph.D., Gallaudet University-Assistant Professor

Lisa Prinzi, AAS, BS, MS, Rochester Institute of TechnologyCoordinator, Certificate in Educational Interpreting; Assistant Professor

Jeni Rodrigues, BA, California State University; M.Ed., Northeastern University; Ph.D., Gallaudet University-Coordinator, Health Care Programs; Assistant Professor

Business Studies

Mark J. Pfuntner, BS, MBA, Rochester Institute of TechnologyChairperson; Associate Professor

Bakar Ali, BS, MBA, Rochester Institute of Technology; MPA, New York University-Visiting Lecturer
W. Scot Atkins, BS, MS, Rochester Institute of Technology; Ed.D., University of St . ThomasAssociate Professor

Kathleen M. Brady, AS, Monroe Community College; BS, Houghton College; MBA, Rochester Institute of Technology-Senior Lecturer

Kelly Metz Davis, AS, BS, MS, Rochester Institute of TechnologySenior Lecturer

Ann M. Hager, BS, Nazareth College of Rochester; MS, University of Rochester- Assistant Dean for Cross-Registered Academic Services; Associate Professor

Michael Kane, BS, MS, Rochester Institute of Technology; MS, Gallaudet University—Principal Lecturer

Adriana C. Kulakowski, BS, Rochester Institute of Technology; MS, Nazareth College of Rochester; MBA, State University College at Oswego-Senior Lecturer

Tracy DeLong Magin, BS, MSED, State University College at Oswego; MBA, Rochester Institute of Technology-Senior Lecturer

Adrianna J. Smart, BS,
MBA, Rochester Institute of Technology-Lecturer

Kathleen S. Szczepanek, AAS, BFA, MS, Rochester Institute of Technology-Principal Lecturer

Donna M. Tuffner, AAS, BS,
MS, Rochester Institute of Technology-Lecturer

Mellissa Youngman, AAS, Monroe Community College; BS, MBA, Rochester Institute TechnologyPrincipal Lecturer

Communication Studies and Services

Catherine C. Clark, BA, Bradley
University; MS, University of Louisville; AuD, Salus UniversityAssociate Professor

Linda G. Gottermeier, BS, Nazareth College of Rochester; MA, State University College at Geneseo; AuD, Salus University-Professor

Engineering Studies

Karen Beiter, BS, MS, Rochester Institute of Technology-Interim Chairperson; Associate Professor

Christopher Brucker, AAS, BS, M.Arch., Rochester Institute of Technology-Lecturer

Mark A. Davis, AOS, BS,
MS, Rochester Institute of Technology-Lecturer

James R. Fugate, AAS, Monroe Community College; AAS, Rochester Institute of Technology; BA, University of Maryland; MS, M.Arch., Rochester Institute of Technology-Assistant Professor

Trisha L. Gard-Thompson,
AOS, BS, Rochester Institute of Technology-Lecturer

Marcus Holmes, AAS, BS, MS, Rochester Institute of TechnologySenior Lecturer

William R. LaVigne, B.Arch., University of Notre Dame; MS, Rochester Institute of TechnologyAssistant Professor

David Monahan, ME, Rochester Institute of Technology-Lecturer

Information and Computing Studies

Brian Trager, BS, MS, Rochester Institute of TechnologyChairperson; Associate Professor

Michael Berrios, BS, Rochester Institute of Technology-Lecturer

Walter Bubie, BS,University of Aston (United Kingdom); MS, Rochester Institute of Technology-Lecturer
Joshua Butler, BS, University of Minnesota; MD, Ross University School of Medicine; MHI, University of Minnesota-Visiting Lecturer

Kemoy Campbell, BS, Rochester Institute of Technology-Visiting Lecturer

Tao Eng, BS, MS, Rochester Institute of Technology—Principal Lecturer

Mark Jeremy, AAS, BS, MS, Rochester Institute of Technology-Lecturer

Donna A. Lange, BS, State University College at Brockport; MS, Rochester Institute of TechnologyAssociate Professor

Edmund Lucas, BS, Rochester Institute of Technology-Lecturer

James R. Mallory, AAS, Kent State University; BS, MS, Rochester Institute of Technology-Professor

Brian Nadworny, BA, State University College at Potsdam; MS, Rochester Institute of Technology-Lecturer

Mark Reynolds, AAS, Rochester Institute of Technology; BS, State University of New York Empire State College; MS, Rochester Institute of Technology-Lecturer

Tom Simpson, BS, Rochester Institute of Technology; MS, Nazareth College of Rochester-Lecturer

Liberal Studies

Jessica A. Cuculick, BS, MS, Rochester Institute of Technology; MSW, East Carolina University; Ed.D., University of RochesterChairperson; Professor

Colin Allen, MS, Rochester Institute of Technology-Visiting Lecturer
Stephen F. Aldersley, BS, University of Surrey (United Kingdom); MA, College of St. Rose; Ed.D., University of Rochester-Professor

Matthew Annis, BA, University of Rochester; MA, New York University; MS, Rochester Institute of Technology-Lecturer
Royce Best, BA, Ohio University; MA, University of Tennessee; MA, Ph.D., Johns Hopkins University-Lecturer

Janine Butler, BA, University of Maryland; MA, Montclair State University; Ph.D., East Carolina University-Assistant Professor

Pamela R. Conley, AAS, Rochester Institute of Technology; BA, Gallaudet University; MA, State University College at Brockport; MS, University of Rochester-Associate Professor

Dara Doane, BA, American
University; MS, Boston
College-Lecturer
Matthew W. Dye, B.Sc., Manchester Polytechnic (United Kingdom); M.Sc., University of Stirling (United Kingdom); Ph.D., University of South Hampton (United
Kingdom)-Associate Professor
Erin Finton, BS, Nazareth College;
MS, University of Toronto-Visiting
Assistant Professor
Corinna S. Hall, BA, Gallaudet University; MS, University of Rochester-Lecturer

Clayton Ide, BS, Gallaudet University; MS, Rochester Institute of Technology-Senior Lecturer

Denise S. Kavin, BS, Gallaudet University; MS, Northwestern University; Ed.D., Northern Illinois University-Senior Lecturer

Patricia Kenney, BA, Gallaudet
University; BA, MA, California State University in Northridge; Ed.D., University of Rochester-Senior Lecturer

Pamela Kincheloe, BA, Rollins College; MA, University of North Carolina at Chapel Hill; Ph.D., Southern Illinois University-Professor

Sarah Kinor, BA, Florida International University; MA, University of Northern Colorado; MA, University of Vermont; MFA, Bennington College-Lecturer

Kenneth Lerner, BA, Beloit College; MS, University of Virginia-Senior Lecturer

Aron Marie, BS, University of California San Diego; MA, University of Chicago-Visiting Assistant Professor

Rachel C. Mazique, BA, Gallaudet University; MA, Ph.D., University of Texas at Austin—Assistant Professor

David Meek, BS, MS, Ball
State University; Ed.D., Lamar
University-Visiting Assistant Professor

Cindy Officer, BS, MS, Gallaudet
University; Ph.D., Capella
University-Senior Lecturer
Deirdre A. Schlehofer, BA, University of Alaska; M.Phil., University of Bristol (United Kingdom); Ed.D., University of Rochester-Associate Professor
Kathryn Schmitz, BA, Duke
University; MS, Rochester Institute of Technology; Ph.D., University at Buffalo-Associate Professor

Aimee Whyte, BS, Rochester Institute of Technology; MA, Gallaudet University-Senior Lecturer
S. Jordan Wright, BA, State University of New York at Buffalo; MA, Medaille University; Ph.D., Gallaudet University-Assistant Professor

Jeanne Yamonaco, BA, MS, Nazareth College of RochesterSenior Lecturer

Master of Science in Secondary Education

Patrick J. Graham, BS, MS, Rochester Institute of Technology; Ph.D., University of GeorgiaDirector; Associate Professor

Christopher A.N. Kurz, BS, Rochester Institute of Technology; MS, Ph.D., University of Kansas-Professor

Thomastine Sarchet, BS, MS, Rochester Institute of Technology; Ed.D., University of RochesterAssistant Dean for International Educational Outreach; Assistant Professor

Sara Schley, BA, Reed College; MA, Northeastern University; Ed.D., Harvard University-Professor

Jessica W. Williams, BS, University of Georgia; M.Ed., Ph.D., Georgia State University-Interim Chairperson, STEM Academy/ Transition; Associate Professor

Performing Arts

Jill Bradbury, BA, University of California, Irvine; MA, George
Mason University; MA, Ph.D., Brown University-Chairperson; Professor

Erin Auble, BA, Emerson College; MST, Rochester Institute of Technology—Principal Lecturer

Sacha Glasser, BFA, Boston University-Lecturer

Luane Davis Haggerty, BA, City University of New York at Hunter College; MA, Goddard College; Ph.D., Antioch UniversityPrincipal Lecturer
Marc E. Holland, BA, Point Park University-Lecturer

Thomas F. Warfield, BA, State University College at Purchase; MFA, University of Utah-Senior Lecturer

Science and Mathematics

Matthew A. Lynn, BS, The Ohio State University; MS, Indiana University; Ph.D., University of Arizona-Chairperson; Professor
Elizabeth Ayers, BS, MS, Rochester Institute of Technology-Senior Lecturer

Mitchell Bacot, BS, MS, Rochester Institute of Technology-Senior Lecturer

Gary C. Blatto-Vallee, AAS, Rochester Institute of Technology; BS, State University College at Brockport; MA, Rochester Institute of Technology-Senior Lecturer

Stacey M. Davis, BA, Colgate University; BS, MS, Rochester Institute of Technology-Principal Lecturer

Austin U. Gehret, BS, Union College; MS, Ph.D., University of Rochester-Associate Professor

Melody Holmquist, AAS, BS, Rochester Institute of Technology; Ph.D., The Ohio State UniversityVisiting Assistant Professor

Bonnie C. Jacob, BA, Smith College; MS, Ph.D., Clemson University-Associate Professor

Viet Le, BS, Ph.D., Wichita State University-Senior Lecturer

Keith Mousley, BS, Rochester Institute of Technology; MA, Gallaudet University-Associate Professor

Nnaemeka Nnamani, BSc, University of Nigeria Nsukka; MSc, Ph.D., University of California Berkeley—Visiting Assistant Professor

Jason Nordhaus, BA, BS, MS, Ph.D., University of RochesterAssociate Professor

Camille E. Ouellette, BS, Rochester Institute of Technology; MS, Johns Hopkins University-Senior Lecturer

Mariam Paracha, BS, University of Massachusetts; Pharm.D., Massachusetts College of Pharmacy and Health Sciences-Visiting Assistant Professor

Annemarie D. Ross, BS, MS, Rochester Institute of Technology, Ph.D., State University of New York at Buffalo-Associate Professor

Miriam E. Santana-Valadez, BS, Normal Superior Nueva Galicias (Guadalajara); BS, ITESO University (Mexico); MS, St. John Fisher College-Senior Lecturer

Sarah Sarchet, BS, MS, Rochester Institute of Technology-Senior Lecturer

Matthew J. Stefano, BS, MS, Rochester Institute of TechnologyPrincipal Lecturer

Jennifer Swartzenberg, AS, Monroe Community College; BS, MS, Rochester Institute of Technology-Senior Lecturer

David C. Templeton, BA, Wittenberg University; MA, Northwestern University-Associate Professor

Karen Tobin, BS, Rochester Institute of Technology-Senior Lecturer

Sharron M. Webster, BS, MS, Rochester Institute of TechnologyPrincipal Lecturer

Visual Communications Studies

Andrea M. Zuchegno, BS, MS, Rochester Institute of TechnologyChairperson; Associate Professor

Stacy Bick, BFA, MS, Rochester Institute of Technology-Senior Lecturer

David Cohn, BFA, MS, Rochester Institute of Technology-Associate Professor

Shannon Connell, BFA, University of Missouri; MFA, Rochester Institute of Technology-Lecturer
Laural Hartman, BFA,
MS, Rochester Institute of
Technology-Lecturer
David E. Hazelwood, BS,
Rochester Institute of TechnologyAssistant Professor

Eric Kunsman, BFA, BS, MS, Rochester Institute of Technology; MFA, University of the ArtsAssistant Professor

Nancy J. Marrer, BA, Franklin Pierce University; MS, Rochester Institute of Technology-Assistant Professor
J. Troy Olivier, AAS, BS, MS, Rochester Institute of TechnologySenior Lecturer

Sidonie M. Roepke, BFA, MST, MS, Rochester Institute of Technology-Professor

Ernie Roszkowski, BFA, MFA, Rochester Institute of TechnologyPrincipal Lecturer

Kurt Stoskopf, BFA, MFA, Rochester Institute of Technology Associate Professor

Office of the Associate Dean for Research

The National Advisory Group

Peter C. Hauser, BA, Central
Connecticut State University; MA, Ph.D., Gallaudet UniversityInterim Associate Dean of Research; Professor

Wendy Dannels, BS, MS, Rochester Institute of Technology-Associate Research Professor

Matt Dye, B.Sc., Manchester Polytechnic (United Kingdom); M.Sc., University of Stirling (United Kingdom); Ph.D., University of South Hampton (United Kingdom)—Associate Professor

Lisa Elliot, BS, University of Illinois; M.Ed., Ph.D., University of Rochester-Associate Research Professor

Tiffany L. Panko, BS, MBA, Rochester Institute of Technology; MD, University of RochesterAssistant Research Professor

Office of Diversity and

 InclusionPeter C. Hauser, BA, Central
Connecticut State University; MA, Ph.D., Gallaudet UniversityInterim Associate Dean of Research; Professor

Joseph Hill, BS, Miami University; MA, Ph.D., Gallaudet UniversityAssistant Dean NTID Faculty Recruitment and Retention; Associate Professor

Professional and Student Scholar Development

Todd E. Pagano, BA, State University College at Oswego; MS, Ph.D., Tufts University-Executive Director of NTID Professional and Student Scholar Development; Professor

Access Services

Rico Peterson, BA, Nazareth College of Rochester; MFA, University of California at Los Angeles; Ph.D., University of California, Riverside-Assistant Dean and Director; Professor

Bedarius Bell, Jr., State Coordinator of Deaf \& Hard of Hearing Services for Alabama Department of Rehabilitation Services

Joyce Bender, CEO, Bender Consulting Services
Tina Childress, Freelance Presenter/Educational Audiologist

Rachel Coleman, President, Signing Times Foundation

History Estill-Varner, CoExecutive Director, Discovering Deaf Worlds

Ernest Garrett, Superintendent, Louisiana Special School District; Chairman, Louisiana Commission for the Deaf

Cham Leang, Systems and Networking Engineer

Pamela Lloyd-Ogoke, Chief of Community Integration Services and Support and ADA Compliance Officer, North Disability Services, NC

Marlene Mata, Rehabilitation Counselor for the Deaf and Hard of Hearing in Massachusetts Rehabilitation Commission

Mary Beth Mothersell, Sprint Relay

Karen Putz, Owner, Ageless
Passions
Annette Reichman,
Superintendent, Arizona School for the Deaf and Blind

Robert Sidansky, California State University

Scott Van Nice, Cybersecurity,
Proctor \& Gamble
Scott Wills, Research Scientist, Dow Chemical Company

U.S. Government Representatives

The Honorable Joseph

Morelle, Member, U.S. House of Representatives, New York State

The Honorable Charles E.
Schumer, Member, U.S. Senate, New York State

College of Science

André Hudson, Interim Dean
rit.edu/science

Programs of Study
\# Applied Mathematics BS 280
\# Applied Statistics and Data Analytics BS 283
Biochemistry BS 286
\# Bioinformatics and Computational Biology BS 289
\# Biology BS 292
\# Biotechnology and Molecular Bioscience BS 295
\# Chemistry BS 298
\# Computational Mathematics BS 302
\# Environmental Science BS 305
Imaging Science BS 309
\# Physics BS 310
Science Exploration 316

Undergraduates in the College of Science receive a unique education, one that emphasizes the applications of science and mathematics in the professional world while providing a comprehensive liberal arts education in the humanities and social sciences. The College of Science curricula reflects current trends in the application of science and mathematics while preparing students for graduate study or for immediate employment in business, industry, government, and the medical science professions. All of the college's undergraduate programs serve as excellent preparation for graduate, medical, law, or business school.

Within an academic community committed to diversity and student centeredness, our emphasis is on the practical aspects of science and mathematics as found in science and computer laboratories. Students learn important skills in critical and analytical thinking, problem solving, and technical communication. While we are career-oriented, we recognize the value of the liberal arts for the intellectual enrichment of our students. In addition to technical competence, many of the skills acquired through the study of the liberal arts also are required by employers for promotion and career advancement.
Please visit the college's website-rit.edu/science-for in depth information on academics, faculty, facilities, research initiatives, advising services, and more.

Admission requirements

For more information on undergraduate admission, including freshman and transfer admission guidelines, please refer to individual program descriptions and the Undergraduate Admission section of this bulletin.

Financial aid and scholarships

Please refer to the Financial Aid and Scholarships section of this bulletin for information regarding financial aid, scholarships, loans, and grants.

Applied Mathematics, BS

www.rit.edu/study/applied-mathematics-bs
Mary Lynn Reed, Professor
585-475-2163, mlrsma@rit.edu

Program overview

Applied mathematicians develop models for perfecting global positioning systems, analyzing cost-effectiveness in manufacturing processes, or improving digital encryption software. The applied mathematics major focuses on the study and solution of problems that can be mathematically analyzed across industrial fields and research disciplines.

The applied mathematics major focuses on the study and solution of problems that can be mathematically analyzed. Industry, academia, and government all have a great need for individuals with this type of education. You will gain the knowledge and skills to collaborate on complex problems with scientists, engineers, computer specialists, or other analysts. Some application areas include applied statistics; biology; business; economics; chemistry; electrical, industrial, or mechanical engineering; operations research; and imaging science.

Graduates typically are employed in scientific, engineering, business, or government environments, applying their mathematics background to the analysis and solution of real-world problems.

Course of Study

You can choose courses from more than twenty application areas that provide them with the knowledge and skills to collaborate on complex problems with scientists, engineers, computer specialists, or other analysts. Some of those areas include applied statistics; biology; business; economics; chemistry; electrical, industrial, or mechanical engineering; operations research; or imaging science.

Real-World Experiences

You'll collaborate with a faculty researcher on a variety of projects in both applied and theoretical mathematics providing you with valuable exposure to real-world problems faced by America's top companies and research organizations. As a result, RIT undergraduates in mathematics are highly sought as co-op employees.

You'll also have the opportunity to work with researchers in the School of Mathematical Sciences studying interesting problems in areas such as computational photonics, mathematical biology, microelectromechanical systems, and network analysis.

Nature of Work

Mathematicians use theory, computational techniques, algorithms, and the latest computer technology to solve economic, scientific, engineering, physics, and business problems. The work of mathematicians falls into two broad classes - theoretical (pure) mathematics and applied mathematics. These classes, however, often overlap. Applied mathematicians start with a practical problem, envision its separate elements, and then reduce the elements to mathematical variables. They often use computers to analyze relationships among the variables, and they solve complex problems by developing models with alternative solutions.

Training Qualifications

Industry, academia, and government all have a great need for individuals with this type of education. Typically, graduates are employed in scientific, engineering, business, or government environments, applying
their mathematics background to the analysis and solution of real-world problems.

In the federal government, entry-level job candidates usually must have a four-year degree with a major in mathematics or a four-year degree with the equivalent of a mathematics major. Outside the federal government, a graduate-level education is usually a minimum requirement; many seek advanced degrees in mathematics or a related discipline. However, those with bachelor's degrees who meet state certification requirements may become primary or secondary school mathematics teachers.

The majority of those with a master's degree in mathematics who work in private industry do so not as mathematicians but in related fields. For jobs in applied mathematics, training in the field in which mathematics will be used is very important. Mathematics is used extensively in physics, actuarial science, statistics, engineering, and operations research. Computer science, business and industrial management, economics, finance, chemistry, geology, life sciences, and behavioral sciences are likewise dependent on applied mathematics. Mathematicians also should have substantial knowledge of computer programming, because most complex mathematical computations and much mathematical modeling are done on a computer.

Master's Degrees and Doctorates

Graduate programs offered by the School of Mathematical Sciences introduce students to rigorous advanced applied mathematical and statistical methodology. Students realize the potential for that cuttingedge methodology as a general tool in the study of exciting problems in science, business, and industry. The school offers the following advanced degrees: an advanced certificate in applied statistics, master of science degrees in applied and computational mathematics and applied statistics, and a doctorate degree in mathematical modeling.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and
clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Applied Mathematics, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-101	General Education - Elective: Principles of Computing	3
CSCI-141	General Education - Elective: Computer Science I	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective 5 \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-399	Mathematical Sciences Job Search Seminar	0
MATH-251	Probability and Statistics I	3
MATH-257	Statistical Inference	3
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
Choose one of the following:		4
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective \ddagger	4
Third Year		
MATH-431	Real Variables I	3
	Program Electives	18
	General Education - Immersion 1, 2	6
	Open Elective	3
Fourth Year		
MATH-411	Numerical Analysis	3
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-441	Abstract Algebra I	3
MATH-501	Experiential Learning Requirement in Mathematics	0
	General Education - Immersion 3	3
	General Education - Electives	6
	Program Elective	3
	Open Electives	9

Total Semester Credit Hours

Combined Accelerated Bachelor's/Master's Degree

Applied Mathematics, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
CSCI-101	General Education - Elective: Principles of Computing	3
CSCI-141	General Education - Elective: Computer Science I	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics	3
MATH-399	Mathematical Sciences Job Search Seminar	0
STAT-257	Statistical Inference	3
Choose one of the following:		4
MATH-221	Multivariable and Vector Calculus	
MATH-221H	Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective \ddagger	4
Third Year		
MATH-431	Real Variables I	3
	Program Electives	15
	General Education - Immersion 1, 2	6
	Open Electives	6
	General Education - Elective	3
Fourth Year		
MATH-411	Numerical Analysis	3
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-441	Abstract Algebra I	3
MATH-501	Experiential Learning Requirement in Mathematics	0
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
	Math Graduate Core Electives	9
	General Education - Immersion 3	3
	General Education - Elective	3
	Open Electives	6
Fifth Year		
MATH-790	Research and Thesis	7
	MATH Graduate Electives	12
Total Semest	t Hours	145
Please see General Education Curriculum (GE) for more information. (WI) Refers to a writing intensive course within the major.		
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.		
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).		

Applied Mathematics, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-101	General Education - Elective: Principles of Computing	3
CSCI-141	General Education - Elective: Computer Science I	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry and Scientific Principles Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics	3
MATH-399	Mathematical Sciences Job Search Seminar	0
STAT-257	Statistical Inference	
Choose one of the following:		4
MATH-221	Multivariable and Vector Calculus	
MATH-221H	Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Natural Science Inquiry and Scientific Principles Perspective \ddagger	4
Third Year		
MATH-431	Real Variables I	3
	Program Electives	15
	General Education - Immersion 1,2	6
	Open Electives	6
	General Education - Elective	3
Fourth Year		
MATH-411	Numerical Analysis	3
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-441	Abstract Algebra I	3
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
	Math Graduate Core Electives	9
	General Education - Immersion 3	3
	General Education - Elective	3
	Open Electives	6
Fifth Year		
MATH-790	Research and Thesis	4
	MATH Graduate Electives	15
Total Semester Credit Hours		145

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, physics, math, and chemistry

Appropriate associate degree programs for transfer

AS degree in liberal arts with math/science option

Applied Statistics and Data Analytics, BS

www.rit.edu/study/applied-statistics-and-data-analytics-bs
Mary Lynn Reed, Professor
585-475-2163, mlrsma@rit.edu

Program overview

The applied statistics and data analytics degree provides you with a strong foundation in statistical methodology, experience in its applications, a solid background in the use of statistical computing packages, and the skills to collaborate on projects that rely on statistical analysis. The degree gives you an advantage in the fields of business, government, and industry, and also prepares you for advanced study in graduate programs. Diverse application areas for graduates include product design, biostatistics, data analytics, quality control, and statistical forecasting.

Educational Approach

Early courses are designed to give you a foundation in calculus, statistics, algebra, and computer science. Application areas are very diverse and include product design, biostatistics, actuarial science, quality control, and statistical forecasting.

Real-World Experiences

Students collaborate with specialists in both scientific and non-technical areas to design and conduct experiments and interpret the results. Application areas are very diverse and include product design, biostatistics, actuarial science, quality control, and statistical forecasting.

Nature of Work

Statisticians contribute to scientific inquiry by applying their mathematical and statistical knowledge to the design of surveys and experiments; collection, processing, and analysis of data; and interpretation of the results. Statisticians may apply their knowledge of statistical methods to a variety of subject areas, such as biology, economics, engineering, medicine, public health, psychology, marketing, education, and sports. Many economic, social, political, and military decisions cannot be made without the use of statistical techniques, such as the design of experiments to gain federal approval of a newly manufactured drug. In industry, statisticians play an important role in quality control and product/ process improvement based on data analysis.

Advanced Degrees

Graduate programs offered by the School of Mathematical Sciences introduce students to rigorous advanced applied mathematical and statistical methodology. Students realize the potential for that cuttingedge methodology as a general tool in the study of exciting problems in science, business, and industry. The school offers the following advanced degrees: an advanced certificate in applied statistics, master of science degrees in applied and computational mathematics and applied statistics, and a doctorate degree in mathematical modeling.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Experiential learning opportunities in statistics include a range of hands-on experiences, from co-ops and internships to undergraduate research that enable you to apply your statistical knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Curriculum

Applied Statistics and Data Analytics, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ISCH-101	General Education - Elective: Principles of Computing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-251	Probability and Statistics	3
MATH-257	Statistical Inference	3
MATH-399	Mathematical Sciences Job Search Seminar	0
Choose one of the following:		4
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	Open Elective	3
	General Education - Elective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Scientific Principles Perspective \ddagger	\square
Third Year		
STAT-305	Regression Analysis	3
STAT-325	Design of Experiments (WI-PR)	3
	Program Electives**	15
	General Education - Immersion 1, 2	6
	General Education - Elective	3
Fourth Year		
STAT-405	Mathematical Statistics I	3
STAT-406	Mathematical Statistics II	3
STAT-500	Senior Capstone in Statistics	3
STAT-501	Experiential Learning Requirement in Statistics	0
	General Education - Immersion 3	3
	Program Electives**	3
	Open Electives	9
	General Education - Electives	6

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).
** Three of the six program electives must be from the following list of courses: Stochastic Processes (MATH-505), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Multivariate Analysis (STAT-425), Statistical Software - R (STAT-511), Statistical Quality Control (STAT-521), Data Mining (STAT-547), Survey Design and Analysis (STAT-572), Categorical Data Analysis (STAT-584). A program elective is any MATH or STAT course with a course number higher than 250.

Combined Accelerated Bachelor's/Master's Degrees

Applied Statistics and Data Analytics, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ISCH-110	Principles of Computing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics	3
MATH-399	Mathematical Science Job Search Seminar	0
Choose one of the following:		4
MATH-221	Multivariable and Vector Calculus	
MATH-221H	Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
STAT-257	Statistical Inference	3
	General Education - Immersion 1, 2	6
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
STAT-305	Regression Analysis	3
STAT-325	Design of Experiments (WI-PR)	3
	Open Electives	9
	General Education - Immersion 3	3
	Program Electives**	12
Fourth Year		
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
STAT-405	Mathematical Statistics I	3
STAT-406	Mathematical Statistics II	3
STAT-500	Senior Capstone in Statistics	3
STAT-501	Experiential Learning Requirement in Statistics	0
	Math Graduate Core Courses	9
	General Education - Electives	9
	Open Elective	3
Fifth Year		
MATH-790	Research \& Thesis	7
	Math Graduate Electives	12

Total Semester Credit Hours
Please see General Education Curriculum for more information
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).
** Three of the six program electives must be from the following list of courses: Stochastic Processes (MATH-505), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Multivariate Analysis (STAT-425), Statistical Software - R (STAT-511), Statistical Quality Control (STAT-521), Data Mining (STAT-547), Survey Design and Analysis (STAT-572), Categorical Data Analysis (STAT-584). A program elective is any MATH or STAT course with a course number higher than 250.

Applied Statistics and Data Analytics, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ISCH-110	Principles of Computing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education-Ethical Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
Choose one of the following: 4		
MATH-221	Multivariable and Vector Calculus	
MATH-221H	Honors Multivariable and Vector Calculus	
MATH-231	Differential Equations	3
Choose one of the following:		
MATH-241	Linear Algebra	
MATH-241H	Honor Linear Algebra	
MATH-251	Probability and Statistics I	
MATH-399	Mathematical Science Job Search Seminar	0
STAT-257	Statistical Inference	3
	General Education - Immersion 1, 2	
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
STAT-305	Regression Analysis	3
STAT-325	Design of Experiments (WI-PR)	3
	Open Electives	9
	General Education - Immersion 3	3
	Program Electives**	12
Fourth Year		
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
STAT-405	Mathematical Statistics I	3
STAT-406	Mathematical Statistics II	3
STAT-500	Senior Capstone in Statistics	3
STAT-501	Experiential Learning Requirement in Statistics	0
	Math Graduate Core Courses	9
	General Education - Electives	9
	Open Elective	3
Fifth Year		
MATH-790	Research \& Thesis	4
	Graduate Electives	15
Total Semester Credit Hours 144		

Please see General Education Curriculum for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).
** Three of the six program electives must be from the following list of courses: Stochastic Processes (MATH-505), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Multivariate Analysis (STAT-425), Statistical Software - R (STAT-511), Statistical Quality Control (STAT-521), Data Mining (STAT-547), Survey Design and Analysis (STAT-572), Categorical Data Analysis (STAT-584). A program elective is any MATH or STAT course with a course number higher than 250.

Applied Statistics and Data Analytics, BS degree/Applied Statistics, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
ISCH-110	Principles of Computing	3
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar I	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Scientific Principles Perspective \ddagger	4
Second Year		
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-251	Probability and Statistics	3
MATH-399	Mathematical Science Job Search Seminar	0
STAT-257	Statistical Inference	3
Choose one of the following:		4
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Elective	3
	General Education - Immersion 1	3
	Open Elective	3
Third Year		
STAT-641	Applied Linear Models - Regression	3
STAT-642	Applied Linear Models - ANOVA	3
	General Education - Immersion 2,3	6
	General Education - Electives	6
	Program Electives**	12
Fourth Year		
STAT-405	Mathematical Statistics I	3
STAT-406	Mathematical Statistics II	3
STAT-500	Senior Capstone in Statistics (WI-PR)	3
STAT-501	Experiential Learning Requirement in Statistics	0
	Program Electives	6
	Statistics Graduate Elective	3
	General Education - Electives	3
	Open Electives	9
Fifth Year		
STAT-631	Foundations of Statistics	3
STAT-790	Capstone Thesis/Project	3
	Statistics Graduate Electives	15

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).
** Three of the six program electives must be from the following list of courses: Stochastic Processes (MATH-505), Introduction to Time Series (STAT-335), Nonparametric Statistics (STAT-345), Multivariate Analysis (STAT-425), Statistical Software - R (STAT-511), Statistical Quality Control (STAT-521), Data Mining (STAT-547), Survey Design and Analysis (STAT-572), Categorical Data Analysis (STAT-584). A program elective is any MATH or STAT course with a course number higher than 250.

Biochemistry, BS

Abstract

Admission requirements

\section*{Freshman Admission}

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations - 3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, physics, math, and chemistry

Appropriate associate degree programs for transfer

AS degree in liberal arts with math/science option
www.rit.edu/study/biochemistry-bs
Michael Heagy, Professor
585-475-2090, mdhsch@rit.edu

Program overview

Biochemists focus on the chemistry of life. The biochemistry major provides knowledge in chemistry, biochemistry, and biology which will prepare you to consider real-world problems from a variety of perspectives. You will be able to immediately contribute your skills in corporate, health care, or government positions. You will also be ready to enter professional education in medicine or other health-related fields or attend graduate programs in a variety of chemical and life sciences related programs.

Biochemistry majors often have an interest in combining the life and health sciences with a chemistry degree. You'll take a year of general biology in addition to a typical chemistry curriculum. During the upper-level years, you'll take a substantial core of courses in biochemistry, physical chemistry, the liberal arts, and elective courses in life sciences. You must take a minimum of two upper-division biology electives.

Employment opportunities for biochemistry students are available in the chemical, pharmaceutical, agricultural, forensic, and rapidly expanding biotechnological fields. You'll also be well-prepared to enter advanced degree programs in biochemistry, medicine, pharmacy, dentistry, and veterinary medicine.

Nature of Work

Employment opportunities for biochemistry graduates exist in the chemical, pharmaceutical, agricultural, forensic, and rapidly expanding biotechnological fields. Graduates also are well-prepared to enter advanced degree programs in biochemistry, medicine, pharmacy, dentistry, and veterinary medicine.

Training/Qualifications

Biochemistry students who graduate with a BS degree are qualified for positions working at the bench in the pharmaceutical industry, medical research organizations, and environmental quality labs. According to the profile for biochemists in the U.S. Bureau of Labor Statistics' Occupational Outlook Handbook, many biochemistry students progress to earn more advanced degrees, sometimes combining their technical expertise with a law degree or an MBA to forge a new career path. Biochemists need a doctorate to work in independent research and development positions. Most holders of doctorate degrees begin their careers in temporary postdoctoral research positions. During their postdoctoral appointments, they work with experienced scientists, as they continue to learn about their specialties or develop a broader understanding of related areas of research. Postdoctoral positions frequently offer the opportunity to publish research findings. A solid record of published research is essential to get a permanent position doing basic research, especially for those seeking a permanent college or university faculty position. A significant number of our graduates have gone on to accept faculty appointments at numerous universities.

Advanced Degrees

Chemistry and materials science and engineering graduate programs offered by the School of Chemistry and Materials Science prepare professional scientists by offering curricula that allow students to specialize in their chosen fields while engaging in rigorous, meaningful research using state-of-the-art instrumentation and facilities, under the guidance of a faculty mentor. The school offers the following advanced degrees: an advanced certificate in materials science and engineering, and master of science degrees in chemistry and materials science and engineering.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (such as physician assistant, physical therapy, and occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

Pre-Vet Advising Program

Occupations in veterinary medicine are expected to grow three times faster than all other occupations between 2016 and 2026. If you're interested in caring for animals, conducting research related to animal illnesses, or working with livestock in university or government settings, the Pre-Vet Advising Program at RIT can help you reach your career goals. Learn more about RIT's personalized Pre-Vet Advising Program and how it can help you maximize your candidacy for admission to veterinary schools.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Cooperative education is optional but strongly encouraged for biochemistry majors.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Biochemistry, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	Introduction to Biology: Molecules and Cells	3
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells	1
CHEM-130	Chemistry Connections	1
CHEM-151	General Education - Elective: General Chemistry	3
CHEM-155	General Education - Elective: Chemistry Workshop	2
CHMO-331	Comprehensive Organic Chemistry 1	3
CHMO-335	Comprehensive Organic Chemistry Labl	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-206	General Education - Elective: Molecular Biology	3
BIOL-216	General Education - Elective: Molecular Biology Laboratory	1
BIOL-302	Cell Biology	3
CHMA-161	Quantitative Analysis	3
CHMA-165	Analytical Methods Lab	1
CHMB-402	Biochemistry I	3
CHMO-332	Comprehensive Organic Chemistry II	3
CHMO-336	Comprehensive Organic Chemistry Lab II	2
PHYS-111	General Education - Natural Science Inquiry Perspective: College Physics I	4
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Immersion 1	3
Third Year		
CHMA-261	Instrumental Analysis	3
CHMA-265	Instrumental Analysis Lab	1
CHMB-405	Biochemistry Lab (WI-PR)	3
CHMP-441	Physical Chemistry I	3
PHYS-112	General Education - Scientific Principles Perspective: College Physics II	4
	Advanced Biology Elective (C)*	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
	General Education - Immersion 2	3
	Open Elective	3
Fourth Year		
CHMI-351	Descriptive Inorganic Chemistry	3
CHEM-500	Experiential Learning Requirement for Chemistry and Biochemistry Programs	0
	Advanced Biochemistry Electives (A)*	6
	Open Electives	9
	General Education - Electives	6
	General Education - Immersion 3	3
Choose one of the following:		
CHEM-493	Chemistry Research (B)*	
Biochemistry Independent Study (B)*		
Total Semester Credit Hours		122

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

* Students must complete 6 credits from List A, 2 credits from List B, and 3 credits from List C.

Electives

List A

COURSE

CHMB-403	Biochemistry II
CHMB-489	Advanced Special Topics
CHMB-498	Advanced Biochemistry Independent Study
CHMB-460	Infectious Disease: Impact Society and Culture
CHMB-610	Advanced Protein Biochemistry: Structure and Function
CHMB-702	Protein Conformation and Dynamics
CHMB-704	Advanced Nucleic Acids Biochemistry; Structure and Function

List B

COURSE	
CHEM-493	Chemistry Research
CHEM-495	Advanced Chemistry Research
CHMA-621	Advanced Instrumental Analysis Lab
CHMA-650	Separations and Mass Spectroscopy in Biological Chemistry
CHMA-740	Practical NMR
CHMB-493	Biochemistry Research
CHMB-495	Advanced Biochemistry Research
CHMI-565	Preparative Inorganic Chemistry Lab

List C

COURSE	
BIOL-204	Introduction to Microbiology
BIOL-265	Evolutionary Biology
BIOL-296	Ethical Issues in Biology and Medicine
BIOL-303	Cell Physiology
BIOL-305	Plants, Medicicine and Technology
BIOL-307	Microbiology of Wastewater
BIOL-310	Bioenergy: Microbial Production
BIOL-313	Comparative Animal Physiology
BIOL-321	Genetics
BIOL-322	Developmental Biology
BIOL-330	Bioinformatics
BIOL-340	Genomics
BIOL-365	Introduction to Population Genetics
BIOL-370	Environmental Microbiology
BIOL-375	Advanced Immunology
BIOL-380	Bioremediation
BIOL-401	Biological Separations: Principles and Practices
BIOL-403	Fundamentals of Plant Biochemistry and Pathology
BIOL-412	Human Genetics (WI)
BIOL-415	Virology
BIOL-416	Plant Biotechnology
BIOL-418	Plant Molecular Biology
BIOL-420	Bacterial-Host Interactions: Microbiomes of the World
BIOL-427	Microbial and Viral Genetics (WI)
BIOL-428	Eukaryotic Gene Regulation and Disease
BIOL-441	Genetic Engineering and Synthetic Biology (WI)
BIOL-530	Bioinformatics Algorithms
BIOL-594	Molecular Modeling and Proteomics
BOL-599	Research Based Writing (WI)
MEDS-250	Human Anatomy and Physiology I
MEDS-251	Human Anatomy and Physiology II

Accreditation

The biochemistry program is approved by the American Chemical Society (ACS) and also follows the guidelines of the American Society for Biochemistry and Molecular Biology.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, physics, math, and chemistry

Appropriate associate degree programs for transfer

AS degree in liberal arts with chemistry option; chemical technology, laboratory technology

Bioinformatics and Computational Biology, BS

www.rit.edu/study/bioinformatics-and-computational-biology-bs
Andre Hudson, Professor
585-475-4259, aohsbi@rit.edu

Program overview

Bioinformatics is the intersection of biology and computer science. In this major, you'll analyze big data collected by the healthcare industry to discover, diagnose, and treat a wide range of medical conditions. A rapidly growing field that requires professionals to possess problem-solving skills, you'll gain hands-on learning through distinct undergraduate research opportunities. Graduates pursue graduate degrees and go on to successful careers in bioinformatics software development, biomedical research, biotechnology, comparative genomics, genomics, molecular imaging, pharmaceutical research and development, proteomics, and vaccine development.

Bioinformaticists use computers to analyze, organize, and visualize biological data in ways that increase the understanding of this data and lead to new discoveries. In laboratory exercises and assignments, you'll learn to sequence DNA and use computer programs to analyze DNA sequences and predict molecular models.

The bioinformatics degree was developed by faculty in the departments of biological sciences, chemistry, computer science, mathematics and statistics, and information technology, with the guidance from leaders in the bioinformatics and biotechnology industries. The major meets the needs of prospective employers in this challenging and rapidly changing and growing field.

Bioinformatics is a field that has been developing over the last thirty years. It is a discipline that represents a marriage between biotechnology and computer technologies and has evolved through the convergence of advances in each of these fields. Today bioinformatics is a field that encompasses all aspects of the application of computer technologies to biological data. Computers are used to organize, link, analyze and visualize complex sets of biological data.

With the advent of high-throughput technologies such as Next Generation Sequencing and proteomics, bioinformatics has become essential to the biological sciences in general. In the past, laboratories were able to manage and analyze their experimental data in spreadsheets. Many research labs now require the expertise of dedicated bioinformatics core centers or their own in-house bioinformaticists.

Graduates of our programs have entered such laboratories, both in industry and academia, as bioinformaticists. Some have also gone on to leverage their biotechnology experiences as wet lab experimentalists themselves. The diversity of skills our students cultivate has given them access to a wide range of career choices.

Nature of Work

Bioinformatics jobs come with several different areas of focus, which are less strictly hierarchical than bioscience discovery research jobs. The analyst/programmer job provides more focused computational analysis support. Analyst/programmers design and develop software, databases, and interfaces used to analyze and manipulate genomic databases. They collaborate with production to develop high-throughput data processing and analysis capability and to design and implement data queries, novel algorithms, and/or visualization techniques. Analyst/programmers also maintain large-scale DNA databases, prepare data for other scientists, monitor new data from integrating sequence-based/ functional knowledge about genes to help scientists analyze and interpret gene-expression data. They also analyze DNA information and identify opportunities for
innovative solutions to analyze and manage biological data. In addition, they often assist in developing software and custom scripts to automate data retrieval, manipulation, and analysis; application of statistics; and visualization tools. (Source: Vault Career Guide to Biotech; The Jobs in Lab Research)

Training/Qualifications

Within the bioinformatics field employers tend to look for the following skills/strengths: fundamental training/knowledge in molecular biology, biochemistry and biotechnology, particularly, genomics, relational database administration, and programming skills/e.g. using SQL, PERL, C, C++, etc. on a UNIX operating system, strong analytical abilities using relevant mathematical/statistical tools, a strong interest in utilizing computational skills to leverage the data outcomes of those working in the laboratory, meticulous, independent, patient to do the same task repetitively and multitask.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Students in the bioinformatics and computational biology degree are required to complete one cooperative education experience.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with
lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Bioinformatics and Computational Biology, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	General Education - Elective: Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	General Education - Elective: Introduction to Biology: Molecules and Cells	3
BIOL-125	General Education - Elective: Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	General Education - Elective: Introduction to Biology Laboratory: Molecules and Cells	1
BIOL-130	Introduction to Bioinformatics	3
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-135	Introduction to Bioinformatics Programming	3
BIOL-206	Molecular Biology	3
BIOL-216	Molecular Biology Laboratory	
BIOL-230	Bioinformatics Languages	3
BIOL-321	Genetics	3
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
Third Year		
BIOL-235	Fundamentals of Bioinformatics Programming	3
BIOL-296	Ethical Issues in Biology and Medicine	3
BIOL-327	Fundamental Bioinformatics Analysis	3
BIOL-499	Biology Co-op (summer)	0
BIOL-550	High Throughput Sequencing Analysis (WI-PR)	3
CHMB-402	Biochemistryl	3
ISTE-230	Introduction to Database and Data Modeling	3
	General Education - Social Perspective	3
	General Education - Immersion 1, 2	6
	Open Elective	3
Fourth Year		
BIOL-340	Genomics	4
BIOL-470	Statistical Analysis for Bioinformatics	3
BIOL-500	Experiential Learning Requirement in Life Sciences	0
BIOL-530	Bioinformatics Algorithms	3
BIOL-594	Molecular Modeling and Proteomics	3
	General Education - Immersion 3	3
	General Education - Elective	3
	Open Electives	9

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Molecular Bioscience and Biotechnology Electives

COURSE	Introduction to Microbiology
BIOL-204	Cell Biology
BIOL-302	Plants, Medicine \& Technology
BIOL-305	Food Microbiology
BIOL-306	Microbiology of Wastewater
BIOL-307	Bioenergy: Microbial Production
BIOL-310	Developmental Biology
BIOL-322	Phage Biology
BIOL-335	Molecular Ecology (WI-PR)
BIOL-345	Introduction to Population Genetics
BIOL-365	Environmental Microbiology
BIOL-370	Bioremediation
BIOL-380	Microbiology of Fermentation
BIOL-404	Human Genetics (WI-PR)
BIOL-412	Plant Biotechnology
BIOL-416	Plant Molecular Biology
BIOL-418	Bacterial-Host Interactions: Microbiomes of the World
BIOL-420	Microbial and Viral Genetics
BIOL-427	Genetic Engineering and Synthetic Biology (WI-PR)
BIOL-441	Advanced Biology Research
BIOL-495	Advanced Independent Study
BIOL-498	Research Based Writing (WI-PR)
BIOL-599	Genetic Disease and Disorders
BIOL-601	Chemical Separations
CHMA-222	Infectious Diseases: Impact Society \& Culture
CHMB-450	

Bioinformatics and Computational Biology, BS/Bioinformatics, MS degree, typical course sequence		
COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	General Education - Elective: Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	General Education - Elective: Introduction to Biology: Molecules and Cells	3
BIOL-125	General Education - Elective: Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	General Education - Elective: Introduction to Biology Laboratory: Molecules and Cells	1
BIOL-130	Introduction to Bioinformatics	3
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-135	Introduction to Bioinformatics Programming	3
BIOL-206	Molecular Biology	3
BIOL-216	Molecular Biology Laboratory	1
BIOL-230	Bioinformatics Languages	3
BIOL-321	Genetics	3
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	```General Education - Elective: Organic Chemistry Labl```	1
MATH-190	General Education - Elective: Discrete Mathematics for Computing	3
STAT-145	General Education - Elective: Introduction to Statistics I	3
	General Education - Artistic Perspective	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
Third Year		
BIOL-235	Fundamentals of Bioinformatics Programming	3
BIOL-296	Ethical Issues in Biology and Medicine	3
BIOL-327	Fundamental Bioinformatics Analysis	3
BIOL-499	Biology Co-op (summer)	0
BIOL-550	High Throughput Sequencing Analysis (WI-PR)	3
CHMB-402	Biochemistry I	3
ISTE-230	Introduction to Database and Data Modeling	3
	General Education - Social Perspective	3
	General Education - Immersion 1, 2	6
	Open Elective	3
Fourth Year		
BIOL-340	Genomics	4
BIOL-470	Statistical Analysis for Bioinformatics	3
BIOL-500	Experiential Learning Requirement in Life Sciences	0
BIOL-630	Bioinformatics Algorithms	3
BIOL-694	Molecular Modeling and Proteomics	3
BIOL-790	Research and Thesis	2
	Open Electives	9
	General Education - Immersion 3	3
	General Education - Elective	3
Fifth Year		
BIOL-625	Ethics in Bioinformatics	3
BIOL-635	Bioinformatics Seminar	3
BIOL-671	Database Management for the Sciences	3
BIOL-672	Computational Statistics and Data Science Methods	3
BIOL-790	Research and Thesis	4
	Graduate Program Electives \ddagger	6
Total Seme	it Hours	144
Please see General Education Curriculum (GE) for more information. (WI) Refers to a writing intensive course within the major. * Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses. \neq Graduate electives may be any graduate-level course related to the field of bioinformatics. Consult academic advisers for assistance in course selection.		

Bioinformatics and Computational Biology, BS/Bioinformatics, MS degree, typical course sequence

Please see General Education Curriculum (GE) for more information.
course within the major
degrees are required to complete two different Wellness courses. academic advisers for assistance in course selection.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, math, and computing

Appropriate associate degree programs for transfer

AS degree in biotechnology or liberal arts with biology

Biology, BS

www.rit.edu/study/biology-bs

Andre Hudson, Professor

585-475-4259, aohsbi@rit.edu

Program overview

Biology encompasses all of the processes and patterns that characterize living cells, organisms, and ecosystems. Building on recent advances in the molecular, cellular, and ecological disciplines, modern biological science offers students a rich framework that can launch a career with a wide variety of skills for discoveries within cells, organ systems, species, and even ecosystems in which we live. Scientific knowledge is based on research, and students are encouraged to undertake significant research projects to enhance their educational experience and prepare them for graduate school or full-time employment.

Biologists may investigate the conservation of animals and plants, study interactions between living organisms with the changing environment, uncover evolutionary relationships between different organisms, learn how living systems work or even work with the public to increase awareness of important health and environmental issues.

In the College of Science, biology is something that students do, rather than something they merely learn. Courses present biology and the hands-on laboratory work and field experiences as it is done by career biologists, and hands-on laboratory and field experience is emphasized.

The major includes all of the course work and support services to prepare you to pursue advanced degrees in medicine, dentistry, veterinary medicine, optometry, podiatry, and chiropractic medicine, as well as a wide range of graduate programs in the life sciences.

Course of Study

You'll start with foundation courses in biology, math, chemistry, and liberal arts and then immerse yourself in the biological sciences, studying animals, micro-organisms, and plants at the level of molecules, cells, tissues, organisms, populations, and the environment. You will acquire a comprehensive set of practical skills, from the proper way to prepare cultures in the lab to the proper way to gather and analyze ecological data in the field.

Nature of Work

Biologists answer important questions about the world by making observations in the natural environment and in the laboratory, collecting and evaluating data and integrating evidence to help solve problems.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (such as physician assistants, physical therapy, and occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

Pre-Vet Advising Program

Occupations in veterinary medicine are expected to grow three times faster than all other occupations between 2016 and 2026. If you're interested in caring for animals, conducting research related to animal illnesses, or working with livestock in university or government settings, the Pre-Vet Advising Program can help you reach your career goals. Learn more about RIT's personalized Pre-Vet Advising Program and how it can help you maximize your candidacy for admission to veterinary schools.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

As a biology major, you have the option to pursue co-op and internship opportunities in research, lab support, or data analysis in private businesses, government agencies, and non-profit organizations. Biology students have worked for hospitals, wildlife centers, veterinary clinics, food companies, and pharmaceutical firms.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Biology, BS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year

BIOL-123	General Education - Elective: Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	General Education - Elective: Introduction to Biology: Molecules and Cells	3
BIOL-125	General Education - Elective: Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	General Education - Elective: Introduction to Biology Laboratory: Molecules and Cells	1
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	1
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3

Second Year

BIOL-206	General Education - Elective: Molecular Biology	3
BIOL-216	General Education - Elective: Molecular Biology	1

	Laboratory
BIOL-302	Cell Biology

BIOL-499	Biology Co-op (summer)*	
CHMO-231	General Education - Elective: Organic Chemistry I	3

CHMO-232 General Education - Elective: Organic Chemistry II $\quad 3$
CHMO-235 General Education - Elective: Organic Chemistry 1
CHMO-236 General Education - Elective: Organic Chemistry 1

Choose one of the following:	3	
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	
STAT-155	General Education - Mathematical Perspective B: Introduction to Biostatistics	
Choose one of the following:	4	
BIOL-240	General Ecology (WI-PR)	
BIOL-265	Evolutionary Biology (WI-PR)	3
	General Education - Ethical Perspective	3

Third Year

Third Year \quad General Education - Elective: College Physics I $\quad 4$

| PHYS-112 General Education - Elective: College Physics II | 4 |
| :--- | :--- | :--- |

Choose one of the following:

BIOL-321	Genetics
BIOL-365	Introduction to Population Genetics
Choose one of the following:	4

BIOL-322	Developmental Biology
BIOL-313	Comparative Animal Physiology
	Program Electives

Open Elective	3
General Education - Immersion 1	3

Fourth Year		0
BIOL-500	Experiential Learning Requirement in Life Science	17
	Program Electives	9
	Open Electives	6

General Education - Immersion 2, 3	6
Total Semester Credit Hours	$\mathbf{1 2 2}$

* Biology Co-op is for Co-op track students only.

Please see General Education Curriculum (GE) for more information.
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Biology Electives

COURSE	
BIOL-204	Introduction to Microbiology
BIOL-205	Animal Behavior
BIOL-207	Galapagos: Ecology and Evolution
BIOL-211	Invertebrate Zoology
BIOL-212	Vertebrate Zoology
BIOL-218	Biology of Plants
BIOL-220	Biology of Fungi and Insects
BIOL-230	Bioinformatics Languages
BIOL-290	Vertebrate Evolution
BIOL-293	Evolution and Creationism
BIOL-296	Ethical Issues in Biology and Medicine
BIOL-303	Cell Physiology
BIOL-305	Plants, Medicine, and Technology
BIOL-306	Food Microbiology
BIOL-307	Microbiology of Wastewater
BIOL-308	Biology of Cancers (WI-PR)
BIOL-309	Comparative Vertebrate Anatomy
BIOL-310	Bioenergy: Microbial Production
BIOL-315	Tissue Culture Laboratory
BIOL-327	Fundamental Bioinformatics Analysis
BIOL-335	Phage Biology
BIOL-340	Genomics
BIOL-343	Tropical Ecology
BIOL-345	Molecular Ecology
BIOL-370	Environmental Microbiology
BIOL-371	Freshwater Ecology
BIOL-372	Biology without Walls
BIOL-375	Advanced Immunology
BIOL-380	Bioremediation
BIOL-385	Seneca Park Zoo Internship
BIOL-401	Biological Separations: Principles and Practices
BIOL-403	Fundamentals of Plant Biochemistry and Pathology
BIOL-404	Microbiology of Fermentation
BIOL-408	Biology of Cancer (WI-PR)
BIOL-412	Human Genetics (WI-PR)
BIOL-414	Animal Nutrition
BIOL-415	Virology
BIOL-416	Plant Biotechnology
BIOL-418	Plant Molecular Biology
BIOL-420	Bacterial-Host Interactions: Microbiomes of the World
BIOL-427	Microbial and Viral Genetics (WI-PR, WI-GE)
BIOL-428	Eukaryotic Gene Regulation and Disease
BIOL-441	Genetic Engineering and Synthetic Biology (WI-PR)
BIOL-444	Ornithology
BIOL-455	Biogeography
BIOL-460	Infections Diseases: Impact on Society and Culture
BIOL-495	Advanced Biology Research
BIOL-498	Advanced Biology Independent Study
BIOL-530	Bioinformatics Algorithms
BIOL-550	High Throughput Sequencing Analysis (WI-PR)
BIOL-573	Marine Biology
BIOL-575	Conservation Biology
BIOL-594	Molecular Modeling and Proteomics
BIOL-599	Research Based Writing (WI-PR)
BIOL-601	Genetic Diseases and Disorders
BIOL-635	Bioinformatics Seminar
BIOL-694	Molecular Modeling and Proteomics
CHMA-222	Chemical Separations
CHMB-402	Biochemistry I
ENVS-250	Applications of Geographic Information Systems
ENVS-301	Environmental Science Field Skills
ENVS-311	Wetlands
ENVS-531	Climate Change: Science, Technology \& Policy
MEDS-245	Medical Genetics
MEDS-250	Human Anatomy and Physiology I
MEDS-251	Human Anatomy and Physiology II
MEDS-310	Introduction to Pharmacology
MEDS-313	Introduction to Infectious Diseases
MEDS-421	Parasitology
MEDS-422	Endocrinology
MEDS-490	Human Gross Anatomy
MEDS-515	Medical Pathophysiology
MEDS-520	Histology \& Histopathology
MEDS-530	Human Immunology

Combined Accelerated Bachelor's/Master's Degree			
Biology, BS degree/Environmental Science, MS degree, typical course sequence			
COURSE		SEMESTER CREDIT HOURS	
First Year			
BIOL-123	General Education - Elective: IntroduBiology: Organisms and Ecosystems		3
BIOL-124	General Education - Elective: Introduction to Biology: Molecules and Cells		3
BIOL-125	General Education - Elective: Introduction to Biology Laboratory: Organisms and Ecosystems		1
BIOL-126	General Education - Elective: Introduction to Biology Laboratory: Molecules and Cells		1
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I		3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II		3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab		1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab		1
MATH-161	General Education - Mathematical Perspective A: Applied Calculus		4
YOPS-10	RIT 365: RIT Connections		0
General Education - Artistic Perspective			3
General Education - Social Perspective			3
General Education - First-Year Writing (WI)			3
Second Year			
BIOL-206	General Education - Elective: Molecular Biology		3
BIOL-216	General Education - Elective: Molecular Biology Laboratory		1
BIOL-302	Cell Biology		3
BIOL-499	Biology Co-op (summer)*		0
CHMO-231	General Education - Elective: Organic Chemistry I		3
CHMO-232	General Education - Elective: Organic Chemistry II		3
CHMO-235	General Education - Elective: Organic Chemistry I Lab		1
CHMO-236	General Education - Elective: Organic Chemistry II Lab		1
Choose one of the following:			3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I		
STAT-155	General Education - Mathematical Perspective B: Introduction to Biostatistics		
Choose one of the following:			4
BIOL-240	General Ecology (WI-PR)		
BIOL-265	Evolutionary Biology (WI-PR)		
General Education - Global Perspective			3
General Education - Ethical Perspective			3
Third Year			
PHYS-111	General Education - Elective: College Physics I		4
PHYS-112	General Education - Elective: College Physics II		4
Choose one of the following:			3
BIOL-321	Genetics		
BIOL-365	Introduction to Population Genetics		
Choose one of the following:			4
BIOL-322	Developmental Biology		
BIOL-313	Comparative Animal Physiology		
Program Electives			12
Open Elective			3
General Education - Immersion 1			3
Fourth Year			
BIOL-240	General Ecology (if taken, Program Elective may be substituted)		4
BIOL-500	Experiential Learning Requirement in Life Science		0
BIOL-675	Advanced Conservation Biology (Counts as Program Elective)		3
ENVS-250	Applications of Geographic Information Systems		4
ENVS-601	Environmental Science Graduate Studies I		2
ENVS-602	Environmental Science Graduate Studies II		1
ENVS-795	Environmental Science Graduate Research		3
Program Elective/Graduate Professional Elective			3
Program Elective			3
Open Elective			3
General Education - Immersion 2, 3			6
Fifth Year			
Choose one of the following:			6
ENVS-780	Environmental Science Project		
ENVS-790	Environmental Science Thesis		
	Graduate Professional Elective		6
Graduate Public Policy/STSO Elective			3
Graduate Statistics Elective			3
Graduate GIS Elective			3
Graduate Core Elective			3
Total Semester Credit Hours			146

*Biology Co-op for co-op track students.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in biology or liberal arts with biology option

Biotechnology and Molecular Bioscience, BS

www.rit.edu/study/biotechnology-and-molecular-bioscience-bs

Andre Hudson, Professor

585-475-4259, aohsbi@rit.edu

Program overview

The biotechnology degree prepares you to immediately assume challenging positions in research, development, and management in the fields of plant biotechnology, human genetics, agriculture, food products, pharmaceuticals and vaccine development, environment and energy, forensic science, and genetic counseling. Meaningful research projects preparing you to gain valuable experience for full-time employment or to pursue graduate study.

The advanced nature of the third- and fourth-year courses, as well as the opportunity to participate in faculty-sponsored undergraduate research, provide a sound foundation to those students wishing to pursue a master's or doctoral degree. The major also can be designed to include the education necessary for the pursuit of a career in the medical field.
Specialized areas of emphasis include recombinant DNA, microbial and plant genetic engineering, mammalian and plant tissue culture, monoclonal antibody production and purification, large-scale fermentation techniques (bacterial and mammalian cell), and methods for characterization and separation of proteins and nucleic acids in yeast, bacterial, viral, and plant systems.

As a student enrolled in the biotechnology and molecular bioscience program at RIT you'll be exposed to dynamic professors who are leaders in their fields both in the classroom and in the laboratory.

Plan of Study

Building on a core of biology, chemistry, math, and liberal arts, the courses in this major are taught from a molecular bioscience perspective and are focused on the central genetic dogma of molecular biology. The curriculum explores the rapidly-expanding field of genetic engineering and almost unlimited potential that controlled genetic experiments hold for improving the quality of life. Specialized areas of interest include recombinant DNA, mammalian and plant tissue culture, and monoclonal antibody production.

Real World Experiences

Undergraduate research is strongly encouraged and strengthens your preparation for graduate study or employment. You're encouraged to participate in undergraduate research experience under the guidance of faculty mentors. You're also encouraged to apply for summer research internships both here at RIT and at other institutions.

You also have the option to pursue cooperative education experience in research, lab support, or data analysis in private businesses, government agencies, and non-profit organizations. Biotechnology and molecular biosciences students have worked at pharmaceutical companies, academic research laboratories, biotechnology companies, and national laboratories.

Nature of Work

Do you want to learn about the natural world on a molecular level? Do you want to learn how cells and living organisms can be harnessed to improve scientific knowledge and human health? Biotechnology is the area of science that uses living systems to create products and new technologies. Biotechnologists play important roles in biomedical research,
agriculture, food safety, pharmaceutical and vaccine development, and more.

Advantages

The biotechnology and molecular bioscience program prepares our graduates for post-secondary education, employment in biotech and research laboratories, and for medical school.

Pre-Vet Advising Program

Occupations in veterinary medicine are expected to grow three times faster than all other occupations between 2016 and 2026. If you're interested in caring for animals, conducting research related to animal illnesses, or working with livestock in university or government settings, the Pre-Vet Advising Program at RIT can help you reach your career goals. Learn more about RIT's personalized Pre-Vet Advising Program and how it can help you maximize your candidacy for admission to veterinary schools.

Premedical and Health Professions Advisory Program

Medical schools and graduate programs in the health professions (such as physician assistants, physical therapy, and occupational therapy) welcome applications from students majoring in a wide range of academic programs. Acceptance into these programs requires the completion of pre-med requirements such as course work in biological and physical sciences, a strong academic record, pertinent experiences in the field, and key intrapersonal and interpersonal capabilities. Learn more about how RIT's Premedical and Health Professions Advisory Program can help you become a competitive candidate for admission to graduate programs in the medical and health professions.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math,
and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Research Internships

Research internships, offered both on and off-campus, take place during the summer. RIT offers numerous opportunities for students to participate in research, including three on-campus summer programs: Research Experiences for Undergraduates (REU), Summer Undergraduate Research Fellowships (SURF), and the Summer Undergraduate Research Programs (SURP). Many students participate in undergraduate research for course credit during the academic year.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Biotechnology and Molecular Bioscience, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	
BIOL-124	Introduction to Biology: Molecules and Cells	
BIOL-125	Introduction to Biology Laboratory: Organisms and E	cosystems
BIOL-126	Introduction to Biology Laboratory: Molecules and C	
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-142	General Education - Scientific Principles Perspective General \& Analytical Chemistry II	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
CHMG-146	General Education - Scientific Principles Perspective General \& Analytical Chemistry II Lab	
MATH-161	General Education - Mathematical Perspective A: Ap	lied Calculus
YOPS-10	RIT 365: RIT Connections	
	General Education - Artistic Perspective	
	General Education - Social Perspective	
	General Education - First-Year Writing (WI)	
Second Year		
BIOL-204	Introduction to Microbiology	
BIOL-206	Molecular Biology	
BIOL-216	Molecular Biology Lab	
BIOL-302	Cell Biology	
BIOL-315	Tissue Culture Laboratory	
BIOL-499	Biology Co-op (summer)*	
CHMO-231	General Education - Elective: Organic Chemistry I	
CHMO-232	General Education - Elective: Organic Chemistry II	
CHMO-235	General Education - Elective: Organic Chemistry Labl	
CHMO-236	General Education - Elective: Organic Chemistry Lab II	
Choose one of the following:		
STAT-145	General Education - Mathematical Perspective B: In	roduction to Statistics I
STAT-155	General Education - Mathematical Perspective B: In	roduction to Biostatistics
	General Education-Ethical Perspective	
	General Education-Global Perspective	
Third Year		
BIOL-321	Genetics	
BIOL-327	Fundamental Bioinformatics Analysis	
CHMB-402	General Education - Elective: Biochemistry I	
	Program Electives	12
	Program Elective (WI-PR)	
	Open Electives	
	General Education - Immersion 1	
Fourth Year		
BIOL-500	Experiential Learning Requirement in Life Science	
	Program Electives	14
	General Education - Immersion 2, 3	
	Open Electives	
	General Education - Elective	
Total Semester Credit Hours 121		

*Biology Co-op is for Co-op track students only.
Please see General Education Curriculum (GE) for more information.
One Writing Intensive (WI) elective must be selected to satisfy degree requirements. Please see adviser for a list of eligible courses.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Program Electives

course

Counse
BIOL-265 Biology of Fungi and Insects
BIOL-303
BIOL-305
BIOL-306
BIOL-307
BIOL-310
BIOL-313 Bioenergy: Microbial Production
Comparative Animal Physiology
Developmental Biolog
BIOL-335
BIOL-340
BIOL-345 G
enomic
BIOL-365 Introduction to Population Genetics
BIOL-370 Environmental Microbiology
BIOL-372 Biology without Walls
BIOL-375 Advanced Immunology
BIOL-380 Bioremediation
BIOL-401 Biological Separations: Principles and Practices
BIOL-403 Fundamentals of Plant Biochemistry and Pathology
BIOL-404 Microbiology of Fermentation
BIOL-408 Biology of Cancer (WI-PR)
BIOL-412 Human Genetics (WI-PR)
BIOL-414 Animal Nutrition

BIOL-415 Virology

BIOL-416 Plant Biotechnology
BIOL-418 Plant Molecular Biology
BIOL-420 \quad Bacterial-Host Interactions: Microbiomes of the World
BIOL-427 Microbial and Viral Genetics (WI-PR)
BIOL-428 Eukaryotic Gene Regulation and Disease
BIOL-441 Genetic Engineering and Synthetic Biology (WI-PR)
BIOL-460 Infectious Disease: Impact on Society and Culture
BIOL-495 Advanced Biology Research
BIOL-498 \quad Advanced Biology Independent Study
BIOL-530 Bioinformatics Algorithms
BIOL-550 High Throughput Sequencing Analysis (WI-PR)
BIOL-599 Research Based Writing (WI-PR)
BIOL-601 Genetic Disease and Disorders
BIOL-625 Ethics in Bioinformatics
BIOL-694 Molecular Modeling and Proteomics
CHMA-222 Chemical Separations
MEDS-313 Introduction to Infectious Diseases
MEDS-530 Human Immunology

Combined Accelerated Bachelor's/Master's Degree
Biotechnology and Molecular Bioscience, BS degree/ Bioinformatics, MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	Introduction to Biology: Molecules and Cells	3
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells	1
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Social Perspective	3
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-204	Introduction to Microbiology	
BIOL-206	Molecular Biology	3
BIOL-216	Molecular Biology Laboratory	1
BIOL-302	Cell Biology	3
BIOL-315	Tissue Culture Laboratory	1
BIOL-499	Biology Co-op*	
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-232	General Education - Elective: Organic Chemistry II	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	1
CHMO-236	General Education - Elective: Organic Chemistry Lab II	1
Choose one of the following:		3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics \|	
STAT-155	General Education - Mathematical Perspective B: Introduction to Biostatistics	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
Third Year		
BIOL-135	Introduction to Bioinformatics Programming	3
BIOL-230	Bioinformatics Languages	3
BIOL-321	Genetics	3
BIOL-327	Fundamentals of Bioinformatics Analysis	3
CHMB-402	General Education - Elective: Biochemistry I	3
	Program Electives	10
	Program Elective (WI-PR)	3
	General Education - Immersion 1	3
Fourth Year		
BIOL-500	Experiential Learning Requirement in Life Science	0
BIOL-625	Ethics in Bioinformatics	3
BIOL-694	Molecular Model and Proteomics	3
BIOL-790	Research and Thesis	2
	Program Electives	11
	General Education - Immersion 2, 3	6
	Open Electives	6
	General Education - Elective	3
Fifth Year		
BIOL-630	Bioinformatics Algorithms	3
BIOL-635	Bioinformatics Seminar	3
BIOL-671	Database Management for the Sciences	3
BIOL-672	Computational Statistics and Data Science Methods	3
BIOL-790	Research and Thesis	4
	Graduate Electivest	6
Total Semester Credit Hours		145

*Biology Co-op for co-op track students only.

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different wellness courses.
\dagger Any graduate level course deemed related to the field of bioinformatics by the program director.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree
Courses in liberal arts, sciences, math, and computing

Appropriate associate degree programs for transfer

AS degree in biotechnology or liberal arts with biology

Chemistry, BS

www.rit.edu/study/chemistry-bs
Michael Heagy, Professor
585-475-2090, mdhsch@rit.edu

Program overview

Chemistry is the science of the structure, properties, and reactions of matter. Chemists seek to understand matter at the molecular and atomic levels. Knowledge of chemistry is fundamental to an understanding of biology, biochemistry, geology and medicine, and areas of astronomy, physics, and engineering. RIT's chemistry degree prepares you for work in all areas of chemistry. You will be prepared for a wide variety of professional positions in industrial manufacturing and research, government, pharmaceuticals, and health care. You will also be ready to continue with graduate studies in chemistry or professional education in medicine or other health-related fields.

The American Chemical Society (ACS)-approved chemistry major prepares you for positions in several fields of chemistry, including professional industrial work in processing and laboratory operations, research and experimental work, supervision of technical projects, and managerial positions. A substantial number of students continue their education and earn advanced degrees in chemistry or pursue careers in pharmacy, medicine, and dentistry.

The chemistry major allows for flexibility in the type and number of chemistry and university-wide elective courses you decide to take. The major also provides you with the option of planning an elective concentration in a complementary field such as imaging science, business, graphic arts, psychology, biology, criminal justice, computer science, engineering, environmental science, forensics, mathematics, packaging science, or physics.

Plan of Study

Through courses in general, analytical, physical, organic, and inorganic chemistry, you'll develop a thorough understanding of substances and their chemical properties, how they can be manipulated, and how they can be transformed into new materials. The major offers the chance to choose a concentration or minor in complementary fields such as imaging science, business, technical communication, biology, criminal justice, engineering, environmental science, physics, or mathematics.

Real World Experiences

RIT has a rich history of helping students to gain real-world experience throughout their education. Undergraduate research experiences are available with professors throughout the School of Chemistry and Material Sciences and are highly encouraged. These opportunities enable students to practice real-world lab applications of the information they are currently studying.

Cooperative education is also highly recommended to gain experiences outside of RIT, though not required for graduation. Advisors and the Office of Career Services and Cooperative Education are available to assist in helping you identify and apply to co-op positions.

Nature of Work

Everything in our environment, whether naturally occurring or of human design, is composed of chemicals. Chemists search for and use new knowledge about chemicals. Chemical research has led to the discovery and development of new and improved synthetic fibers, paints, adhesives, drugs, cosmetics, electronic components, lubricants, and thousands of
other products. Chemists also develop processes that save energy and reduce pollution, such as improved oil refining and petrochemical processing methods. Research on the chemistry of living things spurs advances in medicine, agriculture, food processing, and other fields. (Source: U.S. Bureau of Labor Statistics Occupational Outlook Handbook)

Training Qualifications

A bachelor's degree in chemistry or a related discipline usually is the minimum educational requirement for entry-level chemist jobs. However, many research jobs require a master's degree. Students planning careers as chemists and materials scientists should take courses in science and mathematics should like working with their hands building scientific apparatus and performing laboratory experiments and should like computer modeling. Perseverance, curiosity, and the ability to concentrate on detail and to work independently are essential. Because research and development (R\&D) chemists are increasingly expected to work on interdisciplinary teams, some understanding of other disciplines, including business and marketing or economics, is desirable, along with leadership ability and good oral and written communication skills. Graduate students typically specialize in a subfield of chemistry, such as analytical chemistry or polymer chemistry, depending on their interests and the kind of work they wish to do.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.
Cooperative education is optional but strongly encouraged for students in the chemistry degree.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Chemistry, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHEM-130	Chemistry Connections	
CHEM-151	General Education - Elective: General Chemistry	3
CHEM-155	General Education - Elective: Chemistry Workshop	2
CHMO-331	Comprehensive Organic Chemistry I	3
CHMO-335	Comprehensive Organic Chemistry Lab I	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education-Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
CHMA-161	Quantitative Analysis	3
CHMA-165	Analytical Methods Lab	
CHMB-402	Biochemistry I	3
CHMI-351	Descriptive Inorganic Chemistry	3
CHMO-332	Comprehensive Organic Chemistry II	3
CHMO-336	Comprehensive Organic Chemistry Lab II	2
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-233	General Education - Elective: Linear Systems and Differential Equations	
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	
	General Education - Global Perspective	3
	General Education - Immersion 1	3
Third Year		
CHEM-499	Chemistry Co-op (summer)*	0
CHMA-261	Instrumental Analysis	3
CHMA-265	Instrumental Analysis Lab	
CHMP-441	Physical Chemistry I	3
CHMP-442	Physical Chemistry II	3
CHMP-445	Experimental Physical Chemistry (WI-PR)	3
PHYS-212	General Education - Scientific Principles Perspective: University Physics II	4
	General Education - Social Perspective	3
	General Education - Elective	6
	Open Electives	6
Fourth Year		
CHEM-500	Experiential Learning Requirement for Chemistry and Biochemistry	0
CHMI-564	Structural Inorganic Chemistry	3
	Advanced Chemistry Electives§	
	Advanced Chemistry Lab§	
	General Education - Immersion 2, 3	6
	General Education - Electives	6
	Open Electives	
Total Semester Credit Hours		123

*Chemistry Co-op for Co-op track students only.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
§ Students must complete 6 credits from List A and 2-3 credits from List B.

Advanced Chemistry Electives List A

COURSE	
CHEM-489	Advanced Special Topics
CHEM-498	Advanced Chemistry Independent Study
CHMA-670	Advanced Concepts of Environmental Chemistry
CHMA-711	Advanced Instrumental Analysis
CHMB-460	Infectious Diseases: Impact on Society \& Culture
CHMB-610	Advanced Protein Biochemistry: Structure and Function
CHMB-702	Protein Conformation and Dynamics
CHMB-704	Advanced Nucleic Acids Biochemistry; Structure and Function
CHMO-636	Spectrometric Identification of Organic Compounds
CHMO-637	Advanced Organic Chemistry
CHMO-640	Mechanisms of Drug Interactions
CHMO-710	Literature Exploration of Organic Synthesis
CHMO-739	Advanced Physical Organic Chemistry
CHMP-750	Survey of Organic Named Reactions
CHMP-752	Colloid \& Interface Science
CHMP-753	Molecular Photophysics and Photochemistry
CHPO-706	Computational Chemistry
CHPO-707	Polymer Synthesis

Advanced Chemistry Electives List B

COURSE	
CHEM-495	Advanced Chemistry Research
CHEM-499	Chemistry Co-op
CHMA-621	Advanced Instrumental Analysis Lab
CHMA-650	Separations and Mass Spectroscopy in Biological Chemistry
CHMA-740	Practical NMR
CHMB-405	Biochemistry Lab
CHMB-495	Advanced Biochemistry Research
CHMI-565	Preparative Inorganic Chemistry Lab
CHMO-535	Advanced Techniques in Organic Synthesis

Combined Accelerated Bachelor's/Master's Degrees

Chemistry, BS/MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHEM-130	Chemistry Connections	1
CHEM-151	General Education - Elective: General Chemistry	3
CHEM-155	General Education - Elective: Chemistry Workshop	2
CHMO-331	Comprehensive Organic Chemistry I	3
CHMO-335	Comprehensive Organic Chemistry Lab I	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
CHMA-161	Quantitative Analysis	3
CHMA-165	Analytical Methods Lab	1
CHMB-402	Biochemistry I	3
CHMI-351	Descriptive Inorganic Chemistry	3
CHMO-332	Comprehensive Organic Chemistry II	3
CHMO-336	Comprehensive Organic Chemistry Lab II	2
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	4
	General Education - Global Perspective	3
	General Education - Immersion 1	3
Third Year		
CHEM-499	Chemistry Co-op (summer)*	
CHMA-261	Instrumental Analysis	3
CHMA-265	Instrumental Analysis Lab	1
CHMP-441	Physical Chemistry 1	3
CHMP-442	Physical Chemistry II	3
CHMP-445	Experimental Physical Chemistry (WI-PR)	3
PHYS-212	General Education - Scientific Principles Perspective: University Physics II	4
	General Education - Social Perspective	3
	General Education - Electives	6
	Open Electives	6
Fourth Year		
Choose one of the following:		6
Graduate Chemistry Focus Course (Project track)		
CHEM-790	Research \& Thesis (Thesis track)	
CHEM-500	Experiential Learning Requirement for Chemistry and Biochemistry Programs	0
CHEM-670	Graduate Chemistry Writing	1
CHEM-771	Graduate Chemistry Seminar I	1
CHEM-772	Graduate Chemistry Seminar II	1
CHMI-664	Modern Inorganic Chemistry	3
	General Education - Immersion 2, 3	6
	Advanced Chemistry Lab Course	2
	General Education - Electives	6
	Open Electives	6
Fifth Year		
CHEM-773	Graduate Chemistry Seminar III	1
CHEM-774	Graduate Chemistry Seminar IV	1
	Approved Chemistry Graduate Courses	12
Choose one of the following:		4
CHEM-780	Chemistry Project	
CHEM-790	Research \& Thesis	

Total Semester Credit Hours

*Chemistry Co-op is for co-op track students only.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Chemistry, BS degree/Materials Science and Engineering, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CHEM-130	Chemical Connections	1
CHEM-151	General Education - Elective: General Chemistry	3
CHEM-155	General Education - Elective: Chemistry Workshop	2
CHMO-331	Comprehensive Organic Chemistry I	3
CHMO-335	Comprehensive Organic Chemistry Lab I	1
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Ethical Perspective	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
CHMA-161	Quantitative Analysis	3
CHMA-165	Analytical Methods Lab	1
CHMB-402	Biochemistry I	3
CHMI-351	Descriptive Inorganic Chemistry	3
CHMO-332	Comprehensive Organic Chemistry II	3
CHMO-336	Comprehensive Organic Chemistry Lab II	2
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-233	General Education - Elective: Linear Systems and Differential Equations	4
PHYS-211	General Education - Natural Science Inquiry Perspective: University Physics I	4
	General Education - Global Perspective	3
	General Education - Immersion 1	3
Third Year		
CHEM-499	Chemistry Co-op (summer)*	
CHMA-261	Instrumental Analysis	3
CHMA-265	Instrumental Analysis Lab	
CHMP-441	Physical Chemistry I	3
CHMP-442	Physical Chemistry II	3
CHMP-445	Experimental Physical Chemistry (WI-PR)	3
PHYS-212	General Education - Scientific Principles Perspective: University Physics II	4
	General Education - Social Perspective	3
	General Education - Electives	6
	Open Electives	6
Fourth Year		
CHEM-500	Experiential Learning Requirement for Chemistry and Biochemistry Programs	0
CHMI-664	Modern Inorganic Chemistry	3
	Advanced Chemistry Elective/MTSE Graduate Elective§	6
	General Education - Immersion 2, 3	6
	Advanced Chemistry Lab/MTSE Graduate Elective§	3
	General Education - Electives	6
	Open Electives	6
Fifth Year		
MTSE-601	Materials Science	3
MTSE-704	Theoretical Methods in Materials Science and Engineering	
MTSE-705	Experimental Techniques	3
Choose one of the following:		
MTSE-777	Graduate Project plus two MTSE Graduate Electives§	
MTSE-790	Research \& Thesis	
	MTSE Graduate Elective§	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
§ Please see advisor for complete list of elective choices.

Accreditation

The BS degree in chemistry is certified by the Committee on Professional Training of the American Chemical Society.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, chemistry, math, and physics

Appropriate associate degree programs for transfer
AS degree in liberal arts with chemistry option; chemical technology, laboratory technology

Computational Mathematics, BS

www.rit.edu/study/computational-mathematics-bs

Mary Lynn Reed, Professor

585-475-2163, mIrsma@rit.edu

Program overview

The computational mathematics major combines the beauty and logic of mathematics with the application of today's fastest and most powerful computers. The major uses computers as problem-solving tools to come up with mathematical solutions to real-world problems in engineering, operations research, economics, business, and other areas of science. The skills you learn can be applied to everyday life, from computing security and telecommunication networking to routes for school buses and delivery companies. The computational mathematics major gives you a solid foundation in both mathematics and computational methods that you need to be successful in the field or in graduate school.

Computational mathematics prepares you for a mathematical career that incorporates extensive computer science skills. In this major, much emphasis is given to the use of the computer as a tool to solve mathematically modeled physical problems. Students often pursue positions as mathematical analysts, scientific programmers, software engineers, or systems analysts. Job opportunities in private industry and government abound in this field.

Course of Study

The curriculum provides a foundation in mathematics through courses in calculus, differential equations, graph theory, abstract and linear algebra, mathematical modeling, numerical analysis, and several other areas. Students are required to complete an experiential learning component of the program, as approved by the School of Mathematical Sciences. Students are encouraged to participate in research opportunities or cooperative education experiences. You will gain extensive computing skills through a number of high-level programming, system design, and other computer science courses.

Nature of Work

Mathematicians use mathematical theory, computational techniques, algorithms, and the latest computer technology to solve economic, scientific, engineering, physics, and business problems.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

Although cooperative education is optional for computational mathematics students, it may be used to fulfill the experiential learning component of the program. Students have worked in a variety of settings on problem-solving teams with engineers, biologists, computer scientists, physicists, and marketing specialists.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Computational Mathematics, BS degree, typical course sequence

COURSE SEMESTER CREDIT HOURS

First Year		
CSCI-141	General Education - Elective: Computer Science I	4
CSCI-142	General Education - Elective: Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
CSCI-243	The Mechanics of Programming	3
CSCI-262	Introduction to Computer Science Theory	3
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics I	3
MATH-399	Mathematical Sciences Job Search Seminar	0
Choose one of the following:		
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
Choose one of the following:		
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Scientific Principles Perspective \ddagger	4
Third Year		
MATH-411	Numerical Analysis	3
MATH-431	Real Variables I	3
	Program Electives \dagger	12
	General Education - Social Perspective	3
	General Education - Immersion 1	3
	General Education - Elective	3
	Open Elective	3
Fourth Year		
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-441	Abstract Algebra I	3
MATH-501	Experiential Learning Requirement in Mathematics	0
	Program Electives \dagger	6
	General Education - Immersion 2, 3	6
	General Education - Elective	3
	Open Elective	9

Total Semester Credit Hour

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\dagger Three of the program electives must be MATH or STAT courses with course numbers of at least 250 , and either Graph Theory (MATH-351) or Numerical Linear Algebra (MATH-412) must be one of the three courses. Three of the program elective courses must be chosen from SWEN-261, MATH-305, ISTE-470, CMPE-570, EEEE-346, EEEE-547, (ISEE-301 or MATH-301), BIOL-235, BIOL-470, PHYS-377, ENGL-581, IGME386, and CSCI courses numbered at least 250 .
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).
§ Students are required to complete an experiential learning component of the program, as approved by the School of Mathematical Sciences. Students are urged to fulfill this requirement by participating in research opportunities or co-op experiences; students can also fulfill this requirement by taking MATH500 as a program elective.

Combined Accelerated Bachelor's/Master's Degrees

Computational Mathematics, BS degree/Applied and Computational Mathematics (thesis option), MS degree, typical course sequence

COURSE
SEMESTER CREDIT HOURS

First Year		
CSCl-141	General Education - Elective: Computer Science I	4
CSCI-142	General Education - Elective: Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	Open Elective	3
Second Year		
CSCI-243	The Mechanics of Programming	3
CSCI-262	Introduction to Computer Science Theory	3
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics I	3
MATH-399	Mathematical Sciences Job Search Seminar	0
Choose one of the following:		4
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Scientific Principles Perspective\#	4
Third Year		
MATH-431	Real Variables I	3
MATH-441	Abstract Algebra I	1
	Program Electives	12
	General Education - Social Perspective	3
	General Education - Immersion 1, 2	6
	General Education - Elective	3
Fourth Year		
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-501	Experiential Learning Requirement in Mathematics	0
MATH-602	Numerical Analysis I	3
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
	Math Graduate Core Courses	6
	Open Electives	9
	General Education - Immersion 3	
	General Education - Elective	3
	Program Elective	3
Fifth Year		
MATH-790	Research \& Thesis	7
	MATH Graduate Electives	12
Total Semester Credit Hours		146

Please see General Education Curriculum (GE) for more information.
WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University
Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

Computational Mathematics, BS degree/Applied and Computational Mathematics (project option), MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
CSCI-141	General Education - Elective: Computer Science I	4
CSCI-142	General Education - Elective: Computer Science II	4
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
MATH-199	Mathematics and Statistics Seminar	1
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Natural Science Inquiry Perspective \ddagger	4
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
	Open Elective	3
Second Year		
CSCI-243	The Mechanics of Programming	3
CSCI-262	Introduction to Computer Science Theory	3
MATH-200	Discrete Mathematics and Introduction to Proofs	3
MATH-231	Differential Equations	3
MATH-251	Probability and Statistics I	3
MATH-399	Mathematical Sciences Job Search Seminar	0
Choose one of the following:		4
MATH-221	General Education - Elective: Multivariable and Vector Calculus	
MATH-221H	General Education - Elective: Honors Multivariable and Vector Calculus	
Choose one of the following:		3
MATH-241	Linear Algebra	
MATH-241H	Honors Linear Algebra	
	General Education-Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Scientific Principles Perspectiveキ	4
Third Year		
MATH-431	Real Variables I	3
MATH-441	Abstract Algebra I	3
	Program Electives	12
	General Education - Social Perspective	3
	General Education - Immersion 1, 2	6
	General Education - Elective	3
Fourth Year		
MATH-421	Mathematical Modeling (WI-PR)	3
MATH-501	Experiential Learning Requirement in Mathematics	0
MATH-602	Numerical Analysis I	3
MATH-606	Graduate Seminar I	1
MATH-607	Graduate Seminar II	1
	Math Graduate Core Courses	6
	Open Electives	9
	General Education - Immersion 3	3
	General Education - Elective	3
	Program Elective	3
Fifth Year		
MATH-790	Research \& Thesis	4
	MATH Graduate Electives	15

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\# Students will satisfy this requirement by taking either University Physics I (PHYS-211) and University Physics II (PHYS-212) or General \& Analytical Chemistry I and Lab (CHMG-141/145) and General \& Analytical Chemistry II and Lab (CHMG-142/146) or General Biology I and Lab (BIOL-101/103) and General Biology II and Lab (BIOL-102/104).

Computational Mathematics, BS degree/Computer Science, MS degree, typical course sequence

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, physics, math, and chemistry

Appropriate associate degree programs for transfer

[^14]
Environmental Science, BS

www.rit.edu/study/environmental-science-bs

Andre Hudson, Professor

585-475-4259, aohsbi@rit.edu

Program overview

Earning an environmental science degree from RIT gives you the problem-solving skills needed to be successful in the field. This major combines a love for nature with cutting edge research to create a sustainable future for our planet. Meaningful fieldwork gives you experience in solving real-world problems.

Environmental scientists solve problems relating to power generation, waste reduction and recycling, pollution control, land use, and land cover change, preserving biodiversity and ecological services, transportation, forestry, agriculture, economics, and a wide range of other areas. They study our relationship to nature and to each other, developing solutions that prevent or reverse environmental deterioration and work toward sustainability. Meeting these challenges requires problem-solving abilities based in science, mathematics, the social sciences, and other disciplines. This is an interdisciplinary degree with a strong foundation in biology, mathematics, chemistry, physics, and geographic information systems. The BS program provides you with the education and experiences you'll need to be successful.

Real-World Experience

Undergraduate research is strongly encouraged and strengthens your preparation for graduate study or employment. Students are encouraged to participate in undergraduate research experience under the guidance of faculty mentors. Students are also encouraged to apply for summer research internships both here at RIT and at other institutions. In addition to undergraduate research, optional cooperative education opportunities offer students a great way to get a head start on their career with paid, professional work experience with local, state, or federal government agencies, nonprofit environmental organizations, and a host of environmental consulting firms.

Nature of Work

Environmental scientists and geoscientists use their knowledge of the physical makeup and history of the Earth to protect the environment; locate water, mineral, and energy resources; predict future geologic hazards; and offer environmental site assessments and advice on indoor air quality, hazardous waste site remediation and construction and land-use projects. Most of their time is devoted to office or fieldwork and often includes data analysis and report/proposal writing.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.
Co-op is optional for students in the environmental science degree.

Careers in Environmental Science

There is a great need for individuals who have both a strong background in environmental science and the ability to participate in an interdisciplinary problem-solving team. Upon graduation, students will be valued for their broad understanding of environmental science, their depth of knowledge in a particular aspect of environmental science, and their ability to attack and solve tough environmental problems.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Environmental Science, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	Introduction to Biology: Molecules and Cells	3
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells	1
ENVS-101	Concepts of Environmental Science	3
ENVS-102	Environmental Concepts Lab	1
ENVS-111	Soil Science	4
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Global Perspective	3
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-240	General Ecology (WI-PR)	4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry 1	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
ENVS-250	Applications of Geographic Information Systems	4
ENVS-301	Environmental Science Field Skills	4
ENVS-499	Environmental Science Co-op (summer) *	0
STSO-220	Environment and Society	3
Choose one of the following:		3
STSO-421	Environmental Policy	
STSO-422	Great Lakes	
PUBL-210	Introduction to Qualitative Policy Analysis	
	General Education - Ethical Perspective	3
	Open Elective	3
Third Year		
BIOL-575	Conservation Biology	3
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry Labl	1
ENVS-550	Hydrologic Applications of Geographic Information Systems	4
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
STAT-146	Introduction to Statistics II	4
	Concentration Courses	6
	General Education - Social Perspective	3
	General Education - Immersion 1	3
	Open Elective	3
Fourth Year		
ENVS-500	Experiential Learning Requirement in Environmental Science	0
ENVS-551	Environmental Science Capstone Seminar I	3
ENVS-552	Environmental Science Capstone Seminar II (WI-PR)	3
IMGS-431	Environmental Applications of Remote Sensing	3
	Concentration Courses	8
	Open Electives	6
	General Education - Immersion 2, 3	6

Total Semester Credit Hours

*Environmental Science Co-op for co-op track students only.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Concentrations

Cell and Molecular Biology

COURSE	
BIOL-206	Molecular Biology
BILL-204	Introduction to Microbiology
BIL-216	Molecular Biology Laboratory
BILL-265	Evolutionary Biology
BIOL-302	Cell Biology
BIOL-303	Cell Physiology
BIOL-305	Plants, Medicine and Technology
BIOL-307	Microbiology of Wastewater
BIOL-310	Bio-energy: Microbial Production
BIOL-315	Tissue Culture Laboratory
BIOL-321	Genetics
BIOL-322	Developmental Biology
BIOL-345	Molecular Ecology
BIOL-365	Introduction to Population Genetics
BIOL-370	Environmental Microbiology
BIOL-380	Bioremediation
BIOL-403	Fundamentals of Plant Biochemistry and Pathology
BIOL-460	Infectious Disease: Impact on Society and Culture

Chemistry

COURSE

CHEM-201	Clean Energy: Hydrogen Fuel Cells
CHEM-203	Clean Energy: Hydrogen Fuel Cells Laboratory
CHEM-531	Climate Change: Science Technology \& Policy
CHMA-261	Instrumental Analysis
CHMA-265	Instrumental Analysis Lab
CHMA-621	Advanced Instrument Analysis Lab
CHMB-460	Infectious Diseases: Impact Society \& Culture
CHMI-351	Descriptive Inorganic Chemistry
CHMO-232	Organic Chemistry II
CHMO-236	Organic Chemistry Lab II
CHMP-441	Physical Chemistry I
ENVS-670	Advanced Concepts of Environmental Chemistry

Ecology and Field Biology
course

BIOL-205	Animal Behavior
BIOL-207	Galapagos: Ecology and Evolution
BIOL-211	Invertebrate Zoology
BIOL-212	Vertebrate Zoology
BIOL-218	Biology of Plants
BIOL-220	Biology of Fungi and Insects
BIOL-265	Evolutionary Biology
BIOL-290	Vertebrate Evolution
BIOL-293	Evolution and Creationism
BIOL-309	Comparative Vertebrate Anatomy
BIOL-313	Comparative Animal Physiology
BIOL-343	Tropical Ecology
BIOL-371	Freshwater Ecology
BIOL-372	Biology without Walls
BIOL-385	Seneca Park Zoo Internship
BIOL-414	Animal Nutrition
BIOL-444	Ornithology
BIOL-455	Biogeography
BIOL-573	Marine Biology
ENVS-305	Urban Ecology
ENVS-311	Wetlands
ENVS-531	Climate Change: Science Technology \& Policy

Economics

COURSE	
ECON-201	Principles of Macroeconomics
ECON-401	Intermediate Microeconomic Theory
ECON-403	Econometrics
ECON-404	Mathematical Methods: Economics
ECON-406	Global Economic Issues
ECON-421	Natural Resource Economics
ECON-422	Benefit-Cost Analysis
ECON-440	Urban Economics
ECON-444	Public Finance
ECON-448	Development Economics
ECON-503	Econometrics II
ECON-520	Environmental Economics

Mathematics

COURSE	
MATH-221	Multivariable and Vector Calculus
MATH-231	Differential Equations
MATH-241	Linear Algebra
MATH-326	Boundary Value Problems
MATH-341	Advanced Linear Algebra
MATH-351	Graph Theory
MATH-381	Complex Variables

Organismal Biology and Evolution

COURSE	
BIOL-204	Introduction to Microbiology
BIOL-207	Galapagos: Ecology and Evolution
BIOL-211	Invertebrate Zoology
BIOL-212	Vertebrate Zoology
BIOL-218	Biology of Plants
BIOL-220	Biology of Fungi and Insects
BIL-265	Evolutionary Biology
BIL-290	Vertebrate Evolution
BILL-293	Evolution and Creationism
BIOL-303	Cell Physiology
BIOL-309	Comparative Vertebrate Anatomy
BIOL-313	Comparative Animal Physiology
BIOL-322	Developmental Biology
BIOL-372	Biology Without Walls
BIOL-414	Animal Nutrition
BIOL-444	Ornithology
BIOL-573	Marine Biology
BIOL-673	Marine Biology
ENVS-311	Wetlands

Public Policy

COURSE	
PUBL-301	Public Policy Analysis
PUBL-302	Decision Analysis
PUBL-530	Energy Policy
PUBL-531	Climate Change: Science, Technology and Policy
STSO-201	Science and Technology Policy
STSO-326	History of Ecology and Environmentalism
STSO-330	Energy and the Environment
STSO-421	Environmental Policy
STSO-521	Biodiversity and Society

Remote Sensing and Digital Image Processing

COURSE	
IMGS-251	Radiometry
IMGS-261	Linear and Fourier Methods for Imaging
IMGS-361	Image Processing and Computer Vision I
IMGS-362	Image Processing \& Computer Vision II
IMGS-371	Imaging Systems Analysis
IMGS-462	Multivariate Statistical Image Processing
IMGS-532	Advanced Environmental Applications of Remote Sensing
Statistics	
CoURSE	
SIOL-470	Statistical Analysis for Bioinformatics
STAT-305	Regression Analysis
STAT-325	Design of Experiments
STAT-335	Introduction to Time Series
STAT-345	Nonparametric Statistics
STAT-415	Statistical Sampling
STAT-425	Multivariate Analysis
STAT-521	Statistical Quality Control

Combined Accelerated Bachelor's/Master's Degrees

Environmental Science, BS/MS degree, typical course sequence
COURSE SEMESTER CREDIT HOURS

First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	Introduction to Biology: Molecules and Cells	3
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems	1
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells	1
ENVS-101	General Education - Elective: Concepts of Environmental Science	3
ENVS-102	Concepts of Environmental Science Lab	1
ENVS-111	General Education - Elective: Soil Science	4
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - Global Perspective	3
	General Education - Artistic Perspective	3
	General Education - First-Year Writing (WI)	3
Second Year		
BIOL-240	General Ecology (WI-PR)	4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
ENVS-250	Applications of Geographic Information Systems	4
ENVS-301	Environmental Science Field Skills	4
ENVS-499	Environmental Science Co-op (summer) *	0
STSO-220	General Education - Elective: Environment and Society	3
Choose one of the following:		3
STSO-421	General Education - Elective: Environmental Policy	
STSO-422	General Education - Elective: Great Lakes	
PUBL-210	General Education - Elective: Introduction to Qualitative Policy Analysis	
	General Education - Ethical Perspective	3
	Open Elective	3
Third Year		
BIOL-675	Advanced Conservation Biology	3
CHMO-231	General Education - Elective: Organic Chemistry I	3
CHMO-235	General Education - Elective: Organic Chemistry I Lab	1
ENVS-650	Hydrologic Applications of Geographic Information Systems	4
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
STAT-146	General Education - Elective: Introduction to Statistics II	4
	General Education - Social Perspective	3
	Environmental Science Concentration Courses§	6
	General Education - Immersion 1	3
	Open Elective	3
Fourth Year		
ENVS-500	Experiential Learning Requirement in Environmental Science	0
ENVS-551	Environmental Science Capstone Seminar I	3
ENVS-552	Environmental Science Capstone Seminar II (WI-PR)	3
ENVS-601	Environmental Science Graduate Studies I	2
ENVS-602	Environmental Science Graduate Studies II	1
ENVS-795	Environmental Science Graduate Research	3
IMGS-431	Environmental Applications of Remote Sensing	3
	Environmental Science Concentration Courses§	6
	Open Electives	6
	General Education - Immersion 2, 3	6
Fifth Year		
	Graduate Professional Electives	6
	Graduate Public Policy/STSO Elective	3
	Graduate Statistics Elective	3
Choose one of the following:		6
ENVS-790	Environmental Science Thesis	
ENVS-780	Environmental Science Project	

Total Semester Credit Hours

*Environmental Science Co-op for co-op track students only.
Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
§ Please see advisor for course choices.

Environmental Science, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
BIOL-123	Introduction to Biology: Organisms and Ecosystems	3
BIOL-124	Introduction to Biology: Molecules and Cells	3
BIOL-125	Introduction to Biology Lab: Organisms and Ecosystems	1
BIOL-126	Introduction to Biology Lab: Molecules and Cells	1
ENVS-101	Concepts of Environmental Science	3
ENVS-102	Concepts of Environmental Science Lab	1
ENVS-111	Soil Science	4
MATH-161	General Education - Mathematical Perspective A: Applied Calculus	4
YOPS-010	RIT 365: RIT Connections	0
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education-Global Perspective	3
Second Year		
BIOL-240	General Ecology (WI-PR)	4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	3
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	3
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	1
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	1
ENVS-250	Applications of Geographic Information Systems	4
ENVS-301	Environmental Science Field Skills	4
STSO-220	Environment and Society	3
Choose one of the following:		3
STSO-421	Environmental Policy	
PUBL-210	Introduction to Qualitative Policy Analysis	
STSO-422	Great Lakes	
	General Education - Ethical Perspective	3
	Open Elective	3
Third Year		
BIOL-575	Conservation Biology	3
CHMO-231	Organic Chemistry 1	3
CHMO-235	Organic Chemistry Lab I	1
ENVS-550	Hydrologic Applications of Geographic Information Systems	4
PUBL-702	Graduate Decision Analysis	3
STAT-145	General Education - Mathematical Perspective B: Introduction to Statistics I	3
STAT-146	Introduction to Statistics II	4
	Environmental Science Track Course	4
	General Education - Social Perspective	3
	General Education - Immersion 1	3
	Open Elective	3
Fourth Year		
ENVS-551	Environmental Science Capstone Seminar I	3
ENVS-552	Environmental Science Capstone Seminar II (WI)	3
IMGS-431	Environmental Applications of Remote Sensing	3
PUBL-701	Graduate Policy Analysis	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Environmental Science Track Course	4
	General Education - Immersion 2, 3	6
	Public Policy Elective	3
Fifth Year		
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
	Public Policy Electives	6
	Open Elective	3
Choose one of the following:		6
PUBL-785	Capstone Research Experience	
PUBL-790	Public Policy Thesis	
PUBL-798	Comprehensive Exam (plus 2 Graduate electives)	

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, and math

Appropriate associate degree programs for transfer

AS degree in biology, chemistry, environmental science, liberal arts with science option

Imaging Science, BS

www.rit.edu/study/imaging-science-bs

James Ferwerda, Associate Professor
 585-475-4923, James.Ferwerda@rit.edu

Program overview

Augmented and virtual reality. Drones. Satellite imaging. Artificial intelligence and computer vision. Advanced security systems. This is imaging science.
Imaging science is an extraordinary major that combines physics, math, computer science, and engineering to create fully functioning imaging systems, which are used in everything from scientific research and discovery, satellite imaging, filmmaking, search and rescue, national security, land surveying, AR/VR, and so much more.

What is an Imaging System?

Imaging systems answer fundamental scientific questions, monitor and protect our environment, help keep our nation secure, and aid medical researchers in their quest to conquer disease.

Imaging science is the study of the science, computing, and engineering theories behind the technology that goes into creating images, the integration of this technology into imaging systems, and the application of those systems to gather information and solve scientific problems. Imaging science is used to design and develop cutting-edge imaging systems, such as portable eye trackers, virtual reality devices, satellite systems, digital cameras, or anything that involves recording, processing, displaying, or analyzing image data. As the only university in the country with a bachelor of science in imaging sciences, RIT prepares you for a career in imaging science by immersing you in in-depth course work in imaging, optics, imaging processing, computer vision, imaging detectors, and more. You'll gain hands-on experience in cutting-edge labs and through course projects on day one, and build upon these experiences throughout your academic career.

Imaging Science Curriculum

The curriculum in the imaging science degree includes the study of:

- the physical observables associated with the subject of an image, such as reflected or emitted electromagnetic radiation;
- how those observables are captured by devices using optics and detectors such as satellites, digital cameras, medical imaging devices, and astronomical observatories;
- how the captured observables are processed using computers and specialized software;
- how processed signals are converted into images displayed on paper and electronic devices, and perceived by humans; and
- how image quality is assessed and scientific information is extracted. The imaging science degree begins with Innovative Freshman Experience, a year-long project-based class in which you'll learn about imaging science while designing and implementing a novel imaging system. As you progress in course work, both theoretical studies and practical applications of technologies are reinforced through hands-on laboratory experiments. The curriculum culminates with Imaging Science Senior Project I and II, a two-semester, two-course independent research project conducted by you under the guidance of faculty from the Chester F. Carlson Center for Imaging Science. You'll examine a problem in one of several imaging applications such as remote sensing, astronomy, computer vision, manuscript imaging and enhancement, optics, color science, image quality, or visual perception.

Accelerated 4+1 MBA

An accelerated $4+1$ MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-ops and internships take your knowledge and turn it into knowhow. Science co-ops include a range of hands-on experiences, from co-ops and internships and work in labs to undergraduate research and clinical experience in health care settings. These opportunities provide the hands-on experience that enables you to apply your scientific, math, and health care knowledge in professional settings while you make valuable connections between classwork and real-world applications.

In the imaging science degree, co-op is optional but strongly encouraged. Imaging science students gain career experience in a range of industries, including aviation, aerospace, environmental services, medical imaging, national research labs, and more. A sampling of companies that seek out RIT's imaging science students for co-ops and full-time employment include Adobe, Amazon, Apple, Boeing, Google, L3 Harris, Lockheed Martin, Microsoft, NASA, National Geospatial Intelligence Agency, Naval Undersea Warfare Center, Sandia National Labs, and more.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Imaging Science, BS degree, typical course sequence

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations - 3 years of math required; pre-calculus recommended

Transfer Admission

Transfer course recommendations without associate degree

Courses in math, computer science, liberal arts, and physics

Appropriate associate degree programs for transfer
AS degree in liberal arts with math/science option, computer science, engineering science, science

Physics, BS

www.rit.edu/study/physics-bs

Michael Kotlarchyk, Professor

585-475-6115, mnksps@rit.edu

Program overview

RIT's physics degree gives you a solid foundation in experimental, computational, and theoretical physics, as it fosters your analytical and problem-solving skills. The curriculum emphasizes laboratory training as you explore the basic principles governing the structure and behavior of matter, the generation and transfer of energy, and the interactions between energy and matter. The hands-on experience you gain prepares you for graduate school or for direct entry into a professional career.

Graduates with a BS degree in physics are sought after and highly employable in both the private and public sectors. They typically find positions in industry, government agencies and labs, and teaching. Many graduates choose to continue their education in doctoral or master's programs in physics or physics-related areas such as astrophysics, applied physics, biophysics, geophysics, atmospheric science, imaging science, and engineering. Students also are well-prepared for entry into medical, law, or business school.

The physics degree is a four-year program with optional topics ranging from condensed matter to cosmology. Students are required to complete a capstone research project undertaken in their final year. Students also participate in advanced laboratory work and have opportunities to participate in faculty-led research projects.

Course of Study

The curriculum begins with mathematics, science, and liberal arts courses covering the breadth of the discipline from condensed matter to cosmology. In the third or fourth years, advanced topics are introduced such as statistical physics and quantum mechanics. You'll also participate in advanced laboratory work and a capstone project.

Real World Experiences

Undergraduate research experiences are available with professors throughout the College of Science and are highly encouraged. These opportunities enable students to practice real-world lab application of the information they are studying. Cooperative Education is also highly recommended to gain experiences outside of RIT though not required for graduation.

Nature of Work

Some physicists use these principles in theoretical areas, such as the nature of time and the origin of the universe; others apply their physics knowledge to practical areas such as the development of advanced materials, electronic and optical devices, and medical equipment. They often design and perform science-based experiments, using sophisticated equipment, and then attempt to draw useful conclusions from their observations/analysis. (Source: U.S. Bureau of Labor Statistics Occupational Outlook Handbook)

Training/Qualifications

For jobs in basic research and development, a doctoral degree is usually required for physicists and astronomers. Those with bachelor's degrees can work as technicians or research assistants in industrial environments including scientific labs, engineering, software development, and nontechnical fields. Many of those with doctorates in physics and astronomy ultimately teach in higher education. (Sources: U.S. Bureau of Labor Statistics O.O.H and American Institute of Physics Statistical Research Center)

Advantages

Graduates find employment opportunities with industrial, academic, and governmental agencies or continue their education in masters or doctoral programs in physics or physics-related areas such as astrophysics, biophysics, geophysics, atmospheric science, imaging science, and engineering. Students also may prepare for entry into medical, law, or business school.

Combined Accelerated Bachelor's/Master's Degrees

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Bachelor's/Master's Degrees enable you to earn both a bachelor's and a master's degree in as little as five years of study, all while gaining the valuable hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn more about our accelerated bachelor's/master's degrees and how you can prepare for your future faster.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT's undergraduate programs. RIT's accelerated bachelor's/master's degrees can help you prepare for your future faster by enabling you to earn both a bachelor's and an MBA in as little as five years of study.

Experiential Learning

Cooperative Education

What's different about an RIT education? It's the career experience you gain by completing cooperative education and internships with top companies in every single industry. You'll earn more than a degree. You'll gain real-world career experience that sets you apart. It's exposure-early and often-to a variety of professional work environments, career paths, and industries.

Co-op is optional but strongly encouraged for students in the physics degree.

National Labs Career Fair

Hosted by RIT's Office of Career Services and Cooperative Education, the National Labs Career Fair is an annual event that brings representatives to campus from the United States' federally funded research and development labs. These national labs focus on scientific discovery, clean energy development, national security, technology advancements, and more. Students are invited to attend the career fair to network with lab professionals, learn about opportunities, and interview for co-ops, internships, research positions, and full-time employment.

Curriculum

Physics, BS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology I	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab	
Choose one of the following:		4
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	
or		
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	3
PHYS-216	General Education - Elective: University Physics I: Physics Majors	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
Second Year		
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3
	General Education - Social Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
PHYS-450	Capstone Preparation	1
	Program Elective \dagger	3
	General Education - Immersion 1, 2	6
Fourth Year		
Choose one of the following:		3
PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	
PHYS-451	Capstone Project I	3
PHYS-452	Capstone Project II (WI-PR)	3
	Program Electives \dagger	6
	Open Electives	12
	General Education - Immersion 3	3

Total Semester Credit Hours

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
† Students must complete one course from List A , one course from List B , and one course from List C .

Physics Electives	
COURSE	
List A	Introduction to Chaotic Dynamics
PHYS-360	Physical Optics
PHYS-365	Observational Astronomy
PHYS-373	Advanced Computational Physics
PHYS-377	Quantum Optics
PHYS-667	Multi-Wavelength Astronomical Imaging
IMGS-513	Design and Fabrication of Solid State Cameras
IMGS-528	
List B	Lasers
MCSE-713	Advanced Mathematical Methods in Physics
PHYS-321	Stellar Astrophysics
PHYS-370	Galactic Astrophysics
PHYS-371	Extragalactic Astrophysics and Cosmology
PHYS-372	Laser Physics
PHYS-408	Advanced Electricity and Magnetism
PHYS-412	Quantum Mechanics
PHYS-414	Advanced Quantum Mechanics
PHYS-415	Nuclear Physics
PHYS-424	Thermal and Statistical Physics
PHYS-440	Advanced Thermal and Statistical Physics
PHYS-441	Solid State Physics
PHYS-532	Any course from List A or List B
List C	

Accelerated Dual-Degree Programs

Today's careers require advanced degrees grounded in real-world experience. RIT's Combined Accelerated Pathways enable you to earn both a bachelor's and a master's degree in as little as five years of study. You'll earn two degrees while gaining the valuable, hands-on experience that comes from co-ops, internships, research, study abroad, and more. Learn how a Combined Accelerated Pathway can prepare you for your future, faster.

Physics, BS/MS degree (research option), typical course sequence
COURSE

First Year

Choose one of the following:		4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology I	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab	
Choose one of the following:		4
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	
or		
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	3
PHYS-216	General Education - Elective: University Physics I: Physics Majors	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
Second Year		
MATH-219	General Education - Elective: Multivariable Calculus	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
	General Education - Social Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
	Program Elective	3
	PHYS Lab/Computation Physics Elective	3
	General Education - Immersion 1, 2	6

Fourth Year
Choose one of the following:

PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	
PHYS-601	Graduate Physics Seminar I	
PHYS-602	Graduate Physics Seminar II	
Choose one of the following\#:		
PHYS-610	Mathematical Methods for Physics	
PHYS-611	Classical Electrodynamics I	
Choose one of the following:		
PHYS-630	Classical Mechanics	
PHYS-640	Statistical Physics	
Choose one of the following:		
PHYS-790 Graduate Research \& Thesis		
Approved Graduate Physics Elective		
	Open Electives	12
	General Education - Immersion 3	3
Fifth Year		
Choose two of the following\#:		
PHYS-610	Mathematical Methods for Physics	
PHYS-611	Classical Electrodynamics I	
PHYS-614	Quantum Theory	
PHYS-790	Graduate Research \& Thesis	7
	Approved Graduate Physics Electives	6

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\ddagger These are core courses for the MS degree. All three must be completed.

Physics, BS/MS degree (professional option), typical course sequence

COURSE

First Yea

Choose one of the following:		4
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology I	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab	
Choose one of the following:		
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	
or		
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	
PHYS-216	General Education - Elective: University Physics I: Physics Majors	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	

Second Year

MATH-219	General Education - Elective: Multivariable Calculus	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education - Global Perspective	3

Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
PHYS-450	Capstone Preparation	1
	General Education - Immersion 1,2,3	9
	Open Elective	3

Fourth Year

Choose one of the following:

PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	3
PHYS-451	Capstone Project I	3
PHYS-452	Capstone Project II (WI-PR)	1
PHYS-601	Graduate Physics Seminar I	1
PHYS-602	Graduate Physics Seminar II	3
Choose one of the following:		
PHYS-610	Mathematical Methods for Physics	
PHYS-611	Classical Electrodynamics I	3
Choose one of the following:		
PHYS-630	Classical Mechanics	3
PHYS-640	Statistical Physics	9
	Approved Graduate Physics Elective	
	Open Electives	

Fifth Year

Choose one of the following: 3

PHYS-610	Mathematical Methods for Physics	
PHYS-611	Classical Electrodynamics I	
PHYS-614	Quantum Theory	4
PHYS-780	Graduate Physics Project	12
	Approved Graduate Physics Electives	

Total Semester Credit Hours 145

Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Physics, BS degree/Materials Science and Engineering, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following course sequences:		8
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I§	
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II§	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab§	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab§	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology 1	
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab§	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II Lab§	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	3
PHYS-216	General Education - Elective: University Physics I: Physics Majors	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
Second Year		
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
	General Education - Social Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
	Physics Program Elective \ddagger	3
	Open Elective	3
	General Education - Immersion 1, 2	6
Fourth Year		
MTSE-601	Materials Science	3
MTSE-705	Experimental Methods	3
Choose one of the following:		3
PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	
	Physics Program Elective \ddagger	3
	Materials Science Graduate Program Electives	6
	Open Electives	6
	General Education - Immersion 3	3
Fifth Year		
MTSE-704	Theoretical Methods in Materials Science and Engineering	3
MTE-70	Research \& Thesis	9
	Materials Science Graduate Program Electives	6
	Open Electives	4

Total Semester Credit Hours
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\ddagger Please see academic adviser for a list of physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.

Physics, BS degree/Science, Technology, and Public Policy, MS degree, typical course sequence

COURSE	SEMESTER	
First Year		
Choose one of the following:		8
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I§	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab§	
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Labs§	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology I	
BIOL-102	General Education - Scientific Principles Perspective: General Biology II§	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab§	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II Lab§	
MATH-181	Project-Based Calculus I	
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	
PHYS-150	Introduction to Special Relativity	3
PHYS-216	General Education - Elective: University Physics I: Physics Majors	
YOPS-10	RIT 365: RIT Connections	0
	General Education - Artistic Perspective	3
	General Education - Elective	3
	General Education - First-Year Writing (WI)	3
Second Year		
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
	General Education - Social Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
PHYS-450	Capstone Preparation	1
	Physics Elective \ddagger	3
	General Education - Immersion 1, 2	6
Fourth Year		
Choose one of the following:		
PHYS-414	Quantum Mechanics	3
PHYS-440	Thermal and Statistical Physics	3
PHYS-451	Capstone Project I	3
PHYS-452	Capstone Project II (WI-PR)	3
PUBL-701	Graduate Policy Analysis	3
PUBL-702	Graduate Decision Analysis	3
STSO-710	Graduate Science and Technology Policy Seminar	3
	Public Policy Graduate Elective	3
	Physics Elective \ddagger	3
	Open Electives	6
Fifth Year		
PUBL-700	Readings in Public Policy	3
PUBL-703	Evaluation and Research Design	3
PUBL-790	Public Policy Thesis	6
	Physics Elective \ddagger	3
	General Education - Immersion 3	3
	Graduate Electives	6
	Open Elective	3
Total Semest	it Hours	151

Please see General Education Curriculum (GE) for more information.
(WI-PR) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
\ddagger Please see academic adviser for a list of physics electives.
§ Students will satisfy this requirement by taking a 4-credit hour lab science course. Students must take both the lecture and lab portions to satisfy the requirement. The lecture section alone will not fulfill the requirement.

Physics, BS degree/Astrophysical Sciences and Technology, MS degree, typical course sequence

COURSE		SEMESTER CREDIT HOURS
First Year		
Choose one of the following:		8
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I	
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
CHMG-146	General Education - Elective: General \& Analytical Chemistry II Lab	
or		
BIOL-101	General Education - Natural Science Inquiry Perspective: General Biology I	
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-103	General Education - Natural Science Inquiry Perspective: General Biology I Lab	
BIOL-104	General Education - Elective: General Biology II Lab	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	3
PHYS-216	General Education - Elective: University Physics I: Physics Majors	4
YOPS-10	RIT 365: RIT Connections	0
	General Education - First-Year Writing (WI)	3
	General Education - Elective	3
	General Education - Artistic Perspective	3
Second Year		
MATH-219	General Education - Elective: Multivariable Calculus	3
MATH-231	General Education - Elective: Differential Equations	3
PHYS-213	General Education - Elective: Modern Physics I	3
PHYS-217	General Education - Elective: University Physics II: Physics Majors	4
PHYS-220	University Astronomy	3
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-374	Introduction to Astrophysics	1
PHYS-411	Electricity and Magnetism	4
	PHYS Lab/Computational Physics Elective \ddagger	3
	General Education - Social Perspective	3
	General Education - Immersion 1,2	6
Fourth Year		
Choose one of the following:		3
PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	
ASTP-601	Graduate Seminar I	1
ASTP-602	Graduate Seminar II	1
ASTP-608	Fundamental Astrophysics I	3
ASTP-609	Fundamental Astrophysics II	3
	General Education - Immersion 3	3
	Graduate Program Electives	6
	Open Electives	12
Fifth Year		
ASTP-790	Research \& Thesis	10
	Graduate Program Elective	6
Total Semes	it Hours	145

Please see General Education Curriculum (GE) for more information.
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.
\ddagger Please see academic advisor for a list of PHYS Lab/Computational Physics Electives.

314 Undergraduate Bulletin

Physics, BS degree/Sustainable Systems, MS degree, typical course sequence

COURSE	SEMESTER CREDIT	
First Year		
Choose one of the following sequences:		8
CHMG-141	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry 1	
CHMG-145	General Education - Natural Science Inquiry Perspective: General \& Analytical Chemistry I Lab	
CHMG-142	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II	
CHMG-146	General Education - Scientific Principles Perspective: General \& Analytical Chemistry II Lab	
or		
BIOL-101	General Education - Scientific Principles Perspective: General Biology I	
BIOL-103	General Education - Scientific Principles Perspective: General Biology I Lab	
BIOL-102	General Education - Scientific Principles Perspective: General Biology II	
BIOL-104	General Education - Scientific Principles Perspective: General Biology II La	
MATH-181	General Education - Mathematical Perspective A: Project-Based Calculus I	4
MATH-182	General Education - Mathematical Perspective B: Project-Based Calculus II	4
PHYS-150	Introduction to Special Relativity	3
PHYS-216	University Physics I: Physics Majors	4
	General Education - First Year Writing (WI)	3
	General Education - Artistic Perspective	3
	General Education - Elective	3
YOPS-010	RIT 365: RIT Connections	0
Second Year		
MATH-219	Multivariable Calculus	3
MATH-231	Differential Equations	3
PHYS-213	Modern Physics I	3
PHYS-217	University Physics II: Physics Majors	4
PHYS-222	Electronic Measurements	3
PHYS-225	Introduction to Computational Physics and Programming	3
PHYS-275	Sophomore Physics Seminar	1
PHYS-283	Vibrations and Waves	3
	General Education - Ethical Perspective	3
	General Education-Global Perspective	3
	General Education - Social Perspective	3
Third Year		
PHYS-214	Modern Physics II	3
PHYS-315	Experiments in Modern Physics	3
PHYS-316	Advanced Laboratory in Physics	3
PHYS-320	Mathematical Methods in Physics	3
PHYS-330	Classical Mechanics	4
PHYS-411	Electricity and Magnetism	4
PHYS-450	Capstone Preparation	1
	General Education - Immersion 1, 2,3	9
	Open Elective	3
Fourth Year		
Choose one of the following:		3
PHYS-414	Quantum Mechanics	
PHYS-440	Thermal and Statistical Physics	
Choose one of the following:		3
ISUS-702	Fundamentals of Sustainability Science	
ISUS-706	Economics of Sustainable Systems	
ISUS-806	Risk Analysis	
Choose one of the following:		3
ISUS-704	Industrial Ecology	
ISUS-808	Multicriteria Sustainable Systems	
PUBL-810	Technology, Policy and Sustainability (or approved substitute)	
PHYS-451	Capstone Project I	3
PHYS-452	Capstone Project II (WI-PR)	3
	Program Electives	9
	Open Elective	3

Fifth Year

Choose two of the following:		
ISUS-702	Fundamentals of Sustainability Science	6
ISUS-706	Economics of Sustainable Systems	
ISUS-806		Risk Analysis

Total Semester Credit Hours
Please see General Education Curriculum (GE) for more information
(WI) Refers to a writing intensive course within the major.
Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.
₹ Please see academic advisor for a list of PHYS Lab/Computational Physics Electives.

Physics Electives

List A

COURSE	
PHYS-360	Introduction to Chaotic Dynamics
PHYS-365	Physical Optics
PHYS-373	Observational Astronomy
PHYS-377	Advanced Computational Physics
PHYS-667	Quantum Optics
IMGSS513	Multi-Wavelength Astronomical Imaging
IMGS-528	Design and Fabrication of Solid State Cameras

List B

COURSE	
MCSE-713	Lasers
PHYS-321	Advanced Mathematical Methods in Physics
PHYS-370	Stellar Astrophysics
PHYS-371	Galactic Astrophysics
PHYS-372	Extragalactic Astrophysics and Cosmology
PHYS-408	Laser Physics
PHYS-412	Advanced Electricity and Magnetism
PHYS-414	Quantum Mechanics
PHYS-415	Advanced Quantum Mechanics
PHYS-424	Nuclear Physics
PHYS-440	Thermal and Statistical Physics
PHYS-441	Advanced Thermal and Statistical Physics
PHYS-532	Solid State Physics

List C
COURSE
Any course from List A or List B

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus required
- Chemistry or physics required

Transfer Admission

Transfer course recommendations without associate degree

Courses in calculus or higher mathematics, college chemistry, calculus-based physics, and liberal arts

Appropriate associate degree programs for transfer

No common program available

Science Exploration, Undeclared

www.rit.edu/study/science-exploration

Jeffrey Mills, Senior Lecturer
 585-475-2445, jeffrey.mills@mail.rit.edu

Program overview

Do you know that you love science or math, and you know that you want a career in a related discipline but are not sure which area is your favorite, or how to choose a major that will get you to your career goals? You're not alone. Many prospective students love science and math, but may not have enough information to decide about a major before starting college. For example, do you know the differences between degrees in biotechnology and biochemistry or applied math and computational math? The science exploration option allows students to investigate the various majors in the College of Science and options for multidisciplinary science/math and careers before deciding on a program of study. Students who choose their major within the first year will not lose time toward the completion of their degree.

You will work as a member of a team on a laboratory-based project that requires you to apply many disciplines in the College of Science and you will gain experience in all of those areas, helping you to find a career path that is right for you. Over two semesters, you will not only learn about the different majors available to you in the college, but you will also learn to work together to solve multidisciplinary problems as part of a team, how to manage a project from start to finish, and develop leadership skills. Together with your team, you will present your year's work at the annual Imagine RIT event in April.

Plan of study

The science exploration option is a yearlong sequence of courses built around a single project aimed at designing, building, and conducting multidisciplinary research to answer a question that is too complex for a single discipline to conquer. The question will be presented to you on the first day of class. This approach to multidisciplinary technical education emphasizes real-world, hands-on problem solving by student-led teams. It offers participating students a degree of autonomy and responsibility rarely found in first-year curricula.

As a result of this course sequence, students in the science exploration option develop an appreciation for specific fields that interest them, while simultaneously learning about other College of Science majors.

Curriculum

Science exploration option, typical course sequence

COURSE		SEMESTER CREDIT HOURS
INTS-151	Integrated Science I	3
INTS-152	Integrated Science II	3
INTS-155	Integrated Science II Lab	1
INTS-156	Integrated Science II Lab	1
YOPS-010	RIT 365: RIT Connections	0
	General Education - Mathematical Perspective A: Calculus Sequence	3
	General Education - Mathematical Perspective B: Calculus Sequence	3
	General Education- Natural Science Inquiry Perspective: Laboratory Sequencet	4
	General Education- Scientific Principles Perspective: Laboratory Sequencet	4
UWRT-150	General Education Curriculum*	3
Total Semester Credit Hours	$\mathbf{G e n e r a l ~ E d u c a t i o n ~ - ~ F Y W : ~ W r i t i n g ~ S e m i n a r ~}$	$\mathbf{2 8}$

Please see Wellness Education Requirement for more information. Students completing bachelor's
degrees are required to complete two different Wellness courses.

* Please see General Education Framework for more information.
† Students must choose one of the following laboratory sequences: General Biology I (BIOL-101), General Biology I Lab (BIOL-103), General Biology II (BIOL-102), and General Biology II Lab (BIOL-104); General and Analytical Chemistry I (CHMG-141), General and Analytical Chemistry I Lab (CHMG-145), General and Analytical Chemistry II (CHMG-142), and General and Analytical Chemistry II Lab (CHMG-146); or University Physics I (PHYS-121) and University Physics II (PHYS-122).

Admission requirements

Freshman Admission

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.
Specific math and science requirements and other recommendations

- 3 years of math required; pre-calculus recommended
- Chemistry or physics required

Faculty

Dean's Office

André Hudson, BS, Virginia Union University; Ph.D., Rutgers University-Interim Dean; College of Science; Professor, Biology: amino acid metabolism, bacterial cell wall metabolism, plant-bacterial interactions

Larry Buckley, BA, University of Missouri at St. Louis; MS, Southern Illinois University at Edwardsville; Ph. ., Southern Illinois University at Carbondale-Senior Associate Dean for Academic Affairs; Associate Professor

Casey Miller, BA, Wittenberg University; Ph.D., University of Texas at Austin-Associate Dean for Research and Faculty Affairs; Professor

Catherine Mahrt-Washington, BS, Niagara University; MS, Rochester Institute of Technology; Ph.D., Andrews UniversityAssistant Dean; Director of Student Advising; College of Science Honors Advocate

Integrated Sciences Academy

Michael Murdoch, BS, Cornell University; MS, Rochester Institute of Technology, Ph.D., Eindhoven University of Technology (The Netherlands) - Head, Integrated Sciences Academy; Director, Munsell Color Science Laboratory; Associate Professor, Program of Color Science

Mekides Assefa Abebe, BS, Mekelle University (Ethiopia); MS, Jean Monnet University (France); Ph.D., University of Poitiers (France)—Richard S. Hunter Professor; Visiting Assistant Professor, Program of Color Science
Mark D. Fairchild, BS, MS, Rochester Institute of Technology; MA, Ph.D., University of Rochester-Professor, Program of Color Science

Susan Farnand, BS, Cornell University; MS, Ph.D., Rochester Institute of Technology-Graduate Program Director, Color Science; Assistant Professor, Program of Color Science

Elena Fedorovskaya, MS, Ph.D., Lomonosov Moscow State University (Russia)-Research Professor, Program of Color Science

Jeffrey L. Mills, BS, Juniata College; Ph.D., University at Buffalo-Associate Head, School of Chemistry and Materials Science; Director, Science Exploration; Senior Lecturer

Christopher Thorstenson, BS, Florida State University; MA, Appalachian State University; MS, Rochester Institute of Technology, Ph.D., University of RochesterAssistant Professor, Program of Color Science

Thomas H. Gosnell School of Life Sciences

Leslie Kate Wright, BS, Rochester Institute of Technology; MS, Ph.D., University of Rochester-Interim Head, Thomas H. Gosnell School of Life Sciences; Professor

Gregory A. Babbitt, BA, Ohio
Wesleyan University; MS, Ph.D., University of Florida-Associate Professor

Eli Borrego, BS, Ph.D., Texas A\&M University-Assistant Professor

Larry Buckley, BA, University of Missouri at St. Louis; MS, Southern Illinois University at Edwardsville; Ph.D., Southern Illinois University at Carbondale-Senior Associate Dean for Academic Affairs; Associate Professor

Dawn Carter, BSc, Botany University of Manchester (United Kingdom); Ph.D., University of Nottingham (United Kingdom) Principle Lecturer
Sandra Connelly, BS, Juniata College; MS, University at Buffalo; Ph.D., Miami University of OhioPrincipal Lecturer

Mary-Anne Courtney, BA, Miami University; Ph.D., University of Louisville; Postdoctoral Fellowship, University of Rochester-Lecturer

Feng Cui, MD, Hunan Medical University (China); MS, Truman State University; Ph.D., Iowa State University-Graduate Program Director, Bioinformatics; Associate Professor

Elizabeth DiCesare, BA, Colgate University; Ph.D., Lehigh University-Senior Lecturer

Maureen C. Ferran, BS, Fordham University; MS, Ph.D., University of Connecticut-Associate Professor

Elizabeth N. Hane, BA, Rice University; MA, University of Kansas; Ph.D., Brown UniversityAssociate Professor

André O. Hudson, BS, Virginia Union University; Ph.D., Rutgers University-Interim Dean, College of Science; Professor

Karl F. Korfmacher, BA, Carleton College; MEM, Ph.D., Duke University-Professor

Premlata Kumar, BS, MS, University of Bombay (India); Ph.D., University of Western Australia (Australia)-Lecturer

Carmody K. McCalley, BA, Middlebury College; Ph.D., Cornell University-Graduate Program Director, Environmental Science; Associate Professor

Dina L. Newman, BS, Cornell University; MS, Ph.D., University of Chicago-Professor

Michael V. Osier, BS, University of Vermont; Ph.D., Yale UniversityAssociate Professor

Michael A. Savka, BS, West Virginia University; MS, Ph.D., University of Illinois at Urbana-Champaign-Professor

Stefan Schulze, B.Sc., University of Potsdam (Germany); M.Sc., Ph.D., University of Münster (Germany) Assistant Professor

Paul A. Shipman, BS, MS, Emporia State University; Ph.D., Oklahoma State University-Associate Professor

Gary R. Skuse, BA, University of Rochester; Ph.D., Syracuse University-Professor

Susan Smith Pagano, BS, State University College at Oswego; MS, State University College at Brockport; Ph.D., University of Rhode Island-Associate Professor

Kaitlin Stack-Whitney, BS, Cornell University; Ph.D., University of Wisconsin-Madison-Assistant Professor, Biology: insects, ecology, novel ecosystems, environmental policy, critical open studies, animal studies, and pollinators

Hyla C. Sweet, BS, Union College; Ph.D., University of Texas at Austin-Associate Professor

Julie A. Thomas, B.App.Sc ., Ph.D., LaTrobe University, Bendingo (Australia)-Associate Professor

Anna Christina Tyler, BS, Cornell University; MS, Ph.D., University of Virginia-Professor

Crista Wadsworth, BA, Smith
College; Ph.D., Tufts UniversityAssistant Professor

Michelle L. Weatherell, BS,
MS, Rochester Institute of Technology-Lecturer

School of Mathematical Sciences

Joshua Faber, BS, State University of New York at Stony Brook; Ph.D., Massachusetts Institute of Technology - Head, School of Mathematical Sciences; Professor

Adam Allan, BS, Clarkson
University; MS, Ph.D., University of Chicago-Lecturer

Anurag Agarwal, BS, MS, Indian Institute of Technology (India); Ph.D., State University of New York at Buffalo-Associate Professor

Ephraim Agyingi, BS, MS, University of Ilorin (Nigeria); Ph.D., University of Manchester (United Kingdom)—Associate Professor

Khursed Ansari, BA, MA,
Tribhuvan University (Nepal); Ph.D., University of ToledoVisiting Lecturer

Olalekan Babaniyi, BS, MS, Ph. D., Boston University-Assistant Professor

Peter Bajorski, MS, University of Wroclaw (Poland); Ph.D., Technical University of Wroclaw (Poland)—Professor

Mihail Barbosu, BS, Ph.D., BabesBolyai University (Romania); MS, Ph.D., Paris VI University (France)—Professor

Nathaniel Barlow, BS,
Ph.D., Clarkson UniversityUndergraduate Program Coordinator, Applied and Computational Mathematics; Associate Professor

David S. Barth-Hart, BS, Syracuse University; MA, University of Rochester-Associate Professor

Susan Bateman, BS, MA, State University College at Brockport; Ph.D., University of BuffaloVisiting Lecturer

Maurino P. Bautista, BS, Ateneo de Manila University (Philippines); MS, Ph.D., Purdue University-Professor

Erin Bela, BS, Chapman University; MS, Ph.D., University of Notre Dame-Visiting Lecturer

Bernard Brooks, BS, University of Toronto (Canada); MBA, Rochester Institute of Technology; MS, Ph.D., University of Guelph (Canada)—Professor

Nathan D. Cahill, BS, MS, Rochester Institute of Technology; D.Phil., University of Oxford (United Kingdom)—Graduate Program Director, Mathematical Modeling; Associate Professor

Manuela Campanelli, Laureate in Mathematics, University of Perugia (Italy); Ph.D., University of Bern (Switzerland)-Director, Center for Computational Relativity and Gravitation; Professor

Lucia Carichino, BS, MS, Politecnico di Milano (Italy); Ph.D., Purdue University-Assistant Professor

Linlin Chen, BS, Beijing University (China); MCS, Rice University; MA, Ph.D., University of RochesterAssociate Professor

Shashank Chorge, BE, Mumbai University (India); MS, Oklahoma State University-Visiting Lecturer

Birgit Coffey, BA, State University of New York at Oswego; MS, University of Rochester-Senior Lecturer

Matthew Coppenbarger, BS, University of Arizona; MA, Ph.D., University of Rochester-Associate Professor

Michael Cromer, BS, York College of Pennsylvania; MS, Ph.D., University of Delaware-Associate Professor

Patricia Diute, BA, MA, Ph.D., University of Rochester-Principal Lecturer

Joel Dreibelbis, BS, MS, Rochester Institute of Technology; MA, Ph.D., University of Rochester-Principal Lecturer

Blessing Emerenini,

BTech, Federal University of Technology (Nigeria); M.Sc. Technical University Eindhoven (Netherlands); M.Eng., Johannes Kepler University (Austria); Ph.D., University of Guelph (Canada) Assistant Professor

Raluca Felea, BS, University of Iasi (Romania); Ph.D., University of Rochester-Professor

Connie E. Fitch, BA, State University College at New Paltz; MS, State University College at Brockport-Senior Lecturer

Ernest Fokoue, Maitrise B.Sc., University of Yaounde (Cameroon); M.Sc., Aston University (United Kingdom); Ph.D., University of Glasgow (United Kingdom)—Professor

Teresa Gibson, BS, Carnegie Mellon University; MS, MA, Ph.D., University of Michigan-Professor of Practice

Kathryn Graf, BS, State University of New York Polytechnic Institute; MS, Rochester Institute of Technology-Lecturer
Chad Gratton, BS, State University of New York at Albany; MA, Ph.D., University of Rochester-Lecturer
Anthony A. Harkin, BS, State University College at Brockport; MS, Massachusetts Institute of Technology; Ph.D., Boston University-Associate Professor

Matthew J. Hoffman, BA, Williams College; MS, Ph.D., University of Maryland-Associate Professor

Jay Alan Jackson, BS, MS, Ph.D., Florida State University-Associate Professor

Jobby Jacob, BS, Bharata Mata College (India); MS, Indian Institute of Technology (India); Ph.D., Clemson University—Associate Head, Applied and Computational Math; Associate Professor

Baasansuren Jadamba, BS, National University of Mongolia (Mongolia); MS, University of Kaiserlautern (Germany); Ph.D., University of Erlangen-Nuremberg (Germany)—Associate Professor

Raymond Jones, BA, MA, Ph.D., University at Buffalo-Visiting Lecturer

Akhtar Khan, MS, Technical University Kaiserslautern (Germany); Ph.D., Michigan Technological University-Professor

Nicole Kingsley, BA, State University College at Geneseo; MS, Ph.D., Iowa State University-Lecturer

Seshavadhani Kumar, BS, MS, University of Madras (India); Ph.D., University of Delaware-Professor

Carrie Lahnovych, BS, MS, Rochester Institute of TechnologyPrinciple Lecturer

Bernadette Lanciaux, M.Ed., Roberts Wesleyan College; Ph.D., University of New Mexico-Senior Lecturer

Manuel Lopez, AB, Princeton University; Ph.D., Wesleyan University-Associate Professor

Carlos Lousto, MS, Universidad Nacional de la Plata (Argentina); Ph.D., Universidad de Buenos Aires (Argentina)-Professor

Carl V. Lutzer, BS, Michigan State University; MA, Ph.D., University of Kentucky—Director, Honors Program; Professor

Kara L. Maki, BS, University of New Hampshire; MS, Ph.D., University of Delaware-Graduate Program Director, Applied and Computational Mathematics; Associate Professor

Nishant Malik, BS, MS, University of Delhi (India), Ph.D., University of Potsdam (Germany)—Assistant Professor

Carol E. Marchetti, BS,
Case Institute of Technology; MS, Weatherhead School of Management; MA, Ph.D., University of Rochester-Undergraduate and Minor Coordinator, Applied Statistics; Professor

James E. Marengo, BA, MS, California State University; Ph.D.,

Colorado State UniversityActuarial Science Minor Coordinator, Professor

Carly Metcalfe, BS, MS, Rochester Institute of Technology; Ph.D., Arizona State University-Lecturer

Nonhle Channon Mdziniso, BSc, University of Swaziland (Eswatini); MA, Marshall University; Ph.D., Central Michigan UniversityAssistant Professor

Laura M. Munoz, BS, California Institute of Technology; Ph.D., University of California at Berkeley-Associate Professor

Darren A. Narayan, BS,
State University of New York at Binghamton; MS, Ph.D., Lehigh University-Director of Undergraduate Research; Professor
Shahla Nasserasr, Honours B.Sc., Tabriz University (Iran); M.Sc., Shahid Beheshti University (Iran); M.Sc., University of Victoria (Canada); Ph.D., College of William and Mary-Assistant Professor
Mark Nieland, BA, Southwest Minnesota State University; MA, Ph.D., State University of New York at Buffalo -Visiting Lecturer

Carol Oehlbeck, BS, State University of New York at Buffalo; MA, State University College at Brockport-Lecturer

Deana Olles, BA, University of Tennessee at Chattanooga; MS, Rochester Institute of TechnologyPrincipal Lecturer

Richard O'Shaughnessy, BA, Cornell University; Ph.D., California Institute of Technology-Associate Professor

Niels F. Otani, BA, University of Chicago; Ph.D., University of California at Berkeley-Associate Professor

Eric Ottman, BS, University of Rochester; MS, Ph.D., Syracuse University-Lecturer

Robert J. Parody, BS, Clarkson University; MS, Rochester Institute of Technology; Ph.D., University of South Carolina- Associate Head, Applied Statistics; Graduate Program Director, Applied Statistics; Associate Professor

Thomas Prevendoski, BS,
Rochester Institute of Technology; MS, University of Arizona-Senior Lecturer

Michael Radin, BA, Rowan University; MS, Ph.D., University of Rhode Island-Associate Professor

Mary Lynn Reed, BS, Georgia Institute of Technology; MFA, University of Maryland; Ph.D., University of Illinois-Professor, abstract algebra, network science, cybersecurity, statistical modeling

Donald Reynolds, BS,
MS, Rochester Institute of Technology-Lecturer

Brendan Rooney, BSc, Simon Fraser University (Canada); MS, Ph.D., University of Waterloo (Canada)-Assistant Professor

Hossein Shahmohamad, BS, MA, California State University at Long Beach; Ph.D., University of Pittsburgh—Professor

Nourridine Siewe, Honours BS, MS, University of Buea (Cameroon); Howard University-Assistant Professor

Denitza Straub, BA, Colgate University; MS, Ph.D., University of Rochester-Lecturer

Wanda Szpunar-Lojasiewicz, BS, Jagiellonian University (Poland); MS, Ph.D., University of Cracow (Poland)-Associate Professor
Helen Timberlake, BS, Rochester Institute of Technology; MA, State University College at BrockportPrincipal Lecturer

Adam Towsley, MA, Ph.D., University of Rochester-Senior Lecturer

Olga Tsukernik, BS, MS, Yerevan State University (Armenia) Principle Lecturer
Nigar Tuncer, B.Sc., Bogazici University (Turkey); M.Sc., Marmara University (Turkey); MA, Ph.D., State University of New York at Binghamton-Visiting Lecturer
John T. Whelan, BA, Cornell University; Ph.D., University of California at Santa
Barbara-Professor

Tamas Wiandt, BS, Jozsef Attila
University (Hungary); Ph.D., University of MinnesotaUndergraduate Program Coordinator, Applied and Computational Mathematics, School of Mathematical Sciences; Professor

Anthony E. Wong, BA, Ohio Wesleyan University; MS, Ph. D., University of Colorado, BoulderAssistant Professor
Mehmet Yenisey, BS, University of Freiburg (Germany); MS, Boğaziçi University (Turkey); MA, Ph.D., University of Kansas-Visiting Lecturer

Elmer L. Young, BA, Amherst College; MS, Ph. ., The Ohio State University-Associate Professor

Yosef Zlochower, BS, Ph.D., University of Pittsburgh—Professor

School of Chemistry and Materials Science

Michael D. Heagy, BA, Franklin and Marshall College; Ph.D., University of Southern California, Los Angeles-Head, School of Chemistry and Materials Science; Professor

Alla Bailey, BS, University of St. Petersburg (Russia); Ph.D., Russian Academy of Science (Russia) Principal Lecturer

Emiliano Brini, BS, MS, University of Bologna (Italy); TU Darmstadt (Germany)—Assistant Professor

Jeremy Cody, BS, Indiana University of Pennsylvania; Ph.D., University of Rochester-Associate Professor

Michael Coleman, BS, Ph.D., University of Buffalo-Associate Professor
Christopher Collison, BS, Ph.D., Imperial College London (United Kingdom)—Professor
Paul Craig, BS, Oral Roberts University; Ph.D., University of Michigan-Professor
Nathan Eddingsaas, B.Sc., University of Wisconsin, Stevens Point; Ph.D., University of Illinois at Urbana-Champaign-Graduate Program Director, Chemistry; Associate Professor

Michael Gleghorn, BS, Clarion University; Ph.D., Pennsylvania State University-Assistant Professor

Christina Goudreau Collison, BA, Colby College; Ph.D., University of Rochester-Professor
Joseph P. Hornak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D., University of Notre Dame-Professor
André O. Hudson, BS, Virginia Union University; Ph.D., Rutgers University-Interim Dean, College fo Science; Professor, Affiliate Member of Chemistry

Joseph Lanzafame, BS, St. John Fisher College; Ph.D., University of Rochester-Principle Lecturer

Lea Michel, BS, Colgate
University; MS, Ph.D., University of Rochester-Associate Professor

Casey Miller, BA, Wittenberg University; Ph.D., University of Texas at Austin-Associate Dean for Research and Faculty Affairs; Professor

Jeffrey L. Mills, BS, Juniata College; Ph.D., University at Buffalo-Associate Head, School of Chemistry and Materials Science; Director, Science Exploration; Senior Lecturer

Massoud J. Miri, BS, MS, Ph.D., University of Hamburg (Germany)-Associate Professor
Suzanne F. O'Handley, BS, Rutgers University; MS, Ph.D., University of Rochester-Associate Professor

William J. Ryan, BS, MS, Rochester Institute of Technology; MBA, University of Rochester-Lecturer
K.S.V. Santhanam, B.Sc ., MA, Ph D., Sri Venketaswara University (India)-Professor Emeritus

Hans Schmitthenner, BS, Massachusetts Institute of Technology; Ph.D., Pennsylvania State University-Research Professor

Gerald A. Takacs, BS, University of Alberta (Canada); Ph.D., University of Wisconsin-Professor

Douglas Tusch, BS, Rochester Institute of Technology; MS, Ph.D., University of Rochester-Lecturer

Scott Williams, BS, Purdue University; Ph.D., Montana State University-Graduate Program Director, Materials Science and Engineering; Professor

School of Physics and Astronomy

Michael Kotlarchyk, BS, MS, Ph.D., Massachusetts Institute of Technology-Head, School of Physics and Astronomy; Professor
Mishkat Bhattacharya, BTech, Indian Institute of Technology (India); MA, Ph.D., University of Rochester-Professor

Michelle D. Chabot, BA, Rice University; MA, Ph.D., University of Texas at Austin-Senior Lecturer

Jonathan Cheng, BS, University of Chicago; Ph.D., University of California, Los Angeles-Visiting Lecturer

Moumita Das, BS, MS, Jadavpur University (India); Ph.D., Indian Institute of Science (India) Associate Professor
Pratik P. Dholabhai, BS, MS, Maharaja Sayajirao University of Baroda (India); MS, Ph.D., University of Texas at ArlingtonAssistant Professor

Kristina M. Driscoll, BA, MS, Ph.D., Boston University-Senior Lecturer
Andrew Ferrante, BS, Duke University; MS, Ph.D., University of Illinois at Urbana-Champaign-Lecturer
Scott V. Franklin, BA, University of Chicago; Ph.D., University of Texas-Director, Center for Advancing STEM Teaching, Learning \& Evaluation, Professor
Edwin Hach III, BS, MS, St.
Bonaventure University; Ph.D., University of Arkansas-Associate Professor

Dawn Hollenbeck, BS, University of California at Davis; MS, Ph.D., University of Texas at DallasAssociate Head, School of Physics and Astronomy; Associate Professor
Gregory A. Howland, BA, Oberlin College; MA, Ph.D., University of Rochester-Assistant Professor

Seth M. Hubbard, BS, Drexel University; MS, Case Western Reserve University; Ph.D., University of Michigan-Professor
Z. Yasemin Kalender, B.Sc. Boğaziçi University (Turkey); MS, Ph.D., University of PittsburghAssistant Professor

Jeyhan Kartaltepe, BA, Colgate University; MS, Ph.D., University of Hawaii-Associate Professor

Michael T. Lam, BA, Colgate University; MS, Ph.D., Cornell University-Assistant Professor

Nicola Lanatà, B.Sc. Università degli studi di Pisa, (Italy); M.Sc. Università di Pisa, (Italy); Ph.D., International School for Advanced Studies (Italy)—Assistant Professor

Charles P. Lusignan, BS, State University of New York at Binghamton; MA, Ph.D., University of Rochester-Senior Lecturer

Amir Maharjan, B.Sc., Tri-chandra College (Nepal); M.Sc., Tribhuvan University (Nepal); MS, Ph.D., University of Cincinnati-Senior Lecturer

Aaron M. McGowan, BS, Cornell University; Ph.D., University of Minnesota-Principal Lecturer

Louis T. McLane, BS, Bucknell University; Ph.D., Georgia Institute of Technology-Senior Lecturer

Lishibanya Mohapatra, BS, St. Stephen's College (India); MS, Indian Institute of Technology (India); Ph.D., Brandeis University-Assistant Professor

Vivek Narayanan, M.Sc., Indian Institute of Technology (India); MA, Ph.D., University of Texas-Senior Lecturer

Sheth Nyibule, B.Sc., Moi University (Kenya); M.Sc., Abdus Salam International Center for Theoretical Physics (Italy); MA, Ph.D., University of RochesterSenior Lecturer

Shima Parsa Moghaddam, B.Sc., Iran University of Science and Technology (Iran); M.Sc., Tabriz University (Iran); Ph.D., Wesleyan University-Assistant Professor

Michael S. Pierce, BS, Rensselaer Polytechnic Institute; MS, Ph.D., University of WashingtonAssociate Professor

Kristina Punzi, BA State University College at Geneseo; Ph.D., Rochester Institute of TechnologyVisiting Lecturer

Ryne Raffaelle, BS, MS, Southern Illinois University; Ph.D., University of Missouri-Rolla-Vice President for Research and Associate Provost, Professor

Michael W. Richmond, BA, Princeton University; MA, Ph.D., University of California at Berkeley-Director, RIT Observatory; Professor

Andrew Robinson, BS, Ph.D., University of Manchester (United Kingdom)—Graduate Program Director, Astrophysical Sciences and Technology; Professor

Joel D. Shore, BS, Haverford College; Ph.D., Cornell UniversitySenior Lecturer

George M. Thurston, AB, Oberlin College; Ph.D., Massachusetts Institute of Technology-Graduate Program Director, Physics; Professor

Greg Trayling, B.Sc., Simon Fraser University (Canada); M.Sc., University of Victoria (Canada); Ph.D., University of Windsor (Canada)-Senior Lecturer

Hsiuling Wong, BS, MS, National Taiwan University (Taiwan); Ph.D., University of Missouri, Kansas City-Visiting Lecturer

Ke Xu, BE, Zhejiang University (China); MS, Ph.D., University of Illinois at Chicago-Assistant Professor

Aditya Yechan Gunja, B.Sc., St. Stephens College (India); MS, Ph.D., Wayne State University-Lecturer

Andronique I. Zacharakis,

B.Sc., M.Sc., Concordia University (Canada); Ph.D., University of Quebec (Canada)—Lecturer

Michael B. Zemcov, B.Sc., University of British Columbia (Canada); Ph.D., Cardiff University (United Kingdom)—Associate Professor

Benjamin M. Zwickl, BS, Purdue
University; MS, Ph.D., Yale University-Associate Professor

Chester F. Carlson Center for Imaging Science

Charles Bachmann, AB, Princeton
University; Sc.M., Ph.D., Brown University-Associate Professor
Gabriel J. Diaz, BFA, Skidmore
College; MS, Ph.D., Rensselaer Polytechnic Institute-Associate Professor

Roger L. Easton Jr., BS, Haverford
College; MS, University of Maryland; Ph.D., University of Arizona-Professor

James A. Ferwerda, BA, MS,
Ph.D., Cornell UniversityAssociate Professor

Richard Hailstone, BS, Northern
Illinois University; MS, Indiana University—Associate Professor

Joseph Hornak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D., University of Notre Dame-Professor

Emmett lentilucci, BS, MS, Ph.D., Rochester Institute of TechnologyAssociate Professor

Joel H. Kastner, BS, University of Maryland; MS, Ph.D., University of California, Los Angeles-Professor
John P. Kerekes, BS, MS, Ph.D.,
Purdue University-Professor
David W. Messinger, BS, Clarkson University; Ph.D., Rensselaer Polytechnic Institute—Professor

Zoran Ninkov, BS, University of Western Australia (Australia); M.Sc., Monash University (Australia); Ph.D., University of British Columbia (Canada)—Professor

Jeff Pelz, BFA, MS, Rochester Institute of Technology; Ph.D., University of Rochester-Professor

Jie Qiao, BS, University of Science and Technology Liaoning (China); MS, Tsinghua University (China); MBA, University of Rochester; Ph.D., University of Texas at Austin-Associate Professor

Carl Salvaggio, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York College of Environmental Science and Forestry-Professor
Grover Swartzlander, BS,
Drexel University; MS, Purdue

University; Ph.D., Johns Hopkins University—Professor
Jan van Aardt, BSc, University of Stellenbosch (South Africa); MS, Ph.D., Virginia Polytechnic Institute and State University—Professor

Anthony Vodacek, BS, University of Wisconsin; MS, Ph.D., Cornell University-Professor

Distinguished Professorships

Richard S. Hunter Professorship in Color Science, Appearance, and Technology

Established: 1983
Donors: Mr. and Mrs. Richard S. Hunter

Purpose: To enable RIT to increase its research and educational efforts in the areas of color science, technology, and appearance science in order to benefit the industry and science of color.

Held by: Mekides Assefa Abebe
Frederick and Anna B. Wiedman Professorship
Established: 1985
Donor: Frederick Wiedman Jr.
Purpose: To support a truly outstanding scholar and/or teacher in imaging science
Held by: Charles Bachmann
Frederick Wiedman Jr. Professorship

Established: 1997
Donor: Frederick Wiedman, Jr.
Purpose: To support a second truly outstanding scholar and/or teacher in imaging science.
Held by: Jeff Pelz
Xerox Professorship in Imaging Science

Established: 1996
Donor: Xerox Corporation
Purpose: Established to expand and enhance the research and teaching activities within the Chester F. Carlson Center for Imaging Science.

Held by: David Messinger

Minors

Students pursuing a bachelor's degree have the option of completing a minor, which can complement a student's major, help them develop another area of professional expertise, or enable them to pursue an area of personal interest. Completion of a minor is formally designated on the baccalaureate transcript, which serves to highlight this accomplishment to employers and graduate schools. For the most recent list of minors, please visit rit.edu/minors.

Please note: A minor is a related set of academic courses consisting of no fewer than 15 credit hours. The following parameters must be met in order to earn a minor:

- At least nine credit hours of the minor must consist of courses not required by the student's home major.
- Students may pursue multiple minors. A minimum of nine credit hours must be designated toward each minor; these courses may not be counted toward other minors.
- The residency requirement for a minor is a minimum of nine credit hours consisting of RIT courses (excluding "X" graded courses).

Not all minors are approved to fulfill general education requirements. Please check with an adviser in regard to minors approved to fulfill these requirements.

2D Studio Arts

Nate Rohman, Minor Advisor 585-475-5760, nmrpgd@rit.edu

Program overview

The 2D studio arts minor allows students to develop and refine the practices inherent in the production of two-dimensional fine art forms, including drawing, painting, printmaking, and photography. Students develop conceptual, analytical, and technical skills in these media while learning to connect inspiration and ideation to creative visual expression in two dimensions. Once the two required introductory courses are completed, students may use elective courses to explore diverse twodimensional media, such as painting, printmaking, and photography, or they may choose to work more intensively within one medium.

Notes about this minor:

- This minor is closed to students majoring in the studio arts BFA who have chosen options in painting or printmaking.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURS:	
Required Courses	
Choose one of the following:	Drawing I
FDTN-111	Drawing for Non-Majors
ITDI-211	Drawing II
Choose one of the following:	Drawing II Workshop: Topics
FDTN-112	
FDTN-212	Introduction to Painting
Electivest	Painting for Non-Majors
Choose three of the following:	
PAIT-201	Painteolor
PAIT-233	Painting the Figure
PAIT-460	Introduction to Film Photography
PAIT-501	Intro to Digital Photography
PAIT-571	Introduction to Printmaking
PHAR-150	Printmaking
PHAR-160	Figure Drawing
PRNT-201	Fine Art Drawing
PRNT-501	Contemporary Drawing
STAR-305	
STAR-405	
STAR-563	
Students who are NOT enrolled in BFA programs are required to complete Drawing for Non-Majors (ITDI-	
211) instead of Drawing I (FDTN-111).	
At least two courses must be taken at the 300-level or higher.	

† At least two courses must be taken at the 300-level or higher.

3D Studio Arts

Nate Rohman, Minor Advisor

585-475-5760, nmrpgd@rit.edu

Program overview

In the 3D studio arts minor students develop and refine the practices required for the production of three-dimensional art in various media. Students develop conceptual, spatial, analytical, and technical skills while working through the process of art making from ideation to the production of creative visual expression in three dimensions.

Notes about this minor:

- This minor is closed to students majoring in the studio arts BFA who have chosen options in ceramics, glass, furniture design, or metals and jewelry design.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
FDTN-131	3D Design I
Choose one of the following*:	
FDTN-132	3D Design II
FDTN-232	3D Design II Workshop: Topic
SCUL-269	Sculpture for Non-Majors
Electives	
Choose three of the following:	
SCUL-201	Introduction to Sculpture
SCUL-501	Sculpture
SCUL-511	Expanded Forms
SCUL-543	Foundry Practices
SCUL-573	Figure Sculpture
SCUL-583	Welding and Fabrication
* Students who are NOT enrolled in BFA programs are required to complete Sculpture for Non-Majors	
(SCUL-269) in place of 3D Design II (FDTN-132) or 3D Design II Workshop: Topic (FDTN-232).	

Accounting

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

Accounting is necessary in a wide variety of careers. Students completing an accounting minor will broaden their learning experiences and professional opportunities by gaining more depth in operational accounting topics.

Notes about this minor:

- This minor is closed to students majoring in business administration-accounting.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
ACCT-110	Financial Accounting
ACCT-210	Management Accounting
Electivest	
Choose three of the following:	
ACCT-360	Intermediate Financial Accounting I*
ACCT-365	Intermediate Financial Accounting II
ACCT-420	Personal and Small Business Taxation*
ACCT-430	Cost Accounting
ACCT-445	Accounting Information Systems
ACCT-450	Accounting for Government and Not-for-profit Organizations
ACCT-489	Seminar in Accounting
ACCT-490	Auditing
ACCT-560	Forensic Accounting and Fraud Examination
BLEG-200	Business Law I
BLEG-250	Law, Business, and Society
FINC-220	Financial Management
*These courses are recommended for students interested in pursuing CPA certification.	
t At least two electives must be accounting (ACCT) courses.	

Actuarial Science

James Marengo, Minor Advisor

585-475-6872, jemsma@rit.edu

Program overview

The actuarial science minor prepares students for work in insurance companies, investment firms, banks, for the government, and in the health care industry where there is a need to analyze the financial consequences of risk. The actuarial science minor prepares students for two exams administered by the Society of Actuaries. Those exams are Exam P: Probability, which assesses a candidate's knowledge of the fundamental probability tools for quantitatively assessing risk, and Exam FM: Financial Mathematics, which assesses a candidate's understanding of the fundamental concepts of financial mathematics and how those concepts are applied in a variety of areas.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Choose one of the following:	
MATH-181	Project-Based Calculus I
MATH-181A	Calculus I
MATH-171/172	Calculus A/Calculus B
Choose one of the following:	
MATH-182	Calculus II
MATH-182A	Multivariable Calculus
MATH-173	Probability and Statistics I
MATH-219	Probability and Statistics II
MATH-251	
MATH-252	Actuarial Mathematics
Required Courses (Group I)	
MATH-255	Topics in Math Finance
MATH-261	
Group II	Financial Accounting
Choose at least one of the following:	
ACCT-110	Financial Management
FINC-220	Econometrics I
ECON-403	
Group III	Regression
STAT-305	Introduction to Time-series
STAT-335	Mathematical Statistics I
STAT-405	Mathematical Statistics II
STAT-406	Data Mining
STAT-547	Stochastic Processes
MATH-505	

* At least two courses must be taken at the 300-level or higher.
\dagger Students must complete two courses from Group III. Students may elect to complete additional course from Group II to satisfy this requirement.

Advertising and Public Relations

College of Liberal Arts, Office of Student Services

 585-475-2444, libarts@rit.edu
Program overview

The advertising and public relations minor prepares students to analyze audiences, write advertising copy, prepare press releases, select media, and manage broad-scaled persuasive campaigns. Students are grounded in the basic theories of persuasive communication enabling them to create persuasive messages with a strong emphasis on ethical decision-making.

Notes about this minor:

- This minor is closed to students majoring in advertising and public relations.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE
Required Courses
Choose one of the following:
COMM-211
COMM-212
Electives
Pubsiples of Advertising Relations
COMM-202

* At least one course must be taken at the 300 level or higher.
\dagger This course has two pre-requisites: Principles of Advertising (COMM-211) and Public Relations (COMM212).

American Arts

Program overview

This minor provides students with an opportunity to study the American arts in a variety of disciplines, including painting, architecture, film, photography, music, theatre, and the mass media. Courses present American art within the context of the broader current of American life, including its history, philosophy, social, and cultural traditions.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE
Electives
Choose five courses from the following:* Visual Culture FNRT-370 American Paintingt VISL-206/WGST-206 Queer Looks VISL-373 American Film Since the Sixties VISL-377 Imag(in)ing Rochester VISL-383/WGST-383 Traumatic Images VISL-384/WGST-384 Art of Dying Performing Arts FNRT-203 American Popular \& Rock Music FNRT-322 Survey of Jazz PRFL-327 American Musical Theater Literature ENGL-312 American Literature ENGL-411 Themes in American Literature ENGL-413 African-American Literature

* Students must take at least one course in each of the three disciplines (Visual Culture, Performing Arts, and Literature).
\dagger This course is offered on RIT's international campuses.

American Indian and Indigenous Studies

Program overview

The American Indian and Indigenous studies minor enhances students' knowledge of the life-worlds of American Indians and Indigenous peoples in the Americas. Building on diverse perspectives and scholarly resources, the course work in the minor will broaden students' understanding of the political experiences, collective memories, ethnohistories, sociocultural traditions, and the contributions of Indigenous peoples to communities and nations. Courses explore a diverse range of topics, including sovereignty, language revitalization, identity, representation, and activism.

Notes about this minor:

- This minor is closed to students majoring in international and global studies who have chosen the Indigenous studies track.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
ANTH-260	Native North Americans
Electives	
Choose two of the following:	
ANTH-265	Native Americans in Film
ANTH-285	American Indian Languages
ANTH-335	Culture and Politics in Latin America
ANTH-375	Native American Cultural Resources and Rights
ANTH-455	Economics of Native America
ANTH-489	Topics in Anthropology§
INGS-455	Economics of Native America
SOCI-489	Topics in Sociology§
Choose two of the following:	
ANTH-210	Culture and Globalization
ANTH-255	Regional Archaeology*
ANTH-312	People Before Cities
ANTH-345	Genocide and Transitional Justice
ANTH-361	Digitizing People
ANTH-430	Visual Anthropology
ANTH-489	Topics in Anthropology§
SOCI-361	Sociology of Numbers
SOCI-395	Borders: Humans, Boundaries, and Empires
SOCI-489	Topics in Sociology§
Course may be used when topic focuses on Mesoamerica or North America.	
§ Course may be used when topic is relevant to minor.	

American Politics

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

Study the basic principles and institutions of the American political order and their implications for current political practice. The strengths and limitations of American constitutionalism are emphasized throughout and contemporary political and policy questions facing the country are examined.

Notes about this minor:

- This minor is closed to students majoring in political science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
POLS-110	American Politics
Electives	
Choose four of the following:*	
POLS-115	Ethical Debates Amer Politics
POLS-200	Law \& Society
POLS-250	State \& Local Politics
POLS-280	Artificial Intelligence and the Political Good
POLS-290	Politics and the Life Sciences
POLS-295	Cyberpolitics
POLS-300	Rhetoric \& Political Deliberation
POLS-305	Political Parties and Voting
POLS-310	The Congress
POLS-315	The Presidency
POLS-320	American Foreign Policy
POLS-340	Medicine, Morality, and Law
POLS-345	Politics and Public Policy
POLS-355	Political Leadership
POLS-365	Anarchy, Technology \& Utopia
POLS-415	Evolution and the Law
POLS-420	Primate Politics
POLS-425	Constitutional Law
POLS-430	Constitutional Rights and Liberties
POLS-435	American Political Thought
POLS-460	Classical Constitutionalism, Virtue \& Law
POLS-465	Modern Constitutionalism, Liberty \& Equality
POLS-481	Women in Politics
POLS-485	Politics Through Fiction
POLS-490	Politics Through FFilm
POLS-525	Special Topics in Political Science

* At least two courses must be taken at the 300-level or higher.

American Sign Language and Deaf Cultural Studies

Jillian Sinclair, Minor Advisor
 jlsnts@rit.edu

Program overview

The American Sign Language and deaf cultural studies minor prepares students in the multidisciplinary study of American Sign Language and deaf culture. The minor is open to hearing and deaf students enrolled in all bachelor's degree programs. Courses in the minor address topics in the field of ASL and DCS including the study of ASL and its structure, ASL literature, literature in English pertaining to the D/deaf experience, the history of D/deaf people in America and around the world, Deaf art and cinema, the experience of $\mathrm{D} /$ deaf people from racial, ethnic, and other minority groups, oppression in the lives $\mathrm{D} /$ deaf people, and various political, legal, and educational issues affecting members of the D/deaf community. The minor complements majors in fields such as business, imaging arts and sciences, health sciences, policy studies, professional and technical communication, psychology, and numerous scientific and technical fields.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Courses

Option 1: For students who are not proficient in ASL:			
MLAS-201	Beginning American Sign Language I		
MLAS-202	Beginning American Sign Language II		

Option 2: For students who are proficient in ASL, choose five Electives

Electives*

Option 1: Choose three or four of the following coursest:
Option 2: Choose five of the following coursest:
Language courses:

MLAS-301	Intermediate Sign Language I
MLAS-302	Intermediate Sign Language II
MLAS-351	Linguistics Of American Sign Language
MLAS-352	American Sign Language Literature
MLAS-401	Advanced American Sign Language I
MLAS-402	Advanced American Sign Language II
Deaf cultural studies courses:	
ENGL-417	Deaf Literature
FNRT-440	Deaf Art \& Cinema
HIST-230	American Deaf History
HIST-231	Deaf People in Global Perspective
HIST-330	Deafness and Technology
HIST-333	Diversity in the Deaf Community
HIST-335	Women and the Deaf Community
HIST-430	Deaf Spaces
NHSS-251	Deaf Culture and Contemporary Civilization
NHSS-275	Visual Expressions of Deaf Culture
SOCI-240	Deaf Culture in America

* At least one course must be at the 300 level or higher.
† Students who wish to focus their studies on ASL should choose two language courses. Students who wish to focus on Deaf Cultural Studies should choose three or four DCS courses depending on their proficiency in ASL. Students who prefer a balance of ASL and DCS courses may freely distribute their electives across ASL and DCS in a manner consistent with their ASL proficiency and course prerequisites.

Anthropology and Sociology

College of Liberal Arts, Office of Student Services
 585-475-2444, libarts@rit.edu

Program overview

The minor in anthropology and sociology offers disciplinary insights on understanding human social life, both from local and global perspectives. Through anthropology we discover and appreciate the diversity of other cultural systems on a global scale. Through sociology we discover how our own lives are influenced by social relationships around us. Careful selection of courses provides insights into a wide range of topics such as human history and prehistory through archaeology, gender and sexuality, race, ethnicity, social class, inequality, health, urban life and cities, cultural images and mass media, war and violence, social movements, social and cultural change, and globalization.

Notes about this minor:

- This minor is closed to students majoring in sociology and anthropology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

course
 Required Course

Required Course	
Choose one of the following:	
ANTH-102	Cultural Anthropology
ANTH-102H	Honors Cultural Anthropology
ANTH-103	Archaeology and the Human Past
ANTH-104	Language and Linguistics
INGS-101	Global Studies
SOCI-102	Foundations of Sociology
SOCI-102H	Honors Sociology

Electives	
Choose four of the following:	The Ethnographic Imagination
ANTH-201	Culture and Globalization
ANTH-210	Field Methods in Archaeology
ANTH-215	Language and Culture: Introduction to Linguistic Anthropology
ANTH-220	Globalizing Africa
ANTH-225	Buried Treasure: Archaeology in Popular Culture
ANTH-230	Immigration to the U.S.
ANTH-235	Human Centered Design Queries: An Anthropological Approach
ANTH-244	Ritual and Performance
ANTH-245	Gender and Health
ANTH-246	Themes in Archaeological Research
ANTH-250	Regional Archaeology
ANTH-255	Native North Americans
ANTH-260	Native Americans in Film
ANTH-265	Cuisine, Culture, and Power
ANTH-270	Global Islam
ANTH-275	American Indian Languages
ANTH-285	Global Public Health
ANTH-295	Social and Cultural Theory
ANTH-301	Qualitative Research
ANTH-302	Statistics in the Social Sciences
ANTH-303	Comparative and Historical Linguistics
ANTH-305	African Film
ANTH-310	People Before Cities
ANTH-312	The Archaeology of Cities
ANTH-315	Practicing Anthropology
ANTH-320	Bodies and Culture
ANTH-325	Heritage and Tourism
ANTH-328	Cultural Images of War and Terror
ANTH-330	Culture and Politics in Latin America
ANTH-335	Global Addictions
ANTH-341	Genocide and Transitional Justice
ANTH-345	Humans and Their Environment
ANTH-360	Sociology of Numbers
ANTH-361	

COURSE	
ANTH-365	Culture and Politics in the Middle East
ANTH-370	Media and Globalization
ANTH-375	Native American Cultural Resources and Rights
ANTH-380	Nationalism and Identity
ANTH-385	Anthropology and History
ANTH-410	Global Cities
ANTH-415	Archaeological Science
ANTH-420	Exploring Ancient Technology
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-435	The Archaeology of Death
ANTH-455	Economics of Native America
ANTH-489	Topics in Anthropology
INGS-210	Culture and Politics in Urban Africa
SOCI-210	Black America-Culture \& HipHop
SOCI-215	The Changing Family
SOCI-220	Minority Group Relations
SOCI-225	Social Inequality
SOCI-230	Sociology of Work
SOCI-235	Women, Work, and Culture
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-300	Sociology of American Life
SOCI-301	Social and Cultural Theory
SOCl-302	Qualitative Research
SOCI-303	Statistics in the Social Sciences
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOC1-322	Health and Society
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-350	Social Change
SOCI-355	Cyber Activism: Diversity, Sex and the Internet
SOCI-361	Sociology of Numbers
SOCI-395	Borders:Humans, Boundaries, and Empires
SOCl-451	Economics of Women and the Family
SOCI-489	Topics in Sociology

Applied Cognitive Neuroscience

Elena Fedorovskaya, Minor Advisor 585-475-6952, eafppr@rit.edu

Program overview

Explore the biological underpinnings of cognition, delving into the science of the brain to understand the mental processes behind cognition and perception, particularly visual perception.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Choose one of the following sequences:	
BIOL-101	General Biology I
BIOL-102	General Biology II
BIOL-103	General Biology I Lab
BIOL-104	General Biology II Lab
or	
BIOL-123	Introduction to Biology: Organisms and Ecosystems
BIOL-124	Introduction to Biology: Molecules and Cells
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells
PSYC-101	Introduction to Psychology
Required Courses	
CGNS-222	Introduction to Cognitive Neuroscience
CGNS-451	Cognitive Neuroscience Seminar A
CGNS-452	Cognitive Neuroscience Seminar B
PSYC-222	Biopsychology
Electives-Students must choose a total of three elective courses with at least one coming from each category. At least two courses must be taken at the $\mathbf{3 0 0}$-level or higher.	
Psychology	
PSYC-223	Cognitive Psychology
PSYC-224	Perception
PSYC-410	Psychophysiology
PSYC-430	Memory and Attention
PSYC-431	Language and Thought
PSYC-432	Decision Making, Judgement, and Problem Solving
Science	
BIOL-205	Animal Behavior
BIOL-206	Molecular Biology
BIOL-302	Cell Biology
BIOL-303	Cell Physiology
BIOL-309	Comparative Vertebrate Anatomy
BIOL-313	Comparative Animal Physiology
BIOL-428	Eukaryotic Gene Regulation and Disease
CGNS-322	Animal Vision
CLRS-600	Fundamentals of Color Science
IMGS-221	Vision \& Psychophysics
MEDS-250	Human Anatomy and Physiology I
MEDS-425	Introduction to Neuroscience

* At least two courses must be taken at the 300-level or higher.

Applied Statistics

Carol Marchetti, Minor Advisor

5854752515, cemsma@rit.edu

Program overview

Deepen your technical background and gain further appreciation for modern mathematical sciences and the use of statistics as an analytical tool.

Notes about this minor:

- The minor is closed to students majoring in applied statistics and actuarial science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

course

Prerequisites

Choose one of the following course sequences:	
MATH-181	Project-Based Calculus I
MATH-182	Project-Based Calculus II
or	Calculus I
MATH-181A	Calculus II
MATH-182A	Calculus A
or	Calculus B
MATH-171	Calculus C
MATH-172	
MATH-173	
Electives	Probability and Statistics
Choose five of the following:	Stochastic Processes
MATH-251	Applied Statistics*
MATH-505	Statistical Inference*
STAT-205	Regression Analysis
STAT-257	Design of Experiments
STAT-305	Introduction to Time Series
STAT-325	Nonparametric Statistics
STAT-335	Mathematical Statistics I
STAT-345	Mathematical Statistics II
STAT-405	Multivariate Analysis
STAT-406	Statistical Quality Control
STAT-425	Statistical Software - R
STAT-521	Data Mining
STAT-511	Survey Design and Analysis
STAT-547	Categorical Data Analysis
STAT-572	
STAT-584	

* STAT-257 and STAT-205 cannot both be taken for credit.

Archaeology

College of Liberal Arts, Office of Student Services
585-475-2444, libarts@rit.edu

Program overview

Archaeology is the study of the human past, principally by means of the physical residue of past human behavior. Archaeological science is the application of techniques from the physical sciences to research problems in archaeology and related disciplines. Over the past six decades archaeological science has provided powerful tools for understanding the past, ranging from absolute dating to bone chemistry. It has become an established sub-field within the discipline of archaeology, which itself has grown during the same period from a discipline largely focused on cultural history (the use of artifacts to reconstruct regional cultural sequences) and the validation of documentary history to the explanation of the processes of cultural change in the past.

Notes about this minor:

- This minor is closed to students majoring in sociology and anthropology who have chosen a track in archaeology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
ANTH-103	Archaeology and the Human Past
Electives	
Choose two courses from each of the following groups:	
Disciplinary	
ANTH-230	Buried Treasure: Archaeology in Popular Culture
ANTH-250	Themes in Archaeological Research
ANTH-255	Regional Archaeology
ANTH-312	People Before Cities
ANTH-315	The Archaeology of Cities
Applied/Laboratory	
ANTH-215	Field Methods in Archaeology
ANTH-360	Humans and Their Environment
ANTH-375	Native American Cultural Resources and Rights
ANTH-415	Archaeological Science
ANTH-420	Exploring Ancient Technology
ANTH-435	The Archaeology of Death

Art History

Nate Rohman, Minor Advisor

585-475-5760, nmrpgd@rit.edu

Program overview

Explore the history of art, architecture, craft, design, photography, and aesthetic theory across multiple cultures, eras, and intellectual perspectives. Art historians examine a society's artistic production, analyzing form, content, and process to better understand how art expresses meaning within specific cultural contexts. Students completing this minor will be able to use art historical and related methodologies to evaluate works of art, formulate a history of artistic styles, analyze art in relation to its historical setting, and engage with the world of contemporary art. The minor's emphasis on writing and critical thinking complements any academic program while the inclusion of visual analysis, historical context, and theoretical approaches to artistic production make this a useful addition for students seeking careers in areas such as the fine arts, education, design, communication, game design, museum and gallery work, or digital humanities.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Minors

Curriculum

course

Required Course

Choose one of the following:	
ARTH-124	Survey: Themes in the History of Art
ARTH-135	Survey: Ancient to Medieval
ARTH-136	Survey: Renaissance to Modern
ARTH-137	Survey: Arts of the Ancient Americas

Electives

Choose five of	
ARTH-311	Art and Architecture of Italy: 1250-1400
ARTH-312	Art and Architecture of Italy: 1600-1750
ARTH-317	Art and Architecture in Florence and Rome: 15th Century
ARTH-318	Art and Architecture in Florence and Rome: 16th Century
ARTH-364	Art in Paris
ARTH-366	18th,19th Century Art
ARTH-368	20th Century Art: 1900-1950
ARTH-369	20th Century Art: Since 1950
ARTH-373	Art of the Last Decade
ARTH-378	Baroque Painting in Flanders
ARTH-379	Renaissance Painting in Flanders
ARTH-392	Theory And Criticism of 20th Century Art
ARTH-400	Seminar: Research in Art History
ARTH-457	Art and Activism
ARTH-500	Postmodernism and After: Contemporary Aesthetics
ARTH-521	The Image
ARTH-541	Art and Architecture of Ancient Rome
ARTH-544	Illuminated Manuscripts
ARTH-549	Topics in Global Art and Architecture:
ARTH-550	Topics in Art History
ARTH-551	Topics in Art History, Writing Intensive:
ARTH-555	Topics in Medieval Art and Architecture
ARTH-556	Art Comics
ARTH-558	The Gothic Revival
ARTH-561	Latin American Art
ARTH-563	Modern Architecture
ARTH-568	Art and Technology: from the Machine Aesthetic to the Cyborg Age
ARTH-571	Extreme Abstraction
ARTH-572	Art of the Americas
ARTH-573	Conceptual Art
ARTH-574	Dada and Surrealism
ARTH-576	Modernism and Its Other: Realism in the Shadow of Expressionism
ARTH-577	Displaying Gender
ARTH-578	Edvard Munch
ARTH-581	Realism and the Avant-Garde in Russian Art
ARTH-583	Installation Art
ARTH-584	Scandinavian Modernism
ARTH-586	History of Things: Studies in Material Culture
ARTH-588	Symbols and Symbol Making: Psychoanalytic Perspective on Art
DDDD-302	History of Digital Graphics
GRDE-205	History of Graphic Design
GRDE-322	Women Pioneers in Design
GRDE-326	20th Century Editorial Design History
IDDE-221	History of Industrial Design
IDDE-223	History of Modern Furniture
PHAR-211	Histories and Aesthetics of Photography I
PHAR-212	Histories and Aesthetics of Photography II
PHIL-303	Philosophy of Art/Aesthetics
PHIL-313	Philosophy of Film
PHIL-314	Philosophy of Vision and Imaging

* At least two courses must be taken at the 300-level or higher.

Art of Science/Science of Art

Susan Farnand, Minor Advisor
 585-475-4567, Susan.Farnand@rit.edu

Program overview

Explore the impact of art on science and science on art along with the synergistic overlaps between the two. Specifically, students learn how art and design can be applied in good scientific practice and how the sciences impact the materials, processes, and ultimate perceptual enjoyment of the visual arts.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Required Course

Integrative Seminar
CLRS-101 Art of Science of Art

Students must complete a total of three courses with one course coming from each of the following
groups:

Sciences	
CLRS-201	
IMGS-111	Color Science for the Visual Arts
IMGS-221	Imaging Science Fundamentals
SOFA-103	Insion \& Psychophysics
Arts	
ITDI-211	Drawing for Non-Majors
IDEA-221	Design for Non-Majors I
ITDI-242	Painting
PHAR-150	Introduction to Film Photography
Humanities	
ARTH-136	History of Western Art:-Renaissance to Modern
MUSE-224	History \&Theory of Exhibitions
MUSE-225	Museums \& the Digital Age
PSYC-224	Perception

Electives-Students must complete a total of two elective courses. At least two courses must be taken at the 300-level or higher.

IMGS-351	Fundamentals of Color Science
PSYC-222	Biopsychology
PSYC-223	Cognitive Psychology
ARTH-521	The Image
ARTH-544	Illuminated Manuscripts
MUSE-340	Introduction to Archival Studies
MUSE-359	Cultural Informatics

Astronomy

Andrew Robinson, Minor Advisor
 585-475-2726, axrsps@rit.edu

Program overview

This minor provides students with an opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. It will provide students with a broad foundational background in astronomy in preparation for graduate studies in astronomy or astrophysics. The minor is interdisciplinary and offered jointly by the School of Physics and Astronomy and the Chester F. Carlson Center for Imaging Science.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	Project-Based Calculus I
MATH-181	Project-Based Calculus II
MATH-182	University Physics I
PHYS-211	University Physics II
PHYS-212	Modern Physics I
PHYS-213	
Required Course	University Astronomy
PHYS-220	
Astrophysics	Stellar Astrophysics
Choose one of the following:	Galactic Astrophysics
PHYS-370	Extragalactic Astrophysics and Cosmology
PHYS-371	
PHYS-372	
Experimental	Multi-Wavelength Astronomical Imaging
Choose one of the following:	Design and Fabrication of Solid State Cameras
IMGS-513	Observational Astronomy
IMGS-528	
PHYS-373	

Electives	
Choose two of the following:	
IMGS-361	Image Processing and Computer Vision I
IMGS-362	Image Processing \& Computer Vision II
IMGS-451	Imaging Detectors
IMGS-513	Multi-wavelength Astronomical Imaging
IMGS-528	Design and Fabrication of Solid State Cameras
PHYS-370	Stellar Astrophysics*
PHYS-371	Galactic Astrophysics*
PHYS-372	Extragalactic Astrophysics and Cosmology*
PHYS-373	Observational Astronomy
PHYS-493	Astrophysics Research

\dagger At least two courses must be taken at the 300-level or higher

* PHYS-213 (Modern Physics I) is a prerequisite for PHYS-370 (Stellar Astrophysics), PHYS-371 (Galactic Astrophysics), and PHYS-372 (Extragalactic Astrophysics and Cosmology).
NOTE: PHYS-370, PHYS-371,PHYS-372, and PHYS-373 are offered in alternate years. Contact the Astronomy Minor Advisor for the schedule.

Bioinformatics Analysis

Feng Cui, Minor Advisor
 585-475-4115, fxcsbi@rit.edu

Program overview

The bioinformatics analysis minor immerses students in the core challenges and strengths of the field of bioinformatics, as well as the ethical issues involved. Students gain hands-on experience implementing some of the core algorithms utilized by professionals in the field.

Notes about this minor:

- This minor is closed to students majoring in bioinformatics and computational biology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	
Students must complete the following courses or their equivalent:	
BIOL-101	General Biology I
BIOL-103	General Biology I Lab
BIOL-102	General Biology II
BIOL-104	General Biology II Lab
or	
BIOL-123	Introduction to Biology: Organisms and Ecosystems
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems
BIOL-124	Introduction to Biology: Molecules and Cells
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells
and	
BIOL-206	Molecular Biology
Students must complete the following courses or their equivalent:	
CHMG-141	General \& Analytical Chemistry I
CHMG-145	General \& Analytical Chemistry I Lab
or	
CHEM-151	General Chemistry
CHEM-155	Chemistry Workshop
or	
CHMG-131	General Chemistry for Engineers
Required Courses	
BIOL-130	Introduction to Bioinformatics
BIOL-135	Introduction to Bioinformatics Programming
BIOL-327	Fundamental Bioinformatics Analysis
Electives	
Choose two of the following:	
BIOL-230	Bioinformatics Languages
BIOL-235	Fundamentals of Bioinformatics Programming
BIOL-296	Ethical Issues in Biology and Medicine
BIOL-470	Statistical Analysis for Bioinformatics
BIOL-530	Bioinformatics Algorithms
BIOL-550	High Throughput Sequencing Analysis
BIOL-594	Molecular Modeling and Proteomics
BIOL-635	Bioinformatics Seminar

Biology: Cellular and Molecular

Leslie Kate Wright, Minor Advisor
 585-475-4669, Ikwsbi@rit.edu

Program overview

The biology: cellular and molecular minor provides students with opportunities to experience and explore topics related to both the cellular and molecular aspects of modern biology to broaden and enhance their educational experience.

Notes about this minor:

- This minor is closed to students majoring in biochemistry, bioinformatics and computational biology, biology, biomedical sciences, and biotechnology and molecular bioscience.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Prerequisites

Choose one of the following sequences:	
BIOL-101	General Biology I
BIOL-103	General Biology I Lab
BIOL-102	General Biology II
BIOL-104	General Biology II Lab
or	Introduction to Biology: Organisms and Ecosystems
BIOL-123	Introduction to Biology Laboratory: Organisms and Ecosystems
BIOL-125	Introduction to Biology: Molecules and Cells
BIOL-124	Introduction to Biology Laboratory: Molecules and Cells
BIOL-126	General \& Analytical Chemistry I
Choose one of the following sequences:	
CHMG-141	General \& Analytical Chemistry I Lab
CHMG-145	
or	General Chemistry
CHEM-151	General Chemistry Workshop
CHEM-155	
or	General Chemistry for Engineers
CHMG-131	

Required Courses	
BIOL-206	Molecular Biology
BIOL-216	Molecular Biology Laborato

Electives*

Elective choices should total a minimum of $\mathbf{1 1}$ credit hours	
BIOL-204	Introduction to Microbiology
BIOL-218	Biology of Plants
BIOL-265	Evolutionary Biology
BIOL-302	Cell Biology
BIOL-305	Plants, Medicine and Technology
BIOL-306	Food Microbiology
BIOL-307	Microbiology of Wastewater
BIOL-310	Bioenergy: Microbial Production
BIOL-321	Genetics
BIOL-322	Developmental Biology
BIOL-327	Fundamental Bioinformatics Analysis
BIOL-340	Genomics
BIOL-375	Advanced Immunology
BIOL-380	Bioremediation
BIOL-401	Biological Separations: Principles and Practices
BIOL-403	Fundamentals of Plant Biochemistry and Pathology
BIOL-404	Microbiology of Fermentation
BIOL-408	Biology of Cancer
BIOL-412	Human Genetics
BIOL-415	Virology
BIOL-416	Plant Biotechnology
BIOL-418	Plant Molecular Biology
BIOL-420	Bacterial-Host Interactions: Microbiomes of the World
BIOL-427	Microbial and Viral Genetics
BIOL-441	Genetic Engineering and Synthetic Biology

* At least two courses must be taken at the 300-level or above.

Biology: Ecology and Evolution

Leslie Kate Wright, Minor Advisor 585-475-4669, Ikwsbi@rit.edu

Program overview

The biology: ecology and evolution minor provides students with the opportunity to experience both the ecological and evolutionary underpinnings of modern biology. The minor explores these areas of biology through laboratory and field experiences.

Notes about this minor:

- The minor is closed to students majoring in biology or environmental science (who have chosen the biology concentration).
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Prerequisites

Choose one of the following sequences:	
BIOL-101	General Biology I
BIOL-103	General Biology I Lab
BIOL-102	General Biology II
BIOL-104	General Biology II Lab
or	
BIOL-123	Introduction to Biology: Organisms and Ecosystems
BIOL-125	Introduction to Biology Laboratory: Organisms and Ecosystems
BIOL-124	Introduction to Biology: Molecules and Cells
BIOL-126	Introduction to Biology Laboratory: Molecules and Cells

Required Course

Choose at least one of the following:	
BIOL-240	General Ecology
BIOL-265	Evolutionary Biology

Electives*

Elective choices should total a minimum of $\mathbf{1 1}$ credit hours	
BIOL-205	Animal Behavior
BIOL-207	Galapagos: Ecology and Evolution
BIOL-211	Invertebrate Zoology
BIOL-212	Vertebrate Zoology
BIOL-218	Biology of Plants
BIOL-220	Biology of Fungi and Insects
BIOL-240	General Ecology
BIOL-265	Evolutionary Biology
BIOL-290	Vertebrate Evolution
BIOL-293	Evolution and Creationism
BIOL-309	Comparative Vertebrate Anatomy
BIOL-313	Comparative Animal Physiology
BIOL-343	Tropical Ecology
BIOL-365	Introduction to Population Genetics
BIOL-371	Freshwater Ecology
BIOL-385	Seneca Park Zoo Internship
BIOL-455	Biogeography
BIOL-573	Marine Biology
BIOL-575	Conservation Biology
ENVS-305	Urban Ecology
ENVS-531	Climate Change: Science, Technology \& Policy
MEDS-250	Human Anatomy and Physiology I
MEDS-251	Human Anatomy and Physiology II

* At least two courses must be taken at the 300-level or higher.

Black Studies

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

Examine the social construction of racial differences and their relation to the perpetuation of racism and racial domination. A key component of this minor is an investigation of the meanings and dimensions of blackness that reverberate from slavery and colonialism to the persistent political, social, and cultural implications in the 21st century. The minor emphasizes how blackness intersects with other ethnic identities and how it is shaped by gender, sexuality, and economic inequities. The aim is to refine and advance students' knowledge of black life-worlds and experiences across the globe.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
Choose at least one of the following:	
COMM-306	Rhetoric Of Race Relations
HIST-245	American Slavery and Freedom
SOCI-210	Black America-Culture \& HipHop
Electives	
Choose four of the following:	
ANTH-225	Globalizing Africa
ANTH-246	Gender and Health
ANTH-310	African Film
ANTH-335	Culture and Politics in Latin America
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-410	Global Cities
ANTH-430	Visual Anthropology
ANTH-489	Topics in Anthropology*
COMM-306	Rhetoric Of Race Relations
CRIM-285	Minority Groups and the Criminal Justice System
ENGL-316	Global Literature*
ENGL-413	African American Literature
ENGL-414	Women and Gender in Literature and Media*
FNRT-203	American Popular \& Rock Music
FNRT-322	Survey of Jazz
HIST-210	Culture and Politics in Urban Africa
HIST-245	American Slavery and Freedom
INGS-210	Culture and Politics in Urban Africa
MLSP-352	Caribbean Cinema
PRFL-324	African American Playwrights
SOCI-210	Black America-Culture \& HipHop
SOCI-220	Minority Group Relations
SOCI-246	Gender and Health
SOCI-330	Urban (In)Justice
SOCI-345	Sociology of Numberiology*
SOCI-361	Sops
SOCI-489	

[^15]
Business Administration

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

This minor is appropriate for undergraduate students interested in broad exposure to the world of business. Undergraduate students interested in pursuing an MBA degree may use this minor to fulfill certain MBA bridge courses.

Notes about this minor:

- This minor is closed to students majoring in any undergraduate program in Saunders College of Business.
- Three courses from a list of nine courses must be taken. Two additional Saunders College elective courses are required. These elective courses may be any Saunders course.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Electives:	
ACCT-110	Financial Accounting
BLEG-200 \ddagger	Business Law I
BLEG-250 \ddagger	Law, Business, and Society
DECS-310	Operations Management
FINC-120	Personal Financial Management *
FINC-220	Financial Management *
INTB-225	Global Business Environment
MGMT-215	Organizational Behavior
MKTG-230	Principles of Marketing
Students may use only one of the following courses towards a minor elective.	
MGMT-101	Business 1: Introduction to Business Communication, Planning \& Analysis
MGMT-103	Business 2T: Business Planning Tools and Practices
MGMT-150	Business 1T: An Introduction to Business

* Student may choose only one of the finance courses.
\ddagger Student may choose only one of the business law courses.

Business Analytics

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The business analytics minor is designed for students who are interested in data analysis that supports business decision making and enhances organizational outcomes. The minor offers a strong complement for students in any major who would like to develop their skills in the management, analysis, visualization, and application of contemporary business data.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

\section*{| COURSE |
| :--- |
| Required Course |}

BANA-255	Data Literacy, Analytics and Decision Making
Choose four of the following:	
ACCT-445	Accounting Information Systems
DECS-310	Operations Management
DECS-435	Supply Chain Management Fundamentals
FINC-425	Stock Market Algorithmic Trading
FINC-580	Financial Analytics
HSPT-225	Hospitality and Tourism Management Fundamentals
HSPT-315	Lodging Operations Analytics and Management
MGIS-320	Database Management Systems
MGIS-350	Developing Business Applications
MGIS-355	Business Intelligence
MGIS-450	Enterprise Systems
MKTG-365	Marketing Analytics
MKTG-410	Search Engine Marketing and Analytics

SAMPLE TRACKS*	
Accounting Focus:	
ACCT-110	Financial Accounting
ACCT-445	Accounting Information Systems
Finance Focus:	
FINC-220	Financial Management
FINC-580	Financial Analytics
Hospitality and Tourism Management Focus:	
HSPT-225	Hospitality and Tourism Management Fundamentals
HSPT-315	Lodging Operations Analytics and Management
Marketing Focus:	
MKTG-230	Principles of Marketing
MKTG-365	Marketing Analytics
MKTG-410	Search Engine Marketing and Analytics
MIS Focus:	
MGIS-320	Database Management Systems
MGIS-350	Developing Business Applications
MGIS-355	Business Intelligence
Supply Chain Management Focus:	
DECS-310	Operations Management
DECS-435	Supply Chain Management Fundamentals

* Within each track, students would be required to complete BANA-255 and two to three other minor electives as delineated. If students wish to do one of the focused tracks, students are able to use the pre-req classes to be used toward the elective course requirement. However, students cannot use only pre-req classes to satisfy the elective course requirement.

Ceramics

Program overview

The ceramics minor enables you to develop craftsmanship and skills in both traditional throwing, hand building, and sculptural work in clay while also engaging in aesthetic and creative problem solving associated with the material and processes. You will investigate an individual design language and personal aesthetic through the creation of various processes and techniques in ceramics.

Notes about this minor:

- This minor is closed to students majoring in the studio arts BFA who have chosen the ceramics option.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Course

Required Course	
Choose one of the following:	
CCER-124	Clay Studio Survey
CCER-128	Josiah's Wedgwood's Legacy
Electives	
Choose four of the following:	
CCER-206	Ceramic Sculptural Processes
CCER-211	Thrown Vessel Forms
CCER-511	Ceramic Processes
CCER-513	Thrown Sculptural Forms
CCER-530	Ceramics 3 Credit Elective

Chemical Engineering Systems Analysis

Steven Weinstein, Minor Advisor
 585-475-4299, steven.weinstein@rit.edu

Program overview

The minor in chemical engineering systems analysis provides students with a sophisticated understanding of the application of scientific knowledge to the solution of a vast array of practical problems in which chemistry plays a critical role. Students are taught the systems methodologies that chemical engineers employ to analyze and solve real world problems involving distinct chemical components, chemical reaction, multiple phases, and mass transfer.

Notes about this minor:

- This minor is closed to students majoring in chemical engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
CHME-182	Chemical Engineering Insights II
CHME-230	Chemical Process Analysis
CHME-310	Applied Thermodynamics
CHME-330	Mass Transfer Operations
CHME-340	Reaction Engineering
Electives	
Choose one course from the following groups:	
Alternate Energy Systems	
CHEM-201	Clean Energy: Hydrogen Fuel Cells
MECE-529	Renewable Energy Systems
Advanced Materials	Chemical Separations
CHMA-222	Introduction to Organic Polymer Technology
CHMG-201	Applied Biomaterials
MECE-557	Introductory Musculoskeletal Biomechanics
Biomedical Engineering	Introduction to Biomaterials Science
BIME-200	Contemporary Issues in Bioengineering
BIME-370	Biomedical Device Eng
MECE-358	
MECE-407	Continuum Mechanics I
Chemical Engineering	Multiple Scale Material Science
CHME-320	Interfacial Phenomena
CHME-350	Independent Study
CHME-421	
CHME-599	Design for the Environment
Environmental	Contemporary Issues in Energy And Environment
ISEE-787	MECE-357

Chemistry

Christina Goudreau Collison, Minor Advisor
 585-475-2634, cgcsch@rit.edu

Program overview

Chemistry is intrinsically a part of our society from the fuels we use, the air we breathe, and the water we drink to the complex chemical behaviors of our own bodies. Chemistry is involved in the development of myriad materials such as computer chips, packaging materials, and alternative fuels. Increasing numbers of policy and ethical choices facing the global community involve issues where chemistry plays a pivotal role. This minor provides students with the opportunity to study chemistry in order to build a secondary area of expertise in support of their major or as an additional area of interest.
Notes about this minor:

- This minor is closed to students majoring in biochemistry and chemistry.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining pre-requisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
CHMG-141	General \& Analytical Chemistry I
CHMG-145	General \& Analytical Chemistry I Lab
CHMG-142	General \& Analytical Chemistry II
CHMG-146	General \& Analytical Chemistry II Lab
or	
CHMG-131	General Chemistry for Engineers
CHMG-145	General \& Analytical Chemistry I Lab
or	
CHEM-151	General Chemistry
CHEM-155	Chemistry Workshop
Required Courses	
CHMO-231	Organic Chemistry I
CHMO-232	Organic Chemistry II
CHMO-235	Organic Chemistry Lab I
CHMO-236	Organic Chemistry Lab II
Electives	
Choose at least 9 credits from the following:	
CHEM-301	Undergraduate Teaching Experience \dagger
CHEM-493	Chemistry Research \dagger
CHEM-495	Advanced Chemistry Research \dagger
CHMA-161	Quantitative Analysis
CHMA-261	Instrumental Analysis
CHMA-670	Advanced Concepts of Environmental Chemistry
CHMA-711	Advanced Instrumental Analysis
CHMB-402	Biochemistry I
CHMB-403	Biochemistry II
CHMB-460	Infectious Diseases: Impact Society \& Culture
CHMB-493	Biochemistry Research \dagger
CHMB-495	Advanced Biochemistry Research \dagger
CHMB-610	Advanced Protein Biochemistry: Structure and Function
CHMI-351	Descriptive Inorganic Chemistry
CHMI-564	Structural Inorganic Chemistry
CHMI-664	Modern Inorganic Chemistry
CHMO-636	Spectrometric Identification of Organic Compounds
CHMO-637	Advanced Organic Chemistry
CHMO-710	Literature Exploration of Organic Synthesis
CHMO-739	Advanced Physical Organic Chemistry
CHMO-750	Survey of Organic Named Reactions
CHMP-441	Physical Chemistry I
CHMP-442	Physical Chemistry II
CHMP-752	Molecular Photophysics and Photochemistry
CHMP-753	Computational Chemistry
CHPO-706	Polymer Synthesis
CHPO-707	Polymer Chemistry II

\dagger Students may use Undergraduate Teaching Experience (CHEM-301), Chemistry Research (CHEM-
493), Advanced Chemistry Research (CHEM-495), Biochemistry Research (CHMB-493), and Advanced Undergraduate Research Experience (CHMB-495) to satisfy up to 3 of the 9 credit hours required for the elective courses. The remaining 6 credit hours must come from other courses on the electives list.

Communication

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

Students gain a foundation in human communication theories, research, and skills. Students select courses in mass media analysis, communication in professional and organizational contexts, communication skills, and critical reflection of and on communication in society.

Notes about this minor:

- This minor is closed to students majoring in communication.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

course

Required Course

Required Course	
COMM-101	Human Communication
COMM-253	Communication

Electives

Choose four of the following:*	
COMM-142	Introduction to Technical Communication
COMM-201	Public Speaking
COMM-202	Mass Communications
COMM-223	Digital Design In Communication
COMM-272	Reporting and Writing I
COMM-302	Interpersonal Communication
COMM-303	Small Group Communication
COMM-304	Intercultural Communication
COMM-305	Persuasion
COMM-341	Visual Communication
COMM-342	Communication Law and Ethics
COMM-343	Technology-Mediated Communication
COMM-344	Health Communication
COMM-503	Advanced Public Speaking

[^16]
Computer Engineering

Roy Melton, Minor Advisor

585-475-7698, Roy.Melton@mail.rit.edu

Program overview

Students gain a foundation in digital systems design, an understanding of computer organization, and an introduction to embedded systems programming. They also build on this core through elective courses in the areas of hardware design, architectures, networks and systems.

Notes about this minor:

- The minor is closed to students majoring in computer engineering, computer engineering technology, or electrical engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	Computer Science I (or equivalent)
CSCI-141	
Plus one of the following:	Calculus B
MATH-172	Project-Based Calculus I
MATH-181	Discrete Mathematics for Computing
MATH-190	
Required Courses	Digital System Design I
CMPE-160	Assembly and Embedded Programming
CMPE-250	Computer Organization
CMPE-350	
Electives	Digital System Design II
Choose two of the following:	Applied Programming in C
CMPE-260	Interface and Digital Electronics
CMPE-380	Digital Signal Processing
CMPE-460	Digital Integrated Circuit Design
CMPE-480	Computer Architecture
CMPE-530	Data and Communication Networks
CMPE-550	Multiple Processor Systems
CMPE-570	Reconfigurable Computing
CMPE-655	Hardware and Software Design for Cryptographic Applications
CMPE-660	Real-time \& Embedded Systems
CMPE-661	Modeling of Real-Time Systems
CMPE-663	Performance Engineering of Real-Time and Embedded Systems
CMPE-664	Machine Intelligence
CMPE-665	Deep Learning
CMPE-677	Computer Vision
CMPE-679	Design and Test of Multi-Core Chips
CMPE-685	Wireless Networks
CMPE-731	
CMPE-755	
CMPE-770	

Computer Science

Karen Hirst, Minor Advisor

585-475-4712, kphics@rit.edu

Program overview

Explore an in-depth study of programming or sample selected theoretical or applied areas within the computer science field. At least two of the four electives must have course numbers of 300 or higher and students with the proper prerequisites may use graduate-level computer science courses toward the minor.
Notes about this minor:

- This minor is closed to students majoring in computer science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Students must complete the following two-course programming sequence*:	
CSCI-141	Computer Science I
CSCI-142	Computer Science II
Students must complete the following calculus sequencet:	
MATH-181	Project-Based Calculus I
MATH-182	Project-Based Calculus II
Student must complete the following discrete mathematics course \ddagger :	
MATH-190	Discrete Mathematics for Computing
Required Course	
CSCI-243	The Mechanics of Programming
Electives	
Choose four of the following:	
CSCI-250	Concepts of Computer Systems
CSCI-251	Concepts of Parallel and Distributed Systems
CSCI-261	Analysis of Algorithms
CSCI-262	Introduction to Computer Science Theory
CSCI-263	Honors Introduction to Computer Science Theory
CSCI-264	Honors Analysis of Algorithms
CSCI-320	Principles of Data Management
CSCI-331	Introduction to Artificial Intelligence
CSCI-335	Machine Learning
CSCI-344	Programming Language Concepts
CSCI-351	Data Communications and Networks
CSCI-352	Operating Systems
CSCI-420	Principles of Data Mining
CSCl-421	Principles of Database System Implementation
CSCI-431	Introduction to Computer Vision
CSCI-452	Systems Programming
CSCI-453	Computer Architecture
CSCI-455	Principles of Cybersecurity
CSCI-462	Introduction to Cryptography
CSCI-464	Xtreme Theory
CSCI-510	Introduction to Computer Graphics
CSCI-518	Collaborative Seminar in Computer Graphics
CSCI-519	Seminar in Computer Graphics
CSCI-521	Principles of Data Cleaning and Preparation
CSCI-529	Seminar in Data Management
CSCI-531	Introduction to Security Measurement
CSCI-532	Introduction to Intelligent Security Systems
CSCI-536	Information Retrieval
CSCI-539	Seminar in Artificial Intelligence
CSCI-541	Programming Skills
CSCI-549	Seminar in Languages and Tools
CSCI-559	Seminar in Systems
CSCI-569	Seminar in Theory
CSCI-599	Computer Science Undergraduate Independent Study
CSCI-610	Foundations of Computer Graphics
CSCI-620	Introduction to Big Data
CSCI-621	Foundations of Database System Implementation
CSCI-622	Data Security and Privacy
CSCI-630	Foundations of Artificial Intelligence
CSCI-631	Foundations of Computer Vision

COURSE	
CSCI-632	Mobile Robot Programming
CSCI-633	Biologically Inspired Intelligent Systems
CSCI-635	Introduction to Machine Learning
CSCI-636	Information Retrieval
CSCI-641	Advanced Programming Skills
CSCI-642	Secure Coding
CSCI-651	Foundations of Computer Networks
CSCI-652	Distributed Systems
CSCI-654	Foundations of Parallel Computing
CSCI-655	Foundations of Cybersecurity
CSCI-661	Foundations of Computer Science Theory
CSCI-662	Foundations of Cryptography
CSCI-664	Computational Complexity
CSCI-665	Foundations of Algorithms
CSCI-711	Global Illumination
CSCI-712	Computer Animation: Algorithms and Techniques
CSCI-713	Applied Perception in Graphics and Visualization
CSCI-714	Scientific Visualization
CSCI-715	Applications in Virtual Reality
CSCI-716	Computational Geometry
CSCI-719	Topics in Computer Graphics
CSCI-720	Big Data Analytics
CSCI-721	Foundations of Data Cleaning and Preparation
CSCI-722	Data Analytics Cognitive Comp
CSCI-723	Advanced Database Skills: Graph Databases
CSCI-724	Web Services and Service Oriented Computing
CSCI-725	Advanced Database Skills: NoSQL and NewSQL Data Systems
CSCI-729	Topics in Data Management
CSCI-731	Advanced Computer Vision
CSCI-732	Image Understanding
CSCI-734	Foundations of Security Measurement and Evaluation
CSCI-735	Foundations of Intelligent Security Systems
CSCI-736	Neural Networks and Machine Learning
CSCI-737	Pattern Recognition
CSCI-739	Topics in Intelligent Systems
CSCI-740	Programming Language Theory
CSCI-742	Compiler Construction
CSCI-746	Software Development Tools
CSCI-749	Topics in Languages and Tools
CSCI-759	Topics in Systems
CSCI-761	Topics in Advanced Algorithms
CSCI-762	Advanced Cryptography
CSCI-769	Topics in Theory

* An equivalent programming sequence may be determined by the minor advisor.
† An equivalent calculus sequence may be determined by the minor advisor.
\# An equivalent discrete mathematics sequence may be determined by the minor advisor.

Minors

Computing Security

Liz Herrmann, Minor Advisor
585-475-2189, ejhics@rit.edu

Program overview

With the prevalence of mobile computing, the advantages of cloud computing, the ubiquity of computing in general, and the issues of securing big data caused by the world-wide explosion of eBusiness and eCommerce today, secure computing environments and appropriate information management have become critical issues to all sizes and types of organizations. Therefore, there is a vital and growing need for all computing professionals to have a foundation in the issues critical to information security and how they apply to their specific disciplines. The minor consists of two required courses and three electives chosen by the student from the computing security advanced course clusters. There are many elective course choices to provide flexibility. Therefore, the minor provides any computing major outside of the computing security degree program with basic knowledge of the issues and technologies associated with computing security and allows students the opportunity to select a set of security electives that are complementary to their majors. Before beginning the minor in students must possess prerequisite knowledge that can be obtained from various programming sequences and courses in calculus and discrete math.

Notes about this minor:

- This minor is closed to students majoring in computing security or any BS/MS degree option that includes the BS in computing security.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Students must complete one of the following two-course programming sequences:	
CPET-121	Computational Problem Solving I
CPET-321	Computational Problem Solving II
or	
CSCI-141	Computer Science I
CSCI-142	Computer Science II
or	
CSEC-123	Software Development and Problem Solving I
CSEC-124	Software Development and Problem Solving II
or	
GCIS-123	Software Development and Problem Solving I
GSCI-124	Software Development and Problem Solving II
or	
IGME-105	Game Development and Algorithmic Problem Solving I
IGME-106	Game Development and Algorithmic Problem Solving II
or	
ISTE-120	Computational Problem Solving in the Information Domain I
ISTE-121	Computational Problem Solving in the Information Domain II
or	
ISTE-123	Software Development and Problem Solving I
ISTE-124	Software Development and Problem Solving II
or	
SWEN-123	Software Development and Problem Solving I
SWEN-124	Software Development and Problem Solving II
Students must complete a two-course calculus sequencet:	
MATH-181	Project-Based Calculus I
MATH-182	Project-Based Calculus II
Student must complete one of the following courses in discrete mathematics: \ddagger	
MATH-131	Discrete Mathematics
MATH-190	Discrete Mathematics for Computing
MATH-200	Discrete Mathematics and Introduction to Proofs

Required Courses

Choose one of the following:

CSEC-102	Information Assurance and Security
CSEC-140	Introduction to Cybersecurity
Choose one of the following:	
CSEC-362	Cryptography and Authentication
CSCl-462	Introduction to Cryptography

Electives

Choose three of the following:	
CSEC-201	Programming for Information Security
CSEC-380	Principles of Web Application Security
CSEC-461	Computer System Security
CSEC-462	Network Security and Forensics
CSEC-464	Computer System Forensics
CSEC-465	Network and System Security Audit
CSEC-467	Mobile Device Security and Forensics
CSEC-468	Risk Management for Information Security
CSEC-470	Covert Communications
CSEC-471	Penetration Testing Frameworks \& Methodologies
CSEC-472	Authentication and Security Models
CSEC-473	Cyber Defense Techniques
CSEC-476	Malware Reverse Engineering
CSEC-477	Disaster Recovery Planning and Business Continuity
CSEC-520	Cyber Analytics and Machine Learning
CSEC-569	Wireless Security
CSCI-455	Principles of Cybersecurity
CSCI-464	Xtreme Theory
CSCI-531	Introduction to Security Measurement
CSCI-532	Introduction to Intelligent Security Systems
SWEN-331	Engineering Secure Software

\dagger An equivalent calculus sequence may be determined by the minor advisor.
\ddagger An equivalent discrete mathematics sequence may be determined by the minor advisor.

Construction Management

Brittany Rourke, Minor Advisor

585-475-3169, blrite@rit.edu

Program overview

The construction management minor broadens the learning experiences and professional opportunities of students who have an interest in building construction, bid development, management of construction projects after a successful bid, and the business, management, and technical aspects related to construction.

Notes about this minor:

- This minor is closed to students majoring in civil engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
CVET-462	Construction Project Management
CVET-464	Construction Planning, Scheduling and Control
CVET-561	
Electives	Building Information Cost Analysis and Management
Choose two of the following:	
CVET-424	Contracts and Specifications
CVET-465	Sustainable Building Design \& Construction Revit
CVET-505	Construction Safety
ESHS-225	

Craft and Material Studies

Nate Rohman, Minor Advisor
 585-475-5760, nmrpgd@rit.edu

Program overview

Students will develop knowledge of specific media, including wood, metal, ceramics, glass, and textiles. They also will study the material properties of these media and hone technical skills while expanding and applying critical thinking skills as they work through design process from ideation to fabrication. Students will also learn about expected working practices within collaborative studio spaces and within the discipline more broadly.

Notes about this minor:

- This minor is closed to students majoring in studio arts who have chosen options in ceramics, glass, furniture design, or metals and jewelry design.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Electives*	
Choose five of the following for 15 credit hours:	
CCER-124	Clay Studio Survey
CCER-128	Josiah Wedgewood's Legacy
CCER-206	Ceramic Sculpture Processes
CCER-507	Mold Mechanisms
CCER-211	Thrown Vessel Forms
CCER-212	Thrown Sculptural Forms
CCER-530	Ceramics 3 Credit Elective
CGLS-124	Glass Studio Survey
CGLS-206	Molten Glass Practice I
CGLS-211	Mold and Kiln Glass Practice
CGLS-307	Hot Phenomena Glass Practice
CGLS-312	Kinetic Glass Practice
CGLS-530	Glass Processes
CMTJ-124	Metals and Jewelry Studio Survey
CMTJ-206	Methods and Practice
CMTJ-207	Design, Fabrication, and Forming
CMTJ-211	Design and Fabrication
CMTJ-212	Fabrication, Casting, and Mold Making
CMTJ-530	Form and Fabrication: Metals and Jewelry Design
CWFD-124	Woodworking / Furniture Design Studio Survey
CWFD-506	Furniture Design: Table Design and Construction
CWFD-507	Furniture Design: Bench Design and Construction
CWFD-511	Furniture Design: Wood Carving
CWFD-512	Furniture Design: Box and Cabinet Design and Construction
CWFD-530	Furniture Design 3 Credit Elective
CWTD-530	Quilting Elective
FDTN-132	3D Design II
FDTN-232	3D Design II Workshop: Topic

* At least two courses must be taken at the 200-level or above.

Minors

Creative Writing

Robert Glick, Minor Advisor
585-475-4618, rdggla@rit.edu

Program overview

The creative writing courses offers students a practical, theoretical, and historical understanding of the art and craft of writing nonfiction and fiction prose and poetry, as well as experimenting in digital storytelling and interactive media. The minor encourages students to use those skills and insights for interdisciplinary projects and the enrichment of their careers and personal lives.

Notes about this minor:

- This minor is closed to students majoring in English.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Electives*

Creative writing workshop courses:

ENGL-211	Introduction to Creative Writing: Prose and Poetry
ENGL-212	Introduction to Creative Writing: Forms and Styles
ENGL-376	Experimental Writing
ENGL-386	World Building Workshop
ENGL-389	Digital Creative Writing Workshop
ENGL-390	Creative Writing Workshop
ENGL-490	Advanced Creative Writing Workshop
ENGL-511	Advanced Topics in Creative Writing
ENGL-543	Game-Based Fiction Workshop
Literature courses:	
ENGL-275	Storytelling: [Genre/Theme]
ENGL-307	Mythology \& Literature
ENGL-308	Shakespeare Drama
ENGL-309	Topics in Literary Forms
ENGL-312	American Literature
ENGL-313	British Literature
ENGL-315	Digital Literature
ENGL-316	Global Literature
ENGL-318	Popular Literature
ENGL-320	Genre Fiction
ENGL-373	Media Adaptation
ENGL-374	Games and Literature
ENGL-375	Storytelling Across Media
ENGL-377	Transmedia Storyworlds
ENGL-391	Dangerous Texts
ENGL-400	Literary \& Cultural Studies
ENGL-414	Women and Gender in Literature and Media
ENGL-418	Great Authors
ENGL-419	Literature and Technology
ENGL-422	Maps, Spaces and Places
ENGL-450	Free \& Open Source Culture

[^17] electives and one literature elective.

Criminal Justice

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The criminal justice minor provides a foundation in the formal process of social control through the criminal justice system, how behavior is defined as criminal, how crime is measured, and how society responds to crime.

Notes about this minor:

- This minor is closed to students majoring in criminal justice.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	Introduction to Criminal Justice
CRIM-110	
Electives	Technology in Criminal Justice
Choose four of the following:	
CRIM-210	Corrections
CRIM-220	Juvenile Justice
CRIM-230	Law Enforcement in Society
CRIM-240	Courts
CRIM-260	Crime and Violence
CRIM-275	Minority Groups and the Criminal Justice System
CRIM-285	Crime, Justice and Ethics
CRIM-299	Theories of Crime and Criminality
CRIM-350	Major Issues in Criminal Justice
CRIM-489	

Cybersecurity Risk Management

Rob Olson, Minor Advisor

585-475-4601, rboics@rit.edu

Program overview

With the prevalence of data breaches and cyber-attacks, securing intellectual properties and customer's personally identifiable information has become increasingly challenging in business, government, and academia. It is commonly recognized that a key factor for having a cyber-secured environment and operations is well-trained employees with good cyber hygiene. A small human error may lead to a disastrous cyber incident. The cybersecurity risk management minor is designed for students in non-computing majors who are interested in learning about cybersecurity and developing the knowledge and skills to support organizations in their efforts to protect their computing and informational resources. Students learn the basics of computing and cybersecurity and then gain knowledge and practice in cybersecurity policy and law, risk management, and business continuity plans in the event of a cybersecurity attack.

Notes about this minor:

- This minor is closed to students majoring in computing security.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
CSEC-140	Introduction to Cybersecurity
ISCH-110	Principles of Computing
PUBL-363	Cyber Security Policy and Law
Electives	
Choose two of the following:	
CSEC-362	Cryptography and Authentication
CSEC-468	Risk Management for Information Security
CSEC-477	Disaster Recovery Planning and Business Continuity

Database Design and Development

Dave Patric, Minor Advisor

585-454-9315, dkpvcs@rit.edu

Program overview

The minor is a cohesive set of courses that elevates students from a foundational level to advanced knowledge of database systems and the database development process. Students learn the basics of data modeling, the relational model, normalization, and Structured Query Language (SQL). Students also learn the skills needed to effectively capture requirements, compose data models that accurately reflect those requirements, develop programs that establish lines of communication with back-end databases, build and manage large databases, and learn methods for designing and developing data warehouses.

Notes about this minor:

- This minor is closed to students majoring in computing and information technologies, human-centered computing, and web and mobile computing.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
ISTE-330	Database Connectivity and Access
ISTE-430	Information Requirements Modeling
ISTE-436	Database Management and Access
Plus one of the following:	
CSCI-320	Principles of Data Management
ISTE-230	Introduction to Database and Data Modeling*
Plus one of the following:	
ISTE-432	Database Application Development
ISTE-434	Data Warehousing
ISTE-438	Contemporary Databases
* Introduction of Database and Data Modeling (ISTE-230) will be waived with completion of Principles of	
Data Management (CSCI-320).	

Minors

Deaf Leadership

Program overview

The deaf leadership minor provides you with an opportunity to explore aspects of deaf community leadership with special emphasis on ethics, rhetoric, social media communication, intersectionality, current national and international trends, and accessible technology.

Notes about this minor:

- This minor is closed to students majoring in the community development and inclusive leadership BS.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
LEAD-102	Inclusive Leadership
LEAD-103	Introduction to Intersectionality
Electives	
Choose three of the following:	
LEAD-200	Dimensions of Ethical Community Leadership
LEAD-300	Rhetoric of Leadership
LEAD-301	Social Media Communication and Leadership
LEAD-303	Literatures of Intersectionality
LEAD-305	International Deaf Leadership and Community Development
LEAD-306	Leadership in the Deaf Community
LEAD-307	Leadership and Accessible Technology
LEAD-308	Current Trends in Community Development and Leadership

Digital Business

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

Digital business represents the impact of new technologies on business practice, products, and services. Today, social computing and mobile devices are dramatically changing the behaviors and characteristics that lead individuals and organizations to success. Through this minor students enhance their major with a focus on these new technologies and their application in business.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
MGIS-360	Building a Web Business
Electives	
Choose four of the following:	
FINC-559	Financing New Ventures
MGIS-320	Database Management Systems
MKTG-230	Principles of Marketing
MKTG-320	Digital Marketing
MKTG-365	Marketing Analytics
MKTG-410	Search Engine Marketing and Analytics
MKTG-430	Social Media Marketing

Digital Literatures and Comparative Media

College of Liberal Arts, Office of Student Services
585-475-2444, libarts@rit.edu

Program overview

The courses in the digital literatures and comparative media minor challenge students to think about how the digital in new comparative media affects the way we read, study, and understand literature: What happens to literature and the literary in an age of digital technology and new forms of media? Courses examine a varied collection of print genres and electronic literature in order to understand the current state of this new literary field and its relation to traditional concepts of literary study. The minor provides an entry point into investigating particular aspects of the general category of the digital and its comparative relation to the literary. Notes about this minor:

- This minor is closed to students majoring in English who have chosen a concentration in literature and media.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
ENGL-215	Text \& Code
Electives	
Choose four of the following	
ENGL-275	Storytelling: [Genre/Theme]
ENGL-315	Digital Literature
ENGL-373	Media Adaptation
ENGL-374	Games and Literature
ENGL-375	Storytelling Across Media
ENGL-376	Experimental Writing*
ENGL-386	World Building Workshop*
ENGL-389	Digital Creative Writing Workshop*
ENGL-414	Women and Gender in Literature and Media
ENGL-419	Literature and Technology
ENGL-422	Maps, Spaces and Places
ENGL-450	Free \& Open Source Culture

[^18]
Diversity, Inclusion, and Dialogue

Program overview

In the diversity, inclusion, and dialogue minor you will study the social construct of diverse communities through examination of experiences of inequity, discrimination, oppression, and intersectionality. You will learn constructive dialogue techniques for use across a range of communities, with the goal of understanding diverse populations and their experiences.
Notes about this minor:

- This minor is closed to students majoring in the community development and inclusive leadership BS.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
LEAD-200	Dimensions of Ethical Community Leadership
LEAD-203	Foundations of Dialogue: Black Deaf Experiences
Electives	
Choose three of the following:	
LEAD-303	Literatures of Intersectionality
LEAD-304	Conflict Resolution: Negotiation and Mediation
LEAD-309	Dialogue: Race and Ethnicity
LEAD-310	Dialogue: Gender
LEAD-311	Dialogue: Deaf, DeafBlind, DeafDisabled, Hard-of-Hearing
LEAD-312	Dialogue: LGBTQIA
LEAD-313	Dialogue: Social Class

Minors

Economics

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

An economics minor provides a systematic analysis of economic issues through the study of the allocation of scarce resources into production and the distribution of production among the members of society.

Notes about this minor:

- This minor is closed to students majoring in economics.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Prerequisite

Choose one of the following:	
ECON-101	Principles of Microeconomics
ECON-101H	Honors Microeconomics

Required Course
ECON-201 croeconomics

Electives

Theory and Policy

Choose two or three of the following:

ECON-401	Intermediate Microeconomic Theory
ECON-402	Intermediate Macroeconomic Theory
ECON-405	International Trade and Finance
ECON-406	Global Economic Issues
ECON-407	Industrial Organization
ECON-421	Natural Resource Economics
ECON-422	Benefit-Cost Analysis
ECON-430	Managerial Economics
ECON-431	Monetary Analysis and Policy
ECON-432	Open Economy Macroeconomics
ECON-440	Urban Economics
ECON-441	Labor Economics
ECON-444	Public Finance
ECON-445	History of Economic Thought
ECON-448	Development Economics
ECON-449	Comparative Economic Systems
ECON-450	Health Care Economics
ECON-451	Economics of Women and the Family
ECON-452	Economics of Native America
ECON-453	Behavioral \& Experimental Economics
ECON-520	Environmental Economics
Quntative	

Quantitative

Choose one or two of the following:

ECON-401	Intermediate Microeconomic Theory
ECON-403	Econometrics I
ECON-404	Mathematical Methods: Economics
ECON-410	Game Theory with Economic Applications
ECON-411	Computational Economics
ECON-433	Financial Economics
ECON-503	Econometrics II

Electrical Engineering

Gill Tsouri, Minor Advisor 585-475-6452, grteee@rit.edu

Program overview

Electrical engineering encompasses disciplines such as electronics, communication, control, digital systems, and signal/image processing. An electrical engineering minor provides a foundation to explore specialized material in electrical engineering, and provides students from other engineering or non-engineering disciplines an introduction to the wideranging content of the electrical engineering major.

Notes about this minor:

- The minor is closed to students majoring in computer engineering technology, electrical engineering, or electrical engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites*	Project-Based Calculus II
MATH-182	University Physics II
PHYS-212	
Required Courses	Circuits I
EEEE-281	Circuits II
EEEE-282	
Electives	Digital Systems I
Choose three of the following:	
EEEE-120	Ligital Systems II
EEEE-220	EM Fields and Transmission Lines
EEEE-353	Digital Electronics
EEEE-374	Classical Control
EEEE-380	Embedded Systems Design
EEEE-414	Analog Electronics
EEEE-420	Mechatronics
EEEE-480	Communication Systems
EEEE-483	
EEEE-484	
Additional prerequisites may be required based on the choice of electrical engineering electives.	

Engineering Management

Robin Borkholder, Minor Advisor

585-475-2990, rrbeie@rit.edu

Program overview

The minor in engineering management integrates technological and managerial expertise while focusing on the management of these areas. Engineering management is concerned with understanding the technology involved in an engineering project and the management process through which the technology is applied.

Notes about this minor:

- This minor is closed to students majoring in industrial engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	
MATH-233	Linear Systems and Differential Equations
Plus one of the following:	
STAT-257	Statistical Inference
STAT-205	Applied Statistics
ISEE-325	Engineering Statistics and Design of Experiments
Required Courses	
ACCT-500	Cost Management in Technical Organizations
ISEE-345	Engineering Economy
ISEE-350	Engineering Management
Electives	
Choose two of the following:	
ISEE-301	Operations Research
ISEE-323	Systems and Facilities Planning
ISEE-420	Production Planning/Scheduling
ISEE-510	Systems Simulation
ISEE-560	Applied Statistical Quality Control
ISEE-582	Lean Six Sigma Fundamentals
ISEE-703	Supply Chain Management

Entrepreneurship

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The entrepreneurship minor allows students to learn business skills that can be applied to any professional field. Students gain insight into the customer requirements and financial implications involved in taking a product or service from idea to implementation.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
MGMT-350	Entrepreneurship
Choose one of the following:	
MGMT-470	Applied Entrepreneurship and Commercialization
MGMT-550	Real World Business Solutions
Electives	
Choose three of the following:	
ACCT-110	Financial Accounting
ACCT-210	Management Accounting
ACCT-500	Cost Management in Technical Organizations
FINC-559	Financing New Ventures
MGMT-215	Organizational Behavior
MGMT-330	Design Thinking and Concept Development
MKTG-230	Principles Of Marketing
MKTG-320	Digital Marketing

Environmental Science

Karl Korfmacher, Minor Advisor
 585-475-5554, kfkscl@rit.edu

Program overview

The environmental science minor introduces students to the complexities of environmental issues and concepts, and provides them with opportunities to further investigate many of these issues through advanced course work. Central to this minor are the development of field, analytical, and problem solving skills and an understanding of the multiple perspectives often embedded in environmental issues. Students interested in becoming citizen scientists, or those pursuing employment or an advanced degree with an environmental focus, will find this minor beneficial.

After completing the required courses, students choose one of the following tracks: built environment/climate change, ecology, environmental microbiology, or GIS/remote sensing.

Notes about this minor:

- This minor is closed to students majoring in environmental science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
ENVS-101	Concepts of Environmental Science
ENVS-111	Soil Science
Built Environment/Climate Change Track	
Choose three of the following:	
BIOL-111	Science in the Garden
BIOL-240	General Ecology
ENVS-301	Environmental Science Field Skills
ENVS-305	Urban Ecology
ENVS-531	Climate Change: Science Technology \& Policy
Ecology Track	
Required Course	
BIOL-240	General Ecology
Choose two of the following	
BIOL-212	Vertebrate Zoology
BIOL-218	Biology of Plants
BIOL-220	Biology of Fungi and Insects
BIOL-371	Freshwater Ecology
BIOL-385	Seneca Park Zoo Internship
BIOL-444	Ornithology
BIOL-414	Animal Nutrition
BIOL-573	Marine Biology
BIOL-575	Conservation Biology
ENVS-301	Environmental Science Field Skills
ENVS-305	Urban Ecology
ENVS-311	Wetlands
ENVS-531	Climate Change: Science Technology \& Policy
Environmental Microbiology Track	
Required Course	
BIOL-204	Introduction to Microbiology
Choose two of the following	
BIOL-306	Food Microbiology
BIOL-307	Microbiology of Wastewater
BIOL-310	Bioenergy: Microbial Production
BIOL-370	Environmental Microbiology
BIOL-380	Bioremediation
GIS/Remote Sensing Track	
Required Course	
ENVS-250	Applications of Geographic Information Systems
Choose two of the following	
ENVS-550	Hydrologic Applications of Geographic Information Systems
IMGS-431	Environmental Applications of Remote Sensing
IMGS-532	Advanced Environmental Applications of Remote Sensing

Environmental Studies

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

With an emphasis on sustainability and holistic thinking, the environmental studies minor provides students with opportunities for the indepth analysis of global and regional environmental issues, their causes, and their potential solutions. In particular, a required 500-level seminar serves as a capstone experience, helping students to integrate knowledge from several disciplinary perspectives, including socio-cultural, historical, political, economic, ethical, scientific, and/or technological factors. Having completed the minor, students will possess a high level of environmental literacy, an important component of many professional fields within the sciences, engineering, law, journalism, and public affairs. Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
STSO-510	Interdisciplinary Capstone Seminar
Electives	
Choose four of the following:*	
ANTH-360	Humans and Their Environment
ECON-421	Natural Resource Economics
ECON-520	Environmental Economics
HIST-345	Environmental Disasters
PHIL-308	Energy Policy
PUBL-530	Introduction to Environmental Studies
STSO-120	Environment and Society
STSO-220	Foundations of Engagement and Community Transformation
STSO-230	Face of the Land
STSO-321	History of the Environmental Sciences
STSO-325	History of Ecology and Environmentalism
STSO-326	Energy and the Environment
STSO-330	Industry, Environment, and Community in Rochester
STSO-335	Gender, Science, and Technology
STSO-342	Environmental Policy
STSO-421	Great Lakes
STSO-422	Nature and Quantification
STSO-425	Topics in Environmental Studies
STSO-488	Biodiversity and Society
STSO-521	Sustainable Communities
STSO-550	Science, Technology, Society Independent Study
STSO-599	Gender, Science, and Technology
WGST-342	

* At least one elective must be taken at the 300-level or higher.

Ethics

College of Liberal Arts, Office of Student Services
585-475-2444, libarts@rit.edu

Program overview

The ethics minor provides students with the ability to recognize ethical issues and to think critically to resolve them, both generally and within their chosen discipline. Students also learn how ethical problems can result from complex social structures and how changing structural features may avoid ethical problems. Three courses in philosophy are required plus two electives from the approved list, at least one of which must be outside philosophy. Only one 100 -level course may be counted as part of the minor.
Notes about this minor:

- This minor is closed to students majoring in philosophy.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements.

Curriculum

COURSE	
Required Courses	Foundations of Moral Philosophy
PHIL-202	Ethical Theory
PHIL-415	
Electives*	Genetics and Society
Choose three of the following:	
BIOL-255	Crime, Justice, and Ethics
CRIM-299	Ethics in the Digital Era
DHSS-103	Economics, Ethics, and Society
ECON-102	Ethics in the Graphic Memoir
ENGL-314	Engineering and the Developing World
ISEE-684	FYW: Ethics in Computing
ISTE-110	Placebo, Suggestion, Research and Health
MEDS-360	Business Ethics and Corporate Social Responsibility
MGMT-340	Systems Administration I
NSSA-221	Introduction to Moral Issues
PHIL-102	Philosophy of Law
PHIL-304	Philosophy of Peace
PHIL-305	Professional Ethics
PHIL-306	Environmental Philosophy
PHIL-308	Feminist Theory
PHIL-309	East Asian Philosophy
PHIL-311	Responsible Knowing
PHIL-315	Bioethics and Society
PHIL-316	Social and Political Philosophy
PHIL-403	Philosophy of Action
PHIL-407	Existentialism
PHIL-409	Topics in Philosophyt
PHIL-449	Ethics, Values \& Public Policy
PUBL-201	Social Inequality
SOCI-225	

* Only one 100-level course may be counted as part of the minor.
† PHIL-449 may be used when the topic includes ethical issues.

Exercise Science

William Brewer, Minor Advisor

585-475-2476, wsbscl@rit.edu

Program overview

The exercise science minor includes foundation sequences in anatomy and physiology upon which the basic principles of exercise physiology, fitness assessment, and the preparation of fitness programs are built. The minor prepares students to sit for professional certification examinations for work in the fitness industry, provides understanding of sports physiology for those interested in sports equipment design and technology, and complements and enhances personal fitness.

Notes about this minor:

- This minor is closed to students majoring in exercise science or biomedical sciences (who have declared a concentration in exercise science).
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	
Choose five of the following:	
EXSC-150	Introduction to Exercise Science
EXSC-205	Sports Physiology \& Life Fitness
EXSC-206	Fitness Prescription
EXSC-207	Exercise for Special Populations
EXSC-210	Human Motor Behavior
EXSC-270	Group Exercise
EXSC-280	Strength Training for Performance
EXSC-320	Coaching Healthy Behavior
EXSC-360	Worksite Health Promotion
EXSC-370	Senior Adult Fitness
EXSC-380	Sports Psychology
EXSC-410	Kinesiology
EXSC-420	Biomechanics
EXSC-430	Theory of Athletic Injuries
EXSC-440	Cardiac Rehabilitation
EXSC-480	Training High Performance Athletes
EXSC-550	Exercise Physiology
EXSC-589	Topics in Exercise Science
MEDS-250	Human Anatomy and Physiology I
MEDS-251	Human Anatomy and Physiology II
NUTR-300	Sports Nutrition

Minors

Film Studies

Rebecca DeRoo, Minor Advisor

585-475-4181, rjdgsh@rit.edu

Program overview

Film studies explores the role of cinema in our contemporary global culture. Using methodologies and perspectives from a variety of disciplines, such as English, anthropology, philosophy, fine arts/visual culture, political science, history, and modern languages, the film studies minor investigates cinema's mass appeal as a form of entertainment, but also the power it wields as a disseminator of ideas, history, values, aesthetics, behavior, and cultural norms.

Notes about this minor:

- This minor is closed to students majoring in film and animation.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	
Choose five of the following:	
ANTH-265	Native Americans in Film
ANTH-430	Visual Anthropology
ENGL-410	Film Studies
FNRT-200	Anime
FNRT-372	American Film of the Studio Era
HIST-275	Screening the Trenches: The History of WWI Through Film
HIST-450	Japan in History, Fiction and Film
MLFR-151	Film, Comics, and French Culture
MLFR-351	French Films and Hollywood
MLFR-352	The French Heritage in Films
MLSP-352	Caribbean Cinema
PHIL-313	Philosophy of Film
POLS-490	Politics Through Film
VISL-373	American Film Since the Sixties
VISL-440	Deaf Art \& Cinema

Finance

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The finance minor helps students create value in any type of business organization by broadening student's learning experiences and professional opportunities by focusing on corporate finance and investment topics in more depth.

Notes about this minor:

- This minor is closed to students majoring in business administration: finance.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
ACCT-110	Financial Accounting
FINC-220	Financial Management
Electives	
Choose three of the following:	
FINC-120	Personal Financial Management
FINC-352	Financial Management II
FINC-361	Financial Institutions and Markets
FINC-362	Intermediate Investments
FINC-420	International Finance
FINC-425	Stock Market Algorithmic Trading
FINC-430	Advanced Corporate Financial Planning
FINC-460	Financial Analysis and Modeling
FINC-470	Introduction to Options and Futures
FINC-489	Seminar in Finance
FINC-559	Financing New Ventures
FINC-580	Financial Analytics

Flexible Packaging

Stefanie Soroka, Minor Advisor

585-475-4974, swsmet@rit.edu

Program overview

The flexible packaging minor addresses flexible containment systems, one of the fastest growing segments of the packaging materials industry. The manufacturing and use of flexible containment systems requires specific expertise and knowledge of appropriate technology for implementation. Flexible pouches and containment systems are considered more sustainable for replacing glass bottles and jars, plastic bottles, and metal cans. They use materials more efficiently and reduce the weight and costs associated with physical distribution activities.

Students learn about the sustainability performance of flexible packaging by studying product lifecycle from a societal, environmental, and economic impact as they design and manufacture more environmentally friendly flexible container systems. The minor enhances employment opportunities in industries such as consumer goods, health care, and the various food industries. Students with interests in engineering, engineering technology, printing, manufacturing and safety, product marketing, industrial design, logistics, and other related fields can benefit from the minor.

Notes about this minor:

- This minor is closed to students majoring in packaging science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
MAAT-206	Print Production
MAAT-558	Package Printing
PACK-560	Converting and Flexible Packaging
Electives	
Choose two of the following:	
MAAT-368	Gravure and Flexography
MAAT-376	Lithographic Process
MAAT-541	Digital Print Processes
MAAT-544	Color Management Systems
PACK-211	Packaging Metals \& Plastics
PACK-430	Packaging Regulations
PACK-530	Packaging Sustainability and the Environment
PACK-550	Packaging Machinery

Free and Open Source Software and Free Culture

Kara Griffith, Minor Advisor

585-475-2763, Kara.Griffith@rit.edu

Program overview

Free and open source software is released with licenses that allow it to be redistributed freely for others to use, copy, and/or modify within certain restrictions and conditions. Free culture refers to writing, art, music, and other creative materials released with rights for reuse and/or redistribution that are more flexible than those of the traditional marketplace. Both are often created and/or distributed by collaborative teams with members around the world. The minor in free and open source software and free culture is intended for students who want to develop a deep understanding of the processes, practices, technologies, financial, legal, and societal impacts of these movements. The minor includes a set of computing and liberal arts courses that explore these aspects through research, analysis, and participation in these communities via the creation of digital cultural artifacts and team-driven software projects. Students complete three required courses, one constrained elective course, and one elective course. Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
ENGL-450	Free \& Open Source Culture
IGME-582	Humanitarian Free \& Open Source Software Development
IGME-585	Project in FOSS Development
Elective Course	
Choose two of the following:	
COMM-303	Small Group Communication
COMM-304	Intercultural Communication
ENGL-215	Text \& Code
ENGL-351	Language Technology
ENGL-581	Natural Language Processing I
IGME-583	Legal and Business Aspects of FOSS
ISCH-201	Computing, Culture and Society
STSO-201	Science and Technology Policy
STSO-230	Foundations of Engagement and Community Transformation
STSO-240	Social Consequences of Technology
STSO-246	History of Women in Science and Engineering

Minors

Furniture Design

Program overview

The furniture design minor enables you to develop craftsmanship and fine woodworking skills while also engaging in aesthetic and creative problem solving associated with furniture design. You will investigate an individual design language and personal aesthetic through the creation of various pieces of furniture.

Notes about this minor:

- This minor is closed to students majoring in the studio arts BFA who have chosen the furniture design option.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Courses	
CWFD-124	Woodworking / Furniture Studio Survey
CWFD-213	Introduction to Woodworking and Furniture Design
Electives	
Choose three of the following:	
CWFD-506	Furniture Design: Table Design and Construction
CWFD-507	Furniture Design: Bench Design and Construction
CWFD-511	Furniture Design: Wood Carving
CWFD-512	Furniture Design: Box and Cabinet Design and Construction
CWFD-530	Furniture Design 3 Credit Elective

Game Design and Development

Kara Griffith, Minor Advisor
 585-475-2763, Kara.Griffith@rit.edu

Program overview

The game design and development minor is intended for students studying in a technical field who want to combine their knowledge and skill in software development with the media-centric approach to application design that is exemplified in the professional games and simulation industries. The minor defines a series of courses that build upon students' existing knowledge in computing, physics, and mathematics to explore the design principles of games and interactive worlds through the creation of prototypes and software projects.

Notes about this minor:

- This minor is closed to students majoring in game design and development.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
IGME-202	Interactive Media Development
IGME-209	Data Structures \& Algorithms for Games \& Simulations I
IGME-220	Game Design \& Development I
IGME-309	Data Structures \& Algorithms for Games \& Simulations II
IGME-320	Game Design \& Development II

Game Design

Kara Griffith, Minor Advisor

585-475-2763, Kara.Griffith@rit.edu

Program overview

The game design minor is intended for students outside of technical computing majors who want to explore the process and principles of game design and the associated theories of interactive media. The minor provides an introductory experience to media-centric software development that enables students to prototype and test their own designs.

Notes about this minor:

- This minor is closed to students majoring in computer engineering, computer science, computing and information technologies, computing security, game design and development, human-centered computing, new media interactive development, software engineering, and web and mobile computing.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
IGME-101	New Media Interactive Design and Algorithmic Problem Solving I
IGME-102	New Media Interactive Design and Algorithmic Problem Solving II
IGME-119	2D Animation and Asset Production
IGME-220	Game Design \& Development I
IGME-320	Game Design \& Development II

Gender Equity, Social Institutions, and Public Affairs

Program overview

The gender equity, social institutions, and public affairs minor is an interdisciplinary course of study that equips you with the ability to view the social domain of public affairs, institutions, practices, and policies through a gendered lens and prepares you for future potential roles as advocates and leaders in the struggle toward gender equity and social justice.

This minor explores the influence of gender in its intersection with sexuality, ethnicity, nationality, race, class, and disability within the social, institutional, and policy environment. You will learn to analyze domains of power within the economic, political, and social structures (including the family); identify gender inequities and inequalities; evaluate and implement theories, methods, and practices for challenging gendered discrimination; and learn leadership and communicative strategies to increase inclusiveness and social justice, and to improve lives and well-being at the individual and collective levels.
As gender is such a pervasive dimension of public life and policies, the minor is beneficial to students in all professions and especially those interested in promoting gender justice in the fields of sustainability and development, industry and transportation, economics and finances, human rights, the legal and judicial systems, health, international peace and security, and urban, environmental, and energy policies.

Notes about this minor:

- This minor is closed to students pursuing a minor in women's and gender studies.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Group A	
Choose one of the following:	
WGST-200	Foundations Of Women And Gender Studies
WGST-205	Feminist Practices of Inquiry
WGST-210	Introduction to LGBTQ+ Studies
Group B	
Choose three of the following:	
ANTH-246/SOCI-146	Gender and Health
WGST-230	Men, Males, and Masculinities
WGST-235/SOCI-235	Women, Work, and Culture
WGST-245/CRIM-245	Prostitution and Vice
WGST-250/CRIM-250	Domestic Violence
WGST-255/CRIM-255	Seminar on Sexual Violence
WGST-265/CRIM-265	Women and Crime
WGST-290/HIST-190	American Women's and Gender History
WGST-318/PHIL-318	Philosophies of Love,Sex, and Gender
WGST-330/PRFL-330	Performing Identity in Popular Media
WGST-335/HIST-335	Women and the Deaf Community
WGST-361	Queering Gender
WGST-449	Topics in Women's and Gender Studies
WGST-451/ECON-451/	Economics of Women and the Family
SOCI-451	
WGST-459	Topics in LGBTQ+ Studies*
WGST-481/POLS-481	Women in Politics
Group C	
Choose one of the following:	
COMM-291	Communication for Social Change
LEAD-102	Inclusive Leadership
NDLS-200	Introduction to Group Advocacy
PUBL-101	Foundations of Public Policy
STSO-230	
Course may be used in consultation with academic advisor when the topic includes issues related to	
public institutions and policy.	

Minors

Gender, Art, and Media

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

In the gender, art, and media minor students explore how gender issues and identities, in their intersections with culture, race, ethnicity, nationality, social class, age, and (dis)abilities, are represented and portrayed in various artistic, literary, and media forms. By engaging with cultural texts and productions from both historical and contemporary perspectives, the minor introduces students to critical analysis and knowledgebuilding methods drawn from fields such as women's and gender studies, feminist theories, critical race studies, queer studies, social justice work, and activism. The minor teaches students to analyze gendered images as they appear in arts and media, recognize power inequalities and stereotypes in gender representations, and acquire the conceptual skills to critique and improve current conditions of artistic, literary, and media production and consumption in view of increased gender equity and fairness. The minor complements any course of studies in a number of art and media-related fields such as art and literary criticism, art curation and exhibition, journalism and photojournalism, media studies, filmmaking, literature, photography, advertising and marketing, public relations, social services, and more.

Notes about this minor:

- This minor is closed to students who have already declared a minor in women and gender studies.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Course*
Gender Theory Courses
Choose one of the following:

WGST-200	Foundations Of Women And Gender Studies
WGST-205	Feminist Practices of Inquiry
WGST-210	Introduction to LBGTQ+ Studies
WGST-309/PHIL-309	Feminist Theory
Art Courses	
Choose one of the following:	
ARTH-577	Displaying Gender
GRDE-322	Women Pioneers in Design
WGST-206/VISL-206	Queer Looks
WGST-352/MLCH-352	Globalization and Gender Through Chinese Cinema: From Kungfu to World
Factory	
WGST-375/FNRT-375	Women/Gender/Art
WGST-383/VISL-383	Traumatic Images
WGST-384/VISL-384	Art of Dying
WGST-414/ENGL-414	Gender and Contemporary Art
Media courses	Women and Gender in Literature and Media
Choose one of the following:	
ARTH-577	Displaying Gender
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
WGST-206/VISL-206	Queer Looks
WGST-330/PRFL-330	Performing Identity in Popular Media
WGST-352/MLCH-352	Globalization and Gender Through Chinese Cinema: From Kungfu to World Factory WGST-357/COMM-357 WGST-383/VISL-383Communication, Gender, and Media WGST-388/VISL-388Gender and Contemporary Art

Electives

Choose two of the following:	
ANTH-325	Bodies and Culture
ARTH-577	Displaying Gender
GRDE-322	Women Pioneers in Design
SOCI-355	CyberActivism: Diversity, Sex, \& the Internet
WGST-200	Foundations Of Women And Gender Studies
WGST-205	Feminist Practices of Inquiry
WGST-206/VISL-206	Queer Looks
WGST-210	Introduction to LBGTQ+ Studies
WGST-309/PHIL-309	Feminist Theory
WGST-318/PHIL-318	Philosophies of Love,Sex, and Gender
WGST-330/PRFL-330	Performing Identity in Popular Media
WGST-351/MLSP-351	Gender and Sexuality in Hispanic Studies
WGST-352/MLCH-352	Globalization and Gender Through Chinese Culture: From Kungfu to World
FGST-357/COMM-357	Communication, Gender, and Media
WGST-375/FNRT-375	Women/Gender/Art
WGST-383/VISL-383	Traumatic Images
WGST-384/VISL-384	Art of Dying
WGST-388/VISL-388	Gender and Contemporary Art
WGST-414/ENGL-414	Women and Gender in Literature and Media
WGST-598	Advanced Project in WGSS
WGST-599	Independent Study

* At most, two non-WGST courses may be counted toward the GAAM Minor.

Geographic Information Systems

Brian Tomaszewski, Minor Advisor
585-475-2859, bmtski@rit.edu

Program overview

The geographic information systems (GIS) minor provides students with experience in the concepts, technology, and applications related to computer-based mapping, spatial databases, and geographic analysis and problem solving. The minor features two tracks: a GIS development track for students interested in GIS software development, and a GIS analysis track for students interested in utilizing GIS as a strong methodological base within their major of study. Required courses provide core GIS foundations applicable to a variety of multidisciplinary elective courses students can choose from to match their research, post-graduate, or career interests.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
IGME-382	Maps, Mapping and Geospatial Technologies
IGME-384	Introduction to Geographic Information Systems
Electives	
Choose three of the following:	
CVET-160	Surveying
CVET-161	Surveying Lab
IMGS-431	Environmental Applications of Remote Sensing
IGME-386	Spatial Algorithms and Problem Solving
IGME-484	Geographic Visualization
ISTE-230	Introduction to Database and Data Modeling
ENGL-422	Maps, Spaces and Places

Glass

Nate Rohman, Minor Advisor

585-475-5760, nmrpgd@rit.edu

Program overview

The glass minor provides students with an opportunity to diversify their voice and vision through an extensive experience in all glass working processes supported by the glass studios in the College of Art and Design. Aside from developing a breadth of technical understanding in working with glass, the minor culminates in a portfolio of work demonstrating a diversified approach to glass making and glass thinking. Completing the glass minor will further amplify students' creative potential and supplement each student's overall education at RIT.

Notes about this minor:

- This minor is closed to students majoring in studio arts who have chosen the glass option.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
CGLS-124	Studio Glass Survey
Electives	
Choose four of the following:	
CGLS-206	Molten Glass Practice*
CGLS-211	Mold and Kiln Glass Practice*
CGLS-307	Hot Phenomena Glass Practice
CGLS-312	Kinetic Glass Practice*
CGLS-530	Glass Processes

* CGLS-206, CGLS-211, CGLS-307, and CGLS-312 are repeatable for credit, and can be used towards fulfilling the Minor

Global Food and Beverage Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

This global food and beverage management minor provides students with the knowledge needed for the effective management of global food and beverage services in both the on-premises and retail sectors. Students will identify trends and develop an understanding of various aspects of the food, wine, beer, and spirit industries. Students will learn food and beverage management principles that demonstrate how providing exceptional service to their guests and customers can maximize profits in the hospitality industry.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
HSPT-173	Beverage Fermentation and Distillation
HSPT-215	Principles of Food Production and Service
HSPT-335	Food and Beverage Management
Electives	
Choose 6 credits from the following:	
ANTH-270	Cuisine, Culture and Power
DECS-350	Project Management
HSPT-153	Foods of the World
HSPT-160	Beers of the World
HSPT-161	Wines Of the World I
HSPT-162	Wines Of the World II
HSPT-163	Wine Connoisseur
HSPT-165	Wine And Food Pairing I
HSPT-171	Introduction to Viticulture and Viniculture
HSPT-175	Marketing Wine, Beer and Spirits
HSPT-225	Hospitality and Tourism Management Fundamentals
HSPT-325	Food Innovation Development
HSPT-375	Customer Experience Management
INGS-270	Cuisine, Culture and Power
NUTR-215	Foundations of Nutritional Sciences

Global Public Health

Program overview

The global public health minor enhances your understanding of the important concepts of public health and its focus on prevention and population-based approaches to enhancing health for all people. An overriding goal of the minor will be to ensure that you understand the various determinants of health and how health care professionals can strive to ensure all people, everywhere, have what they need to reach their full potential. You will learn how to apply the knowledge obtained in this minor to local, regional, national, and global health concerns. Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Introduction to Public Health
GLPH-101	Introduction to Global Health
MEDS-355	
Electives	Global Public Health
Choose three of the following:	
ANTH-295	Global Addictions
ANTH-341	Health Communication
COMM-344	Spirituality, Religion \& Medicine
DCHP-301	Heal Aspects of Health Care
HLTH-320	Finare Leadership for Health Care Professionals
HLTH-325	Health Planning and Program Development
HLTH-328	Integrated Health Systems \& Population Health
HLTH-330	Global Health Systems
HLTH-508	Emergency Management in Health Care
HLTH-510	Cultural Competency in Global Health
HLTH-511	Leadership in Global Public Health
HLTH-512	Biomedical Ethics (WI)
HLTH-521	Foundations of Nutrition Sciences
MEDS-402	Health and Nutrition Research Foundations (WI)
NUTR-215	Global Food and Nutrition Perspectives
NUTR-560	Health Psychology
NUTR-580	Foundations of Public Policy
PSYC-241	Global Public Health
PUBL-101	Introduction to Environmental Studies
SOCI-295	
STSO-120	

Globalization

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

The impact of global change is dramatic and far-reaching, altering the dynamics of everyday life on a planetary scale. The minor in globalization provides students with the opportunity to think creatively about a range of globalizing processes, theories, and practices (in cultural, political, social, biomedical, economic, and artistic contexts). Courses investigate issues pertinent to the phenomenon of globalization, including cultural exchange; multicultural communities; global governance; information transfer; and social, environmental, health, and labor issues. Accelerated by communication technologies, globalization redefines how individuals and communities experience and view the world.

Notes about this minor:

- This minor is closed to students majoring in international and global studies.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	Global Studies
INGS-101	
Electives	
Choose four of the following:	
ANTH-210	Lulture and Globalization
ANTH-220	Globalizing Africa
ANTH-225	Immigration to the U.S.
ANTH-235	Ritual and Performance
ANTH-245	Gender and Health
ANTH-246	Cuisine, Culture and Power
ANTH-270	Global Public Health
ANTH-295	Bodies and Culture
ANTH-325	Heritage and Tourism
ANTH-328	Cultural Images of War and Terror
ANTH-330	Global Addictions Anthropology
ANTH-341	Genocide and Transitional Justice
ANTH-345	Humans and Their Environment
ANTH-360	Media and Globalization
ANTH-370	Global Cities
ANTH-410	Global Sexualities
ANTH-425	Visual Anthropology
ANTH-430	Global Economic Issues
ECON-406	Global Information Age
HIST-480	Global Political Economy
POLS-220	Human Rights in Global Perspective
POLS-330	Gender and Health
SOCI-246	Global Public Health
SOCI-295	Global Exiles of War and Terror
SOCI-305	CyberActivism: Diversity, Sex, and the Internet
SOCI-315	
SOCI-355	Sorders:Humans, Boundaries, and Empires
SOCI-395	

Health Communication

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

The health communication minor provides students with theoretical and applied knowledge about communication's role in health care delivery, doctor-patient communication, health campaigns and public health, and other areas related to the dissemination of health information. This collaborative minor is designed for students interested in health care fields or health and risk communication.

Notes about this minor:

- This minor is closed to students majoring in communication.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
COMM-344	Health Communication
COMM-305	Persuasion
Electives	
Choose three of the following:	
ANTH-246	Gender and Health
ANTH-325	Bodies and Culture
COMM-212	Public Relations
COMM-221	Public Relations Writing
COMM-223	Digital Design in Communication
COMM-322	Campaign Management and Planning
COMM-361	Reporting in Specialized Fields
ECON-450	Health Care Economics
ENGL-345	History of Madness
MEDG-105	Health Awareness
MEDI-130	Computers in Medicine
MEDS-201	Language of Medicine
NUTR-215	Foundations of Nutritional Sciences
PSYC-231	Death and Dying
SOCI-246	Gender and Health

Health, Culture, and Society

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

All societies have some cultural ideas and belief systems about health and wellness. Culture shapes our understanding of bodily processes. Because of the significant influence of culture on perceptions and experiences of health and wellness, this minor thematizes the shifting cultural configurations of health in a globalizing world. Culturally grounded health and illness concepts, including notions about bodily integrity or emotional well-being, cultural models of illness causation and diagnostic practices, and the experiences, expressions, and treatments of human ailments unfold in concrete socio-cultural contexts. The courses in this minor provide an enhanced cultural understanding about health experiences in different parts of the world.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Course

SOCI-322 Health and Society

Electives

Choose four of the following:	
ANTH-244	Human Centered Design Queries: An Anthropological Approach
ANTH-245	Ritual and Performance
ANTH-246	Gender and Health
ANTH-250	Themes in Archaeological Research*
ANTH-270	Cuisine, Culture, and Power
ANTH-295	Global Public Health
ANTH-325	Bodies and Culture
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-425	Global Sexualities
ANTH-435	The Archaeology of Death
ANTH-489	Topics in Anthropology
COMM-344	Health Communication
CRIM-245	Prostitution and Vice
ECON-450	Health Care Economics
MEDS-355	Introduction to Global Health
MLSP-353	Trauma and Survival in First-Person Narrative
PHIL-316	Bioethics and Society
PSYC-231	Death and Dying
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-361	Sociology of Numbers
SOCI-395	Borders: Humans, Boundaries, and Empires
SOCI-489	Topics in Sociology
STSO-341	Biomedical Issues: Science and Technology
STSO-441	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century
VISL-383/WGST-383	Traumatic Images
VISL-384/WGST-384	Art of Dying

* ANTH-250 may be used when topic is Hunger and Health
\dagger Class may be taken when topic is relevant to the minor

History

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The history minor provides students with a foundation in the academic study of history. It serves as a complement to any professional degree, as historical study at the college level hones the skills that are important to any well-trained professional: namely, effective writing, critical analysis, engaged reading, and logical thinking. Students are free to shape the history minor to their liking, by choosing the geographic areas of historical study of most interest to them, such as American, European, or Asian, or by choosing the historical topic of most interest to them, such as transnational history, comparative history, war, business, race, or gender.

Notes about this minor:

- This immersion is closed to students majoring in history.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Electives	
Choose five of the following:*	
HIST-101	Making History
HIST-102	Themes in US History
HIST-103	The City in History
HIST-104	Themes in European History
HIST-105	Themes in Historyt
HIST-125	Public History and Public Debate
HIST-140	History of the Modern Middle East
HIST-150	World History since 1500
HIST-160	History of Modern East Asia
HIST-170	Twentieth Century Europe
HIST-180	Information Revolution
HIST-190	American Women's and Gender History
HIST-191	The History of Families and Children in the U.S.
HIST-199	Survey of American Military History
HIST-201	Histories of Globalization
HIST-210	Culture and Politics in Urban Africa
HIST-221	Introduction to Public History
HIST-230	American Deaf History
HIST-231	Deaf People in Global Perspective
HIST-238	History of Disability
HIST-240	Civil War America
HIST-245	American Slavery and Freedom
HIST-250	Origins of U.S. Foreign Relations
HIST-251	Modern U.S. Foreign Relations
HIST-252	The United States and Japan
HIST-255	History of World War II
HIST-260	History of Premodern China
HIST-261	History of Modern China
HIST-265	History of Modern Japan
HIST-266	History of Premodern Japan
HIST-270	History of Modern France
HIST-275	Screening the Trenches: The History of WWI Through Film
HIST-280	History of Modern Germany
HIST-282	Women, Gender, and Computing
HIST-290	U.S. History Since 1945
HIST-301	Great Debates in US History
HIST-302	Topics in History
HIST-310	Global Slavery and Human Trafficking
HIST-322	Monuments and Memory
HIST-323	America's National Parks
HIST-324	Oral History
HIST-325	Museums and History
HIST-326	Digital History
HIST-330	Deafness and Technology
HIST-335	Women and the Deaf Community
HIST-340	Rochester Reformers: Changing the World

COURSE	
HIST-345	Environmental Disasters
HIST-350	Terrorism, Intelligence, and War
HIST-351	The Vietnam War
HIST-355	The Holocaust: Event, History, Memory
HIST-360	A Global History of Baseball
HIST-365	Conflict in Modern East Asia
HIST-369	Histories of Christianity
HIST-370	Global History of Religions
HIST-380	International Business History
HIST-383	Technology and Global Relations in the American Century
HIST-390	Medicine \& Public Health in American History
HIST-421	Hands-on History
HIST-430	Deaf Spaces
HIST-431	Theory and Methods of Deaf Geographies
HIST-439	Biography as History
HIST-450	Japan in History, Fiction, and Film
HIST-462	East-West Encounters
HIST-465	Samurai in Word and Image
HIST-470	Science, Tech, \& European Imperialism: 1800-1965
HIST-480	Global Information Age

* At least two courses must be taken at the 300-level or higher.
\dagger HIST-105 is used to transfer in courses or AP exams. While the course is repeatable, it only counts once in the minor.

Hospitality Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

Hospitality industries and related entrepreneurial businesses include those in lodging, resorts, food, entertainment, events and conventions, and tourism. The hospitality management minor provides an opportunity to learn about service-oriented businesses that are a significant portion of the economies of many countries.

Notes about this minor:

- This minor is closed to students majoring in hospitality and tourism management.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	Hospitality and Tourism Management Fundamentals
HSPT-225	Lodging Operations Analytics and Management
HSPT-315	Food and Beverage Management
HSPT-335	
Electives	Operations Management
Choose two of the following:	
DECS-310	Principles of Food Production and Service
HSPT-215	Event \& Project Management
HSPT-350	Customer Experience Management
HSPT-375	Restaurant and Event Management
HSPT-485	Hospitality Project Planning and Development
HSPT-495	Global Business Environment
INTB-225	Organizational Behavior
MGMT-215	Business Ethics and Corporate Social Responsibility
MGMT-340	Principles of Marketing
MKTG-230	

Human Resource Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The human resource management minor focuses the critical functions of a human resources department, such as hiring, training, compensation, benefits, and employment law.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
MGMT-215	Organizational Behavior
HRDE-383	Employee Benefits \& Compensation
HRDE-386	Human Resources Development
HRDE-387	Human Resource Employment Law and Regulations
Choose one offollowing:	
BANA-255	Data Literacy, Analytics, and Decision Making
INTB-300	Cross-Cultural Management
MGMT-310	Leading Cross-Cultural \&Virtual Teams
MGMT-320	Organizational Effectiveness Skills
MGMT-340	Business Ethics and Corporate Social Responsibility
MGMT-450	Negotiations and Decision-Making

Imaging Science

James Ferwerda, Minor Advisor
 585-475-4923, James.Ferwerda@rit.edu

Program overview

Imaging science is a highly interdisciplinary field of study that incorporates elements from mathematics, engineering, computer science, and physics to understand, design, and utilize imagery and imaging systems to study scientific phenomena. The imaging science minor is designed to allow students from various departments across RIT to study how to use imaging to enhance their primary field of study or discover how to incorporate imaging science into their major discipline to solve complex, interdisciplinary problems in imaging, imagery exploitation, and the design and evaluation of imaging systems.

Notes about this minor:

- This minor is closed to students majoring in imaging science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	Project-Based Calculus I (or equivalent)
MATH-181	Project-Based Calculus II (or equivalent)
MATH-182	University Physics I
PHYS-211	University Physics II
PHYS-212	
Required Course	Introduction to Imaging and Video Systems
SOFA-103	
Electives	Vision \& Psychophysics
Choose four of the following*:	
IMGS-221	Linear and Fourier Methods for Imaging
IMGS-251	Geometric Optics
IMGS-261	Physical Optics
IMGS-321	Interactions Between Light and Matter
IMGS-322	Fundamentals of Color Science
IMGS-341	Image Processing and Computer Vision I
IMGS-351	Image Processing \& Computer Vision II
IMGS-361	Imaging Detectors
IMGS-362	Multivariate Statistical Image Processing
IMGS-451	Design and Fabrication of Solid State Cameras
IMGS-462	Principles of Solid State Imaging Arrays
IMGS-528	Testing of Focal Plane Arrays
IMGS-539	Linear Systems and Differential Equations
IMGS-542	Linear Algebra
MATH-233	Probability and Statistics I
MATH-241	Modern Physics I
MATH-251	Vibrations and Waves
PHYS-213	Mathematical Methods in Physics
PHYS-283	Physical Optics
PHYS-320	
PHYS-365	

* At least one course must be completed at the 300-level or above.
\dagger Students are required to take SOFA-103 and at least two courses in Imaging Science (IMGS).

Imaging Systems

Stephanie Solt, Minor Advisor

585-475-5951, selbbu@rit.edu

Program overview

The imaging systems minor offers students an introduction to the business and technology of photographic imaging services. Courses cover digital imaging capture systems, professional practices, output technologies, color management, and imaging workflows. The minor provides the foundation students need to pursue opportunities in photo technology management, color workflows, technical support, digital imaging technology, and sales for photography and imaging manufacturers.
Notes about this minor:

- This minor is closed to students majoring in photographic sciences.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
IMSM-301	Imaging Systems
IMSM-302	Color Management Technology
Electives	
Choose three of the following:	
PHAP-361	Retouch and Restore
PHAP-366	Advanced Retouching and Compositing
PHFA-562	The Fine Print Workflow
PHPS-207	Vision, Perception and Imaging
PHPS-217	Media Production \& Technology
PHPS-332	Digital Imaging Processing
PHPS-336	e-Sensitometry
PHPS-337	Color Measurement
PHPS-529	High Speed Photography
SOFA-568	Digital Color Management

Industrial Engineering

Robin Borkholder, Minor Advisor

 585-475-2990, rrbeie@rit.edu
Program overview

A minor in industrial engineering focuses on the design, improvement, and installation of integrated systems of people, materials, equipment, and energy. Students utilize skills in statistics, ergonomics, operations research, and manufacturing.
Notes about this minor:

- This minor is closed to students majoring in industrial engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	
MATH-233	Linear Systems and Differential Equations
Choose one of the following:	
ISEE-325	Engineering Statistics and Design of Experiments
STAT-205	Applier Statistics
STAT-257	Statistical Inference
Electives	
Choose five of the following:	
ISEE-301	Operations Research
ISEE-323	Systems and Facilities Planning
ISEE-330	Ergonomics and Human Factors
ISEE-345	Engineering Economy
ISEE-420	Production Planning/Scheduling
ISEE-510	Systems Simulation
ISEE-560	Applied Statistical Quality Control
ISEE-582	Lean Six Sigma Fundamentals
ISEE-626	Contemporary Production Systems

Innovation

Meg Walbaum, Minor Advisor
585-475-4953, mswcms@rit.edu

Program overview

The innovation minor enables students from across all of RIT's colleges to develop the necessary skills, knowledge, and experiences to become innovators in areas of interest related to their individual academic and professional goals. The core of the minor helps students to define innovation; understand past and current trends in innovation, as well as the processes and practical considerations for innovating; and gain experience at innovating through project-based, interdisciplinary experiential learning and collaborative activities. Students customize the minor by taking innovation elective courses that explore an area of personal and/ or professional interest within the boundaries of the larger minor. The minor is inter-disciplinary in its approach and fosters multi-college collaboration as it allows students to select discipline-specific courses, sourced from across the university, as their innovation elective courses. Notes about this minor:

- This minor is closed to students majoring in applied arts and sciences who have chosen a concentration in innovation.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

Course

Required Courses	
SOIS-211	Exploring Innovation
SOIS-411	The Practice of Innovation and Invention
SOIS-511	Innovation Lab
Electives	
Choose two of the following:	
ENGL-419	Literature and Technology
ENGL-450	Free \& Open Source Culture
IGME-581	Innovation \& Invention
MGMT-330	Design Thinking and Concept Development
SOIS-333	Wicked Problems
SOIS-441	Creative Critical Thinking and Problem Solving

International Business

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

Students who select the international business minor benefit from learning the global view of worldwide markets and the role of business in these environments.

Notes about this minor:

- This minor is closed to students majoring in business administration: international business.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
INTB-225	Global Business Environment
INTB-315	Exporting and Global Sourcing
Electives	
Choose three of the following:	
FINC-420	International Finance
INTB-310	Regional Business Studies
INTB-550	Competing Globally
MGMT-310	Leading Cross-Cultural \& Virtual Teams
MKTG-230	Principles of Marketing
MKTG-330	Global Marketing

International Relations

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

The international relations minor helps students to make sense of the world through exploring ideas that have shaped it. Students explore the thoughts of various thinkers and approaches to international relations and use these perspectives to understand key themes in world politics. Important topics include democratization, globalization, terrorism, war and peace, human rights, and international law. Students reflect upon the interplay between domestic and international politics and how changes in the world order affect the internal politics of various countries.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	Introduction to International Relations
POLS-120	
Electives	Ethics in International Politics
Choose four of the following:*	
POLS-205	Comparative Politics
POLS-210	Tech, Ethics \& Global Politics
POLS-215	Global Political Economy
POLS-220	Environmental Ethics and Political Ecology
POLS-285	American Foreign Policy
POLS-320	International Law and Organizations
POLS-325	Human Rights in Global Perspective
POLS-330	Politics of Developing Countries
POLS-335	Politics of East Asia
POLS-350	Politics of China
POLS-351	International Political Thought
POLS-360	Cyberwar, Robots, \& the Future of Conflict
POLS-370	Grand Strategy
POLS-375	Greece and the Political Imagination
POLS-390H	Evolutionary International Relations
POLS-410	War and the State
POLS-440	Terrorism and Political Violence
POLS-445	Comparative Public Policy
POLS-455	Special Topics in Political Science
POLS-525	Peacekeeping and Conflict Transformation
POLS-541	War, Diplomacy, and State-Building
POLS-542	

[^19]
Journalism

College of Liberal Arts, Office of Student Services

 585-475-2444, libarts@rit.edu
Program overview

The journalism minor provides students with a foundation in the professional study and practice of journalism. Courses offer a broad perspective that includes historical, legal, and ethical issues of specific concern to journalism, as well as learning and practice writing in a journalistic style for delivery across multiple media platforms.
Notes about this minor:

- This minor is closed to students majoring in journalism.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
COMM-272	Reporting and Writing I
Electives	
Choose four of the following:	
COMM-261	History of Journalism
COMM-263	Data Journalism
COMM-271	Introduction to Journalism
COMM-280	Community Journalism
COMM-291	Communication for Social Change
COMM-342	Communication Law and Ethics
COMM-370	Ethnic Press in the United States
COMM-374	Opinion Media
COMM-450	Multiplatform Production \& Publishing

Language Science

Marcos Zampieri, Minor Advisor
 585-475-7436, Marcos.Zampieri@rit.edu

Program overview

The language science minor prepares students for the study and analysis of human language. The minor is directly applicable to students interested in computing and media, human-computer interaction, brain and cognition, language acquisition, human health, interpreting, relevant branches of engineering, and policy studies. Students can complete the minor requirements irrespective of their skills in languages other than English. Electives allow students to customize the minor to their interests and needs, with the support of a faculty adviser. The minor is an excellent complement to majors such as computer science, game design, information technology, psychology, sign language interpreting, mechanical engineering, electrical engineering, bioengineering, science, or a foreign language.

Notes about this minor:

- This immersion is closed to students majoring in English who have chosen a concentration in linguistics.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses*	
Choose one of the following:	
ENGL-214	Introduction to Linguistics
ENGL-310	Introduction to Language Science
Plus one of the following:	
ANTH-220	Language and Culture: Introduction to Linguistic Anthropology
ENGL-351	Language Technology
ENGL-356	Psycholinguistics
MLCU-301	Introduction to Syntax
MLCU-302	
Electives	Language and Culture: Introduction to Linguistic Anthropology
Choose three of the following:	
ANTH-220	American Indian Languages
ANTH-285	Language Technology
ENGL-351	Meaning in Language
ENGL-356	Evolving English Language
ENGL-370	Speech Processing I
ENGL-482	Natural Language Processing I
ENGL-581	Spoken Language Processing II
ENGL-582	Linguistics of American Sign Language
ENGL-584	Psycholinguistics
MLAS-351	Introduction to Syntax
MLCU-301	Languages in Japanese Society
MLCU-302	Structure of the Japanese Language
MLJP-351	Special Topic: Modern Language \ddagger
MLJP-451	Philosophy of Language
MLST-449	Language and Thought
PHIL-414	PSYC-431
Beginning ASL or Modern Language 200 level course §	

* At least two of the five courses must be taken at the 300-level or higher
\dagger Nine credit hours must be taken outside the student's major.
\ddagger MLST-449 may be used for linguistics topics such as Second Language Acquisition \& Bilingualism
§ No more than one beginning ASL or modern language course may be used.

Latino/Latina/Latin American Studies

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The Latino/Latina/Latin American studies minor provides at least two full years of instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor's five courses foster cultural, or linguistic and cultural, proficiency. Part of the minor requirements may be taken abroad.

Notes about this minor:

- This minor is closed to students majoring in applied modern language and culture, who have chosen the Spanish track; and students majoring in international and global studies who have chosen Spanish or Portuguese languages or Latin America as a regional focus.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Electives

Culture Courses
Choose four or five of the following:

ANTH-235	Immigration to the U.S.
ANTH-255	Regional Archaeologyt
ANTH-335	Culture and Politics in Latin America
ANTH-350	The Global Economy and the Grassroots
ARTH-561	Latin American Art
ARTH-572	Art of the Americas
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
MLSP-353	Trauma and Survival in First-Person Narrative
MLSP-410	Spanish for Science and Technology
MLSP-415	Professional Spanish
SOCI-395	Borders: Humans, Boundaries, and Empires
Language Courses	
Choose one of the following (if only four culture courses are chosen):*	
MLPO-201	Beginning Portuguese I
MLPO-202	Beginning Portuguese II
MLPO-301	Intermediate Portuguese I
MLPO-302	Intermediate Portuguese II
MLPO-401	Advanced Portuguese I
MLPO-402	Advanced Portuguese II
MLSP-201A	Beginning Spanish IA
MLSP-201B	Beginning Spanish IB
MLSP-202	Beginning Spanish II
MLSP-301	Intermediate Spanish I
MLSP-302	Intermediate Spanish II
MLSP-305	Spanish for Health Care
MLSP-310	Spanish Grammar Review
MLSP-315	Hispanic Culture \& Civilization
MLSP-401	Advanced Spanish I
MLSP-402	Advanced Spanish II
*Students who have prior study in either language must take a placement exam through the Department of Modern Languages to determine the appropriate level language course to begin with Course may be used when topic focuses on Mesoamerica or Latin America.	

Legal Studies

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

Recognizing the critical role that law plays in societies, the minor in legal studies provides students with courses that deepen and expand their understanding of law as practiced, especially its influence on social, political, and economic institutions.

Notes about this minor:

- Students majoring in criminal justice, philosophy, or political science can count a maximum of 3 credits from their home departments. Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
Choose one of the following:	Law and Society
CRIM-215	Law \& Society
POLS-200	
Electives	Communication Law and Ethics
Choose four of the following:*	
COMM-342	Criminal Law
COMM-362	Courts
CRIM-225	Evidence
CRIM-260	Major Issues in Criminal Justice
CRIM-315	Symbolic Logic
CRIM-489	Philosophy of Law
PHIL-205	Social and Political Philosophy
PHIL-304	International Law and Organizations
PHIL-403	Human Rights in Global Perspective
POLS-325	Constitutional Law
POLS-330	Constitutional Rights and Liberties
POLS-425	Classical Constitutionalism, Virtue, \& Law
POLS-430	Modern Constitutionalism, Liberty, \& Equality
POLS-460	
POLS-465	

[^20]
Literature and Media

Julie Johannes, Minor Advisor
 585-475-2467, jmwgla@rit.edu

Program overview

Explore literature and other cultural works, as well as linguistics, and creative writing. The minor familiarizes students with works composed or translated into English and provides them with the opportunity to explore a variety of historical periods and geographical regions. Courses in the minor explore literary genres such as science fiction and fantasy; literary forms such as the novel, the short story, poetry, and graphic storytelling; and literary practices across media and multimedia arts. The minor builds an awareness of methods, theories and technologies for both the creation and analysis of literary texts, and provides an introduction to critical or creative writing.

Notes about this minor:

- This minor is closed to students majoring in English who have chosen a concentration in literature and media.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Literature and Cultural Studies
Choose one of the following:	Storytelling: [Genre/Theme]
ENGL-210	
ENGL-275	The Art of Poetry
Electives	The Short Story
Choose four of the following:	Drama and Theatre
ENGL-301	Mythology \& Literature
ENGL-302	Shakespeare Drama
ENGL-304	Topics in Literary Forms*
ENGL-307	American Literature
ENGL-308	British Literature
ENGL-309	Digital Literature
ENGL-312	Global Literature
ENGL-313	Popular Literature
ENGL-315	Genre Fictiont
ENGL-316	Literary Geographies
ENGL-318	History of Madness
ENGL-320	Evolving English Language
ENGL-322	Media Adaptation
ENGL-345	Storytelling Across Media
ENGL-370	Transmedia Storyworlds
ENGL-373	Dangerous Texts
ENGL-375	Film Studies
ENGL-377	Themes in American Literature
ENGL-391	African-American Literature
ENGL-410	Women and Gender in Literature and Media
ENGL-411	Great Authors
ENGL-413	
ENGL-414	
ENGL-418	Literature and Technology
ENGL-419	Literary Forms (ENGL-309) may be taken up to two times, for six semester credit hours, as long as the
course topics are different.	
course topics are different.	

Minors

Management Information Systems (MIS)

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The management information systems minor is designed for students who wish to learn about computer-based information systems and how they are used in today's businesses. The minor enhances the career options of students in any major and increases their capacity to analyze, design, and manage business processes related to their program of study. Notes about this minor:

- This minor is closed to students majoring in management information systems.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
MGIS-330	Systems Analysis and Design
Electives	
Choose four of the following:	
ACCT-445	Accounting Information Systems
MGIS-320	Database Management Systems
MGIS-350	Developing Business Applications
MGIS-355	Business Intelligence
MGIS-360	Building a Web Business
MGIS-425	Database Systems Development
MGIS-429	Cyber: Risk and Resilience
MGIS-445	Web Systems Development
MGIS-450	Enterprise Systems
MGIS-489	Seminar in MIS
MGIS-550	MIS Capstone
MGIS-589	Hacking for Defense (H4D)

Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The management minor provides a solid introduction to the world of general business management.

Notes about this minor:

- This minor is closed to students majoring in business administration: management.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
MGMT-215	Organizational Behavior
MGMT-310	Leading Cross-Cultural \& Virtual Teams
Electives	
Choose three of the following:	
DECS-350	Project Management
HRDE-386	Human Resources Development
INTB-300	Cross-Cultural Management
INTB-550	Competing Globally
MGMT-320	Organizational Effectiveness Skills
MGMT-330	Design Thinking and Concept Development
MGMT-340	Business Ethics and Corporate Social Responsibility
MGMT-350	Entrepreneurship
MGMT-450	Negotiations and Decision-Making
MGMT-470	Applied Entrepreneurship and Commercialization
MGMT-489	Seminar in Management
MGMT-550	Real World Business Solutions
MGMT-560	Strategic Management

Manufacturing Systems

Mary Ann Donato, Minor Advisor

585-475-7603, madast@rit.edu

Program overview

The manufacturing systems minor provides students with a foundation in the professional study and practice of manufacturing operations. Students develop a required foundation of manufacturing processes and statistics, then they select three advanced manufacturing courses to fulfill the following requirements: quality engineering principles, engineering economics, lean production and supply systems, integrated design for manufacturing and assembly, or electronics manufacturing.
Notes about this minor:

- This minor is closed to students majoring in robotics and manufacturing engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
Choose one of the following	
NETS-120	Manufacturing Processes
RMET-120	Manufacturing Processes
Choose one of the following	
MATH-251	Probability and Statistics I
STAT-145	Introduction to Statistics I
STAT-205	Applied Statistics
STAT-251	Probability and Statistics for Engineers I
Electives	
Choose three of the following	
MFET-420	Quality Engineering Principles
MFET-436	Engineering Economics
MFET-450	Lean Production \& Supply Chain Operations
MFET-460	Integrated Design for Manufacture \& Assembly
MFET-545	Electronics Manufacturing

Marketing

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

Marketing, sales, and customer-oriented aspects of the marketing minor broaden students' learning experiences and professional opportunities by creating a secondary focus in marketing.

Notes about this minor:

- This minor is closed to students majoring in Marketing BS.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
MKTG-230	Principles of Marketing
Electives	
Choose four of the following:	
MKTG-310	Marketing Research
MKTG-320	Digital Marketing
MKTG-330	Global Marketing
MKTG-350	Consumer Behavior
MKTG-360	Professional Selling
MKTG-365	Marketing Analytics
MKTG-370	Advertising and Promotion Management
MKTG-410	Search Engine Marketing and Analytics
MKTG-430	Social Media Marketing
MKTG-489	Seminar In Marketing
MKTG-550	Marketing Strategy

Mathematics

Hossein Shahmohamad, Minor Advisor
585-475-7564, hxssma@rit.edu

Program overview

The mathematics minor is designed for students who want to learn new skills and develop new ways of framing and solving problems. It offers students the opportunity to explore connections among mathematical ideas and to further develop mathematical ways of thinking. Notes about this minor:

- This minor is closed to students majoring in applied mathematics or computational mathematics.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Prerequisites

Mechanical Engineering

Alan Nye, Minor Advisor

585-475-6121, ahneme@rit.edu

Program overview

The minor in mechanical engineering exposes students to the core foundations of the discipline. Courses help non-majors explore hightechnology careers and communicate more effectively with engineers on project teams. The minor consists of a five-course sequence that builds on prerequisite knowledge from calculus and engineering mechanics. Elective courses provide additional depth of knowledge in an area of individual student interest.

Notes about this minor:

- This minor is closed to students majoring in mechanical engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Choose one of the following:	
MECE-102	Engineering Mechanics Lab
PHYS-206	University Physics : AP-C Mechanics
PHYS-211	University Physics I
PHYS-211A	University Physics IA
MATH-182	Project-based Calculus II
Required Courses	
MECE-103	Statics
MECE-104	Engineering Design Tools
MECE-110	Thermodynamics I
Electives	
Choose two ofthe following:*	
MECE-203	
MECE-205	Strength of Materials I
MECE-210	Dynamics
MECE-305	Fluid Mechanics I
MECE-310	Materials Science with Applications
MECE-317	Heat Transfer I
MECE-320	Numerical Methods
MECE-355	System Dynamics
MECE-402	Fluid Mechanics II
MECE-403	Turbomachinery
MECE-405	Propulsion
MECE-406	Wind Turbine Engineering
MECE-409	Advanced Computer Aided Design
MECE-421	Aerodynamics
MECE-510	Internal Combustion Engines
MECE-511	Flight Dynamics
MECE-520	Orbital Mechanics
MECE-523	Introduction to Optimal Design
MECE-524	Powertrain Sys \& Design
MECE-529	Vehicle Dynamics
MECE-543	Renewable Energy Systems
MECE-544	Classical Control Systems
MECE-550	Introduction to Composite Materials
MEEC-555	Sustainable Energy Use in Transportation
MEEE-557	Biomechatronics
MEE-558	Applied Biomaterials
MECE-570	Introduction to Engineering Vibrations
	Manufacturing Processes and Engineering

[^21]* Students may choose only one of these courses, but no more
† Students may choose only one of these courses, but not both
\# Students may choose only one of these courses, but not both

Media Arts and Technology

Bruce Myers, Minor Advisor

585-475-5224, blmppr@rit.edu

Program overview

The media arts and technology minor provides students with a fivecourse sampling of the media arts and technology major. After completing the required course, students may customize their selection of elective courses from diverse offerings related to media production, media architecture, media strategy, and media management.

Notes about this minor:

- This minor is closed to students majoring in media arts and technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	Cross Media Foundations
MAAT-101	
Choose one of the following:	Gravure and Flexography
MAAT-368	Lithographic Process
MAAT-376	Digital Print Processes
MAAT-541	
Electives	Typography and Page Design
Choose three of the following:	
MAAT-106	Imaging
MAAT-107	Print Production
MAAT-206	Principles of Printing
MAAT-256	Advanced Workflow
MAAT-266	Webpage Production I
MAAT-271	Webpage Production II
MAAT-272	Database Publishing
MAAT-301	Information Architecture Publishing
MAAT-306	Media Business Management
MAAT-307	Advanced Retouching and Restoration
MAAT-377	Magazine Publishing
MAAT-446	Operations Management in the Graphic Arts
MAAT-503	Color Management Systems
MAAT-544	Topics in Media Arts, Sciences, and Technology
MAAT-550	Package Printing
MAAT-558	Industry Issues and Trends
MAAT-561	Building Profit into Media Projects
MAAT-563	Digital Asset Management
MAAT-571	

Metals and Jewelry Design

Program overview

The metals and jewelry design minor gives you an opportunity to immerse yourself in a creative environment of problem solving and to develop traditional and contemporary metals and jewelry design skills. Through a personal investigation of traditional metal techniques and material processes for the fabrication of small objects and jewelry, you will develop a personal design aesthetic and vocabulary. This will be demonstrated through the creation of a portfolio of work.

Notes about this minor:

- This minor is closed to students majoring in the studio arts BFA who have chosen options in metals and jewelry design option.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Metals and Jewelry Studio Survey
CMTJ-124	Design, Fabrication, and Forming
Choose one of the following:*	
CMTJ-207	Fabrication, Casting, and Mold Making
CMTJ-212	
Electives	Design, Fabrication, and Forming
Choose three of the following:	
CMTJ-207	Fabrication, Casting and Mold Making
CMTJ-212	Metals and Jewelry Design Junior I
CMTJ-301	Metals and Jewelry Design Junior II
CMTJ-302	Form and Fabrication: Metals and Jewelry Designt
CMTJ-530	CAD Drawing
STAR-503	

[^22]† CMTJ-530 can be taken a maximum of two times for this minor

Microelectronic Engineering

Michael Jackson, Minor Advisor
585-475-2828, majemc@rit.edu

Program overview

The microelectronic engineering minor provides basic integrated circuit fabrication skills to students from science and other engineering related disciplines whose career path may involve the semiconductor industry. RIT has one of the finest cleanrooms in the world specializing in undergraduate microelectronic education. This minor enables students to utilize these state-of-the-art facilities while they develop the skills they need for success in the industry.

Notes about this minor:

- This minor is closed to students majoring in microelectronic engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites*	General Chemistry for Engineers (or equivalent)
CHMG-131	Project-Based Calculus II
MATH-182	University Physics II
PHYS-212	
Required Courses	IC Technology
MCEE-201	Thin Films
MCEE-503	
Electives	Introduction to Semiconductor Devicest
Choose three of the following:	
EEEE-260	Statistics and Design of Experiments
MCEE-205	Semiconductor Devices for Microelectronic Engineerst
MCEE-360	Semiconductor Process Integration
MCEE-502	Lithography Materials and Processes
MCEE-505	Nanolithography Systems
MCEE-515	CMOS Processing
MCEE-550	Photovoltaic Science and Engineering
MCEE-620	Metrology for Failure Analysis and Yield of ICs
MCEE-730	Microelectronics Manufacturing
MCEE-732	Microelectromechanical Systems
MCEE-770	

* Additional prerequisites may be required based on the choice of microelectronic engineering electives.
\dagger Students may choose Introduction to Semiconductor Devices (EEEE-260) or Semiconductor Devices for Microelectronic Engineers (MCEE-360), but not both

Military Studies and Leadership

Christopher Otero, Minor Advisor
cdoarm@rit.edu

Program overview

The minor in military studies and leadership provides students the opportunity to learn about military officer training and its mission to develop leaders for tomorrow's Armed Forces. Courses promote leadership and management, skills that can be employed in any career field, along with courses analyzing the military's role in national security affairs and foreign policy. Students choose the Air Force track or the Army track. Notes about this minor:

- This minor is available to all Army ROTC and Air Force ROTC cadets. Students who are interested in this minor, but are not enrolled in the ROTC program, must gain approval and appropriate waivers before registering for courses.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Air Force Track	
Required Courses	Heritage and Values I
AERO-101	Heritage and Values II
AERO-102	Team and Leadership Fundamentals I
AERO-201	Team and Leadership Fundamentals II
AERO-202	National Security/Leadership Responsibilities \& Commissioning Preparation
AERO-401	National Security/Leadership Responsibilities \& Commissioning Preparation II
AERO-402	Leading People \& Effective Communication I
MGMT-300	Leading People \& Effective Communication II
MGMT-301	
Army Track	Introduction to Leadership
Required Courses	Introduction to Tactical Leadership
ARMY-101	Innovative Team Leadership
ARMY-102	Foundations of Tactical Leadership
ARMY-201	Adaptive Team Leadership
ARMY-202	Applied Team Leadership
ARMY-301	Adaptive Team Leadership II
ARMY-302	Leadership in a Complex World
ARMY-401	

Mobile Design and Development

Bryan French, Minor Advisor

585-475-6511, bdfvks@rit.edu

Program overview

The minor in mobile design and development provides non-computing majors with a firm foundation in designing applications for mobile devices. There is an explosion in the types and amount of mobile devices and this minor is designed to provide students with the ability to design and implement cross-platform applications.
Notes about this minor:

- This minor is closed to students majoring in computer science, computing and information technologies, computing security, game design and development, human-centered computing, new media interactive development, software engineering, and web and mobile computing.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
Choose one of the following:	
GCIS-123	Software Development and Problem Solving I
ISTE-120	Computational Problem Solving in the Information Domain I
ISTE-140	Web \& Mobile I
ISTE-240	Web \& Mobile II
ISTE-252	Foundations of Mobile Design
ISTE-260	Designing the User Experience

Mobile Development

Bryan French, Minor Advisor

 585-475-6511, bdfvks@rit.edu
Program overview

The minor in mobile development provides students enrolled in computing degree programs with experience designing and creating compelling native applications for mobile devices. Smartphones are outselling desktop computers. New mobile devices of varying sizes, types, and uses are being created everyday for both businesses and personal use and contexts. Developers are needed to create applications for these needs that perform well on the major mobile platforms.

Notes about this minor:

- This minor is closed to students majoring in web and mobile computing.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	
Choose one of the following:	
ISTE-140	Web \& Mobile I
IGME-230	Website Design \& Implementation
IGME-235	Introduction to Web Technology for Game Developers
Choose one of the following:	
ISTE-240	Web \& Mobile II
IGME-330	Rich Media Web Application Development I
ISTE-252	Foundations of Mobile Design
ISTE-340	Client Programming
Choose one of the following:	
ISTE-454	Mobile Application Development I
ISTE-456	Mobile Application Development II

Minors

Modern Language - Arabic

Hiroko Yamashita, Minor Advisor
585-475-6074, hxygsl@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to students majoring in international and global studies who have chosen an area of study in Arabic language or a field specialization in the Middle East; or are native speakers of Arabic.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

Modern Language - Chinese

Zhong Chen, Minor Advisor

585-475-6917, zxcgsl@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to students majoring in applied modern language and culture who have chosen the Chinese language track; students majoring in international and global studies students who have chosen an area of study in Chinese language or a field specialization in Asia; or are native speakers of Chinese.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE
Electives Choose five consecutive language courses: MLCH-201 Beginning Chinese I MLCH-202 Beginning Chinese II MLCH-301 Intermediate Chinese I MLCH-302 Intermediate Chinese II MLCH-310 Intermediate Conversational Chinese MLCH-315 Intermediate Reading and Writing in Chinese MLCH-401 Advanced Chinese I MLCH-402 Advanced Chinese II MLCH-410 Chinese for Science and Technology MLCH-415 Professional Chinese Students can take up to two culture courses as part of the Chinese minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Chinese culture may be approved by the faculty adviser. ANTH-255 Regional Archaeology* HIST-260 History of Premodern China HIST-261 History of Modern China HIST-365 Conflict in Modern East Asia MLCH-352 Globalization and Gender through Chinese Cinema: From Kungfu to World FHIL-311 Eastory Asian Philosophy POLS-350 Politics in East Asia POLS-351 Politics of China

[^23]
Modern Language - French

Philippe Chavasse, Minor Advisor
585-475-3156, pxcgsl@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to fluent native speakers of French.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	
Choose five consecutive	language courses:
MLFR-201	Beginning French I
MLFR-202	Beginning French II
MLFR-301	Intermediate French I
MLFR-302	Intermediate French II
MLFR-310	French Oral Communication
MLFR-315	French Reading and Writing Proficiency
MLFR-401	Advanced French I
MLFR-402	Advanced French II
Students can take up to two culture courses as part of the French minor. In addition to culture courses	
listed for the minor, other courses from other departments dealing with aspects of French and	
Francophone cultures may also be approved by the faculty adviser.	
ARTH-364	Art in Paris
HIST-270	History of Modern France
HIST-275	Screening the Trenches: The History of WWI through Film
HIST-470	Science, Tech, \& European Imperialism: 1800-1965
MLFR-351	French Films and Hollywood
MLFR-352	The French Heritage in Films
MLFR-410	French for Science and Technology
MLFR-415	Professional French

Modern Language-German

Ulrike Stroszeck, Minor Advisor

585-475-2921, uisgsl@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.
Notes about this minor:

- This minor is closed to fluent native speakers of German.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	Beginning German I
Choose five consecutive language course:	
MLGR-201	Beginning German II
MLGR-202	Intermediate German I
MLGR-301	Intermediate German II
MLGR-302	German Conversation and Oral Practice
MLGR-310	German Grammar through Reading and Writing
MLGR-315	Modern German Culture through Film
MLGR-351	Advanced German I
MLGR-401	Advanced German II
MLGR-402	German for Science and Technology
MLGR-410	Professional German
MLGR-415	Era
Students can take up to two culture courses as part of the German minor. In addition to culture courses	
listed for the minor, other courses from other departments dealing with aspects of German and German-	
speaking cultures may also be approved by the faculty adviser.	
FNRT-210	Bach, Händel, and the Baroque
FNRT-211	History of Modern Germany
HIST-280	Continental Philosophy
PHIL-417	

Modern Language - Italian

Elisabetta DAmanda, Minor Advisor
585-475-6522, exdgla@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to fluent native speakers of Italian.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Electives

Choose five consecutive language courses:

MLIT-201	Beginning Italian I
MLIT-202	Beginning Italian II
MLIT-301	Intermediate Italian I
MLIT-302	Intermediate Italian II
MLIT-401	Advanced Italian I
MLIT-402	Advanced Italian II

Students can take up to two culture courses as part of the Italian minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Italian culture may be approved by the faculty adviser.

ARTH-311	Art and Architecture of Italy: 1250-1400
ARTH-312	Art and Architecture of Italy: 1600-1750
ARTH-317	Art and Architecture in Florence and Rome: 15th Century
ARTH-318	Art and Architecture in Florence and Rome: 16th Century

Modern Language - Japanese

Masako Murakami, Minor Advisor

 585-475-4418, mxmgsl@rit.edu
Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor adviser for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to students majoring in applied modern language and culture who have chosen the Japanese language track; students majoring in international and global studies who have chosen an area of study in Japanese language or a field specialization in Asia; or are native speakers of Japanese.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Electives

Choose five consecutive language courses:

MLJP-201	Beginning Japanese I
MLJP-202	Beginning Japanese II
MLJP-301	Intermediate Japanese I
MLJP-302	Intermediate Japanese II
MLJP-310	Practical Reading and Speaking in Japanese
MLJP-315	Practical Writing and Speaking in Japanese
MLJP-401	Advanced Japanese I
MLJP-402	Creative Writing and Performance in Japanese
MLJP-404	Japanese Culture in Print
MLJP-405	Advanced Speaking in Japanese
MLJP-410	Japanese for Science and Technology
MLJP-415	Professional Japanese
Students can take up to two culture courses as part of the Japanese minor. In addition to culture courses	
listed for the minor, other courses from other departments dealing with aspects of Japanese culture,	
society, history, and art may also be approved by the faculty adviser.	
ANTH-255	Regional Archaeology*
FNRT-200	Anime
HIST-160	History of Modern East Asia
HIST-252	The United States and Japan
HIST-265	History of Modern Japan
HIST-266	History of Premodern Japan
HIST-450	Japan in History, Fiction, and Film
HIST-465	Samurai in Word and Image
MLJP-351	Language in Japanese Society
MLJP-451	Structure of the Japanese Language
PHIL-311	East Asian Philosophy
POLS-350	Politics of East Asia

* Course may be used when topic focuses on East Asia.

Modern Language - Portuguese

Hiroko Yamashita, Minor Advisor
585-475-6074, hxygsl@rit.edu

Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor advisor for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to fluent native speakers of Portuguese.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE
Electives Choose five consecutive language courses: MLPO-201 Beginning Portuguese I MLPO-202 Beginning Portuguese II MLPO-301 Intermediate Portuguese I MLPO-302 Intermediate Portuguese II MLPO-401 Advanced Portuguese I MLPO-402 Advanced Portuguese II Students can take up to two culture courses as part of the Portuguese minor. In addition to culture courses listed for the minor, other courses from other departments or schools dealing with aspects of Brazilian, Portuguese, or other Lusophone cultures may also be approved by the faculty adviser. ANTH-335 Culture and Politics in Latin America

Modern Language - Russian

Hiroko Yamashita, Minor Advisor

 585-475-6074, hxygsl@rit.edu
Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor advisor for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.
Notes about this minor:

- This minor is closed to fluent native speakers of Russian.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives*	
Choose five of the following:	
MLRU-201	Beginning Russian I
MLRU-202	Beginning Russian II
MLRU-301	Intermediate Russian I
MLRU-302	Intermediate Russian II
MLRU-305	Intermediate Conversation and Intercultural Communication in Russian
MLRU-401	Advanced Russian I
MLRU-402	Advanced Russian II
Students can take up to two culture courses as part of the Russian minor. In addition to culture courses listed for the minor, other courses from other departments dealing with aspects of Russian culture may be approved by the faculty advisor.	
MLRU-405	Russian Language \& Culture through Media
ENGL-416	Topics in Global Literatures \dagger
ENGL-418	Great Authors \dagger
* Under special circumstances, and with permission of the minor advisor, up to two culture courses may be substituted for two sequential language courses. Students should contact the minor advisor for a list of approved culture courses. \dagger When course specifically pertains to Russian literature.	

Minors

Modern Language - Spanish

Diane Forbes, Minor Advisor

 585-475-6765, djfgsl@rit.edu
Program overview

This minor provides two full years of modern language and culture instruction to prepare students for living and working within an intercultural society both at home and abroad. The minor consists of five courses, either five language courses or a combination of language courses with up to two culture courses. Students with previous language skills must consult the minor advisor for placement evaluation before they register. Part of the requirements for this minor can be fulfilled by courses taken abroad.

Notes about this minor:

- This minor is closed to students majoring in applied modern language and culture who have chosen the Spanish language track; or are fluent native speakers of Spanish.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Electives

Choose five consecutive language courses:	
MLSP-201A	Beginning Spanish IA*
MLSP-201B	Beginning Spanish IB*
MLSP-202	Beginning Spanish II
MLSP-301	Intermediate Spanish I
MLSP-302	Intermediate Spanish II
MLSP-305	Spanish for Health Care
MLSP-310	Spanish Grammar Review
MLSP-315	Hispanic Culture \& Civilization
MLSP-401	Advanced Spanish I
MLSP-402	Advanced Spanish II
MLSP-410	Spanish for Science and Technology
MLSP-415	Professional Spanish
Students can take up to two culture courses as part of the Spanish minor. In addition to culture courses	
listed for the minor, other courses from other departments dealing with aspects of Hispanic cultures may	
also be approved by the faculty advisor.	
ANTH-235	Immigration to the U.S.
ANTH-255	Regional Archaeologyt
ANTH-335	Culture and Politics in Latin America
ANTH-350	The Global Economy and the Grassroots
ARTH-561	Latin American Art
ARTH-572	Art of the Americas
ENGL-416	Topics in Global Literatures \ddagger
ENGL-418	Great Authors \ddagger
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
MLSP-353	Trauma and Survival in First-Person Narrative
SOCI-395	Borders: Humans, Boundaries, and Empires

[^24]
Museum Studies

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The museum studies minor provides students with a foundation in the history and practice of the museum as an institution and in the history, theory, and practice of collecting, exhibiting, and preserving the cultural heritage that defines the purpose and function of the museum. Courses cover a wide range of topics that are relevant to contemporary museology: the history of museums and collecting, the technical study of art and materials, the history and theory of exhibitions, interactive design, public history, the rise of the museum profession, legal and ethical concerns, and conservation.

Notes about this minor:

- This minor is closed to students majoring in museum studies.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE
Required Courses
MUSE-220
MUSE-221/HIST-221
Electives
Introduction to Museums and Collecting
HIST-322
:---
HIST-324
HIST-325
MUSE-224
MUSE-225
MUSE-226
MUSE-241
MUSE-244
MUSE-249
MUSE-340
MUSE-341
MUSE-354/FNRT-354
MUSE-355
MUSE-357
MUSE-358
MUSE-359
MUSE-360
MUSE-361
MUSE-388/VISL-388

[^25]
Music and Technology

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

The music and technology minor includes courses in music theory, music history, contemporary and historical musical instrument technology, acoustics, audio engineering, music for media, and music performance. This minor provides students with an avenue to integrate their technological interests and skills with music.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

course

Required Courses

EEET-261	Fundamentals of Audio Engineering
Plus one of the following:	
FNRT-205	Music Theory 1
FNRT-208	Composing for Media

Electives

Choose three of the following: \dagger	
EEET-361	Modern Audio Production
FNRT-203	American Popular \& Rock Music
FNRT-204	Music \& the Stage
FNRT-209	Medieval and Renaissance Music
FNRT-210	Bach, Handel, and the Baroque
FNRT-211	Era of Haydn, Mozart, \& Beethoven
FNRT-212	Electronic Music Production
FNRT-250	RIT Singers*
FNRT-251	RIT Orchestra*
FNRT-252	RIT Concert Band*
FNRT-253	World Music Ensemble*
FNRT-254	RIT Jazz Ensemble*
FNRT-255	RIT Chamber Orchestra*
FNRT-320	Music of the Romantic Era
FNRT-321	Music Since 1900
FNRT-322	Survey of Jazz
FNRT-328	Composing For Video Games and Interactive Media
FNRT-485	Music Theory 2
IGME-570	Digital Audio Production
IGME-671	Interactive Game and Audio
PRFL-250	Music History 1: Antiquity to Bach
PRFL-251	Music History 2: Haydn to Stravinsky
PRFL-327	American Musical Theater
PRFL-352	Russian Music and National Identity

[^26]
Music Performance

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The music performance minor combines courses in music theory, music history, and world music with practical application through ensemble participation and applied music study. This combination of the academic and the practical offers students a more profound understanding of the art of music, and in a broader sense, an introduction to cultural development and the communication of ideas. A total of 15 credit hours from the suggested list of courses must be earned for the minor, with three credits in music theory and three credits from ensemble participation, required. Students can substitute 3 credits of Applied Music for three credits of ensemble, upon approval from the department of performing arts.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	Music Theory 1
FNRT-205	
Ensemble Courses*	RIT Singers
Students choose at least three semester credits of the following one credit courses:	
FNRT-250	RIT Orchestra
FNRT-251	RIT Concert Band
FNRT-252	World Music Ensemble
FNRT-253	RIT Jazz Ensemble
FNRT-254	RIT Chamber Orchestra
FNRT-255	Applied Musict
FNRT-256	
Electives	American Popular \& Rock Music
Choose three of the following:	
FNRT-203	Music \& the Stage
FNRT-204	Composing for Media
FNRT-208	Medieval and Renaissance Music
FNRT-209	Bach, Handel, and the Baroque
FNRT-210	Era of Haydn, Mozart, \& Beethoven
FNRT-211	Electronic Music Production
FNRT-212	Music of the Romantic Era
FNRT-320	Music Since 1900
FNRT-321	Survey of Jazz
FNRT-322	Composing for Video Games and Interactive Media
FNRT-328	Music Theory 2
FNRT-485	Music History 1: Antiquity to Bach
PRFL-250	Music History 2: Haydn to Stravinsky
PRFL-251	American Musical Theater
PRFL-327	Russian Music and National Identity
PRFL-352	
SOIS-240	

[^27]
Networking and Systems Administration

Lawrence Hill, Minor Advisor

585-475-7064, Iwhfac@rit.edu

Program overview

This minor provides computing students with a firm foundation in networking and/or systems administration. Computer networks and the systems attached to these networks have become ubiquitous. Therefore, knowledge of how computer networks function, their administration, and the administration of the systems attached to them can be of value to every computing professional since their work is impacted in some way by computer networks and computer systems. Students may choose between two tracks: networking or system administration.

Notes about this minor:

- This minor is closed to students majoring in computing and information technologies or computing security who have chosen the system administration track.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Students choose a two course introductory programming sequence*	
CSCI-141	Computer Science I
CSCI-142	Computer Science II
or	
ISTE-120	Computational Problem Solving in the Information Domain I
ISTE-121	Computational Problem Solving in the Information Domain II
or	
ISTE-100	Computational Problem Solving in the Network Domain I
ISTE-101	Computational Problem Solving in the Network Domain II
or	
IGME-105	Game Development and Algorithmic Problem Solving I
IGME-106	Game Development and Algorithmic Problem Solving II
or	
CPET-121	Computational Problem Solving I
CPET-321	Computational Problem Solving II
or	
GCIS-123	Software Development and Problem Solving I
GCIS-124	Software Development and Problem Solving II
Required Courses	
NSSA-102	Computer Systems Concepts
NSSA-241	Introduction to Routing and Switching
Focus	
Students choose one focus and complete all three courses	
Networking	
NSSA-242	Wireless Networking
NSSA-441	Advanced Routing and Switching
NSSA-443	Network Design and Performance
Systems Administration	
NSSA-220	Task Automation Using Interpretive Languages
NSSA-221	Systems Administration I
NSSA-244	Virtualization
Choose one of the following two courses:	
NSSA-320	Configuration Management
NSSA-423	Scalable Computing Architectures

* An equivalent sequence may be approved by an advisor.

Nutritional Sciences

Elizabeth Ruder, Minor Advisor
 585-475-2402, ehrihst@rit.edu

Program overview

The nutritional sciences minor enhances a student's major with a focus on nutrients and human nutrition issues. The study of nutrients includes knowledge about their sources, metabolism, and relationship to health. Nutritional status impacts medicine, health care policy and promotion, global relationships, issues in anthropology and sociology, exercise science, food systems, hospitality, and behavioral health.

Notes about this minor:

- This minor is closed to students majoring in dietetics and nutrition or nutritional sciences.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE
Required Courses RUTR-215 Foundations of Nutritional Sciences Choose one of the following course sequences MEDS-250, 251 Human Anatomy and Physiology I, II MEDG-101, 102, 103, 104 Human Biology I, II and Human Biology Laboratory I, II Electives Choose two of the following BIOL-111 Science in the Garden BIOL-218 Biology of Plants BIOL-305 Plants, Medicine and Technology BIOL-403 Fundamentals of Plant Biochemistry and Pathology BIOL-414 Animal Nutrition HSPT-215 Principles of Food Production and Service NUTR-205 Complementary and Integrative Approaches for Well-Being NUTR-300 Sports Nutrition NUTR-333 Techniques of Dietetics Education NUTR-510 Integrative Approaches to Health NUTR-525 Medical Nutrition Therapy I NUTR-526 Medical Nutrition Therapy II NUTR-554 Life Cycle Nutrition NUTT-555 Nutrition Throughout the Lifecycle NUTR-580 Global Food and Nutrition Perspectives

Optical Science

James Ferwerda, Associate Professor
 585-475-4923, james.ferwerda@rit.edu

Program overview

Optical science techniques are used in a variety of consumer products (digital cameras, CD players), communication technologies (optical fibers), medical imaging (infrared imaging), and the sciences (surveillance, remote sensing, astronomical systems). This minor can be an important complement to studies in electrical and microelectronic engineering, the biological sciences, physics, chemistry, mathematics, technical photography, and various majors in the field of applied science and technology.
Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- A grade of a C or better must be attained in all courses applied to the minor.
- All prerequisites must be met prior to taking courses that require them.
- Nine credits in the minor must be in courses not required by the student's home program and must be completed in residency at RIT..

Curriculum

COURSE	
Prerequisites	
MATH-181	Project-Based Calculus I (or equivalent)
MATH-182	Project-Based Calculus II (or equivalent)
PHYS-211	University Physics I (or equivalent)
PHYS-212	University Physics II (or equivalent)
Electives	
Students must complete one course from Group A, one course from Group B, one course from Group C and any two courses from Group D	
Group A	
IMGS-321	Geometric Optics
IMGS-322	Physical Optics
MCEE-515	Nanolithography Systems
PHPS-211	Photographic Optics
PHYS-365	Physical Optics
Group B	Radiometry
IMGS-251	Laser Physics
PHYS-408	Imaging Detectors
Group C	Design and Fabrication of Solid State Cameras
IMGS-451	Testing of Focal Plane Arrays
IMGS-528	
IMGS-542	Physical Chemistry II
Group D	EM Fields and Transmission Lines
CHMP-442	Vision \& Psychophysics
EEEE-374	Physical Optics
IMGS-221	Interaction Between Light and Matter
IMGS-322	Imaging Systems Analysis and Modeling
IMGS-341	Nanolithography Systems
IMGS-442	Scanning Electron Microscopy
MCEE-515	
PHYS-213	PHYS-412
PHPS-516	

Packaging Science

Stefanie Soroka, Minor Advisor

585-475-4974, swsmet@rit.edu

Program overview

The packaging science minor offers courses covering a broad range of packaging activities, including development/design, testing, marketing, and production. Related legal, economic, and environmental/sustainability concerns are also addressed. Students from majors such as engineering, engineering technology, multidisciplinary studies, management, marketing, international business, industrial design, and print media could all benefit from the packaging science minor.

Notes about this minor:

- This minor is closed to students majoring in packaging science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
PACK-301	Packaging Materials
PACK-302	Packaging Containers
Electives	
Choose three of the following:	
GRDE-431	Packaging Systems Collaborative
PACK-152	Packaging Design II
PACK-430	Packaging Regulations
PACK-530	Packaging Sustainability and the Environment
PACK-546	Pharmaceutical \& Medical Packaging
PACK-547	Pharmaceutical and Medical Packaging Lab
PACK-550	Packaging Machinery
PACK-555	Import/Export Packaging
PACK-560	Converting and Flexible Packaging

Philosophy

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The philosophy minor provides students with the critical skill of philosophical analysis while they take courses on a wide variety of issues central to everyone's existence. Students get a solid grasp of the major philosophers, movements, and topics of philosophical debate that continue to shape our lives and how we act.

Notes about this minor:

- This minor is closed to students majoring in philosophy.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	Ancient Philosophy
Choose five of the following:*	
PHIL-201	Foundations of Moral Philosophy
PHIL-202	Modern Philosophy
PHIL-203	Symbolic Logic
PHIL-205	Philosophy of Religion
PHIL-301	Philosophy of Art/Aesthetics
PHIL-303	Philosophy of Law
PHIL-304	Philosophy of Peace
PHIL-305	Professional Ethics
PHIL-306	Philosophy of Technology
PHIL-307	Environmental Philosophy
PHIL-308	Feminist Theory
PHIL-309	Theories of Knowledge
PHIL-310	East Asian Philosophy
PHIL-311	American Philosophy
PHIL-312	Philosophy of Film
PHIL-313	Philosophy of Vision and Imaging
PHIL-314	Responsible Knowing
PHIL-315	Bioethics and Society
PHIL-316	Renaissance Philosophy
PHIL-317	Philosophies of Love, Sex, and Gender
PHIL-318	Conics in Philosophy
PHIL-401	Henors Philosophy
PHIL-402	Ethical Theory
PHIL-403	Philosophy of Science
PHIL-404	Social and Political Philosophy
PHIL-405	Philosophy of Mind
PHIL-406	Philosophy of the Social Sciences
PHIL-407	Contemporary Philosophy
PHIL-408	Philosophy of Action
PHIL-409	Existentialism
PHIL-410	Medieval Philosophy
PHIL-411	Metaphysics
PHIL-412	Nineteenth Century Philosophy
PHIL-413	Philosophy of Literature
PHIL-414	PHIL-415
PH16	

[^28]
Photography

Stephanie Solt, Minor Advisor 585-475-5951, selbbu@rit.edu

Program overview

The photography minor explores the diverse subject of photography from either an art or science perspective. Students develop both technical and aesthetic skills needed for creative, communication, or scientific applications. Students choose one of the following areas of emphasis: general photography, fine art photography, photojournalism, or photo sciences. Course selections are based upon career goals and aspirations, personal interests, and the availability of photography courses. Courses are selected from the School of Photographic Arts and Sciences's comprehensive portfolio of offerings in photographic sciences, photojournalism, applied photography, and fine art photography.

Notes about this minor:

- This minor is closed to students majoring in photographic and imaging arts (all options) and photographic sciences.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Elective courses (Two courses must be 300-level or higher)	
PHPJ-302	Photojournalism I
PHPJ-306	Picture Editing I
PHPJ-307	Ethics and Law
PHPJ-315	Non-Fiction Multimedia
PHPJ-455	Advanced Non-Fiction Multimedia
Photo Sciences	
Required course-Choose one of the following:	
PHPS-201	Scientific Photography I
Elective courses (Two courses must be 300-level or higher)	
IMSM-301	Imaging Systems
IMSM-302	Color Management Technology
PHPS-106	Photographic Technology I
PHPS-202	Scientific Photography II
PHPS-107	Photographic Technology II
PHPS-261	Intro to Special Effects Photography
PHPS-529	High Speed Photography
PHPS-539	Photographic Instrumentation
PHPS-541	Photomacrography: The Magnified Image from 1x to 20x
PHPS-542	Photomacrography
PHPS-546	Ophthalmic Imaging I
PHPS-563	Forensic Photography

Physics

Dawn Hollenbeck, Minor Advisor

585-475-6652, dmhsps@rit.edu

Program overview

In a broad sense, the aim of physics as a discipline is to develop interconnected unifying threads bridging the vast number of seemingly diverse phenomena observed in the physical world around us. The minor provided students with the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest.

Notes about this minor:

- The minor is closed to students majoring in physics.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisites	Project-Based Calculus I
MATH-181	Project-Based Calculus II
MATH-182	University Physics I
PHYS-211	University Physics II
PHYS-212	Modern Physics I
Required Courses	Vibrations and Waves
PHYS-213	
PHYS-283	Experiments in Modern Physics
Group A Electives \dagger	Advanced Laboratory in Physics
PHYS-315	Physical Optics
PHYS-316	Mdvanced Computational Physics
PHYS-365	Modern Physics II
PHYS-377	Mathematical Methods in Physics
Group B Electives \dagger	Classical Mechanics
PHYS-214	Introduction to Biological Physics
PHYS-320	Introduction to Chaotic Dynamics
PHYS-330	Laser Physics
PHYS-352	Electricity and Magnetism
PHYS-360	Quantum Mechanics
PHYS-408	Thermal and Statistical Physics
PHYS-411	PHYS-414
PHYS-440	
* At least two courses must be taken at the 300-level or higher.	
Students must complete a minimum of nine semester credit hours of additional courses, where at least one course must be selected from Group A and one from Group B.	

Plastics Engineering and Technology

Mary Ann Donato, Minor Advisor 585-475-7603, madast@rit.edu

Program overview

The plastics engineering and technology minor provides students with a foundation in the professional study of plastic materials and their applications. This minor provides a broad perspective in plastics and polymer engineering/technology including the preparation of polymeric materials and polymer composites, their characterization, and the design and processing of these materials into useful products. The minor also includes a plastics characterization laboratory experience.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE

Required Courses

Required Courses	
CHMG-131	General Chemistry for Engineers*
MCET-210	Foundations of Non-Metallic Materials
MCET-211	Characterization of Non-Metallic Materials Lab
MCET-574	Plastics and Composites Materials
MCET-575	Plastics and Composites Materials Laboratory
MCET-580	Plastics Manufacturing Technology
MCET-583	Plastics Product Design

* General \& Analytical Chemistry I (CHMG-141) may be used as an equivalent course.

Political Science

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The political science minor emphasizes the interdependence of domestic politics and international relations in the age of globalization. The minor brings together components of American politics, international relations, and comparative politics to provide students with both national and global perspectives on politics. Perhaps most important, the political science minor seeks to help students make sense of the increasingly complicated political environment that confronts them in their role as citizens.

Notes about this minor:

- The minor is closed to students majoring in political science.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

cours

Required Course

Choose one of the following:	
POLS-110	American Politics
POLS-120	Introduction to International Relations

A

Electives*
 American Politics

Choose two of the following:	
POLS-115	Ethical Debates Amer Politics
POLS-200	Law \& Society
POLS-250	State \& Local Politics
POLS-280	Artificial Intelligence and the Political Good
POLS-290	Politics and the Life Sciences
POLS-295	Cyberpolitics
POLS-300	Rhetoric \& Political Deliberation
POLS-305	Political Parties and Voting
POLS-310	The Congress
POLS-315	The Presidency
POLS-320	American Foreign Policy
POLS-340	Medicine, Morality, and Law
POLS-345	Politics and Public Policy
POLS-355	Political Leadership
POLS-365	Anarchy, Technology \& Utopia
POLS-415	Evolution and the Law
POLS-420	Primate Politics
POLS-425	Constitutional Law
POLS-430	Constitutional Rights and Liberties
POLS-435	American Political Thought
POLS-460	Classical Constitutionalism, Virtue \& Law
POLS-465	Modern Constitutionalism, Liberty \& Equality
POLS-481	Women in Politics
POLS-485	Politics Through Fiction
POLS-490	Politics Through Film
POLS-525	Special Topics in Political Science
International Relations	
Choose two of the following:	
POLS-205	Ethics in International Politics
POLS-210	Comparative Politics
POLS-215	Tech, Ethics \& Global Politics
POLS-220	Global Political Economy
POLS-285	Environmental Ethics and Political Ecology
POLS-320	American Foreign Policy
POLS-325	International Law and Organizations
POLS-330	Human Rights in Global Perspective
POLS-335	Politics in Developing Countries
POLS-350	Politics of East Asia
POLS-351	Politics of China
POLS-360	International Political Thought
POLS-370	Cyberwar, Robots, \& the Future of Conflict
POLS-375	Grand Strategy
POLS-390H	Greece and the Political Imagination
POLS-410	Evolutionary International Relations
POLS-440	War and the State
POLS-445	Terrorism and Political Violence
POLS-455	Comparative Public Policy
POLS-525	Special Topics in Political Science
POLS-541	Peacekeeping and Conflict Transformation
POLS-542	War, Diplomacy, and State-Building

* At least two courses must be at the 300 level or higher.

Psychology

College of Liberal Arts, Office of Student Services
 585-475-2444, libarts@rit.edu

Program overview

The minor in psychology provides the opportunity for students to take courses comprising the study of behavior. Students may select from among a variety of courses, which enables students to customize their minor while getting wide exposure to important concepts, issues, methods, and theories in psychology.

Notes about this minor:

- The minor is closed to students majoring in psychology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Prerequisite	Introduction to Psychology
PSYC-101	
Electives	Abnormal Psychology
Choose five of the following:	Honors Abnormal Psychology
PSYC-221	Biopsychology
PSYC-221H	Cognitive Psychology
PSYC-222	Perception
PSYC-223	Honors Perception
PSYC-224	Social Psychology
PSYC-224H	Developmental Psychology
PSYC-225	Death and Dying
PSYC-226	History \& Systems in Psychology
PSYC-231	Industrial and Organizational Psychology
PSYC-233	Learning and Behavior
PSYC-234	Personality
PSYC-235	Psychology of Women
PSYC-236	Psychology of Religion
PSYC-237	Positive Psychology
PSYC-238	Human Sexuality
PSYC-239	Health Psychology
PSYC-240	Cultural Psychology
PSYC-241	Behavioral Science Research Methods
PSYC-242	Topics in Psychology
PSYC-255	Forensic Psychology
PSYC-300	PSYC-313

Public Policy

College of Liberal Arts, Office of Student Services

 585-475-2444, libarts@rit.edu
Program overview

The public policy minor provides students with a foundation in the field of public policy and allows them to make connections between public policy and other fields of study. The minor underscores the role of public policy on science and technology-based problems. Students obtain a deeper understanding of public policy and the policy making process, how policy analysis impacts policymaking, and how public policies operate within a number of specific science or technological domains.

Notes about this minor:

- The minor is closed to students majoring in public policy.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

course

Required Course	
Choose one of the following:	
PUBL-101	Foundations of Public Policy
PUBL-201	Ethics, Values \& Public Policy
PUBL-301	Public Policy Analysis
Electives	
Choose four of the following:*	
PUBL-101	Foundations of Public Policy
PUBL-201	Ethics, Values \& Public Policy
PUBL-210	Introduction to Qualitative Policy Analysis
PUBL-301	Public Policy Analysis
PUBL-302	Decision Analysis
PUBL-363	Cyber Security Policy and Law
PUBL-510	Technology Innovation and Public Policy
PUBL-520	Information \& Communications Policy
PUBL-530	Energy Policy
PUBL-531	Climate Change: Science, Technology and Policy
PUBL-589	Topics in Public Policy
STSO-201	Science and Technology Policy
STSO-421	Environmental Policy

[^29]
Quantum Information Science and Technology

Ben Zwickl, School of Physics and Astronomy
585-475-4512, ben.zwickl@rit.edu

Program overview

The minor in quantum information science and technology provides an introduction to the foundational concepts of quantum information science. Topics focus on how quantum devices are designed and operate and how they are being applied in emerging technologies, such as quantum computing, cryptography, and sensing.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	
Choose one of the following:	
MATH-172	Calculus B
MATH-182	Project-Based Calculus II
MATH-182A	Calculus II
Choose one of the following:	
PHYS-111	College Physics I
PHYS-211	University Physics I
PHYS-211A	University Physics IA
PHYS-216	University Physics I: Physics Majors
Required Courses*	
CMPE-257	Introduction to Quantum Computing and Information Science
PHYS-251	Principles and Applications of Quantum Technology
Quantum Foundations	
CHMP-442	Physical Chemistry II
PHYS-414	Quantum Mechanics
PHYS-415	Advanced Quantum Mechanics
PHYS-667	Quantum Optics
Mathematical Foundations	
MATH-190	Discrete Mathematics for Computing
MATH-200	Discrete Mathematics and Introduction to Proofs
MATH-241	Linear Algebra
MATH-241H	Honors Linear Algebra
Enabling Technologies	
CMPE-160	Digital System Design I
CMPE-260	Digital System Design II
CMPE-350	Computer Organization
CMPE-660	Reconfigurable Computing
CPET-561	Embedded Systems Design I
CPET-563	Embedded Systems Design II
EEEE-420	Embedded Systems Design
EEEE-505	Modern Optics for Engineers
EEET-331	Signals, Systems, and Transforms
EEET-332	Signals, Systems and Transforms Lab
EEET-531	Fiber Optics Technology
MCEE-201	IC Technology
MCEE-503	Thin Films
MCEE-505	Lithography Materials and Processes
MCEE-515	Nanolithography Systems
MFET-556	Advanced Concepts in Semiconductor Packaging
PHYS-365	Physical Optics
PHYS-408	Laser Physics
PHYS-532	Solid State Physics
Quantum Applications	
CMPE-661	Hardware and Software Design for Cryptographic Applications
CSCI-331	Introduction to Artificial Intelligence
CSCI-455	Principles of Cybersecurity
CSCI-462	Introduction to Cryptography
CSCI-635	Introduction to Machine Learning
MATH-367	Codes and Ciphers
MCSE-715	Photonic Integrated Circuits
MCSE-731	Integrated Optical Devices and Systems

[^30]Robotics and Automation
Mary Ann Donato, Minor Advisor
585-475-7603, madast@rit.edu

Program overview

The robotics and automation minor provides students with a foundation in the professional study and practice of programming, using, and working with industrial robots and the industrial automation systems used in the manufacturing environment. It provides a broad perspective that includes automation components, automation systems (hardware and software), industrial robots (hardware and software), and specific issues to implementing industrial robotic systems in the electronics manufacturing environment. It also includes learning and practice in developing automation/robotic code to accomplish specific functions across the major industrial automation software tools.

Notes about this minor:

- This minor is closed to students majoring in robotics and manufacturing engineering technology or mechatronics engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Automation Control Systems
RMET-340	Automation Control Systems Lab
RMET-341	
Choose one of the following	Statics
CVET-210	Principles of Statics
MCET-220	Statics
MECE-103	
Electives	
Choose nine credits:	Introduction to Digital and Microcontroller Systems
CPET-133	Integrated Design for Manufacture \& Assembly
MFET-460	Electronics Manufacturing
MFET-545	Robots \& Automation
RMET-585	Advanced Automation Systems and Control
RMET-571	Robotics: Sensors \&Vision
RMET-587	

Science, Technology, and Society

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

This minor integrates the studies of human society, science, and technology in their social content and context. The minor bridges the humanities and social sciences to provide better understanding of the ways in which science, technology, and society are mutually interacting forces in our world. Students learn how to analyze the social institutions, the built environment, and their role in creating them. This minor enhances a student's ability to contribute to the development of science and technology in ways that are historically, culturally, and ethically informed.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
STSO-510	Interdisciplinary Capstone Seminar*
Electives	Literature and Technology
Choose four of the following:t	
ENGL-419	Philosophy of Science
PHIL-402	Energy Policy
PUBL-530	Science, Technology, and Values
STSO-140	Science and Technology Policy
STSO-201	Foundations of Engagement and Community Transformation
STSO-230	Social Consequences of Technology
STSO-240	History of Women in Science and Engineering
STSO-246	Face of the Land
STSO-321	Industry, Environment, and Community in Rochester
STSO-335	Technological Disasters
STSO-340	Biomedical Issues: Science and Technology
STSO-341	Gender, Science, and Technology
STSO-342	Makers of Modern Science
STSO-345	Technology in American History
STSO-346	Nature and Quantification
STSO-425	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century
STSO-441	Science, Technology, and Society Classics
STSO-442	The Natural Sciences in Western History
STSO-445	Topics in Science, Technology, \& Society
STSO-489	Science, Technology, Society Independent Study
STSO-599	

[^31]† At least one course must be at the 300 level or higher.

Software Engineering

Megan Lehman, Minor Advisor

585-475-5179, melics@rit.edu

Program overview

Students in disciplines with a heavy reliance on software applications may be interested in pursuing a minor in software engineering. The minor provides a broad view of the software engineering landscape including introductory material and fundamentals in design and process. Students deepen their software design skills and learn techniques for working on a productive software engineering team by choosing electives in design or process to gain a deeper understanding of one of these areas, or they may choose to balance their courses for a broad view of both topics.
Notes about this minor:

- The minor is closed to students majoring in software engineering.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Introduction to Software Engineering
SWEN-261	Engineering of Software Subsystems
SWEN-262	Software Process and Project Management
SWEN-256	
Electives	Engineering Secure Software
Choose two courses from the following groups:	
Design	Engineering of Concurrent and Distributed Software Systems
SWEN-331	Engineering of Enterprise Software Systems
SWEN-342	Software System Requirements and Architecture
SWEN-343	Human-Centered Requirements and Design
SWEN-440	Honors Human-Centered Requirements and Design
SWEN-444	Software Engineering Design Seminar
SWEN-445	Real-Time and Embedded Systems
SWEN-549	Modeling of Real-Time Systems
SWEN-563	Performance Engineering of Real-Time and Embedded Systems
SWEN-564	Hardware/Software Co-Design for Cryptographic Applications
SWEN-565	
SWEN-567	Software Process and Product Quality
Process	Trends in Software Development Processes
SWEN-350	Software Engineering Process Seminar
SWEN-356	
SWEN-559	Mathematical Models of Software
Other	Software Design for Computing Systems
SWEN-220	Engineering of Web Based Software Systems
SWEN-340	Software Testing
SWEN-344	Engineering Cloud Software Systems
SWEN-352	Software Engineering Seminar
SWEN-514	SWEN-590

Sports and Entertainment Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The sports and entertainment management minor focuses on providing you with the knowledge and skills needed to optimize the experiences of consumers and employees in sports and entertainment. You will learn to develop, implement, and manage sports and entertainment events, as well as the operations of sports and entertainment organizations. Your course work will focus on business strategy, analytics, customer service, purchasing, negotiations, contracts, and event/venue management-all as you work to manage and deliver highly-effective experiences.

Notes about this minor:

- Students ineligible to take this minor: This minor is open to students in all majors. However, because of the business courses required prior to a student beginning this minor, the minor is primarily intended for students matriculating in majors in Saunders College of Business. Students from other majors are welcome to complete this minor after also completing at least four additional pre-requisite courses in addition to the minor's core courses.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Prerequisites	Financial Accounting
Students are required to take the following four courses:	
ACCT-110	Management Accounting
ACCT-210	Principles of Marketing
MKTG-230	Organizational Behavior
MGMT-215	
Required Courses	Customer Experience Management
HSPT-375	Contemporary Issues in Sports and Entertainment Management
HSPT-420	Professional Selling
Choose one of the following:	Marketing Analytics
MKTG-360	
MKTG-365	Law, Business, and Society
Electives	Human Resource Management
Choose two of the following:	Employee Benefits \& Compensation
BLEG-250	Human Resource Development
HRDE-380	Human Resource Employment Law and Regulations
HRDE-383	Event \& Project Management
HRDE-386	Database Management Systems
HSPT-350	Business Intelligence
MGIS-320	Digital Marketing
MGIS-355	Consumer Behavior
MKTG-320	Professional Selling
MKTG-350	Marketing Analytics
MKTG-360	Advertising and Promotion Management
MKTG-365	Leading High-Performance Teams
MKTG-370	Negotiations and Decision-Making
MGMT-310	
MGMT-320	

Structural Design

Amanda Bao, Minor Advisor
 585-475-4956, axbite@rit.edu

Program overview

The structural design minor creates a focus on the different types of structures and materials used in design. It also introduces related design codes. The minor is designed to accommodate students majoring in mechanical engineering technology or mechanical engineering. Notes about this minor:

- The minor is closed to students majoring in civil engineering technology
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
CVET-332	Structural Analysis and Modeling
CVET-431	Structural Steel Design
CVET-432	Reinforced Concrete Design
Elective	
Choose two of the following:	
CVET-424	Building Information Modeling with Revit
CVET-433	Structural Timber Design
CVET-434	Design of Highway Bridges
CVET-435	Prestressed Concrete
CVET-436	Masonry Structures

Supply Chain Management

Matthew Cornwell, Assist. Director of Student Services and Outreach 585-475-6916, mcornwell@saunders.rit.edu

Program overview

The supply chain management minor provides students with the knowledge to assist in developing and implementing efficient supplier systems in order to maximize customer value. Supply chain management is the coordination of the associated processes required both within a business, as well as across businesses and suppliers, to deliver products and services-from raw materials to customer delivery. The minor provides a background in areas commonly needed to support supply chain management, including business strategy, information systems, lean/quality management, customer service, purchasing, negotiations, contracts, forecasting, inventory management, logistics, and project management. Completion of this minor provides students with Lean Six-Sigma Yellow Belt body of knowledge.
Notes about this minor:

- The minor is closed to students majoring in supply chain management.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
DECS-435	Supply Chain Management Fundamentals
ISEE-582	Lean Six Sigma Fundamentals
Electives	
Choose three of the following:	
BLEG-300	Business Law II
DECS-350	Project Management
DECS-445	Managing Supplier Relations
INTB-315	Exporting and Global Sourcing
INTB-550	Competing Globally
ISEE-350	Engineering Management
ISEE-626	Contemporary Production Systems
ISEE-703	Supply Chain Management
ISEE-704	Logistics Management
ISEE-728	Production Systems Management
MGIS-320	Database Management Systems
MGIS-330	Systems Analysis and Design
MGIS-355	Business Intelligence
MGIS-450	Enterprise Systems
MGMT-310	Cross-Cultural \& Virtual Teams
MGMT-450	Negotiations and Decision-Making

Surface Mount Electronics Manufacturing

Mary Ann Donato, Minor Advisor

585-475-7603, madast@rit.edu

Program overview

The surface mount electronics manufacturing minor provides students with a foundation in the professional study and practice of the manufacturing of electronic circuits with components placed directly on printed circuit boards (surface mount technology). This minor provides a broad perspective that includes surface mount devices, assembly, lean production, and quality topics. It also includes learning and practice in electronic component layout, placement, high volume production, materials, circuit board design for manufacturability (design for manufacturability - DFM) and process controls.

Notes about this minor:

- This minor is closed to students majoring in robotics and manufacturing engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
Choose one of the following:	
MATH-251	Probability and Statistics I
STAT-145	Introduction to Statistics I
STAT-205	Applied Statistics
STAT-251	Probability and Statistics for Engineers I
MFET-420	Quality Engineering Principles
MFET-450	Lean Production \& Supply Chain Operations
MFET-545	Electronics Manufacturing
MFET-556	Advanced Concepts in Semiconductor Packaging

Sustainable Product Development

Brian Thorn, Minor Advisor
 585-475-6166, bkteie@rit.edu

Program overview

This multidisciplinary minor is for students interested in exploring issues associated with developing and delivering sustainable product systems. Courses enhance the understanding of the three dimensions of sustainability (economic, ethical, and environmental), develop awareness of the need for more sustainable approaches to product development, and explore strategies for developing and delivering sustainable product systems.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
ISEE-345	Engineering Economy*
ISEE-785	Fundamentals of Sustainable Engineering
ISEE-786	Lifecycle Assessment
Electives	
Choose two courses from the following groups (at least one course must come from the social context group):	
Social Context	
CHEM-531	Climate Change: Science, Technology \& Policy
ECON-520	Environmental Economics
ENVS-531	Climate Change: Science, Technology \& Policy
ITDL-205	Grand Challenges: Clean Water
POLS-285	Environmental Ethics \& Political Ecology
PUBL-510	Technological Innovation and Public Policy
PUBL-530	Energy Policy
PUBL-531	Climate Change: Science, Technology and Policy
SOIS-333	Wicked Problems
STSO-120	Introduction to Environmental Studies
STSO-140	Science, Technology, and Values
STSO-201	Science and Technology Policy
STSO-220	Environment and Society
STSO-240	Social Consequences of Technology
STSO-321	Face of the Land
STSO-326	History of Ecology and Environmentalism
STSO-330	Energy and the Environment
STSO-421	Environmental Policy
STSO-422	Great Lakes
STSO-521	Biodiversity and Society
STSO-550	Sustainable Communities
Technical	
CVET-505	Sustainable Building Design \& Construction
EEEE-221	Clean \& Renewable Energy Systems \& Sources
EEET-251	Green Energy Systems
EEET-252	Green Energy Systems Laboratory
ESHS-210	Sustainable Earth Resources
ESHS-290	Social Responsibility and Environmental Sustainability
ESHS-310	Solid and Hazardous Waste Management
ESHS-330	Industrial Wastewater Management
ESHS-350	Greenhouse Gas Management
ESHS-360	Sustainable World Water Supply
ESHS-370	Sustainable Food Systems
ESHS-525	Air Emissions Management
ESHS-565	Sustainable Product Stewardship
ISEE-684	Engineering and the Developing World
ISEE-787	Design for the Environment
MCEE-520	Photovoltaic Science and Engineering
MCET-560	Alternative Energy
MCET-580	Plastics Manufacturing Technology
MCET-583	Plastics Product Design
MECE-348	Contemporary Issues: Energy and the Environment
MECE-405	Wind Turbine Engineering
MECE-550/650	Sustainable Energy Use in Transportation
MECE-529/629	Renewable Energy Systems
PACK-530	Packaging Sustainability and the Environment

[^32]
Theatre Arts

College of Liberal Arts, Office of Student Services 585-475-2444, libarts@rit.edu

Program overview

The theatre arts minor provides an iterative balance of theory and practice that engages students intellectually and creatively. This combination of critical thinking and experiential learning offers students an in-depth understanding of the art of theater, as well as an introduction to the role of theater as both a form of commentary on, and as a reflection of, society and culture. The minor includes student participation in a minimum of three department sponsored theater productions via Theater Ensemble (FNRT-230) and Dramatic Theory and Text Analysis (FNRT-207).

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Required Courses	
PRFL-220	Theatre Ensemble*
PRFL-227	Dramatic Theory and Text Analysis
Electives \ddagger	
Choose three of the following	
FNRT-204	Music \& the Stage
PRFL-221	Fundamentals of Acting
PRFL-230	Devising Theatre: Creating Ensemble Based Performance
PRFL-239	Design/Stagecraft Apprenticeshipt
PRFL-321	Traditions of Theatre in Europe
PRFL-322	Traditions of Theatre in the U.S.
PRFL-323	Traditions of Shakespearean Theatre
PRFL-324	African American Playwrights
PRFL-327	American Musical Theatre
PRFL-330	Performing Identity in Popular Media
PRFL-331	Fundamentals of Directing
PRFL-332	Fundamentals of Stage Management
PRFL-333	Auditioning Techniques
PRFL-334	Scene Study
PRFL-489	Special Topics
PRFL-490	Special Topics in Performing Arts
PRFN-200	Appreciation of Theatrical Design
PRFN-204	Scenic Painting and Props
PRFN-240	Dance History §
PRFN-243	Dance: Jazz §
PRFN-244	Dance: Hip Hop §
PRFN-246	Dance: Modern §
PRFN-247	Dance: Ballet §

* Students must take Theatre Ensemble (PRFL-220) three times.
+ Students may substitute one credit of Design/Stagecraft Apprenticeship (PRFL-239) for one credit of Theatre Ensemble (PRFL-220).
\ddagger At least two courses must be taken at the 300-level or higher.
§ Only one dance class may be counted toward the completion of the Theatre Arts Minor.

Theatre Design and Stagecraft

Program overview

The theatre design and stagecraft minor develops your understanding of the craft, theory, and art of design for theatre and dance. Courses explore the artistic, historical, and cultural elements of theatre design. Theoretical knowledge is balanced with experiential learning, obtained through the completion of required practicum experiences that involve participation in department productions. The minor is open to all hearing and deaf/hard of hearing students.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Courses	Appreciation of Theatrical Design
PRFN-200	Theatre Practicum*
PRFN-218	
Electives	Introduction to Performing Arts
Choose three of the following:	
PRFN-100	Introduction to Stagecraft
PRFN-102	Independent Study: Performing Arts \ddagger
PRFN-199	Appreciation of Media in Performance
PRFN-201	Scenic Painting and Props
PRFN-204	Stage Makeup
PRFL-206	Appreciation of Theatrical Costumes
PRFN-207	Appreciation of Theatrical Scenery
PRFN-208	Appreciation of Theatrical Lighting
PRFN-209	Special Topics: Performing Arts \ddagger
PRFN-289	Traditions of Theatre in Europe
PRFL-321	Traditions of Theatre in the U.S
PRFL-322	Traditions of Shakespearean Theatre
PRFL-323	African American Playwrights
PRFL-324	American Musical Theater
PRFL-327	Fundamentals of Stage Management
PRFL-332	Special Topics \ddagger
PRFL-489	

* Students must take a total of three (3) credits of PRFN-218.

Two of the electives must be 300-level PRFL courses.
\ddagger This course may be used when the course topic or experience has a technical theatre or design focus.

Visual Culture

Rebecca DeRoo, Minor Advisor 585-475-4181, rjdgsh@rit.edu

Program overview

Visual culture explores the role of visual media in everyday life and its critical function in the dissemination of ideas in the public sphere. Emphasizing comparative critical approaches to the convergence of art, popular media, science, and technology, the minor engages globalized visual media ranging from photography, television and film, to new media (the web, digital imaging, and social networks), architecture, design, and art (painting, sculpture, and multimedia forms) in the context of such social arenas, as art, news, science, advertising, and popular culture.
Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Electives	
Group A	
Choose three of the following:	
FNRT-370	American Painting*
FNRT-372	American Film of the Studio Era
FNRT-375/WGST-375	Women/Gender/Art
MUSE-220	Introduction to Museums \& Collecting
MUSE-354	Exhibition Design
VISL-100	Introduction to Visual Art \dagger
VISL-120	Introduction to Film \dagger
VISL-140	Introduction to Visual Culture \dagger
VISL-206/WGST-206	Queer Looks
VISL-224	History \& Theory of Exhibitions
VISL-320	Contemporary Cinema: Fact and Fiction
VISL-373	American Film Since the Sixties
VISL-374	Art in the Age of the New Deal
VISL-376	Visual Culture Theory
VISL-377	Imag(in)ing Rochester
VISL-383/WGST-383	Traumatic Images
VISL-384/WGST-384	Art of Dying
VISL-388	Gender and Contemporary Art
VISL-440	Deaf Art \& Cinema
Group B	
Choose two of the following:	
ANTH-210	Culture and Globalization
ANTH-265	Native Americans in Film
ANTH-310	African Film
ANTH-325	Bodies and Culture
ANTH-330	Cultural Images of War and Terror
ANTH-375	Native American Cultural Resources and Rights
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-435	The Archaeology of Death
COMM-341	Visual Communication
ENGL-410	Film Studies
ENGL-421	The Graphic Novel
ENGL-422	Maps, Spaces and Places
HIST-421	Hands-on History
MLFR-351	French Films and Hollywood
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
PHIL-303	Philosophy of Art/Aesthetics
PHIL-309	Feminist Theory
PHIL-313	Philosophy of Film
PHIL-314	Philosophy of Vision and Imaging
POLS-490	Politics Through Film
STSO-321	Face of the Land

* This course is offered on RIT's international campuses.
+ Students may use credit for either VISL-100, or VISL-120, or VISL-140 towards the minor.

Minors

Water Resources

Scott Wolcott, Minor Advisor
 585-475-6647, Scott.Wolcott@rit.edu

Program overview

The water resources minor broadens the learning experiences and professional opportunities of students in technical disciplines who have an interest in courses related to water treatment, wastewater treatment, hydrology, the environment and society.

Notes about this minor:

- The minor is closed to students majoring in civil engineering technology.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Courses	
CVET-250	Hydraulics
CVET-251	Principles of Water and Wastewater Treatment
CVET-450	
Electives	
Choose one course from group A and one from Group B. The third course may be chosen from either group.	
Group A	Design of Water \& Wastewater Treatment Facilities
CVET-451	Groundwater Hydraulics
CVET-452	Stormwater Management
CVET-453	
Group B	GIS for CETEMS
CVET-423	Sustainable World Water Supply
ESHS-360	Environmental Policy
STSO-421	

Web Development

Dan Bogaard, Minor Advisor

585-475-5231, Dan.Bogaard@rit.edu

Program overview

This minor provides students with a firm foundation in web development. The web has become a global, essential, and ubiquitous information delivery medium. Hence, knowledge of how the web works and how to effectively develop dynamic websites adds considerable value to computing majors. This minor provides foundational skills in web development, starting with simple sites, moving through dynamic client-side and server-side functionality, and culminating in web-based systems that create and access various information services.

Notes about this minor:

- This minor is closed to students majoring in web and mobile computing.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE

Prerequisites

Students should complete course work in discrete mathematics and a two-course programming sequence prior to beginning course work for this minor.

Required Courses	
ISTE-140	Web \& Mobile I*
ISTE-230	Introduction to Database and Data Modeling \dagger
ISTE-240	Web \& Mobile II \ddagger
ISTE-340	Client Programming
ISTE-341	Server Programming
SWEN-383	Software Design Principles and Patterns §

* ISTE-140 can be replaced with IGME-230 or IGME-235.
+ ISTE-230 can be replaced with CSCI-320.
\ddagger ISTE-240 can be replaced with IGME-330.
§ SWEN-383 can be replaced with SWEN-262.

Women's and Gender Studies

College of Liberal Arts, Office of Student Services

585-475-2444, libarts@rit.edu

Program overview

The women's and gender studies minor provides a critical framework to explore the significance of gender-as it intersects with racial, ethnic, religious, national, class, sexuality, and disability-based identities, past and present. Course builds knowledge about the personal, social, cultural, economic, and historical dynamics that inform gender and intersecting social categories. The minor builds fluency with critical analysis and knowledge-building methods drawn from women's and gender studies, feminist theories, critical race studies, queer studies, social justice work, and activism. The minor also provides valuable skills and experience applying these different lenses to real-world interactions with diverse individuals and communities to current social challenges that impact multiple parties, and with an eye to improving equity and fair outcomes for everyone concerned. Students will learn how to analyze and question power relations in all their rich complexities, locally, and globally.

Notes about this minor:

- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

COURSE	
Required Course	
WGST-200	Foundations of Women and Gender Studies
Electives*	
Choose four of the following:	
ANTH-246/SOCI-246	Gender and Health
ANTH-290	Language and Sexuality
ANTH-325	Bodies and Culture
ANTH-425	Global Sexualities
ARTH-577	Displaying Gender
GRDE-322	Women Pioneers in Design
MEDS-355	Introduction to Global Health
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
WGST-205	Feminist Practices of Inquiry
WGST-206/VISL-206	Queer Looks
WGST-210	Introduction to LGBTQ+ Studies
WGST-230	Men, Males, and Masculinities
WGST-235/SOCI-235	Women, Work, and Culture
WGST-237/PSYC-237	Psychology of Women
WGST-240/PSYC-240	Human Sexuality
WGST-245/CRIM-245	Prostitution and Vice
WGST-246/STSO-246	History of Women in Science and Engineering
WGST-250/CRIM-250	Domestic Violence
WGST-255/CRIM-255	Seminar on Sexual Violence
WGST-265/CRIM-265	Women and Crime
WGST-282/HIST-282	Women, Gender, and Computing
WGST-290/HIST-190	American Women's and Gender History
WGST-291/HIST-191	The History of Families and Children in the U.S.
WGST-309/PHIL-309	Feminist Theory
WGST-318/PHIL-318	Philosophies of Love, Sex, and Gender
WGST-330/PRFL-330	Performing Identity in Popular Media
WGST-335/HIST-335	Women and the Deaf Community
WGST-342/STSO-342	Gender, Science, and Technology
WGST-351/MLSP-351	Gender and Sexuality in Hispanic Studies
WGST-352/MLCH-352	Globalization and Gender through Chinese Cinema: From Kungfu to World Factory
WGST-357/COMM-357	Communication, Gender, and Media
WGST-361	Queering Gender
WGST-383/VISL-383	Traumatic Images
WGST-384/VISL-384	Art of Dying
WGST-388/VISL-388	Gender and Contemporary Art
WGST-414/ENGL-414	Women and Gender in Literature and Media
WGST-449	Topics in WGST
$\begin{aligned} & \text { WGST-451/ECON-451/ } \\ & \text { SOCI-451 } \end{aligned}$	Economics of Women and the Family
WGST-459	Topics in LGBTQ+ Studies
WGST-481/POLS-481	Women in Politics
WGST-598	Advanced Project in WGSS
WGST-599	Independent Study

* Only one non-WGST-coded course may be counted toward the mino

Immersions

As a part of their bachelor's degree requirements, students must complete an immersion - a concentration of three courses in a particular area. These upper-level courses are used to meet RIT's general education requirements and provide you with course work in a specialized area that can enhance and complement your major or allow you to explore a personal interest.

Advertising and Public Relations

Program overview

The advertising and public relations immersion provides opportunities for the advanced study of selected areas central to the persuasive arts as they apply to advertising and public relations, as well as education and practice in the writing, speaking, and design skills required of these professions.

Notes about this immersion:

- This immersion is closed to students majoring in advertising and public relations or communication.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Course	
Choose one of the following:	
COMM-211	Principles of Advertising
COMM-212	Public Relations
Electives	
Choose two of the following:	
COMM-202	Mass Communications
COMM-211	Principles of Advertising
COMM-212	Public Relations
COMM-221	Public Relations Writing
COMM-303	Small Group Communication
COMM-305	Persuasion
COMM-321	Copywriting and Visualization
COMM-322	Campaign Management and Planning
COMM-341	Visual Communication
COMM-346	Global Media
COMM-356	Critical Practice in Social Media

* At least one course must be taken at the 300-level or above

African Studies

Program overview

The immersion in African studies enables students to gain knowledge about African societies, cultures, histories, and modern political realities, and diasporic communities in different parts of the world.

Notes about this immersion:

- This immersion is closed to students who are majoring in international and global studies who have chosen a specialization in African studies.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Electives
Choose three of the following

Choose three of the following:	
ANTH-225	Globalizing Africa
ANTH-255	Regional Archaeologyt
ANTH-310	African Film
ANTH-345	Genocide and Transitional Justice
ANTH-365	Culture and Politics in the Middle East
ANTH-430	Visual Anthropology
ANTH-489	Topics in Anthropology §
ENGL-316	Global Literature
ENGL-413	African-American Literature
HIST-245	American Slavery and Freedom
INGS-210	Culture and Politics in Urban Africa
INGS-310	Global Slavery and Human Trafficking
SOCI-210	Black America-Culture \& HipHop
SOCI-220	Minority Group Relations
SOCI-330	Urban (In)Justice
SOCI-489	Topics in Sociology §

\dagger Course may be used when the topic focuses on the Middle East.
\neq Course may be used when the topic focuses on Caribbean Literature
§ Course may be used when topic is relevant to African Studies.

American Arts

Program overview

This immersion provides students with the opportunity to study the American arts through a variety of disciplines, including painting, architecture, film, photography, music, theatre, and mass media. Each course presents American art within the context of the broader current of American life, including its history, philosophy, social, and cultural traditions.

Notes about this immersion:

- Students must take at least one course from each group.

Curriculum

COURSE
Electives Choose three courses from the following:* Visual culture
FNRT-370
:---
VISL-373
VISL-377
VISL-383/WGST-383
VISL-384/WGST-384
Performing arts
FNRT-203
FNRT-322
PRFL-327

[^33]
American Indian and Indigenous Studies

Program overview

The immersion in American Indian and indigenous studies enhances students' knowledge of the unique heritage of American Indian and indigenous peoples and their relationships with people from other communities and nations. This enhanced understanding is grounded in the study of the histories, collective memories, cultures, and languages of American Indian and indigenous peoples, and the representations, stereotypes, and pertinent laws and policies governing their lives. Immersion courses emphasize indigenous ways of knowing and learning in the past and present in the Americas and across the globe.
Notes about this immersion:

- This immersion is closed to students majoring in sociology and anthropology who have chosen the cultural anthropology track and to students majoring in international and global studies who have chosen the indigenous studies track.

Curriculum

COURSE	
Required Course	Native North Americans
ANTH-260	
Electives	Culture and Globalization
Choose two of the following:*	
ANTH-210	Regional Archaeologyt
ANTH-255	Native Americans in Film
ANTH-265	American Indian Languages
ANTH-285	People Before Cities
ANTH-312	Culture and Politics in Latin America
ANTH-335	Genocide and Transitional Justice
ANTH-345	Sociology of Numbers
ANTH-361	Native American Cultural Resources and Rights
ANTH-375	Visual Anthropology
ANTH-430	Economics of Native America
ANTH-455	Topics in Anthropology \ddagger
ANTH-489	Economics of Native America
INGS-455	Sociology of Numbers
SOCI-361	Borders:Humans, Boundaries, and Empires
SOCI-395	Topics in Sociology \ddagger
SOCI-489	

[^34]\dagger Course may be used when topic focuses on Mesoamerica or North America
\neq Course may be used when topic is relevant to American Indian/Indigenous Studies

American Politics

Program overview

Students are introduced to the fundamental principles, institutions, and issues of American government. In addition, the strengths and limitations of American constitutionalism are emphasized throughout and current political and policy questions facing the country are examined. The overarching intention of the immersion is to give students the necessary tools to deliberate upon the political questions of the day and to actively participate in the political process.

Notes about this immersion:

- This immersion is closed to students majoring in political science.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Electives

Choose three of the following

CoLS-200	
POLS-250	Law \& Society
POLS-280	State \& Local Politics
POLS-290	Artificial Intelligence and the Political Good
POLS-295	Politics and the Life Sciences
POLS-300	Cyberpolitics
POLS-305	Rhetoric \& Political Deliberation
POLS-310	Political Parties and Voting
POLS-315	The Congress
POLS-320	The Presidency
POLS-340	American Foreign Policy
POLS-345	Medicine, Morality, and Law
POLS-355	Polititcs and Public Policy
POLS-365	Politital Leadership
POLS-415	Anarchy, Technology \& Utopia
POLS-420	Evolution and the Law
POLS-425	Primate Politics
POLS-430	Constitutional Law
POLS-435	Constitutional Rights and Liberties
POLS-460	American Political Thought
POLS-465	Classical Constitutionalism, Virtue \& Law
POLS-481	Modern Constitutionalism, Liberty \& Equality
POLS-485	Women in Politics
POLS-490	Politics Through Fiction

[^35]
American Sign Language and Deaf Cultural Studies

Jillian Sinclair, Immersion Advisor
jlsnts@rit.edu

Program overview

The ASL and Deaf Cultural Studies immersion prepares students in the multi-disciplinary study of American Sign Language and Deaf Culture. Open to hearing and deaf students, courses address topics in the field of ASL and Deaf Cultural Studies, including the study of ASL and its structure, ASL literature, literature in English pertaining to the Deaf experience, the history of Deaf people in the U.S. and around the world, Deaf art and cinema, the experience of Deaf people from racial, ethnic, and other underrepresented groups, intersectionality, oppression in the lives of Deaf people, and various political, legal, and educational issues affecting members of Deaf communities.

Students enrolled in the ASL-English Interpretation major can pursue the immersion if they choose an emphasis on Deaf Cultural Studies. They cannot apply ASL courses towards the immersion. For ASL-English Interpretation majors, the immersion courses must also be different from the two Deaf Cultural studies courses they elect to fulfill the Deaf cultural studies requirements for their major.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ENGL-417	Deaf Literature
FNRT-440	Deaf Art \& Cinema
HIST-230	American Deaf History
HIST-231	Deaf People in Global Perspective
HIST-330	Deafness and Technology
HIST-333	Diversity in the Deaf Community
HIST-334	Oppression in the Lives of Deaf People
HIST-335	Women and the Deaf Community
HIST-430	Deaf Spaces
MLAS-201	Beginning American Sign Language I
MLAS-202	Beginning American Sign Language II
MLAS-301	Intermediate American Sign Language I
MLAS-302	Intermediate American Sign Language II
MLAS-351	Linguistics Of American Sign Language
MLAS-352	American Sign Language Literature
MLAS-401	Advanced American Sign Language I
MLAS-402	Advanced American Sign Language II
NHSS-251	Deaf Culture and Contemporary Civilization
NHSS-275	Visual Expressions of Deaf Culture
SOCI-240	Deaf Culture in America

Applied Statistics

Program overview

Deepen your technical background and gain further appreciation for modern mathematical sciences and the use of statistics as an analytical tool.

Notes about this immersion:

- This immersion is closed to students majoring in applied statistics and data analytics.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Prerequisites	
MATH-181	Project-Based Calculus I (or equivalent)
MATH-182	Project-Based Calculus II (or equivalent)
Electives	
Choose three of the following:*	
MATH-251	Probability and Statistics
MATH-505	Stochastic Processes
STAT-205 \dagger	Applied Statistics
STAT-257	Statistical Inference
STAT-305	Regression Analysis
STAT-325	Design of Experiments
STAT-335	Introduction to Time Series
STAT-345	Nonparametric Statistics
STAT-405	Mathematical Statistics I
STAT-406	Mathematical Statistics II
STAT-521	Statistical Quality Control

[^36]
Archaeology

Program overview

Archaeology is the study of the human past by means of the physical residues of past human behavior: for example, pottery, stone, and metal tools, and the remains of ancient dwelling sites. An archaeologist explains how human society has changed and developed over time using such physical evidence. Archaeology employs techniques from the physical sciences to build a more detailed picture of the human past. Students explore the worlds of the past through hands-on applications of physical science techniques in a diverse range of fields, including chemistry, metallurgy, biology, and material science, applying these disciplines in a novel and challenging context.

Notes about this immersion:

- This immersion is closed to students majoring in sociology and anthropology who have chosen the archaeology track.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-103	Archaeology and the Human Past
ANTH-215	Field Methods in Archaeology
ANTH-230	Buried Treasure: Archaeology in Popular Culture
ANTH-250	Themes in Archaeological Research
ANTH-255	Regional Archaeology
ANTH-312	People Before Cities
ANTH-315	The Archaeology of Cities
ANTH-360	Humans and Their Environment
ANTH-375	Native American Cultural Resources and Rights
ANTH-415	Archaeological Science
ANTH-420	Exploring Ancient Technology
ANTH-435	The Archaeology of Death
ANTH-489	Topics in Anthropology*

* This course may be used towards the immersion when the topic is pertinent to archaeology.

Art History

Program overview

Explore the history of art and architecture across multiple cultures and eras. Art historians examine a culture's artistic production, analyzing form, content, and creative context to better understand how art expresses the intent of the artist, the interpretation of the viewer, or particular cultural values and ideals. Students will use art historical methodologies to evaluate works of art, formulate a history of artistic style, analyze art in relation to its historical context, and engage with the world of contemporary art.

Notes about this immersion:

- This immersion is closed to students majoring in 3D digital design, film and animation, graphic design, illustration, industrial design, interior design, medical illustration, museum studies, new media design, photographic and imaging arts (all options), and studio arts (all options).

Curriculum

COURSE

Electives

Electives	
Choose three of the following:*	
ARTH-311	Art and Architecture of Italy: 1250-1400
ARTH-312	Art and Architecture of Italy: 1600-1750
ARTH-317	Art and Architecture in Florence and Rome: 15th Century
ARTH-318	Art and Architecture in Florence and Rome: 16th Century
ARTH-364	Art in Paris
ARTH-366	18th, 19th Century Art
ARTH-368	20th Century Art: 1900-1950
ARTH-369	20th Century Art: Since 1950
ARTH-373	Art of the Last Decade
ARTH-378	Baroque Painting in Flanders
ARTH-379	Renaissance Painting in Flanders
ARTH-392	Theory And Criticism of 20th Century Art
ARTH-457	Art and Activism
ARTH-500	Postmodernism and After: Contemporary Aesthetics
ARTH-521	The Image
ARTH-541	Art and Architecture of Ancient Rome
ARTH-544	Illuminated Manuscripts
ARTH-549	Topics in Global Art and Architecture:
ARTH-550	Topics in Art History
ARTH-551	Topics in Art History, Writing Intensive
ARTH-555	Topics in Medieval Art and Architecture
ARTH-556	Art Comics
ARTH-558	The Gothic Revival
ARTH-561	Latin American Art
ARTH-563	Modern Architecture
ARTH-568	Art and Technology: from the Machine Aesthetic to the Cyborg Age
ARTH-572	Art of the Americas
ARTH-573	Conceptual Art
ARTH-574	Dada and Surrealism
ARTH-577	Displaying Gender
ARTH-578	Edvard Munch
ARTH-584	Scandinavian Modernism
ARTH-586	History of Things: Studies in Material Culture
ARTH-588	Symbols and Symbol Making: Psychoanalytic Perspectives on Art
VISL-224	History \& Theory of Exhibitions
VISL-384	Art of Dying
VISL-388	Gender and Contemporary Art

[^37]
Astronomy

Program overview

The astronomy immersion provides students with the opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. The immersion offers a broad background in astronomy with courses providing a broad survey of modern astrophysics and the techniques and technologies used to investigate astronomical phenomena.

Notes about this immersion:

- This immersion is closed to students majoring in physics.

Curriculum

COURSE	
Prerequisites	Project-Based Calculus I
MATH-181	Project-Based Calculus II
MATH-182	University Physics I
PHYS-211	University Physics II
PHYS-212	
Required course	University Astronomy
PHYS-220	
Electives	
Choose two of the following:	
PHYS-370*	Stellar Astrophysics
PHYS-371*	Galactic Astrophysics
PHYS-372*	Extragalactic Astrophysics and Cosmology
PHYS-373	Observational Astronomy

* PHYS-213 (Modern Physics I) is a prerequisite for PHYS-370 (Stellar Astrophysics), PHYS-371 (Galactic Astrophysics), and PHYS-372 (Extragalactic Astrophysics and Cosmology).
NOTE: PHYS-370, PHYS-371, PHYS-372, and PHYS-373 are offered in alternate years. Contact the Astronomy Minor Advisor for the schedule.

Biology: Cellular and Molecular

Program overview

The biology: cellular and molecular immersion provides students with the opportunity to experience courses in modern cell and molecular biology. Students complete a foundational course in molecular biology and the accompanying laboratory course and then go on to study additional cellular and molecular biology subjects in more detail.

Notes about this immersion:

- The immersion is closed to students majoring in biochemistry, bioinformatics and computational biology, biology, biomedical engineering, biomedical sciences, biotechnology and molecular bioscience, environmental science, and physician assistant.

Curriculum

COURSE	
Required Course	Molecular Biology
BIOL-206	Molecular Biology Lab
BIOL-216	
Electives*	
Choose two of the following:	
BIOL-204	Introduction to Microbiology
BIOL-265	Evolutionary Biology
BIOL-302	Genetics
BIOL-321	Developmental Biology
BIOL-322	Introduction to Population Genetics
BIOL-365	Microbial and Viral Genetics
BIOL-427	

* At least one course must be at the 300-level or above.

Biology: Ecology and Evolution

Program overview

The biology: ecology and evolution immersion provides students with the opportunity to experience courses in ecology and evolutionary biology. Students complete a foundational course in ecology or evolution and then have a choice of electives.
Notes about this minor:

- The minor is closed to students majoring in biochemistry, bioinformatics and computational biology, biology, biomedical engineering, biomedical sciences, biotechnology and molecular bioscience, environmental science, and physician assistant.
- Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
Choose one of the following:	
BIOL-240	General Ecology
BIOL-265	Evolutionary Biology
Electives	
Choose two of the following:	
BIO-207	Galapagos: Ecology and Evolution
BILL-211	Invertebrate Zoology
BILL-212	Vertebrate Zoology
BILL-220	Biology of Fungi and Insects
BIOL-240	General Ecology
BIOL-265	Evolutionary Biology
BIOL-313	Comparative Animal Physiology
BIOL-365	Introduction to Population Genetics
BIOL-575	Conservation Biology
ENVS-305	Urban Ecology
ENVS-531	Climate Change: Science Technology \& Policy
MEDS-250	Human Anatomy and Physiology I
MEDS-251	Human Anatomy and Physiology II

Black Studies

Program overview

The interdisciplinary immersion in Black studies examines the social construction of racial differences and its relation to the perpetuation of racism and racial domination. A key component of this immersion is to investigate the meanings and dimensions of Blackness that reverberate from slavery and colonialism to the persistent political, social, and cultural implications of racialization in the 21 st century. The immersion emphasizes how Blackness intersects with other ethnic identities and how it is shaped by gender, sexuality, and economic inequities. The aim is to refine and advance students' knowledge of Black life-worlds and experiences across the globe.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-246	Gender and Health
ANTH-310	African Film
ANTH-335	Culture and Politics in Latin America
ANTH-345	Genocide and Transitional Justice
ANTH-361	Digitizing People
ANTH-410	Global Cities
ANTH-430	Visual Anthropology
ANTH-489	Topics in Anthropology *
COMM-306	Rhetoric Of Race Relations
ENGL-413	African-American Literature
ENGL-414	Women and Gender in Literature and Media
HIST-245	American Slavery and Freedom
MLSP-352	Caribbean Cinema
SOCI-210	Black America-Culture \& HipHop
SOCI-220	Minority Group Relations
SOCI-246	Gender and Health
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-361	Digitizing People
SOCI-489	Topics in Sociology *
SOCI-395	Borders: Human, Boundaries and Empires

*Course may be used when topic is relevant to Black Studies.

Chemistry

Program overview

All of the required or optional courses for the chemistry immersion are core chemistry courses within the chemistry curriculum.

Notes about this immersion:

- This immersion is closed to students majoring in biochemistry and chemistry.

Curriculum

COURSE	
Prerequisites	
CHMG-141	General \& Analytical Chemistry I
CHMG-145	General \& Analytical Chemistry I Lab
CHMG-142	General \& Analytical Chemistry II
CHMG-146	General \& Analytical Chemistry II Lab
or	
CHMG-131	
or	General Chemistry for Engineers
CHEM-151	
Required course	
CHMO-231	Qrganic Chemistry I
Electives	Instrumental Analysis
Choose two of the following:	Biochemistry I
CHMA-161	Descriptive Inorganic Chemistry
CHMA-261	Organic Chemistry II
CHMB-402	
CHMI-351	
CHMO-232	

Climate Change: An Interdisciplinary Problem

Program overview

This interdisciplinary immersion introduces students to the scientific, technological, and social issues surrounding global environmental climate change.

Notes about this immersion:

- This immersion is closed to students majoring in environmental science or environmental sustainability, health and safety.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

course	
Required Course	
Choose one of the following courses:	
CHEM-531	Climate Change: Science Technology \& Policy
ENVS-531	Climate Change: Science Technology \& Policy
PUBL-531	Climate Change: Science, Technology and Policy
Electives	
Choose one of the following courses:	
HIST-345	Environmental Disasters
PHIL-308	Environmental Philosophy
PUBL-530	Energy Policy
SOIS-333	Wicked Problems
STSO-326	History of Ecology and Environmentalism
STSO-421	Environmental Policy
STSO-422	Great Lakes
Choose one of the following courses:	
ENVS-101	Concepts of Environmental Science
ENVS-111	Soil Science
ENVS-250	Applications of Geographic Information Systems
ENVS-301	Environmental Science Field Skills
ENVS-305	Urban Ecology
ESHS-360	Sustainable World Water Supply

Comics Studies

Nate Rohman, Immersion Advisor
 585-475-5760, nmrpgd@rit.edu

Program overview

Explore the history of cartooning, comics, sequential art, and visual storytelling. Students learn about and analyze the history of the comics medium, the distinct formal qualities of sequential art, the relations between comics and other popular media forms, and how comics remain a vibrant contemporary cultural form.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Course	Comics: Image \& Text in Popular Culture
IDEA-242	
Choose one of the following:	Ethics in the Graphic Memoir
ENGL-314	The Graphic Novel
ENGL-421	Global Comics
IDEA-342	Popular Genre Studies in Comics and Related Media
IDEA-344	Art Comics
SOIS-542	Art Comics
ARTH-556	Theory And Criticism of 20th Century Art
Choose one of the following:*	The Image
ARTH-392	Visual Communication
ARTH-521	Popular Literature
COMM-341	Media Adaptation
ENGL-318	Visual Culture Theory
ENGL-373	Gender and Contemporary Art
VISL-376	Film, Comics, and French Culture
VISL-388	Performing Identity in Popular Media
MLFR-151	
PRFL-330	

[^38]
Communication

Program overview

Advanced study of selected areas of communication, including an overview of the fields of persuasion, mass communications, public speaking, and small group communication. Students will understand and apply several modes of communication in academic, professional, and personal situations.

Notes about this immersion:

- This immersion is closed to students majoring in advertising and public relations or communication.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	
Choose three of the following:*	
COMM-201	Public Speaking
COMM-202	Mass Communications
COMM-223	Digital Design in Communication
COMM-253	Communication
COMM-302	Interpersonal Communication
COMM-303	Small Group Communication
COMM-304	Intercultural Communication
COMM-305	Persuasion
COMM-306	Rhetoric Of Race Relations
COMM-341	Visual Communication
COMM-342	Communication Law and Ethics
COMM-343	Technology-Mediated Communication
COMM-344	Health Communication
COMM-346	Global Media
COMM-356	Critical Practice in Social Media
COMM-357	Communication, Gender, and Media
COMM-503	Advanced Public Speaking

[^39]
Creative Writing

Program overview

A series of creative writing courses offers students a practical, theoretical, and historical understanding of the art and craft of writing nonfiction, fiction prose, and poetry, as well as experimenting in digital storytelling and interactive media. The immersion encourages students to use these skills and insights for interdisciplinary projects and the enrichment of their careers and personal lives.

Notes about this immersion:

- This immersion is closed to students majoring in English who have chosen a concentration in creative writing.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ENGL-211	Introduction to Creative Writing: Prose and Poetry
ENGL-212	Introduction to Creative Writing: Forms and Styles
ENGL-376	Experimental Writing
ENGL-386	World Building Workshop
ENGL-389	Digital Creative Writing Workshop
ENGL-390	Creative Writing Workshop
ENGL-490	Advanced Creative Writing Workshop
ENGL-511	Advanced Topics in Creative Writing
ENGL-543	Game-Based Fiction Workshop

Criminal Justice

Program overview

The criminal justice immersion provides students with the appropriate foundation to analyze crime, crime control policy, and the role of the criminal justice system in the maintenance of order in society. Courses focus on the social definition and measurement of crime, a broad understanding of the causes of crime, and societal responses to crime through the police, courts, and corrections.

Notes about this immersion:

- This immersion is closed to students majoring in criminal justice.

Curriculum

COURSE	
Prerequisite	
CRIM-110	Introduction to Criminal Justice
Electives	
Choose three of the following:	
CRIM-210	Technology in Criminal Justice
CRIM-220	Corrections
CRIM-230	Juvenile Justice
CRIM-240	Law Enforcement in Society
CRIM-260	Courts
CRIM-275	Crime and Violence
CRIM-285	Minority Groups and the Criminal Justice System
CRIM-299	Crime, Justice and Ethics
CRIM-489	Major Issues in Criminal Justice

Cultural Anthropology

Program overview

Cultural anthropology is the study of culture, past and present, from a worldwide comparative perspective. As a disciplinary field, cultural anthropology attempts to provide insights on how human beings across the globe live and work and shape their cultural world in families, cities, societies, ethnic groups, nations, and networked solidarities through ideas, ideologies, beliefs, and values or world views. One of the goals of cultural anthropology is to promote understanding among peoples-an increasingly important venture in our vastly interconnected world communities.

Notes about this immersion:

- This immersion is closed to students majoring in sociology and anthropology who have chosen the cultural anthropology track.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-102	Cultural Anthropology*
ANTH-104	Language and Linguistics*
ANTH-201	The Ethnographic Imagination
ANTH-210	Culture and Globalization
ANTH-220	Language and Culture: Introduction to Linguistic Anthropology
ANTH-225	Globalizing Africa
ANTH-235	Immigration to the U.S.
ANTH-244	Human Centered Design Queries: An Anthropological Approach
ANTH-245	Ritual and Performance
ANTH-246	Gender and Health
ANTH-260	Native North Americans
ANTH-265	Native Americans in Film
ANTH-270	Cuisine, Culture, and Power
ANTH-275	Global Islam
ANTH-285	American Indian Languages
ANTH-295	Global Public Health
ANTH-301	Social and Cultural Theory
ANTH-302	Qualitative Research
ANTH-303	Statistics in the Social Sciences
ANTH-305	Comparative and Historical Linguistics
ANTH-310	African Film
ANTH-325	Bodies and Culture
ANTH-328	Heritage and Tourism
ANTH-330	Cultural Images of War and Terror
ANTH-335	Culture and Politics in Latin America
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-365	Culture and Politics in the Middle East
ANTH-370	Media and Globalization
ANTH-375	Native American Cultural Resources and Rights
ANTH-380	Nationalism and Identity
ANTH-385	Anthropology and History
ANTH-410	Global Cities
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-455	Economics of Native America
ANTH-489	Topics in Anthropology
INGS-270	Cuisine, Culture, and Power
INGS-455	Economics of Native America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-301	Social and Cultural Theory
SOCI-302	Qualitative Research
SOCI-303	Statistics in the Social Sciences
SOCI-361	Sociology of Numbers

[^40]
Deaf Leadership

Program overview

The Deaf leadership immersion provides students with an opportunity to explore aspects of community development and leadership with special emphasis on ethics, rhetoric, social media communication, intersectionality, current national and international trends, and accessible technology.

Notes about this immersion:

- This immersion is closed to students majoring in community development and inclusive leadership.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	
Choose three of the following:	
LEAD-200	Dimensions of Ethical Community Leadership
LEAD-201	Shaping Educational and Legal Policy
LEAD-300	Rhetoric of Leadership
LEAD-301	Social Media Communication and Leadership
LEAD-303	Literatures of Intersectionality
LEAD-305	International Deaf Leadership and Community Development
LEAD-306	Leadership in the Deaf Community
LEAD-307	Leadership and Accessible Technology
LEAD-308	Current Trends in Community Development and Leadership

Digital Literatures and Comparative Media

Program overview

We encounter digital texts and codes every time we use a smart phone, launch an app, or interact online. This immersion explores innovative and evolving questions and practices of text and code in literature, creative writing, and interactive media. It invites students to explore the social, cultural, and technological significance of text, code, and their interrelations.

Notes about this immersion:

- This immersion is closed to students majoring in English who have chosen a concentration in literature and media.

Curriculum

COURSE	
Required Course	
ENGL-215	Text \& Code
Electives	
Choose two of the following:	
ENGL-275	Storytelling: [Genre/Theme]
ENGL-315	Digital Literature
ENGL-373	Media Adaptation
ENGL-374	Games and Literature
ENGL-375	Storytelling Across Media
ENGL-376	Experimental Writing
ENGL-386	World Building Workshop
ENGL-414	Women and Gender in Literature and Media
ENGL-419	Literature and Technology
ENGL-422	Maps, Spaces and Places
ENGL-450	Free \& Open Source Culture

Diversity in the U.S.

Program overview

This immersion offers students a variety of academic perspectives on how diverse groups may share cultural or inherited characteristics, and how perceptions of difference influence their interactions. Race, ethnicity, gender, and sexualities are the main points of focus. Students examine differential power between groups, analyze the social structures used to maintain, moderate and alter power relations, as well as probe interpersonal relationships across social divides.

Curriculum

COURSE	
Required Course	
SOCI-220	Minority Group Relations
Electives	
Choose two of the following:	
ANTH-235	Immigration to the U.S.
ANTH-244	Human Centered Design Queries: An Anthropological Approach
ANTH-246	Gender and Health
ANTH-260	Native North Americans
ANTH-285	American Indian Languages
ANTH-361	Sociology of Numbers
ANTH-375	Native American Cultural Resources and Rights
ANTH-455	Economics of Native America
ANTH-489	Topics in Anthropology *
COMM-304	Intercultural Communication
CRIM-285	Minority Groups and the Criminal Justice System
ECON-451	Economics of Women and the Family
ECON-452	Economics of Native America
ENGL-414	Women and Gender in Literature and Media
FNRT-206	Queer Looks
INGS-455	Economics of Native America
SOCI-210	Black America-Culture \& HipHop
SOCI-225	Social Inequality
SOCI-235	Women, Work, and Culture
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-300	Sociology of American Life
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-322	Health and Society
SOCI-330	Urban (In) Justice
SOCI-345	Urban Poverty
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
SOCI-361	Sociology of Numbers
SOCI-395	Borders:Humans, Boundaries, and Empires
SOCl-451	Economics of Women and the Family
SOCl-489	Topics in Sociology*
WGST-451	Economics of Women and the Family

Diversity, Inclusion, and Dialogue

Program overview

Students in the diversity, inclusion, and dialogue immersion will study the social construct of diverse communities through examination of experiences of inequity, discrimination, oppression, and intersectionality. They will learn constructive dialogue techniques for use across a range of communities, with the goal of understanding diverse populations and their experiences.

Notes about this immersion:

- This immersion is closed to students majoring in community development and inclusive leadership.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Courses	Foundation of Dialogue: Black Deaf Experiences
LEAD-203	Literatures of Intersectionality
LEAD-303	
Electives	Conflict Resolution: Negotiation and Mediation
Choose one of the following:	
LEAD-304	Dialogue: Race and Ethnicity
LEAD-309	Dialogue: Gender
LEAD-310	Dialogue: Deaf, DeafBlind, DeafDisabled, Hard-of-Hearing
LEAD-311	Dialogue: LGBTQIA
LEAD-312	Dialogue: Social Class
LEAD-313	

Economics

Program overview

The economics immersion provides a systematic analysis of economic issues through the study of the allocation of scarce resources into production and the distribution of production among the members of society.

Notes about this immersion:

- This immersion is closed to students majoring in economics.

Curriculum

COURSE

Prerequisites	
ECON-101	Principles of Microeconomics
ECON-101H	Honors Microeconomics

Ele Honors Microeconomics

Choose three of the following:	
ECON-201	Principles of Macroeconomics
ECON-401	Intermediate Microeconomic Theory
ECON-402	Intermediate Macroeconomic Theory
ECON-403	Econometrics I
ECON-404	Mathematical Methods: Economics
ECON-405	International Trade and Finance
ECON-406	Global Economic Issues
ECON-407	Industrial Organization
ECON-410	Game Theory with Economic Applications
ECON-411	Computational Economics
ECON-421	Natural Resource Economics
ECON-422	Benefit-Cost Analysis
ECON-430	Managerial Economics
ECON-431	Monetary Analysis and Policy
ECON-432	Open Economy Macroeconomics
ECON-433	Financial Economics
ECON-441	Labor Economics
ECON-444	Public Finance
ECON-445	History of Economic Thought
ECON-448	Development Economics
ECON-449	Comparative Economic Systems
ECON-450	Health Care Economics
ECON-451	Economics of Women and the Family
ECON-452	Economics of Native America
ECON-453	Behavioral \& Experimental Economics
ECON-503	Econometics II
ECON-520	Environmental Economics

Environmental Studies

Program overview

The environmental studies immersion is an examination of the basic environmental problems we face, how environmental resource depletion and energy issues are related, and what kind of environmental ethics and/or values we have today and have had in the past. The immersion also explores the economic, legislative, and regulatory framework within which most environmental decisions are made. Since most technological areas are associated with significant environmental implications, it is essential that students have an understanding of and a well-thought-out value orientation about such environmental consequences.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	Environmental Disasters
Choose three of the following:	
HIST-345	Energy Policy
PUBL-530	Environment and Society
STSO-220	Foundations of Engagement and Community Transformation
STSO-230	Face of the Land
STSO-321	History of the Environmental Sciences
STSO-325	History of Ecology and Environmentalism
STSO-326	Energy and the Environment
STSO-330	Industry, Environment, and Community in Rochester
STSO-335	Gender, Science, and Technology
STSO-342	Environmental Policy
STSO-421	Great Lakes
STSO-422	Nature and Quantification
STSO-425	Topics in Environmental Studies
STSO-488	Interdisciplinary Capstone Seminar
STSO-510	Biodiversity and Society
STSO-521	Sustainable Communities
STSO-550	

[^41]
Ethics

Program overview

The ethics immersion helps students to understand more deeply the nature of ethical thinking, to recognize and understand ethical dilemmas in private, professional, and public settings, and to think clearly and critically about possible answers to ethical problems. The immersion also provides students with the opportunity to acquaint themselves with some of the most influential writings and thinkers in the philosophical canon. Courses are especially well suited to students considering careers in law, medicine, business, or politics.
Notes about this immersion:

- This immersion is closed to students majoring in philosophy.
- Students are required to take either Foundations of Moral Philosophy (PHIL-202) or Ethical Theory (PHIL-415). If students take one of these courses, they will choose two elective courses to complete the immersion. If they choose both of these courses students will choose one additional elective.
- At least two courses must be at the 300 level or higher.

Curriculum

COURSE	
Required Course	
Choose one of the following:*	
PHIL-202	Foundations of Moral Philosophy
PHIL-415	Ethical Theory
Electives	
Choose two of the following:t	
BIOL-255	Genetics and Society
CRIM-299	Crime, Justice and Ethics
DHSS-103	Ethics in the Digital Era
ECON-102	Economics, Ethics, and Society
ENGL-314	Ethics in the Graphic Memoir
ISEE-684	Engineering and the Developing World
ISTE-110	FYW: Ethics in Computing
MEDS-360	Placebo, Suggestion, Research and Health
MGMT-340	Business Ethics and Corporate Social Responsibility
NSSA-221	Systems Administration I
PHIL-102	Introduction to Moral Issues
PHIL-202	Foundation of Moral Philosophy
PHIL-304	Philosophy of Law
PHIL-305	Philosophy of Peace
PHIL-306	Professional Ethics
PHIL-308	Environmental Philosophy
PHIL-309	Feminist Theory
PHIL-311	East Asian Philosophy
PHIL-315	Responsible Knowing
PHIL-316	Bioethics and Society
PHIL-403	Social and Political Philosophy
PHIL-407	Philosophy of Action
PHIL-409	Existentialism
PHIL-415	Ethical Theory in Philosophy \ddagger
PHIL-449	Social Inequality
PUBL-201	
SOCI-225	
Atudents may choose to complete both PHIL-202 and PHIL-405 towards the immersion, along with an	
additional elective. Course may be used when the topic includes ethical issues.	

Film Studies

Program overview

The film studies immersion allows students to engage in the study of global cinema using a variety of interdisciplinary methodologies and perspectives. Coming from the disciplines of English, anthropology, philosophy, fine arts/visual culture, political science, history, and modern languages, the immersion investigates cinema's mass appeal as a form of entertainment, but also the power it wields as a disseminator of ideas, history, values, aesthetics, behavior, and cultural norms.

Notes about this immersion:

- This immersion is closed to students majoring in film and animation.
- Students must take courses in more than one discipline, e.g., two in fine arts (FNRT) and one in anthropology (ANTH).

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-265	Native Americans in Film
ANTH-430	Visual Anthropology
ENGL-410	Film Studies
FNRT-200	Anime
HIST-275	Screening the Trenches: The History of WWI Through Film
HIST-450	Japan in History, Fiction, and Film
MLFR-151	Film, Comics, and French Culture
MLFR-351	French Films and Hollywood
MLFR-352	The French Heritage in Films
MLSP-352	Caribbean Cinema
PHIL-313	Philosophy of Film
POLS-490	Politics Through Film
VISL-373	American Film Since the Sixties
VISL-440	Deaf Art \& Cinema

[^42]
Free Culture and Free and Open Source Computing

Program overview

Business, the arts, the sciences, and the humanities now rely on work that is "open," work that is released in a manner that allows it to be shared, copied, and improved upon by its users. Open Source Software powers the internet and the World Wide Web, Open Data, and Open GIS mapping. All of these are at the core of most digital humanities projects. Creative Commons licenses allow artists, musicians, and writers to collaborate more freely by altering the "all on or all off" conditions of copyright. The Open Hardware of the Raspberry Pi and Arduino board drive the maker movement and interactive arts.

In the free culture and free and open source computing immersion, you'll will take one course in the culture, history, and ethics behind the Open IP movements listed above. You'll follow that by completing a course in Humanitarian Free and Open Source software to get hands-on experience contributing to open communities of practice and by learning first-hand how those communities thrive best when experts from many fields work together. Your third course will be chosen by you from a range of electives in communications, computing, technology, policy, or history, all of which can build your understanding and practice of open work.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Courses	
ENGL-450	Free \& Open Source Culture
IGME-582	Humanitarian Free \& Open Source Software Development
Electives	
Choose one of the following:	
COMM-303	Small Group Communication
COMM-304	Intercultural Communication
ENGL-215	Text \& Code
ENGL-581	Intro to Natural Language Process
ISCH-201	Computing, Culture, and Society
STSO-201	Science and Technology Policy
STSO-230	Foundations of Engagement and Community Transformation
STSO-240	Social Consequences of Technology
STSO-246	History of Women in Science and Engineering

Gender and STEM Studies

Program overview

The gender and STEM studies immersion is an interdisciplinary set of courses that enable you to investigate, analyze, and critically question a range of issues at the crossing of gender (in its intersection with sexuality, race, class, and ethnicity) with the STEM fields.

By engaging cultural texts and productions from both historical and contemporary perspectives, you will analyze how gendered notions inform the content and context of the science, technology, and engineering fields. You will become skilled in:

- appraising how gendered assumptions relate to research methods, project designs, and practical applications in STEM fields;
- testing how a focus on gender might work to transform, enhance, and possibly innovatively (re)imagine scientific knowledge production as well as technology and engineering designs and applications; and
- prepare to address the challenges of enhancing gender diversity, participation, and fairness in the STEM professions and environments.

Curriculum

COURSE

Required Course

Choose one of the following:	
WGST-246	History of Women in Science and Engineering
WGST-282	Women, Gender, and Computing
WGST-342	Gender, Science, and Technology
Electives	
Choose two of the following:	
ANTH-246	Gender and Health
WGST-200	Foundations OfWomen And Gender Studies*
WGST-205	Feminist Practices of Inquiry*
WGST-210	Introduction to LGBTQ+ Studies*
WGST-246	History of Women in Science and Engineering
WGST-282	Women, Gender, and Computing
WGST-342	Gender, Science, and Technology
WGST-357	Communication, Gender, and Media
SOCI-246	Gender and Health
SOCI-355	CyberActivism: Diversity, Sex, and the Internet

* Only one course may be chosen between WGST-200, WGST-205, and WGST-210

Gender Equity, Social Institutions, and Public Affairs

Program overview

The gender equity, social institutions, and public affairs immersion equips you with the ability to view the social domain of public affairs, institutions, practices, and policies through a gendered lens and prepares you for future potential roles as advocates and leaders in the struggle toward gender equity and social justice at local, national, and global levels.

This immersion explores the influence of gender in its intersection with sexuality, ethnicity, nationality, race, class, and dis/ability within the social, institutional, and policy environment. You will learn to analyze domains of power within the economic, political, and social structures (including the family), identify gender inequities and inequalities, and evaluate and implement theories, methods, and practices for challenging gendered discrimination, increasing inclusiveness, imagining social justice, and improving lives and well-being at the individual and collective levels.

As gender is such a pervasive dimension of public life and policies, the immersion is beneficial to students in all major, especially those interested in promoting gender justice in the fields of sustainability and development; industry and transportation; economics and finance; human rights; the legal and judicial systems; health; international peace and security; and urban, environmental, and energy policies.

Notes about this immersion:

- Posting of the immersion on the student's academic transcript requires a minimum GPA of 2.0 in the immersion.
- Notations may appear in the curriculum chart below outlining prerequisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

COURSE	
Required Course	
Choose one of the following:	
WGST-200	Foundations Of Women And Gender Studies
WGST-205	Feminist Practices of Inquiry
WGST-210	Introduction to LGBTQ+ Studies
Electives	
Choose two of the following:	
WGST-230	Men, Males, and Masculinities
WGST-235	Women, Work, and Culture
WGST-245	Prostitution and Vice
WGST-250	Domestic Violence
WGST-255	Seminar on Sexual Violence
WGST-265	Women and Crime
WGST-290	American Women's and Gender History
WGST-318	Philosophies of Love,Sex, and Gender
WGST-330	Performing Identity in Popular Media
WGST-335	Women and the Deaf Community
WGST-357	Communication, Gender, and Media
WGST-361	Queering Gender
WGST-451	Economics of Women and the Family
WGST-481	Women in Politics

Gender, Art, and Media

Program overview

In the gender, art, and media immersion students explore how gender issues and identities, in their intersections with culture, race, ethnicity, nationality, social class, age, and (dis)abilities, are represented and portrayed in various artistic, literary, and media forms. By engaging with cultural texts and productions from both historical and contemporary perspectives, the immersion introduces students to critical analysis and knowledge-building methods drawn from fields such as women's and gender studies, feminist theories, critical race studies, queer studies, social justice work, and activism. The immersion teaches students to analyze gendered images as they appear in arts and media, recognize power inequalities and stereotypes in gender representations, and acquire the conceptual skills to critique and improve current conditions of artistic, literary, and media production and consumption in view of increased gender equity and fairness. The immersion complements any course of studies in a number of art and media-related fields such as art and literary criticism, art curation and exhibition, journalism and photojournalism, media studies, filmmaking, literature, photography, advertising and marketing, public relations, social services, and more.

Curriculum

COURSE	
Electives*	
Choose three of the following:	
WGST-200	Foundations Of Women And Gender Studies
WGST-205	Feminist Practices of Inquiry
WGST-206/VISL-206	Queer Looks
WGST-210	Introduction to LBGTQ+ Studies
WGST-309/PHIL-309	Feminist Theory
WGST-318/PHIL-318	Philosophies of Love, Sex, and Gender
WGST-330/PRFL-330	Performing Identity in Popular Media
WGST-351/MLSP-351	Gender and Sexuality in Hispanic Studies
WGST-352/MLCH-352	Globalization and Gender through Chinese Cinema: From Kungfu to World Factory
WGST-357/COMM-357	Communication, Gender, and Media
WGST-375/FNRT-375	Women/Gender/Art
WGST-383/VISL-383	Traumatic Images
WGST-384/VISL-384	Art of Dying
WGST-388/VISL-388	Gender and Contemporary Art
WGST-414/ENGL-414	Women and Gender in Literature and Media

Geographic Information Systems

Program overview

As the world grows in complexity and interconnectedness, new challenges arise in visually representing, reasoning, and making sense of spatially-oriented problems and data. The geographic information systems immersion allows students to study geographic problem solving and scientific inquiry from an interdisciplinary perspective of interactive, digital mapping tools and related digital data problem solving technologies. Students are introduced to geographic mapping concepts and theory, digital cartography, geographic problem solving with geospatial and related computer tools, geospatial technology ethics and application of GIS to global problems such as natural disasters.

Notes about this immersion:

- This immersion is closed to students majoring in game design and development and new media interactive development.

Curriculum

COURSE	
Required Courses	
IGME-382	Maps, Mapping and Geospatial Technologies
IGME-384	Introduction to Geographic Information Systems
Electives	
Choose one of the following:	
ENGL-422	Maps, Spaces and Places
GCIS-123	Software Development and Problem Solving I
ISTE-230	Introduction to Database and Data Modeling
IGME-386	Spatial Algorithms and Problem Solving
IGME-484	Geographic Visualization
STSO-550	Sustainable Communities

Global Justice

Program overview

The global justice immersion examines attempts to create lasting peace and social justice on the international scale. Courses in philosophy and the social sciences help students to understand concepts of human rights, world poverty, and global solidarity. The immersion is well suited for students considering careers in law, politics, or public policy related fields.

Notes about this immersion:

- Students must select courses from at least two different disciplines.
- Students majoring in international and global studies, philosophy, political science, or sociology and anthropology must choose two of the three required courses from outside their respective major.

Curriculum

COURSE	
Electives	
Choose three of the following:*	
ANTH-246/SOCI-246	Gender and Health
ANTH-330	Cultural Images of War and Terror
ANTH-345	Genocide and Transitional Justice
ANTH-375	Native American Cultural Resources and Rights
ANTH-425	Global Sexualities
INGS-210	Culture and Politics in Urban Africa
PHIL-202	Foundations of Moral Philosophy
PHIL-304	Philosophy of Law
PHIL-305	Philosophy of Peace
PHIL-308	Environmental Philosophy
PHIL-309	Feminist Theory
PHIL-316	Bioethics and Society
PHIL-403	Social and Political Philosophy
PHIL-415	Ethical Theory
POLS-320	American Foreign Policy
POLS-440	War and the State
SOCI-235	Women, Work, and Culture
SOCI-295	Global Public Health
SOCI-315	Global Exiles of War and Terror
SOCI-451	Economies of Women and the Family

* Students must select their courses from at least two different disciplines.
\dagger Philosophy, sociology and anthropology, international and global studies, and political science majors must choose two of the three immersion courses from outside their respective major.

Globalization Theory

Program overview

The immersion in globalization theory analyzes how linkages and interconnections across and beyond conventional borders and boundaries are forged by people, political regimes, social movements, corporate enterprise, and culture industries. The immersion's emphasis is on the causes, signs, and possibilities of globalization with view to mobile populations, permeable borders, transnational flows of capital, and the traffic of culture across space or historical time. Courses examine how global fluidities, mobilities, and connections have been forged, the various dynamic and unpredictable responses of people in diverse locations to global processes, and the implications of global processes for a shared future.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-210	Culture and Globalization
ANTH-225	Globalizing Africa
ANTH-235	Immigration to the U.S.
ANTH-246	Gender and Health
ANTH-270	Cuisine, Culture, and Power
ANTH-275	Global Islam
ANTH-295	Global Public Health
ANTH-310	African Film
ANTH-312	People Before Cities
ANTH-328	Heritage and Tourism
ANTH-330	Cultural Images of War and Terror
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-360	Humans and Their Environment
ANTH-361	Digitizing People
ANTH-370	Media and Globalization
ANTH-410	Global Cities
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-489	Topics in Anthropology*
INGS-270	Cuisine, Culture and Power
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOCI-322	Health and Society
SOCI-330	Urban (In)Justice
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
SOCI-361	Borders: Humans, Boundaries, and Empires
SOCI-395	Topics in Sociology*
SOCI-489	

* Course may be used when the topic is relevant to Globalization Theory.

Health, Culture, and Society

Program overview

This immersion in health, culture, and society focuses on the shifting configurations of health and culture in a globalizing world. Health beliefs, including notions about bodily integrity or emotional wellbeing, illness causation, and diagnostic practices, and the experiences, expressions, and treatments of human ailments unfold in concrete cultural contexts. Every society has some form of health care system, which is minimally administered by community members or specialized practitioners. By moving beyond the lens of western biomedicine, the immersion provides students with a set of tools for analyzing the impact of culture on how health care is delivered, how health symptoms are interpreted and communicated by patients and health providers, and how costs for treatment are calculated and managed in relation to perceived benefits. Courses examine the interrelation between health and culture from a number of perspectives and contexts, including the cultural realities within which bodies are meaningfully constituted or in some cases enhanced by technology, the culture-specific communicative or representational health practices, the socially constituted experiences of trauma, death, suffering, and healing, and the various culturally mediated approaches to health care costs and remedies.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-245	Ritual and Performance
ANTH-246	Gender and Health
ANTH-250	Themes in Archaeological Research*
ANTH-270	Cuisine, Culture, and Power
ANTH-295	Global Public Health
ANTH-325	Bodies and Culture
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-425	Global Sexualities
ANTH-435	The Archaeology of Death
ANTH-489	Topics in Anthropology \dagger
COMM-344	Health Communication
CRIM-245	Prostitution and Vice
ECON-450	Health Care Economics
MLSP-353	Trauma and Survival in First-Person Narrative
PHIL-316	Bioethics and Society
PSYC-231	Death and Dying
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOCI-322	Health Society
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-361	Sociology of Numbers
SOCI-395	Borders: Humans, Boundaries, and Empires
SOCI-489	Topics in Sociology \dagger
STSO-341	Biomedical Issues: Science and Technology
STSO-441	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century
VISL-383/WGST-383	Traumatic Images
VISL-384/WGST-384	Art of Dying

[^43]
History

Program overview

The history immersion provides students with intensive study within the discipline of history. Students may choose to structure their immersion broadly, by choosing a wide range of historical topics to study, or narrowly, by choosing a particular area to study, such as American, European, or Asian history.

Notes about this immersion:

- This immersion is closed to students majoring in history.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Electives

Elives	
Choose three of the following:*	
HIST-101	Making History
HIST-102	Themes in US History
HIST-103	The City in History
HIST-104	Themes In European History
HIST-105	Themes in Historyt
HIST-125	Public History and Public Debate
HIST-140	History of the Modern Middle East
HIST-150	World History since 1500
HIST-160	History of Modern East Asia
HIST-170	Twentieth Century Europe
HIST-180	Information Revolution
HIST-190	American Women's and Gender History
HIST-201	Histories of Globalization
HIST-210	Culture and Politics in Urban Africa
HIST-221	Introduction to Public History
HIST-230	American Deaf History
HIST-238	History of Disability
HIST-240	Civil War America
HIST-245	American Slavery and Freedom
HIST-250	Origins of U.S. Foreign Relations
HIST-251	Modern U.S. Foreign Relations
HIST-252	The United States and Japan
HIST-255	History of World War II
HIST-260	History of Premodern China
HIST-261	History of Modern China
HIST-265	History of Modern Japan
HIST-266	History of Premodern Japan
HIST-270	History of Modern France
HIST-275	Screening the Trenches: The History of WWI Through Film
HIST-280	History of Modern Germany
HIST-282	Women, Gender, and Computing
HIST-290	U.S. History Since 1945
HIST-301	Great Debates in US History
HIST-302	Topics in History
HIST-310	Global Slavery and Human Trafficking
HIST-322	Monuments and Memory
HIST-323	America's National Parks
HIST-324	Oral History
HIST-325	Museums and History
HIST-326	Digital History
HIST-330	Deafness and Technology
HIST-333	Diversity in the Deaf Community
HIST-335	Women and the Deaf Community
HIST-340	Rochester Reformers: Changing the World
HIST-345	Environmental Disasters
HIST-350	Terrorism, Intelligence, and War
HIST-351	The Vietnam War
HIST-355	The Holocaust: Event, History, Memory
HIST-360	A Global History of Baseball
HIST-365	Conflict in Modern East Asia
HIST-369	Histories of Christianity
HIST-370	Global History of Religions
HIST-380	International Business History
HIST-383	Technology and Global Relations in the American Century
HIST-390	Medicine \& Public Health in American History
HIST-421	Hands-on History
HIST-430	Deaf Spaces
HIST-431	Theory and Methods of Deaf Geographies
HIST-439	Biography as History
HIST-450	Japan in History, Fiction and Film
HIST-462	East-West Encounters
HIST-465	Samurai in Word and Image
HIST-470	Science, Tech, \& European Imperialism: 1800-1965
HIST-480	Global Information Age

[^44]\dagger HIST-105 is used to transfer in courses of AP exam scores and while the course is repeatable, it can only count once in the immersion

Human Language Technology and Computational Linguistics

Program overview

The human language technology and computational linguistics immersion provides exposure to computational linguistics and relevant language science course work. Students gain knowledge and practical skills in computational natural language processing and technical linguistic analysis, useful for analytics and modeling with language data and for developing, evaluating, and maintaining language technology software. Notes about this immersion:

- This immersion is closed to students majoring in English who have chosen a concentration in linguistics.

Curriculum

COURSE	
Required Course	
ENGL-581	Natural Language Processing I
Electives	
Choose two of the following:	
ENGL-214	Introduction to Linguistics*
ENGL-310	Introduction to Language Science*
ENGL-351	Language Technology
ENGL-482	Speech Processing I
ENGL-582	Natural Language Processing II

[^45]
International Relations

Program overview

The international relations immersion combines the study of the complexities and shifting trends of international politics with the study of the global system. Particular emphasis is placed on the interactions and interconnectedness of nation-states at the international level and other participants in international affairs, such as international organizations, non-governmental organizations, sub-national entities, and individual citizens. Global issues studied include democratization, international and regional conflicts, terrorism, international trade and economic integration, economic development, international law and organizations, and human rights.
Notes about this immersion:

- This immersion is closed to students majoring in political science.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Electives	
Choose three of the following:*	
POLS-205	Ethics in International Politics
POLS-210	Comparative Politics
POLS-215	Tech, Ethics \& Global Politics
POLS-220	Global Political Economy
POLS-280	Artificial Intelligence and the Political Good
POLS-285	Environmental Ethics and Political Ecology
POLS-320	American Foreign Policy
POLS-325	International Law and Organizations
POLS-330	Human Rights in Global Perspective
POLS-335	Politics in Developing Countries
POLS-350	Politics of East Asia
POLS-351	Politics of China
POLS-360	International Political Thought
POLS-370	Cyberwar, Robots, \& the Future of Conflict
POLS-375	Grand Strategy
POLS-390	Greece and the Political Imagination
POLS-390H	Greece and the Political Imagination
POLS-410	Evolutionary International Relations
POLS-440	War and the State
POLS-445	Terrorism and Political Violence
POLS-455	Comparative Public Policy
POLS-541	Peacekeeping and Conflict Transformation
POLS-542	War, Diplomacy, and State-Building
*At least one course must be taken at the 300-level or higher.	

[^46]
Journalism

Program overview

The journalism immersion provides opportunities for the advanced study of selected areas of journalism, including its history and relevant legal and ethical issues, and for education and practice in writing and editing skills required of journalists.

Notes about this immersion:

- This immersion is closed to students majoring in journalism.

Curriculum

COURSE	
Electives	
Choose three of the following:	
COMM-261	History of Journalism
COMM-263	Data Journalism
COMM-271	Introduction to Journalism
COMM-272	Reporting and Writing I
COMM-280	Community Journalism
COMM-291	Communication for Social Change
COMM-342	Communication Law and Ethics
COMM-370	Ethnic Press in the United States
COMM-374	Opinion Media

Language Science

Program overview

The language science immersion prepares students in the interdisciplinary scientific study and analysis of human language. Language science is directly applicable to students interested in computing and media, human-computer interaction, brain and cognition, language acquisition, human health, interpreting, relevant branches of engineering, and policy studies. Students can complete the immersion irrespective of their skills in languages other than English. Besides a core course on linguistic principles, students choose electives covering the technology of language, philosophy of language, and language in culture and society. Electives allow students to customize the immersion to their interests and needs, with the support of a faculty adviser.

Notes about this immersion:

- This immersion is closed to students majoring in English who have chosen a concentration in linguistics.

Curriculum

COURSE	
Required Course	
Choose one of the following:	
ENGL-214	Introduction to Linguistics
ENGL-310	Introduction to Language Science
Electives	
Choose two of the following:	
ANTH-220	Language and Culture: Introduction to Linguistic Anthropology
ENGL-351	Language Technology
ENGL-356	Meaning in Language
ENGL-370	Evolving English Language
ENGL-482	Speech Processing I
ENGL-581	Natural Language Processing I
ENGL-582	Natural Language Processing II
MLAS-351	Linguistics Of American Sign Language
MLCU-301	Psycholinguistics
MLCU-302	Introduction to Syntax
MLP-351	Languages in Japanese Society
MLP--451	Structure of the Japanese Language
MLST-449	Special Topic Modern Lng
MLX-2XX	Beginning ASL or foreign language course
PHIL-414	Philosophy of Language

* This course may be used when the topic focuses on linguistics

Latino/Latina/Latin American Studies

Program overview

The Latino/Latina/Latin American studies immersion allows students to study Latino or Latin American culture. The goal is to introduce students to the customs and culture (history, art, literature, politics, anthropology, music) of Latin America or of Latinos in the U.S. Students become aware of the relationship between language and culture, and of the differences between their own language and culture and those of Spanish-speaking countries or Brazil.

Notes about this immersion:

- This immersion is closed to native speakers of Spanish, students majoring in applied modern language and culture who have chosen the Spanish language track, and students majoring in international and global studies who have chosen a focus area on Spanish or Portuguese language or Latin American studies.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.
- This immersion consists of three culture courses. If a student chooses, one of the three courses may be substituted for a Spanish or Portuguese language course. Students who have prior study of either language must take a placement exam through the department of modern languages to determine the appropriate level language course to complete.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-235	Immigration to the U.S.
ANTH-255	Regional Archaeology*
ANTH-335	Culture and Politics in Latin America
ANTH-350	The Global Economy and the Grassroots
ARTH-561	Latin American Art
ARTH-572	Art of the Americas
MLPO-201	Beginning Portuguese I
MLPO-202	Beginning Portuguese II
MLPO-301	Intermediate Portuguese I
MLPO-302	Intermediate Portuguese II
MLPO-401	Advanced Portuguese I
MLPO-402	Advanced Portuguese II
MLSP-201A	Beginning Spanish IA
MLSP-201B	Beginning Spanish IB
MLSP-202	Beginning Spanish II
MLSP-301	Intermediate Spanish I
MLSP-302	Intermediate Spanish II
MLSP-305	Spanish for Health Care
MLSP-310	Spanish Grammar Review
MLSP-315	Hispanic Culture \& Civilization
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
MLSP-353	Trauma and Survival in First-Person Narrative
MLSP-401	Advanced Spanish I
MLSP-402	Advanced Spanish II
SOCI-395	Borders: Humans, Boundaries, and Empires

* This course may be used when the topic focuses on Mesoamerica or Latin America.

Legal Studies

Program overview

The legal studies immersion provides students with a foundation in the study of law and legal institutions, and in the relationship of law to other aspects of society and culture. Courses provide a broad perspective on law and legal institutions including historical, ethical, sociological, political , and philosophical approaches to these areas.

Notes about this immersion:

- Students must complete three courses as part of the immersion, however all three courses cannot come from the same discipline. Students majoring in communication, criminal justice, philosophy, and political science must choose two of the three courses from outside their respective major.

Curriculum

COURSE	
Required Course	
Choose one of the following:	
CRIM-215	Law and Society
POLS-200	Law \& Society
Electives	
Choose two of the following:	
COMM-342	Communication Law and Ethics
COMM-362	Law and Ethics of the Press
CRIM-225	Criminal Law
CRIM-260	Evidence
CRIM-315	Symbolic Logic
PHIL-205	Philosophy of Law
PHIL-304	Social and Political Philosophy
PHIL-403	International Law and Organizations
POLS-325	Human Rights in Global Perspective
POLS-330	Constitutional Law
POLS-425	Constitutional Rights and Liberties
POLS-430	Classical Constitutionalism, Virtue \& Law
POLS-460	Modern Constitutionalism, Liberty \& Equality
POLS-465	

[^47]
Linguistic Anthropology

Program overview

Language is a fundamental property of being human. Linguistics, the study of human language, is one of the four branches of anthropology. Linguistic anthropology explores the dynamic interrelationships among language, culture, and society, how human beings make sense of the world, and participate in social life through creative speech acts and linguistic play. Courses familiarize students with a range of theoretical and analytic approaches, including general linguistics, sociolinguistics, theories of languages, communication, semiotics, and literary studies.

Curriculum

COURSE	
Electives	
Chooses three of the following:	
ANTH-104	Language and Linguistics
ANTH-201	The Ethnographic Imagination
ANTH-220	Language and Culture: Introduction to Linguistic Anthropology
ANTH-285	American Indian Languages
ANTH-305	Comparative and Historical Linguistics
ANTH-312	People Before Cities
ANTH-361	Sociology of Numbers
ANTH-489	Topics in Anthropology*
COMM-304	Intercultural Communication
PHIL-414	Philosophy of Language
SOCI-361	Sociology of Numbers

*Course may be used when topic is relevant to linguistic anthropology.

Literature and Media

Program overview

Study literature and other cultural works, as well as linguistics, and creative writing. The immersion is flexible in order to accommodate student interest in areas such as specific literary historical periods or geographic areas, multimedia and the visual arts, or literary genres and forms such as science fiction, the novel, the short story, poetry. Courses in the immersion emphasize the ability to read literature and other mediums analytically and write critically.

Notes about this immersion:

- This immersion is closed to students majoring in English who have chosen a concentration in literature and media.

Curriculum

COURSE	
Choose one of the following:	
ENGL-210	Literature and Cultural Studies
ENGL-275	Storytelling: [Genre/Theme]
Choose two of the following:	
ENGL-301	The Art of Poetry
ENGL-302	The Short Story
ENGL-304	Drama and Theatre
ENGL-307	Mythology \& Literature
ENGL-308	Shakespeare Drama
ENGL-309	Topics in Literary Forms
ENGL-312	American Literature
ENGL-313	British Literature
ENGL-315	Digital Literature
ENGL-316	Global Literature
ENGL-318	Popular Literature
ENGL-320	Genre Fiction
ENGL-322	Literary Geographies
ENGL-345	History of Madness
ENGL-370	Evolving English Language
ENGL-373	Media Adaptation
ENGL-375	Storytelling Across Media
ENGL-377	Transmedia Storyworlds
ENGL-391	Dangerous Texts
ENGL-410	Film Studies
ENGL-411	Themes in American Literature
ENGL-413	African-American Literature
ENGL-414	Women and Gender in Literature and Media
ENGL-418	Great Authors

Mathematics

Program overview

Notes about this immersion:

- This immersion is closed to students majoring in applied mathematics and computational mathematics.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Prerequisites	
One of the following:	
MATH-181	Project-Based Calculus I
MATH-181A	Calculus I
MATH-171/172	Calculus A/B
Plus one of the following:	
MATH-182	Project-Based Calculus II
MATH-182A	Calculus II
MATH-173	Calculus C
MATH-190	Discrete Mathematics for Computing
MATH-200	Discrete Mathematics and Introduction to Proofs
Electives*	
Choose three of the following:	
MATH-219	Multivariable Calculus \dagger
MATH-221	Multivariable and Vector Calculust§
MATH-221H	Honors Multivariable and Vector Calculus
MATH-231	Differential Equations \ddagger
MATH-233	Linear Systems and Differential Equations \ddagger
MATH-241	Linear Algebra§
MATH-241H	Honors Linear Algebra
MATH-251	Probability and Statistics I
MATH-301	Mathematics of Simulation
MATH-311	Linear Optimization
MATH-312	Nonlinear Optimization
MATH-321	Game Theory
MATH-322	Combinatorial Game Theory
MATH-326	Boundary Value Problems
MATH-331	Dynamical Systems
MATH-341	Advanced Linear Algebra
MATH-351	Graph Theory
MATH-361	Combinatorics
MATH-367	Codes and Ciphers
MATH-381	Complex Variables
MATH-371	Number Theory
MATH-411	Numerical Analysis
MATH-412	Numerical Linear Algebra
MATH-431	Real Variables I
MATH-432	Real Variables II
MATH-441	Abstract Algebra I
MATH-442	Abstract Algebra II
MATH-461	Topology
MATH-505	Stochastic Processes
* At least one course must be taken at the 300-level or above. \dagger Students may choose one of these courses, but not both \ddagger Students may choose one of these courses, but not both § This course has honors-designated sections taught occasionally.	

Modern Languages and Cultures - Arabic

Hiroko Yamashita, Immersion Advisor
585-475-6074, hxygsl@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Arabic-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register for language courses.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in Arabic language, a field specialization in the Middle East, or are native speakers of Arabic.

Curriculum

COURSE
Electives
Choose two or three consecutive language courses: MLAR-201 Beginning Arabic I MLAR-202 Beginning Arabic II MLAR-301 Intermediate Arabic I MLAR-302 Intermediate Arabic II MLAR-401 Advanced Arabic I MLAR-402 Advanced Arabic II One culture course may be taken in place of one language course: ANTH-275 Global Islam ANTH-365 Culture and Politics in the Middle East

Modern Languages and Cultures - Chinese

Zhong Chen, Immersion Advisor

 585-475-6917, zxcgsl@rit.edu
Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Chinese-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in applied modern language and culture who have chosen the Chinese language track; majoring in international and global studies who have chosen an area of study in Chinese language, a field specialization in Asia; or are native fluent speakers of Chinese.

Curriculum

COURSE	
Electives	
Choose two or three consecutive language courses:	
MLCH-201	Beginning Chinese I
MLCH-202	Beginning Chinese II
MLCH-301	Intermediate Chinese I
MLCH-302	Intermediate Chinese II
MLCH-310	Intermediate Conversational Chinese
MLCH-315	Intermediate Reading and Writing in Chinese
MLCH-401	Advanced Chinese I
MLCH-402	Advanced Chinese II
MLCH-410	Chinese for Science and Technology
MLCH-415	Professional Chinese
One culture course may be used in place of one language course:	
ANTH-255	Regional Archaeology*
HIST-260	History of Premodern China
HIST-261	History of Modern China
HIST-365	Conflict in Modern East Asia
MLCH-352	Globalization and Gender through Chinese Cinema: From Kungfu to
Whrld Factory	
PHL-311	East Asian Philosophy
POLS-350	Politics of East Asia
POLS-351	Politics of China
* This course may be used when the topic focuses on East Asia	

Modern Languages and Cultures - French

Philippe Chavasse, Immersion Advisor

585-475-3156, pxcgs!@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of French-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in French language, a field specialization in Europe, or are native speakers of French.

Curriculum

COURSE
Electives Choose two or three consecutive language courses: MLFR-201 Beginning French I MLFR-202 Beginning French II MLFR-301 Intermediate French I MLFR-302 Intermediate French II MLFR-310 French Oral Communication MLFR-315 French Reading and Writing Proficiency MLFR-401 Advanced French I MLFR-402 Advanced French II MLFR-410 French for Science and Technology MLFR-415 Professional French One culture course may be used in place of one language course: ARTH-364 Art in Paris HIST-270 History of Modern France HIST-275 Screening the Trenches: A History of WWI Through Film HIST-470 Science, Tech, \& European Imperialism: $1800-1965$ MLFR-351 French Films and Hollywood MLFR-352 The French Heritage in Films

Modern Languages and Cultures - German

Ulrike Stroszeck, Immersion Advisor
585-475-2921, uisgsl@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of German-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills will begin the language courses at their current level of proficiency as determined by a placement test.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in German language, a field specialization in Europe, or are native speakers of German.

Curriculum

COURSE

Electives

Choose two or three consecutive language courses:	
MLGR-201	Beginning German I
MLGR-202	Beginning German II
MLGR-301	Intermediate German I
MLGR-302	Intermediate German II
MLGR-310	German Conversation and Oral Practice
MLGR-315	German Grammar through Reading and Writing
MLGR-401	Advanced German I
MLGR-402	Advanced German II
MLGR-410	German for Science and Technology
MLGR-415	Professional German
One culture course may be used in place of one language course:	
FNRT-210	Bach, Händel, and the Baroque
FNRT-211	Era of Haydn, Mozart, \& Beethoven
HIST-280	History of Modern Germany
MLGR-351	Modern German Culture through Film
PHIL-417	Continental Philosophy

Modern Languages and Cultures - Italian

Elisabetta DAmanda, Immersion Advisor

585-475-6522, exdgla@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Italy. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in Italian language, a field specialization in Europe, or are native speakers of Italian.

Curriculum

COURSE
Electives
Choose two or three consecutive language courses:
MLIT-201
MLIT-202
MLIT-301
MLIT-302
MLIT-401
Interninning Italian II
One culture course may be used in place of one language course:
ARTH-311
ARTH-312
ARTH-317
Art and Architecture of Intaly: 1250-1400
ARTH-318
MLIT-351

Modern Languages and Cultures - Japanese

Yukiko Maru, Immersion Advisor

585-475-4558, yxmgs!@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Japan. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor advisor for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in applied modern language and culture who have chosen the Japanese language track; majoring in international and global studies who have chosen an area of study in Japanese language, a field specialization in Asia; or who are fluent native speakers of Japanese.

Curriculum

COURSE	
Electives	
Choose two or three consecutive language courses:	
MLP-201	Beginning Japanese I
MLP-202	Beginning Japanese II
MLP-301	Intermediate Japanese I
MLP-302	Intermediate Japanese II
MLP-401	Advanced Japanese I
MLP-402	Creative Writing and Performance in Japanese
MLP-405	Advanced Speaking in Japanese
One culture course may be used in place of one language course:	
ANTH-255	Regional Archaeology*
FNRT-200	Anime
HIST-160	History of Modern East Asia
HIST-252	The United States and Japan
HIST-265	History of Modern Japan
HIST-266	History of Premodern Japan
HIST-450	Japan in History, Fiction and Film
HIST-465	Samurai in Word and Image
MLPP-310	Practical Reading and Speaking in Japanese
MLP-315	Practical Writing and Speaking in Japanese
MLPP-351	Languages in Japanese Society
MLP-404	Japanese Culture in Print
MLPP-410	Japanese for Science and Technology
MLP-415	Professional Japanese
MLP-451	Structure of the Japanese Language
PHIL-311	East Asian Philosophy
POLS-350	Politics of East Asia
* This course may be used when the topic focuses on East Asia.	

Modern Languages and Cultures - Portuguese

Hiroko Yamashita, Immersion Advisor
585-475-6074, hxygsl@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Portugal and Portuguese-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor advisor for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in Portuguese language, a field specialization in Latin America or Europe, or are fluent native speakers of Portuguese.

Curriculum

COURSE

Electives

Choose two or three consecutive language courses:			
MLPO-201	Beginning Portuguese I		
MLPO-202	Beginning Portuguese II		
MLPO-301	Intermediate Portuguese I		
MLPO-302	Intermediate Portuguese II		
MLPO-401	Advanced Portuguese I		
MLPO-402	Advanced Portuguese II		
One culture course may be used in place of one language course:			
ANTH-335	Culture and Politics in Latin America		

Modern Languages and Cultures - Russian

Hiroko Yamashita, Immersion Advisor
585-475-6074, hxygsl@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Russia and Russian-speaking countries of the world. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor advisor for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in Russian language or are native speakers of Russian.

Curriculum

COURSE
Electives Choose two or three consecutive language courses: MLRU-201 Beginning Russian I MLRU-202 Beginning Russian II MLRU-301 Intermediate Russian I MLRU-302 Intermediate Russian II MLRU-305 Intermediate Conversation and Intercultural Communication in Russian MLRU-401 Advanced Russian I MLRU-402 Advanced Russian II One culture course may be used in place of one language course: ENGL-416 Topics in Global Literature* ENGL-418 Great Authors* MLRU-405 Russian Language \& Culture through Media

* This course may be used when the topic focuses on Russian Literature.

Modern Languages and Cultures - Spanish

Diane Forbes, Immersion Advisor
585-475-6765, djfgs@@rit.edu

Program overview

This immersion introduces students to the language, customs, and cultural aspects (history, art, literature, politics, anthropology, and music) of Spain and Spanish-speaking countries. The immersion consists of three language courses or two language courses and one culture course. Students with previous language skills must consult the minor adviser for placement evaluation before they register.

Notes about this immersion:

- This immersion is closed to students majoring in international and global studies who have chosen an area of study in Spanish language, majoring in applied modern language and culture who have chosen the Spanish language track, or students who are fluent native speakers of Spanish.

Curriculum

COURSE

Electives	
Choose two or three consecutive language courses:	
MLSP-201A	Beginning Spanish IA† \dagger
MLSP-201B	Beginning Spanish IB \dagger
MLSP-202	Beginning Spanish II
MLSP-301	Intermediate Spanish I
MLSP-302	Intermediate Spanish II
MLSP-305	Spanish for Health Care
MLSP-310	Spanish Grammar Review
MLSP-315	Hispanic Culture \& Civilization
MLSP-401	Advanced Spanish I
MLSP-402	Advanced Spanish II
MLSP-410	Spanish for Science and Technology
MLSP-415	Professional Spanish
One culture course may be used in place of one language course	
ANTH-235	Immigrating to the U.S.
ANTH-255	Regional Archaeology \ddagger
ANTH-335	Culture and Politics in Latin America
ANTH-350	The Global Economy and the Grassroots
ARTH-561	Latin American Art
ARTH-572	Art of the Americas
ENGL-416	Topics in Global Literatures*
ENGL-418	Great Authors*
MLSP-351	Gender and Sexuality in Hispanic Studies
MLSP-352	Caribbean Cinema
MLSP-353	Trauma and Survival in First-Person Narrative
SOCI-395	Borders:Humans, Boundaries, and Empires

* When the course deals with Spanish and/or Latin American literature.
† Based on a student's previous study of the Spanish language, students may enroll in either Beginning Spanish IA (MLSP-201A) or Beginning Spanish IB (MLSP-201B).
\ddagger This course may be used when the topic focuses on Mesoamerica or Latin America

Museum Studies

Program overview

The immersion in museum studies introduces students to the history, theory, and practice of institutional collecting, exhibiting, storing, and preserving our cultural heritage in museums, archives, collections, galleries, and libraries. It also provides students with an introduction to public history, the technical investigation of art, the history and theory of exhibitions, and interactive design for museums.

Notes about this immersion:

- This immersion is closed to students majoring in museum studies.
- Students must take at least one museum studies (MUSE) course and one history (HIST) course. The third course may be taken from either discipline.

Curriculum

COURSE	
Electives	
Choose three of the following:	
HIST-322	Monuments and Memory
HIST-323	America's National Parks
HIST-324	Oral History
HIST-325	Museums and History
MUSE-220	Introduction to Museums \& Collecting
MUSE-221/HIST-221	Introduction to Public History
MUSE-224	History \& Theory of Exhibitions
MUSE-225	Museums \& the Digital Age
MUSE-226	Introduction to Cultural Heritage
MUSE-241	Topics in Museum Studies: Art, Design \& Exhibition Projects
MUSE-244	Topics in Museum Studies: Museums and Society
MUSE-249	Topics in Archives, Museums, and Community Collections
MUSE-341	Museum Education \& Interpretation
MUSE-358	Legal and Ethical Issues for Collecting Institutions
MUSE-360	Visitor Engagement \& Museum Technologies
MUSE-361	Tablet to Tablet: A History of Books
MUSE-388/VISL-388	Gender and Contemporary Art

* Students must complete one course from the "MUSE" discipline and one course from the "HIST" discipline. The third course can be taken from either discipline.

Music

Program overview

The immersion in music offers courses in the history, theory, and practice of music. Students with a background in music and/or a genuine desire to know more about the subject will have the opportunity to expand their knowledge of various theoretical and historical aspects, as well as participate in performing groups at RIT.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE

Electives:

Choose three of the following:	
FNRT-203	American Popular \& Rock Music
FNRT-204	Music \& the Stage
FNRT-205	Music Theory 1
FNRT-209	Medieval and Renaissance Music
FNRT-210	Bach, Handel, and the Baroque
FNRT-211	Era of Haydn, Mozart, \& Beethoven
FNRT-250	RIT Singers*
FNRT-251	RIT Orchestra*
FNRT-252	RIT Concert Band*
FNRT-253	World Music Ensemble*
FNRT-254	RIT Jazz Ensemble*
FNRT-255	RIT Chamber Orchestra*
FNRT-320	Music of the Romantic Era
FNRT-321	Music Since 1900
FNRT-322	Survey of Jazz
FNRT-485	Music Theory 2
PRFL-250	Music History 1: Antiquity to Bach
PRFL-251	Music History 2: Haydn to Stravinsky
PRFL-327	American Musical Theater
PRFL-352	Russian Music and National Identity
SOIS-240	The Harmonica \& the Blues

* Each of these ensembles is one semester credit hour. Three semesters of participation are required to complete one immersion course
+ At least one course must be taken at the 300-level or above

Philosophy

Program overview

The philosophy immersion provides students with an opportunity to study the nature, methods, problems, and achievements of philosophical inquiry. The immersion emphasizes the following goals: the ability to think rationally and critically, an awareness of ethical values, an appreciation of aesthetic values, an awareness of how the past affects the present and future, and an understanding of the relationship between individuals and the social settings with which they interact.

Notes about this immersion:

- This immersion is closed to students majoring in philosophy.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	Ancient Philosophy
Choose three of the following:	
PHIL-201	Foundations of Moral Philosophy
PHIL-202	Modern Philosophy
PHIL-203	Symbolic Logic
PHIL-205	Philosophy of Religion
PHIL-301	Philosophy of Art/Aesthetics
PHIL-303	Philosophy of Law
PHIL-304	Philosophy of Peace
PHIL-305	Professional Ethics
PHIL-306	Philosophy of Technology
PHIL-307	Environmental Philosophy
PHIL-308	Feminist Theory
PHIL-309	Theories of Knowledge
PHIL-310	East Asian Philosophy
PHIL-311	American Philosophy
PHIL-312	Philosophy of Film
PHIL-313	Philosophy of Vision and Imaging
PHIL-314	Responsible Knowing
PHIL-315	Bioethics and Society
PHIL-316	Renaissance Philosophy
PHIL-317	Philosophies of Love, Sex, and Gender
PHIL-318	Sonics in Philosophy
PHIL-401	Sreat Thinkers
PHIL-402	Philosophy of Science
PHIL-403	Social and Political Philosophy
PHIL-404	Philosophy of Mind
PHIL-405	Philosophy of the Social Sciences
PHIL-406	Contemporary Philosophy
PHIL-407	Philosophy of Action
PHIL-408	Cxitical Social Theory
PHIL-409	Medieval Philosophy
PHIL-410	Metaphysics
PHIL-411	Pineteenth Century Philosophy
PHIL-412	PHIL-417
PHIL-413	PHIL-571

* At least one course must be taken at the 300-level or above

Physics

Dawn Hollenbeck, Immersion Advisor 585-475-6652, dmhsps@rit.edu

Program overview

In a broad sense, the aim of physics is to develop interconnected unifying threads bridging the vast number of seemingly diverse phenomena observed in the physical world around us. This immersion provides students with the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest.

Notes about this immersion:

- This immersion is closed to students majoring in physics.

Curriculum

COURSE	
Prerequisites	Project-Based Calculus I
MATH-181	Project-Based Calculus II
MATH-182	University Physics I
PHYS-211	University Physics II
PHYS-212	
Required Courses	Modern Physics I*
PHYS-213	Modern Physics II
PHYS-214	
Electivest	Vibrations and Waves
Choose one of the following:	Mathematical Methods in Physics
PHYS-283	Classical Mechanics
PHYS-315	Electricity and Magnetism
PHYS-320	Thermal and Statistical Physics
PHYS-330	
PHYS-411	
PHYS-440	

Political Science

Program overview

The political science immersion emphasizes the interdependence of domestic politics and international relations in the age of globalization. The immersion brings together components of American politics, international relations, and comparative politics to provide students with both national and global perspectives on politics. Perhaps most important, the political science immersion seeks to help students make sense of the increasingly complicated political environment that confronts them in their role as citizens.

Notes about this immersion:

- This immersion is closed to students majoring in political science.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	
Choose three of the following courses:*	
American Politics	
POLS-200	Law \& Society
POLS-250	State \& Local Politics
POLS-280	Artificial Intelligence and the Political Good
POLS-290	Politics and the Life Sciences
POLS-295	Cyberpolitics
POLS-300	Rhetoric \& Political Deliberation
POLS-305	Political Parties and Voting
POLS-310	The Congress
POLS-315	The Presidency
POLS-320	American Foreign Policy
POLS-340	Medicine, Morality, and Law
POLS-345	Politics and Public Policy
POLS-355	Political Leadership
POLS-365	Anarchy, Technology \& Utopia
POLS-390	Greece and the Political Imagination
POLS-390H	Greece and the Political Imagination
POLS-415	Evolution and the Law
POLS-420	Primate Politics
POLS-425	Constitutional Law
POLS-430	Constitutional Rights and Liberties
POLS-435	American Political Thought
POLS-460	Classical Constitutionalism, Virtue \& Law
POLS-465	Modern Constitutional, Liberty \& Equality
POLS-481	Women in Politics
POLS-485	Politics Through Fiction
POLS-490	Politics Through Film
International Relations	
POLS-205	Ethics in International Politics
POLS-210	Comparative Politics
POLS-215	Tech, Ethics \& Global Politics
POLS-220	Global Political Economy
POLS-285	Environmental Ethics and Political Ecology
POLS-320	American Foreign Policy
POLS-325	International Law and Organizations
POLS-330	Human Rights in Global Perspective
POLS-335	Politics in Developing Countries
POLS-350	Politics of East Asia
POLS-351	Politics of China
POLS-360	International Political Thought
POLS-370	Cyberwar, Robots, \& the Future of Conflict
POLS-375	Grand Strategy
POLS-390	Greece and the Political Imagination
POLS-390H	Greece and the Political Imagination
POLS-410	Evolutionary International Relations
POLS-440	War and the State
POLS-445	Terrorism and Political Violence
POLS-455	Comparative Public Policy
POLS-541	Peacekeeping and Conflict Transformation
POLS-542	War, Diplomacy, and State-Building

Principles of Computing

Christopher Bondy, Immersion Advisor

585-475-2755, cxbppr@rit.edu

Program overview

The principles of computing immersion introduces students from interdisciplinary backgrounds (for majors outside of computing, mathematics, or informatics) to the central ideas of computing. In this immersion, you will understand how computing impacts and changes your world; establish the foundational concepts and best practices of computational thinking, use of computing technology, and data to solve real-world problems; and learn basic programming skills and develop programming techniques to solve problems, and become familiar with the effects that computing has on society and culture. This immersion is intended for students with no prior computing background as a bridge to expand their understandings of the computing domain.

Notes about this immersion:

- The immersion is closed to students majoring in applied mathematics, applied statistics and actuarial science, bioinformatics and computational biology, computational mathematics, computer science, computing and information technologies, computing security, computer engineering, game design and development, human-centered computing, new media interactive development, software engineering, or web and mobile computing.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Courses	
ISCH-110	Principles of Computing
ISCH-370	Principles Of Data Science
Electives	
Choose one of the following:	
ISCH-201	Computing, Culture, and Society
IGME-386	Spatial Algorithms and Problem Solving
PUBL-363	Cyber Security Policy and Law

Psychology

Program overview

This immersion reflects the central themes of psychology, including topics such as the study of cognitive, developmental, social, and abnormal psychology. The study of behavior includes many different topics, but the unifying theme is that these courses all include the study of behavior using or applying the scientific method.

Notes about this immersion:

- This immersion is closed to students majoring in psychology.

Curriculum

COURSE	
Prerequisite	
PSYC-101	Introduction to Psychology
Electives	
Chose three of the following:	
PSYC-221	Abnormal Psychology
PSYC-221H	Honors Abnormal Psychology
PSYC-222	Biopsychology
PSYC-223	Cognitive Psychology
PSYC-224	Perception
PSYC-224H	Honors Perception
PSYC-225	Social Psychology
PSYC-226	Developmental Psychology
PSYC-231	Death and Dying
PSYC-233	History \& Systems in Psychology
PSYC-234	Industrial and Organizational Psychology
PSYC-235	Learning and Behavior
PSYC-236	Personality
PSYC-237	Psychology of Women
PSYC-238	Psychology of Religion
PSYC-239	Positive Psychology
PSYC-240	Human Sexuality
PSYC-241	Health Psychology
PSYC-242	Cultural Psychology
PSYC-255	Behavioral Science Research Methods
PSYC-300	Topics in Psychology

Public Policy

Program overview

This immersion provides students with a clear understanding of public policy, the policy process, and policy analysis. Students have the opportunity to develop perspectives on a variety of contemporary public policy issues, especially those that emerge from scientific and technological advancements. Policy Analysis (PUBL-301) and Decision Analysis (PUBL-302) are offered especially for students who are considering the MS in public policy or who have an interest in analytical tools.

Notes about this immersion:

- This immersion is closed to students majoring in public policy.
- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	
Choose three of the following:	
PUBL-201	Ethics, Values \& Public Policy
PUBL-210	Introduction to Qualitative Policy Analysis
PUBL-301	Public Policy Analysis
PUBL-302	Decision Analysis
PUBL-363	Cyber Security Policy and Law
PUBL-510	Technology Innovation and Public Policy
PUBL-520	Information \& Communications Policy
PUBL-530	Energy Policy
PUBL-531	Climate Change: Science, Technology and Policy
PUBL-589	Topics in Public Policy
STSO-201	Science and Technology Policy
STSO-421	Environmental Policy

[^48]
Queer and Transgender Studies

Program overview

The queer and transgender studies immersion is an interdisciplinary set of courses whose primary concern is the critical study of cultures, creative expressions, histories, economic structures, and socio-political and legal institutions as they impact the formation of queer and transgender identities and the lives and experiences of people in the LGBTQ+ community.

The immersion is comprised of courses that feature LGBTQ+ content either as the sole focus or as prominent topics within a wider context. Through these courses, the queer and transgender studies immersion offers vibrant resources for critically investigating matters of embodiment, practices and ideologies of identity formation, the complexities of sexual and gender diversities, dynamics of power relations, and specific aspects of queer and transgender politics, histories, and cultures. Courses also offer powerful conceptual tools for crafting inclusive forms of subjectivities, social relations, and communities.
This provides a valuable complement to many programs in the humanities, media and communication studies, the visual and performing arts, the social sciences, and the health-related fields.

Curriculum

COURSE	
Required	
WGST-210	Introduction to LGBTQ+ Studies
Electives	
Choose two of the following:	
WGST-206	Queer Looks
WGST-240	Human Sexuality
WGST-318	Philosophies of Love, Sex, and Gender
WGST-330	Performing Identity in Popular Media
WGST-351	Gender and Sexuality in Hispanic Studies
WGST-361	Queering Gender
WGST-459	Topics in LGBTQ+ Studies
* At least one of the elective courses must be at the 300 level or higher.	

Religious Studies

Brian Schroeder, Immersion Advisor
585-475-6346, bxsgla@rit.edu

Program overview

Religion plays a major role in human affairs. To understand more fully the nature of the relationship between society and the individual, it is essential to have some understanding of religion. The religious studies immersion engages students in the study of religion from the perspective of major Western and non-Western traditions through courses in disciplines such as anthropology, history, literature, philosophy, and psychology.

Notes about this immersion:

- Students must select three courses from at least two distinct disciplines (e.g., anthropology, English, history, philosophy, or psychology)
- Philosophy majors must take two courses in disciplines other than philosophy.

Curriculum

COURSE	
Electives	
Choose three of the following:	
Ritual and Performance	
ANTH-245	Global Islam
ENGL-307	Mythology \& Literature
FNRT-209	Medieval and Renaissance Music
HIST-369	Histories of Christianity
HIST-370	Global History of Religions
PHIL-301	Philosophy of Religion
PHIL-311	East Asian Philosophy
PHIL-409	Existentialism
PHIL-410	Medieval Philosophy
PHIL-412	Nineteenth Century Philosophy
PSYC-238	Psychology of Religion

[^49]
Renaissance Studies

Program overview

The Renaissance studies immersion is an interdisciplinary set of courses focused on the study of cultural events (artistic, literary, philosophical, religious, scientific, among others) occurring during the Renaissance period (c. 1300-1600). The Renaissance saw the formation of new concepts and the occurrence of groundbreaking events such as the beginning of modern science and technology, the religious Reformation, the birth of the nation-state, the establishment of the banking system, the expansion of geographical horizons, the encounter with new cultures and populations, and the development of the notions of human dignity and human rights. Studying the Renaissance is also crucial to understanding contemporary debates centered on post-humanism, trans-humanism, technological humanism, and the various critiques of humanism, all of which have their conceptual basis in the Renaissance notion of homo universalis, or universal human being.

Notes about this immersion:

- Students must select courses from three different disciplines in order to ensure interdisciplinarity.

Curriculum

COURS:
Electives Choose three of the following: ARTH-311 Art and Architecture of Italy: $1250-1400$ ARTH-317 Art and Architecture in Florence and Rome: 15th Century ARTH-318 Art and Architecture in Florence and Rome: 16th Century ARTH-379 Renaissance Painting in Flanders ENGL-308 Shakespeare Drama ENGL-406 Shakespeare: Tragedies PHIL-317 Renaissance Philosophy PRFL-250 Music History: Antiquity to Bach PRFL-323 Traditions of Shakespearean Theatre

* Students must select their courses from three different disciplines.

Science of Film, Photography, and Imaging

Paul Muenzer, Immersion Advisor

pjmiao@rit.edu

Program overview

The science of film, photography, and imaging immersion explores the basic science behind technologies used in film, photography, and other imaging applications. Introductions to human visual perception, color science, imaging physics, and imaging system engineering set a groundwork for common theories underlying all major imaging industries.
This immersion also provides necessary prerequisites for completion of a minor in imaging science. Please Note: Enrollment in this immersion is capacity-controlled. Students interested in declaring this immersion must contact the immersion advisor.
Notes about this immersion:

- The immersion is closed to students majoring in imaging science, motion picture science, and photographic sciences.

Curriculum

COURSE	
Required Course	
SOFA-103	Introduction to Imaging and Video Systems
Electives	
Choose two of the following:	
IMGS-221	Vision \& Psychophysics
IMGS-261	Linear and Fourier Methods for Imaging
IMGS-321	Geometric Optics
IMGS-341	Interactions Between Light and Matter
IMGS-351	Fundamentals of Color Science

Science, Technology, and Society

Program overview

The science, technology, and society immersion examines some of the major impacts of science and technology in the contemporary world. Special preference is given to American concerns. Students gain an overall appreciation of the social nature of science and technology as they have developed in the past, as they exist today, and as they may affect society in the future under various scenarios. Science and technology have become social systems in their own right and have made possible increasing freedom, a fantastic variety of choice, and, paradoxically, the growing interdependence of all segments of world society. A new level of public awareness and concern is crucial to understanding and dealing successfully with these consequences.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Electives	
Choose three of the following:	
STSO-201	Science and Technology Policy
STSO-230	Foundations of Engagement and Community Transformation
STSO-240	Social Consequences of Technology
STSO-246	History of Women in Science and Engineering
STSO-321	Face of the Land
STSO-335	Industry, Environment, and Community in Rochester
STSO-340	Technological Disasters
STSO-341	Biomedical Issues: Science and Technology
STSO-342	Gender, Science, and Technology
STSO-345	Makers of Modern Science
STSO-346	Technology in American History
STSO-425	Nature and Quantififation
STSO-441	Cyborg Theory: (Re)thinking the Human Experience in the 21st Century
STSO-442	Science, Technology and Society Classics
STSO-445	The Natural Sciences in Western History
STSO-489	Topics in Science, Technology, \& Society
STSO-510	Interdisciplinary Capstone Seminar

* At least one course must be taken at the 300-level or above.

Social Inequalities

Program overview

Social inequalities and collective responses to them, both locally and globally, are the focus of this immersion. Students explore the interplay between social and cultural dimensions of the rapid globalization of societies, and the concurrent inequalities of race, ethnicity, class, gender, and culture. The egalitarian strivings that emerge from these inequalities also will be examined. Courses offer the unique standpoints of two academic disciplines, sociology and anthropology, to analyze the roles of powerful social institutions and culture industries, and to identify and explain social inequalities and resulting conflicts and egalitarian hopes.

Curriculum

course

Electives

Choose three of the following:	
ANTH-210	Culture and Globalization
ANTH-225	Globalizing Africa
ANTH-235	Immigration to the U.S.
ANTH-244	Human Centered Design Queries: An Anthropological Approach
ANTH-246	Gender and Health
ANTH-260	Native North Americans
ANTH-285	American Indian Languages
ANTH-295	Global Public Health
ANTH-328	Heritage and Tourism
ANTH-335	Culture and Politics in Latin America
ANTH-341	Global Addictions
ANTH-345	Genocide and Transitional Justice
ANTH-361	Sociology of Numbers
ANTH-375	Native American Cultural Resources and Rights
ANTH-380	Nationalism and Identity
ANTH-410	Global Cities
ANTH-425	Global Sexualities
ANTH-430	Visual Anthropology
ANTH-455	Economics of Native America
ECON-451	Economics of Women and the Family
ECON-452	Economics of Native America
INGS-455	Economics of Native America
SOCI-210	Black America-Culture \& HipHop
SOCI-215	The Changing Family
SOCI-220	Economics of Women and the Family
SOCI-225	Minority Group Relations
SOCI-230	Social Inequality
SOCI-235	Sociology of Work
SOCI-246	Women, Work, and Culture
SOCI-295	Gender and Health
SOCI-300	Global Public Health
SOCI-305	Sociology of American Life
SOCI-315	Global Exiles of War and Terror
SOCI-322	Health and Society
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-350	Social Change
SOCI-361	SOCI-395

Sociology

Program overview

The immersion in sociology provides insights into the interactions between individuals and the major social forces shaping their lives. Students will learn sociology's perspectives and methods and use them to explain how society is possible, to examine various social problems, and to assess collective efforts for social change.

Notes about this immersion:

- This immersion is closed to students majoring in sociology and anthropology who have chosen the sociology track.

Curriculum

COURSE	
Electives:	
Choose three of the following:	
ANTH-246	Gender and Health
ANTH-295	Global Public Health
ANTH-301	Social and Cultural Theory
ANTH-302	Qualitative Research
ANTH-303	Statistics in the Social Sciences
ANTH-361	Sociology of Numbers
SOCI-210	Black America-Culture \& HipHop
SOCI-215	The Changing Family
SOCI-220	Minority Group Relations
SOCI-225	Social Inequality
SOCI-230	Sociology of Work
SOCI-235	Women, Work, and Culture
SOCI-240	Deaf Culture in America
SOCI-246	Gender and Health
SOCI-295	Global Public Health
SOCI-300	Sociology of American Life
SOCI-301	Social and Cultural Theory
SOCI-302	Qualitative Research
SOCI-303	Statistics in the Social Sciences
SOCI-305	Crime and Human Rights: Sociology of Atrocities
SOCI-315	Global Exiles of War and Terror
SOCI-322	Health and Society
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-350	Social Change
SOCI-355	CyberActivism: Diversity, Sex, and the Internet
SOCI-361	Sociology of Numbers
SOCI-395	Borders:Humans, Boundaries, and Empires
SOCI-451	Topics in Sociology
SOCI-489	Women, Work, and Culture
WGST-235	
WGST-451	

Theatre Arts

Program overview

The theatre arts immersion offers courses in dramatic literature, theatre history, theory, and practice. Students expand their knowledge of dramatic and theatrical arts as well as study the role and function of theatre in the broader contexts of history, culture, and the communication of ideas.
Notes about this immersion:

- At least one course must be taken at the 300 level or higher.

Curriculum

COURSE

Electives	
Choose three of the following:	
PRFL-220	Theatre Ensemble*
PRFL-221	Fundamentals of Acting
PRFL-227	Dramatic Theory and Text Analysis
PRFL-230	Devising Theatre: Creating Ensemble Based Performance
PRFL-321	Traditions of Theatre in Europe
PRFL-322	Traditions of Theatre in the U.S.
PRFL-323	Traditions of Shakespearean Theatre
PRFL-324	African American Playwrights
PRFL-327	American Musical Theater
PRFL-330	Performing Identity in Popular Media (WI)
PRFL-331	Fundamentals of Directing
PRFN-200	Appreciation of Theatrical Design
PRFN-204	Scenic Painting and Props
PRFN-240	Dance: History
PRFN-243	Dance: Jazz
PRFN-244	Dance: Hip Hopt
PRFN-246	Dance: Modernt
PRFN-247	Dance: Ballett

* Theatre Ensemble counts for one credit hour. The ensemble course may be taken up to three times for a total of three credit hours toward the theatre arts immersion.
\dagger Only one dance class may be counted toward completion of the theatre arts immersion. \neq At least one course must be completed at the 300 -level or above.

Theatre Design and Stagecraft

Program overview

The theatre design and stagecraft immersion fosters an understanding and appreciation of the craft, theory, and art of design for theatre and dance. You will explore artistic, historical, and cultural aspects of design for diverse audiences.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Course	
PRFN-200	Appreciation of Theatrical Design
Electives	
Choose one of the following:	
PRFN-201	Appreciation of Media in Performance
PRFN-204	Scenic Painting and Props
PRFN-207	Appreciation of Theatrical Costumes
PRFN-208	Appreciation of Theatrical Scenery
PRFN-209	Appreciation of Theatrical Lighting
Choose one of the following:	
PRFL-321	Traditions of Theatre in Europe
PRFL-322	Traditions of Theatre in the U.S
PRFL-323	Traditions of Shakespearean Theatre
PRFL-324	African American Playwrights
PRFL-327	American Musical Theater

Theatre Design and Stagecraft

Program overview

The theatre design and stagecraft immersion fosters an understanding and appreciation of the craft, theory, and art of design for theatre and dance. You will explore artistic, historical, and cultural aspects of design for diverse audiences.

Notes about this immersion:

- Students are required to complete at least one course at the 300 -level or above as part of the immersion.

Curriculum

COURSE	
Required Course	
PRFN-200	Appreciation of Theatrical Design
Electives	
Choose one of the following:	
PRFN-201	Appreciation of Media in Performance
PRFN-204	Scenic Painting and Props
PRFN-207	Appreciation of Theatrical Costumes
PRFN-208	Appreciation of Theatrical Scenery
PRFN-209	Appreciation of Theatrical Lighting
Choose one of the following:	Traditions of Theatre in Europe
PRFL-321	Traditions of Theatre in the U.S
PRFL-322	Traditions of Shakespearean Theatre
PRFL-323	African American Playwrights
PRFL-324	American Musical Theater
PRFL-327	

Urban Studies

Program overview

Metropolitan areas must address such enduring issues as poverty, homelessness, affordable housing, transportation, pollution, education, water and food security, health, crime, safety, recreation, zoning, segregation, ethno-racial tensions, and economic development. Each city must do so with recognition of its place in the wider regional, national, and global contexts. The urban studies immersion helps students identify and analyze such fundamental issues and allows them to explore and assess various ways policy-makers respond to those issues.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-235	Immigration to the U.S.
ANTH-312	People Before Cities
ANTH-315	The Archaeology of Cities
ANTH-410	Global Cities
ANTH-489	Topics in Anthropology*
ECON-440	Urban Economics
HIST-210	Culture and Politics in Urban Africa
INGS-210	Culture and Politics in Urban Africa
SOCI-220	Minority Group Relations
SOCI-235	Women, Work, and Culture
SOCI-300	Sociology of American Life
SOCI-330	Urban (In)Justice
SOCI-345	Urban Poverty
SOCI-489	Topics in Sociology*
STSO-550	Sustainable Communities
*This class can be taken if the topic is relevant to Urban Studies.	

Visual Culture

Program overview

Visual culture explores the role of visual media in everyday life and its critical function in the dissemination of ideas in the public sphere. Emphasizing comparative critical approaches to the convergence of art, popular media, science, and technology, the immersion engages globalized visual media ranging from photography, television, film, new media (the web, digital imaging, and social networks), architecture, design, and art (painting, sculpture, and multimedia forms) in the context of such social arenas as art, news, science, advertising, and popular culture. The goal is to help students develop media literacy.

Notes about this immersion:

- At least one course must be taken at the 300 level or higher.

Curriculum

COURSE	
Electives	
Choose three of the following:	
FNRT-370	American Painting*
MUSE-220	Introduction to Museums \& Collecting
MUSE-225	Museums \& the Digital Age
MUSE-360	Visitor Engagement \& Museum Technologies
MUSE-388	Gender and Contemporary Art
VISL-206	Queer Looks
VISL-224	History \& Theory of Exhibitions
VISL-373	American Film Since the Sixties
VISL-376	Visual Culture Theory
VISL-377	Imag(in)ing Rochester
VISL-383	Traumatic Images
VISL-384	Art of Dying
VISL-388	Gender and Contemporary Art
VISL-440	Deaf Art \& Cinema
WGST-388	Gender and Contemporary Art

* This course is offered on RIT's international campuses.

Women's and Gender Studies

Program overview

The women's and gender studies immersion allows students to explore the significance of gender as it intersects with racial, ethnic, religious, national, class, sexuality, and dis/ability-based identities, past and present. The immersion introduces critical analysis and knowledge-building methods drawn from fields such as women's and gender studies, feminist theories, critical race studies, queer studies, social justice work, and activism. Courses build knowledge about the personal, social, cultural, economic, and historical dynamics that inform gender and intersecting social categories. The immersion provides valuable skills and experiences applying these different lenses to real-world interactions with diverse individuals and communities, to current social challenges that impact multiple parties, and with an eye to improving equity and fair outcomes for everyone concerned.

Curriculum

COURSE	
Electives	
Choose three of the following:	
ANTH-325	Godies and Culture
ANTH-425	Foundations of Women and Gender Studies
WGST-200	Feminist Practices of Inquiry
WGST-205	Queer Looks
WGST-206/VISL-206	Introduction to LGBTQ+ Studies
WGST-210	Men, Males, and Masculinities
WGST-230	Women, Work, and Culture
WGST-235/SOCI-235	Psychology of Women
WGST-237/PSYC-237	Human Sexuality
WGST-240/PSYC-240	Prostitution and Vice
WGST-245/CRIM-245	History of Women in Science and Engineering
WGST-246/STSO-246	Domestic Violence
WGST-250/CRIM-250	Seminar on Sexual Violence
WGST-255/CRIM-255	Women and Crime
WGST-265/CRIM-265	Women, Gender, and Computing
WGST-282/HIST-282	American Women's and Gender History
WGST-290/HIST-190	The History of Families and Children in the U.S.
WGST-291/HIST-191	Feminist Theory
WGST-309/PHIL-309	Philosophies of Love, Sex, and Gender
WGST-318/PHIL-318	Performing Identity in Popular Media
WGST-330/PRFL-330	Women and the Deaf Community
WGST-335/HIST-335	Studies
WGST-342/STSO-342	Gender, Science, and Technology
WGST-351/MLSP-351	Gender and Sexuality in Hispanic Studies
WGST-352/MLCH-352	Globalization and Gender through Chinese Cinema: From Kungfu to World
WGST-357/COMM-357	Factory
WGST-361	Queering Gender
WGST-383/VISL-383	Traumatic Images
WGST-384/VISL-384	Art of Dying
WGST-388	Gender and Contemporary Art
WGST-414/ENGL-414	Women and Gender in Literature and Media
WGST-449	Topics in Women's and Gender Studies
WGST-451/ECON-451/	Economics of Women and the Family
WGST-451	
WGST-481/POLS-481	Woma

Undergraduate Admission
 rit.edu/admissions

First Year Admission

Students applying for first-year admission for the fall semester may apply through an Early Decision Plan or Regular Decision
Plan. The Early Decision Plan is binding and designed for those who consider RIT their first-choice university and wish to receive an early notification regarding admission. Early Decision 1 (ED1) has a November 1 application deadline. Admission notifications are provided for ED1 by mid-December and accepted students are expected to commit by January 15. Early Decision 2 (ED2) has a January 1 application deadline. Admission notifications are provided for ED2 by mid-January and accepted students are expected to commit by February 15.

First-year students who choose not to apply for Early Decision 1 or 2 are considered under our Regular Decision Plan. Regular Decision applicants are those who have provided all required application materials by January 15. Regular Decision applicants will begin receiving their admission decision in mid-March. Applications received after January 15 will be reviewed on a space available basis.

All applications for spring or summer semester entry are reviewed as they are received, and notification letters are mailed four to six weeks after all application credentials are received. Some programs are limited to fall entry only. Students interested in beginning their studies in the spring or summer semesters are encouraged to submit all required application materials by November 1.

Transfer admission

Applications for transfer admission are reviewed as they are received, and notification letters are mailed four to six weeks after the application is completed. Because some programs fill to capacity, it is strongly recommended that transfer applicants complete their application by March 1 (December 1 for physician assistant applicants) for fall or summer admission and by November 1 for spring admission.

A transfer credit evaluation is completed as part of the application process. Transfer credit is granted by the academic departments for course work that is related to students' intended majors, if it is completed at a regionally accredited college or university. Usually a grade of C or better is required for transfer credit to be awarded.

There is no limit on the number of credit hours that can be awarded. However, a recipient of a two-year degree from an accredited university cannot receive more than 60 semester credits for that degree. A matriculated undergraduate student's year level is determined by the number of credit hours the student has earned, according to this scale:

YEAR LEVEL	$1-4-\mathrm{YEAR}$ PROGRAMS	$5-\mathrm{YEAR}$ PROGRAMS
1	$0-26$	$0-26$
2	$27-55$	$27-55$
3	$56-84$	$56-75$
4	$85-$ above	$76-95$
5		$96-\mathrm{above}$

Specific instructions for completing the application process are contained in the application packet (also online). Be sure to read the instructions carefully before applying.

Factors considered in the admissions decision include, but are not limited to, past high school/college performance (particularly in required academic subjects), admission test scores (unless you are applying under our test-optional admission plan), competitiveness of high school or previous college, art portfolio (if required for major), and related experiences (work, military, etc.). Recommendations from those familiar with your academic performance and interviews with admissions counselors often are influential.

If you are accepted for admission, a $\$ 500$ nonrefundable enrollment deposit reserves a place in your class and is credited to your first-semester costs at RIT. The due date for this deposit is indicated with each offer of admission.

International applicants

International students whose native language is not English must submit results of the TOEFL or the IELTS examinations along with the requirements listed below.

Application requirements

In order to complete the application process, you need to submit the following:

1. A fully completed application for admission (includes any required supplemental forms);
2. A nonrefundable $\$ 65$ application fee;
3. An official high school transcript for all freshman applicants and transfer students with fewer than 30 semester hours completed at the time of application;
4. Official ACT or SAT-I results for all freshman applicants (unless you are applying under our test-optional admission plan);
5. Official transcripts of all completed college course work and a list of any courses in progress (and not on the transcript) or courses to be completed before enrolling at RIT; and
6. A portfolio of original artwork as part of the application process for students applying for admission to academic majors offered by the schools of Art, Design and Film and Animation (BFA programs). Please review the portfolio guidelines available at www.rit.edu/artdesign/portfolio-requirements before submitting your portfolio.

Early admission: Students who complete the prescribed number and distribution of high school units in three years, with the exception of fourth-year English/history, may seek admission under an Early Admission Program. Please contact the Undergraduate Admissions Office for details.

Placement testing for admitted students: Many majors at RIT depend on a solid foundation in mathematics. In an effort to enable students to succeed in their college mathematics courses, the School of Mathematical Sciences developed a Mathematics Placement Exam. It assesses students' mastery of some of the fundamental mathematical concepts they have seen in their high school mathematics courses.

New York State immunization requirement: New York State Public Law 2165 requires that all matriculated students enrolled for more than 6 credit hours in a term and born after January 1, 1957, must provide RIT's Student Health Center with proof that they have received the appropriate immunizations against measles, rubella, and mumps. Immunization requirements include two measles vaccinations, at least one month apart, with a live virus (after January 1, 1968, and after the first birthday) and one vaccination each against mumps and rubella (after January 1, 1969, and after the first birthday). Additional information concerning the necessary documentation and where it must be sent is included with the Admissions Office acceptance packet or available from the Student Health Center office.

Covid vaccine requirement: All RIT students are required to be fully vaccinated. Individuals are considered fully vaccinated 1) two weeks after their second dose in a 2 -dose series (such as the Pfizer or Moderna vaccines); or 2) two weeks after a single-dose vaccine (such as Johnson \& Johnson's Janssen vaccine). For more information on RIT's Covid vaccination policy, please visit rit.edu/ready/ rit-safety-plan.

Admissions services and campus visits: Selecting the appropriate college is a difficult decision, and visiting a campus often helps students form more accurate impressions. We encourage campus visits and personal admission interviews because they allow students to see our outstanding facilities firsthand and get answers to questions they may have while examining personal, academic, and career goals.

Experienced admissions counselors are available to provide information and assist students with exploring academic options. Students may choose to participate in Admissions Open House programs or arrange personal interviews and campus tours. These options are not required for admission. An appointment for an admissions visit and campus tour may be scheduled by contacting the Undergraduate Admissions Office via our website, rit.edu/admissions, or calling (585) 475-6631. Office hours are Monday through Friday, 8:30 a.m. to $4: 30$ p.m. EST.

Deaf and hard-of-hearing students who wish to enter NTID or another RIT college may contact the RIT/NTID Office of Admissions by sending an e-mail to ntidadmissions@ntid.rit.edu or calling (585) 475-6700 (voice), toll free in the U.S. and Canada (866) 6446843 (voice), or by videophone (585) 743-1366. Office hours are Monday through Friday, 8:30 a.m. to 4:30 p.m. EST.

Part-time enrollment services: The Office of Part-time Enrollment Services provides central information and counseling services to students interested in enrolling in part-time undergraduate studies offered through RIT's various colleges and schools. Contact the office if assistance is needed in selecting an academic major, exploring financial aid opportunities, registering for classes, or receiving information about any aspect of part-time study at RIT.

Staff members are available to assist you from 8:30 a.m. to 4:30 p.m., Monday through Thursday, and from 8:30 a.m. to 4:30 p.m. on Friday. We invite you to call (585) 475-2229 for information, or visit our office on the lower level of the Bausch \& Lomb Center on campus.

Applying to NTID

In addition to the six application requirements listed above for admission to RIT, deaf and hard-of-hearing students applying for
admission to programs offered at the National Technical Institute for the Deaf (NTID) or to any other college of RIT must submit an audiological record completed by a certified audiologist (CCC-A). All audiograms must be unaided and have been completed within three years of the application date. The audiogram is required in order to qualify for educational access and support services as well as NTID's federally supported tuition rate. Eligibility for NTID access and support services, which is agreed upon by RIT and the United States Department of Education, includes this criteria:
Hearing loss: An audiogram is required. Students must demonstrate a significant hearing loss and demonstrate the ability to benefit from the models used at RIT/NTID designated specifically to provide access to academic programs for deaf and hard-of-hearing students.

The NTID Office of Admissions adheres to the same application deadlines and notification dates for early and regular decision as outlined in the freshman admission text in this section.

Deaf and hard-of-hearing students may enter into an NTID program, or they may qualify for entry directly into a program in another RIT college with NTID sponsorship.

FIRST YEAR ADMISSION PREPARATION \& REQUIREMENTS

Most students applying to RIT choose a specific major as part of the admission process. In addition, most colleges offer undeclared options. Given the variety of majors, admission requirements vary from one major to another. The chart below is provided to help you select a major or option that best fits your interests and academic background.

For all bachelor's degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science and 3 years of social studies and/or history. See specific math and science requirements and other recommendations below.

College		Majors and Options	Specific Math and Science Requirements and Other Recommendations
College of Art and Design	School of Art - Illustration - Medical Illustration - Studio Arts - Ceramics Option - Expanded Forms Option - Furniture Design Option - Glass Option - Metals and Jewelry Design Option - Non-Toxic Printmaking Option	- Painting Option - Sculpture Option - Art Exploration ${ }^{1}$ School of Design - 3D Digital Design - 3D Visualization Option - Game Arts Option - Graphic Design - Industrial Design - Interior Design - New Media Design - Design Exploration ${ }^{1}$	- Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. - Portfolio guidelines can be found at: www.rit.edu/ artdesign/portfolio-requirements. - Medical Illustration requires biology.
	School of Film and Animation - Film and Animation - Animation Option - Production Option - Motion Picture Science		- Film and Animation applicants are required to submit a portfolio of original work. Portfolio guidelines can be found at: www.rit.edu/artdesign/ portfolio-requirements. - Motion Picture Science requires 3 years of math; pre-calculus and physics are recommended.
	School of Photographic Arts and Sciences - Photographic and Imaging Arts - Advertising Photography Option - Fine Art Photography Option - Photojournalism Option - Visual Media Option	- Photographic Sciences - Photographic Arts and Sciences Exploration ${ }^{1}$	- Biology is required for the biomedical photographic communications option of photographic sciences.
Saunders College of Business	- Accounting - Finance - Hospitality and Tourism Management - Gobal Business Management	- Management Information Systems - Marketing - Supply Chain Management - Business Exploration ${ }^{1}$	- 3 years of math required; pre-calculus recommended
Golisano College of Computing and Information Sciences	- Computer Science - Computing and Information Technologies - Computing Security - Game Design and Development - Human-Centered Computing	- New Media Interactive Development - Software Engineering - Web and Mobile Computing - Computing Exploration ${ }^{1}$	- 4 years of math including pre-calculus required in all programs except Computing and Information Technologies, Human-Centered Computing, and Web and Mobile Computing, where 3 years of math are required and pre-calculus is recommended - All programs require chemistry or physics and strongly recommend both - Computing electives are recommended
Kate Gleason College of Engineering	- Biomedical Engineering - Chemical Engineering - Computer Engineering - Electrical Engineering (all options) - Industrial Engineering (all options)	- Mechanical Engineering (all options) - Microelectronic Engineering - Engineering Exploration Program ${ }^{1}$	- 4 years of math required; including pre-calculus or above - Chemistry and physics required - Biology required for Biomedical Engineering

Pre-Professional Studies

Students interested in pre-professional studies (pre-law, pre-med and other pre-health professions) may enroll in any major at RIT and then take advantage of the advising and student organizations associated with their respective interests.
${ }^{1}$ A one-year program for students wishing to explore alternatives before selecting a specific major within this RIT college or school.

College	Majors and Options
College of Engineering Technology	- Civil Engineering Technology - Computer Engineering Technology (all options) - Electrical Engineering Technology (all options) - Environmental Sustainability, Health and Safety
	Department of Packaging and Graphic Media Science - Media Arts and Technology - Packaging Science
College of Health Sciences and Technology	- Biomedical Sciences - Nutritional Sciences - Diagnostic Medical Sonography . Physician Assistant (BS/MS) (Ultrasound) - Dietetics and Nutrition - Exercise Science
College of Liberal Arts	- Advertising and Public Relations - Applied Modern Language and Culture (all options) - Communication - Criminal Justice - Humanities, Computing, and Design - Economics - International and Global Studies - Journalism - Museum Studies - Philosophy - Political Science - Psychology - Sociology and Anthropology - Liberal Arts Exploration ${ }^{1}$
College of Science	- Applied Mathematics - Applied Statistics and Actuarial Science - Biochemistry - Bioinformatics and Computational Biology - Biology - Biotechnology and Molecular Bioscience - Chemistry - Computational Mathematics - Environmental Science - Imaging Science - Physics - Science Exploration ${ }^{1}$
	Deaf and hard-of-hearing students seeking admission to bachelor's degree programs in th appropriate college and apply for NTID support and access services during the application for students who may need additional preparation before entering a bachelor's degree pro
	- American Sign Language-English Interpretation (BS)
	- Community Development and Inclusive Leadership (BS)
National Technical Institute for the Deaf (NTID)	Associate Degree Leading to Bachelor's Degree (A+B) Programs (Deaf and Hard-ofHearing Students ONLY) - Accounting Technology - Administrative Support Technology - Applied Computer Technology - Applied Liberal Arts - Applied Mechanical Technology - Business - Business Administration - Career Exploration Studies ${ }^{1}$ - Civil Technology - General Science - Laboratory Science Technology - Mobile Application Development - 3D Graphics Technology
	Career-focused Associate Degree Programs (Deaf \& Hard-of-Hearing Students ONLY) - Accounting Technology - Administrative Support Technology - Applied Computer Technology - Architectural and Civil Drafting Technology - Business Administration - Business Technology - Career Exploration Studies ${ }^{1}$ - Design and Imaging Technology - Laboratory Science Technology - Mobile Application Development - Precision Manufacturing Technology - 3D Graphics Technology
School of Individualized Study (SOIS)	- Applied Arts and Sciences

Specific Math and Science Requirements and Other Recommendations

Coliege of
Engineering
Technology

College of
Liberal Arts

College of Science

National
Technical
Institute
or the Deaf
(NTID)

School of
dividualized

[^50]
Undergraduate Admission

Transfer Admission Guidelines

COLLEGE OF ART AND DESIGN

Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
School of Art Illustration, Medical Illustration, Studio Arts School of Design 3D Digital Design, Graphic Design, Industrial Design, Interior Design, New Media Design	Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program.	Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program.
School of Film and Animation Film and Animation	Courses in liberal arts, science, design, drawing, and film, video, or animation	Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges
Motion Picture Science	Courses in calculus or higher mathematics, college chemistry, calculus-based physics, and liberal arts	Transfer as a third-year student is uncommon, as comparable programs are not generally available at other colleges
School of Photographic Arts and Sciences Photographic and Imaging Arts Advertising Photography Option Fine Art Photography Option Photojournalism Option Visual Media Option	Courses in liberal arts, photography, design, and art history. Portfolio required for photo credit.	Applied Photography. Portfolio required for photo credit.
Photographic Sciences	Courses in biology, college physics, mathematics, photography, and liberal arts. Portfolio required for photo credit.	No common program available

SAUNDERS COLLEGE OF BUSINESS

| Majors and Options | Transfer Course Recommendations without
 Associate Degree | Appropriate Associate Degree Programs for Transfer |
| :--- | :--- | :--- | :--- |
| Accounting | Courses in economics, accounting, liberal arts, science, and
 mathematics | AS degree in Accounting or Business Administration |
| Finance
 Global Business Management
 Marketing
 Supply Chain Management | Courses in economics, liberal arts, science, and mathematics | AS degree in Business Administration or Liberal Arts |
| Management Information Systems | Courses in liberal arts, math, science, economics, and computer
 science | AS degree in Data Processing/Management Information
 Systems or in Business Administration |
| Hospitality and Tourism Management | Courses in business and economics, foreign language, math,
 science, and liberal arts. | Dietetics or Nutrition, Food Service Management, Hotel/
 Resort Management, Restaurant Management, Travel//
 Tourism Management, Agriculture and Technology,
 Business, or Liberal Arts |

B. THOMAS GOLISANO COLLEGE OF COMPUTING AND INFORMATION SCIENCES

| Majors and Options | Transfer Course Recommendations without
 Associate Degree | Appropriate Associate Degree Programs for Transfer |
| :--- | :--- | :--- | :--- |
| Computer Science Department
 Computer Science | Courses in computer science, calculus, liberal arts, calculus-based
 physics, chemistry, or biology | AS degree in Computer Science, Engineering Science,
 or Liberal Arts |
| Computing Security Department
 Computing Security | Courses in programming, computer applications, calculus, lab
 sciences, liberal arts | AS degree in Computer Applications, Computer Science,
 Information Technology, or Liberal Arts |
| School of Information
 Computing and Information Technologies
 Human-Centered Computing
 Web and Mobile Computing
 School of Interactive Games and Media
 Game Design and Development
 New Media Interactive Development | | |
| Software Engineering Department
 Software Engineering | Courses in computer science, calculus, liberal arts;
 calculus-based physics, chemistry, or biology | AS degree in Computer Science, Engineering Science, or |
| KATE GLEASON COLLEGE OF ENGINEERING | Transfer Course Recommendations without | Liberal Arts |

Biomedical Engineering	Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts. Computer science courses for computer engineering applicants.	AS degree in Engineering Science (plus computer science electives for computer engineering applicants)
Chemical Engineering		
Computer Engineering		
Electrical Engineering Computer Engineering Option Energy Option Robotics Option		
Industrial Engineering Ergonomics Option Lean Six Sigma Option Manufacturing Option Six Sigma Option Supply Chain Management Option		
Mechanical Engineering Aerospace Option Automotive Option Bioengineering Option Energy and Environment Option		
Microelectronic Engineering		
COLLEGE OF ENGINEERING TECHNOLOGY		
Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
School of Engineering Technology		
Civil Engineering Technology	Courses in mathematics, science, engineering science, and engineering technology	Civil, Construction, Environmental, Architectural, Transportation, or Surveying Technology; Engineering Science
Computer Engineering Technology (all options)	Courses in computer science, math, science, engineering science, and engineering technology	Computer Technology, Electrical or Electronic Technology, or Computer Science
Electrical Engineering Technology (all options)	Courses in mathematics, science, engineering science, and engineering technology	Electrical Technology, Electronic Technology, Engineering Science
Environmental Sustainability, Health and Safety	Math through Calculus I, micro and macro economics, introductory courses in biology, chemistry, and physics	Biology, Chemistry, or Environmental Sciences; Business or Public Administration; Liberal Arts with math/science
Mechanical Engineering Technology (all options)	Courses in mathematics, science, engineering science, and engineering technology	Mechanical, Design and Drafting, Air Conditioning, or Electromechanical Technology; Engineering Science
Mechatronics Engineering Technology	Courses in mathematics, science, engineering science, and engineering technology	Electrical or Mechanical Technology, Electronic Technology, Engineering Science
Robotics and Manufacturing Engineering Technology	Courses in mathematics, science, engineering science, and engineering technology	Manufacturing, Mechanical, Drafting and Design, Robotics, or Electromechanical Technology; Engineering Science
Department of Packaging and Graphic Media Science		
Media Arts and Technology	Courses in liberal arts, college math, physics and chemistry, business	Transfer from associate degree programs considered on an individual basis
Packaging Science	Courses in business, mathematics, science, liberal arts, statistics, or computer science	Business Administration, Marketing, Management, Graphic Arts, Engineering Science, Liberal Arts with math/science

COLLEGE OF HEALTH SCIENGES AND TECHNOLOGY

Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
Biomedical Sciences	Courses in liberal arts, sciences, and math	AS degree in Biology or Liberal Arts with biology option
Diagnostic Medical Sonography (Ultrasound)	Courses in liberal arts, sciences, and math	AS degree in Liberal Arts with science option; Allied Health; Radiologic Technology
Dietetics and Nutrition	Courses in liberal arts, sciences, and math. Science courses are required for Dietetics and Nutrition major.	Dietetics or Nutrition, Foodservice Management, or Nutritional Sciences
Cxercise Science	Courses in liberal arts, sciences, and math	AS degree in Liberal Arts with science option; Allied
	Courses in liberal arts, sciences, and math	Health areas
Physician Assistant (Fall Entry Only)		AS degree in Liberal Arts with science option; Allied
Health areas		

Undergraduate Admission

COLLEGE OF LIBERAL ARTS

Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
Advertising and Public Relations	Courses in advertising, marketing, communications, liberal arts, and science	Advertising, Business/Marketing, Communications, Public Relations, or Liberal Arts
Applied Modern Language and Culture (all options)	Courses in liberal arts, science, foreign language, and history	Liberal Arts with social sciences, science, or languages
Communication	Courses in liberal arts, math, science, and computer science	Liberal Arts with emphasis in communication and a technical field such as business, photography, or computer science
Criminal Justice	Courses in criminal justice or related areas, liberal arts, math, and science	Criminal Justice, Human Services, or Liberal Arts
Humanities, Computing, and Design	Courses in liberal arts, math, science, and computer science	Liberal Arts with emphasis in communication and a technical field such as business, photography, or computer science
Economics	Courses in business, liberal arts, math, science, and computer science	AS degree in Business Administration or Liberal Arts
International and Global Studies Political Science	Courses in liberal arts, science, foreign language, and history	Liberal Arts with social sciences, sciences, or languages
Journalism	Courses in liberal arts, math, science, and computer science	Liberal Arts with emphasis in communication and a technical field such as business, photography, or computer science
Museum Studies	Courses in liberal arts, art history, studio arts, photography, business, and chemistry	Fine Arts, Liberal Arts, or Business/Marketing
Philosophy	Courses in liberal arts, math, science, philosophy, and ethics	Liberal Arts
Psychology	Courses in liberal arts, sciences, social sciences	Liberal Arts with science or social science
Sociology and Anthropology	Courses in liberal arts, sciences, and math	Liberal Arts, Environmental Studies, Economics, Government, Science
NATIONAL TECHNICAL INSTITUTE FOR THE DEAF		
Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
3D Graphics Technology, Accounting Technolo Support Technology, Applied Computer Techn Liberal Arts, Applied Mechanical Technology, Drafting Technology, ASL-English Interpretatio Administration, Business Technology, Civil Tech Development and Inclusive Leadership, Design Technology, General Science, Laboratory Scien Application Development, Precision Manufact baccalaureate Studies	Applied Transfer requirements vary by program. ctural and Civil iness, Business y, Community maging Technology, Mobile	Transfer requirements vary by program. Please contact NTID Office of Admissions, 585-4756700, toll free in the U.S. and Canada at 866-644-6843, or by videophone at 585-743-1366.
COLLEGE OF SCIENCE		
Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
Chester F. Carlson Center for Imaging Science		
Imaging Science	Courses in math, computer science, and liberal arts	AS degree in Liberal Arts with math/science option, Computer Science, Engineering Science, Science
Thomas H. Gosnell School of Life Sciences		
Biology	Courses in liberal arts, sciences, and math	AS degree in Biology or Liberal Arts with biology option
Bioinformatics and Computational Biology Biotechnology and Molecular Bioscience	Courses in liberal arts, sciences, math, and computing	AS degree in Biotechnology or Liberal Arts with biology
Environmental Science	Courses in liberal arts, sciences, and math	AS degree in Biology, Chemistry, Environmental Science, Liberal Arts with science option
School of Mathematical Sciences		
Applied Mathematics Applied Statistics Computational Mathematics	Courses in liberal arts, physics, math, and chemistry	AS degree in Liberal Arts with math/science option
School of Chemistry and Materials Science		
Biochemistry Chemistry	Courses in liberal arts, chemistry, math, and physics	AS degree in Liberal Arts with chemistry option; Chemical Technology, Laboratory Technology
School of Physics and Astronomy		
Physics	Courses in calculus or higher mathematics, college chemistry, calculus-based physics, and liberal arts	No common program available.
SCHOOL OF INDIVIDUALIZED STUDY		
Majors and Options	Transfer Course Recommendations without Associate Degree	Appropriate Associate Degree Programs for Transfer
Applied Arts and Sciences		The Applied Arts and Sciences program is appropriate for individuals who have prior college-level learning, are interested in changing majors, have unique ideas about how they want to design their major, or want to prepare themselves for a career that requires skills and expertise from several disciplines.

University Costs

The following information is provided to assist students and their families in understanding the full range of student financial aid and scholarship programs available to undergraduates, as well as the costs, payment procedures, and refund policies associated with student enrollment at RIT.

Costs and payment procedures

Charges for tuition, fees, and room and board are computed on a term basis. University billing statements may be paid by cash, check, or electronic check (e-check). The university does not accept credit card payments for tuition, fees, and room and board that appear on the student billing statement. However, we have an arrangement for a third-party vendor to accept MasterCard, VISA, and Discover Card when payment is made online. The vendor does charge a service fee for each credit card transaction.

Billing-related payments by check may be mailed to: Rochester Institute of Technology, Student Financial Services, 25 Lomb Memorial Drive, Rochester, NY 14623. Payment also may be made in person at the Student Financial Services Office on the first floor of the University Services Center. Credit card and e-check payment information can be found on the Student Financial Services website at rit.edu/eservices.
Due dates are clearly designated on the billing statement and our website. Failure to pay the amount due or arrange an optional payment plan by the due date will result in a late payment fee for students without a valid deferral. Please visit www. rit.edu/sfs/billing-and-payment-options for information reakted to billing, payment options, prepayment plans, and more.

Tuition assessment policies

1. Degree-seeking students are charged the undergraduate rate for all courses taken, including those courses taken while on co-op.
2. Students on co-op will not be charged tuition for those semesters unless they also are enrolled in classes.
3. Non-degree seeking students are charged for the type of course taken (undergraduate rate for undergraduate courses, graduate rate for graduate courses).
4. Students taking courses during summer semester should refer to the Summer Bulletin for policies and procedures.

2022-23 RIT Undergraduate Cost of Attendance (Estimated charges, two semesters)

Expenses	Per Year
BILLABLE COSTS	$\$ 53,720$
Tuition (12-18 credit hours)	$\$ 338$
Student Activities Fee	$\$ 460$
Student Health Services Fee	$\$ 8,728$
Rent*	$\$ 6,250$
Board†	$\mathbf{\$ 6 9 , 4 9 6}$
Total Estimated Billed Expenses*	$\$ 2,858$
Books, personal expenses, transportation, and loan origination	$\mathbf{\$ 7 2 , 3 5 4}$
TOTAL ESTIMATED COST OF ATTENDANCE	

* First-Year Undergraduate Students, add $\$ 335$ for Orientation fees.

Transfer Undergraduate Students, add $\$ 165$ for Orientation fees.
Credit by experience/credit by exam is assessed at $\$ 530$ per credit hour.
Per year amount is based on 2 semesters.
Students enrolled in more than 18 credit hours are charged \$1,272 for each additional credit hour.
Students in the Honors Program are not assessed additional tuition for overloads (up to 24 credit hours).

For financial aid purposes, students living off-campus are provided the same rent and board allowance as on campus. Students living at home with a parent or a relative are provided with a modest allowance for expenses related to living at home and may contact the Office of Financial Aid and Scholarships for more information.

All students are expected to have health insurance coverage. Health insurance may be obtained through the university, or through family or individual policies. International Students (except those on H 1 b visas) will automatically be enrolled in and billed for the plan each semester. International students who have comparable ACA-compliant coverage may submit a waiver form.

Other fees

In addition to the fees specified, certain groups of students may incur other fees, such as New Student Orientation fee. Contact Student Financial Services for information: rit.edu/fa/sfs/
Some courses require additional charges to cover laboratory, studio, or supply fees. Consult the registrar's schedule. Students are responsible for incuring the costs associated with textbooks and other supplies.
Student accident and sickness insurance: All registered students are required to maintain medical insurance while attending RIT. Insurance coverage can be through RIT, a family member's policy, or a personal policy.
A student accident and sickness insurance plan is available through RIT. There is a separate charge for this insurance. The plan provides coverage, within limits specified in the policy, for sickness and injury, outpatient services, emergency care, and prescriptions.

Enrollment in this plan is voluntary for all students except registered international undergraduate students (full- and parttime) on A, B, E, F, G, I, J, K, O, Q, R, and V visas. These students will be enrolled automatically in the basic accident and sickness policy on a semiannual basis.

There is no need to waive coverage if it is not desired. Students who want to enroll in this plan may enroll online or by mail. An open enrollment period is available at the beginning of each academic semester. Premium can be paid by check, money order, credit card, or may be added to the student's account.
The open enrollment period ends $\mathbf{3 0}$ days after the start of the academic semester in which the student first registers at RIT.

For plan and enrollment information, visit the university health plans website (universityhealthplans.com) or call 800-437-6448. Students are not required to obtain the RIT student accident and sickness insurance plan to receive services at the RIT Student Health Center.

Vocational rehabilitation

Students receiving vocational rehabilitation (VR) support for fees and tuition must file authorization with RIT before registration. If authorization has not been received before registration, students must either obtain from their VR counselors a letter of commitment stating the dollar amount that is authorized and present it to Student Financial Services or be prepared to pay for the charges in question. If authorization is received after a student has paid the charges, he or she will receive a refund.

1. Students must pay all charges not authorized for payment by VR before the semester due date.
2. VR counselors should specify each charge they are covering on their authorization forms.
3. Clarification of VR authorization/billing procedures should be addressed to:

Rochester Institute of Technology
NTID/VR Billing
Student Financial Services
25 Lomb Memorial Drive
Rochester, NY 14623-5603

Financial standing

Students, former students, and graduates are in good financial standing when their account is paid in full through the Student Financial Services Office. A late payment fee will be charged to all student accounts that become past due. This includes, but is not limited to, deferred payment accounts that become past due. Those whose account is not paid in full will not receive transcripts, diplomas, or other forms of recognition or recommendation from the university. Students must be in good financial standing with RIT to register for classes.

The university reserves the right to change its prices and pricing policies without prior notice.

Electronic billing procedures

The university has an electronic billing (eBill) program for students. Each month, all RIT students receive an e-mail notification on their
official university e-mail account stating that their eBill is available. Students have the option of granting additional access to allow for a parent, guardian, sponsor, or other authorized user to receive eBill notifications.

Refund policies

The acceptable reasons for withdrawal with full refund during the semester are:

1. Active military service: A student called to active military service during the first eight weeks of the term may receive a full tuition refund. If called after the eighth week, he or she may elect to complete the course by making special arrangements with both the instructor and department, or may withdraw and receive a full tuition refund. If he or she withdraws, the course must be repeated at a later date.
2. Academic reasons: Students sometimes register before grades for the previous semester are available. If they later find they are subject to academic suspension or have failed prerequisites, they will be given a full refund upon withdrawal.

A full-time student must officially withdraw from all courses or take a leave of absence in order to be eligible for a partial tuition refund. Students must complete a leave of absence or withdrawal form, which can be initiated with their academic department. A partial refund will be made during a semester if withdrawal/leave of absence is necessitated for one of the following reasons:

1. Illness, certified by the attending physician, causing excessive absence from classes
2. Withdrawal for academic or disciplinary reasons, at the request of RIT, during a semester
3. Transfer by employer, making class attendance impossible
4. Withdrawal for academic, disciplinary, or personal reasons at the request of the student, approved by the student's adviser or department representative and the Student Financial Services Office

Partial refund schedule for tuition

For more information, please visit rit.edu/sfs/refund for refund schedules and questions regarding refund policies.

Please note that nonattendance does not constitute an official withdrawal.

A student is not officially withdrawn until he or she receives a copy of the withdrawal form. The last date of academic related activity will be used to determine the refundable amount.

If the student drops his or her course load from full-time (12 or more credits) to part-time (less than 12 credits) status during the official drop/add period, he or she may contact the Student Financial Services Office for a refund based on the difference between the full-time tuition charge and the total per-credit charge for the part-time course load.

No refund will be made for classes dropped after the official drop/add period unless the student is officially withdrawing from the university.

Enrollment deposits are not refundable.
If institutional charges are reduced due to withdrawals, financial aid programs are reimbursed before a cash refund is issued to the
student. The student is responsible for any unpaid balance at the time of withdrawal. Aid programs are reimbursed in the following sequence: Federal Direct Unsubsidized Loan, Federal Direct Subsidized Loan, Graduate PLUS Loan, Parent PLUS Loan, Federal Pell Grants, Federal SEOG, other federal grants, state aid, institutional aid. If a credit balance still remains, the student is then issued a refund.
For further information or comments regarding refund policies and specific withdrawal dates, contact the Student Financial Services Office.

Appeal process

An official appeal process exists for those who feel that individual circumstances warrant exceptions from published policy. The inquiry in this process should be made to the director of Student Financial Services.

Partial refund schedule for room and board

To complete a withdrawal from RIT, a resident student must check out with RIT Housing. All students on a meal plan should check out with the RIT Dining office. Refunds, when granted, are from the date of official checkout.

Refund schedule and percentages for room and board can be found at https://www.rit.edu/fa/sfs/refund.

Financial Aid and Scholarships
 rit.edu/admissions/financial-aid

RIT offers a comprehensive financial aid program consisting of merit-based scholarships and a full range of need-based grants, loans and campus employment programs that provide assistance to RIT students and families. The information provided in this section is an overview of the sources of assistance available. Please consult the Office of Financial Aid and Scholarships' website for more detailed information.

FAFSA Preferred Filing Dates

Students can begin filing the Free Application for Federal Student Aid (FAFSA) beginning October 1. The application priority date for incoming students varies depending on the type of admission the student is considering for fall semester:

```
Early Decision I: November 1
Early Decision II: January 1
Regular Decision: January 15
Transfer: February 1
```

Current undergraduate students should submit the FAFSA by April 1.

Students must reapply for financial aid each year by completing the FAFSA. Students also must maintain minimum standards of satisfactory academic progress. The Office of Financial Aid and Scholarships will make every effort to provide a similar amount of institutional gift aid, provided students apply on time and demonstrate a similar amount of financial need as demonstrated by the FAFSA.

Notification

Students accepted for admission will usually receive a financial aid offer notification within two weeks of acceptance. Notifications for currently enrolled RIT students begin in mid-May.

Scholarships

Financial aid offers may include scholarships, grants, loans and employment. Scholarships are merit-based, recognizing a student's academic and extracurricular achievements.

RIT offers a number of merit-based scholarships. All admitted students are reviewed by the Scholarship Selection Committee. No separate application is required. Students who meet the criteria for more than one RIT merit-based scholarship generally will be awarded the highest valued scholarship. The combination of RIT grants and scholarships may not exceed tuition.

The Office of Financial Aid and Scholarships encourages students to apply for scholarships awarded by private organizations. This is an excellent source of funding that may reduce the need to borrow. In many cases, no adjustment to a student's financial aid offer is necessary. If we are required by federal regulations to adjust a financial aid offer as a result of an outside scholarship, we will make every effort to reduce the student's loan or work study offer before reducing RIT need-based grants.

Grants

Need based grants are offered by RIT, as well as federal and state governments. Your offer may include Federal Pell Grant, Federal Supplemental Educational Opportunity Grant (SEOG), New York State Tuition Assistance Program (TAP) and RIT grants.

Federal Direct Loans

The Federal Direct Loan program is the most widely used student loan program. Federal Direct loans may be subsidized or unsubsidized. The interest is paid by the government in the subsidized program while the student is enrolled. The unsubsidized program requires the interest to be paid by the student while enrolled. A student may opt to have the interest capitalized (interest is added to the principal amount borrowed) so no payment is required while in school.

Alternative Educational Loans

Alternative educational loans are private loans offered through banks to supplement financial aid offer. Students are the primary borrower with a credit-worthy cosigner. Terms and conditions vary by lender.

Student Employment and Co-op

There are a variety of on-campus employment opportunities for RIT students. Students are paid bi-weekly for hours worked and most students use their earnings to pay for books, travel, and personal expenses. Students are able to work up to 20 hours per week.

During your academic career at RIT, you may have the opportunity to have a paid cooperative education experience related to your field of study. You will not be charged tuition while on co-op and your earnings are not considered when determining your federal or institutional financial aid eligibility for the future year.

Academic progress requirements for state aid programs

New York State Tuition Assistance Program (TAP)

In order to receive a TAP grant, an individual must be admitted as a full-time student in an approved program, meet New York State residency and income requirements, pursue the program of study in which they are enrolled, and make satisfactory progress toward completion of their program of study.

TAP academic requirements are current as of the 2022-23 year. Standards are subject to change by legislative action.

Completion of a course is defined as meeting course requirements and receiving a letter grade of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ or F .

State regulations mandate that if a student repeats a course in which a passing grade acceptable to the university was previously received, the repeated course does not count toward the minimum 12-credithour course load required for TAP and other state programs.

In addition, an accelerated TAP payment cannot be received unless the recipient completes a minimum of 24 RIT credit hours in the previous two terms. An accelerated term is the third consecutive term of enrollment at RIT.

Waiver of academic progress standards for TAP

Students who have been denied TAP benefits due to failure to maintain satisfactory standards of academic progress may request a one-time waiver of those standards. State regulations require that these waivers be granted only under extraordinary circumstances. Students failing to meet satisfactory progress standards will be given the opportunity to contact an institutional representative in the Office of Financial Aid and Scholarships to discuss their situation. The institutional representative will require documentation as appropriate and establish deadlines for submission of this documentation.

Under the regulations established by the Commissioner of Education, the decision of the institutional representative will be final. Students who, in the judgment of the institutional representative, satisfactorily meet the criteria for the waiver may have one waiver at the undergraduate level. Those wishing to apply for waivers must do so during the term in which notification of TAP denial was sent.
Reasons for which a waiver may be granted include the following:

1. Verifiable illness of the student or member of the student's immediate family during the semester in which academic standards were not met.
2. Death of a member of the student's family during the semester in which standards were not met
3. Divorce/separation within the student's immediate family creating a demonstrable financial/emotional disruption sufficient to affect progress.
4. Circumstances that the student feels were extenuating; applicants must explain why circumstances were extenuating and beyond their control.

NYS TAP regulations require that students achieve a cumulative C average or the equivalent after receiving four semester award payments.

The regulations also provides that "The President [of the NYS Higher Education Services Corporation] may waive the requirement that a student have a cumulative C average or its equivalent for undue hardship based on: (i) the death of a relative of the stu-
dent; (ii) the personal injury or illness of the student; or (iii) other extenuating circumstances. . ."

Unlike the good academic standing waiver, it is possible, should circumstances warrant it, for a student to receive more than one C -average waiver. Students interested in seeking a waiver for the cumulative C average requirement should meet with a counselor in the Office of Financial Aid and Scholarships for further guidance.

These regulations are subject to legislative change. For additional information on the NYS TAP program visit https://www.hesc. ny.gov/pay-for-college/apply-for-financial-aid/nys-tap.html

Academic progress requirements for federal aid programs

I. Purpose of Satisfactory Academic Progress Policy

To be eligible for federal financial aid, students who are U.S. Citizens or eligible non-citizens (i.e. green card) are required by the U.S. Department of Education (34 CFR 668.34) to maintain Satisfactory Academic Progress toward their degree objectives. RIT has established this SAP policy to ensure student success and accountability and to promote timely advancement toward degree objectives. (Students receiving New York State aid (TAP \& HEOP) are subject to additional Satisfactory Academic Progress requirements. Please refer to the following for these requirements: https://www.rit.edu/admissions/aid/policies/ugrad-progress

This policy, except as noted, does not impact RIT institutional financial aid, however RIT merit based and endowed scholarships may have other criteria for eligibility. NTID aid sources of aid eligibility are determined by NTID regardless of SAP status. A student who does not meet the conditions for renewal of RIT or NTID funding is notified separately. It is also worth mentioning that the criteria for measuring SAP for federal financial aid purposes have some differences from RIT academic measurements.
The following guidelines provide academic progress criteria for both the students receiving NYS TAP Grant funding and the students who are receiving federal financial aid.

TAP Satisfactory Academic Progress Standards (for non-remedial (HEOP) students who received their first TAP award in 2010-2011 and thereafter)

BACHELOR'S DEGREE-SEMESTER CALENDAR								
Before being certified for this payment	1st	2nd	3rd	4th	5th	6th	7th	8th
a student must have accrued at least this many credits	0	6	15	27	39	51	66	81
with at least this grade point average	0	1.5	1.8	1.8	2.0	2.0	2.0	2.0
AND complete the following minimum number of credits in the previous term a state grant or scholarship was received	0	6	9	9	12	12	12	12

TAP Satisfactory Academic Progress Standards (for non-remedial (HEOP) students who received their first TAP award in 2010-2011 and thereafter)

ASSOCIATE DEGREE-SEMESTER CALENDAR						
Before being certified for this payment	1st	2nd	3rd	4th	5th	6th
A student must have accrued at least this many credits	0	6	15	27	39	51
with at least this grade point average	0	1.3	1.5	1.8	2.0	2.0
AND complete the following minimum number of credits in the previous term a state grant or scholarship was received	0	6	9	9	12	12

TAP Satisfactory Academic Progress Standards for remedial (HEOP) students who received their first TAP award in 2006-2007 and thereafter

BACHELOR'S DEGREE-SEMESTER CALENDAR								
Before being certified for this payment	1st	2nd	3rd	4th	5th	6th	7th	8th
A student must have accrued at least this many credits	0	6	15	27	39	51	66	81
with at least this grade point average	0	1.5	1.8	1.8	2.0	2.0	2.0	2.0
AND complete the following minimum number of credits in the previous term a state grant or scholarship was received	0	6	9	9	12	12	12	12

Please note: Only students in the HEOP program are eligible for more than four years of undergraduate awards.

Table 1

Programs Subject to Federal Financial Aid SAP Policy

Federal Pell Grant
Federal Supplemental Opportunity Grant (SEOG)
Federal Work-Study
Federal Direct Loans (subsidized and unsubsidized)
Federal Direct Parent PLUS Loans

II. Definition of Federal Satisfactory Academic Progress (SAP) and SAP Status

At RIT, to be eligible for federal financial aid, as identified above, you must maintain Satisfactory Academic Progress as defined by the following criteria:

- Meeting a minimum Semester Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA) requirement
- Completing the degree objective within a maximum number of credits attempted (Maximum Attempted Credits Allowance)
- Earning a minimum number of credits each semester to ensure timely progress toward degree completion (Pace)
If you do not meet one or more of the above criteria you will be considered ineligible for Federal Financial Aid unless placed on Federal Financial Aid Warning or granted Federal Financial Probation status. Federal Financial Aid Warning allows you to continue to receive federal financial aid even though you are not making SAP. It allows you one semester to regain federal SAP without having to request consideration for Federal Financial Aid Probation. You must request Federal Financial Aid Probation and provide a Federal SAP Action Plan developed in conjunction with the designated individual within your academic unit. If you are granted Federal Financial Aid Probation, you must follow the Federal SAP Action Plan that outlines how you will regain SAP within a prescribed time frame.

The following explains each of the federal SAP evaluation criteria:

A. Grade Point Average Requirements

To maintain federal SAP, as an undergraduate student you must meet a minimum semester grade point average and minimum cumulative grade point average of at least $\mathbf{2 . 0}$ for each enrolled semester. Refer to Tables 2 and 3 below to understand how specific grades and course types affect your grade point averages.

Table 2
Impact of Grades on Cumulative and Semester GPA Calculation

Grade Earned	Counted in Grade Point Average for Federal SAP
A, B, C, D, F (+/-)	Yes
I - Incomplete*	Yes (note that incompletes are counted as "F" grades for SAP GPA calculations)
S - Satisfactory	No
SE (Satisfactory), PE (Pass), UE (Pass) and NE (No Pass) Designation allowed for only the following semesters: Spring 2020, Fall 2020, Spring 2021, and Fall 2021	No
W - Withdrawal	No
AU - Audit	No
NG - Non-graded	No
X - Credit by Exam or Experience	No
Missing Grade	No

* Incomplete grades are not calculated in your completed credits and are assumed to be failing grades when determining your GPA and CGPA. You cannot retroactively restore your eligibility for Federal aid programs for a subsequent semester unless you make up the incompletes PRIOR to the start of the next semester you would attend after receiving an Incomplete grade or by being placed on Federal Financial Aid Probation. determining your GPA and CGPA. You cannot retroactively restore your eligibility for Federal aid programs for a subsequent semester unless you make up the incompletes PRIOR to the start of the next semester you would attend after receiving an Incomplete grade or by being placed on Federal Financial Aid Probation.

Table 3
Impact of Course Type on Cumulative GPA Calculation

Course Type	Counted in Grade Point Average
Repeated course work - Most Recent Final Grade	Yes
Repeated course work - Previous Grades	No
Transfer course work (pre- and post-matriculation)	No
Grade Exclusions	No

For more information about grading policy, please visit the RIT Educational Policies at https://www.rit.edu/academicaffairs/policiesmanual/d050

B. Maximum Attempted Credits Allowance

We take the number of credits that are normally required to earn your degree, multiply it by 150%, to determine the maximum attempted credits allowance you can have while pursuing your degree. Then we compare this to the total number of credits you have attempted, inclusive of all transfer credit, test credit and credits attempted at RIT. Once you have exceeded the maximum attempted credits allowance you are no longer eligible to receive federal financial aid.

For example, Robert is in a BS program in Engineering that requires 128 credits, therefore the maximum attempted credit allowance for Robert is 192 (128 X 150\%). Robert transferred in 50 credits and has attempted 100 credits while at RIT, for a total of 150 credits attempted. So, Robert can attempt 42 (192-150) more credits before he would lose his federal aid eligibility. (Notice that we must include all attempted credits and not only earned credits.)

Double Major: Because a double major program leads to a single Bachelor's degree, each of the two majors must be associated with the same degree type (i.e., both must be registered as a BS degree or both must be registered as a BFA degree). If you are in an approved double major the 150% measurement applied to the program with the larger number of required credits. For example, your BFA requires 120 credits and your second BFA requires 124 credits. The 150% calculation is based on the BFA requiring 124 credits (i.e. 124 x $150 \%=186$ maximum attempted credit allowance).

Dual Degree: A dual degree program is one in which the student works towards satisfying the academic requirements for two distinct degree types in an integrated fashion. Currently at RIT at the undergraduate level, this option applies solely to those students who aspire to earning the Bachelor of Science (BS) and the Bachelor of Fine Arts (BFA) in a single program of study. If you are in an approved dual degree program the 150% measurement applies to the program with the smaller number of required credits plus an additional 30 credits. For example your BS requires 129 credits and your BFA requires 120 credits, the 150% calculation is based on the BFA requiring 120 credits plus the additional 30 credits (i.e. [(120 x $150 \%=180)+30=210$] maximum attempted credit allowance).

Minors: A minor must be declared prior to the completion of major program of study requirements or last semester of attendance whichever comes first and must be part of the Registrar record. The minor will be considered part of the student program of study for SAP determination.

The minor must be completed within the 150% timeframe rule for attempted credits for major program of study. There is no limit to the number of minors a student may obtain as long as it is within the 150% Rule for SAP policies. The 150% timeframe is monitored by ALL attempted and completed course work, regardless of change in major.

Students may continue with federal and institutional aid as long as they meet all other eligibility requirements.

Cooperative Education: A student who is not making SAP in the term prior to participating in cooperative education (co-op) and seeking federal aid must contact the Office of Financial Aid and Scholarships.

C. Pace

We take the cumulative number of earned credits divided by the total cumulative credits you have attempted. This gives us the percentage of attempted coursework you must complete each time you are evaluated. At RIT, this value is 67% (no rounding is allowed).

So, if you are an undergraduate student, we will look to the total number of credits you have completed divided by the total number of credits you have attempted. If the result is less than 67% you will be considered to not be making federal SAP and potentially could lose your federal aid eligibility.

For example, Roberta is a student who has attempted 85 credits and completed 60 credits. She is making "Pace" because she has completed 70.5% of her attempted credits. Ian is a student who has attempted 32 credits and completed 20 credits. He is not making "Pace" because he has only completed 62.5% of his attempted credits.

Review Tables 4 and 5 below to understand how grades and course types will affect students' Maximum Attempted Credits Allowance and Pace of Progression calculations:

Table 4
Impact of Grades on Pace and Maximum Attempted Credits Allowance (Pace is the 67\% measurement and Maximum Attempted Credits Allowance is 150% of degree program credits.)

Grade Earned	Pace		Counted Toward Maximum Attempted Credits
	Units Attempted	Units Completed	
A, B, C, D (+/-)	Yes	Yes	Yes
F, I, W	Yes	No	Yes
SE (satisfactory) and PE (Pass) UE(Pass). Designation allowed for only the following semesters: Spring 2020, Fall 2020, Spring 2021, and Fall 2021	Yes	Yes	Yes
NE (No Pass) Designation allowed for only the following semesters: Spring 2020, Fall 2020, Spring 2021 and Fall 2021	Yes	No	Yes
S (Study Abroad Courses)	Yes	Yes	Yes
X - Credit by Exam or Experience	Yes	Yes	Yes
AU, NG	No	No	No

Table 5
Impact of Course Types on Pace of Progression and Maximum Attempted Credits Allowance

Grade Earned	Pace		Counted Toward Maximum Attempted Credits
	Units Attempted	Units Completed	
Repeated course work (previous passing grade)	Yes	No	Yes
Repeated course work (previous failing grade)	Yes	No	Yes
Transfer course work (pre- and postmatriculation)	Yes	Yes	Yes
Grade Exclusions passing grades	Yes	Yes	Yes
Grade Exclusions failing grades	Yes	No	Yes

III. How and When Federal Satisfactory Academic Progress is Monitored

The Office of Financial Aid \& Scholarships utilizes information from the Registrar to monitor the Semester and Cumulative Grade Point Average requirements, Maximum Attempted Credits Allowance and Pace. Satisfactory Academic Progress is monitored for all undergraduate students at the end of each enrolled semester after grades have been made official by the Registrar.

The Office of Financial Aid and Scholarships cannot complete the SAP evaluation until prior semester grades have been officially posted. An otherwise eligible student who is in a Federal Financial Aid Warning or Federal Financial Aid Probation period may experience a delayed financial aid disbursement if grades are not made official before the beginning of the subsequent semester. Likewise it is possible for a student to have federal aid disbursed to their account that would need to be reversed if it is determined that the student is not making SAP. No exceptions can be made to this process. Additionally, because financial aid offers may be released prior to Registrar receiving grade information, it is possible that a student may receive an aid package that is subsequently revised because it is determined that the student is not making federal SAP after the initial offer notification is provided.

IV. Failure to Maintain Federal Satisfactory Academic Progress

The Office of Financial Aid \& Scholarships will notify you if you are not meeting federal SAP requirements via your RIT email address. If you are meeting Federal Satisfactory Academic Progress requirements you will not receive a SAP notification.

A. Failing to Meet GPA and/or Pace Requirements

If you do not meet the Semester GPA or Cumulative GPA or Pace requirements you may be placed on a one-time, one-semester Federal Financial Aid Warning. This status applies only if you have never been on Federal Financial Aid Warning while attending RIT and are currently not making Federal Financial Aid Satisfactory Academic Progress nor on Federal Financial Aid Probation.

You may continue to receive federal financial aid for one semester on this status. You may be placed on Federal Financial Aid Warning status one time while attending RIT as an undergraduate. This status is provided automatically to you; no appeal is considered nor required.

It is also important to remember that you will be placed on this status regardless if you are a federal aid recipient for the semester you are designated on Federal Financial Aid Warning. If you regain eligibility by meeting SAP standards at the end of the warning period and subsequently fall below the standards you will be considered ineligible for federal financial aid without an approved Federal Financial Aid Probation.

If you do not meet the minimum SAP requirements by the end of the one-semester Federal Financial Aid Warning for federal SAP violations you will no longer be considered making Satisfactory Academic Progress and will become ineligible for federal financial aid without an approved Federal Financial Aid Probation (see section V. B).

B. Exceeding the Maximum Attempted Credit Allowance

You should be aware that if you reach the Maximum Attempted Credits Allowance you are ineligible for further federal financial aid. The Office of Financial Aid and Scholarships may make an exception based upon its review of your academic record. The office will notify you if it will allow for an exception consideration and provide guidance for additional steps that you will need to take. Consideration for an exception does not guarantee an exception. If granted an exception, you must regain SAP within a certain timeframe, or if meeting SAP requirements, you must continue to meet SAP requirements. You may not change your program of study, and you must graduate within the timeframe outlined for you. The exception will apply to federal financial aid. If you do not follow one or more of the conditions outlined you will no longer be eligible for federal aid.

V. Regaining Federal SAP and Financial Aid Eligibility after not making SAP

If you are not making SAP there are two ways that you may regain it:

A. Meet all SAP requirements
 B. Appeal for Federal Financial Aid Probation

Students not meeting SAP may request to be placed on Federal Financial Aid Probation. It is critical that the application guidelines and time lines be followed as detailed below.

1. Federal Financial Aid Probation

If you are not meeting SAP, you may be granted this classification upon successfully outlining the reasons not being able to attain SAP requirements and being able to demonstrate that SAP requirements will be met within a prescribed time frame. If the appeal is approved, you may continue to receive federal financial aid. While it is possible for you to remain on Federal Financial Aid Probation for consecutive semesters, you may not be on this status for more than three consecutive semesters.

Additionally, understand that a student who has been on Federal Financial Aid Probation, regained SAP, who then later loses SAP may
only be granted one additional Federal Financial Aid Probation while attending RIT as an undergraduate. This also applies to a student who while on Federal Financial Aid Probation, fails to meet the Federal SAP Action Plan outlined, appeals and is granted an additional Federal Financial Aid Probation status. In other words, you may be granted Federal Financial Aid Probation twice, with each Federal Financial Aid Probation lasting a maximum of three semesters.

Exceptions: If you are enrolled in associate degree program you are limited to one Federal Financial Aid Probation which cannot be more than two semesters in length.

If you are enrolled in a certificate program you are limited to one Federal Financial Aid Warning and one Federal Financial Aid Probation, lasting no longer than one semester in length.

Example 1: Student is in a four-year or five year undergraduate program of study and has previously used the one-time Federal Financial Aid Warning.

Table 6

| Start of
 Semester: | Initial SAP Status |
| :--- | :--- | :--- | :--- | Outcome \quad Final SAP Status

Example 2: Student is pursuing an associate or certificate undergraduate program of study and has previously used the one-time Federal Financial Aid Warning.

Table 7

Start of Semester:	Initial SAP Status	Outcome	Final SAP Status
Fall 2020	Not eligible for federal financial aid due to not making SAP	Appeals, approved for Federal Financial Aid Probation for one semester	1st Federal Financial Aid Probation for Fall 2019. Eligible to receive federal aid.
Spring 2021	Not eligible for federal financial aid due to not making SAP/not meeting Federal	Since the student used one allowable Federal Financial Aid Probation, cannot appeal.	Not eligible to receive federal aid for Spring 2018 and beyond until attaining SAP.

Federal Financial Aid Probations are counted cumulatively. For example, if you begin an associate degree program, use a Federal Financial Aid Probation, and then transfer into a baccalaureate program, the Federal Financial Aid Probation used in the associate degree program will count toward the two allowable Federal Financial Aid Probations in the baccalaureate program. Conversely, if you began in a baccalaureate program used one Federal Financial Aid Probation, and transferred into a certificate program, you would not be eligible for a Federal Financial Aid Probation since a certificate program only provides for one Federal Financial Aid Probation.
2. How to submit a Request for Federal Financial Aid Probation For consideration of Federal Financial Aid Probation you MUST have a Federal SAP Action Plan provided by the appropriate individual within your primary academic unit that will outline what is needed to be accomplished academically in order to regain SAP. This process is initiated by you completing the Request for Federal Financial Aid Probation form. The request must articulate the reason(s) why you were unable to meet the SAP requirements and provide complete documentation as appropriate (i.e. medical reasons must have appropriate medical documentation to support the claim). Be sure to attach your Federal SAP Action Plan to your Request for Federal Financial Aid Probation form available on the Office of Financial Aid and Scholarships website. (www.rit.edu/ sap).

Incomplete appeals will automatically result in a denial of the appeal. All appeals are reviewed by the Federal SAP Committee within the Office of Financial Aid and Scholarships. If your appeal is denied it means you cannot receive federal aid until you regain SAP.

3. When to Submit a SAP Appeal for Federal Financial Aid Probation

 You should not submit a request for Federal Financial Aid Probation if you are on a Federal Financial Aid Warning status. These pre-emptive appeals are unnecessary and will be withdrawn. Rather, you should wait until you have been notified by the Office of Financial Aid \& Scholarships that you are ineligible for financial aid because of a federal SAP deficiency. If you have no intention of using federal aid, you should not request Federal Financial Aid Probation.Appeals for Federal Financial Aid Probation should be submitted as soon as possible after you have been notified of the loss of eligibility for federal aid, but not later than five weeks after your next semester of enrollment. For summer semester all appeals must be submitted no later than three weeks. Financial aid cannot be reinstated retroactively for a past semester.

If you are appealing your federal SAP status, you must meet all financial aid application deadlines and other eligibility requirements. As with any type of financial aid appeal, federal SAP appeals are granted on a funds-available basis.
4. If you change a pass/fail grade to a letter grade or have an Incomplete (I) grade change, the change will be considered in your next semester of attendance. For example, a grade change occurs in the fall 2021 semester, the change for federal SAP would be considered in the spring 2022 semester. It is not necessary for you to notify us, since we capture the changed grade the next semester we review your SAP.

You may, as an option, notify us of a change in your academic record in writing. Email is acceptable, but you must use your RIT email account. The change in your academic record must occur prior to the start of your next semester of attendance.

5. Notification of Federal SAP Appeal Decisions

Appeals for Federal Financial Aid Probation will be evaluated by the Office of Financial Aid and Scholarships who will notify you of the decision via email to your RIT email address.

VI. Miscellaneous

To accommodate the change in RIT federal SAP rules due to regulations, the following shall apply:
A. A student on Financial Aid Probation (also referred to as Financial Aid Contract) prior to the end of the spring 2017 semester and is not making federal SAP may appeal as any other student.
B. Financial Aid Probation (also referred to as Financial Aid Contract) granted to a student prior to August 1, 2017 will NOT count towards determining whether a student has received the maximum allowable number of Federal Financial Aid Probation statuses depending on the program of study.
C. A student who was granted Financial Aid Probation (also referred to as Financial Aid Contract) prior to August 1, 2017 will not be eligible to receive the one-time Federal Financial Aid Warning status.

MEASUREMENT	REQUIREMENT
Semester GPA	2.0
Cumulative GPA	2.0
Pace (total completed credits divided by total attempted credits)	67\%
Maximum Allowable credits	Standard number of credits required to attain degree $\times 150 \%$

SAP STATUS	ALLOWANCES
Federal Financial Aid Warning	1 per entire undergraduate study at RIT. May not be granted if placed on Financial Aid Satisfactory Academic Progress Contract or Federal Financial Aid Probation previously.

Federal Financial Aid Probation	Baccalaureate - Maximum of 2, each lasting
based on degree program.	no longer than 3 consecutive semesters.
These are treated cumulatively.	Associate - Maximum of 1, lasting no longer than two semesters.
	Certificate - Maximum of 1, lasting no longer than one semester.

Questions regarding the SAP policies outlined in this document or how to apply for Federal Financial Aid Probation should be directed to the Office of Financial Aid and Scholarships at 585-475-2186 or via email at ritaid@rit.edu.

Questions regarding your academic record please contact the Registrar's Office at 585-475-2821 or via email at registrar@rit.edu.

Questions regarding what you need to accomplish in order regain SAP should be directed to your primary academic unit.

Academic progress requirements for RIT grants and scholarships

RIT Grants and Scholarships are renewed as long as the student is enrolled full-time, making progress toward degree requirements, and meets all other eligibility criteria. Extending RIT Grants and Scholarships more than two semesters beyond the normal program completion requirements for credit eligible coursework are reviewed to determine continuation of aid eligibility. Academic requirements and award duration for merit or special-purpose scholarship programs sponsored by RIT may differ from those used in RIT's need-based programs. Recipients are advised of merit scholarship terms and conditions at the time awards are made.

Student responsibilities

Recipients of financial aid are responsible for reporting any significant changes in their financial situation during the year to the Office of Financial Aid and Scholarships for review. These changes may require a revision to the applicant's financial aid.

Financial aid refund policy

Return of federal funds

In accordance with federal regulations, the Office of Financial Aid and Scholarships recalculates federal aid eligibility for students who withdraw, drop out, are suspended, or take a leave of absence prior to completing more than 60 percent of a term.
"Withdrawal date" is defined as the actual date the student initiated the withdrawal process, the student's last date of recorded attendance, or the midpoint of the semester for a student who leaves without notifying the university. Recalculation is based on the percent of earned aid using the following formula: number of days completed up to the withdrawal date/total days in the semester. Aid returned to federal programs is then equal to 100 percent minus the percentage earned multiplied by the amount of federal aid disbursed.
Funds are returned to the federal government in the following sequence: Federal Direct Unsubsidized Loans, Federal Direct Subsidized Loans, Federal Graduate PLUS, Federal Parent PLUS Loans, Federal Pell Grants, Federal SEOG, other federal grants.

Late disbursement

If the student is otherwise eligible, the first disbursement of Federal Direct Subsidized Loan or Federal Direct Unsubsidized Loan proceeds is allowed up to 180 days after the student has ceased to be enrolled. Subsequent disbursements are not allowed.

State scholarships

Regulations vary. Any adjustments are done in accordance with the specific requirements of the sponsoring state.

Privately funded grants and scholarships

In the absence of specific instructions from the sponsor, 100 percent of the semester offer will be credited to the student's account.

RIT grants and scholarships

Institutional funding such as RIT grants and scholarships are prorated based on the tuition refund schedule for withdrawal during a semester.

Financial aid rights and responsibilities

In the Office of Financial Aid and Scholarships assistant directors are assigned to RIT's colleges to serve as a financial aid point of contact for students within each college. Also, as a financial aid recipient, you have certain rights and responsibilities, including the following:

- You have a right to privacy. All records and data submitted with your application for financial aid will be treated as confidential information.
- You have a right to a complete explanation of the financial aid process. If you do not understand your financial aid or feel your application has not been evaluated fairly, please contact us.
- You have the right to be notified of cancellation or withdrawal of aid. As part of this notification you have the right to be told why this action is being taken.
- You have the right to appeal. An administrative appeal process has been established to review student requests for reconsideration. If you wish to appeal your financial aid offer, submit your request in writing with any supporting documentation to the Office of Financial Aid and Scholarships.
- You have the responsibility to immediately report any change in your student status. If you move, change your name, drop below full-time status, withdraw from school, or do anything else that affects your status, you must report it to the Office of Financial Aid and Scholarships, and to any student loan lender.
- You have the responsibility to report any additional funds or benefits to the Office of Financial Aid and Scholarships. These funds may include private scholarships, tuition waivers, Vocational Rehabilitation, and Veterans Benefits. The Office of Financial Aid and Scholarships is required by law to make adjustments to a student's offer if additional funds or benefits create an overaward after the original offer of aid has been made.
- You have the responsibility to use financial aid for education expenses. These expenses may include tuition, fees, room, board, books, supplies, and living expenses.
- You have the responsibility to respond to any inquiries from federal, state, or college auditors.
- You have the responsibility to repay student loans on time. Acceptance of any loan carries a serious obligation to repay. Students who do not meet this repayment obligation may affect the availability of loans for future students. Before you accept student loans, you should consider the repayment obligation.
- You have the responsibility to keep copies of all correspondence regarding your financial aid, whether it is with the Office of Financial Aid and Scholarships, governmental agencies or outside lenders.

Financial Aid and Scholarships

Restricted and Endowed Scholarships

Each year the university offers restricted and endowed scholarships, made possible through the generosity of hundreds of individuals and organizations. Offers are made by RIT's Office of Financial Aid and Scholarship or RIT academic departments in accordance with the special criteria of each scholarship. All applicants for financial aid are automatically considered for scholarships for which they meet the established criteria and are notified if selected Recipients are encouraged to write a note of appreciation to the donor.

2022-2023 Undergraduate Scholarships and Financial Aid

All admitted freshmen are reviewed by the Scholarship Selection Committee to determine each student's eligibility for RIT merit-based scholarships. Unless otherwise noted, no separate application is required.

Merit-based scholarships are competitive and are awarded in recognition of exceptional or outstanding academic achievement. Consideration may also be given to outstanding leadership, service, entrepreneurship, citizenship, or creativity. Portfolio evaluations or other evidence of creative excellence will also be considered for applicants to art, crafts, design, film, and photography programs.

To receive full consideration, applicants for fall entry must apply by November 1 (Early Decision 1), January 1 (Early Decision 2), or January 15 (Regular Decision). Students who meet the eligibility requirements for more than one RIT merit-based scholarship will be awarded only the highest valued scholarship. Unless otherwise noted, merit-based scholarships require a 2.8 cumulative grade-point average for renewal.

RIT Presidential Scholarships

Awarded to a select number of entering freshmen. Recipients demonstrate exceptional academic performance; receive exemplary letters of recommendation. Amounts vary. Renewable.

RIT Founders Scholarships

Named to recognize the founders of RIT and its forerunners, Founders Scholarships are awarded to admitted freshmen who are outstanding
academically, are active and involved in their schools or community, or demonstrate special talents or abilities. Consideration may also be given to outstanding leadership, service, entrepreneurship, citizenship, or creativity. Portfolio evaluations or other evidence of creative excellence will also be considered for applicants to art, crafts, design, film, and photography programs. Amounts vary. Renewable.

RIT Founders Scholarships for International Students

The Founders Scholarship for International Students is awarded to highly qualified admitted international students. Amounts vary. Renewable.

Performing Arts Scholarships

Recognizes individual achievement and talent in the performing arts. Regardless of major, all full-time admitted freshman undergraduates are eligible for consideration. A separate application and a digital audition are required. Amounts vary. Renewable based on continued participation in the performing arts at RIT.

RIT Recognition Scholarships

Provided to a select number of students who demonstrate meritorious academics, community involvement, leadership, or other characteristics that the university deems of value. Amounts vary. Renewable..

RIT Tiger Pride Awards

A limited number of admitted undergraduate students are selected that show promise of success at RIT. Amounts vary. Renewable.

Merit-Based Scholarship General Guidelines

Additional Merit-Based Scholarships	Eligibility	Amount	Additional Information/ Where to Apply
RIT National Merit Scholarship	Offered to admitted first-year students who are National Merit Scholar finalists and name RIT as their 1st choice school for NMSC.	$\$ 2,000$ per year. Renewable as long as student meets NMSC guidelines.	RIT will receive finalist rosters from NMSC. May be combined with ther RIT merit-based scholarships.
RIT National Scholars Award	Offered to admitted first-year students who are recognized by the College Board's AfricanAmerican Recognition, Hispanic Recognition, Indigenous Recognition, and Rural and Small Town Recognition programs.	\$2,000 per year. Renewable.	RIT will receive an official roster from the College Board NHRS program. May be combined with other RIT merit-based scholarships.
RIT/FIRST Scholarships	Offered to outstanding admitted first-year students applicants who have participated on a high school FIRST team.	$\$ 8,000$ per year. Renewable. Up to 20 awarded each year.	Download scholarship application at: rit.edu/first-scholarship. Cannot be combined with other RIT merit-based scholarships of higher value.
RIT Project Lead The Way Scholarships	Offered to outstanding admitted first-year students who have completed two or more PLTW courses.	$\$ 8,000$ per year. Renewable. Up to 20 awarded each year.	Submit a letter of recommendation from a PLTW teacher along with RIT admission application and school transcripts by January 15. Cannot be combined with other RIT merit-based scholarships of higher value.
RIT Hillside Scholarships	Offered to admitted first-year students students to recognize outstanding graduates of the Hillside Work-Scholarship Connection program.	\$12,000 per year. Renewable.	Recipients are identified based on involvement in the Hillside Work-Scholarship Connection program. Must apply for admission to RIT by January 15 to be considered. May be combined with other RIT merit-based scholarships.
RIT Computing Medal Scholarships RIT Innovation \& Creativity Award Scholarships	Recipients nominated by their high schools who are admitted and enroll at RIT in the fall immediately following graduation from high school.	\$8,000 per year. Renewable.	Eligible students must be nominated by their high schools in the junior year for consideration. Cannot be combined with other RIT merit-based scholarships of higher value.

Additional Merit-Based	Eligibility	Amount	Additional Information/
Scholarships	Offered to students who have accepted three- or four-year Army, Navy, or Air Force ROTC scholarships, who enrolled in ROTC and are academically qualified.	Amounts vary.	
ROTC Scholarships	Awarded to Army, Air Force, or Navy ROTC cadets awarded three- or four-åyear scholarships prior to enrollment	Up to the amount of a standard default room and board plan, minus other financial aid and benefits.	Corce: 585-475-5197
Army:	Scholarships.		

Need-Based Grants

RIT Grants	Students demonstrating financial need.	Amounts vary depending on need.	File the Free Application for Federal Student Aid (FAFSA) after October 1.
Destler/Johnson Rochester City Scholars	Offered to qualified freshmen who are graduates of the Rochester City School District who have both lived in the city and attended an approved high school within the RCSD for the last three years of high school.	Full tuition through a combination of RIT schol- arships and state and federal need-based grants.	Must apply for admission to RIT by January 15 and be certified by the high school guidance office to be considered
Say Yes to Education Scholarships	In partnership with Say Yes to Education, awarded to participants in the Say Yes to Education program.	Full tuition through a combination of RIT schol- arships and state and federal need-based grants.	Must apply for admission to RIT by January 15 and be certified by Say Yes to be considered
Tuition Assistance Program (New York State)	Full-time students who are New York state resi- dents and meet state income guidelines.	$\$ 500$ to $\$ 5,165$ per year	File New York State TAP Application and the Free
Application for Federal Student Aid (FAFSA).			

Loans

Federal Direct Loans	All students enrolled at least half time in a degree program.	Maximum yearly amounts (Subsidized and Unsubsidized): 1st year: \$5,500; 2nd year: $\$ 6,500 ; 3$ rd, 4th, 5th years: $\$ 7,500$. Maximum cumulative amount: $\$ 31,000$-all years	File the Free Application for Federal Student Aid (FAFSA).
Federal Direct LoansIndependent Students	All independent undergraduates enrolled at least half time in a degree program.	Maximum yearly amounts (Subsidized and Unsubsidized): 1st year: \$9,500; 2nd year: $\$ 10,500 ; 3 r d, 4$ th, 5 th years: $\$ 12,500$. Maximum cumulative amount: \$57,500-all years	File the Free Application for Federal Student Aid (FAFSA).
Federal Direct PLUS Loans	Parent of a dependent student who is enrolled at least half time in a degree program.	Total cost of education minus all other financial aid awarded.	File the FAFSA and apply online at studentloans.gov.

Employment

Federal Work-Study Program	Students with financial need. Jobs provided on campus.	Varies, depending on hours and current NYS minimum wage rate.	File the Free Application for Federal Student Aid (FAFSA) and contact the RIT Student
Employment Office			

Notes

- This chart covers the most commonly offered financial aid programs available to full-time undergraduate students at RIT. Information is correct as of 8/2022.
- Most programs require satisfactory progress toward degree completion to maintain eligibility
- Federal student aid programs are subject to government appropriations.

University Policies and Procedures

Academic Policies and Procedures

At RIT, we shape the future and improve the world through creativity and innovation. As an engaged, intellectually curious, and socially conscious community, we leverage the power of technology, the arts, and design for the greater good. Moreover, RIT sets high standards that challenge students to develop values that will enhance their lives professionally and enable them to contribute constructively to society.

Graduation requirements

To earn an academic credential from RIT, students must satisfy a number of graduation requirements, which may vary significantly from program to program. All students should seek out and use the academic advising resources within their colleges to assist them in planning their academic program of study. In general, students should expect to satisfy the following requirements before they can graduate from RIT:

A. Completion of academic curricula

I. Students must satisfactorily complete all of the courses in their academic program. General education requirements and specific course requirements for each program are identified in the following pages. This bulletin, and careful consultation with an academic advisor, provide the best resources for planning and completing all of the requirements necessary for graduation.
II. Program curricula may include several types of courses, including cooperative education, field experience, practicum, thesis, research, and wellness. Most students will need to satisfy a wellness requirement, and many academic programs require one or more semesters of experiential learning, including cooperative education or internships.
III. The curriculum in effect at the time of admission into a program will normally be the curriculum one must complete in order to graduate. Occasionally, with departmental approval, course substitutions and other minor curricular modifications may occur. Although there is no time limit within which students must complete their course requirements, the curriculum under which a student is certified to graduate must be no more than seven years old.

B. Grade-point average standard

I. Successful candidates for an undergraduate degree, diploma, or certificate must have a cumulative grade-point average of at least 2.0. The physician assistant program requires semester and cumulative grade-point averages of 3.0 or higher.
II. Graduation honors are conferred on associate and bachelor's degree recipients who achieve a 3.40 or higher cumulative program GPA.

C. Residency and minimum earned hours

A minimum of 25 percent of the total semester credit hours required for the degree shall consist of successfully completed RIT courses. The degree-granting program shall decide which specific courses shall count to satisfy this requirement. Credit earned through transfer, credit by exam/experience, College-Level Examination Program (CLEP), Advanced Placement (AP), International Baccalaureate (IB), or audit is excluded from these residency calculations. RIT academic programs vary as to the total number of credit hours required; however, under no circumstances will a student be allowed to graduate with a bachelor's degree with fewer than 120 cumulative earned hours (60 hours for associate degrees). Cumulative earned hours include RIT courses, transfer credit, credit by exam/experience, CLEP, AP, and IB credits.

D. Developing writing excellence

Following university policy, all students are required to complete three writing intensive (WI) courses before they graduate:

- one First Year Writing course, to be taken in the first year;
- one Programmatic WI course, year taken as required by the particular degree program; and
- a third WI course, preferably within General Education but may be a second program WI course, to preferably be taken in the second or third year.
First Year Writing is a General Education foundational course that plays an essential role in students' academic transition to the university. In FYW, students learn about the social and intellectual aspects of university writing, and develop critical literacy practices required for academic success. There are currently three FYW courses that fulfill this requirement:
- FYW: Writing Seminar (UWRT-150)
- FYW: The Future of Writing (ENGL-150)
- FYW: Ethics in Computing (ISTE-110)

General Education Writing Intensive (WI) courses reinforce the knowledge and practices introduced in FYW. These courses are located throughout the perspective, immersion, and elective course categories on the General Education curriculum and use writing to engage students in course content.
Program Writing Intensive courses (identified on the typical course sequence charts with the designation "WI") are located in disciplinary contexts and apprentice students in specific forms of writing. These courses reinforce the knowledge and practices introduced in FYW, and students gain mastery of written forms specific to the student's major area of study.

E. Fulfillment of financial obligations

Students must fulfill all financial obligations to RIT before an official academic transcript or a diploma will be released.

General Education CurriculumLiberal Arts and Sciences

RIT's framework for general education provides students with courses that meet specific university approved general education learning outcomes and New York State Education Department liberal arts and sciences requirements. Students in all bachelor of science degree programs are required to complete a minimum of 60 credit hours in General Education; students in all bachelor of fine arts degree programs are required to complete a minimum of 30 credit hours in General Education. The general education framework intentionally moves through educational phases designed to give students an introduction to perspectives of liberal arts and sciences disciplines and then the opportunity for deeper, advanced study and integrative learning through immersion in a cluster of related courses.

The general education curriculum consists of the following requirements:

1. First Year Writing-this course provides a focus on writing and communication skills, which prepares students for course work and career expectations. This course, which is typically taken in the first year, plays an essential role in students' transition from secondary to post-secondary education.
2. Perspectives-courses are designed to introduce students to seven key areas of inquiry that develop ways of knowing about the world. The perspective courses introduce students to fundamentals of a liberal arts and sciences discipline (methods, concepts, and theories) while addressing specific general education learning outcomes. Number required and selection of perspectives courses varies by degree type (e.g., BS, BFA, AS, or AAS) and degree program. See individual degree program requirements for details.
a. Perspective 1 (ethical): Courses focus on ethical aspects of decision-making and argument, whether at the individual, group, national, or international level. These courses provide students with an understanding of how ethical problems and questions can be conceived and resolved, and how ethical forms of reasoning emerge and are applied to such challenges.
b. Perspective 2 (artistic): Courses focus on the analysis of forms of artistic expression in the context of the societies and cultures that produced and sustained them. These courses provide insight into the creative process, the nature of aesthetic experience, the fundamentals of criticism and aesthetic discrimination, and the ways in which societies and cultures express their values through their art.
c. Perspective 3 (global): Courses in this category encourage students to see life from a perspective wider than their own and to understand the diversity of human cultures within an interconnected global society. Courses explore the interconnectedness of the local and the global in today's world or in historical examples, and encourage students to see how global forces reverberate at the local level.
d. Perspective 4 (social): Courses focus on the analysis of human behavior within the context of social systems and institutions. Because RIT recognizes that student success depends on the ability to understand how social groups function and operate, these courses provide insight into the workings of social institutions' processes.
e. Perspective 5 (natural science inquiry): Science is more than a collection of facts and theories, so students are expected to understand and participate in the process of science inquiry. Courses focus on the basic principles and concepts of one of the natural sciences. In these classes, students apply methods of scientific inquiry and problem solving in a laboratory or field experience.
f. Perspective 6 (scientific principles): Courses focus on the foundational principles of a natural science or provide an opportunity to apply methods of scientific inquiry in the natural or social sciences. Courses may or may not include a laboratory experience.
g. Perspective 7A, 7B (mathematical): Courses focus on identifying and understanding the role that mathematics plays in the world. In these courses, students comprehend and evaluate mathematical or statistical information and perform college level mathematical operations on quantitative data.
3. Immersion-an approved series of at least three related general education courses that further broaden a student's judgment and understanding within a specific area through deeper, advanced learning.
4. General Education electives-The remaining general education elective credits may be specified by the academic programs in order for students to fulfill supporting requirements for specific degree programs (e.g. math or science, foreign languages, etc.). Some of these credits may be general education electives that can be chosen by the students themselves. Credits in the perspectives category that exceed the minimum requirement will be applied toward the elective credits.

Wellness Education Requirement

RIT recognizes the need for wellness education in today's society and offers specifically designed courses to help students develop and maintain a well-balanced healthy lifestyle. The wellness education requirement is designed to assist students in making healthy decisions to support their academic and social interactions in college and beyond. The wellness curriculum provides learning experiences that are an integral part of the educational experience at RIT.

Students seeking a bachelor's degree: Students seeking a bachelor's degree must successfully complete two different wellness activity courses. (Important note: Different courses would include different levels of and/or forms of a course that may have the same course number (e.g., pilates and advanced pilates would count as two different activity courses).

Students seeking an associate degree: Students seeking an associate degree must successfully complete one wellness activity course.

Transfer students: Transfer students may apply course work successfully completed at a previous institution. The student's home department will determine and make decisions regarding transfer of health, wellness, or activity courses. The Center for Intercollegiate Athletics and Recreation is available for consultation.

Exemption Scenarios

Age: Students who are 25 or older at the date of matriculation are exempt from the wellness education requirement but may enroll in any course on a space-available basis.

Club sports participation: Students participating in an RIT-recognized club sport may be granted one activity course credit for the year of participation. Participation on the same club team for multiple seasons (e.g., four seasons) can be counted only one time for activity course credit toward the graduation requirement. Students must see the club sports advisor before the end of the spring quarter add/drop period to facilitate the credit process.

Credit by experience: Retroactive credit may be granted for certain independent activities if completed within one year before matriculation at RIT. A formal written request must be submitted that clearly outlines the activity that is being considered for wellness education credit along with all documentation of the experience (e.g., signatures of instructors, copy of certificates, receipt from a course or seminar completion). A minimum of 16 hours of a previous activity is required. Formal requests should be submitted to the director of the Wellness Instructional Program.
Intercollegiate athletics: Students participating in the university's intercollegiate athletic program will be granted wellness activity course credit for the season(s) of participation.

Intramural participation: No credit is granted for intramural sports participation.

Medical excuse: A medical excuse may exempt students from participation in the activity segment of the graduation requirement, but they must still enroll in First-Year Enrichment (during their freshman year). The exemption will be granted only by a college dean with input from the associate director of wellness for the Center for Intercollegiate Athletics and Recreation. One copy of the medical excuse (signed physician's memo) should be filed with the Center for Intercollegiate Athletics and Recreation and the other copy taken to students' academic department.

Military duty: Students who have completed six months or more of active military duty are not required to complete the wellness education program but are encouraged to enroll in any wellness course on a space-available basis.

Nonmatriculated status: Nonmatriculated students are exempt from the wellness education requirement but are encouraged to enroll in any wellness course on a space-available basis.

Prior bachelor's degree: Students who have acquired a bachelor's degree are exempt from the wellness education requirement.

Academic advising

All undergraduate students are assigned to an academic advisor. Most students also have a faculty advisor. Advisors help students transition into RIT, navigate their curriculum, connect to RIT resources, explore career choices, evaluate progress toward degree completion, and integrate into the RIT community. Students new to the university (freshman and transfers) are required to meet with their academic advisor during their first year. Second and third year
students also are expected to meet with their advisor during the academic year. These advising sessions allow students and advisors time to build their advising relationship and plan for success. Students can find their advisors listed on SIS and Tiger Center.
The University Advising Office is an excellent starting point for any questions related to academic advising and student success at RIT. This office coordinates undergraduate advising and targeted student success initiatives. Contact the University Advising Office at 585-475-7128 or advising@rit.edu.

Academic policies

www.rit.edu/academicaffairs/policiesmanual/
For the most up-to-date information on academic policies, please visit the Student Policy Library-www.rit.edu/academicaffairs/ policiesmanual/policies/student.

Confidentiality of student records

In accordance with the Family Education Rights and Privacy Act of 1974 (commonly known as the Buckley Amendment), RIT students have the right to inspect, review, and challenge the accuracy of their official educational records. Students are also accorded the right to receive a formal hearing if dissatisfied with responses to questions regarding the content of the record.

RIT policy ensures that only proper use is made of such records. Therefore, with the exception of copies made for internal use (those provided to faculty and staff who have a legitimate need to know their contents), in most cases no copy of a student's academic record (transcript) or other nonpublic information from student records will be released to anyone without the student's written authorization. The determination of those who have a "legitimate need to know" (e.g., academic advisors, government officials with lawful subpoenas, etc.) will be made by the person responsible for the maintenance of the record. This determination will be made carefully, in order to respect the student whose record is involved. If an employer, for example, requests a transcript, he or she will have to obtain a written request from the student or former student.

The Buckley Amendment allows RIT to declare certain pieces of information as "directory" and therefore releasable without the specific permission of a student. Such "directory information" could include a student's name, date and place of birth, major field of study, participation records in official RIT activities and sports, weight and height of a member of an athletic team, dates of attendance at RIT, and degrees and awards received. Students may make written request of the Office of the Registrar that such directory information not be released. Because requests for nondisclosure will be honored by RIT for only one year, requests to withhold such information must be submitted to the Office of the Registrar annually.

Copies of the full act and RIT's written policies relating to compliance with the law are on file in the Office of the Registrar. Also available is information regarding a student's right to file a complaint with the U.S. Department of Education concerning the alleged failure of RIT to comply with the requirements for this act.

Transcripts

A student's official academic record is maintained by the RIT Office of the Registrar and is normally reflected through a transcript. All requests for transcripts must be made online through the official RIT transcript service. Details can be found on the Office of the Registrar's website. Requests should include the student's full name (or name used while at RIT), student identification number, and dates of attendance to assure proper identification of the record requested.

Under no circumstances will a partial transcript be issued, nor will a transcript be issued to a student who is indebted to RIT. Transcripts from high schools and universities that have been received in support of admission applications and/or transfer credit evaluation will not be reissued by RIT.

Transfer credit

Transfer credit at the undergraduate level will usually be granted for those courses completed with a grade of C or better in other regionally accredited colleges or universities and specific armed services course work that parallels courses in the program (including options, if any) for which the student is applying or is currently enrolled. However, if the program (or option) that the student finally chooses to pursue does not include any or all of the courses evaluated, they will not be credited toward requirements for a degree. RIT students who wish to take courses at other accredited institutions and receive transfer credit toward their RIT degree need to secure the prior written approval of the advisor(s) of the RIT college(s) concerned in order to assure appropriateness of the course content and course level for those courses.

Deaf and hard-of-hearing students may transfer into an NTID program, or they may qualify for transfer directly into a program in another RIT college with NTID sponsorship. The transfer credit of deaf students accepted to NTID's Summer Vestibule Program will be evaluated in the fall when they are accepted into a specific program.

Credit by exam: RIT grants credit for satisfactory scores on examinations covering objectives and contents parallel to the RIT courses for which students seek credit. Usually these are Advanced Placement (AP), International Baccalaureate (IB), College-Level Examination Program (CLEP), New York state proficiency examinations, or RIT-prepared examinations.

Advanced placement: Many students earn advanced standing through Advanced Placement (AP) examinations. The minimum required score and the manner in which credits are applied depend upon a student's exam score and choice of academic program. No credit is awarded for scores of 1 or 2 on AP exams. Advanced Placement credits may be applied in fulfillment of general education, program requirements, and/or minor requirements. Students may need to complete additional course work in order to fulfill all specific program requirements. Students should consult with their advisor for additional details. The policy covering the awarding of credit for Advanced Placement examinations is reviewed annually and may be subject to change.

International baccalaureate: Many students earn advanced standing through International Baccalaureate (IB) examinations. The minimum required score and the manner in which credits are applied depend upon a student's exam score and choice of academic program. International Baccalaureate credits may be applied in fulfillment of general education, program requirements, and/or minor requirements. Students may need to complete additional course work in order to fulfill all specific program requirements. Students should consult with their advisor for additional details. The policy covering the awarding of credit for International Baccalaureate examinations is reviewed annually and may be subject to change.

College Level Examination Program: The College Level Examination Program (CLEP) is a nationwide system of credit by examination offered by the College Board. Any person entering college, presently attending college, or out of college may take CLEP examinations and seek credit by submitting the test results to RIT for evaluation. Credit recommendations for CLEP vary depending on the subject and examination results. CLEP examinations are offered through the RIT Counseling Center.

The grading system

RIT uses a plus/minus grading system. All grades are determined and issued by the faculty in accordance with the RIT Institute Policies and Procedures Manual and the particular standards of the attempted courses. Individual instructors have an obligation to carefully describe the standards and grading practices of each course. The accepted RIT letter grades are as follows:

GRADE	DESCRIPTION
A	Excellent
A-	
B+	Above Average
B	
B-	Satisfactory
C+	Minimum Passing Grade
C	Failure
D	Audit (Indicates a student has officially registered for the course for no credit.)
F	
AU	

Additional grades and notations that may be found on a student term record or transcript are shown below:

- I grades are considered temporary and will revert to a grade F unless changed by the faculty within a prescribed period of time.
- R, S, U, WV, and X grades are restricted to specific types of courses.

For more specific descriptions and procedures concerning the above, see Section D5.0and D2.0, Institute Policies and Procedures Manual. The manual is available online at rit.edu/policies.

Course registration

To be officially registered at RIT, a student must be academically eligible, have been properly enrolled in a course, and have made the appropriate financial commitment. Typically, students start selecting courses six to eight weeks before the academic term begins and can register online. The registration period ends on the seventh calendar day (excluding Sundays and holidays) of the full fall, spring and summer terms. These first seven days (excluding Sundays and holidays) of the term are typically known as the Add/ Drop period. Specific dates and procedures can be found in the academic calendar. RIT reserves the right to alter any of its courses at any time.

Students at RIT are free to choose their own courses and course loads. Colleges offering the courses are equally free to restrict enrollment to particular groups of students (for example, students in specific year groups or students who have already satisfied course prerequisites). Most courses also are restricted in class size. Students are strongly encouraged to seek out academic advice and plan their academic careers carefully.

Failure to make appropriate financial commitment, satisfy New York state health immunization requirements, or fulfill course prerequisites can result in the loss of courses for which a student has registered and/or prohibition of future registrations.

Auditing courses

Courses that are taken on an audit basis will not count toward a student's residency requirement. They may not be used to repeat a course taken previously and do not satisfy degree requirements. Permission to audit a course is granted only by the college offering that course. Any changes in registration between credit and audit must be completed prior to the end of the add/drop period.

Withdrawal from courses

BEFORE 80\% (11 WEEKS) OF THE TERM IS COMPLETED:

Students are strongly advised to consult with their academic advisor and instructor before they withdraw from any courses. A student may not use the drop with a grade of " W " option to avoid charges of academic dishonesty or after the instructor has officially submitted the final grade.

Prior to the end of the eleventh week of fall or spring term, a "W" will be assigned upon a full-time student's request, providing the student maintains full-time credit status. In processing the request, the student, course instructor, advisor and the home program or department head will be notified via e-mail.

In order for a full-time undergraduate student to withdraw below full-time status, a student must request for special permission from primary program or department leadership. Undergraduate degree seeking students who are enrolled less than full-time may not withdraw from any courses without the approval of primary program or department leadership. (RIT's definition of full-time can be found in policy D02.0.III.E)

If approved, the student, advisor, and course instructor will be notified. If denied, the student has the right to appeal the decision in accordance with the college's appeal process.

AFTER 80\% (11 WEEKS) OF THE TERM IS COMPLETED:

After the eleventh week and up to the last official class day of fall or spring term, a " W " will be assigned only with the approval and written signatures of the student, course instructor, the home program or department head, and the dean from the student's home college. For a student whose program is housed outside the college structure, the approval of the director or director's designee of the student's academic unit is required.

In all other academic sessions and for courses offered in time frames different from standard terms, course withdrawal is available upon the student's request until 80% of the session or course as determined by the Registrar's Office has been completed, providing undergraduate students enrolled full-time maintain the credit status outlined above in A.1. After this point and up to the last official class day, a "W" will be assigned only with the approval and written signatures of the student, course instructor, the home program or department head, and the dean from the student's home college. For a student whose program is housed outside the college structure, the approval of the director or director's designee of the student's academic unit is required.

In unusual situations, a "W" may be granted after the last official class day, but this must occur before a final grade is posted. Such an extraordinary request is administered through the Provost's Office, in consultation with (if possible) the student, course instructor, home program or department head, and dean from the student's home college. For a student whose program is housed outside the college structure, the approval of the director or director's designee of the student's academic unit is required.

While a "W" will appear on the student's transcript, it carries no credit and does not affect GPA.

When a student chooses to drop a course with a grade of "W", full tuition is charged. Courses with a "W" assigned do not count toward the residency requirement.

Dean's List eligibility

Degree-seeking students who earn at least 12 credit hours in an academic term, have a grade-point average of 3.40 or better, have not been placed on probation due to a low cumulative grade-point average, and do not have any grades of I, D, or F in that term are eligible for selection to the Dean's List of their college. Students who are pursuing their degree on a part-time basis are assessed for Dean's List consideration based on course work completed throughout the academic year (fall, spring, summer). Criteria for part-time students are essentially the same as those for full-time students. However, at least 9 credit hours must be earned during the academic year.

Class attendance

Students are expected to fulfill the attendance requirements of their individual classes. Absences, for whatever reason, do not
relieve students from responsibility for the normal requirements of the course. In particular, it is the student's responsibility to make individual arrangements prior to missing class. Attendance at class meetings on Saturdays or at times other than those regularly scheduled may be required.

Academic probation and suspension

An undergraduate student must maintain a cumulative and term Grade Point Average (GPA) of 2.00 or above at RIT in order to remain in good academic standing. RIT has set standards to help students maintain satisfactory academic performance, and serve to identify, warn, and provide timely intervention to students experiencing academic difficulty. Probation and suspension outlined below are academic actions.

In addition to the RIT requirements outlined below, individual colleges and/or programs may define more rigorous requirements for maintaining good academic standing. Such requirements must be approved by the Provost's Office, clearly defined within published college policy, and communicated in the university bulletin.

All probation and academic suspension actions are taken at the end of the fall, spring, and summer terms. Students who attempt fewer than 9 credits in a term, and earn a term GPA less than a 2.0, but whose cumulative GPA is 2.0 or higher may be subject to academic action at the discretion of the college.

Probation refers to the academic action taken when a student is not in good academic standing. Students placed on probation are expected to sufficiently raise their GPA so as to return to good academic standing in the succeeding term. Students placed on probation will be required to complete an academic success plan. In consultation with their advisor and written permission of the dean of the college, students on probation may enroll in more than 16 credits. Without consultation with their advisor and written permission from the dean of the college, students on probation may enroll in no more than 16 credits. In some circumstances, a student will also be required to satisfy specific conditions required by the home program. Failure to meet the terms of probation may result in suspension. A student can be placed on probation no more than two terms during a given undergraduate degree level (i.e., associate or bachelor) at RIT. Students on probation who fail to return to good academic standing will be placed on academic suspension through the upcoming fall or spring term, at a minimum.

Academic Suspension refers to the academic action taken when a student is not permitted to enroll in courses at RIT for a minimum of one term. Students who qualify for academic suspension at the end of a spring term will be suspended for the following summer and fall terms. An appeal form can be used by a student to appeal an academic suspension decision.

Deferred Suspension refers to the academic action taken when a student appeals academic suspension and the appeal is granted. Students placed on deferred suspension will have one term to return to good academic standing and will be required to complete an academic success plan with their home program. A student on deferred suspension, enrolled in summer term, and taking 12 or more credits will be subject to the academic action policy and subsequent academic success plan.

Academic Success Plan is an agreement between a student and the student's academic program designed to facilitate success in the program. Students should consult with their academic program to determine the appropriate number of credits per term. Failure to complete the academic success plan may result in suspension.

Policy Statements:

1. Any degree-seeking undergraduate student whose term and or cumulative GPA (see D5.0-Grades, section G) falls below a 2.00 (C average) will be placed on probation.
2. Students placed on probation may in enroll in no more than 16 credits during the probation period and are required to complete an academic success plan with their home/primary program. Students in consultation with their faculty and or professional academic advisor, may appeal to the dean of the college for permission to take more than 16 credits while on probation.
3. A student can be placed on probation no more than two terms during a given undergraduate degree level (i.e., associate or bachelor) at RIT. Students who fail to return to good academic standing will be placed on academic suspension through the upcoming fall or spring term, at a minimum.
4. Any student who has been placed on probation after having been removed from probation will be granted one term to be removed from probation before academic suspension from RIT.
5. Any student whose term grade point average falls below 1.00 is not eligible for probation and will be placed on academic suspension through the upcoming fall or spring term, at the minimum.
6. Students who have been readmitted to RIT after an academic suspension have up to two terms to return to good academic standing. Students who fail to return to good academic standing in two terms will be placed on academic suspension.
7. A student on academic suspension cannot enroll in any credit or non-credit course at RIT while on academic suspension.
8. Students on academic suspension may appeal an academic suspension decision to their primary home department. If the appeal is granted, the student will be placed on deferred suspension for one term. An appeal can be made by completing and submitting an appeal form. Individual colleges and/or programs may set limitations on the number of appeals a student can submit.
9. Decisions regarding deferred suspension require dean (or designee) approval. For programs housed outside the college structure, decisions regarding deferred suspension require approval of the academic unit.
10. Students placed on deferred suspension will have one term to return to good academic standing and will be required to complete an academic success plan with their home program.
11. Academic suspension refers to the academic action taken when a student is not permitted to enroll in courses at RIT for a minimum of one term. A student on academic suspension will be excluded from classes, university housing, and all other university activities during the period of academic suspension. Students on academic suspension may attend university events that are open to the general public and may participate only as a member of the general audience.
12. Students on academic suspension may be required to satisfy specific academic requirements imposed by the home program in order to be considered for readmission to their program.
13. Students on academic suspension may be admitted to another program if approved by the dean (or designee) of the college in which enrollment is requested. Such students will be placed on deferred suspension and required to complete an academic success plan with the new program. For programs housed outside the college structure, the approval of the academic program in which the enrollment is requested is required.
14. Students must apply through undergraduate admissions for re-admission at the end of their academic suspension. Such re-admission must be approved by the dean (or their designee) of the college for which they are requesting enrollment (this may be the original college or another) in consultation with the academic program. For programs housed outside the college structure, the re-admission must be approved by the director (or designee) of the academic unit for which they are requesting enrollment.
15. Readmitted students will be required to complete an academic success plan and will have up to two terms to return to good academic standing. After two terms, students who do not maintain both cumulative and term GPA of 2.0 or above will be placed on academic suspension.

Health policies

New York state and RIT immunization requirements

New York State public health law requires that all students enrolled for more than 6 credit hours in a term and born after January 1, 1957, must provide proof of immunization against measles, mumps and rubella and to sign a meningitis awareness form. The law applies to all full time and part time students including RIT employees. Immunization requirements include:

- Two MMR vaccinations at least one month apart and after the first birthday.
- A Meningitis Awareness Form must be signed by all students regardless of age.
- RIT requires students age 21 and under to be immunized against meningitis.
- Failure to comply with the New York State immunization law may lead to exclusion from classes and the RIT campus, and a \$200 fine.

Covid vaccine requirement: All RIT students are required to be fully vaccinated. Individuals are considered fully vaccinated 1) two weeks after their second dose in a 2-dose series (such as the Pfizer or Moderna vaccines); or 2) two weeks after a single-dose vaccine (such as Johnson \& Johnson's Janssen vaccine). For more information on RIT's Covid vaccination policy, please visit rit.edu/ready/ rit-safety-plan.

Note: An email notification is sent to students' RIT email account with directions to complete the necessary health information through the Student Health Center portal. Please note that the immunization form is to be completed by the student online and then downloaded and taken to the student's health provider or school
official for verification. The form must then be forwarded to the Student Health Center for approval (fax: 585-475-7530).

Health/Medical records

Medical records are confidential and separate from educational records. Information is not released without the written consent of the student. Exceptions to this rule are made only when required by the public health laws of New York State, a court-ordered subpoena or in a life-threatening situation.

Student Conduct

 Policies and Procedures
Expectations for community behavior

- RIT is a learning community where time, energy, and resources are directed toward learning and personal development.
- Members of the community live and work together to foster their own learning as well as the learning of others, both in and outside the classroom.
- Within the community, members hold themselves and each other to high standards of personal integrity and responsibility.
- Individual members continually strive to exceed their personal best in academic performance and the development of interpersonal and professional skills and attributes.
- As a member of the community, each person continually conducts himself/herself in a manner that reflects thoughtful, civil, sober, and considerate behavior.
- As a member of the community, each person respects the dignity of all people and acts to protect and safeguard the well-being and property of others.
- As a member of the community, each individual contributes to the continued advancement and support of the community, personally challenging behavior that is contrary to the welfare of others.
- Members of the community create a campus culture that values diversity and discourages bigotry while striving to learn from individual differences.

RIT honor code

Integrity and strong moral character are valued and expected within and outside of the RIT community. As members of the RIT campus community, including students, trustees, faculty, staff, and administrators, we will:

- Demonstrate civility, respect, decency and sensitivity towards our fellow members of the RIT community, and recognize that all individuals at this university are part of the larger RIT family, and as such are entitled to that support and mutual respect which they deserve.

University Policies and Procedures

- Conduct ourselves with the highest standards of moral and ethical behavior. Such behavior includes taking responsibility for our own personal choices, decisions and academic and professional work.
- Affirm through the daily demonstration of these ideals that RIT is a university devoted to the pursuit of knowledge and a free exchange of ideas in an open and respectful climate.

Consumer Information

www.rit.edu/fa/compliance/student-right-know

In compliance with the federal Student-Right-to-Know and Campus Security Act, and regulations of the U.S. Department of Education, RIT provides the following information to current and prospective students:

Outcomes Rate

Each year RIT gathers information about the career plans of its graduates in accordance with national standards established for the National Association of Colleges and Employers (NACE). These outcome summaries are provided by the university overall at both the undergraduate and graduate levels and reflect the career activities of graduates within six months of degree certification. Outcomes rates describe the percentage of graduates who have entered the workforce, enrolled for further full-time study, or are pursuing alternative plans. Alternative plans include military service, volunteer service, and those not seeking employment at this time. The outcomes rate for the class of 2021 was 92.6% based on a 82.4% knowledge rate (the percent of graduates that RIT had verifiable information on.).

Student Persistence and Graduation

Of the cohort of full-time degree-seeking undergraduate students who first enrolled at RIT in fall 2015, 70.8\% had earned their bachelor's degrees as of August 2021. While these beginning and end dates meet the act's requirements for determining a graduation rate (150 percent of the normal length of full-time study [4 years]), it is important to recognize that nearly two-thirds of entering freshmen enroll in programs with mandatory cooperative education requirements. These requirements range from three to 14 months depending upon the program, thus extending the reported program length to five years. The one-year persistence rate for the class that entered in 2020 was 87.5 percent.

Public Safety

The Public Safety Department is open 24-hours-a-day and is located in Grace Watson Hall. The department encourages the RIT community to take responsibility for their safety by staying informed of these services and reporting suspicious activity. Although each individual is ultimately responsible for their own personal safety, learning and practicing basic safety precautions can enhance one's well being. RIT's Public Safety Report is available at: www.rit.edu/publicsafety/sites/rit.edu.publicsafety/files/2021Ann alSecurityReport.pdf. The department provides the following services:

Blue light call boxes: Identified by a blue light and located across campus, these call boxes are a direct line to Public Safety 24-hours-a-day. The location of the call is automatically recorded at the Public

Safety Communications Center, making it possible for hard-of-hearing individuals to also use the call boxes. The call boxes are used to request a security escort, assist motorists, report suspicious individuals/activity, or request access to locked buildings or rooms.

Mobile escort service: Available to anyone, seven-days-a-week, on a timed schedule between 11 p.m. and 3 a.m.
Lost and found: All items lost and found are stored by the Public Safety Department. To report an item lost, visit rit.edu/publicsafety/safety/lostitems.html (requires RIT computer account).

Emergency notification: If a family member needs to make an emergency notification to a student, he or she should contact Public Safety at (585) 475-2853 or TEXT at (585) 205-8333. Public safety will locate the student and relay the message.

Awareness programs: Public safety hosts a variety of prevention awareness programs and services on various topics including crime prevention, personal safety, and alcohol awareness. A monthly newsletter, RIT Ready, is distributed to students, faculty, and staff to bolster emergency preparedness on campus.

Annual Safety and Security Report: Public safety's security report is available online: www.rit.edu/fa/publicsafety/sites/rit.edu. fa.publicsafety/files/docs/2020AnnualSecurityReport.pdf.

Confidential tip line: This service obtains information that is unattainable through conventional methods and to alert public safety to endangering behavior that might go otherwise unreported. An online form is available at rit.edu/publicsafety/forms/tipline (requires RIT computer account).

Crime statistics: The Advisory Committee on Public Safety will provide, upon request, all campus crime statistics as reported to the Department of Education. RIT crime statistics can be found online (ope.ed.gov/security) or by contacting the Public Safety Department. A hard copy of reported crime statistics required to be ascertained under Title 20 of the U. S. Code Section 1092(f) will be mailed to you within 10 days of the request.

Sexual assault information and CARES: Confidential counseling services are available to anyone in need by calling (585) 546-2777 (voice/TTY). RIT's Campus Advocacy Response and Support (CARES) is located on campus and provides confidential and crisis intervention and support services for relationship concerns. Contact (585) 295-3533 at any time for assistance.
Emergency Preparedness: RIT regularly communicates, prepares, and practices emergency management with public safety personnel and campus managers from various departments. If necessary, we will provide updated information through broadcast email, mass notification system (RIT ALERT), voicemail, ALERTUS beacons, and the university's website at rit.edu.

Administration and Trustees

President

David C. Munson, Jr., Ph.D., RIT
President

Deans

Gerard Buckley, Ed.D., President, National Technical Institute for the Deaf; Vice President and Dean, RIT

Twyla Cummings, Ph.D., Associate Provost and Dean, RIT Graduate School

Doreen Edwards, Ph.D., Dean, Kate Gleason College of Engineering

James Hall, Ph.D., Dean of University Studies; Executive Director, School of Individualized Study

Matt Huenerfauth, Ph.D., Dean, Golisano College of Computing and Information Sciences

André Hudson, Ph.D., Interim Dean, College of Science
Todd S. Jokl, Ed.D., Dean, College of Art and Design

Jacqueline R. Mozrall, Ph.D., Dean, Saunders College of Business

Nabil Nasr, Ph.D., Associate Provost, Academic Affairs; Director, Golisano Institute of Sustainability
S. Manian Ramkumar, Ph.D., Dean, College of Engineering Technology

Yong Tai Wang, Ph.D., Dean, College of Healtrh Sciences and Technology

Anna Westerstahl Stenport, JD, Ph.D., Dean, College of Liberal Arts

President's Administrative Council

Karen Barrows, Chief of Staff
Gerard Buckley, President, NTID/ Vice President and Dean, RIT

Enid Cardinal, Senior Advisor to the President for Strategic Planning and Sustainability

Phil Castleberry, Vice President for University Advancement

Lisa Chase, Vice President and Secretary

Bobby Colon, Vice President and General Counsel

Robert Finnerty, Associate
Vice President of University Communications

Ellen Granberg, Ph.D., Provost and Senior Vice President for Academic Affairs

Vanessa J. Herman, Vice
President for Government and Community Relations

Keith Jenkins, Ph.D., Vice
President and Associate Provost for Diversity and Inclusion

Sandra S. Johnson, Ed.D., Senior Vice President, Student Affairs

Joe Johnston, Ombudsperson
Ian Mortimer, Vice President of Enrollment Management and Associate Provost, RIT Certified

Jo Ellen Pinkham, Associate
Vice President and Chief Human Resources Officer

Ryne Raffaelle, Ph.D., Vice
President for Research
John Trierweiler, Vice President and Chief Marketing Officer

James H. Watters, Ph.D., Senior
Vice President for Finance and Administration

Academic Affairs Leadership Team

Ellen Granberg, Ph.D., Provost and Senior Vice President for Academic Affairs

Christine M. Licata, Ed.S., Ed.D., Vice Provost for Academic Affairs

Therese Hannigan, Chief
Learning Experience Officer
Keith Jenkins, Ph.D., Vice
President and Associate Provost for Diversity and Inclusion

Joseph Loffredo, Associate Vice President for Academic Affairs and Registrar

LaVerne McQuiller Williams,
Associate Provost for Faculty Affairs

James Myers, Ph.D., Associate Provost of International Education and Global Programs

Susan Provenzano, Assistant Vice President, Academic Affairs

Ryne Raffaelle, Ph.D., Vice
President for Research
Marcia Trauernicht, Director of RIT Libraries

Board of Trustees

Robert W. August, Managing
Robert W. August, Managing Partner, Laser Wash Group, LLC
Mark G. Barberio '85, Principal, Markapital, LLC

Brooks H. Bower '74, Chairman and CEO, Papercone Corp. East
Andrew N. Brenneman '86, '88, Senior Client Director, T-Mobile USA

David J. Burns, Principal and Founder, Global Business Advisory Services LLC

Carol B. Cala '97, $\mathbf{\prime} 00$, Vice President of Corporate Energy, ES\&H, Lockheed Martin Corporation

Essie L. Calhoun-McDavid,

 Retired Chief Diversity Officer and Director, Community Affairs Vice President, Eastman Kodak CompanyDale J. Davis, Esq. '96, Chief IP Counsel \& Deputy General Counsel, Cummins Inc.

Hyacinth "Hope" V. Drummond
'91, Founder, Dreamseeds Children's Programs

Nita Genova, RIT Women's
Council President
Arthur A. Gosnell, Chairman and CEO, Stonehurst Capital, Inc.

Jeffrey K. Harris '75, Chair, Board of Trustees, Rochester Institute of Technology, Retired Corporate Vice President, Situational Awareness, Lockheed Martin Corp.

Darshan N. Hiranandani '02, '03, Managing Director, Hiranandani Group

Susan R. Holliday '85, Vice Chair, Board of Trustees, Rochester Institute of Technology, Former President and Publisher, Rochester Business Journal

Andrew R. Jacobson '90, '96, Enrolled Agent, AJ Tiger Tax Services

Richard A. Kittles, Ph.D. '89, Professor and Founding Director, Health Equities, City of Hope Cancer Center

Christopher Lehfeldt, D.D.S, Elmwood Dental Group, PC

Pamela Lloyd-Ogoke '81, Chief of Community Integration Services \& Supports, North Carolina Division of Vocational Rehabilitation Services, NTID NAG Chair

Austin W. McChord '09, CEO, Casana Care, Inc

Dana A. Mehnert, President, L3Harris Technologies Communication Systems Sector

Roosevelt "Ted" Mercer, CEO
and Executive Director, Virginia Commercial Space Flight Authority

David C. Munson Jr., Ph.D., President, Rochester Institute of Technology

Sharon D. Napier '04, Chair + Founder, Partners + Napier
Brian P. O'Shaughnessy '81, '84, Partner, Dinsmore \& Shohl LLP
Gerard Q. Pierce '77, CEO, HR Works, Inc.

Susan M. Puglia, Vice Chair, Board of Trustees, Rochester Institute of Technology, Retired Vice President, University Programs and Vice Chair, IBM Academy of Technology, IBM Corporation
Ronald S. Ricotta '79, CEO and President, Century Mold Company, Inc.
Nicholas M. Schneider, Ph.D., Principle, Boston Consulting Group; RIT Alumni Association President

Frank S. Sklarsky '78, Retired Executive Vice President and Chief Financial Officer, PPG Industries

Kevin J. Surace '85, Chairman and CTO, Appvance Inc.
James P. Swift '88, Senior Advisor, PSG

Sharon Ting, President, Ting and Associates, Inc.

Donald J. Truesdale '87,

Chairman Emeritus, Board of Trustees, Rochester Institute of Technology, CEO, Ardea Partners LLC

Clayton P. Turner '90, Director, NASA Langley Research Center
Kim E. VanGelder '86, Chief Information Officer and Sr . Vice President, Eastman Kodak Company

Judy B. von Bucher

Chester N. Watson '74, Retired General Auditor, General Motors Corporation

Dinah G. Weisberg '97, ${ }^{\prime}$ 03,
President and CEO, REDCOM Laboratories, Inc.

Christine B. Whitman, Chair Emeritus, Board of Trustees, Rochester Institute of Technology, Chairman and CEO, Complemar Partners, Inc
Kathhy M. Yu, '91.
Ronald L. Zarrella, Chairman
Emeritus, Bausch \& Lomb, Inc.

Emeriti Board Members

Richard T. Aab, President, RTA
Associates, LLC
Richard T. Bourns, Retired Senior
Vice President, Eastman Kodak Company

Donald N. Boyce '67, Chair Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman, IDEX
Corporation
Charles S. Brown Jr. '79, Retired Executive Director, Center for Excellence in Math and Science, Rochester Area Colleges
William A. Buckingham '64, Chair Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Executive Vice President, M\&T Bank

Ann L. Burr, Retired Chairman of Frontier Communications of Rochester and Vice President, Customer Engagement, Frontier Communications

Mary Lu Clark

Thomas Curley '77, Retired
President and CEO, The
Associated Press
Sudhakar "Bal" G. Dixit '74, Chairman, Newtex Industries, Inc. James S. Gleason, Chairman, Gleason Corporation
B. Thomas Golisano, Chairman, Paychex, Inc.
Brian H. Hall '78, Chair Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Vice Chairman, The Thomson Corporation

Jay T. Holmes, Retired Executive Vice President and Chief Administrative Officer, Bausch \& Lomb, Inc.
Bruce R. James '62, '64, Chair Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Public Printer of the United States, United States Government Printing Office; President \& CEO, Nevada New-Tech Inc.

Herbert W. Jarvis, Former
President and CEO, Sybron Corporation

Thomas F. Judson Jr., Chairman, The Pike Companies
Richard A. Kaplan, Retired CEO, CurAegis Technologies
Robert J. Kohler Jr. '59, Retired Executive Vice President and General Manager, TRW Avionics \& Surveillance Group
Joseph M. Lobozzo, II '95, Former
President and CEO, JML Optical Industries, Inc.

Lawrence J. Matteson, Retired Vice President, Imaging and Information Systems, Eastman Kodak Company

Thomas C. McDermott, Retired Chairman, CEO and President, Goulds Pumps, Inc.

Jane Ratcliffe Pulver

Thomas S. Richards, Former Mayor, City of Rochester

Harris H. Rusitzky '56, '91, Partner, The Greening Group
Richard E. Sands, Ph.D.,
Executive Vice Chairman, Constellation Brands, Inc.
E. Philip Saunders, Chairman, Saunders Management

John "Dutch" M. Summers, Chief Executive Officer, Graywood Companies, Inc.
Harry P. Trueheart III, Chairman
Emeritus, Nixon Peabody LLP
Frederick T. Tucker '63, Retired Executive Vice President and Deputy to the CEO, Motorola, Inc.

Robert D. Wayland-Smith,

Retired Vice President and
Manager, Upstate Trust and Investment Division, Chase Manhattan Bank, N.A.

William A. Whiteside Jr., Chair
Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Partner, Fox, Rothschild, LLP

Emeriti Faculty Members

Sam Abrams, CLA, Professor
Jerry Adduci, COS, Professor
Patricia Albanese, CIAS, Professor
John Albertini, NTID, Professor
Ronald F. Amberger, CAST, Professo

Patti Ambrogi, CIAS, Associate Professor
John Andersen, COS, Professor
Peter Anderson, GCCIS, Professor
Louis Andolino, CLA, Professor
Frank Annunziata, CLA,
Professor
Frank Argento, NTID, Associate
Professor
Charles Jr., Arnold, CGAP, Professor
Bekir Arpag, CGAP, Professor
Cathleen Ashworth, CAD, Professor

Carl Atkins, CLA, Professor
Rodger W. Baker, CAST, Professor
Donald Baker, CAST, Professor
Donald Baker, KGCOE, Professor
Thomas Barker, KGCOE/CQAS, Professor

Anthony (Jim) Baroody, SCB,
Robert Barbato, SCB, Professor Lecturer

Linda Barton, COS, Associate Professor
William Basener, COS, Professor
Gerald C. Bateman, NTID, Professor

Carl Battaglia, CIAS, Professor
Mary Ann Begland, CIAS, Associate Professor

Donald Beil, NTID, Professor
Lawrence Belle, CCE, Professor Gerald Berent, NTID, Professor

Art Berman, CLA, Professor
Roy Berns, COS, Professor
Jean-Louis Bigourdan, CAD,
Research Scientist
Al Biles, GCCIS, Professor
William Birkett, CIAS, Professor
Robert Boehner, SCB, Principal
Lecturer
Kener Bond, CIAS, Professor
Philip Bornarth, CIAS, Professor
Shirley Bower, The Wallace
Center, Library Director
Dominic Bozzelli, NTID, Associate Professor

Edward Brabant, CGAP,
Professor
Laurie Brewer, NTID, Vice Dean and Professor

Mary Lynn Broe, CLA, Professor
Joseph E. Brown, CGAP, Professor
George Brown, COE, Professor
Robert Brown, COLA, Professor
Richard G. Budynas, KGCOE, Professor

Owen Butler, CIAS, Professor
Edward Cain, COS, Professor
Julie Cammeron, NTID, Associate Professor

Walter A. Campbell, CGAP, Professor

James I. Campbell, CLA, Professor

Adrianne Carageorge, CAD, Associate Professor

Gunther Cartwright, CIAS, Associate Professor

Barbra Cerio-Iocco, CHST,
Associate Professor
Katheen C. Chen, CLA, Professor
Karen Christie, NTID, Associate Professor

Richard Chu, CLA, Professor
Robert Chung, CIAS, Professor
Nancy Chwiecko, COS, Associate Professor

Nancy Ciolek, CAD, Associate Professor

Patricia Clark, COS, Professor
Douglas Cleminshaw, CIAS, Associate

Douglas A. Coffey, CLA, Professor
Charles D. Collins, COLA, Professor

John Compton, CIAS, Professor
Norman R. Coombs, CLA, Professor

Lawrence A. Coon, CAST, Professor

Anne C. Coon, CLA, Professor
Virginia Costenbader, CLA,
Professor
John Cox, NTID, Professor
W. Frederick Craig, CGAP, Professor

Elizabeth Croft, CLA, Associate Professor

Neil Croom, CGAP, Professor
David Crumb, CAST, Associate Professor

David Crystal, COS, Professor
Ira Current, CGAP, Professor
Roy Czernikowski, KGCOE, Professor

Margaret D'Ambruso, COS, Professor

Rebecca Daggar, COS, Senior Lecturer

Vincent Daniele, NTID, Professor
William J. Daniels, CLA,
Professor and Dean
Andrew Davidhazy, CIAS, Professor

Robert Davila, NTID, Vice President Emeritus

Tracy Davis, COS, Associate Professor

Joseph DeLorenzo, COE,
Professor
Joseph DeLorenzo, COS, Lecturer

William J. DeRitter, CLA, Professor

Charles DeRoller, CAST,
Associate Professor
Robert M. Desmond, KGCOE, Professor

William Destler, President, President

David Dickinson, CIAS, Professor
Thomas Dingman, CAST, Professor

Jean Douthwright, COS, Professor
Roger Dube, COS, Research
Professor
William Dubois, CIAS, Professor
Constantino Dumangane, CLA,
Associate Professor
Todd Dunn, CET, Associate
Professor
Robert Eastman, CAST, Professor
Judy Egelston-Dodd, NTID, Professor
F. Kingsley Elder, COS, Professor

Robert Eller, CET, Research
Professor
Robert Ellson, KGCOE, Professor
Loius Eltscher, CLA, Associate Professor

Lothar Engelmann, CIAS, Professor

Alan Entenberg, COS, Professor
Henry Etlinger, GCCIS, Professor
William Evans, SCB, Principal Lecturer

David Farnsworth, COS,
Professor
Peter Ferran, COLA, Professor
Susan Fischer, NTID, Professor
Joseph Fitzpatrick, CLA, Professor

James Fleming, CLA, Professor
James D. Forman, CAST,
Professor
Susan Foster, NTID, Professor
Hugh Fox, CIAS, Professor
Eugene Fram, Saunders College, Professor

Clifton Frazier, CIAS, Professor

Jon Freckleton, COE, Associate Professor
G. Thomas Frederick, COS, Professor

Robert D. Frisina, NTID,
Professor
Lynn Fuller, KGCOE, Professor
Roger Gaborski, GCCIS, Professor
Louis Gennaro, CAST, Professor
Thomas Gennett, COS, Professor
Dale F. Gibson, COB, Associate Professor

Peter Giopulos, CIAS, Professor
Dennis Glanton, COS, Lecturer
James Glasenapp, Science, Professor

Gordon, Goodman, GCCIS, Professor

Daniel Goodwin, CAST, Professor
Paul Grebinger, COLA, Professor
Marvin Gruber, COS, Professor
Laxmi Gupta, COS, Professor
Marianne Gustafson, NTID, Professor

Robert Hacker, CIAS, Professor Paul A. Haefner, COS, Professor

Jeremy Haefner, Provost, Provost and Professor

Peter Haggerty, NTID, Associate Professor

Charles W. Haines, KGCOE and COS, Professor

Jim Halavin, COS, Professor
Vicki Hanson, GCCIS, Professor
Roger Harnish, COLA, Professor
Mark Haven, CIAS, Professor
William J. Hayles, COS, Professor
Robert Hefner, COE, Professor
Robert Heischman, CIAS,
Professor
Richard Hetnarski, COE,
Professor
Warren L. Hickman, CLA, Professor

Rebecca Hill, COS, Professor
Ronald Hilton, CCE, Professor

Richard Hirsch, CIAS, Professor
Barbara Hodik, CIAS, Professor
Edwin Hoefer, COS, Professor
Eugene G. Hoff, COB, Asst. Professor

Kenneth Hoffmann, NTID, Professor

Jack Hollingsworth, COS, Professor

Diane Hope, CLA, Professor
Thomas Hopkins, CLA, Professor
Walter G. Horne, CGAP, Professor
Trudy Howles, GCCIS, Professor
John Hromi, COE, Professor
Kenneth Hsu, KGCOE, Professor
James Hurny, CAST, Associate Professor
T. Alan Hurwitz, NTID, President and Dean Emeritus

Morton Isaacs, CLA, Professor
Joanne M. Jacobs, CLA, Associate Professor

Deanna Jacobs, CAST, Professor
James Jacobs, CAST, Senior Lecturer

Ronald Jodoin, COS, Professor
Guy Johnson, CMS, Professor
George Johnson, SCB, Professor
Daniel Joseph, SCB, Associate Professor

Lorraine Justice, CIAS, Dean
Balwant Karlekar, KGCOE, Professor

Nabil Kaylani, CLA, Professor
Robert Kayser, CIAS, Associate Professor

Angela Kelly, CAD, Professor Ronald Kelly, NTID, Professor Weston Kemp, CIAS, Professor

Richard Kenyon, COE, Dean
Richard Kenyon, COE, Dean Emeritus

Robert Keogh, CIAS, Professor James Kern, COS, Professor

Robert Kerr, CIAS, Professor William Keyser, CIAS, Professor

Andrew Kitchen, GCCIS, Professor

Roberta Klein, SCB, Lecturer
Michael Kleper, CIAS, Professor
M. Joseph Klingensmith, COS, Professor

John Klofas, CLA, Professor
Warren Koontz, CAST, Professor
Russell Kraus, CIAS, Professor
David Krispinsky, CAST,
Associate Professor
Steve Kurtz, GCCIS, Professor
Patti Lachance, CAD, Associate Professor

Richard Lane, KGCOE, Professor
Harry Lang, NTID, Professor
William C. Larsen, CAST, Professor

Jeffrey Lasky, GCCIS, Professor
John Hoyoung Lee, CLA, Professor

James Leone, GCCIS, Professor
Howard Lester, CIAS, Professor
Howard LeVant, CIAS, Professor
Charles Lewis, CIAS, Professor
Thomas Lightfoot, CIAS,
Associate Professor
Vern Lindberg, COS, Professor
Jeffrey S. Lodge, COS, Associate Professor

Carl Lundgren, CAST, Professor
Richard D. Lunt, CLA, Professor
Michael Lutz, GCCIS, Professor
Douglas Lyttle, CGAP, Professor
Swaminathan Madhu, KGCOE,
Professor
Lakshmi Mani, CLA, Professor
Mark Marschark, NTID,
Professor
Douglas M. Marshall, COE,
Associate Professor
Edward Maruggi, NTID,
Professor
Craig McArt, CIAS, Professor
Walter McCanna, COB, Professor and Dean

Robert McGrath, CAST, Professor
Wiley McKinzie, GCCIS, Professor

Bruce Ian Meader, CAD, Professor

Douglas Meadow, COS, Professor
Bonnie Meath-Lang, NTID, Professor

Douglas P. Merrill, CHST/COS, Professor

Robert Merrill, CAST, Professor
Jim Miller, Vice President
Christine Monikowski, NTID,
Professor
Thomas Moran, CMS, Professor
Thomas Morelli, CAST, Professor
Robert Morgan, CIAS, Professor
Terence Morrill, COS, Professor
Wayne Morse, SCB, Professor
John A. Murley, COLA, Professor
Jean-Guy Naud, NTID, Professor
Pellegrino Nazzaro, CLA, Professor

John Neenan, COS, Professor
Ken Nelson, COLA, Professor
Chris Nilsen, KGCOE, Professor
Joe Noga, CIAS, Professor
Thomas O'Brien, CLA, Professor
Elizabeth O'Brien, NTID,
Professor
Elaine O'Neil, CIAS, Professor
Bruce Oliver, SCB, Professor
David Olsson, CAST, Professor
Richard Orr, COS, Professor
Sudhakar Paidy, KGCOE,
Professor
James Palmer, KGCOE, Professor
Harvey Palmer, KGCOE, Dean
Robert Paradowski, COLA, Professor Emeritus

Ila Parasnis, NTID, Professor
John-Allen Payne, NTID, Associate Professor

David Perlman, KGCOE,
Professor
Paul Petersen, KGCOE, Dean

Daniel Petrizzi, Eisenhower, Professor

Mark Piterman, CAST, Professor
Tom Policano, NTID, Associate Professor

Geoff Poor, NTID, Professor
F. Harvey Pough, COS, Professor

Thomas Pray, COB, Professor
Mark Price, CLA, Professor
Archie Provan, CIAS, Professor
Harry Rab, CGAP, Associate Professor

Thomas Raco, NTID, Professor
Dr. VV Raman, COS, Professor
Marilu Raman, NTID, Associate Professor

Navalgund Rao, COS, Professor
Margery Reading-Brown, CLA,
Associate Professor
Werner Rebsamen, CIAS, Professor

Kenneth Reek, GCCIS, Professor
Margaret Reek, GCCIS, Professor
Richard Reeve, KGCOE, Professor
Roger Remington, CAD, Professor
Martin A. Rennalls, CGAP, Professor

Harvey Rhody, COS, Professor
James Rice, CIAS, Professor
Carol Richardson, CAST,
Professor
Al Rickmers, CIAS, Professor
David Robertson, CIAS, Professor
John Roche, CLA, Associate Professor

Michael Rogers, CLA, Professor
Frank Romano, CIAS, Professor
Carol Romanowski, GCCIS,
Professor
M. Richard Rose, President, President

Paul Roseberg, COS, Professor
Richard Rosett, COB, Dean
Robert Rothman, COS, Professor
Evelyn Rozanski, GCCIS,
Professor

James Runyon, COS, Professor Marvin Sachs, NTID, Associate	Leslie Stroebel, CGAP, Professor David Suits, CLA, Professor	Kristen Waterstram-Rich, CHST, Professor
Professor		Joseph Watson, CIAS, Professor
Warren Sackler, CAST, Professor	Professor	John Waud, COS, Professor
Pasquale Saeva, COS, Professor	U.T. Summers, CLA, Associate	Charles J. Weigand, CGAP,
Edward Salem, COE, Professor	Professor	Associate Professor
Patrick Scanlon, CLA, Professor	Hector Sutherland, CGAP, Professor	Houghton Wetherald, CLA, Professor
Nan Schaller, GCCIS, Professor	Richard Tannen, CIAS, Professor	Carol Whitlock, SCB, Professor
Edward Schell, COLA, Associate Professor	Robert WW Taylor, NTID, Associate Professor	Dorothy Widmer, Student Affairs, Professor
Harry Schey, COS, Professor	Robert Teese, COS, Professor	Stanley Widrick, SCB, Professor
Emery Schneider, CIAS, Professor	Elaine Thiesmeyer, CLA,	Wilma V. Wierenga, CLA,
John Schott, COS, Professor	Professor	Associate Professor
Gerhard Schumann, CIAS, Professor	Toby Thompson, CIAS, Professor	Theodore Wilcox, COS, Professor
Anthony Sears, CGAP, Professor	Robert Tompkins, CGAP, Assistant Professor	Norman Williams, CIAS, Professor
Franz Seischab, COS, Professor	Rosemarie Toscano, NTID,	Thomas Williams, COB, Professor
Earl Sexton, Science, Professor	Professor	
John Shaw, COS, Professor	John Trauger, CGAP, Professor	Paul Wilson, COS, Professor
Jasper Shealy, KGCOE, Professor	Arden L. Travis, COB, Professor	Donald Wilson, SCB, Assistant
Douglas Sigler, CIAS, Professor	James Troisi, CLA, Associate Professor	Professor
Julius Silver, CIAS, Professor		Eugene O. Wilson, COB, Professor
Murli Sinha, CLA, Professor	Laura Tubbs, COS, Professor Kay Turner,	Stanley H. Witmeyer, CFAA, Professor
Donald Smith, CGAP, Associate Professor	Paul Tymann, GCCIS, Professor	James J. Worman, COS, Professor
Marshall Smith, CLA, Professor	Linda Underhill, SCB, Associate Professor	Anne Young, COS, Professor
Thomas Smith, COS, Professor	Thomas Upson, COS, Professor	Richard Zakia, CIAS, Professor
Caroline Snyder, CLA, Professor		Hans Zandvoort, CLA, Professor
Robert Snyder, KGCOE, Professor	Maureen Valentine, CET, Professor	Janet Zandy, CLA, Professor
Patricia Sorce, SCB, Associate	James Vallino, GCCIS, Professor	
Professor	James VerHague, CIAS, Professor	
Miles Southworth, CIAS, Professor	Michael Vernarelli, CLA, Professor	
Malcolm Guy Spaull, CAD, Director and Professor	Allen Vogel, CIAS, Professor	
G. Hollister Spencer, COB, Professor	Vladimir Vukanovic, COS, Distinguished Professor	
Egon Stark, COS, Professor	Ronald Vullo, GCCIS, Associate Professor	
Loret Steinberg, CIAS, Associate Professor	Helen Wadsworth, CLA, Assistant Professor	
William Stevenson, SCB, Associate Professor	Jerome Wagner, COS, Professor	
Michael Stinson, NTID, Professor	Wayne Walter, KGCOE, Professor	
Joan Stone, CIAS, Dean	Andrea Walters, CLA, Professor	
John Stratton, CAST, Professor	Nancy Wanek, COS, Professor	
	Charles Warren, CLA, Professor	

Campus Directory

Academic Support Center rit.edu/asc
(585) 475-6682

RIT Athletics
ritathletics.com
Center for Campus Life
rit.edu/studentaffairs/campuslife/ (585) 475-7058

Career Services
and Cooperative Education
rit.edu/oce
(585) 475-2301

Center for Campus Life:
Clubs and Organizations
rit.edu/campuslife/clubs/join-club (585) 475-7058

College Activities Board
rit.edu/cab
(585) 475-2509 (voice/TTY)

College Restoration Program
rit.edu/crp/
(585) 475-2982

Counseling Center
rit.edu/counseling
(585) 475-2261

Dining Services

rit.edu/diningservices/
(585) 475-2228

Disability Services
rit.edu/disabilityservices
585) 475-2023

Division of Diversity and Inclusion
www.rit.edu/diversity
(585) 475-6546

English Language Center
rit.edu/elc
(585) 475-6684 (voice/TTY)

Graduate Enrollment
rit.edu/grad
(585) 475-2229

Higher Education
Opportunity Program
rit.edu/heop
(585) 475-2506 (voice/TTY)

Honors Program
rit.edu/honors
(585) 475-4511

Housing Operations
rit.edu/housing
(585) 475-2572

I'm First
rit.edu/diversity/imfirst (585) 475-2833

Information and
Technology Services
rit.edu/its
(585) 475-4357

International Student Services
rit.edu/iss
(585) 475-6943 (voice/TTY)

Leadership Institute and Community Service Center
rit.edu/lead
(585) 475-6974

Libraries
library.rit.edu
Margaret's House Early
Childhood Education Center
rit.edu/margaretshouse
(585) 475-5176 (voice/TTY)

Multicultural Center for
Academic Success
www.rit.edu/mcas
(585) 475-4704

On-Campus Apartment
Student Association
rit.edu/reslife/pages/student_run (585) 475-6680 (voice/TTY)

Center for Orientation and Transition
rit.edu/orientation
(585) 475-7995 (voice/TTY)

Parking and
Transportation Services
rit.edu/parking
(585) 475-2074

Part-time Enrollment Services
rit.edu/parttime
(585) 475-2229

Public Safety
rit.edu/publicsafety
(585) 475-3333 (Emergency)
(585) 205-8333 (Emergency TEXT)

IM:ritpublicsafety

Q Center

rit.edu/qcenter/
(585) 475-6355

Center for Religious Life
rit.edu/religion
(585) 475-2135

Center for Residence Life
rit.edu/reslife
(585) 475-3102

Residence Halls Association
rit.edu/rha/

Simone Center for

Innovation and
Entrepreneurship
rit.edu/simonecenter/
(585) 475-2185

Spectrum Support Program
rit.edu/ssp
(585) 475-6936

Student Conduct and
Conflict Resolution
www.rit.edu/studentconduct/
(585) 475-5662

Student Financial Services
rit.edu/sfs
(585) 475-6186

Student Government

rit.edu/sg
(585) 475-2204 (voice/TTY)

Student Health Center
rit.edu/studenthealth
(585) 475-2255 (voice)
(585) 475-5515 (TTY)

Student Music Association
rit.edu/music

Student Wellness Programs

rit.edu/wellness
(585) 475-3963

Study Abroad
rit.edu/studyabroad
(585) 475-4466

Office of Undergraduate
Admission
rit.edu/admissions
(585) 475-6631

Veteran Enrollment Services
rit.edu/military
(585) 475-6641

The Center for
Women and Gender
rit.edu/womenscenter
(585) 475-7464

Wellness Instructional Program
www.rit.edu/criw/wellness.php
(585) 475-6995

WITR Radio
witr.rit.edu

ПTCHTMEMTM

[^0]: Rochester Institute of Technology
 One Lomb Memorial Drive
 Rochester, NY 14623
 rit.edu
 Undergraduate Bulletin 2022-23

[^1]: * Accelerated duel degree (BS/MS) option available.
 \dagger Evening option available.
 \ddagger Online option available.

[^2]: Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for

[^3]: AS degree in computer science, engineering science, or liberal arts

[^4]: AS degree in engineering science

[^5]: Please see General Education Curriculum (GE) for more information.

[^6]: AS degree in engineering science

[^7]: AS degree in engineering science

[^8]: AS degree in business administration or liberal arts

[^9]: * RIT LAS Foundation courses First Year Writing: Writing Seminar (UWRT-150) (or another approved First Year Writing course) and a General Education Elective.
 † Career English I, II (NENG-212, 213) and mathematics (NMTH-120 or higher).
 \ddagger An ASL-Deaf cultural studies (AASASLDCS) course is required for graduation. It can be taken in any semester and can be taken at NTID or another RIT college. In order to fulfill this requirement as part of the credits in the program, it must be a course approved for both AASASLDCS and a General Education - Perspective, or General Education - Elective, or it can be used to fulfill an Open Elective.
 § One course from the following RIT general education perspective categories: ethical,

[^10]: * SSO (Support Services Orientation) workshops for NTID-supported students accepted to other RIT colleges. Date subject to change.
 t Student fees are required of all full-time students and include: student health fee (per semester) and student activities fee (per semester).
 \neq Charge to defray cost of fall Orientation program, for freshmen and new students only.

[^11]: The standard academic year includes fall and spring semesters.
 New students accepted to the Summer Vestibule Program will be charged according to the prorated fee schedule indicated above.

 Students in co-op will not be charged tuition or fees for that particular semester and will be charged room and board only if they live on campus while they work.

[^12]: * Specific course based on placement testing

[^13]: * Some of these courses may require department approval. Additional courses may be used as electives,

[^14]: AS degree in liberal arts with math/science option

[^15]: * This course may be used when the topic is Caribbean Literature or Black Studies related.

[^16]: * At least two electives must be at the 300-level or higher.

[^17]: * Students choose either five creative writing workshop electives or four creative writing workshop

[^18]: * At most only one of the creative writing workshops (ENGL-376, ENGL-386, ENGL-389) may be used toward the minor

[^19]: *At least two courses must be taken at the 300-level or higher.

[^20]: * Students majoring in criminal justice, philosophy, or political science may only count one course from their home department toward the requirements of the minor.

[^21]: * At least one course must be taken at the 300-level or highe

[^22]: * Students take either CMTJ-207 or CMTJ-212 as a required course. The other course may be taken as an elective to fulfill the total credit hours.

[^23]: * This course may be taken when the topic focuses on East Asia

[^24]: * Students who begin the language sequence at the Beginning I Level will take either Beginning Spanish IA (MLSP-201A) or Beginning Spanish 1B (MLSP-201B). Placement will be determined in consultation with the department.
 \dagger When course focuses on Mesoamerica or Latin America.
 \ddagger When course deals with Spanish and/or Latin American literature.

[^25]: * At least one elective course must be a MUSE course and one must be a HIST course.

[^26]: Each of these ensembles is one semester credit hour. Three semesters of participation are required to complete one minor course
 † It is strongly recommended that students select two music electives and one technology elective. At least two elective courses must be taken at the 300-level or higher.

[^27]: Three credits in Music Theory and three credits of ensemble participation are required - A maximum of three semester of FNRT-256 may be counted as an elective course. \ddagger A minimum of two courses must be taken at the 300-level or above

[^28]: * At least one course must be at the 400 level.

[^29]: * At least two courses must be taken at the 300-level or higher.

[^30]: * The remaining four courses must come from at least two of the four focus areas.

[^31]: * Interdisciplinary Capstone Seminar (STSO-510) requires enrollment in the minor and the completion of two courses from the minor.

[^32]: * Students majoring in industrial engineering must complete an alternative course.

[^33]: * Students must complete one course from the Visual Culture list and one course from the Performing Arts list. The third course may be taken from either list.
 \dagger This course is offered on RIT's international campuses.

[^34]: At least one course must be taken at the 300-level or above.

[^35]: * At least one course must be taken at the 300 -level or above

[^36]: * At least one course must be taken at the 300-level or above.
 \dagger Students may not take both STAT-257 and STAT-205 and receive credit.

[^37]: * Students should take no more than one FNRT class.

[^38]: The remaining course can be selected from the list of approved courses in the immersion, or may include a third course from the list above.

[^39]: * At least one course must be taken at the 300-level or above

[^40]: * Students may use credit for either ANTH-102 or ANTH-104 towards the immersion.
 + ANTH-340 Divided Europe and ANTH-350 Global Economy and the Grassroots are courses offered only
 at one of the global RIT campuses (Croatia), and counts toward this immersion in Cultural Anthropology.

[^41]: * At least one course must be taken at the 300-level or above

[^42]: Students must take courses in more than one discipline, e.g., two in VISL and one in ANTH

[^43]: Course may be used when topic focuses on Hunger and Health
 \dagger Course may be used when topic is relevant to Health, Culture, and Society

[^44]: * At least one course must be taken at the 300-level or above

[^45]: * Students may take either ENGL-214 or ENGL-310 to count for this immersion, but not both.

[^46]: * At least one course must be taken at the 300 -level or higher.

[^47]: *Students must not take all three courses for the Immersion from a single discipline

[^48]: * At lease one course must be taken at the 300-level or above.

[^49]: * Students must complete courses from at least two distinct disciplines (e.g. anthropology, English
 history, philosophy, or psychology).
 \dagger Philosophy majors must take two courses in disciplines other than Philosophy.

[^50]: A one-year program for students wishing to explore alternatives before selecting a specific major within this RIT college or school.

