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Abstract：In order to deliver cyberinfrastructure to the general scientific and biomedical research 
community, transparent access and ease of use are of critical importance. Applications in systematic 
modeling of biological processes across scales of time and length demand more and more 
sophisticated algorithms and larger and longer simulations. The increased level of sophistication 
requires that cyberinfrastructure developers either work closely with the applications scientists, or 
develop middleware that flattens the learning curve for these scientists to use the grid willingly and 
transparently. Many life sciences researchers prefer to run applications in the grid environment 
without modifications, and without knowledge of specific computational resources being utilized. 
Here we report the latest advances in the use of Gfarm-FUSE (Grid Data Farm-Filesystem in 
UserSpaceE) as a computational data grid, with CSF4 (Community Scheduler Framework 4) as the 
metascheduler, through a GridSphere portal based environment, termed My WorkSphere. We describe 
the design and performance of this transparent grid computing environment using bioinformatics and 
computational biology applications as examples. All the components developed or utilized are open 
source and available freely.  
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Introduction 

The rapidly improving genome sequencing technology and genome assembly software have made 
possible the deciphering of the building blocks of diverse species, from microbial to humans. 
However, scientists are still learning ways not possible before to take advantage of this deluge of 
genomic information. Multiscale modeling, across the length scale from nanometers for molecules to 
meters for human bodies, as well as across the time scale from nano-seconds for molecular 
interactions to the length of human life, is crucial to the development of simulation systems that 
enable the understanding of the interactions of human physiology and the environment [1]. Despite 
the “tyranny of scale” (the inability of current computing technology to meet the requirement of full 
simulation of complete systems across scale [2]), the necessity of multiscale simulation activities is 
evident. With this type of knowledge, it's possible to develop predictive models and preventive 
strategies for human diseases and environmental disasters. One challenging task to the development 
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of multiscale biological systems models is to develop the necessary standards, tools and databases 
using state of the art computer science and technology [3,4]. 

The increased sophistication in developing multiscale models inevitably demands more attention from 
the researchers to the specific systems, leaving them little time to learn new programming models or 
computing technology. The advances in computing technology are turning commodity computing into 
reality. Nowadays, clusters with peak speed in the teraflop range are springing up across the globe, at 
1/10th the cost of a supercomputer with the same capacity 5 years ago. Whereas the newest challenge 
is to build petaflop scale supercomputers, it’s not far fetched to imagine this newest breed would 
become common place within the next decade. Even as more and more “privately operated” 
computing facilities become available, grid computing will become even more important as 
researchers develop more complex models and increase in their desire to share spare computing 
cycles, and as grid data security satisfies the requirement of biomedical researchers in terms of 
confidentiality and fidelity.  

However, there remain several major stumbling blocks before the highly focused biomedical 
researchers are willing to use grid computing on a daily basis. First of all, the ability to establish a 
unique identity that can be as convenient to use as a passport or identity card with password protection 
is essential. With such a single sign on (SSO) system, a user can be easily authenticated to all the 
resources with the proper authorizations. Such an identity must be recognized across different virtual 
organizations (VO’s), or administrative domains. Currently the commonly used authentication system 
is the X.509 certificate system based the Public Key Infrastructure (PKI) specification (for more 
information, see [5]). This is available as Grid Security Infrastructure (GSI) in the Globus Toolkit, 
which includes a Simple CA (certificate authority) for creating and signing X.509 certificates. 
However, many applications do not support X.509 authentication, and that’s limiting its widespread 
use. Other systems, such as Shibboleth, use SAML (Security Assertion Markup Language) to federate 
identities across virtual organizations. A NSF middleware initiative (NMI) funded project named 
GridShib [6] aims to bridge these two technologies. However, the additional administrative overhead 
has slowed the adoption of federated authorization systems so far.  

Besides the authentication and authorization of users, the ability to deploy existing applications 
seamlessly into a grid environment is rather important. As the demand for more complex simulations 
of biological systems increases, applications scientists have very little time to think about or even 
willing to learn how to develop their applications with the grid in mind. Quite often, researchers 
choose TeraGrid sites based on the type of commodity cluster operating system used in their own 
software development, to reduce or eliminate modifications required to scale up onto the TeraGrid. 
While many problems are best solved on petaflop scale supercomputers with low latency networks, 
the development and maintenance of such a system is extremely expensive, and the platform is often 
obsolete within a few years, given the exponential growth in processor speed and network bandwidth. 
The desire of biomedical researchers not to learn the “newest” and “fastest” computing technology, 
but to focus on solving their problems at hand means that the ability to deploy traditional applications 
continues to be very important. New programming models takes time to filter down to the educational 
curriculum to enable new generations of programmer to develop more grid-aware applications. On the 
other hand, many proven applications are prohibitively expensive to rewrite for the grid, and must be 
deployed and optimized as is.  
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Figure 1. My WorkSphere utilizes open source components and provides an integrative environment for easy 
access to the grid computing environment. 

Additionally, as the requirement for computing power increases, the data processing and memory 
requirement also becomes bigger. Network and disk input/output bandwidths pose additional 
challenges. Quite frequently, the challenge for commodity cluster configuration is to design the 
systems with sufficient network attached storage (NAS) that can meet the demand of the applications 
with the best price/performance ratio. The price of a low latency network equipped cluster is now 
comparable to one without just a few years ago. While this is good news, it’s still a far cry from 
meeting the demand of applications, whose combined I/O can easily overwhelm 10 Gbps networks. 
As the cost of large local disks become cheaper, the development of a grid filesystem that takes 
advantage of local disk I/O yet supports existing applications becomes critical. Lastly, as more and 
more users demand more intuitive and interoperable computing environment, the ability to schedule 
jobs transparently and to access data transparently with high throughput becomes important.  

My WorkSphere 

My WorkSphere is an integrative environment which leverages open source components to provide 
easy access to grid computing resources. The major components are shown in (Figure 1). In this 
particular environment, we utilize the GridSphere portal framework and Gridportlets [7,8], the GAMA 
server and portlet [9], the Opal web service toolkit [10], the MEME Opal portlets [11], the community 
scheduler framework 4 (CSF4) [12], Gfarm [13], Globus Toolkit and Commodity Grid Kits [14,15,16], 
and Rocks [17]. While most components have been previously described, we present here the latest 
advances in the development of this integrative environment, including the newest development in 
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software packages and performance evaluation of the system. The purpose of My WorkSphere is to 
prototype an environment where users can easily gain access to grid computation resources; run jobs 
without worrying about what resources they are using, and deploy applications once and use it 
everywhere on the grid. My WorkSphere will serve as the NBCR portal to the TeraGrid Science 
Gateways for the biomedical community researchers.  

GridSphere 

GridSphere portal framework provides a development environment for JSR 168 compliant portlets, 
which are java based web components called servlets that run inside the Apache tomcat container [18]. 
It is currently used in a number of projects internationally, in particular, academic institutions. The 
GridSphere portal is easy to setup, and there are a set of portlets bundled as Grid Portlets that provides 
basic functions of file browsing, credential management, and job execution, as long as the proper 
resources are configured for use with the Globus toolkit. The Grid Portlets is shipped with the Java 
COG kit, and doesn’t require the Globus Toolkit installation on the portal server, except for basic grid 
security requirements such as valid host certificates and trusted certificate authorities (CA), as 
required by COG. GridSphere and GridPortlets provide a set of APIs for development of additional 
portlets that can take advantage of the credential management and account management services. 

GAMA (Grid Account Management Architecture) 

GAMA is co-developed by the GEON, NBCR, and SDSC at UCSD. GAMA 1.3 has two major 
components, the GAMA server and the GAMA portlet. The GAMA portlet fully automates the user 
account creation on the portal, and the X509 certificate creation, and signing. In this case, the GAMA 
CA is operated by NBCR, and is trusted as needed by PRAGMA [19] partners and the TeraGrid 
Science Gateways [20]. GAMA server may also be used to create host certificates, and serve as a 
MyProxy server [21]. The advantage of having a project/organization based GAMA server is reduced 
administrative overhead and maximum flexibility. 

The GAMA portlet automatically retrieves user proxy from the GAMA server upon user login into the 
portal. This is one more step towards SSO, where login once allows one to access resource readily. 
One additional feature of GAMA is the management of user certificates, and import of user 
certificates into a new GridSphere portal, which simplifies the upgrade process of GridSphere. The 
account approval process may also be linked to automatic cluster account creation and grid-mapfile 
entry addition. Currently gxmap is being used to automate this process, and GAMA version 2 plans to 
further automate this process.  

Opal web service toolkit and MEME portlets 

Opal web service toolkit [22] is developed to make the deployment of existing applications as web 
services easy. It leverages the Globus GRAM for job submission, and requires a simple configuration 
file for the location of the application, and command line options may be supplied as required. A 
number of web services for popular applications such as MEME [23], APBS [24], and AutoDock [25] 
are available and used by any clients that support web services. For applications such as AutoDock 
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that require license agreements, Opal based web services support GSI authentication so that only users 
with appropriate licenses are issued certificates, and allowed to access AutoDock based web services.  

Opal based web services also makes the development of generic web service client possible in 
application frameworks such as Gemstone [26]. It also means that portlets may be developed that uses 
the same application based web services. The MEME portlet is one such example [11], and the same 
MEME web service is also used by Gemstone, or any other web service clients if desired. 

Community Scheduler Framework 4(CSF4) and CSFportlets 

 

Figure 2. CSFportlets enables a visual interface to accessible resources, and eliminates the 
specification of specific resource for computation. 

CSF4 is the first WSRF compliant metascheduler released as a contribution to the Globus Toolkit 4 
(GT4). The latest release supports resource listing, job listing and job history, including support for 
the Sun Grid Engine (SGE) [27], TORQUE [28], and commercial schedulers such as LSF. It also 
leverages the Globus WS-GRAM for support of FORK, and Condor [29]. CSF4 supports user 
developed scheduling policy plugins [30], and supports proxy delegation for access of Gfarm 
filesystem [31].  

A new prototype CSF4 portlet for GridSphere has been developed, providing a visual interface to 
CSF4 functionalities (Figure 2). Through either CSF4 command line interface, or the portal interface, 
a user no longer has to worry about where his application will be run, except for specifying the 
required resource characteristics, such as memory, number of processors, or application type (serial or 
MPI). 

As CSF4 schedules jobs over Globus GRAM and local jobmanager-adapters, there are some 
additional overhead over the use of ‘globusrun’ or ‘globusrun-ws’. The average time it takes for a 
globusrun job to execute is about 12 sec, which is largely dependent on the local batch scheduler’s 
scheduling interval. The use of CSF4 adds about 30 sec on top of GRAM jobmanager, when the 
default scheduling interval of CSF4 is 20 sec. Therefore, besides the scheduling interval, which is a 
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user configurable option, the overhead is very small with the use of CSF4 through the portal interface. 

Gfarm Grid File System 

 

Figure 3. Gfarm-FUSE outperforms NFS as the number of clients increases. The machines have 2 GB 
of RAM, 3.0 GHz Dual Xeon processors. 

Gfarm is developed as a petascale high performance file transfer and storage system [13], and it won 
the StorCloud Challenge Award during SC ‘05. As part of the collaborative activities under PRAGMA 
between the Biosciences, Resources and Data Grid working groups, we have used Gfarm to as a 
testbed for the deployment of existing bioinformatics applications [32,33].. While initial activities 
used the LD_PRELOAD environment variable and Syscall-hooking library to run pre-existing 
applications, the recent incorporation of FUSE [34] into the Linux kernel 2.6.14 has prompted us to 
use Gfarm-FUSE. This has eliminated the  problems with glibc version incompatibilities, and 
resulted in a much more stable environment. The major advantage of using Gfarm-FUSE as a grid 
filesystem is two folds:  

1. All applications may run without modifications through a unified filesystem view. This 
includes both serial and parallel applications. The corollary of this is that users do not need to 
learn about the grid, and may develop and compile applications within the Gfarm-FUSE file 
system using familiar tools. 

2. Data intensive applications may take advantage of local filesystem I/O, reducing network 
bandwidth requirements. 

We have done some performance measurements, and shown in Figure 3. The results show the average 
of 3 experiments using ‘dd’ to write files of 500 MB to 4 GB in size in 16k block size, either using a 
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single client or 3 clients in parallel. GFS outperforms NFS in single client mode except in the case of 
writing the 500 MB file, which is likely due to memory caching. Similar results are seen using 
‘iozone’ (data not shown). However, when multiple clients are used, GFS-FUSE consistently 
outperforms NFS from 3 to 5 times. The advantage of Gfarm will become even more obvious as 
Gfarm-FUSE is using local file system I/O, the scalability isn’t hindered by network bottlenecks as 
NFS is. Using Gfarm’s built-in I/O measurement tools, one can easily achieve 220 MB/s read speed 
and 50 to 110 MB/s write speed with 6 clients. On the other hand, the network bottleneck applies if 
remote file transfer is required.  

Running Grid-unaware Applications in Gfarm-FUSE 

We have used MEME as an example to illustrate the use of Gfarm-FUSE. The Gfarm-FUSE system 
described here uses PostgreSQL 8.1.4 as the metadata server, a newly added feature in addition to 
LDAP. However, in our preliminary experiment, the file creation and registration using PostgreSQL is 
significantly slower than the use of LDAP. This suggests that the use of a relational database requires 
additional tuning on the persistence layer of Gfarm. For example, the untaring of MEME, creating 
more than 500 files, requires more than 1 min, vs 74 ms in NFS. Despite the aspect of slow file 
registration, we have successfully run the entire MEME web server, which includes MPI programs 
written in C, PERL scripts, and shell scripts, and Apache web server, using the Gfarm-FUSE 
filesystem. Based on the preliminary job execution studies, the execution and response time of 
different applications are comparable to NFS. For example, there is no noticeable difference in the 
Apache web server response time, the execution time for the sample dataset provided by MEME is 
only about 3% slower for MEME or MAST.  

What are the advantages of using Gfarm-FUSE if there is a slight performance penalty for a single 
run?  

1. The applications installed in one cluster on the Gfarm filesystem are also accessible on 
another cluster, with automatic support for architecture matching of binaries. 

2. There is no need for stage-in or stage-out of application input or outputs. Gfarm keeps track 
of the data’s locations, with metadata possible in future versions of Gfarm now that relational 
database support is available. 

3. The ability to take advantage of local I/O for data intensive applications significantly 
improves the support for multiple clients over NFS. 

4. The uniform location of applications in the Gfarm filesystem across sites simplifies job 
scheduling. 

With the testbed developed for this prototype environment, a quarter Terabytes of total storage is 
achieved, and the automatic replication feature of Gfarm may be used to ensure duplicate copies are 
available in different clusters at distinct physical locations. 

Summary and Discussion 

The GridSphere portal framework [7] enables the reuse of functionalities exposed as portlets, but 
portable for different JSR168 compliant portal containers. In this work environment termed My 
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WorkSphere, a user can apply for access to compute resources through GAMA (Grid Account 
Management Architecture) portlet, which automates the user X509 certificate creation, signing, and 
proxy management [9]. A user who has never used the grid can start using the grid through the portal 
environment. The same X509 certificate may also be used directly, if desired, since it’s a properly 
signed certificate by the organization running the GAMA server.  

We have developed a prototype CSF4 portlet that allows users to submit jobs to CSF4 managed 
resources in a GridSphere portal through a web browser. A CSF4 server can forward the job request, 
along with the user credentials, to different heterogeneous clusters using the GRAM (Grid Resource 
Allocation & Management) Protocol. CSF4 uses the Java Commodity Grid Kit and GT4 (Globus 
Toolkit 4) delegation service to support full delegation of user proxies to both Pre-WS GRAM and 
WS-GRAM. The jobs are submitted to different clusters with local batch schedulers, such as SGE, 
dynamically based on metadata provided by MDS (Monitoring and Discovery System) or through 
FCFS (first come first serve)/round robin scheduling algorithm. CSF4 is capable of working with 
different local schedulers, like LSF, PBS (Portable Batch System), SGE and Condor, and via both 
GT4 WS GRAM and GT2 GRAM (Pre-WS GRAM). 

For simple access to data and application deployment, Gfarm-Fuse (File System in User Space) is 
used to enable a familiar Unix environment in which compilation, installation of software is only 
required once per platform, and the filesystem is transparently mounted and unmounted without user 
intervention. We have compiled and deployed into Gfarm-Fuse data grid commonly used 
bioinformatics software such as MEME and BLAST, and other computational mathematics, biology 
and chemistry applications, such as FFTW, APBS, and AutoDock. We are beginning to utilize My 
WorkSphere as a production environment to further evaluate the performance and scalability of the 
system. In addition, we have made available the documentation on the configuration of the major 
components through the NBCR public wiki and started training users through the NBCR Summer 
Institute [35].  

As more and more clusters, and grid of clusters, as virtual organizations, spring up, the ability to 
simplify the scheduling of tasks across virtual organizations becomes critical. The Open Science Grid, 
utilizes a condor-based system, with dedicated compute and storage resources, but not a global 
filesystem. Such systems use VOMS (Virtual Organization Membership Service) to automate the user 
creation processes on remote systems through the dynamic generation of temporary users during job 
execution. Once a job is finished, the user data is moved to specified data central, and may be 
accessed independently of the computing resource. Such systems provide a central resource broker 
which yields information about the resources available, and a command line interface for seasoned 
users in the high energy physics community. Biological applications have also been deployed to such 
systems.  

Conclusion and Future Work                                         

We are currently working towards several goals: 1) Use of CSF4 as a metascheduler for Opal based 
web services, with Gfarm as an data and application repository; 2) Support data uploads from client 
side, either from CSF portlet or an Opal based web service client; 3) Increase the performance of 
Gfarm metadata server, and metadata cache server; 4) Deploy the system for production use; 5) 
Prepare the release of the entire suite as Rocks roll(s) for easy setup and maintenance. 6) As a 
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TeraGrid Science Gateways portal, we are developing ways to interoperate with the TeraGrid, as well 
as other VO’s within the OSG.  
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