The Relationship between the Magnitudes of $\operatorname{SSR}\left(x_{2}\right)$ and $\operatorname{SSR}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}\right)$: A Geometric Description

Harry M. Schey
The American Statistician, Vol. 47, No. 1 (Feb., 1993), pp. 26-30 doi:10.2307/2684778
This article consists of 5 page(s).

Abstract

We use geometric methods to investigate the relative magnitudes of $\operatorname{SSR}\left(x_{2}\right)$, the sum of squares for regression on x_{2} alone, and $\operatorname{SSR}\left(x_{2} \mid x_{1}\right)$, the increase in the regression sum of squares resulting from the addition of x_{2} to a model that already contains x_{1}. We examine a variety of cases, emphasizing those in which $\operatorname{SSR}\left(x_{2} \mid x_{1}\right)>\operatorname{SSR}\left(x_{2}\right)$. We also point out that $\operatorname{SSR}\left(x_{2}\right)$ and $\operatorname{SSR}\left(x_{2} \mid x_{1}\right)$ can be equal even when x_{1} and x_{2} are correlated. We present contrived data sets illustrating these points, and examine the relative magnitudes of $\operatorname{SSR}\left(x_{2}\right)$ and $\operatorname{SSR}\left(x_{2} \mid x_{1}\right)$ for two real data sets.

