Tuple Board: A New Distributed Computing Paradigm
for Mobile Ad Hoc Networks

Alan Kaminsky Chaithanya Bondada
Department of Computer Science Aviator Fund Management, L.P.
Rochester Institute of Technology New York, NY, USA

Rochester, NY, USA cbondada@aviatorfund.com

ark@cs.rit.edu

1. INTRODUCTION

The tuple board distributed computing paradigm is derived from the tuple space paradigm. Section 2 first de-
scribes tuple space, then introduces the tuple board and show how it differs from tuple space. Section 3 describes
how to design applications based on the tuple board. Section 4 describes how the tuple board is implemented.
Section 5 describes the status of and plans for this work.

2. THE TUPLE BOARD PARADIGM

In 1985 Gelernter introduced the notion of tuple space and its associated distributed coordination language, Lin-
da [1]. Since then, tuple space has been implemented in many languages and platforms. Notable Java implemen-
tations include Sun Microsystems’ JavaSpaces [2] and IBM’s TSpaces [3].

A tuple space based distributed application stores information in tuples. A tuple is a record of one or more fields,
each field having a value of a certain data type. One process can write a tuple into tuple space. Another process
can then take a tuple out of tuple space. To find a tuple to take, the taking process supplies a tuple used as a tem-
plate. Each field of the template may be filled in with a specific value or be set to a “wildcard” value. The tem-
plate is matched against all tuples in tuple space. A template and a tuple match if they have the same number of
fields and the fields have the same data types and values; a wildcard matches any value. The taking process re-
ceives one matching tuple that was taken out of tuple space. If more than one tuple matches the template, one tu-
ple is chosen arbitrarily to be taken; if no tuple matches the template, the taking process blocks until there is a
match. A process can also read a tuple. Reading is the same as taking, except the reading process receives a copy
of the matching tuple while the original tuple stays in tuple space.

Tuple space provides a distributed communication mechanism that decouples processes both “in space” and “in
time.” Processes need not reside on the same device to communicate. A process on one device can write a tuple
and a process on another device can take or read the tuple; the processes thus have communicated through the in-
termediary of tuple space. Processes also need not be running at the same time to communicate. A process can
write a tuple even if the process that will read or take the tuple is not running yet. The writing process can then go
away, and the tuple will persist in tuple space until another process reads or takes it. Conversely, a process can
read or take a tuple (and will block if necessary) even if the process that will write the tuple is not running yet.

Since mobile computing devices with wireless networking capabilities, such as laptop PCs, tablet PCs, and PDAs,
are becoming prevalent, there is a need for distributed applications that run on groups of nearby devices. For ex-
ample, people in a meeting would like to have their PDAs pool their individual calendars together to find a date
and time everyone has free for the next meeting. With today’s software this is typically impossible, since differ-
ent people use different calendar software, different calendar server computers, and so on. Tuple space provides
an alternative: Each PDA writes tuples with each person’s open calendar slots, then all the PDAs read all the
tuples and find a common slot. Previous work, such as one.world [4] and Lime [5], has attempted to adapt tuple



space to the mobile device environment. However, there are still difficulties. Since tuples are supposed to persist
in tuple space even if the writing process goes away, tuple space is typically implemented on a separate, central
server computer. However, central servers are unattractive for groups of mobile wireless devices, since the
devices may not be in range of a central server. Although the devices are in range of each other, no device can act
as a central server because devices can leave or turn off at any time. Without a central server, implementing tuple
persistence is difficult and requires complicated software.

We introduce the notion of a tuple board as a modification of tuple space that is better suited for ad hoc net-
works of mobile wireless computing devices without central servers. A tuple board is like a shared virtual bulletin
board. One process can post a tuple on the tuple board. A process can withdraw a posted tuple; but a process can
only withdraw the tuples the process itself has posted, not tuples any other process has posted. If a device leaves
the network or turns off, all the tuples the device’s processes had posted are implicitly withdrawn. Another pro-
cess can read a tuple on the tuple board that matches a template, just as with tuple space. A process can set up an
iterator over all tuples that match a template, then repeatedly read a tuple from the iterator; a different tuple is re-
turned each time. If all tuples matching the iterator’s template have been read, the process reading the iterator
blocks until a new matching tuple is posted. A process can set up a notifier for a template; the notifier will then
inform the process whenever a matching tuple is posted or withdrawn.

The key difference between the tuple board and tuple space is that tuples do not persist on the tuple board if the
posting process goes away. This greatly simplifies the tuple board implementation, since when a device turns off
or leaves the network its posted tuples can simply disappear. Many useful distributed applications can be devel-
oped even without tuple persistence. In fact, the ability to detect when a device goes away — because a notifier re-
ports that a tuple, which the device had previously posted, was withdrawn — is useful in its own right.

3. APPLICATIONS BASED ON THE TUPLE BOARD

In this section we describe how distributed ad hoc collaborative applications are designed using the tuple board
paradigm. Such applications are “collaborative” in that any number of nearby mobile computing devices can par-
ticipate. These applications are also “ad hoc” in that the devices do not need to be configured to know about each
other ahead of time; instead, devices can come and go at any time, and the application runs on whichever devices
happen to be nearby.

Information sharing applications of all kinds are easily implemented using the tuple board. Consider a digital
photo sharing application. Each device with digital photos — PCs, PDAs, even cameras and cellphones — posts tu-
ples for its pictures. Each tuple has, say, four fields: unique ID, thumbnail image, date taken, and description.
Any device can then obtain the other devices’ pictures, as follows. To retrieve all the pictures, the device sets up a
template where all four fields are wildcards; to retrieve only Disney World pictures, the template’s description
field is set to “Disney World” and the other fields are wildcards; and so on. The device uses an iterator to read all
the tuples that match the template, assembles the tuples’ thumbnail fields into an “album” of pictures, and dis-
plays the album on the device’s own screen. (The tuple board implementation, described in Section 4, transfers
tuples between devices over the wireless network.) If the user wants to see the full-size picture for some thumb-
nail, the user’s device posts a tuple containing a full picture request for the picture’s unique ID. Seeing that re-
quest posted, the device that has the picture with the given unique ID posts a tuple containing the full-size image.
The user’s device reads that tuple and withdraws its request tuple, whereupon the other device withdraws its full-
size image tuple. If a device joins the group, the new device merely starts posting tuples, and the other devices
(responding to a report from a notifier) add the new device’s thumbnails to their displays. If a device leaves the
group, the remaining devices (again responding to a report from a notifier that tuples were withdrawn) remove
the departed device’s thumbnails from their displays. Thus, the application automatically adapts as devices arrive
and depart, without needing to rely on a central server.

Other examples of ad hoc collaborative applications that can be designed in a similar way using a tuple board in-
clude file, music, and video sharing; groupware applications like shared whiteboard, shared document authoring,



and the aforementioned shared calendar; and vendor information directories in shopping malls and avenues. Bon-
dada built a conference information system demonstration using the tuple board [6].

4. THE TUPLE BOARD IMPLEMENTATION

We implemented the tuple board using Many-to-Many Invocation (M2MI) [7,8], a Java distributed object mid-
dleware system for ad hoc collaborative applications. M2MI provides a broadcast remote method invocation ca-
pability. A calling object can broadcast an invocation of a method declared in some interface, and all objects re-
siding in nearby devices that implement the interface will execute the method. M2MI method invocations are
transported using the Many-to-Many Protocol (M2MP) which broadcasts messages to all devices in a wireless
network.

When a device reads, sets up an iterator for, or sets up a notifier for a template, the device computes a hash code
for each template field, then broadcasts a method call requesting tuples that match the hash codes, which are
passed as arguments. All devices receive the method call and compare their posted tuples’ fields’ hash codes to
the argument hash codes. For each tuple whose hash codes match, the posting device broadcasts a method call
containing the tuple. Receiving this method call, the original device does a full equality comparison between the
tuple and the template, and keeps the tuple if there is a match. (The two-stage matching process reduces network
traffic.) The requesting device continues broadcasting request method calls periodically as long as the iterator or
notifier is in effect, and the other devices continue to respond whenever new matching tuples are posted.

See [6] for further information on the tuple board implementation.

5. STATUS AND PLANS

We have built an initial implementation of the tuple board itself and a conference information system demonstra-
tion using the tuple board [6]. This implementation includes all the tuple board capabilities except notifiers. We
have started working on a second version of the implementation including notifiers. Planned future work includes
adding security, so intruders cannot read or post tuples; developing more tuple board based applications; and cod-
ifying patterns and practices for designing ad hoc collaborative applications based on the tuple board.

6. REFERENCES
[1] David Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Systems, 7
(1)80-112, January 1985.

[2] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns, and Practice. Addison-Wesley,
1999.

[3] TSpaces. http://www.alphaworks.ibm.com/tech/tspaces. Retrieved January 7, 2005.

[4] Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson, Steven Gribble, Tom Anderson, Brian Ber-
shad, Gaetano Borriello, and David Wetherall. Programming for pervasive computing environments. Technical Report
UW-CSE-01-06-01, University of Washington, Department of Computer Science and Engineering, June 2001.
http://one.cs.washington.edu/papers/tr01-06-01.pdf. Retrieved January 7, 2005.

[5] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and logical mobility. In Proceedings of
the International Conference on Distributed Computing Systems (ICDCS’01), pages 524-533, April 2001.

[6] Chaithanya Bondada. Tuple Board: A new distributed computing paradigm for mobile ad hoc networks. Master’s
project, Rochester Institute of Technology, Department of Computer Science, January 2004.
http://www.cs.rit.edu:8080/ms/static/ark/2003/2/cxb3178/index.html. Retrieved January 7, 2005.

[7] Alan Kaminsky and Hans-Peter Bischof. Many-to-Many Invocation: A new object oriented paradigm for ad hoc collab-
orative systems. 17th Annual ACM Conference on Object Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA 2002), Onward! track, Seattle, Washington, USA, November 2002.
http://www.cs.rit.edu/~anhinga/publications/m2mi20020716.pdf. Retrieved January 7, 2005.

[8] Alan Kaminsky and Hans-Peter Bischof. New architectures, protocols, and middleware for ad hoc collaborative com-
puting. Middleware 2003 Workshop on Middleware for Pervasive and Ad Hoc Computing, Rio de Janeiro, Brazil, June
2003. http://www.cs.rit.edu/~anhinga/publications/mw2003cr.pdf. Retrieved January 7, 2005.



