
Life Beyond the Browser: The TeraDRE  
Dave Braun 

Rosen Center for Advanced 
Computing 

Purdue University 
dbraun@purdue.edu

X. Carol Song 
Rosen Center for Advanced 

Computing 
Purdue University 

carolxsong@purdue.edu

Laura Arns 
Envision Center for Data 

Perceptualization 
Purdue University 
larns@purdue.edu 

 
ABSTRACT 
This paper discusses the development of a multi grid-domain 
application for users of the Purdue TeraDRE resource. The 
TeraDRE (Distributed Rendering Environment on the TeraGrid) 
allows a user to greatly reduce the render time of their 3D 
animations using a cluster of distributed computers, while 
providing temporary storage for large animations. It has been 
used successfully by Purdue researchers and students in a number 
of projects where animations were generated, and is now a service 
available on the TeraGrid.  As we broaden the access to this 
distributed rendering service, we foresee several challenges. One 
of the key challenges is to support users coming from different 
grid domains that require different authentication methods. We 
also face the increasing demand for the support of multiple 
rendering engines. To meet these and other demands, we have 
developed the next generation grid-aware TeraDRE as a gateway 
for users from TeraGrid, Open Science Grid and other 
organizations. Using the Java Web Start technology, the new 
generation TeraDRE provides a user friendly interface that 
supports the end-to-end workflow needed to render 3D graphics 
and animations on the grid. The grid-aware TeraDRE is rich with 
features such as automatic video file production, previews and 
notification on web-capable mobile devices.  It also supports 
multiple rendering engines, including the open source renderers 
POV-Ray and Blender.   

Categories and Subject Descriptors 
I.3.2. [Computer Graphics]: Graphics systems – 
Distributed/network graphics, remote systems.  

General Terms 
Design 

Keywords 
Distributed rendering, 3D graphics, animations, TeraGrid, 
Condor, grid domains, Java web start. 

1. INTRODUCTION 
Digital animation uses a series of still images in sequential frames 
to make a movie. Digital animators render highly detailed, 
computationally complex graphics models for every frame. 
Purdue researchers have created a distributed rendering 

environment, TeraDRE, for scientists and students to render 3D 
animations using a cluster of distributed computers [6,10]. By 
spreading the computations across hundreds of machines 
simultaneously, the overall rendering time can be reduced 
significantly. The time for rendering a two-minute movie can 
easily be 120 hours on a single computer. This can be reduced to 
36 minutes using grid-aware TeraDRE on 200 computers. 
Initially created to serve the Purdue campus users, TeraDRE was 
modified and enabled for TeraGrid users. Using the Purdue 
Condor pool [9,15] as the distributed computational backend, 
TeraDRE was used successfully and impressively for the 
Bandwidth Challenge competition at Supercomputing 2006 [1]. 
Figure 1 shows a single 4K image frame of the cell structure 
rendered for this competition. This image is part of a two-minute, 
10-gigabyte (4096x 3072 pixels, 30 frames per second video) 
scientific animation of the cell structure of a bacterial ribosome. 
We have designed and developed the grid-aware TeraDRE to 
support users of university campuses, the TeraGrid and the Open 
Science Grid (OSG), with the goal of providing a remote, high 
performance, graphics resources to a broad range of users while 
lowering the barrier of entry. 

 
Figure 1.  A rendered 4K frame of a cell structure rendered for 

Supercomputing’06 

2. BACKGROUND 
In recent years, photo-realistic animations have become the 
standard for a good animation. The photo realism and increased 
geometry sizes however do come at a price in terms of the 
computations needs to generate the animations. An animator faces 
many challenges when constructing an animation because of the 
iterative nature of the animation process. This process includes 
making tweaks to the model’s geometry, textures, lighting, and 
motions to get a seamless animation sequence. Though the 

____ 

D. Braun, X.C. Song, L. Arns, “Life beyond the browser: the TeraDRE”, 
International Workshop on Grid Computing Environments 2007, 
November 11-12, 2007, Reno, NV, USA. An electronic version of this 
document will be available at http://casci.rit.edu/proceedings/gce2007. 
 



animator usually renders the models with reduced resolution and 
features as a preview, there is always a need to go through the 
detailed rendering to ensure that everything is correct. In general, 
detailed rendering uses more computational cycles than the 
animator’s local machine can provide and, thus, the general 
solution has been to farm this step of the process to a rendering 
cluster.   
Having a dedicated rendering cluster is a luxury that most 
animators cannot afford. Thus the other solution is to purchase 
rendering cycles from third party vendors, which can become 
costly if too many iterations are required. The rendering workflow 
is a batch serial job where each frame of the animation can be 
processed independently. Batch serial jobs are a perfect match for 
opportunistic scheduling systems, where spare computational 
cycles are used to perform useful work rather than being 
wasted. The approach we describe in this paper is based upon the 
use of the Condor [9,15] technology to provide a low cost way of 
executing the rendering process within a multi-grid 
environment. The goal of this project is to provide student 
animators and researchers with easy access to the distributed 
rendering resource via the grid. 

2.1 Related Work 
Many commercial rendering farms are available for use. 
However, the fees for use can be quite high, as the following 
examples illustrate: 

• RenderCore is a 500-machine render farm which supports a 
variety of 3D graphics applications/plug-ins, including 
Maya©, 3D Studio Max©, XSI©, VRay©, Brazil©, 
LightWave©, Cinema 4D© etc. The rendering price ranges 
from $0.45 to $0.90 per GHZ-hour depends on the 
applications/plug-ins. For example, for a 30 node network 
(3.0GHZ dual core), a Maya Mental Ray project costs $324 
for a just 2 hours of rendering. [13] 

• Respower is another internet render farm containing more 
than 750 nodes. It supports 3DSMAX©, Maya©, Brazil©, 
LightWave©, Blender©, VRAY©, Vue©, YAFRAY©, 
mental ray© etc. The price is charged on a daily basis. For 
example, to render a Maya Mental Ray project, it costs $600 a 
day, which allows one individual to work and the frames are 
allotted to the maximum limit of 120 minutes to complete. 
With more rendering time required by the project, the price 
ranges from $2000/4days to $6000/30days, etc. [14] 

Such fees are viable for commercial entities working on large 
productions, but are not feasible for most students and 
researchers. An additional problem is that commercial render 
farms support commercial 3D graphics software packages, but 
they do not support scientific visualization tools or Open Source 
rendering tools. For these reasons, most researchers and educators 
build their own rendering farm to support their work. 
Unfortunately, the farms are usually quite small (perhaps half a 
dozen machines) and there is a great deal of overhead in setting 
up and maintaining these systems, as there is no software that 
allows non-experts to easily create render farms. This results in 
many small farms with wasted cycles and wasted administration 
time, and a continuing lack of a large number of cycles when 
actually needed for rendering. 
TeraDRE addresses these issues by providing a service that is 
generally free to students, educators, and researchers. It also 

provides a combination of both commercial and Open Source 
renderers to address the unique needs of this set of users. All 
renderers can be accessed using the same graphical user interface, 
simplifying the process of submitting rendering jobs. Finally, 
because the TeraDRE uses Purdue’s Condor pool, it has access to 
nearly 4,000 nodes for rendering – far more than the number 
available via most commercial render farms. This helps to reduce 
congestion and wait time. 

2.2 A brief history of TeraDRE 
implementations 
The initial TeraDRE was implemented as a set of command line 
utilities. An enhanced version was implemented as MEL (Maya 
Embedded Language) scripts that provide a graphical user 
interface within the Maya client. A user must have a Maya client 
running on the local computer, and must also configure a number 
of files and directories on the local computer before submitting 
TeraDRE jobs to a cluster of distributed computers. This 
implementation has the advantage for Maya users (such as student 
labs in many schools that have Maya software installed), 
providing a user interface integrated with the modeling tool they 
use in creating the render job.  
To simplify access for TeraGrid users, a second generation 
TeraDRE interface was created. We developed a GridSphere-
based [12] TeraDRE portlet to provide an easy-to-use web 
browser interface. The TeraDRE portlet removes the manual 
process of configuring files on the local computer, allowing the 
user to authenticate through the TeraGrid MyProxy server [3] 
within the portlet. The user uploads the job file through the 
browser, and the job is automatically submitted to the TeraGrid 
Condor resource using the Globus Resource Allocation Manager 
(GRAM).  
As we continue to broaden access to TeraDRE, we encountered a 
number of challenges. The top three are: (1) supporting users 
from different grid domains, including the national grids such as 
TeraGrid and OSG, regional grids such as Northwest Indiana 
Computational Grid (NWICG), and various campuses (aka 
campus grids). We need a versatile mechanism to support the 
authentication methods of these grids; (2) the ability to support a 
rich set of user-driven workflows (e.g., previews, review and 
resubmit); and (3) the ability to manage multiple renderers (Maya 
clients require commercial licenses which many users prefer to 
avoid). The support of open source renderers is also the key for 
many users to using the TeraDRE resource. 
The inner workings of the distributed rendering environment at 
Purdue (aka the backend of TeraDRE) were described in a 
previous paper [6]. The rest of this paper focuses our discussion 
on the design and implementation of the grid-aware TeraDRE 
front end that aims at making TeraDRE an effective, easy-to-use 
and scalable application on the grids.  

3. GRID-AWARE TERADRE 
The grid-aware TeraDRE is currently accessible through a web 
site and is being integrated with the TeraGrid Visualization 
Gateway [4]. From the user’s perspective, they are able to access 
the same functionality, whether logged in at the TeraGrid 
Visualization Gateway or connecting to the TeraDRE web portal 
in a browser. 



Figure 2 illustrates the hardware and network architecture that 
supports the TeraDRE resource. Based on access rights, a user can 
gain a proxy from different sources. Currently, users can gain 
authentication to either Purdue campus grid or TeraGrid using 
either their local certificate or a grid-domain MyProxy server.  
Once the user gains a proxy, her job is staged on a resource via 
gsiftp that will place the render project bundle in a user-
specific sandbox area. The next step in the process is a fork job to 
a WSGRAM gatekeeper which executes a server side script to 
start the processing of the job. Each frame of the render job is 
stored in the user’s sandbox and may be retrieved either from a 
web server or through gsiftp. As the project is executed, 
HTML files are generated with additional information on the 
job’s status and can be retrieved from the web server. 

 
Figure 2. Hardware/Network diagram for the grid-aware 

TeraDRE 
The TeraDRE software (Figure 3) is constructed as an abstract 
rendering Java project that holds a list of job files and an 
argument list.  Each renderer is an implementation of the 
rendering project, which further specifies the job arguments and 
additional rendering parameters. A rendering panel provides a 
generic viewer for the abstract rendering project. At the point 
where the project is submitted, the rendering project is realized 
and a JAR (Java Archive) file is constructed that contains all the 
necessary job dependencies. A Condor DAG (Directed Acyclic 
Graph) is then generated, and a property file is generated as 
well. When the job is submitted, the JAR file is expanded and the 
property file is converted into shell environment variables.  
The TeraDRE also has been architected to support multiple job 
submission and authentication models.  This flexibility allows it 
to be adapted to different grid domains through the addition of 
new grid domain and grid site objects.  At present, both a 
TeraGrid and Purdue campus grid domain are supported with the 
anticipation of many more in the future including local 
submissions. 
 

 
 
Figure 3. Software class diagram for the grid-aware TeraDRE 
 
To use TeraDRE, a user goes through the following steps to 
submit rendering jobs and receive notification of the results: 

1. User creates a new project. 
2. User adds files from their local PC to the project. The 

files are stored as references in the virtual sandbox.   
3. User fills in the project properties for the particular 

renderer, including selecting files from the sandbox. 
4. User logs into a grid domain of their choice.  
5. User submits a file to a grid resource within that 

domain. 
 
At this point, the TeraDRE performs the following: 

1. The user project is packaged as a JAR file and all files 
are included that were in the sandbox. A Condor DAG 
is generated as part of this. 

2. The JAR file is staged at the grid resource. 
3. A fork job is submitted to a collection of back end 

scripts that will extract the JAR file, fill in several 
resource specific environmental variables as defined in 
the resource, and submit a condor DAGMan job. 

4. When the user requests status information, a fork job is 
submitted to generate a status file containing 
information about all active rendering projects. 

5. When the user wishes to preview the current project, an 
output file containing a list of the names of completed 
files is retrieved from the grid resource. At the time of 
preview, the previewer thread pool uses this file to load 
the preview files to the user's local computer. 

 
Figures 4(a) through 4(d) are screen images from the grid-aware 
TeraDRE application. 



 
Figure 4(a). Grid domain selection screen 

 
Figure 4(b). Preview screen (left: frames, right: animation) 

 
Figure 4(c). Grid site selection screen 

 
Figure 4(d). Project files that can be drag-n-dropped into GUI 

4. Key implementation issues 
To keep the implementation simple, the TeraDRE server 
components are a collection of rendering applications and scripts 
that provide integration to the computational resources.  A key 
feature is making the TeraDRE service available to users of both 
the popular national grids and local campus grids.  The following 
subsections describe the challenges and our solutions in the 
implementation of the grid-aware TeraDRE. 

4.1 Multiple Grid Domain Authentication 
TeraDRE uses the CogKit [5] to implement GSI Authentication 
for grid domains. Upon logging in, a user may select a grid 
domain where s/he can receive a proxy certificate. Users gain 
access to TeraDRE using X.509 certificate-based authentication, a 
popular mechanism used by various grids today. Within 
TeraDRE, we use the notion of grid domains. For example, 
TeraGrid is a grid domain, the Purdue campus grid is another. 
Grid domains may include particular methods of authentication, 
Java submission, and may contain one or more grid gatekeepers 
that allow for job submission. A user can be authenticated via an 
X.509 proxy generated on the user’s local computer or through a 
MyProxy server for a particular grid domain. In both cases, a 
proxy is generated and held in the application memory instead of 
being saved as a local file.   
In our implementation to support campus grids, a user requests a 
proxy from a campus MyProxy server.  Based upon the principle 
and credential which the user presents, the MyProxy server is 
configured to gain authentication from the campus LDAP server. 
An anonymous proxy is returned. The returned proxy may also be 
issued to a group DN (Distinguished Name), e.g., students can be 
mapped to a single user thus simplifying account management. 

4.2 Rich Client Deployment 
Rich client is a term commonly used to describe applications that 
are not browser-based applications, and that can directly access 
local resources. Because rich clients have access to local 
resources, they typically require the user to go through an install 
process and perform further installs with each revision.  
Java Web Start is a technology developed by Sun to deploy Java 
rich clients to a user's computer in a secure manner. Applications 
that are deployed via Java Web Start are nearly identical to the 
applications that users would install on their desktop except that 
they are downloaded to a secure sandbox area and run in an 
external JVM (Java Virtual Machine) that is not part of the 
browser.   
There are numerous examples of Java Web Start applications that 
are used by scientists to do their daily work. The Java NEXRAD 
Viewer [11] and Integrated Data Viewer [8] are two examples of 
visualization applications deployed via Web Start. These 
applications allow users to visualize data from both local and 
remote sources. 
Application deployment is described in a JNLP (Java Network 
Launch Protocol) file. The JNLP file is requested by the end 
user's Java Web Start environment and the corresponding JAR 
files are downloaded to a cache area on the local computer. 
Depending on the JNLP configuration, updates to the cached JAR 
files are downloaded each time a user executes the application. 



The newest version of Web Start technology includes a servlet 
that will detect changes in the deployed JAR files. 
Although this technology is related to Java Applet technology 
popular in web browser applications, Web Start does not require a 
browser to function. This technology works well for a Java 
application that needs more local abilities and does not require 
browser interaction. In the latest releases of the Web Start 
technology, Sun expanded the application launch protocol, and 
included the concepts of resources and a smart JNLP download 
servlet. These additions make deploying Web Start applications 
easier. One of the major complaints about Web Start was the time 
it takes to download the application to the cache. Indeed if the 
application is large, this would take some time. The new release 
allows an application to be broken up into a set of resources 
which are individually cached. There is little impact on an 
application to do this.  An application that implements a 
pluggable architecture can take advantage of this technology at 
deployment. Applying this technique has improved the download 
speed of the TeraDRE submission client. 

4.3 Performance tuning 
Condor DAGMan can be used to throttle job submissions when 
one submits an extremely large number of batches jobs. The 
performance of Condor Job Manager (schedd) degrades when 
the number of jobs exceeds the resource availability. Throttling is 
used to prevent large submissions from disabling the shared 
schedds. Throttling does have an impact, however, on the overall 
performance because it is static.  
Figures 5 and 6 depict the performance of two rendering 
applications. The red color represents the wait time (the time from 
which the job was submitted to the time of execution). The green 
color represents execution time. In the Condor world, the green 
section also includes job evictions, holds and suspends. The blue 
color represents the post-processing time as defined by the post 
processing script in the DAG. The post-processing is executed on 
the submit machine and includes computations such as scaling an 
image to create a thumbnail.  The linear trend in the start times of 
each job is due to the throttling imposed by the DAG. For these 
applications, a throttling of 100 running jobs was imposed based 
on our analysis of average resource availability and empirical 
results. 
The performance of the rendering application depends on several 
variables, including the availability of the Condor resource, 
whether the application has the ability to restart, and the rendering 
time per frame. The worst case occurs when the Condor resources 
are busy and the application does not have a self check-pointing 
capability - a job would constantly be evicted until a resource can 
be acquired. Blender's performance curve was taken during a time 
when the Condor pool was very busy. We believe the block 
structure of the curve is due to priority policy and machine lease 
time. The variation in the post processing times is due to the load 
on the submit machine as the jobs complete.  In POV-Ray's 
performance curve, the Condor pool was not busy and POV-Ray 
has self check-pointing capability.  

 
Figure 5. TeraDRE Performance in rendering a POV-Ray 

animation 

 
Figure 6. TeraDRE Performance in rendering a Blender 

animation 

4.4 Flexible Packaging for Dynamic 
Environments 
Reducing the size of the JAR files that are deployed at runtime 
increases the download speed of the application. Since the 
application only uses a small portion of the supporting software 
stack, Autojar was employed to repackage the application JAR 
file to include only the software (classes, directories, and 
libraries) that is or could be used by the application [2]. 
We used another technique to increase the first-time application 
launch speed - partitioning the JAR files into packages in the 
JNLP file. This allows only the pieces that change to be 
downloaded instead of a very large file. The downside of 
increasing the number of JAR files is that each JAR file must be 
signed. Though the process of signing JAR files is quite easy, it 
adds another layer of management because certificates used to 
sign the JARs may expire. 
JAR assemblies allow for a greater flexibility in application 
development. Each JAR may contain one or more related plug-ins 
to a computer application. In the case of the TeraDRE, JAR 



assemblies are used to encapsulate various renderers and grid 
domains. TeraDRE uses some of the new features in Java 1.6.  
ServiceLoader is a very interesting technology that reduces the 
complexity of implementing a plugable architecture. Within the 
JAR file, classes are listed as implementing a particular interface. 
The service loader will load and unload this class easily without 
the need for the programmer to implement a specific class loader. 
Using this technology in combination with the JNLP resource 
extension allows for rapid   deployment of new features and grid 
domains. 

 
 

Figure 7. TeraDRE Packaging 
 

4.5 User-Driven Workflow Support 
Animation developers see an application as a collection of 
features and functions that they assemble to execute a task, rather 
than a fixed workflow that they follow. TeraDRE allows users to 
access the features and functions in a natural way by providing 
interactive capability. Users can choose to execute functions such 
as previewing an animation, at any point instead of waiting for the 
full animation to complete. TeraDRE accomplishes this by 
streaming the images back to the user’s local computer through a 
grid connection. The images are pre-fetched as the movie 
previewer displays the sequence of images. The current solution 
also uses Java's volatile image component which supports 
hardware accelerated graphics in order to increase the previewer 
speed. 

4.6 Handling Large Image Frames 
In the past few years, a new 4K movie standard has emerged. As 
defined by this standard, the dimension of each 4K image frame is 
4096x2160. An animation may contain thousands of frames, 
resulting in a very large dataset for the render job. The challenge 
is to keep the large datasets on the remote resource but allow the 
user to gain access and eventually move them.  The previewer in 
TeraDRE uses a much smaller set of images to stream back to the 
user as previews. The user may use GSIFTP tools to move the 
data to either the local computer or other grid storage.   

5. DISCUSSIONS AND FUTURE WORK 
We presented the design and implementation of the TeraDRE 
distributed rendering service for a multi-grid environment. The 
development of this grid-aware TeraDRE application answers the 
need to access this rendering service by users from various grids 
and institutions. Our contribution lies in building a light-weight, 

grid-aware interface that enables users to access the rendering 
resource seamlessly without having to learn grid tools or the 
intricate details of submitting a rendering job to distributed 
resources. The lessons we have learned include: 
Light-weight Globus Client - We created a light-weight Globus 
client in an attempt to reduce the size of the Globus install 
footprint. Our goal was to use a minimum set of the Globus API 
and let the Autojar tool figure out which other Globus packages 
were needed. This proved to be a daunting task because Autojar is 
unable to follow dynamic class loads. Instead of using the entire 
CogKit abstraction, the code primarily uses jGlobus, Auth, and 
WSRF packages. In the future the extension resource from JNLP 
will be employed because of the complexity of the re-jar process 
with each revision of Globus.      
Signing JARs - Signing JAR files is a very straightforward 
process. The Java development kit includes tools that will sign a 
JAR file based upon a certificate. However, the policy to address 
the question of who signs the JAR file is a different issue. The 
current solution to this problem is to sign the JARs using private 
certificates issued by NCSA for the TeraGrid. In the ideal case an 
organizational certificate would be used to sign deployed JARs. 

Customized Applications for Multiple Grid Domains - Another 
future use of JAR assembly is the ability to dynamically create a 
Web Start JNLP based upon a user’s or site’s configuration. For 
example, if a rendering application has a site license that only 
allows use by the site personnel, the TeraDRE would deny access 
from users outside the IP address space by excluding certain JAR 
files. This would lead to an ala carte type of application 
assembly. Additionally, a JAR assembly allows only the JAR 
files that are need to be downloaded when the users need them. 
This would also employ the ServiceLoader, but now the reference 
to the service is a URL. As a result, this allows the application to 
dynamically load a JAR when the service is needed or as a 
parameter-based configuration, e.g., where the user can choose 
plug-ins that they are interested in. In future releases of TeraDRE, 
we plan to incorporate the ability to deploy applications that are 
either tailored to the individual or to a policy.   
For future development, we are adding a middleware level to 
TeraDRE. The intent is to migrate some functionality from the 
client to the server, producing an even lighter weight client with a 
smaller footprint for faster initial download. This separation will 
be implemented as a collection of web services. These web 
services will support a browser-based implementation, enabling 
third parties to integrate TeraDRE into their own community 
portals to utilize local computing resources as desired. In the 
browser-based implementation, users will still be able to invoke 
Java Web Start applications to perform tasks that are better suited 
for local client execution, e.g., file transfer, preview, and local 
tool access.  
Another important function the middleware could provide is user 
data management. In addition to this, the user needs to be 
presented with a consistent environment that includes both their 
local disk and the remote disk. The idea of a distributed sandbox 
would allow users to keep a local view and a remote view 
concurrently where files could be marked according to where the 
file actually resides and other methods could be employed to 
move or access them. By providing users a consistent view of the 
data space, application usability will increase.    



We plan to develop a Condor master-worker [7] implementation 
for executing the TeraDRE workflows. In the current system, 
DAGMan is used to throttle applications in a static way with a 
hard limit on the number of running jobs. We are proposing a 
Condor master-worker type of model where the master will 
maintain a list of work and feed jobs to a collection of pre-
scheduled workers. At present the number of frames that a worker 
renders is fixed. If the worker is evicted, the completed portion of 
the job is lost. By using a pre-scheduled collection of workers, we 
could create a much smarter wrapper application to dynamically 
change the number of frames that are attempted to be rendered. 

6. ACKNOWLEDGMENTS 
The authors wish to thank Jack Moreland, Preston Smith, Meiqi 
Ren and Jungha Woo for their work and support in the TeraDRE 
project. 

7. REFERENCES 
[1] Arns, L., R. Pedela, M. Shuey, P. Smith, J. Tillotson, T. 

Hacker, D. Braun. “Streaming uncompressed 4K scientific 
meda”, Bandwidth Challenge/Supercomputing, Nov. 2006. 
http://www.envision.purdue.edu/4kstream.  

[2] Autojar project, http://autojar.sourceforge.net.  
[3] Basney, J., M. Humphrey, and V. Welch. The MyProxy 

Online Credential Repository. Software: Practice and 
Experience, Volume 35, Issue 9, July 2005, pages 801-816 

[4] Binns, J., J. DiCario, J.A. insley, T. Leggett, C. 
Lueninghoener, J.P. Navarro, and M.E. Papka. “Enabling 
community access to TeraGrid visualization resources”, 
Concurrency and Computation: Practice & Experience, 
Vol.19, Issue 6 (April 2007), pages 783-794. 

[5] G. von Laszewski, I. Foster, J. Gawor. “CoG kits: a bridge 
between commodity distributed computing and high-
performance grids”, Proceedings of the ACM 2000 
conference on Java Grande, 2000. 

[6] Gooding, S.L., Arns, L., Smith, P. and Tillotson, J. 
“Implementation of a distributed rendering environment for 
the TeraGrid”, 2006 IEEE Challenges of Large 
Applications in Distributed Environments (CLADE), Paris, 
France, June 19, 2006. 

[7] Heymann, E., M. A. Senar, E. Luque, and M. Livny, 
"Adaptive Scheduling for Master-Worker Applications on 
the Computational Grid". in Proceedings of the First 
IEEE/ACM International Workshop on Grid Computing 
(GRID 2000), Bangalore, India, December 17, 2000. 

[8] Integrated Data Viewer (IDV), 
http://www.unidata.ucar.edu/software/idv.  

[9] Litzkow, M.J.   Livny, M.   Mutka, M.W. “Condor-a hunter 
of idle workstations”, 8th Int’l Conf. on Distributed 
Computing Systems, 13-17 June 1988. 

[10] Madhavan, K.P.C., Arns, L., & Bertoline, G.R. A 
distributed rendering environment for teaching animation 
and scientific visualization. IEEE Computer Graphics & 
Applications (Special Issue on Computer Graphics in 
Education), 33 – 38, 2005. 

[11] NCDC Java NEXRAD Tools, 
http://www.ncdc.noaa.gov/oa/radar/jnx.  

[12] Novotny, J., M. Russell, O. Wehrens, "GridSphere: An 
Advanced Portal Framework, " EUROMICRO 2004, 412-
419. 

[13] RenderCore, 
http://www.rendercore.com/rendercoreweb/index.do. 

[14] Respower, https://www.respower.com.  
[15] Tannenbaum, T., D. Wright, K. Miller, and M. Livny, 

"Condor - A Distributed Job Scheduler", in Thomas 
Sterling, editor, Beowulf Cluster Computing with Linux, 
The MIT Press, 2002. ISBN: 0-262-69274-0. 

 

 


