CALCULUS II 1016-272-05
 WINTER 2004-05 QUARTER

WORKSHEET \# 5

(1) Suppose that a rectangle is inscribed inside a circle whose area is 72π.
(a) SKETCH THE DIAGRAM of the phenomena, and
(b) Determine the MAXIMUM AREA of the rectangle.

ATTACHED SHEET FOR NUMBER 1

(2) Consider a box with a square base with a missing top whose volume is 25 cubic centimeters. Sketch the diagram and determine the minimum surface area.
(a) SKETCH THE DIAGRAM of the phenomena, and
(b) Determine the MINIMUM VOLUME of the box.

ATTACHED SHEET FOR NUMBER 2

(3) Consider a rectangular sheet of paper that is 8×12 inches in dimentions. Each corner of the rectangle is cut x inches from the edge and then formed into a box as shown in the diagram below:

(a) Determine the Equation that gives the VOLUME OF THE BOX, with the restricted interval.
(b) From part (a), determine the MAXIMUM VOLUME of the box.
(c) From parts (a) and (b), determine the SURFACE AREA of the box.
(4) Consider a right triangle whose perpendicular sides are 8×8 centimeters in dimentions, with an inscribed rectangle in it.
(a) SKETCH THE DIAGRAM of the phenomena, and
(b) From part (a), determine the Equation that gives the AREA OF THE RECTANGLE, with the restricted interval.
(c) From part (b), determine the MAXIMUM AREA of the rectangle.

ATTACHED SHEET FOR NUMBER 4

CALCULUS III 1016-273-04 SPRING 2005 QUARTER

WORKSHEET \# 7

AREA BETWEEN CURVES

AND

VOLUME BY REVOLUTION
(1) Determine the AREA, between the functions

$$
y=x^{2}-1 \quad \text { and } \quad y=7-x^{2} .
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area. In particular, determine the following:
(i) The dominating function(s).
(ii) The points of intersection(s).

ATTACHED SHEET FOR PART (A)

(b) WRITE the Definite Integral(s) that describe(s) the given area.
(c) EVALUATE the integral(s) in part (b).
(2) Determine the AREA, between the functions

$$
y=x \quad \text { and } \quad y=\sqrt{x+2} \quad \text { on the interval } \quad-2 \leq x \leq 7
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area. In particular, determine the following:
(i) The dominating function(s).
(ii) The points of intersection(s).

ATTACHED SHEET FOR PART (A)

(b) WRITE the Definite Integral(s) that describe(s) the given area.
(c) EVALUATE the integral(s) in part (b).
(3) Determine the AREA, between the functions

$$
y=\sin (x) \quad \text { and } \quad y=\cos (x) \quad \text { on the interval } \quad 0 \leq x \leq 2 \pi
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area. In particular, determine the following:
(i) The dominating function(s).
(ii) The points of intersection(s).

ATTACHED SHEET FOR PART (A)

(b) WRITE the Definite Integral(s) that describe(s) the given area.
(4) AREA of a RIGHT TRIANGLE.

Consider a right triangle with the following vertices

$$
(0,0), \quad(b, 0) \quad \text { and } \quad(b, h)
$$

SHOW that:

$$
A=\frac{1}{2} * b * h
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area. Also, determine
(i) The equations of all the functions
(ii) The dominating functions.

ATTACHED SHEET FOR PART (A)

PART (B) IS ${ }^{14} \mathrm{ON}$ THE NEXT PAGE
(b) WRITE the Definite Integral(s) that describe(s) the given area.
(c) EVALUATE the integral(s) in part (b).
(5) Determine the AREA, between the functions

$$
y=\sqrt{x} \quad, \quad y=2 \quad \text { and } \quad x=36
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area. In particular, determine the following:
(i) The dominating function(s).
(ii) The points of intersection(s).

ATTACHED SHEET FOR PART (A)

(b) WRITE the Definite Integral(s) that describe(s) the given area in dx and dy .
(c) EVALUATE one of the integral(s) in part (b).
(6) VOLUME of a SPHERE.

Consider the function

$$
y=\sqrt{r^{2}-x^{2}} \quad \text { on the interval }(-r, r)
$$

SHOW that:

$$
V=\frac{4}{3} * \pi * r^{3}
$$

In particular, do the following steps:
(a) SKETCH the diagram of the given area and volume.
(b) WRITE the Definite Integral(s) that describe(s) the volume.
(c) EVALUATE the integral(s) in part (b).

CALCULUS II 1016-272-03

SPRING 2005 QUARTER

WORKSHEET \# 8

DIFFERENTIALS,

RIGHT \& LEFT HAND SUMS,

AND
GEOMETRICAL INTEGRALS
(1) Using the differentials, estimate the following value:
(2) Consider a CYLINDRICAL PIPE that is 60 meters long and 80 centimeters in diameter. Due to thermal expansion and shrinking, the walls of the pipe expand and shrink by 1.5 percent and the length of the pipe does not change. Using the differentials:
(a) Approximate the Variation in the VOLUME OF THE PIPE.
(b) From part (a), determine by how much Percent, does the Volume of the pipe shrinks and expands.
(c) Approximate the Variation in the SURFACE AREA OF THE PIPE.
(d) From part (c), determine by how much Percent, does the Surface Area of the pipe shrinks and expands.
(3) Consider the CENTRIPETAL FORCE of a rotating object on a wheel is given by:

$$
F=\frac{m v^{2}}{r}
$$

where
(i) m is mass of the object in kilograms.
(ii) v is the velocity of the object in meters per second.
(iii) r is the radius of the wheel in meters.

Suppose that the object weighs 1500 grams, traveling at 480 meters per minute, and the wheel's is diameter 160 cm . and is off by $1 / 2$ percent. Using the differentials:
(a) Approximate the Variation in the FORCE.
(b) From part (a), determine by how much Percent, the Force changes.
(c) From parts (a) and (b), determine the Relative Percent in the error of the Force Estimation.
(d) From parts (a), (b) and (c), determine the Percent of the variation in diameter of the wheel such that the the Relative Error of the Force Estimation does not exceed 1 percent.

ATTACHED SHEET FOR PART (D)

(4) Consider the function

$$
y=\frac{1}{x^{2}+1} \quad, \quad 0 \leq x \leq 4
$$

(a) Sketch the function on the given interval.
(b) Write out the Right and Left Hand Sums by using $n=6$.
(c) Using part(b), compare the difference between the two sums in absolute value.
(5) Consider the function

$$
f(x)=\left\{\begin{array}{lcc}
2 x+6 & \text { for } & x<0 \\
6-\frac{x}{3} & \text { for } & 0 \leq x<6 \\
4 & \text { for } & x \geq 6
\end{array}\right.
$$

(a) Sketch the function.
(b) Using part (a), determine the following integrals.
(i)

$$
\int_{-3}^{3} f(x) d x
$$

(ii)

$$
\int_{0}^{6} f(x) d x
$$

(iii)

$$
\int_{1}^{12} f(x) d x
$$

(iv)

$$
\int_{-5}^{0} f(x) d x
$$

