
Connected in a Small World: Rapid Integration of
Heterogenous Biology Resources

Umut Topkara Carol X. Song Jungha Woo Sang P. Park
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, 47907, USA

utopkara,cxsong,wooj,park143@purdue.edu

Abstract— Timely access to the most up to date versions of
resources, such as data and software, is of paramount importance
for researchers in an active field like Biology. We introduce
a grid enabled biological data and software collection portal
architecture, SALSA (a Scalable Simple Architecture), that is
tailored towards fast integration of new computational resources
made available by ever faster advancing and diversifying research
in this area.

We identify two models that guide the design of SALSA:
heterogeneous database model and network growth model with
preferential attachment.

SALSA recognizes the challenges that are noted by the
previous research on heterogeneous database model inherent in
biological database resources; these resources are autonomously
managed and lack a common database schema.

SALSA is also guided by a model for the growth of the
portal’s collection (of data and associated software to process
this data) from previous research on related collections (e.g.
citation networks and software package dependencies). This
model suggests that in the presence of components that have
a higher likelihood of gaining new connections (e.g., popular
resources such as BLAST or FASTA sequences), the relationships
between components tend to organize in a small-world scale-free
network.

The growth model helps the portal developers identify im-
portant hub components that emerge by taking part in in-
creasing number of tasks as the portal grows. In order to
effectively improve the overall user experience, developers can
direct expensive development efforts (e.g., query optimization,
user interface, documentation, etc.) to hub components, rather
than to specialized components that have a lesser likelihood of
developing to become hubs.

In this paper we discuss a grid enabled web portal implementa-
tion that is built to contain a growing collection of biological data
and software to process this data. The implementation that we
present is a realization of Scalable Simple Architecture (SALSA)
that strives to rapidly integrate newly published components
into the existing collection in a sustainable fashion. Notably,
this implementation uses flexibility of XML for component
management, XSL for web user interface, SRB and MCAT for
large data storage.

I. INTRODUCTION

Timely access to the newest resources is of paramount
importance for researchers in an active field like Biology.
Biological databases and software have grown to number and
complexity that overwhelm the researchers in the area. The
diversification of research areas as well as the availability of
new technology to create large amounts of experimental data

have contributed to this trend. Despite the fact that most of
these data and software are publicly available through the in-
ternet, the heterogeneous nature of these resources may hinder
their ease of use and immediate accessibility by researchers,
hence may inhibit the pace of scientific discoveries.

In this paper we discuss a grid enabled web portal im-
plementation that is built to contain a growing collection
of biological data and software to process this data. The
implementation that we present is a realization of Scalable
Simple Architecture (SALSA) that strives to rapidly integrate
newly published components into the existing collection in a
sustainable fashion.

SALSA recognizes the challenges that are noted by the
previous research on heterogeneous database model inherent
in computational resources in Biology; these resources are au-
tonomously developed and they lack a coordination of design
(e.g., common database schema). The heterogeneity of the
components in the collection denies presumptions about data
format, data schemas, input parameters, and user interfaces.
For this reason, SALSA does not use one canonical component
model to capture all possible components. Even though this
design decision brings flexibility to precisely define the com-
ponents of the collection, it also comes with an added cost of
complexity due to the multiplicity of incompatible component
definitions. We show that the growth of the collection can be
sustained despite this potential for enormous complexity (more
on this later).

One of the important issues with biological resources is
the intermittent availability of resources. SALSA mandates
the implementation of a cache for query results when they
are obtained from volatile remote resources, so that they can
be re-used by processes that are fired by later jobs. SALSA
also incorporates a powerful documentation facility which
associates all data and software components with their sources
and versions; this mitigates conflicts due to uncoordinated data
and schema updates to data sources.

SALSA is also guided by a model for the growth of the
portal’s collection based on previous research about similar
collections. This model suggests that, in a growing network,
if the new components have a slight preference to establish
relationships with some of the existing components, the re-
lationships between components tend to organize in a small-

a) Model Driven Integration b) Task Specific Integration
Fig. 1. Approaches to integration. Edges indicate a compatibility among incident components. a) The darker node is the canonical component model that
captures all instance components, thereby making all components compatible with each other. b) The darker nodes are popular application or data components
-hubs- which take part in many task specific workflows; other components take part in only a limited number of workflows.

world scale-free network. In a scale-free network, most of the
nodes have a small number of connections with other nodes,
whereas a small number of nodes are connected to a large
number of components. The latter type of nodes are called
hubs.

This growth model helps the portal developers identify im-
portant hub components (e.g., BLAST, FASTA data, etc.) that
emerge by taking part in an increasing number of tasks while
the portal grows. In order to effectively improve the overall
user experience, developers can direct expensive development
efforts (e.g., query optimization, user interface, documentation,
etc.) to hub components, rather than to specialized components
that have a lesser likelihood of developing to become hubs.
Workflows that span many components are limited in SALSA
by design, whereas tasks oriented workflows that involve a
small number of hub components are abundant (more on this
later).

The small world model enables SALSA to achieve increased
robustness against the high fault rate of heterogeneous compo-
nents. SALSA achieves this by deploying multiple components
that achieve the same tasks with emphasis on providing a
redundancy of hub components (which also include service
middleware components such as Storage, and Execute). Since
the robustness of these components have a disproportional
effect on the overall robustness of the system – due to their
central role among components– we seek to fortify these
components with their alternatives, such as mirror sites, local
copies, version repositories and competing applications.

In the next section we discuss the main concepts of SALSA
along with its comparison to model-driven architectures. Then,
in Section III, we will give a brief overview of a biology
resource collection implementation using SALSA concepts.
We conclude our paper with review of related literature and a
discussion of future work.

II. THINKING RAPID INTEGRATION

SALSA’s foremost design criterion is the ability to easily
integrate new research-grade resources into a collection. This
criterion is coherent with the imperative for the access of most
up to date data and software in Biology research.

Before moving on to discussion of SALSA, we would like
to give a brief overview of the popular alternative to integrating
research grade resources. To the best of our knowledge, model-
driven middleware architectures [1], [2], [3] struggle to seam-
lessly integrate data services and workflow enactment services
by wrapping their components in uniform component models
which interact through interfaces defined by these models
(Figure 1.a). These architectures are suitable for Model Driven
Development processes, which start with a blueprint of the
final product and then proceed to realize the final product using
formal methods and Computer Aided Software Engineering
tools [4]. The effectiveness of the overall Model Driven Devel-
opment process depends heavily on whether the requirements
can be precisely obtained during the design phase, otherwise
revisions in requirements may stifle the development [5], [6],
[7]. Hence, in grid enabled portals Model Driven Development
can be expected to be more effective when the implementation
of portal components are coordinated, and the canonical com-
ponent models are powerful enough to capture all possible
components without sacrificing from precision. These archi-
tectures have a significant advantage if all components have
the potential to be used by every other component: if there are
N different data or software components, the integration of the
overall system requires the development of only N component
model instances from which wrappers or mediators can be
automatically generated. This number is vastly smaller than
O(N2) mediators that would need to be developed if each
components pairing would need to be supported (forming a
complete graph) without a uniform interface and automation.

2

Unfortunately the heterogeneous nature of research resources
introduces some important problems for this approach.

A major drawback of the model-driven approach, which
arises at design time, is that they have to capture all require-
ments as well as anticipated behavior of all the components in
their canonical component models or schemas. Therefore, the
development of the schemas for such systems requires in-depth
knowledge of the underlying research fields by the developers.

Another more important drawback emerges following the
deployment, while the model-driven systems grow. The initial
schemas which capture the canonical components that have
been solidified at the design time may become insufficient
to capture a precise description of the new components as
the collection acquires components from new fields or as the
components in the existing research areas diversify with the
natural development within research fields. As a result, the
schemas need to be revised so that description of the canonical
components capture the specific requirements of all these new
components. Unfortunately, these revised schemas are usually
more lengthy and more complex, thereby make the addition of
new components to the collection a more tedious process [5],
[8], [9], [10]. Eventually, it requires more time for each new
component to be integrated into the system, which may add up
to cripple the growth and expansion of the collection portal.

SALSA’s development process anticipates the design re-
quirements may frequently change in a grid portal that serves
access to a growing number of workflows which consist of
third party software and data. Hence, in contrast to Model
Driven Development, SALSA employs an Agile Develop-
ment [7], [10], [9], [5], [11], [12] process which provide
the design flexibility to enable continuous maintenance and
improvement of the portal.

In the next two sections we discuss two models that support
SALSA’s approach to scalable integration of biology resources
into a software and database web portal: the heterogeneous
database model for the nature of data, and the complex
network model for the growth of the collection. Note that these
models are different from generative models in Model Driven
Architecture; since they do not describe what the final product
is, but how the system will evolve. Then, we summarize
SALSA design concepts in Section II-C.

A. Heterogeneous Data Model

Resources for computational biology research is accumu-
lated in a rather uncoordinated process that involves a large
body of researchers who are distributed to all over the World.
Even though the internet is making the communication among
these researchers easier, group collaborations are far from
creating a coordinated research effort. Individual laborato-
ries or researchers take design decisions while developing
their data and software without any outside control. The
resulting multiplicity of data resources, formats, applications,
implementations, etc. are modeled in heterogeneous data
model [13], [14], [15].

Heterogeneous data has the following properties:

• Locally controlled updates: The resources are managed
by autonomous researchers, and they make syntactic and
semantic changes to the resources they provide without
prior notice. Following such remote updates, applications
that depend on these resources may fail to operate cor-
rectly.

• Sporadic down times: Since these portals are indepen-
dently maintained, there can be computer failures or
scheduled maintenances that make the resources tem-
porarily unavailable.

• Heterogeneity in Size: Resources that are provided in
remote repositories can vary in size and quality. In order
to effectively use several data sources, researchers will
need to combine large data with small data, while paying
attention to contamination of high-quality data with low
quality data.

• Structural Heterogeneity: The data resources vary in their
structure from highly structured relational databases to
unstructured text. An effective system can process data
that is represented in several types of structures.

• Heterogeneity in querying abilities: Some remote re-
sources, or the applications in the portal (which can be
viewed as queries on the data) might allow only a limited
set of queries.

The aforementioned properties of heterogeneous resources
account as drawbacks for model-driven approaches to integrate
them. This is because model-driven approach assumes that all
programs and files in the portal’s collection can be represented
with a canonical description that is written using their arsenal
of descriptors. This assumption does not hold for biology
resources, which are created by independent researchers from
diverse fields to fit their individual research needs and practices
- hence are inherently heterogeneous. A canonical description
would either be too general to let individual programs and
files to be precisely documented, or it would be too complex
to the point that it will require the understanding of all the
programs and data in the collection to be able to understand
the descriptors and add a new component to the collection.

B. Portal Growth Model
In this paper we conjecture that, the architecture of a

growing collection of biological resources does not manifest
O(N2) interactions (complete graph) among its components,
but only a small fraction of these interactions among compo-
nents will be realized. We base our argument on the recently
recognized small-world scale-free network characteristic in
software components [16], [17], [18], [19], [20], [21] and
citations [22], [23].

In scale-free networks [24], [25], the connectivity of nodes
does not follow an even distribution, which would be expected
from a random graph. Some nodes have significantly higher
number of connections (hub nodes) and most of the nodes
are connected to a few hub nodes with a small number of
edges. The probability that a random node will connect to k
other nodes, P (k), is roughly k−α, where α is a constant
that characterizes the network. This peculiar behavior of

3

text

Hub
component

Application
component

E

C B D

A

Interaction with a hub
component

E

D B

A

C

F G

H

Interaction among
application components

New application
components

C

E

D B

A

F G

H

A new hub
component

New application
component

Interaction with a hub
component

A collection with one hub component. New components F,G, and H are added. (H,C) and (G,C) are
interactions among application components.

Since C became highly connected with addition of G and H, it
is re-factored, hence becomes a hub component.

New components that are added to the collection can interact
with C more seamlessly.

C

E

D B

A

F G

HI

Fig. 2. The maintenance of SALSA during its growth.

networks have been explained using a generative mechanism,
called “preferential attachment”. According to this generative
model, if some of the nodes have a higher likelihood of
gaining connections from newly introduced nodes, the network
becomes scale-free as it grows.

In the context of a grid portal, this model means that, most
of the components will need to be compatible with only a
few hub components, such as the service components (e.g.,
the generic storage, computation, visualization components)
or common data formats (e.g., FASTA sequences, molecular
interaction network graphs, etc.) and common software (e.g.,
BLAST, graph clustering, etc.). The interactions among non-
generic components can be achieved by using only a small
number of interaction-specific mediators (Figure 1.b).

The Debian package dependency network is an example
of scale free networks that manifest themselves in software
collections [18]: more than half of the packages are not refer-
enced by other packages (skewed distribution of connectivity),
and three quarter of the packages need other packages. The
dependency graph is sparse, but in the graph of about 20
thousand components the average distance among components
is just over 3 dependency links. The distribution of the number
of incoming dependencies is P (k) = k−0.90.

C. SALSA Framework

In a grid enabled software and data portal it is very
important that the portal development process is sustainable to
embrace changes to requirements of existing components and
additions of components with new requirements. Large soft-
ware systems usually need to undergo small design changes
during their product lifecycles, however such changes are more
pronounced in the life of a portal. This is mostly because
the development of individual components that are part of
the portal are results of an uncoordinated effort of third-
party developers, and there is a continuing pressure to add
more of these components to the portal. It is imperative to
use development methods which can support software that
evolve through continuous improvement in the design and code
structure.

In recent years, Agile Development Methods have been pro-
posed and successfully used in development of large software

systems [7], [10], [9], [5], [11], [12]. These methods recognize
the fact that adding features under a previously planned
framework is costlier than adding without any previous ir-
reversible design decisions. For this reason, they emphasize a
continuous process of specification, design and development.
The specifications are usually based on the use scenarios, and
the design are least specific. The existing code is first improved
to accommodate the new design using refactoring [11] and
then new features are added. During refactoring components
that perform specific tasks are converted into instantiations of
more generic components; however such changes to the code
are not made until they are required by the latest specification
changes.

In a grid enabled portal, management of such continuous
effort can be a daunting task unless it is aided by an archi-
tecture that successfully captures the evolution of the portal
and helps predict the future changes to the system. SALSA
architecture redirects focus from the many components that are
specific to a single application (e.g., configuration input file
of a program) to the few generic components (e.g., storage,
execute, history and user interface components) as well as
commonly used application components, which we will refer
as hub applications (e.g., FASTA databases, molecular interac-
tion databases, BLAST, etc.). The generic components and the
hub applications provide common services to a large number
of components in the system. The stability and maintainability
of these few generic components and hub applications are
critical for the evolution and growth of the collection, since the
new components that are added to the system tend to depend
on them.

In SALSA, new hubs that emerge in the interaction graph
are converted into generic component models through refac-
toring (Figure 2). Refactoring process of a portal component
involves optimization for improved performance, as well as
the creation of a canonical model specific to the hub node
that also describes the components similar to it (e.g., BLAST
is refactored to be integrated into a more general pattern
matching component). Since the new hubs will attract new
interactions, this rare maintenance process will reduce the
number of mediators required for new interactions added
to the system as well as the complexity of adding these

4

new mediators. This approach differs from the model-driven
approach, in several ways. Firstly, the canonical descriptions
for hub resources evolve over time, instead of being predicted
at design time. Also, the canonical descriptions pertain to
a very specific type of applications characterized by a hub
application, rather than striving to capture the characteristics
of all applications. This latter difference translates into a
simpler integration process for new applications in SALSA;
because every application can be defined independently from
the constraints of conforming to a canonical descriptor set,
which could otherwise grow to sizes that can impede this
process. After enough mediators are added to the existing
network, the interaction among the components will be stable,
i.e., new workflows that involve existing components will not
require new mediators and new mediators will only be needed
for newly added components.

Focusing of the development effort (including documenta-
tion, maintenance, improvement of interface and performance)
to a component translates to the flexibility of this component
so that it is easier for new task workflows to use this compo-
nent. Moreover, the improvement of these components directly
increase the quality of the overall user experience, hence it is
an effective practice for the use of the expensive programming
effort.

SALSA enables the system to achieve more stability in a
way that is hard to achieve without recognizing the growth
model that underlies it: The generic components can pro-
vide redundancy to increase the overall error-tolerance of
the system. Redundancy is achieved by providing a specific
service through different implementations. For example, the
storage service component provides operations of data store
and retrieval using a local file system as well as SRB (Storage
Service Broker) for distributed storage. If one component fails,
an alternative component is still available. Since the failure of
the overall system in a scale free network topology mostly
depends on the failure of hubs, the error-tolerance at hubs
has a disproportional contribution to the overall robustness of
the system. The identification of hub applications, which are
also central to the collection, also makes it possible to extend
redundancy to these hub applications. As added benefits, the
redundant alternatives for hub applications provide a better
user experience (by providing alternative tools which can
be used to control results obtained from one tool) and help
possible problems that have been discussed in the context
of heterogeneous data model (e.g., unavailable remote data,
incompatibility of new formats, etc.).

We propose a web service-oriented architecture that recog-
nizes these results to provide rapid prototyping by requiring
minimal overhead to integrate new data and processing com-
ponents to the system.

III. IMPLEMENTATION

We have used the SALSA concepts to implement a grid-
enabled web portal for collection of research grade com-
putational biology resources. In this section we discuss the

overall architecture of this portal, and details that involve the
component descriptions and data management.

M
ID

D
LE

W
A

R
E

C
O

M
PO

N
EN

TS

HUB APPLICATIONS AND DATA

Pattern
Matching

Genome

System Components

Storage ComputeWeb
Services

History
Browser

User
Interface Visualize

MySQL Local
Filesystem

TeraGrid

Campus Grids

CRB Input
File CRB Tool

CRB
Output

File

Exact
Match

BLAST

EBI

NCBI

SwissPROT

Gnuplot

XML+XSL
Rendering

Globus

Remote Distributed Storage
MCAT SRB

NCBI

Local Computation

SERVICE COMPONENTS

APPLICATION SPECIFIC COMPONENTS
(EXAMPLE APPLICATION)

Invigo-lite

Fig. 3. The component hierarchy of SALSA.

SALSA portal is a web based collection, and its aim
is to grow into a large collection of up to date biology
data and software. SALSA has a small number of service
middleware components, which are used by the rest of the
system (Figure 3): User Interface, Storage, Compute, Web
Services Interface, Visualize. In addition to these service com-
ponents, there are application based middleware components,
these components are services that have been derived from
individual applications or data that have proved to be central to
the collection. Examples of such application based middleware
are pattern matching component derived from BLAST, and
sequence data component derived from FASTA and SwissProt.

As we have discussed earlier, redundancy has tremendous
benefits for fault tolerance of the system. Since our compo-
nents are from 3rd party sources, we need to be prepared for
failure of these sources, redundancy is one of the ways we
use (replication of data by caching, alternative data sources
from other mirrors, also for software and central components).
Redundancy at Execute component is achieved by using local
computing resources as well as campus grids and TeraGrid
through Condor.

Storage is a significant concern when the remote data
resources are not persistent, as they can be unavailable, have
limited accessibility or can be frequently updated. We used
several types of storage targets to meet these needs that range
from local flat file storage to mySQL and to SRB.

In our implementation, web applications that interact with
the user are based on the GridSphere portlet framework.
GridSphere provides ease for common web development tasks,
such as user profiles, login management and customized lay-

5

outs. In order to meet the flexibility that is required to provide
user interface for a variety of applications we augmented
GridSphere portlets with an XML and XSL based interface.

In the following subsections we discuss issues relating to
user interface, storage, and compute services in a grid enabled
portal. We first discuss how XML can be used to manage
component descriptors, submitted jobs and user interaction
at the same time. Note that these are service middleware
components, which will be used by almost all components
in the portal.

A. Multi-purpose XML
In a grid enabled portal, it is necessary to have a speci-

fication of each component for the dual purpose of human-
readable documentation and machine-readable book-keeping.
Human-readable documentation include annotations by devel-
opers during the design and development of these components,
as well as annotations of user generated data or submitted
jobs by end users. Machine-readable specifications include
all information that are automatically processed to direct the
execution of the portal, such as input-output types, CPU re-
quirements, and remote data locations. Even though developers
may directly alter this information, end users usually need
more user-friendly interfaces while they dispatch new jobs
or add annotations. Implementations of user interfaces for
web applications need to replicate and be compatible with
the descriptions of their respective components. The alias re-
lationship between the component specifications and their user
interfaces may hinder the maintenance of the portal, which is
anticipated to evolve as it grows. In order to facilitate a more
streamlined maintenance and development process we have
coupled the user interface specification with the component
specification, such that a change in a component’s specification
are automatically reflected in the user interface. In this section
we discuss the details of the component specification and user
interface aspects of our portal implementation.

XML is a simple but powerful markup language for text
data. It also enables the use of XSL to easily generate
user interfaces to present and edit the underlying data [26].
The widely used web browsers such as Mozilla and Internet
Explorer have built-in support for rendering XML to HTML
through XSLT.

In our implementation, we used XML to document data and
software components, as well as to keep track of the execution
trail of workflows. We used XSL to build user interface for
these components and workflows. This feature of XML allows
us to couple component data and their user interface while
efficiently separating the user interface development effort
from that of portal development.

We describe each data and software component in our portal
with a specific XML. The XML description for computational
components include information such as the input data re-
quirements, the specifications of output data, the hardware
requirements as well as annotations by the user. Likewise the
description of data components include identification informa-
tion such as source, format, and date, as well as user annota-

tions. The XML for these components are tailored to precisely
describe their respective component, without subscribing to a
common vocabulary of XML elements.

We used XSL to implement the behavior of the web
based user interface for a component. Besides the separating
the user interface development from the rest of the portal
development effort, this choice has several other advantages.
Firstly, the user interfaces are generated in the client side
and there is no need for the use of any computational power
at the server side to generate HTML-based user interfaces.
Secondly, the user interface development is relieved from the
burden of supporting variety of user platforms (e.g. mobile,
text based, etc.), since the browser will take care of parsing
XML and generating the HTML result; the only compatibility
requirement is the use of a browser that can render XML
files. XSL had been our choice as a user interface markup
language because of its cross-platform compatibility advantage
over alternatives such as XUL, MXML, and XAML [27].
Even though these alternative technologies offer advanced
user interface libraries that support menu bars, tree views
and tab boxes [28], XSL still has a good standing since such
functionalities are attainable with the help of Javascript.

The use of XSLT enables the deployment of Javascript for
a more useable and interactive user interface that goes beyond
simple HTML forms. Currently, we use Javascript to verify
the inputs at the entry time so that we can keep semantic
integrity of the data and avoid execution failure due to invalid
inputs. When a user tries to launch an application through
job submission portlet, the portlet shows an HTML page
containing all required attributes to be filled in. At this stage,
Javascript checks whether the entered values are valid for the
expected data type. Javascript is also useful for interactive
browsing of user initiated jobs and their output files through
interactive graphs.

After a user runs an application, the XML description that is
used to describe the application type is updated with the input
data that has been entered by the user. This updated XML
becomes an instance of a job of the corresponding application
type (see middle column of Figure 4). The same XML is then
updated by the Execute service component to record its trail
until it finishes its execution (see right column in Figure 4).
The history data for each execution can be easily rendered
to be shown in the browser with another XSL which is very
similar to the XSL which was used for user input interface,
(see Figure 5).

XML and XSL help rapid integration of a new application
into the portal and evolution of existing components that are
already in the portal. We would like to emphasize that one of
the biggest advantages of using XML is its ability to provide
powerful and customized web based user interfaces, while
requiring little development and maintenance effort.

B. SRB, MCAT and SQL
SRB is a middleware that uses a hierarchical logical names-

pace to manage distributed and heterogeneous data collections.
Among data grid middleware, SRB is commonly accepted

6

<opt> <opt> <opt>
 <input> <input> <input>
 <integer> <integer> <integer>
 <attrib> <attrib> <attrib>
 <id>ncat</id> <id>ncat</id> <id>ncat</id>
 <default>71</default> <default>71</default> <default>71</default>
 <max>1000</max> <max>1000</max> <max>1000</max>
 <min>0</min> <min>0</min> <min>0</min>

 <reason>
 Value greater than maximum limit
(1000).
 </reason>
 <uservalue>2000</uservalue> <uservalue>1000</uservalue>
 <validity>0</validity> <validity>1</validity>

 </attrib> </attrib> </attrib>
 <description> <description> <description>
 Number of words in catalogue file. Number of words in catalogue file. Number of words in catalogue file.
 </description> </description> </description>
 <label>Number of words in
catalogue</label>

 <label>Number of words in
catalogue</label>

 <label>Number of words in
catalogue</label>

 </integer> </integer> </integer>
…… …… ……

 <jobinfo> <jobinfo> <jobinfo>

 <allowed>0</allowed> <allowed>1</allowed>
 <createdate>01/01/2006-
12:00</createdate>

 <createdate>01/01/2006-
12:00</createdate>

 <des>TestJob</des> <des>TestJob</des> <des>TestJob</des>
 <jobid>1</jobid> <jobid>1</jobid>
 <ownerid>1000</ownerid> <ownerid>1000</ownerid>

 <submitdate>01/01/2006-
12:00</submitdate>

 <status>Not Submitted</status> <status>Waiting</status>
 </jobinfo> </jobinfo> </jobinfo>
</opt> </opt> </opt>

Fig. 4. The lifetime of XML file in SALSA.

to be the most popular and mature of its kind. It supports
file management through logical data space, scalable capacity,
security support, replication, federation, and APIs for develop-
ment. SRB supports bulk-operations and data grid federations,
both of which are essential for the scalability. SRB can be used
with Globus Toolkit and Condor, the commonly used grid tools
today. SRB has its weaknesses, nonetheless. For example, it is
heavily dependent on Metadata Catalog (MCAT). If the MCAT
server becomes unavailable, it is not possible to retrieve data
even though the data server is operational. We have found that
SRB can readily be integrated into our implementation and
serve as our main file storage method. Its Java API (JARGON)
is easy to use, making up for the shortcoming of not being
based on standards.

SRB has proved to be a good choice for our data grid
component since the biology research applications we support
are all data-intensive computations and need to access large
amount of data. The choice of SRB and MCAT simplified
the development process as our system takes advantage of
SRB’s capability of handling unlimited storage space and
automated data grid management. We use SRB to store not
only the output data produced by the computations, but also
the execution history and user input. Execution history data is
also stored as metadata in the MCAT. This enables the user
to examine completed jobs, modify the input parameters if
he/she wishes, and re-execute the application with new inputs.
Storing job history metadata also allows for flexibly searches

and speedy retrieval of job information.
In our data experiments, we use MCAT to store metadata

that describe large data collections. SRB retrieval latency
remains the same regardless of the size of the data collections
since unique identifiers are used to access the files stored in
SRB. However, the MCAT access latency increases propor-
tionally when size of the data collection (number of files)
expands. This is because query operations are used to access
MCAT data and they are sensitive to the size of data, which
in our experiment was in the order of hundreds of thousands.

In order to alleviate the slow response time from the MCAT,
we use a method of information replication to achieve faster
response for some important types of the queries. In addition to
MCAT, we use MySQL to manage a local database for storing
metadata that pertain to job management, which is typically
a small amount of data. With the replication, a portlet page
containing the job history of a user can be rendered faster
without being affected by the latency SRB data fetching or
MCAT metadata query processing. This is particularly useful
when MCAT is not available, because the job information
database serves as a local copy of the most of the information
that has been stored in MCAT. On the other hand, the XML de-
scriptions of the jobs stored in SRB can be used to reconstruct
the local MySQL server in the case of its failure. The XML
descriptions stored in SRB contain a complete trace of each
job launched from the portal, starting from their instantiation
at the User Interface component until they are processed by

7

Number of words
in catalogue
Sequence length

Catalogue file Browse...

Data file Browse...

Additional
parameters

Submit Job

CRB Toolkit

71

35937

string input

a)Job submission interface

Job Description TestJob
Date/Time 01/01/2006-12:00
Status REJECTED
User Input Validity There was an error

Tried Input Data

Number of words
in catalogue 2000 Invalid

Value greater
than maximum
limit (1000).

Sequence length 4000a Invalid Value not
integer.

Catalogue file mycat.txt Invalid File is not
uploaded.

Data file mydat.txt Invalid File is not
uploaded.

Additional
parameters NA Invalid Unknown

parameters

CRB Toolkit

b)Job status interface.
Fig. 5. Rendering of two XML files from Figure 4 generated by Firefox 1.5.
This job has been rejected by the secondary validity check at job execution
component; the user sent illegal parameters bypassing the primary validity
check that uses javascript at the browser – probably by disabling scripting.
Note that input validity check is required at server side for security reasons
too, as the user input can be used to launch a code injection attack.

the Execute component and completed with results. Note that
SRB, and MySQL are alternatives that provide redundancy for
the Storage component; this redundancy alleviates reliability
concerns by improving the Storage components fault tolerance.
In summary, a little data redundancy provides faster query time
and increase reliability of our systems.

C. Compute Service Component

In the Compute service component, we create interfaces to
allow jobs to run at various computation resources, including
on the local computer, campus grid, and the TeraGrid. This
implementation provides the flexibility for users to compute on
the resource that is most efficient for the task at hand. On the
Purdue campus grid, we utilize the Purdue’s high throughput
computing Condor pool. It is one of the largest academic
Condor sites in the U.S., with over 4200 computers distributed
on the campus. Jobs that can generate a large number of

independent, self-contained tasks, such as many computational
biology tools, are suitable for running on a Condor pool. For
example, the CRB tool [29] is a great candidate utilizing
the Condor resources. The CRB tool implements a Bayesian
model for locating regulatory regions in a DNA sequence. To
process a long DNA sequence, we have improved the tool
to process segments of the sequence simultaneously, creating
multiple Condor jobs to run in parallel [30].

The Compute component allows job submission to the
TeraGrid by using the Condor-G interface through TeraGrid
gatekeeper computers. This enables SALSA portal users with
highly parallel computations transparent access to the nation’s
powerful supercomputing power through a web portal.

The graph in Figure 6 shows the Condor utilization of
idle CPU cycles in the Purdue Condor pool. The green area
represents the Condor cycles used during a typical week.

Fig. 6. Condor utilization of idle CPU cycles in the Purdue Condor pool.
The green area represents the Condor cycles used during a typical week.

IV. RELATED WORK

Integration of research grade data and software resources
for Biology has been an active research area, since it will
improve the research productivity and speed in this area. It
has been repeatedly emphasized that the heterogeneous nature
of resources is one of the biggest obstacles before such an
ambitious aim.

In [13], Davidson et.al. identified the challenges in integra-
tion of biological databases: i) heterogeneous data (e.g., some
relational databases, some hyper-linked documents, some text)
and application programs which can be viewed as queries on
data. ii) users wish to perform “bulk” queries. iii) updates
to data are locally and autonomously controlled. They also
studied the integration steps: 1) Data model transformation
2) Semantic schema matching 3) Schema integration 4) Data
transformation 5) Semantic data matching. This early paper,
demonstrates that integration of data from two independent
sources is an involved process that is even harder to generalize
for many sources.

Sujansky gives an introduction to database heterogeneity
and its specific examples for biomedicine in [14]. Notably,
the author proposes that single data model for biomedicine is
not a possible goal. Sujansky also gives a list of properties
that are specific to heterogeneous data integration: i) complex
declarative queries should be handled; ii) heterogeneity of
underlying data should be transparent to the user; iii) write

8

access is not required from remote databases; iv)autonomous
updates of databases and schemas is to be expected; v) timely
access to newest data is paramount. Finally, the author pro-
vides a categorization for the types of heterogeneity: structural;
naming; semantic; content. In our system, we maintain the
understanding of heterogeneity as an inherent characteristic of
computational biology resources, and prepare our framework
for possible drawbacks this will cause.

North Carolina Bioportal (NCBioportal) [3] use PISE as
a user interface middleware component for a model-driven
architecture. PISE supports a comprehensive set of pre-defined
data types and generates an HTML page after parsing the user
specification document that has been generated using these
pre-defined data types. However, it is still possible that some of
the applications will require data types different from the ones
provided by PISE. Our XML and XSL based user interfaces
can provide customized services to such applications. This
approach is good for achieving interoperability and getting
fast component integration but provides limited freedom for
the customization for non-standard data which is very common
in heterogeneous settings.

Although Virtual Data System (VDS) was first introduced
in 2002, difficulty of installing VDS has been one of the
major hindrances for getting popularity, until it was made
available over the web [31]. Basic idea of Virtual Data System
is to re-use function definitions and real function calls. If
a query procedure has been written already and saved in
a database, users who want the same or similar function
can take advantage of existing ones. If the users can find a
function definition or real call, they only need to adjust input
parameters. The re-use of functions can decrease query time of
repeated or similar request. VDS also supports object history
for ensuring the object semantic security. This helps users
verify the safety of objects they want to re-use.

The importance of continous development in software with
evidence from the complex network structure of large software
systems has been reported by Myers [21]. Myers measured
various characteristics of Class Collaboration Diagrams in
large software and suggested a generative model of software
evolution that tries to capture these characteristics. The sys-
tems that were studied by Myers’ are results of a coordinated
effort and design, hence some of the results do not apply
to grid enabled portals in which third-party components are
plentiful. Notably, Myers observes that the complexity in
software systems is not responsible for fault tolerance as
opposed to many complex engineering systems. However, in
this respect grid enabled portals that are the focus of our paper
behave closer to complex engineering systems and gain fault
tolerance throgh redundancy as well as degeneracy.

Grid enabled portals are similar to Commercial Off-The-
Shelf (COTS) based systems, since they rely heavily on third-
party components. In this respect, COTS-based development
experience can be used to improve portal development pro-
cesses. On the other hand COTS-based system development
is very different from grid enabled portal development, be-
cause i) the third-party components are usually of research-

quality rather than commercial quality, ii) aggregation of all
competing components into the system is required as opposed
to selection of one. It has been repeatedly reported that the true
cost of COTS-based systems lies at the maintenance [32], [33]
of the system, since such systems need to update their code
in order to improve their overall quality as well as to comply
with new versions of the COTS components. The cost of main-
tenance of the COTS-based system are determined [32] by i)
number of COTS packages that need to be synchronized, ii)
technology refresh cycle times, iii) maintenance workload for
wrapper updates, iv) reconfiguration of packages, v) product
evaluation, vi) update databases, v) migrate to new standards
vi) license costs It is for this reason that the managers of
COTS-based systems value the functionality and reliability of
COTS components more than their financial affordability at
the initial deployment [33].

V. CONCLUSION

We have presented an architecture for a grid-enabled web-
based collection of research-grade resources. We based our
design decisions on two models that capture the nature of
the individual resources (i.e. heterogeneous database model)
and the nature of the collection (i.e. small-world scale-free
network model). We diverged from the model-driven approach
to adopt an application driven approach, in which individual
applications are treated as separate applications from the col-
lection, until -in rare cases- they become hub components. The
flexibility in handling of individual components translate into
their faster integration into the collection. We conjecture that
the lazy approach to building the intermediate links between
applications and data does not incur a large development
complexity penalty due to the small-world scale-free model
of the collection. This model states that only a small fraction
of the overall components will be used by other components,
hence would need to be written according to a canonical
component description.

The main contributions of SALSA can be listed as follows:
• Emphasis on rapid integration of new components to

the portal through a judicious management of system
maintenance.

• More focus on highly connected components, without
being constrained by a canonical component model. After
refactorization, hub components become more compatible
and can be easily added to a large number of workflows.

• Ability to grasp the trends in the requirements of a
research field by observing the emergence of workflow
patterns in the collection.

• Less connected components are still available in stan-
dalone workflows. This enables an early start to collect
experience for future support of potentially important
components.

• A simple component description method that is specific
to the relevant tasks, which enables easier integration of
heterogeneous resources and at the same time maintains
the simplicity of this process.

9

• Using added redundancy for hub components to alleviate
reliability issues that are inherited from heterogeneous
nature of the sources of components.

• Better user experience with effective improvement of
more important hub components.

There are strong indications for the small-world scale-free
nature of independently developed resources. As we have
demonstrated in this paper, such models have great impact
on our understanding of these collections and how we design
our systems. As future work we would like to quantify the
exact parameters of the scale-free nature of such networks for
computational biology.

Implementation of SALSA is an inherently continuing pro-
cess. One of the main goals of SALSA is to be able to
interchange hub components with alternatives to increase fault
tolerance. In this paper we have shown an example of this for
Execute and Storage services. In the future, User Interface
services can be made richer using alternative approaches that
could be suitable for a larger user base when combined, such
as Mobile Java Applets or Ajax.

Caching is another way to achieve fault tolerance, besides
increasing overall performance. However, the sheer size of a
unit of computational biology data record makes traditional
caching techniques insufficient. This calls for some interesting
research that explore the trade-off between disk-space and
reliability, rather than speed.

VI. ACKNOWLEDGMENTS

Authors would like to the anonymous referees for their
helpful comments and suggestions.

This work was supported by the National Science Founda-
tion under TeraGrid Resource Partners grant OCI-0503992.

REFERENCES

[1] X. Zhang and G. Agrawal, “Enabling Information Integration and
Workflows in a Grid Environment with Automatic Wrapper Generation,”
in The 6th IEEE/ACM International Workshop on Grid Computing,
2005, pp. 156–163.

[2] V. Fontes, B. Schulze, M. Dutra, F. Porto, and A. Barbosa, “CoDIMS-G:
a data and program integration service for the grid,” Proceedings of the
2nd workshop on Middleware for grid computing, pp. 29–34, 2004.

[3] A. Blatecky, K. Gamiel, L. Ramakrishnan, D. Reed, and M. Reed,
“Building the Bioscience Gateway,” Workshop on Science Gateways:
Common Community Interfaces to Grid Resources, GGF, vol. 14, 2005.

[4] D. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25–31, 2006.

[5] J. Shore, “Continuous design,” Software, IEEE, vol. 21, no. 1, pp. 20–22,
2004.

[6] S. Mellor, A. Clark, and T. Futagami, “Model-driven development-Guest
editor’s introduction,” Software, IEEE, vol. 20, no. 5, pp. 14–18, 2003.

[7] S. Ambler, “Agile model driven development is good enough,” Software,
IEEE, vol. 20, no. 5, pp. 71–73, 2003.

[8] C. Ebert, “Understanding the Product Life Cycle: Four Key Require-
ments Engineering Techniques,” IEEE Software, vol. 23, no. 3, pp. 19–
25, 2006.

[9] R. Nord and J. Tomayko, “Software Architecture-Centric Methods and
Agile Development,” Software, IEEE, vol. 23, no. 2, pp. 47–53, 2006.

[10] D. J. Reifer, “How good are agile methods?” IEEE Software, vol. 19,
no. 4, pp. 16–18, 2002.

[11] M. Fowler, K. Beck, et al., Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[12] D. Thomas, “Agile programming: design to accommodate change,”
Software, IEEE, vol. 22, no. 3, pp. 14–16, 2005.

[13] S. Davidson, G. Overton, and P. Buneman, “Challenges in Integrating
Biological Data Sources,” Journal of Computational Biology, vol. 2,
no. 4, pp. 557–572, 1995.

[14] W. Sujansky, “Methodological Review,” Journal of Biomedical Infor-
matics, vol. 34, pp. 285–298, 2001.

[15] T. Hernandez and S. Kambhampati, “Integration of biological sources:
current systems and challenges ahead,” ACM SIGMOD Record, vol. 33,
no. 3, pp. 51–60, 2004.

[16] S. Valverde and R. Sole, “Hierarchical Small Worlds in Software
Architecture,” Arxiv preprint cond-mat/0307278, 2003.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies
of Open Source Software Development: Apache and Mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

[18] N. LaBelle and E. Wallingford, “Inter-Package Dependency Networks
in Open-Source Software,” Arxiv preprint cs.SE/0411096, 2004.

[19] S. Valverde and R. Sole, “Logarithmic growth dynamics in software
networks,” Arxiv preprint physics/0511064, 2005.

[20] R. Wheeldon and S. Counsell, “Power law distributions in class relation-
ships,” in Third IEEE International Workshop on Source Code Analysis
and Manipulation, 2003, pp. 45–54.

[21] C. Myers, “Software Systems as Complex Networks: Structure, Func-
tion, and Evolvability of Software Collaboration Graphs,” Physical
Review E, vol. 68, no. 4, p. 46116, 2003.

[22] S. Bilke and C. Peterson, “Topological properties of citation and
metabolic networks,” Physical Review E, vol. 64, no. 3, p. 36106, 2001.

[23] A. Vazquez, “Statistics of citation networks,” Arxiv preprint cond-
mat/0105031, 2001.

[24] A. Barabasi and E. Bonabeau, “Scale-free networks.” Sci Am, vol. 288,
no. 5, pp. 60–9, 2003.

[25] A. Barabasi, “The physics of the Web,” Physics World, vol. 14, no. 7,
pp. 33–38, 2001.

[26] S. McGrath, XML by example: building e-commerce applications. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 1999.

[27] J. Nichols and A. Faulring, “Automatic Interface Generation and Future
User Interface Tools,” ACM CHI 2005 Workshop on The Future of User
Interface Design Tools.

[28] D. Hyatt, B. Goodger, I. Hickson, and C. Waterson, “XML
User Interface Language (XUL) Specification 1.0,” http://www.
mozilla.org/projects/xul, Last visited November 2006.

[29] E. Crowley, K. Roeder, and M. Bina, “A Statistical Model for Locating
Regulatory Regions in Genomic DNA,” Journal of Molecular Biology,
vol. 268, no. 1, pp. 8–14, 1997.

[30] C. Song, U. Topkara, J. Woo, S. P. Park, and M. Bina, “Enabling
Advanced Bioinformatics Research through SALSA: A Scalable, Simple
Architecture,” in TeraGrid Conference, Indianapolis, IN, USA, June 12–
15 2006.

[31] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and
J. Dobson, “Grid middleware services for virtual data discovery, compo-
sition, and integration,” Proceedings of the 2nd workshop on Middleware
for grid computing, pp. 57–62, 2004.

[32] D. J. Reifer, V. R. Basili, B. W. Boehm, B. Clark, and R. Consultants,
“Eight lessons learned during COTS-based systems maintenance,” Soft-
ware, IEEE, vol. 20, no. 5, pp. 94–96, 2003.

[33] M. Keil and A. Tiwana, “Beyond Cost: The Drivers of COTS Applica-
tion Value,” Software, IEEE, vol. 22, no. 3, pp. 64–69, 2005.

10

