
Kickstarting Remote Applications
Jens-S. Vöckler1 Gaurang Mehta1 Yong Zhao2 Ewa Deelman1 Mike Wilde3

1University of Southern California
Information Sciences Institute
4676 Admiralty Way Ste 1001
Marina Del Rey, CA 90292
{jens,gmehta,deelman}
at isi dot edu

2University of Chicago
Dept. of Comp. Science
1100 East 58th Street
Chicago, IL 60637
yongzh at cs dot
uchicago dot edu

3Argonne National Laboratories
Math. and Comp. Sci. Division
9700 South Cass Avenue
Argonne, IL 60439
wilde at mcs dot anl
dot gov

The kickstart executable is a light-weight program that is distributed as part of the
GriPhyN Virtual Data System. It sits in between the remote scheduler and the executable,
gathering additional information about the executable run-time behavior, including, but
not limited to, the exit status of jobs and information to ease grid debugging, in a uniform
fashion without assistance from the scheduling system. Kickstart provides the necessary
information required by provenance tracking systems to accurately annotate data products.
The authors believe kickstart is of value for anyone running applications on the Grid. We
would like to make the community aware of its existence and benefits.

1 Motivation

The GriPhyN [1] Virtual Data System [2]
(VDS) provides a set of tools for expressing, exe-
cuting, and tracking the results of scientific work-
flows. It ships with a set of light-weight compiled
C tools and scripts to be used at the remote end of
workflows. Each tool enhances Globus’s [4] ca-
pabilities, with kickstart offering the most potent
extensions.
When multiple jobs and dependecies among

them are tied into a workflow, knowledge about
the success or failure of finishing jobs is required
before dependent jobs can be started. Besides the
exit code, signals are important part of determin-
ing success or failures. For instance, some appli-
cations use assertions, causing an abnormal ter-
mination with SIGABRT when these are violated.
In an environment of pre-WS GRAM services,

available in all releases of the Globus R© Toolkit,
information about the success or failure of remote
application executions is not returned to the sub-
mitting entity. On the other hand, WS-GRAM [5]
returns the remote exit code of the application or
which signal an application may have died upon,
if the underlying scheduler supports passing it.

The original objective for kickstart was to re-
liably provide the remote application’s complete
exit status, the exit code and any signals, in or-
der to drive a workflow. It has since evolved into
an extensible tool for job monitoring, Grid exe-
cution debugging and provenance tracking. Kick-
start is able to gather additional information such
as the resource usage of the application that just
finished. Further features were added over time,
collecting information about job status, file stat
records, details about the compute environment
etc, which are required by a provenance tracking
systems. Features are discussed in section 3.

2 Architecture

Kickstart was designed to mesh well with
the Globus environment, both pre-WS and WS-
GRAM. Kickstart starts applications, not web
services. The design, originally focussed on ob-
taining the remote exit status, is not intended to
present additional challenges. To overcome fire-
wall issues, kickstart takes over the stdio of the
grid job, and lets Globus deal with the firewall
setup to tunnel stdio back to the submit host.

1



rem. scheduler kickstart

[0] unused

[1] PTR

[2] ks err

application

[0] stdin

[1] stdout

[2] stderr

-i fn

-o fn

-e fn

[0] /dev/null
[1] /dev/null
[2] /dev/null

defaults
[0] /dev/null
[1] /tmp/mkstemp()
[2] /tmp/mkstemp()

defaults

submit host

local
capture

local site remote site

Globus

Figure 1: Kickstart’s position in the grid execution pipeline.

Figure 1 shows the architecture where kick-
start sits between the scheduler and the applica-
tion. The application’s stdio are controlled by
command-line flags, and attached accordingly to
files or devices. However, if a user does not in-
dicate a file, the application’s stdout and stderr
are still captured in temporary local files to aide
grid debugging. A configurable amount of infor-
mation from these files becomes part of the result
record kickstart produces.
Kickstart currently passes the grid job’s stdin

transparently to the application. The Pegasus [3]
planner exploits this feature to pass configuration
files to remote gridftp helpers. However, in the fu-
ture of kickstart a job description will be carried
on the grid job’s stdin, to ease the proliferation
of command-line options and prevent exceeding
resources like the arguments length limit.
The stdout of the grid job provides the prove-

nance tracking record (PTR) of the application’s
execution and current execution environment.
The PTR is an XML instance document1 which
provides all data gathered, written as kickstart
finishes.
Kickstart uses the grid job’s stderr to report

abnormal start-up conditions, and once it is run-
ning, to provide a best-effort application feedback
channel. A kickstart-aware application will find

in its environment a reference to the feedback
channel, upon which the application can send
small data records to the submit host.
While kickstart employs GRAM to transport

data, it is independent of Globus. Kickstart can
be utilized locally, in shell scripts and directly on
the command-line.

3 Features

Kickstart primarily captures the remote appli-
cation’s full exit status, because it reaps the pro-
cesses it started. The full exit status is a 16 bit
integer on many systems. The most significant
byte is the exit code that an application returns by
means of the exit system call. The least signif-
icant byte contains the signal an application may
have died upon, and if a core file was generated.

<status raw="0">
<regular exitcode="0"/>
</status>

Figure 2: XML fragment for exit status.

Kickstart also captures the resource usage of an
application in terms of the system time and user
time, minor and major page faults, swap opera-
tions and received signals (not supported by all

1The corresponding XML schema is documented at http://vds.isi.edu/docs/, see latest “IV” schema.

2



systems), as well as OS context switches. Other
resource information like resident set sizes and IO
operations are not supported by all operating sys-
tems, and are thus excluded for now.

<usage utime="0.000" stime="0.004"
minflt="223" majflt="0" nswap="0"
nsignals="0" nvcsw="21" nivcsw="1"/>

Figure 3: XML fragment for r-usage record.

Along with the resource usage for each appli-
cation, kickstart captures information about the
start wall-time according to the host’s clock, the
job duration wall-time, the host’s primary in-
terface’s IP address, the user-id, group-id, the
current working directory, the environment vari-
ables a process sees, and uname-style information
about the platform itself.
Kickstart will connect the application’s stdio

file descriptors to user provided files. If a user
does not care about the application’s stdout or
stderr, kickstart will still capture these into tem-
porary files. A configurable chunk of both files
will be placed in the PTR, permitting grid debug-
ging. For instance, if a remote application fails to
run properly, it often sends warnings to stderr. By
always capturing and returning both, stdout and
stderr, kickstart eases grid debugging, enabling a
user at the submit host to see what is going wrong.
This feature is meant for debugging only. If any
significant data is produced on stdout or stderr,
these should be tracked data product files.
The current version of kickstart is set up to re-

flect some data records from the submit side into
the PTR, notably the logical name of the applica-
tion and the site handle, an unique identifier for
the site.
When kickstart starts, it creates a named pipe

(FIFO) in the local filesystem, and places the
name of the FIFO in the environment of any job
that it starts. Thus, by dereferencing an environ-
ment variable, a kickstart-aware application can
send arbitrary textual data to the submit side by
writing to the FIFO. It even works in shell script

jobs.
Many workflows use Condor-G [9] to add a

layer of reliability and restartability over the Grid.
However, Condor places a stringent limit of 4000
characters on the length of the arguments, much
lower than the customary 64k and 128k offered
by most systems. To overcome this limit, kick-
start can read its arguments from a file. This file
can be easily shipped from the submit host using
appropriate Condor directives.
Kickstart obtains a stat record for files such

as the application executable that is to be started,
kickstart itself, all stdio files and the FIFO. With
help of the stat information, application failures
due to insufficient rights or staging failures, re-
sulting in zero-sized files, can be detected post-
mortem, even if the remote job directory no
longer exists.

<statcall error="0">
<file name="/bin/date">...</file>
<statinfo mode="0100755" size="47684"
inode="3744796" nlink="1" blksize="4096"
mtime="2005-07-25T08:39:46-07:00"
atime="2006-09-11T15:20:01-07:00"
ctime="2006-03-30T04:27:51-08:00"
uid="0" user="root" gid="0" group="root"/>

</statcall>

Figure 4: XML fragment for stat call.

The information record above shows that the
stat call worked fine (The “error” attribute is 0).
The operand was the executable /bin/date,
shown abbreviatedly. The result record of the
stat call includes the file access mode in octal
representation, the file’s size, its inode number on
the filesystem, the link count for the file, the num-
ber of disk blocks it occupies, and the file’s owner
and group, both numerically and symbolically.
Furthermore, kickstart permits one to obtain

stat records of arbitrary files, either before the
application is started, or after the application fin-
ished. Thus, it can be determined, if an input file
failed to stage, has zero length, or if output was
improperly produced.
Kickstart is capable of running more than just a

3



single application. It has a notion of a setup-, pre-,
main-, post- and cleanup job. If a setup job exists,
it is always run before anything else. Its exit sta-
tus does not matter. The pre-, main- and postjob
are logically chained. The chain is broken, if any
of the jobs in the chain fails, as expressed by the
job’s full exit status. The cleanup job is always
run after all other jobs, and independent of any
previous exit status.
To simplify job specifications, kickstart sup-

ports variable rewriting using environment vari-
ables. ${appdir}/bin/myapp can be used
as a valid notation for an application – e.g. in a
transformation catalog entry – provided the en-
vironment supplies the proper appdir setting,
which could be adjusted from a site catalog or by
the site itself.
While it is considered safer to always use a full

absolute path to start an application, for the shell
users among us, kickstart will search the PATH
when it starts an application with a relative path
name to the executable.
Kickstart has been used for the last four years,

having reached good maturity and stability in mil-
lions of executions in diverse execution environ-
ments.

4 Provenance

Provenance refers to the derivation history of a
data product, from its origination, up to its current
state. Kickstart captures the information about
how a data product was created, and the resources
and the execution environment used to produce it.
Some applications access files which are men-

tioned neither in configuration nor invocation of
the application. For this reason, kickstart makes
no assumptions about data products. By design, it
has no knowledge about them. The assocation be-
tween data products and kickstart-provided meta-
data is up to the provenance system. Kickstart
provides necessary, accurate and essential, albeit
not sufficient, information that is generally asso-

ciated with data product provenance.
Kickstart’s information is obtained in very

close temporal and spatial proximity to the appli-
cation being executed. Thus, its approach is supe-
rior to gathering the same necessary provenance
information from other sources of less proxim-
ity. External services and even on-site catalogs
always have a chance of being out of date, mis-
configured, unavailable, or simply wrong. Not all
services have the same access to all the informa-
tion that kickstart is able to gather as concurrent
parent of processes it starts.
Most of the data provided by kickstart can be

used to annotate data products, or associated with
a workflow and stored in the provenance tracking
catalog (PTC) of the VDS. The history data in
PTC, combined with recipes (workflow and ap-
plication definitions) and metadata annotations,
enable powerful query capabilities that help dis-
cover, understand, validate and reuse data prod-
ucts and their associating applications and work-
flows [6].
Querying the PTC itself also reveals intriguing

facts about ongoing research. We present some
examples in the next section.

5 Applications

CPU years Jobs Month
0.45 1402 2004-06
19.88 13267 2004-07
33.88 20678 2004-08
40.06 20229 2004-09
15.21 30833 2004-10
14.95 34591 2004-11

Table 1: U.S. ATLAS late 2004 jobs.

During the second half of 2004, US AT-
LAS [8] production was captured in a PTC kept at
BNL. Grid submission points at various locations
across the country contributed provenance track-
ing records (PTRs) in a distributed manner. Ta-

4



Week [2005!2006]
25 26 27 29 30 31 34 42 43 44 45 49 50 51 2 3 4 5 7 8

Jo
bs

 [#
] /

 D
ur

at
io

n 
[h

]

1

10

100

1000

10000

100000

1000000

Jobs Duration

(a) Jobs and Durations over Time.

Duration [min]

1 5 10 20 30 45 60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

66
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

16
80

19
20

21
60

25
20

28
80

32
40

36
00

39
60

43
20

Jo
bs

 [#
]

1

10

100

1000

10000

100000

(b) Histogram of job durations.

Figure 5: SCEC Provenance Traces.

ble 1 shows the CPU-years2, successful research
domain jobs and month. Jobs were run on over
1376 distinct machines in the Grid, with the true
number higher due to the fact that many sites use
virtual private network addressesfor the primary
interface of a worker node. While all architec-
tures were i686 Linux systems, jobs were run on
37 different flavors thereof. In the time frame
shown, over 300,000 kickstart records were cap-
tured.

week start of week CPU days
22 2006-06-03 11:56 7.69
23 2006-06-05 00:02 70.10
24 2006-06-12 09:37 234.38
25 2006-06-19 00:00 374.24
26 2006-06-26 00:44 310.23
27 2006-07-04 00:16 275.77
28 2006-07-10 00:00 163.70
29 2006-07-17 00:05 206.89
30 2006-07-24 11:26 241.35

Table 2: CPU consumption during GALE and
NIST evaluations.

ISI participated in the GALE and NIST [7]
evaluations of its natural language processing
(NLP) system in 2006. Applications of the ISI

NLP decoding workflows were run on the Grid
and kickstarted. Table 2 shows the data extracted
from the PTC in preparation for, and during the
evaluations. The data indicates that close to one
CPU year was used every week. Similarly, in
June and July, about 2.5 CPU-years were used re-
spectively.
The Southern California Earthquake Center

(SCEC) ran workflows as part of the CyberShake
Project [10] from Sept 2005 until Aug 2006. The
CyberShake project is an analysis designed to
compute probabilistic seismic hazard curves for
regions in the Southern California area. Hundreds
of hazard curves are required to compute the final
hazard map for the Los Angeles region.
Workflows using the Pegasus planner ran for

eleven regions – with two regions repeated – to-
talling over 500,000 jobs. Of these, approx-
imately 250,000 jobs were application domain
jobs. The remaining 250,000 jobs were in the
workflow management domain, including data
transfer and replica registration jobs. CyberShake
used about 2.5 CPU-years on two TeraGrid clus-
ters at NCSA and Sandiego, as well as the HPC
Cluster at USC. Figure 5(a) shows the number of
jobs and their duration over the weeks between
2005 and 2006. Figure 5(b) shows the histogram

2Using 31,557,600 s = 365.25 days – the average length of a year in the Julian calendar.

5



of the application domain’s main job’s duration.
Due to variations in the amount of data, a job’s
duration ranges between one minute and three
days.
The provenance record provided by kickstart-

enabled SCEC to estimate future computational
requirements. The records also revealed how
much time the code spent on different machines,
the number of page faults and other useful instru-
mentation. Equipped with this knowledge, the
SCEC scientists were able to reduce the compu-
tational requirements three to four times. Kick-
start helped provide information about number of
job failures (38,235 jobs) and their duration (2.5
hours total) due to various data transfer issues.
It also helped debugging these transfer issues by
capturing remote error information and returning
it to the submit host for post-mortem analysis.
The examples above focus on the job durations,

though the team of kickstart and PTC provide
more than that. For instance, they can well sup-
port queries and statistics such as jobs that ran
on specific sites, specific hosts, with specific OS
types, the effect of different parameter values to
the run times, abnormal jobs that ran a lot longer
than the average run time, and so on. Any general
provenance tracking scheme requires knowledge
about the what, when, where, and how data prod-
ucts were derived. The information provided by
kickstart , and stored in the PTC, enable prove-
nance systems to gather these essential attributes
about data products.

6 Short-comings

Kickstart’s development is requirement driven.
It is designed for applications, not web services.
While many may consider this a short-coming,
the majority of research algorithms are found in
applications.
If applications want to use check-pointing, and

are compiled for the Condor standard universe,
Condor prohibits certain system calls that are re-

quired for proper functioning of kickstart . To
solve this problem, kickstart needs to be inte-
grated into a variant of the Condor condor_-
startd.
When gathering the resource usage of termi-

nated applications, Linux and Mac OS do not
provide values for all data fields. Many fields
of interest are always zero. For this reason, the
resource usage record in the PTR is more lim-
ited than desirable. A solution for Linux requires
changes at the kernel level. It is conceivable to
obtain a subset of the missing data from monitor-
ing of the underlying system.
Many remote cluster sites are optimized for

MPI support. Some experiments have shown that
kickstart can be used in MPI environment to ob-
tain application status without special compila-
tion. However, it requires minor fixes to alleviate
write-after-write conflicts when multiple parallel
instances write their PTR into the same file.
Kickstart streams data from the application

feedback channel. These information chunks can
be returned during the lifetime of a job. While
Globus pre-WS GRAM, by default, streams the
application feedback channel data on a best-effort
basis, it can only stream what the scheduler and
file system make available. Due to performance
and resource issues, WS-GRAM prefers to stage
stderr. Thus, the application feedback channel
feature as provided by kickstart is not very useful
for immediate data like heartbeats, because data
is returned to the submit host only after the job
finished.
While it is useful to obtain and return core

dumps, doing so presents some challenges. First,
systems generate core dumps with different file
naming strategies. Similarly, differences between
the submit host and the remote execution environ-
ment, e.g. version of libc and other libraries, fur-
ther limit the usefulness of inspecting a core file
on the submit host. Remote resource limits may
truncate the core file. Finally, files of the poten-
tial size of core dumps should not be streamed via
the GASS transport which kickstart employs for

6



its own comparatively short messages.

7 Future

Kickstart in the current version is a well-
matured and stable application that has proven its
merit in millions of invocations.
At some point, it is conceivable that kickstart

will start applications in an instrumented fashion,
accumulating knowledge about any open system
call an application issues. Thus, kickstart will be
able to automatically provide information about
any file utilized by an application.
Users have frequently requested to augment the

stat information record in the PTR with an op-
tional MD5 sum of the file’s content. A prototype
exists in v2.
For some years now, a prototype of a version 2

has been used to experiment with a configuration
driven instead of commandline driven application
start. The configuration driven approach will al-
leviate a lot of the messiness concerning quoting
and shell variable expansion.
Since kickstart is active concurrently with the

job it started, it is possible to extend it further to
include system resource monitoring, heartbeats,
and even an API to remotely check, suspend and
resume applications. A prototypical heartbeat is
part of v2.
To implement the job control API above, kick-

start needs to “phone home” by contacting a ser-
vice, providing a bi-directional communication
link. The service can be hosted on the submit host
or on a dedicated machine. Over this link, data
chunks from kickstart-aware applications can be
multiplexed with other data, including multiple
channels per application for different purposes.
To overcome firewall issues, it will be necessary
to run a proxy application for the phone-home
protocol on the gatekeeper host.

8 Thanks

This work is supported in part by the National
Science Foundation GriPhyN project under con-
tract ITR-086044.
Our thanks go to: Ian Foster, Carl Kesselman,

Mei-Hui Su, Karan Vahi, Valerie Taylor, Seung-
Hye Jang, Rob Gardner, Marco Mambelli, Jerry
Gieraltowski, Xin Zhao, Luc Mureau, Daniel
Marcu and Steve DeNeefe.

References

[1] "The GriPhyN Project: Towards Petascale
Virtual Data Grids"; Paul Avery, Ian Fos-
ter; Technical Report GriPhyN-2001-15,
http://www.griphyn.org, 2001.

[2] "The Virtual Data Grid: A New Model and
Architecture For Data-Intensive Collabora-
tion"; Ian Foster, Jens Vöckler, Mike Wilde,
Yong Zhao; in First Biennial Conference
on Innovative Data Systems Research, Jan
2003.

[3] "Pegasus: a Framework for Mapping Com-
plex Scientific Workflows onto Distributed
Systems"; Ewa Deelman, Gurmeet Singh,
Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan
Vahi, G. Bruce Berriman, John Good, Anas-
tasia Laity, Joseph C. Jacob, Daniel S. Katz;
Scientific Programming Journal, 13(3):219-
237, 2005.

[4] http://www.globus.org/ "The
Grid: Blueprint For A New Computing
Infrastructure"; Carl Kesselman, Ian Foster,
editors; Morgan Kaufmann, 2004.

[5] "Globus Toolkit Version 4: Software for
Service-Oriented Systems."; Ian Foster;
IFIP International Conference on Network
and Parallel Computing; Springer-Verlag
LNCS 3779, 2-13, 2005.

7



[6] "Applying the Virtual Data Provenance
Model"; Yong Zhao, Mike Wilde, Ian Fos-
ter; International Provenance and Annota-
tion Workshop (IPAW ’06) 2006.

[7] Working Notes of the NIST MT Evalua-
tion Workshop; Washington D.C., Septem-
ber 2006.

[8] "The Capone Workflow Manager"; M.
Mambelli et al.; Proc. Computing in High
Energy and Nuclear Physics (CHEP ’06),
2006.

[9] "Condor-G: A Computation Management
Agent for Multi-Institutional Grids"; J. Frey,
T. Tannenbaum, I. Foster, M. Livny, S.
Tuecke; Cluster Computing, 5(3):237-247,
2002.

[10] "Managing Large-Scale Workflow Execu-
tion from Resource Provisioning to Prove-
nance Tracking: The CyberShake Experi-
ment"; Ewa Deelman et al.; 2nd IEEE Inter-
national Conference on e-Science and Grid
Computing, 2006.

8


