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A validation model for segmentation  
algorithms of digital mammography images

	A bstract

We present a comprehensive validation analysis to 
evaluate the performance of three existing digital 
mammography segmentation algorithms against 
manual segmentation results produced by two ex-
pert radiologists. This is an improvement of an early 
methodology used for the evaluation of boundary 
algorithms on medical images. The mammography 
images used were acquired from the Digital Data-
base for Screening Mammography (DDSM) and sub-
sequently used as ground truth. We assessed three 
existing segmentation algorithms: (a) the Region 
Growing Combined with the Maximum Likelihood 
(ML) Model, (b) the Gradient Vector Flow (GVF) Mod-
el, and (c) the Standard Potential Field (STD) Model. 
We applied a comprehensive statistical metric. We 
concluded that the Region Growing Combined with 
the Maximum Likelihood (ML) Model yielded not 
only the best accuracy, specificity, percent error, 
and algorithm ranking, but also the greatest ratio of 
average computer-to-observer agreement and aver-
age inter-observer agreement (WI’).  We also noted 
that the upper limit of the 95% Confidence Interval 
(CI) was greater than 1.0, and thus each individual 
observer is a reliable member of the group. These 
studies are especially important for the develop-
ment of computer-aided diagnosis (CAD) systems 
for cancer. 

	I ndex Terms

Computer-aided diagnosis, Mammography, Segmen-
tation, Validation 

I. 	INTRODU CTION

A standard comprehensive metric is needed to assess 
the robustness and effectiveness of existing medical 	

image segmentation algorithms such as [2]-[3]-[4]-[5]. 
There is a need for one standard evaluation proce-
dure that will correlate multiple data measurements 
and synthesize them as a single output, both quan-
titatively and qualitatively. Scientists and engineers 
in [6]-[7]-[8]-[10] have conducted evaluation studies 
using different criteria and statistical sets. This fact 
alone makes it difficult to compare the performanc-
es of their algorithms against each other’s. 

Chalana and Kim [1] proposed a methodology 
for evaluating and comparing boundary detection 
algorithms for medical image segmentation.  We 
improve upon this model in our research with the 
addition of four “validation measures”: overlap; ac-
curacy; sensitivity and specificity; and testing on a 
different imaging modality, digital mammography.  
The validation measures were added to verify and 
further support the findings of the Chalana-Kim 
Methodology.  Also, we made use of contour cen-
troid data as a distance metric instead of the pixel-
by-pixel comparison noted in [1].

The demand for effective and efficient CAD 
systems is at an all-time high, especially in the med-
ical field and more importantly in the area of digital 
mammography. It is however necessary to have sys-
tems and protocols that can aid in the diagnosis de-
cision of patients by physicians. Figure 1 illustrates 
our validation model.
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Figure 1. Digital mammography segmentation 

algorithm validation protocol 

II. 	M ETHODOLOGY

We chose a dataset of 50 cancerous mammography 
images from the DDSM, which currently has 2,620 

“normal,” “cancer,” “benign,” and “benign without 
callback” cases organized into 26 volumes [10]. Each 
volume is a collection of cases of the correspond-
ing type.  Cancer cases are formed from screening 
exams in which at least one pathologically proven 
cancer was found.

After the 50 DDSM images were obtained, the 
cancerous mass borders were outlined by expert radi-
ologists. We designated the expert-outlined boundar-
ies (EOBs) as our “ground truth” and compared them 
with the computer-generated boundaries (CGBs) of 
the same 50 images. Two radiologists supplied the 
expert traces. We extracted the mass borders using 
a software tool and superimposed them onto a 512 
x 512-pixel black image, for a total of 100 ground 
truth images. Figure 2 demonstrates a segmentation 
of a digital mammogram by the two radiologists. 

(a)	 	    (b)	 	       (c)
Figure 2. (a) Original mammogram (b) Radiologist #1 

ground truth trace (c) Radiologist #2 ground truth trace

A.	 Algorithm Design

1. Region growing combined with the Maximum Like-
lihood Model (ML): The ML Model makes use of three 
operations/properties to find the contour which 
best represents a mass and its extended borders. 
This model combines region growing, maximum 
likelihood, and area analysis.  The contours are 
grown using a 4-neighbor region growing model.

Figure 3. Example of a pixel

Figure 3 represents a seed pixel with an intensity 
of 100 evaluated utilizing the 4-neighbor region 
growing method. If the intensities of the pixels sur-
rounding the seed pixel are greater than or equal to 
the seed pixel intensity (threshold), the surround-
ing pixels are included in the region of interest 
(ROI). This procedure uses the highest intensity as 
the seed point and decreases the intensity value in 
successive steps [2]. Each pixel in the graph will at 
some point in time be the seed pixel. 

Figure 4 shows a visual picture of the seed pix-
el and its surrounding pixels. The pixel to the right 
end of the seed pixel and the pixel below it were in-
cluded in our region because their intensities were 
greater than the intensity of the seed pixel. 

Figure 4. 4-Neighbor region growing example
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This procedure generates a sequence of con-
tours that represents the mass but does not de-
termine the boundaries obscured by the other tis-
sue.    We cannot use the procedure to choose the 
contour that is most highly correlated with the ex-
perts’ perceptions.  In addition, an adaptive region 
growing technique was applied to find the contour 
that accurately represents the mass body contour 
(for a particular shadow size) and distribution used 
to model the intensity values. This model is able to 
delineate the mass body contour as well as its ex-
tended borders. This model combines region grow-
ing, likelihood function analysis and our function 
analysis for choosing this contour. 

The resultant image is then multiplied by a 
two-dimensional trapezoidal membership function. 
This multiplication yields what we call the “fuzzi-
fied” image [2].  As the threshold for intensity in-
creases, the size of the contour decreases. This is 
demonstrated in Figure 5.

(a)	 	 	       (b)
Figure 5. (a) Threshold for intensity image = 1800 (b) 

Threshold for intensity image = 2500

The next step is to find the histogram inside and 
outside of the contour. This is done by projecting 
the fuzzified image onto the original image, as dem-
onstrated in Figure 6.

Figure 6. Fuzzy pixel value masked image

The Base-10 logarithm of the composite probability 
of the two regions is then computed. The computa-
tion consists of taking the log of the summation of 

the histogram outside the contour plus the summa-
tion of the histogram inside the contour. The likeli-
hood that the contour represents the mass body is 
determined by assessing the maximum likelihood 
function.  The likelihood is found by assessing the 
maximum value of the likelihood values as a function 
of the intensity threshold. This gives us the optimal 
density needed to delineate the mass body contour.

Finally, steep changes in the likelihood func-
tion were examined.  The steepest changes corre-
spond to intensities which will produce contours 
that are most likely to correlate with our gold stan-
dard radiological traces. It was proven in [9] that the 
intensity corresponding to the second steep change 
always yields contours with higher sensitivity val-
ues; however, the intensity corresponding to the 
first steep change is the wisest choice among the 
three variable choices as seen in Figure 7. The first 
steep change frequently appears in the range of in-
tensities for which the contours do not experience 
substantial flooding.

(a)	 	 	     (b)   
Figure 7. (a) Original mammogram (b) Computer-

generated segmentation using the ML Model

2. Standard Potential Field Model (STD): The STD 
Model uses a parametric snake as its basis. A tradi-
tional snake is a curve x(s) = [x(s), y(s)], (element in 
[0]-[1]) that moves through the spatial domain of an 
image to minimize the energy function:

	 	 	 	 	  (1)

where α and β are weighting parameters that control 
the snake’s tension and rigidity and x'(s) and x"(s) 
denote the first and second derivatives of x(s) with 
respect to s.  The external energy function, F

ext
 , is 

derived from that image so that it takes the smaller 
values at the features of interest, such as boundar-
ies. The internal force F

int
 discourages stretching and 
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bending while the external potential force pulls the 
snake toward the desired image edges. Figure 8 shows 	
an example of a segmentation using the STD Model. 

(a) 	 	 	      (b)
Figure 8. (a) Original mammogram (b) Computer-

generated segmentation using the Standard Model

3. Gradient Vector Flow Model (GVF): The GVF Model 
makes use of a modified force balance condition as 
its basis. A new external force field is defined in the 
model by v(x,y) which is known as the gradient vec-
tor field or GVF. The corresponding dynamic snake 
equation is obtained by replacing the potential force 
with v(x,y), yielding:

	 	 	 	  (2)

The parametric curve solving the above dynamic 
equation is called the GVF Snake and can be cal-
culated numerically by discretization and itera-
tion.  This GVF Field is defined as the vector field 

)],(),,([),( yxvyxuyxv =  that minimizes the energy 
function:

	 	 	 	 	 	  (3)

Figure 9 depicts a segmentation using the GVF 
Snake Model.

(a) 	 	 	     (b)
Figure 9. (a) Original mammogram (b) Computer-

generated segmentation using the GVF Model 

B. 	 Error Metric Definition

An error metric is necessary to help find the absolute 
difference in their corresponding points for the intra-
observer study (EOBs vs. CGBs) as well as the inter-
observer studies (EOBs vs. EOBs and CGBs vs. CGBs). 
We used a centroid-based comparison to measure 
the distance between two boundaries. Each point on 
the computer and manually segmented contours is 
used to calculate the centroid of each image. The al-
gebraic means were found for both the x and y coor-
dinates of the centroid. We calculated the Euclidean 
distances between subsequent measurements (CGB 
to CGB, EOB to EOB, and EOB to CGB). 

C. 	 Statistical Analysis 

We used two statistical tests to complete this daunt-
ing task: (1) a modified version of the Williams In-
dex (WI’), which compares the ratio between the 
average computer-to-observer agreement and the 
average inter-observer agreement, (2) the Percent 
Statistic Model, which computes the percentage of 
observations for which the CGB lies within the inter-
observer range.

1. Williams Index (WI’): The proportion of agreements 
between two observers is equal to the reciprocal of 
the average disagreements, D

j,j’
, between observers 

j and j’.

	 	  (4)

Where the average disagreement between the two 
observers is 

	 	 	  (5)

	 	 	  (6)
 

The CI for this index is computed using the jackknife 
non-parametric sampling technique.  This model 
works by leaving out N – 1 observations during each 
calculation. The jackknife estimate of the standard 
error in the computation of WI’ is given by:

	 	 	  (7)

where
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	 	  (8)

The 95% CI for the estimate of the modified WI is

 	 	 (9)

where z
0.95

 = 1.96 is the 95th percentile of the stan-
dard normal distribution.

2. Percent Statistic (PS): The PS represents the per-
centage of cases for which the CGB (or measure-
ment) lies within the inter-observer range. A CGB is 
defined to be within the inter-observer range if it 
lies within the convex hull formed by the EOB’s as 
seen in Figure 10. 

Figure 10. Convex hull of the EOB’s with the CGB’s

This figure represents five observer and two com-
puter-generated boundaries (or measurements). 
The points O1, O2, O3, O4, and O5 represent the 
five observer-outlined boundaries, and the points 
C1 and C2 represent the two CGBs. The shaded area 
is the convex polygon which bounds all the EOBs. 
The computer-generated boundary C1 lies inside 
this convex polygon and is within the inter-observer 
range, whereas C2 lies outside this range.

A point C lies in the convex hull of a set of 
points O1, O2, …, On, if:

	 	 	 	  (10)

mainly whether the maximum computer-to-observ-
er distance is less than or equal to the maximum 
inter-observer distance.  The expected probability 
that one observer’s boundary lies outside the range 
of the other observers’ boundaries is 1/(n+1). Thus, 

under the hypothesis that the CGBs and the EOBs 
are samples from the same distribution, the expect-
ed percent of times that the CGBs lie within the in-
ter-observer range is n/(n+1). This is based on the 
hypothesis that n+1 observers produce boundaries 
which are samples from the same distribution. 

This expected percentage is 67% for two human 
observers. We compute the 95% CI of the percentage 
statistic and check whether it includes the expected 
value to test whether the data is consistent with 
the hypothesis.  If the data are not consistent with 
the hypothesis that the CGBs and observer-outlined 
boundaries are samples from the same distribution, 
then the CI will not include the expected value. The 
WI’ provides information about averages, because 
it computes the ratio between the average comput-
er-to-observer agreement and the average inter-ob-
server agreement.  The PS gives information about 
corresponding relationships between the computer 
measurements and the observer measurements. PS 
is useful because it tells us the number of times that 
the algorithm is successful, and it produces bound-
aries which are within the inter-observer range [1].

D. 	 Validation Measures

We evaluated the three segmentation algorithms 
using four validation measures: overlap, accuracy, 
sensitivity, and specificity.  These measures were 
computed for both expert radiological traces.

 (11)   

 (12)

 (13)

 (14)

Overlap is the amount of intersection between the 
EOB and the CGB. Accuracy is the ratio of correctly 
classified pixels to the entire area of the ROI. Sensi-
tivity is a true positive measure in that it refers to 
the proportion of images that contain a cancerous 
mass which have been classified correctly.    Speci-
ficity is a true negative measure that refers to the 
proportion of images containing a cancerous mass 
that have been incorrectly classified. Ground Truth 
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is the drawings produced by the two radiologists. 
NTP is the true positive measurement, NTN is the 
true negative measurement, NFP is the false positive 
measurement (portion of the image incorrectly clas-
sified as cancerous mass), and NFN is the false nega-
tive measurement (portion of the image incorrectly 
classified as not a portion of the cancerous mass). 
Figure 11 shows each of the four positive-negative 
regions and relationships graphically:

Figure 11. Positive-negative regions and relationships 

where the regions have the following binary 

relationships:

NTP = True Positive = EOB AND CGB (15)

NTN = True Negative = ~EOB AND ~CGB (16)

NFP = False Positive = ~EOB AND CGB (17)

NFN = False Negative = EOB AND ~CGB (18)

E. 	 Comparison of Algorithms

Often there is a need to compare the results of ap-
plying several different algorithms on the same data 
set. The algorithm which results in a small overall 
error is preferred over the other algorithms. We car-
ried out the comparison of errors using Friedman’s 
two-way ANOVA test by ranks. 

This test is used when either a matched-sub-
jects or repeated-measure design is used, and the 
hypothesis of a difference among three or more 
treatments (or algorithms) is to be tested.  Fried-
man’s test is a non-parametric test, involving rank-
ing of the errors caused by using the different algo-
rithms for each data set. The null hypothesis is that 
each algorithm performs identically, and thus the 
average rank for each algorithm over the entire data 
set is the same. The Friedman test statistic (Q[r]) is: 

	 	 	 	 	 (19)

which is approximated by a P2 statistic with k-1 de-
grees of freedom, where:

N = the number of data sets (or images)
k = the number of algorithms
R

j
 = the sum of ranks for the algorithm j

III.	 EXPERIMENTAL RESULTS

A.	  Validation Measures

We applied a comprehensive evaluation protocol to 
evaluate the computer and expert-outlined segmen-
tation results. We calculated the absolute error uti-
lizing a centroid comparison method and a statisti-
cal evaluation of the WI’, PS, and 95% CI. Comparison 
of the algorithms was carried out using Friedman’s 
two-way ANOVA test and was compared to the com-
parable chi-square distribution.  Additionally, four 
validation measures were employed: overlap, accu-
racy, sensitivity and specificity.

Boundary overlap is representative of how 
much a cancerous mass intersects with a gold stan-
dard trace. Utilizing the ML Model, Radiologist #2’s 
traces produced the most overlap with a mean ac-
curacy of 53.56%. For the STD Model, Radiologist #1 
produced the most overlap, with a mean of 54.50%. 
Radiologist #1 yielded a higher mean overlap, with 
53.10% for the GVF Model. These results are shown 
in row 4, columns 2 and 3, in Tables I, II, and III.

“Accuracy” represents the ratio of correctly 
classified pixels to the entire area of the ROI. Utiliz-
ing the ML Model, Radiologist #2’s traces were most 
accurate yielding a mean accuracy of 77.35%.  For 
the STD Model, Radiologist #2 was most accurate, 
with a mean accuracy of 71.78%. For the GVF Model, 
Radiologist #1’s traces were more accurate, yielding 
a mean of 74.87%. These results are shown in row 5, 
columns 2 and 3, in Tables I, II, and III.

The sensitivity measure represents the prob-
ability that pixels are classified as truly diseased 
(true-positive).  Utilizing the ML Model, Radiologist 
#2’s traces yielded a higher sensitivity rate, with a 
mean of 71.13%. For the STD Model, Radiologist #2 
yielded a sensitivity rate with a mean of 84.43%. Ra-
diologist #2 yielded a higher mean sensitivity rate of 
88.45% for the GVF Model. These results are shown 
in row 6, columns 2 and 3 in Tables I, II, and III.

The “specificity” measure represents the prob-
ability that pixels are classified as truly not diseased 
(true-negative). Utilizing the ML Model, Radiologist 
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#1’s traces yielded a higher specificity rate, with 
a mean of 89.54%. For the STD Model, Radiologist 
#1 yielded a mean specificity rate of 77.24%. Radi-
ologist #1 yielded a higher mean specificity rate of 
77.09% for the GVF Model. These results are shown 
in row 7, columns 2 and 3 in Tables I, II, and III.

Table I. Maximum likelihood model validation measures

Maximum Likelihood (ML) Model

Radiologist #1 Radiologist #2

Overlap 0.5318 0.5356

Accuracy 0.7574 0.7735

Sensitivity 0.6234 0.7113

Specificity 0.8954 0.8529

Table ll. Standard Potential Field Model  

validation measures

Standard Potential Field (STD) Model

Radiologist #1 Radiologist #2

Overlap 0.5450 0.5433

Accuracy 0.7142 0.7178

Sensitivity 0.7507 0.8443

Specificity 0.7724 0.6795

Table III. Gradient Vector Flow Model  

validation measures

Gradient Vector Flow (GVF) Model

Radiologist #1 Radiologist #2

Overlap 0.5310 0.5030

Accuracy 0.7487 0.7307

Sensitivity 0.8052 0.8845

Specificity 0.7709 0.608

Each of the four presented validation measures 
is paramount in our study.  Moreover, “Accuracy” 
which represents the ratio of correctly classified 
pixels to the entire area of the ROI should have a 
direct correlation to the measurements for the “pre-
ferred algorithm”, which is given by result of the 
two-way ANOVA test by ranks.  

Utilizing the ML Model, Radiologist #2’s trac-
es were most accurate in comparison to that algo-
rithm, with an average accuracy of 77.35%. For the 
GVF Model, Radiologist #1 was most accurate with 
a mean of 74.07% and for the STD Model, Radiolo-
gist #2 was once again most accurate with a 71.70% 
accuracy measure. We may also deduce that the ML 

Model is the most accurate algorithm, given the av-
erage accuracy of the two radiological traces.

B. 	 Williams Index (WI’) and Percent Statistic (PS)

Table IV. (a) WI and PS for GVF (b) STD (c) ML Models

SE 0.3521

WI’ 0.7040

95% CI (0.0142, 1.3941)

PS 0.9600

95% CI (0.5739, 1.3460)

 (a)

SE 0.2890

WI’ 0.7163

95% CI (-0.1213,1.2827)

PS 0.9500

95% CI (0.5207, 1.3790)

 (b)

SE 0.4282

WI’ 0.7950

95% CI (0.0760, 1.6342)

PS 0.7200

95% CI (-0.1691, 1.6100)

 (c)

As we can see from Table IV, the WI’s are 70.40%, 
71.63% and 79.5% for the GVF, STD Model, and ML 
Models. The WI’ for the three cases may be explained 
by the following: Let an image be selected at ran-
dom and segmented by a random segmentation al-
gorithm. If the image was also segmented by the ref-
erence algorithm, 0, the second segmentation would 
agree with the first algorithm at 70.40%, 71.63% and 
79.5% (GVF, STD, and ML) of the rate that would be 
obtained by a second randomly selected reference 
algorithm. The upper limit of the 95% WI’ CIs for (a), 
(b) and (c) are all greater than one (1.0), indicating 
that all three CGBs agree as much with the two EOBs 
as the two EOBs agree with each other.

C.	 Comparison of Algorithms

The ML, STD, and GVF Models were all tested on, N = 50 
malignant DDSM images.  The results were evaluated 
against expert traces from Radiologist #1 and Radiol-
ogist #2. The CGBs from the different algorithms were 
compared to the aforementioned EOBs, resulting in an 
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error measurement for each algorithm and for each 
image. The algorithm which resulted in the smallest 
overall error was chosen as the “preferred algorithm” 	
of segmentation. The results are displayed in Table V. 

Table V. Friedman’s two-way ANOVA results

Source Radiologist 

#1

Radiologist 

#2

Overall

R1 (GVF) 105 113 109

R2 (STD) 103 101 102

R3 (ML) 92 86 89

k 3 3 3

N 50 50 50

Q[r] 1.96 7.32 4.12

p-value 0.3753 0.0257 0.1275

To determine whether the difference in algorithm 
rank is a result of random chance, we compare the 
Friedman Statistic, Q[r], to the chi-square distribution 
of two degrees of freedom to. If the null hypothesis 
is rejected, i.e., a difference in the ranks is significant, 
the different algorithms are compared by the multi-
ple comparison procedure described in the previous 
chapter.  Analyzing the fourth column, we see that 
Q[r] is 4.12. In examining the chi-square distribution 
for k – 1 = 2 degrees of freedom (k = 3 algorithms), 
we find that equals 5.9915. The value of Q[r] is ac-
cepted if it is less than its corresponding value of 
the chi-square distribution.  Therefore, the null hy-
pothesis is accepted and there is no difference in the 
three segmentation algorithms which were used to 
segment the mammography images in question.

The p-value is another way to view the dif-
ference in the algorithms. The calculated p-value is 
0.1275, and the declared value is 0.05. The calculat-
ed p-value exceeds the declared p-value, and accord-
ingly there is no significant difference in the results 
generated by the three segmentation algorithms in 
between each other. By the design of this test, it can 
be concluded that differences in the mean rankings 
of algorithms are attributed to chance.

Figure 12. Mean algorithm ranking – Radiologist #1

Figure 13. Mean algorithm ranking – Radiologist #2

Figures 12 and 13 show the results from the two-
way ANOVA test. It is shown that algorithm 3 (the 
ML Model) was the preferred algorithm. 

IV. 	CONCLUSION

We have presented a comprehensive validation analy-
sis to evaluate the performance of three existing dig-
ital mammography segmentation algorithms against 
manual segmentation results produced by two ex-
pert radiologists.  The Region Growing Combined 
with the Maximum Likelihood (ML) Model yielded 
not only the best accuracy, specificity, percent error, 
and algorithm ranking but also the greatest ratio of 
average computer-to-observer agreement and aver-
age inter-observer agreement (WI’). The upper limit 
of the 95% Confidence Interval (CI) was greater than 
1.0, thereby making each individual observer (radio-
logical tracer) a reliable member of the group.

Our validation model is effective and can 
be used as a reliable gold standard to test the ro-
bustness of digital mammography segmentation 
algorithms. We were able to evaluate CGBs against 
CGBs, EOBs to EOBs, and finally CGBs to EOBs. The 
WI’ and PS statistics were consistent with each other, 
which means they are great complementary indica-
tors of statistical significance. Friedman’s two-way 
ANOVA test by ranks showed us that the difference 
in algorithm performance was attributed to chance, 
because the “Q-value” (Friedman Statistic, Q[r]) was 
less than the corresponding chi-square distribution 
value of p = 0.05 and two degrees of freedom. 

The ML Model performed the best overall 
among the three algorithms evaluated in this study 
and is the “preferred algorithm” for the segmenta-
tion of digital mammography images. This is attrib-
uted to its design specifications being geared toward 
mammography images (region growing and inten-
sity features), as the other models are used more in 
medical ultrasound for imaging the heart and ab-
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domen. Results of the STD and GVF models in the 
previously mentioned areas have yielded promising 
results; however, they did not prove to be the most 
effective means of segmenting our malignant mam-
mography images. The ML Model yielded an overall 
percent error of 2.34%, followed by the GVF Model 
(6.75%), and the STD Model (8.08%).

V. 	FURTH ER RESEARCH

We would like to further this research by testing 
the robustness of the existing algorithms by acquir-
ing a larger data set (number of images) and more 
radiological traces to use as ground truth.  Having 
two radiological tracers, or two sets of ground truth 
data, has allowed us to only “touch the surface” in 
validating such segmentation algorithms presented 
in this paper. Additional expert radiological tracers 
will provide us with a larger inter-observer range, 
which will give us more dynamic opinions on how 
certain images should be segmented. Increasing the 
number of images in our data set will also increase 
the sensitivity of our measurements. A larger sam-
ple will help normalize our results and help us to 
better analyze the data qualitatively. 

We would like to use the evaluation procedure 
for the ML Model on all three images generated from 
the Maximum Likelihood code, which gives us the 
original image, an image (contour) after one steep 
change, and then, finally, a contour after two steep 
changes of the defined probability cost function. We 
get different contour information for each image 
because of the inverse relationship of the thresh-
old and size of the image. This will help verify the 
conclusion in [2]-[9] which states that the images 
which were a result of one steep change, yield the 
best segmented contours. 

We would like to apply different parameters 
to generate the contour of the images for the STD 
and GVF Models. Those parameters include, but are 
not limited to, the initial radius of the snake, vary-
ing alpha and beta (the snake’s tension and rigidity), 
the values of sigma (the blurring effect), and dif-
ferent values which will give us different edge-map 
data for accurate segmentation. 

Finally, we wish to apply the results of this 
work to the design of a framework for a new digital 
mammography content-based image retrieval sys-
tem (DMCBIR). A robust DMCBIR system is needed 
to accommodate the need of archiving the growing 
number of images being produced by radiology de-

partments all over the world.  Our results system 
would be to give a radiologist (or pathologist) the 
ability to find and retrieve multiple images, from a 
query image, that are similar in feature. It is neces-
sary to have such a system available to help augment 
and aid in the diagnosis decisions of patients by a 
practicing medical doctor/physician. The application 
of the three segmentation algorithms used in this 
study will allow us to find the values of the similarity 	
measures (SM) for the so-called DMCBIR System.

VI.	APP ENDIX A - 

	GALL ERY OF SEGMENTATION RESULTS

Figure A. Simulation results for all algorithms,  

Original mammogram, Radiologist #1 trace, 

Radiologist #2 trace, Maximum likelihood 

segmentation, Standard Model segmentation,  

and GVF Snake Model segmentation
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