
The Java CoG Kit Experiment Manager

Gregor von Laszewski,1,2, Phillip Zimny,3, 1, Tan Trieu4,1, David Angulo5,1

1 Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60440

2 University of Chicago, Computation Institute, Research Institutes Building #402, 5640 South Ellis Ave., Chicago, IL 60637-1433

3 PHILS INSTITUITION

4 Santa Clara University, Department of Computer Engineering, 500 El Camino Real, Santa Clara, CA 95053

5 DAVES ADDRESS DePaul University

Abstract

In this paper, we introduced a framework for exper-
iment management that simplifies the users’ inter-
action with grid environments by managing a large
number of tasks to be conducted as part of the ex-
periment by the individual scientist. Our framework
is an extension to the Java CoG Kit. We have devel-
oped a client-server approach that allows us to utilize
the grid task abstraction of the Java CoG Kit and ex-
pose it easily to the experimentalist. Similar to the
defintion of standard output and standard error we
have defined standard status that allows us to con-
duct application status notifications. We have tested
our tool with a large number of long running experi-
ments and show its usability in practical applications
such as bioinformatics.

1 Introduction

Grid computing addresses the challenge of coordi-
nating resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations [?].
The analogy between the computational grid and the
power grid highlights the emphasis on virtualization.
When a user plugs an appliance into the power out-
let, he/she expects the delivery of power without con-
cern for the whereabouts of the power source. Just
as the electric power grid allows pervasive access to
electric power, computational grids provide perva-
sive access to compute-related resources and services
[1]. The Grid’s focus on integrating heterogeneous,
distributed resources for the purpose of high perfor-
mance computing differentiates it from other tech-
nologies such as cluster computing and the Web. The
Grid’s ability to virtualize a collection of disparate
resources to solve problems promisses effortless col-

laboration among the scientific communities.
The construction of the Grid requires the establish-

ment of standards for a secure and robust infrastruc-
ture. One such undertaking is the definition of the
Open Grid Services Architecture (OGSA), which pro-
vides a specification for a standard service-oriented
Grid framework [1]. The implementation of the ser-
vices form the Grid middleware, and the Globus
Toolkit is today’s de facto standard Grid middleware
[2]. The toolkit provides an elementary set of facili-
ties to handle security, communication, information,
resource management, and data management services
[1]. However, the set of services may not be compati-
ble with the commodity technologies that Grid appli-
cation developers use. The Commodity Grid project
addresses the incompatibility by creating Commod-
ity Grid (CoG) Kits that define mappings and inter-
faces between Grid services and particular commod-
ity frameworks such as Java, Perl, and Python [1].

The Java CoG Kit provides more than just a map-
ping between Java and the Globus Toolkit. The Java
CoG Kit bridges the Java commodity framework and
Grid technology. This means it not only defines a set
of convenient classes that provide the Java program-
mer with access to basic Grid services [3], but also in-
tegrates a number of sophisticated abstractions, one
of which is a workflow system [4]. Hence, it provides a
significant feature enhancement to existing Grid mid-
dleware [1].

A popular use of the Grid is motivated by the
field of bioinformatics, where applications such as
Grid-enabled Blast [?] are used to compare base or
amino acid sequences registered in a database with
sequences provided by the user [?]. Blast runs can
generate numerous queries that require hours or even
days to complete. Managing such studies requires
that scientists maintain the status and outputs of the

1

individual queries, distancing them from the experi-
ment at hand and burdening them with the tedious
task of checking for job status and output. In an
effort to relieve the scientist from the drudgery of
managing output data and provide the scientist with
a tool to monitor the progress of his/her jobs, we in-
troduce the concept of an experiment. An experiment
can be defined as tasks that are executed on the Grid
with their associated output stored in a user-defined
location. In this paper we show that the Java CoG
Kit is ideally suited to support such a high level ser-
vice. Using the facilities provided by the Java CoG
Kit, we create a user driven experiment management
system to simplify the administration and execution
of repetitive tasks that use similar parameters.

The user driven experiment management tool com-
bines features of several tools to empower the novice
Grid user. It includes features typically found in
queuing systems, shells with history, and process
monitoring programs such as the well known UNIX ps
command. Naturally it is targeted to include specific
enhancements for the Grid environment. To empha-
size on the similarities let us revisit a typical use case
of a user using a UNIX command shell. A user work-
ing in the UNIX command shell queries which jobs
have been submitted by the history function. The
status of process, a running instance of a program,
can be obtained by issuing the ps command. The
output provides information such as the process ID,
current status, the cumulated CPU time, and exe-
cutable name. Our experiment management system
provides a similar interface, displaying the added ex-
periments in a format that includes the experiment
ID, current status, cumulative time the experiment
has been queued, and experiment name. However, in
extension to the normal command and history man-
agement tool by shells we must integrate user acces-
sible outputs and error files on a command by com-
mand basis.

A preliminary version of the execution manager
is already available for years as part of the Java
CoG Kit under the name Grid Command Manager
(GCM). However, we enhanced its functionality sig-
nificantly.The enhancements include experiment sta-
tus checkpointing, management support for a large
number of experiment submissions, and the inte-
gratin of fault tolerant queues for managing exper-
iment submissions.

The rest of the paper is structured as follows. First,
we revisit our requirements that lead us to a redesign
of the Grid Command Manager for experiment sup-

port. This includes the presentation of a use case
for our framework. Next we describe the architec-
ture that fulfills our requirements. We describe the
implementation and present preliminary performance
results. We conclude the paper with our thoughts on
future work to be conducted.

2 Requirements

The experiment management system has several ma-
jor requirements including automated experiment
checkpointing, transparent output management, au-
tomated version control, metadata management, de-
tailed status reporting, persistent experiment ses-
sions, scalable experiment updating. Next we will
discuss each of the requirements in more detail.

Automated Checkpointing. A basic assump-
tion that the experiment management system makes
about experiments is that they are non-interactive,
long running jobs. With long running experiments,
the expectation that the host requesting the remote
resource maintains an uninterrupted connection with
the remote resource is impractical. From this stems
the requirement that checkpointing, or saving the
state, of an experiment must be a transparent process
so that users do not have to associate experiments
with checkpoint files. Instead, once a user submits
an experiment he/she must only associate the exper-
iment with its name in order to track its status. To
address the overhead of maintaining a persistent con-
nection, the Java CoG Kit abstractions module pro-
vides a checkpointing mechanism that enables users
to reconnect to a submitted job at a later time.

Transparent Output Management. To shield
the user from details about the Grid, the standard
error (stderr) and standard output (stdout) are auto-
matically saved in a predetermined experiment path
location to prevent the impression that the stdout
and stderr have vanished because they reside on the
remote execution host or because the experiment has
been duplicated (see also Version Control). Such
functionality provides the illusion of localized com-
puting while using the Grid.

Version Control. Storage of output files leads to
the next requirement of output version control. When
an experiment is submitted more than once, the out-
put from its previous runs needs to be stored and

2

accessible for comparison to its future runs. An au-
tomated version control system sequentially names
versions of output. This is to take the responsibil-
ities of re-naming, moving, and organizing different
versions of output away from the scientist.

Metadata Management. A scientist often has
additional information about an experiment that
needs to be managed. Such information includes the
authors of the experiment, the date the experiment,
and other information pertinent for organizing and
documenting of an experiment. Hence, an additional
requirement is to provide a system to automatically
maintain the metadata of each experiment. This sys-
tem must allow for easy entry of an experiment’s
metadata as well as allow for changes to be made.
It will allow the scientist to reference more than just
the output to uniquely identify each experiment.

Application Status Reporting. [why we have
done this] Besides retrieving stdout and stderr, we
believe that users will benefit from application status
reporting. Similar to stdout, we introduce a stan-
dard status (stdstatus) that can be used to report
more detailed experiment states as well as applica-
tion specific information.1 When checking the sta-
tus of an experiment that reached the failed state the
user may wonder what triggered or caused the failure.
The standard status provides this service by trapping
signals that interrupted the job. The user can then
query the standard status to review the events that
occurred before the failure.

The use of the standard status goes beyond error
reporting; it provides a simple technique for runtime
application status notification. For experiments that
take days to complete, knowing that the experiment
is running is often inadequate. The standard sta-
tus provides a mechanism for application developers
to expose a more detailed record of the application’s
progress during execution.

Persistent Experiment Sessions. The ability to
load information about previous experiments when
restarting the experiment manager is an important
maintenance tool. In case the experiment manager
abruptly shuts down or if the user has multiple in-
stances of the experiment manager running, persis-
tence enables the user to maintain sessions.

1this is an implementation detail

Scalable Experiment Status Updating. With
persistent sessions, the number of experiments within
a session can grow quite large. The task of updating
the status of such a large number of experiments can
consume a disproportionate amount of computing re-
sources on the client machine. The experiment man-
agement system thus needs to simulate thread exe-
cution when updating the status of each experiment,
rather than creating a thread dedicated to status up-
dating for each experiment.

3 Use Case

[focus on biology case; derive requirements] In this
section we describe a scenario for the use of the cog-
experiment tool.

The Basic Local Alignment Search Tool (BLAST)
is one of the most popular tools for searching nu-
cleotide and protein databases. It tests a nucleotide
sequence against a database of known sequences and
returns similarities. BLAST offers many different
types of queries to the data base including ones such
as nucleotide to nucleotide, protein to nucleotide, pro-
tein to protein, nucleotide to protein, as well as many
more. Biologists use this tool to help them discover
the identity of the sequence they are studying or to
identify the function of the sequence they are study-
ing by comparing it to similar sequences BLAST
finds.

A biologist may find themselves in the scenario
where they wish to research a specific genetic se-
quence by making 500 slight modifications to the se-
quence, run the it through BLAST and see if the
modification produces any similar characteristics of
other sequences. The biologist would have start by
running the original sequence and then run each of
the 500 modifications. At the beginning of each sub-
mission of the BLAST run, the biologist would have
to name the task himself and have to then keep track
of the 500 different names. Upon the completion of
the BLAST run the biologist would then have to move
his output files into separate directories which they
would have to name and then remember.

Once the biologist has completed his 500 BLAST
runs, he now has 500 different outputs to manage.
The biologist most likely does not wish to devise a
method of organizing all of the different output they
have created. Even once organized, there is very little
addition data associated with the outputs to allow
the biologist to search through the output files. This
research method is inefficient and timely and not the

3

optimum way a biologist would like to conduct their
research.

The cog-experiment tool offers a way to make this
process not only much simpler but also much more
efficient. This tool allows the biologist to set up the
submission process to repeat itself however times is
need, in this case 500, while making a slight modifica-
tion to the submission parameters each time. For this
example, the modification to the parameters would be
the file name each modified sequence was stored in.
The submission process no longer requires the biolo-
gist’s presence. If these submissions took long periods
of time to complete, such as several days, the cog-
experiment tool would also checkpoint progress on
the completion of a submitted task so the researcher
would not have to start the task over from the begin-
ning.

In addition to offer a better submission procedure
to the biologist, the cog-experiment tool simplifies the
file management for the biologist. The biologist may
pick one name and the cog-experiment tool will au-
tomatically assignment a sequential version number
to each submission. Starting with one, the biologist
now has an easy to understand version schema. This
auto-naming feature takes away any worries about
over writing data or forgetting the names used for
submission.

Once each submission has been automatically
named, a folder of the same name is created to store
that individual submission’s files in the user’s experi-
ment path location. Now the biologist has all of their
submission files properly named and has the output
file neatly stored in individual folders.

The biologist can use the option to enter metadata
about the submissions on an individual level. Infor-
mation about the specific submission such as author,
time, or other notes can be saved to persistent stor-
age. When the biologist does this, it allows them to
search through all the outputs. For example, if the
biologist wishes to view all the submissions from a
certain day, they can simply search for that date and
all of the submissions from that date are displayed on
the screen.

4 Architecture

The architecture of the experiment management sys-
tem integrates with the Java CoG Kit’s layered ap-
proach. The experiment management system is a
module that reuses the abstractions layer while ex-
posing a command line tool. The abstractions layer

provides high level abstractions that include Grid
tasks, transfers, jobs, and queues that make devel-
oping Grid programs easier [4].

The experiment management system consists of
two primary components, an experiment manager
and a command line component. These components
communicate via a socket, with the experiment man-
ager running as a background job that services re-
quests from the command line component to add,
remove, submit, list, and retrieve the status of ex-
periments.

Figure 1 depicts the architecture of the experiment
management system. The heart of the system is the
experiment manager component, which maintains ex-
periment status with a set of four queues: pending,
submitted, completed, and failed. An experiment’s
transition through the queueing system is illustrated
through the state diagram in Figure 2. The user has
control over two state transitions: adding an exper-
iment to the pending queue, and performing a lo-
cal submit to move the experiment to the submitted
queue. The rest of the state transitions are handled
by a background thread, which periodically updates
the status of the queued experiments.

cog-experiment command line interface

the Grid infrastructure

Experiment Manager

Pending Queue

Submitted Queue

Completed Queue

Failed Queue

Queue

Checkpointing

Experiments

Repository

Experiment Status

W

R/W

R/W

Figure 1: The architecture of the Java CoG Kit ex-
periment management framework.

The experiment manager uses persistent storage to
provide automated experiment checkpointing, trans-
parent output management, and persistent experi-
ment sessions. The automated experiment check-
pointing and transparent output management func-
tions rely on an experiment repository to store the
checkpoint files for each submitted experiment and to
save the stdout, stderr, and stdstatus resulting from

4

Experiment State Diagram

Pending

Submitted

Running

CompletedFailed

Local Submission
Failure

Grid Submission

Failure

Runtime Failure

Local Submit

Add

Completion with Failure

Grid Submit

End

Begin

Figure 2: State diagram of an experiment as it tran-
sitions through the four queues.

an experiment. To provide persistent experiment ses-
sions function, the experiment manager periodically
checkpoints the status of the four queues to persis-
tent storage, where the status of the four queues can
be reloaded when the system is restarted.

The cog-experiment command line interface com-
ponent provides access to the experiment manager
functions to add, remove, submit, and retrieve the
status of experiments. The command line interface
also provides other functions such as metadata main-
tenance and version control, and thus requires access
read and write access to the experiments repository.

[figures changes: class relationships - fill out page
redraw arch w/ lines

5 Implementation

The implementation of the experiment management
system is split into the client and server components.

5.1 client

make sure that client and server clearly separated
in different subsections Experiment manager client
is implemented using an argument parser to retrieve
the user’s desired function. Once the user has en-
tered their command experiment manager client then
parses the command into its separate components
to determine which method to call. Experiment
manager client’s methods use instances of experi-
ment metadata implementation and experiment out-
put manager. These two classes both use instances

of experiment data manager to help organize an ex-
periment’s metadata.

[clarity on client/server] Experiment data manager
is designed to hold all of the metadata of an exper-
iment in one object. This class stores the separate
pieces of metadata in individual strings. The only
methods the experiment data manager class contains
are simple get and set methods to set and retrieve
information within the class.

Experiment metadata implementation class is im-
plemented using a variety of technologies. It uses
JPanel from the swing package to construct the
graphical user interface that is presented to user to
enter the metadata to their experiment. This inter-
face retrieves the metadata and sends it to be saved
to persistent storage. The metadata is organized by
being placed into an instance of the experiment meta-
data manager class. This instance of the experiment
metadata class is then written to file in xml by using
the XStream package [?]. The location of the meta-
data storage is the same as the experiments location
for storing the stderr and stdout. This location is in
a directory that shares the same name as the exper-
iment it is associated with. The name of the exper-
iment is ultimately determined not by the user but
by the auto-naming method inside of the experiment
metadata implementation class. This method auto-
matically increments an integer that is attached to
the end of the name of the experiment the user en-
ters. To keep track of all of the experiments that
have been created, experiment metadata implemen-
tation uses a vector that contains the string name of
all of the experiments that have been added. This
vector is the stored to persistent storage in xml for-
mat using XStream in the file entitled versions.xml.
This file is referenced when the auto-naming method
is determining the correct number to attach to the
end of the name entered by the user.

Experiment output manager is designed to handle
the user’s query based commands. It uses XStream
load the vector stored in versions.xml as well as other
saved instances of the experiment data manager class.
Once the necessary information has been loaded
experiment output manager conducts the specified
query through the data and returns the results.

5.2 Server

The server consists of four threads of execution; the
main thread of execution listens for and responds to
requests from the client, one for intermittent check-
pointing of the queues, and another two threads to

5

update the status of submitted experiments.
The main thread instantiates the experiment man-

ager class that is responsible for providing all the
necessary methods that exposes the interface for the
client to communicate with the server. Once the
checkpointed queues have been loaded from the ex-
periment path, two new threads are spawned, and
they are responsible for updating the status of ex-
periments in the submitted queue. The number of
threads and their polling intervals can be adjusted for
performance fine-tuning. The choice of using a couple
threads to monitor experiment status allows the ex-
periment management system provide reasonable re-
sponse time while restricting resource consumption.
These threads also automate the retrieval of any out-
put associated with the experiment. Because they
can detect an experiment’s change in state, these
threads update the standard output, error, and sta-
tus on a minimal basis and conserving computational
consumption. The final thread initiated during the
experiment manager startup process saves the states
of the four status queues at a configurable inter-
val. The functionality addresses the possibility of an
abrupt interruption preventing the experiment man-
ager from gracefully halting.

Another thread is initiated when the experiment
manager server is started. It uses a configuration
polling duration to checkpoint the queues, so that an
abrupt interruption will not cripple the system, and
be able to launch the experiment management system
with minimal loss.

The server uses four levels of class containment,
and Figure 3 illustrates the containment relationship.
At the root of the containment relationship is the
ExperimentManager class that provides the server-
side functions to respond to the commands that the
client issues. The commands supported by the Ex-
perimentManager class include add, submit, list, sta-
tus, and stop. The ExperimentManager class imple-
ments the functions based on the four queues that
it maintains: pending, submitted, completed, and
failed. The queues consist of objects that hold an ex-
periment data structure along with the experiment’s
id and a dependencies list.

The Experiment class is the core data structure
in mediating communication between the experiment
management system and the grid. The class exposes
an interface to simplify the experiment submission
process that incorporates enhanced status reporting
through the standard status. The standard status is
simply a file with entries describing the current sta-

!ontainment *e+ations-ips

Experiment2tatus4ueue

5d Experiment 7ependencies

ExperimentMana:er

Experiment4ueue;b=ect

ExperimentMana:er2er>er

Figure 3: Containment relationship among the pri-
mary classes used to implement the experiment man-
ager server

tus of an experiment that is written to the working
directory where the executable program is invoked.
The standardized format of each entry, as shown in
Figure 4, permits customized status reporting. How-
ever, those applications used must be rebuilt to ap-
pend to the standard status additional information
about its execution state. The standard status, as
currently implemented, reports the latter three states
of the experiment state diagram: running, completed,
and failed. It also supports more detailed error de-
tection by reporting trapped signals that otherwise
would have vanished on the remote host.

#CoG: <status> : <time> <date> <time_zone>

where
status ::= pending | submitted | running | completed | failed
time ::= HH:MM:SS
date ::= MM/DD/YYYY
time_zone ::= GMT

Figure 4: HSpecification of an entry for the standard
status

The experiment class uses the Java CoG Kit’s Task
and FileOperation abstractions to interact with the
grid. Preparation of the experiment for submission
requires wrapping the executable and its the associ-
ated list of arguments into a shell script. This imple-
mentation of the standard status requires both the
transfer of and setting execute permissions for the
script on the remote machine. The experiment is

6

submitted through a task handler that provides sim-
ple status reporting via through the Status interface
defined in the Java CoG Kit abstractions-common
module. Automated checkpointing of the experiment
occurs when the Experiment object detects that the
experiment has been successfully submitted to the
remote host for execution through a status change
event notification.

6 Security Issues

As we have a simple client-server implementation, we
require that the experiment client and server be run
as part of a secure Intranet. However, as we have
already implemented the logic of dealing with exper-
iments, it will be straightforward to use secure grid
sockets that are provided by the Java CoG Kit or Se-
cure Grid Services provided by the Globus Toolkit 4.
In both cases, the communication between the client
and server can be securely achieved. At this time we
provide a secure solution as both client and server can
be run on the user’s computer. Naturally, the com-
munication between client and server is done through
a port that is not externally accessible.

7 Performance Results

We logged the amount of memory and clock time
required for the four primary server operations of
adding, submitting, listing, and displaying the status
of experiments under increasing loads. The number
of experiments managed by the experiment manager
provides the basis of measuring the load on the sys-
tem. Memory consumption is an important indica-
tor in determining how well the experiment manage-
ment system will perform with other programs run-
ning concurrently. On a Pentium 4, 1.8 GHz machine
running the Linux-2.4 operating system with 512 MB
of memory, we obtained the following results pertain-
ing to the amount of allocated heap space used by
the experiment management system. Because of the
fluctuating heap size allocated by the JVM, using the
absolute byte count of used memory is not useful. In-
stead we take the percentage of the amount of heap
used versus the total heap size. The results of the
heap usage performance test, as summarized in Fig-
ure 5, show that the experiment manager consumes
within the range of 75-80 percent of the available heap
space when a reasonably large number of experiments
have been submitted. The percentage is within the

context of absolute allocated memory ranging from
2MB to 60 MB. The 60 MB requirement suggest that
managing a thousand experiments can be problem-
atic within a computing environment where memory
is a scarce resource. On the other hand, the nearly
constant 75-80 percent heap space consumption is a
testament to the system’s spatial scalability.

Memory Consumption

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 20 40 60 80 10
0

30
0

50
0

10
00

Number of queued experiments

Pe
rc

en
ta

ge
 o

f m
em

or
y

co
ns

um
ed

Figure 5: Percentage of allocated heap space con-
sumed under increasing load of added experiments

In the time domain, the logs indicate a constant
response time to requests to add, submit, and list
the status of queue experiments. Adding experiment
uses on average a range of 10 ms to 100 ms to sat-
isfy the request. Checking the status of experiments
requires on average 0.5 to 1.5 milliseconds to com-
plete. Experiment submission requests on average
approximately 0.5 to 1.5 seconds to locate the ex-
periment, prepare the task for submission, and sub-
mit it. However, the amount of time needed to start
the experiment manager requires orders of magnitude
more time than the other operations. Beyond the
50 experiments threshold, we clocked an average of
approximately one second per experiment, display-
ing linear growth performance. Below that threshold,
the loading time grows linearly but at a rate that is
less than 0.5 seconds per experiment. Figure 6 shows
the difference in loading time below and above the
threshold number of experiments. The results show
that the system scales well when running; however,
because of sizeable I/O involved in deserializing the
checkpointed queues, reloading the experiment man-
agement system is an expensive operation. As such,
it is advisable to categorize sets of experiments into
separate projects, and manage the different categories
of experiments as separate sessions.

7

Load from XML

0
20
40
60
80

100
120
140

1 3 5 7 9 20 40 60 80 10
0

Number of Experiments

T
im

e
(s

ec
on

ds
)

Figure 6: Amount of time to load checkpointed
queues with an increasing number of experiments.

8 Conclusion

While looking at bioinformatics applications, we have
identified that typical experiments need to be man-
aged by the novice grid user. In order to support
this requirement we have developed a tool called cog-
experiment. This tool is architected around a client-
server model that allows the user to manage a large
number of tasks as part of his daily research quest.
The experiment framekwork is bassed on a layered
architecture that integrated fully with the Java CoG
Kit. Through this combination we have enabled a
system that allows automated checkpointing, auto-
matic version control, and output file management.
These features are making the researchers’ experience
to use the Grid simpler, faster, and more efficient.
The cog-experiment is implemented using Java, and
Java Cog Kit to provide these features.

Future research will focus on integrating our client-
server model into a WS-RF based grid environment.
Additionally, it will be simple to integrate our system
into the Java CoG Kit’s workflow framework.

9 Acknowledgements

This work was supported by the Mathematical, In-
formation, and Computational Science Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus Project research and
development. The Java CoG Kit Project is supported

by DOE MICS, and NSF Alliance. This work was
also supported by the National Science Foundation
under Grant No. 0353989.

References

[1] G. von Laszewski and K. Amin, Grid Mid-
dleware. Wiley, 2004, ch. Middleware for
Commnications, pp. 109–130. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--grid-middleware.pdf

[2] I. Foster, “What is the Grid? A Three
Point Checklist,” 22 July 2002. [Online].
Available: http://www.gridtoday.com/02/0722/
100136.html

[3] G. von Laszewski, I. Foster, J. Gawor,
W. Smith, and S. Tuecke, “CoG Kits: A
Bridge between Commodity Distributed Com-
puting and High-Performance Grids,” in ACM
Java Grande 2000 Conference, San Francisco,
CA, 3-5 June 2000, pp. 97–106. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--cog-final.pdf

[4] G. von Laszewski and M. Hategan, “Grid
Workflow - An Integrated Approach,” in To
be published, Argonne National Laboratory,
Argonne National Laboratory, 9700 S. Cass
Ave., Argonne, IL 60440, 2005. [Online]. Avail-
able: http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski-workflow-draft.pdf

8

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.gridtoday.com/02/0722/100136.html
http://www.gridtoday.com/02/0722/100136.html
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf

A Command cog-experiment

NAME
cog-experiment

SYNOPSIS

cog-experiment [-info] [-list] [-tree]
[-add <experiment> [-file <filename>]]
[-submit <experiment>]
[-status <state>]
[-delete <experiment>]
[-combine <experiment1> <experiment2>]
[-metaset <experiment>]
[-copy <experiment> <directory>]
[-rename <old experiment> <new experiment>]
[-search <options> <string>]
[-diff <options> <file>]
[-view <options>]
[-edit <file>]
[-ls]

A short format is also available:

cog-experiment [-i] [-l] [-t]
[-add <experiment> [-file <filename>]]
[-submit <experiment>]
[-stat <state>]
[-del <experiment>]
[-com <experiment1> <experiment2>]
[-ms <experiment>]
[-cp <experiment> <directory>]
[-rn <old experiment> <new experiment>]
[-srch <options> <string>]
[-diff <options> <file>]
[-view <options>]
[-ls]

DESCRIPTION

cog-experiment manages experiments. Experiments can be added,
deleted, submitted, and monitored. Other management tasks include
querying for the status of experiments and searching and filtering
experiments. The stdout and stderr of each of experiment is
managed using a directory structure that is customizable through
the COG_EXPERIMENT_PATH environment variable. An example for a
directory structure for an experiment could look something like
this: $HOME/.globus/experiment/<experiment name>/stdout /stderr

OPTIONS
-info

Returns useful information about the location of the
experiment

-list
Lists all experiment names

-tree
Lists tree view of all experiment names

-edit <filename>
Edits file using emacs

-add <experiment name>

9

adds a new experiment without submitting it
user prompted to enter experiment information

-add <experiment name> <option>
add options:
-file [filename]

Uses the specified file as the task for the
experiment

-status
lists the status of all experiments

-status <submitted | pending | running | done>
lists all experiments with the specified state

-submit
creates new experiment in default directory

-submit <experiment>
creates a new experiment named experiment or continues

experiment

-delete <experiment>
deletes the names experiment

-combine <experiement1> <experiment2>
adds the data of experiment2 to the end of experiment1

-metaset <experiment>
set the metadata to the named experiment

-settask <experiment>
set the task on the named experiment

-copy <experiment1> <folder>
copies experiment1 to destination folder

-rename <experiment1> <String n>
renames experiment1 version nameto n

-search <search string> <option1> <option2>
search option1:

-dir <directoryname>
Executes function in specified directory

-file <filename>
Executes task in specified file

search option2:

-metadata
Executes function returning only metadata

-data
Executes function returning only the data

-stderr
Executes function returning only
stderr

-diff <filename1>, <filename2>

-diff <filename1>, <filename2> <option>

10

diff option:

-metadata
Executes function returning only metadata

-data
Executes function returning only the data

-stderr
Executes function returning only stderr

-versions <experiment name>
lists the name of all files in the specified
experiment folder

-experiments
lists all experiments

-view <filename>
prints all information in named file to screen

-view <filename> <option>
view option:

-metadata
Executes function returning only
metadata

-data
Executes function returning only data

-stderr
Executes function returning only stderr

-ls
view advanced information on all experiments

EXAMPLES

In this eaxample we show the creation of a new experiment.

cog-experiment -edit blastrun.xml -format schema.xsl

Through a swing interface the user is asked to fill out the
following form.

Metadata:

Identity

Identifier:
Experiment Name: blastrun

Contact

Author: Pan
Department: MCS
Project: Gene Sequencing
Phone: 630-252-1682
E-mail: zimny@mcs.anl.gov
Date: July 11, 2005
Time: 2:00PM

Execution

Program: /home/user/simulation

11

Arguments: "-s 2 -i 20"

Host

Directory:
Stdout: cog-stdout
Stderr: cog-stderr
Projectaccountnumber: <your tera grid account number>
Parameters:

-p gt2
-s tg-grid1.uc.teragrid.org/jobmanager-pbs

Now that the necessary information has been gathered, the experiment
object is now created:

cog-experiment -add blastrun.xml

Next we send the experiment off to be completed on the grid:

cog-experiment -submit blastrun

If the experiment was run more than once the versions would
look as follows:

cog-experiment -view -versions blastrun

blastrun-1
blastrun-2
...

To view the specific information of a experiment that has been completed:

cog-experiment -view -file blastrun-1

Metadata:
Identity
Identifier:
Experiment Name: blastrun
Contact:
Author: Pan
Department: MCS
Project: Gene Sequencing
Phone: 630-252-1682
E-mail: zimny@mcs.anl.gov
Date: July 11, 2005
Time: 2:00PM
Execution
Program: /home/user/simulation
Arguments: "-s 2 -i 20"
Host
Directory: ˜
Stdout: cog-stdout
Stderr: cog-stderr
Projectaccountnumber: <your tera grid account number>
Parameters:

-p gt2
-s tg-grid1.uc.teragrid.org/jobmanager-pbs

Data:
12
23
43
56
76

12

Standard Error:
none

To view only the data created during the experiments run:

cog-experiment -view -file -data blastrun-1

Data:
12
23
43
56
76

cog-experiment view file data blastrun-2

Data:
12
23
34
56
76

cog-experiment -diff -data genes-1 genes-2

blastrun-1 blastrun-2
line 3: 43 34

If more than one experiment has been created, multiple experiments
can by viewed by:

cog-experiment -view

Experiments:
default
genes
dna

If you would like to create an experiment from an existing XML file:

cog-experiment -add -file /home/experiments/lysosome.xml

Experiment lysosome has been created.

To view all experiments:

cog-experiment -view -experiments

default
blastrun
dna
lysosyme

To view more information on all experiments:

cog-experiment -ls

UserName Time Date
blastrun: Pan 2:00PM July 11, 2005
dna: Tan 11:01AM July 22, 2005
lysosome: Gregor 5:45AM July 23, 2005

cog-experiment -cureCancer

13

Cancer is now cured!

SEE ALSO

cog-job-submit, cog-checkpoint-submit, cog-checkpoint-status

B Design

--
Client <--> Experiment Manager <--> Grid infrastructure

Client (UI)
- command-line utility
- GUI (monitor and visualize output)

Experiment Manager
- 4 Queues (pending, submitted, completed, failed)
- Persistent storage

* load/save queues from/to persistent storage
* experiments repository

- Scheduler
* selects the next task to submit to the Grid, based on a scheduling policy
possible policies: FIFO, random, priority-based

- task submission:
* submits task(s) to Grid through a workflow
* create as a node in the workflow a wrapper script to detect
completion or failure of the task

* update the appropriate queues
* update the experiments repository with stdout, stderr and any other
output

How different components of our system interact:

Component1 <- interface between the components -> Component2

UI <- ExperimentManagerInterface -> Queues <- ExperimentSchedulerInterface ->
Scheduler <- workflow -> Grid
h
UI <- ExperimentRepositoryInterface -> ExperimentRepository
ExperimentRepository <- ExperimentRepositoryInterface -> ExperimentManager

--
Interfaces
--
interface StatusQueue

* StatusQueue is used as the underlying data structure in ExperimentManager
--

/*
* NOTE: StatusQueue implementations MUST be THREAD-SAFE * queue
* object: [id, experiment name, task, dependencies]
*/

/*
* inserts an object into the queue returns a String that is the
* id of the queued task
*/
String enqueue(Object queueObject)

/*
* inserts an object into the queue with a list of dependencies
* (dependencies is a list of ids that the added task depends on)

14

* returns a String that is the id of the queued task
*/
String enqueue(Object queueObject, List dependencies);

/*
* removes the next queue object from the queue, using the
* scheduling policy returns the removed queue object
*/
Object dequeue();

/*
* removes the queue object with the specified id
* returns the removed queue object
*/
Object dequeue(String id);

/*
* sets the dependencies for the queued task with the specified id
*/
void setDependencies(String id, List dependencies);

/*
* sets the scheduling policy for the queue
*/
void setSchedulingPolicy(String schedulingPolicy);

/*
* retrieves the scheduling policy for the queue
*/
String getSchedulingPolicy();

/*
* enumerateQueueObjects returns an enumeration of queued objects
*/
Enumeration enumerateQueueObjects();

--
interface ExperimentManager

* The client (user interface) interacts with the Experiment Manager through
this interface

* This interface is also used to interface with the Grid
--

/*
* addTask adds tasks to an experiment (creates experiment
* directory if necessary), and returns an array of Strings
* representing task IDs that the pending queue has assigned to
* each task.
*/
String[] addTask(String experimentName, Vector tasks);

/*
* submitTask moves the task with the associated id to the submitted queue
* The task gets executed according to the queue scheduling policy
*/
void submitTask(String id);

/*
* enumerateTasks returns an enumeration of queue objects
* queue object: [id, experiment name, task, dependencies]
* this function could be used to discover a task’s id (as seen by the queues)
*/
Enumeration enumerateTasks()

/*
* enumerateTasks with the status argument enumerates only queue

15

* objects from a specified status queue. queue object: [id,
* experiment name, task, dependencies]
*/
Enumeration enumerateTasks(String status);

/*
* getTaskStatus returns the status of the task with the associated
* id Status is determined by which queue the task is located
*/
String getTaskStatus(String id);

/*
* setTaskStatus moves the task with the specified id to a different
* queue; the new queue is specified with the newStatus argument
* intent of this method: to update a task’s status after it has
* been submitted; that is, when we get an update as to whether the
* task has actually been completed or failed. Determining
* completion or failure is a sticky issue that we are currently
* dealing with.
*/
void setTaskStatus(String id, String newStatus);

/*
* only allow get methods to the queues
* The user setting the queues causes inconsistency in status
*/
StatusQueue getPendingQueue();
StatusQueue getSubmittedQueue();
StatusQueue getCompletedQueue();
StatusQueue getFailedQueue();

/*
* writes the contents of all four queues out to persistent storage so that we
* can recover from interruptions (such as the ExperimentManager being
* stopped).
*/
void checkpointStatusQueues();

/*
* We need some way to update the experiments repository upon receiving
* information (such as stdout, stderr, or any program output files) from the Grid
*/

/*
* Writes stdout, stderr, or output files that need to be updated to the
* experiment repository. updateExperimentRepository updates the contents
* based on a task’s experiment name and id number?
*/
void updateExperimentRepository()
void updateExperimentRepository(String id)

--
interface ExperimentScheduler

* Interface for experiment manager to schedule and submit tasks to the Grid
* this component schedules tasks for execution on the Grid based on a
scheduling policy

--
/*
* Given a list of tasks, determine which to go next
* Possible scheduling schemes: FIFO, random, priority
* nextTask takes an enumeration and a scheduling policy and determines what
* object in the enumeration is next
*/
Object nextTask(Enumeration objectEnumeration, String schedulingPolicy);

16

--
interface ExperimentRepository

* Interface between the client and the experiment repository
* Interface between the experiment manager and the experiment repository

--
/*
* The experiment repository should maintain some form of checkpointing, so
* that queries on it will simply be a matter of reading from the checkpoint
* file instead of traversing the entire structure.
* checkpointEperimentRepository saves the directory tree of the experiment
* repository
*/
void checkpointExperimentRepository();
void setCheckpointFileName(String checkpointFileName);
String getCheckpointFileName();

/*
* writes outputFile to the location where the experimentName is located
* writeFlag argument determines whether to append or overwrite if the file
* already exists.
*/
void writeToRepository(String experimentName, File outputFile, int writeFlag);

--
* The interface between the experiment manager as a whole and the Grid is
probably through workflows?

--

17

