
Portlets for User Centric Job and Task Monitoring for
Open Science Grid Virtual Organizations

D Alexander, R Pundaleeka, S Tramer
Tech-X Corporation

5621 Arapahoe Avenue Suite A
Boulder, CO 80301
+1 (303) 448-7751

alexanda@txcorp.com, roopa@txcorp.com,
tramer@txcorp.com

J Lauret, V Fine
Physics Department

Brookhaven National Laboratory
Upton, NY 11973-5000

+1 (631) 344-2450
jlauret@bnl.gov, fine@bnl.gov

ABSTRACT
Organizations in the Open Science Grid are motivated to provide
services so that individual scientists can effectively execute data
analysis jobs and take advantage of Grid resources. For success,
these scientists will need to be able to monitor the execution
status and application-level messages of their jobs that may run at
any site within the Virtual Organization. In the Open Science
Grid, the existing grid-wide tools provide abundant information
about the whole system, but are geared towards Grid
administrators, while information tailored towards individual
users is not readily available except for the larger organizations
that can afford to build their own tools. The User Centric
Monitoring project addresses this gap by targeting a novel
complete set of user-centric information including the status of a
task of submitted jobs, queue positions, times of the start and
finish, output and error messages, and reasons for failure. The
toolkit is designed to provide flexible collection mechanisms and
rich portlet-based presentation tool. This paper will describe the
toolkit and portlet designs with a description of the most recent
implementation progress.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – web-based services. C.2.4 [Computer-
Communication Networks]: Distributed Systems – Distributed
applications, Distributed databases. H.5.2 [Information
Interfaces and Presentation]: User Interfaces – User-centered
design

General Terms
Management, Design, Experimentation

Keywords
Grid computing, job monitoring, portlet.

1. INTRODUCTION
The User Centric Monitoring project aims to develop a
Monitoring Information Service Toolkit (MIST) that allows a
Virtual Organization (VO) within Grids to build secure systems
that provide rich sets of intuitive information to their scientists
accessible through a Web browser so that these scientists can
monitor their computing tasks distributed throughout the Grid and
thus, be more productive. MIST is composed of a multi-language
software library, an abstracted data store, and a Web portlet

repository. The toolkit can be used to augment any Grid system
including the Open Science Grid (OSG) and TeraGrid because a
multi-language library with broad-level functionality is provided
along with web-portal-based code that can be integrated into
existing or new portals.

What distinguishes this project from other Grid monitoring
projects is that rather than concentrating on monitoring
information from an administrative-centric point of view by
collecting information that shows stats such as the “up/down” site
status, aggregate job information for accounting, or the overall
health of the VO’s Grid resources, we concentrate on user-centric
monitoring information such as how are my jobs doing for a given
task, have my jobs reached the queue, what position in the queue
are they, which jobs have started, which jobs have stopped, if any
jobs have failed, and what are the application level messages
associated with my job. It is challenging to collect this type of
information from the varying points in the Grid system, but it is
crucial information to provide to the users for the ultimate success
of the Grid.

There are some excellent administrative monitoring systems in
place within some of the Grid systems. For TeraGrid, there is
Inca [1]. Inca concentrates on important system administrative
aspects such as software stack validation and verification;
network bandwidth measurements, and Grid benchmarking. For
the OSG, there is GRATIA [2]. GRATIA is an accounting
project that tracks jobs and resource usage by VO and site within
the OSG. The implied economic purpose of this system is not to
tell the user what is happening with the state of their jobs, but to
accurately track resource and service usage in the system as a
whole.

Also within the OSG, there is the ARDA Dashboard Project [3]
for the four Large Hadron Collider (LHC) experiments at the
CERN facility. The Dashboard project is probably the closest
analogous project to ours in that it focuses on providing user-
centric monitoring type information rather than system
administrative information. CERN is fortunate to have great
resources and experience with large Oracle databases. This works
out well for the LHC experiments, but these systems are often
difficult to set up for the smaller VOs in the OSG. Also, to date
they have not provided application monitoring, although may
have designs for that aspect. The MIST concept, as discussed in
more detail below, is not an attempt to replace these systems, but
rather an effort to augment the toolset available to provide
monitoring information that the user cares most about. This is
especially crucial for the smaller VOs with few software
developers.

2. THE MIST CONCEPTS
There are three main concepts for MIST. First, MIST is deployed
and used by a VO by using a single versatile application
programming interface from the main library, which we call the
Tracking Library. The Tracking Library can be used in many
places within the VO systems to collect and filter available task
and job monitoring information from various resources such as
Grid job schedulers, task meta-schedulers, job wrapping scripts,
daemon scripts, and data analysis applications. The second MIST
concept is the data store structure with abstractions called
collections that hold task, job, and job event details. The data
store will have a modular access design that is initially
implemented in two ways: first as a database and second as a
series of log entries in a file. The final concept is that MIST will
use portlets to display the information accessed via a Grid
Service. For the portlets, the Tracking Library will also double as
an access library for the display portlets, which are designed to
present the information to the users as they would like to see it.
Figure 1 shows the basics concepts to providing the user
monitoring information, which are collection, structure, and
presentation.

The MIST tools are designed to give the smaller VO with the
Open Science Grid a way to easily develop a monitoring system
that integrates well within a web portal. Below we give more
details about the MIST concepts and tools.

3. COLLECTION TOOLS IN MIST
The Tracking Library will be called upon in many places in the
typical Grid VO use case architecture (see Figure 2) to collect the
information need be the user that submits a complex task to a Grid
Resource Broker that splits the task into many jobs that may run
on various sites within the VO.

Portal

Broker Gateway

Grid Site
Fire Wall

Resource Broker

Worker

Submit Task

Tracking
Library

Local
Scheduler

Site
Gateway

Forwarding

Service

GRAM

Tracking Library

Tracking Library

Job Wrapper

Tracking Library

MIST Service

GRAM Updator

Tracking Library

Archiver

Purger

 MIST

Databases

Submit Job

Log

Query

Run

Local
Database

Deamon
Script

Forward

Browser
Access

Worker

Application

Requested
Info

Because the Tracking Library must be flexible to function in
many places in the Grid system, it must have versions in many
different languages (Grid middleware solutions which might need
to call a Java library, Applications are often will need a C++
version, scripting job wrappers may need a Python version, etc.).
To simplify maintenance and development we are maintaining a

D Alexander, R Pundaleeka, S Tramer, J Lauret, V Fine, Portlets for
User Centric Job and Task Monitoring for Open Science Grid Virtual
Organizations, International Workshop on Grid Computing
Environments 2007, Nov., Day, 2007, Reno, NV, USA. An electronic
version of this document will be available at
http://casci.rit.edu/proceedings/gce2007

Figure 1. The MIST Toolkit includes tools that help the
VO in three steps of user centric monitoring: (1)
COLLECTION of the information with a versatile
Tracking Library, (2) STRUCTURE of the information
with an abstracted Data Store concept for file and
database storage, and (3) PRESENTATION of the
information with a portlet that can be used within a VO

Data
Store

Tracking
Library

Grid
Service Web

Portlet

1

2

3 PRESENTATION

 STRUCTURE

 COLLECTION

Figure 2. Monitoring information is created in many places in a Grid system. A Tracking Library is proposed that can be
used at the resource broker, scheduling, job wrapper, and application levels. The library will feed information in a
database (or federation of databases). The monitoring information can also be accessed from the database with the same
library.

single C++ version, upon which we can use SWIG [4] to extend it
to other languages such as Java, Python, and Perl.

Modularized Data Store Types

Interface Tier

Handles the calls to the application
programming interface (API) and has logic to
relate them to the data structures in the Data
Tier. Three API sections are provided for
Science Applications, Resource Monitoring
Programs, or Job Submission Brokers.

Data Tier
Handles the calls from the Interface Tier and
holds a particular data store module
implementation

Data Store
(Database Module)

Data Store

(File Module)

API for Science Applications
TxEventLog myLog = TxEventLog()

myLog.logSystemEvent(enum stage, enum level,
string systemContext, string systemMsg)

myLog.logUserEvent(enum stage, enum level,
string userContext, string userKey, string
userValue)

API for Resource Monitoring
PTxJob myJob = TxJob(int brokerTaskID, int

brokerJobID)

myJob.setProperty(enum propID, string value)

string val = myJob.getProperty(enum propID)

API for Job Submission Brokers
TxTask myTask = TxTask(int brokerTaskID, int
brokerID, int requesterID, string name="",
string description="")

myTask.addJob(int brokerJobID)

The library has a multi-tier design (see Figure 3) and contains an
abstract notion of a data store with a modular implementation that
can have many representations other than a database. For
example, we are engaging the “Center for Enabling Distributed
Petascale Science” or CEDPS [5] project, which is charged with
the goal of “troubleshooting” jobs within the Grid execution
environment and is forming file-based event logging best-
practices to which we are aiming to be compatible with. The
interface must be broad enough to include use in job submission
brokers, programs that monitoring logs of the resource
management, and scientific applications. Figure 4 shows part of
the interface some of these uses.

4. STRUCTURE TOOLS IN MIST
At the heart of MIST is the data store. An import feature of the
overall design is the structure of the data within the store. The
MIST data store design is motivated by having the information
ultimately be stored in a database, but the design is more flexible
and calls for an abstraction of fields, rows, and tables from a
database. In our model, an abstracted “storage” object holds
many “collections” that hold many records, which in turn hold
many “field” values. This is easily mapped to a database, but also
can be mapped to other storage methods such as files.

The collections (or tables for database stores) are further defined
in MIST by a schema that dictates what information is eventually
stored. There are three main collections in MIST: Tasks, Jobs,
and Messages. Tasks are sets of jobs as defined by a VO broker
for a given scientist making the request. Jobs are connected with
the Grid and local scheduling requests as well as application
executions. The Messages collection holds the application-level
logging and any Grid-wide event that might be collected by the
MIST tools. These collections are supplemented by dictionaries
collections that translate integer codes for constants such as
logging levels, job states, identification descriptions, etc. Figure 5
shows the details of what is contained in the MIST collections.

Figure 3. The Tracking Library has a Data Tier that
interacts with the MIST data store module interface and
an Interface Tier that provides an API for various uses.

Individual application execution jobs on the Grid interestingly
have more than one identification key to track. There is the key
defined by the broker, there is the key returned when submitting
to the Grid Resource Location Manager, and finally there is the
scheduler queue number. The relationship between these must be
tracked throughout the whole system and is one of the
fundamental reasons for having the Tracking Library.

The collections have a one-to-one correspondence with database
tables if the data store module is a database module. Various
parts of the system will fill the collections with information that
will be later read out by the presentation portal. The science
application will mainly populate Job Events collection, the job
submission broker will mainly populate the Tasks collection, and
a resource monitoring program that exams the logs of the resource
schedulers will mainly populate the Jobs collection.

 Figure 4. At the bottom level of the library there is an
abstracted and modularized notion of a data store with
database and file implementations.

DATA STORE COLLECTIONS

 Tasks
- Task ID (assigned by Broker)
- Broker Task ID (assigned by Broker)
- Broker ID
- Requester ID
- Name
- Description
- Size (number of jobs)
- Remaining size (number of jobs left)
- Submit Time
- Update Time (last time size was updated)

 Jobs
- Job ID (assigned by Broker)
- Job ID (assigned by Grid)
- Job ID (assigned by Local Scheduler)
- Task ID (for task that holds this job)
- Grid Submit Time
- Local Scheduler Submit Time
- Site Location
- Queue
- Queue Position
- Node Location
- Start Time
- Update Time (execution state last updated)
- Execution User (local system user)
- State ID (current execution state, 9 defined states)

 Job Events
- Job ID (job which generated message)
- Level ID (info, warning, error, etc. 9 defined states)
- Context (bulk category description of event)
- Stage ID (start, status, or end)
- Content (long string of message)
- Event Time

OTHER DICTIONARY COLLECTIONS

 Broker, Requester, Stage, Level, State

5. PRESENTATION TOOLS IN MIST
Once the data is in the store, the presentation tools will help the
VO build a portal to provide the user with the monitoring
information within an environment that is customized to the needs
of the VO. In this section we describe the Grid Service and
portlet design with in MIST.

We are leveraging efforts like the Open Grid Computing
Environment (OGCE) WebSphere-based portal by choosing to
display the user-centric monitoring information through JSR-168
compliant portlets [6]. This paper will describe the latest
development of portlets that form a portal to submit jobs to a
developmental Open Science Grid site and report the monitoring
information. Figure 6 shows how individual portlets are
combined in a portal. Within MIST, we will be using sample
OGCE portlets as templates for developing task submission and
user monitoring related portlets.

Client Browser
Portal Tab

Portlet
Window A

Portlet
Window B

Portlet
Window

C Portlet
Window D

Portal
Server

Portlet
Container

Portlet A

Portlet B

Portlet C

Portlet D
response

Figure 6. Portlet technology is used for the display of the
user information because it can be easily integrated into a
portal that has a broader VO function. The MIST portlet
can be mixed and matched within the portal with other
portlets that, for example, create user proxies and handle
user job submission.

The portlet will act as client to the data store when it retrieves the
information for the user. To help the VO provide this service,
MIST will have a Java client base library to access a Grid Service
co-located with the data store. This client base can be reused in a
Java application if desired (see Figure 7), but will initially
implemented as part of the MIST portlet. This also gives the
MIST system a means to securely provide the users with only the
information that is connected with their jobs and applications.
The data store provides a way to connect all of the identities that
are assigned as the work flows through a Grid system (the user’s
portal ID, the task broker assigned user ID, the Grid certificate,
the local execution user, etc.) so that it can all be referenced by
the subject of the Grid-issued certificate and the presentation
layer can present information on authentication of the user.

Application or
Shell Command

Creditial
Service

Location A

Location B

password

password

password

credential

password

credential

Web Portal

 UCM Service

connect with credential connect with credential

UCM service is
secure and

authenticates user

UCM Client Base

UCM Portlet

UCM Client Base

Web browser

Figure 5. The Data Store Schema is made up of three main
collections: Tasks, Jobs, & Messages.

UCM
Databases

Figure 7. The MIST design is to have a Grid Service and
Client Base code that can be embedded in an application or
a portlet.

6. Reference Implementation
A reference implementation of the MIST system is

underway, being created for the STAR [7] experiment Virtual
Organization with the first monitoring site being located at
Brookhaven National Laboratory. An implementation of the
proposed Tracking Library is complete and being tested. We
have completed a working version of the database schema for the
data store and have an instance of the database in MySQL [8].

Scalability testing of the Tracking Library and database
combination is on-going as the library is being developed.

Initial portlet development is also underway. Work on the
MIST portlet has begun using the Open Grid Computing
Environment framework that has some existing useful portlets
which will allow us to test the portlet in one portal that can obtain
a certificate from a MyProxy [9] server and submit a job to a local
test Open Science Grid site. Figure 8 shows the first prototype of
the presentation portlet and demonstrates the general concepts of
our design in that it directly displays the user’s information in a
task-job-event structure.

We are currently developing portlet code that will garner
information from the database that we have in place and display it
for users. This code uses Java Server Pages technologies and
models after other base portlets that are distributed with the
OGCE framework. However, we are also using AJAX [10]
technology to separate the calls to the database service and the
dynamic interaction the user has with the portlet. This makes the
expansion and collapsing of the levels in the display more
efficient by removing the constraint of loading a whole portal
page for each user mouse click. Full scaling tests remain to be
done, but so far the portlet performs well.

Figure 8. This figure shows the current graphical interface prototype for users to accesses the monitoring information from
the Web portal. The user will be able to see their tasks, drill down to individual jobs, and further down to job properties
and application-level job events.

7. CONCLUSION
We have described the Monitoring Information Service

Toolkit (MIST) that allows the smaller Virtual Organization (VO)
within the Open Science Grid to build systems that provide users
with a complete picture of what is happening with their complex
tasks made up of many jobs. We have shown a portlet design
within MIST system that will make it easy to include both job and
application monitoring information within a JSR168 compliant
portal in a secure fashion.

A reference implementation of the MIST system is
underway. The Tracking Library has been written for collecting
information at many places in a Grid system such as at the broker
that creates tasks composed of many jobs, at the Grid and local
resource monitoring systems, and at the application and wrapper-
script level. The data store design has remained abstracted to
include representations such as database and file, which allows
the system to be integrated with efforts such as the event logging
systems used at the operating system level. And finally, a
prototype portlet has been constructed that displays the data store
information. As the project continues, we will build a complete
broker-to-application system that shows how MIST can be used
within Grids such as the OSG.

8. ACKNOWLEDGMENTS
The work reported here is supported by the U.S. Department of
Energy SBIR Grant #DE-FG02-05ER84170.

9. REFERENCES
[1] The Inca Test Harness and Reporting Framework", Shava

Smallen, Catherine Olschanowsky, Kate Ericson, Pete

Beckman, and Jennifer Schopf, to appear in SuperComputing
'04, April 2004. Also available as SDSC Technical Report
#SDSC-TR-2004-3. Also, see http://inca.sdsc.edu/

[2] GRATIA, see
https://twiki.grid.iu.edu/twiki/bin/view/Accounting/

[3] The ARDA Dashboard, see http://dashboard.cern.ch/
[4] Simplified Wrapper and Interface Generator (SWIG),

http://www.swig.org/
[5] The Center for Enabling Distributed Petascale Science

(CEDPS) is a US Department of Energy funded SciDAC-2
project to support data placement, scalable services, and
troubleshooting in Grid environments. See
https://www.cedps.net for more information.

[6] The “JSR 168: Portlet Specification”,
http://jcp.org/en/jsr/detail?id=168, defines the
interoperability between portlets and portals.

[7] Information about the STAR nuclear physics experiment can
be found at http://www.star.bnl.gov/

[8] MySQL is a highly-available, light-weight database server.
See http://www.mysql.com/

[9] MyProxy is open source software for managing X.509 Public
Key Infrastructure security credentials. See
http://grid.ncsa.uiuc.edu/myproxy/

[10] AJAX technology is a web development technique for
asynchronously accessing server data while allow the user to
interact with an exisiting web pages and updating parts of the
page when the data is retrieved. See
http://en.wikipedia.org/wiki/Ajax_(programming)

	1. INTRODUCTION
	2. THE MIST CONCEPTS
	3. COLLECTION TOOLS IN MIST
	4. STRUCTURE TOOLS IN MIST
	5. PRESENTATION TOOLS IN MIST
	6. Reference Implementation
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

