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ABSTRACT 
Service-oriented application development is a time consuming 
task that changes little between projects. In general, development 
is a two step process where developers first create the core 
functionality of the service and then routinely integrate details for 
distribution, transport protocols and user interfaces. Addressing a 
need to port standalone applications to web services, we have 
developed a compiler to automate the generation of Web Services. 
This compiler is called the Web Automation and Translation 
Toolkit, or WATT. Originally designed as a utility for porting Tcl 
scripts for the Visualization Toolkit (VTK) to equivalent but more 
efficient C++, WATT has been extended to seamlessly integrate 
the SOAP transport protocol to create working visualization web 
services. Within this document, we present details of the WATT 
compiler, including motivation, goals and example applications.   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – Code 
generation, I.3.8 [Computer Graphics]: Applications  

General Terms 
Algorithms, Performance, Experimentation, Human Factors 

Keywords 
Web Service, Automation, SOAP, GUI, Visualization. 

1. INTRODUCTION 
Service-oriented architectures that address workflow execution 
and problem solving are becoming increasingly popular for 
scientific computing. As seen in the architectures of the VLab 
[26], TeraGrid [31] and eMinerals [8] initiatives, many issues 
related to Grid computing and solving scientific problems have 
already been investigated. While such consortiums investigate 
specialized topics and approach solutions differently, their general 
goals have considerable overlap, such as task automation, public 
access to utilities and distributed computation that conform to 
standards. Task automation pertains to the development of 

workflows, load balancers, compilers and other technologies that 
take control from users and abstract the complexities of the 
underlying work. Public access to utilities usually refers to public 
repositories from which they can be downloaded, or web 
interfaces to control the execution of such utilities from a remote 
location. 

Working with the VLab consortium, we have concentrated on the 
development of visualization tools, including 2D and 3D 
representations through hand-crafted, install-on-demand, Java 
WebStart [18] clients; and simple web page interfaces that utilize 
remote web services to perform post-processing and data 
rendering. In the case of WebStart clients, data is stored in remote 
repositories, downloaded to the client and visualized with 
packages such as VisAD [14], Prefuse [13] and the Java bindings 
for OpenGL (JSR-231/JOGL) [16]. To better leverage existing 
desk-side approaches to visualization, we have created web 
services that translate scripts written to drive the free and popular 
Visualization Toolkit (VTK) [28] libraries. These services 
implement a client-server paradigm where one or several clients 
connect to a server, which handles most of the computational 
load. 

The development of VTK services generally follows a simple 
process. First, a VTK Tcl script is written to render data correctly. 
Second, the Tcl is translated by hand into equivalent but more 
efficient C++ using a one-to-one mapping between methods in Tcl 
and methods in C++. Third, additional code is integrated to enable 
communication via the SOAP protocol and to define web-
methods. Finally, resulting source is compiled into a complete 
web service executable (on the server side).  

Since this process does not change from one service to the next, 
we automated the above four steps with a newly developed 
compiler referred to as WATT (the Web Automation and 
Translation Toolkit). With WATT, developers need only concern 
themselves with client side programming with no knowledge of 
client-server communication. All features of the WATT compiler 
help the developers concentrate solely on their data represen-
tations; WATT takes care of the rest.  

Ideally, developers of distributed applications should develop 
code on a local machine and leave the details of distribution, 
communication and integration. At this stage, we do not claim to 
have a full solution to the problem of automatic software 
generation; however, the WATT compiler already handles many 
of the issues related to automating the generation of web services 
from standalone input code. WATT translates standalone VTK 
based Tcl scripts into C++ and automatically integrates the 
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necessary code to form a complete visualization web service. In 
this paper, we introduce the WATT compiler, describe its 
features, design and implementation, and illustrate WATT in 
action through examples of the compiler's use within VLab. We 
also present an ongoing effort to automate the generation of 
graphical client interfaces based on directives embedded in the 
input Tcl code. 

2. RELATED WORK 
The concept of the WATT compiler is not unique. For example, 
the language-to-language compiler SWIG [4] has the ability to 
compile standard C/C++ code and produce wrapped code for a 
variety of output languages including Tcl, Python, Ruby, etc. 
However, SWIG does not support the compilation of Tcl to C++, 
a common problem with all compilers found in our effort to use 
existing software. 

Since the Tcl language was written in C++, it seems logical to use 
the low level Tcl libraries and headers directly, or a higher level 
abstraction like C++/Tcl [9], MkTclApp [25] or Bridge-Tcl [5] 
that allow C++ to call Tcl and vice-versa. However, in our push 
for efficient visualization web services we do whatever it takes to 
cut corners and optimize code. Using Tcl from within C++ 
requires evaluation of the scripted language within the Tcl 
interpreter; translating Tcl to C++ bypasses the interpreter and 
executes directly. Translating to C++ directly also forces us to 
choose C++ SOAP libraries over Tcl implementations like 
TclSOAP [30], tWSDL/TWiST [33] or Gerald Lester's Web 
Services for Tcl [22].  

Related to the automation of service deployment, the Enunciate 
[11] project lets developers write their web service code in Java, 
and then completes the task of deployment, servlet configuration, 
packaging and interoperability with other services/clients. The 
Enunciate project automatically generates SOAP, REST and 
JSON endpoints for every service, but at the time of this writing 
still requires users to define and complete the web methods 
themselves. WATT uses the input script to generate the web 
methods for SOAP only, and depends on WATT Live to deploy 
the service. 

3. TECHNOLOGIES USED 
The Visual Toolkit (VTK) is a visualization package that is free, 
quite popular and feature-rich. It supports a wide range of 
visualization techniques, such as volume rendering, isosurfaces 
and streamlines, many of which take advantage of the hardware of 
latest commodity video cards. Both on-screen and off-screen 
rendering are supported. VTK is well supported on most operating 
systems (Windows, Linux, OSX, etc.) In addition to the above, 
VTK includes a wide array of input and output modules to handle 
the most commonly used data formats for bitmaps (JPEG, PNG, 
etc.) or 3D models (VRML, CAD, etc.). In addition, the C++ 
VTK sources can be optionally compiled to include bindings for 
Tcl, Python, and Java. Other projects provide interfaces to VTK 
from Ruby [36], and Perl [12]. The developers of VTK have 
expended substantial effort to make their software usable by a 
wide audience.  

The Tool Command Language (Tcl) [32] is a high level scripting 
language quite popular for interfaces to scientific and 
visualization toolkits like VTK, Amira [2] and VMD [15]. Tcl is 
loosely typed and seldom differentiates between number values, 
logic, strings or objects. In addition, everything in Tcl is 
considered a command; commands instruct invocation of 
procedures on values, evaluation of logic, 
instantiation/construction of objects, etc. The structure of Tcl 
makes it easy to expand the available commands by writing 
procedures in other languages. Since Tcl is less concerned with 
type than C++, writing simple applications is quite 
straightforward. There is no need to include headers, manage 
memory, or declare and coerce types for all functions and calls. 
Also, since it is a scripting language, modifications to Tcl 
programs provide developers instant feedback with either a 
working product or prototype code.  

SOAP-enabled C++ services are implemented with the gSOAP 
library [34]. gSOAP is a highly efficient toolkit designed for 
SOAP message passing in codes that require high performance. 
gSOAP requires some input from the user, specifically, a 
description header to specify web-method signatures, types and 
serializable objects (i.e., objects that can be converted to XML). 
In addition, users also provide the content of each web-method, 
but not the code that binds a SOAP request or response with the 
method. A compiler (“soapcpp2”) included in the gSOAP 
distribution, consumes and compiles the provided header and 
creates wrappers to connect incoming or outgoing messages with 
the specified serializable types and available web-methods. 
gSOAP outputs separate C++ headers and implementations that 
integrate seamlessly with either a service (callee) or a client 
(caller). This generated code also includes details of the low level 
socket connections that enable two-way messaging.  Most aspects 
of SOAP and low level communication are hidden from the users. 
Unfortunately, users must still create their own serializable types, 
and specify to SOAP when to listen for an incoming message. 
gSOAP interprets what is received and either distributes it to the 
correct RPC function or the user can intervene and handle the 
message. With automatically generated client- and server-side 
bindings for C++ programs, gSOAP is an important component in 
the complete automation of the transport layer. WATT aims to go 
the last mile and remove the user from all aspects of web service 
generation, except writing the initial visualization Tcl script. 

4. WATT ARCHITECTURE 
Figure 1 illustrates how WATT transforms a Tcl script into a fully 
functional web service. There are four steps. First, the input script 
is submitted to the WATT compiler. WATT converts the script 
into two types of output files: the first contains a C++ class with 
methods that are direct translations of the Tcl procedures. In 
addition, WATT generates stubs that wrap the aforementioned 
methods to be called by SOAP. These stubs are referred to as 
web-methods. The second type is a collection of gSOAP sources 
required by the gSOAP compiler to build the web service. The 
gSOAP sources include the web-methods description header, 



 

Figure 1: WATT execution workflow 

other files containing the declaration and implementations of 
standard serializable objects (including Vector, Matrix and 
Base64Binary types) and the WATT header, which provides 
methods to automatically set up threads to handle SOAP 
messages. The web-method description header is then sent to the 
gSOAP compiler, which generates the necessary sources to 
generate, parse, send and receive SOAP messages. Finally, all 
generated sources from WATT and gSOAP are consolidated. 
Together they form a working web service implementation that 
can be compiled by most C++ compilers.  

WATT begins Tcl conversion by sending the input code through 
both a custom-written parser and a type-checker. Based on 
immediate contextual use, WATT can determine the type for most 
of the tokens within the script. Type and context information are 
stored in an abstract syntax tree generated during a first pass 
through the script. Once the entire file is parsed, WATT rescans 
the file one or more times using the latest tree information until 
either all types are determined or the undetermined types are 
tagged as “WATT_AMBIGUOUS”, which in turn generates an 
error on compilation. In this case, the user can choose to manually 
update the source. A typical case where inferring type is not 
possible are function return values. 

When a service is generated from the Tcl input script, WATT 
creates a list of stubs that wrap all Tcl procedures ("proc” 
commands) as gSOAP web methods. The resulting WSDL 
contains references to the wrapping stubs and also to the default 
methods defined for all services generated by WATT. Any 
dependencies between procedures (i.e., one procedure may 
depend on another to be called first) are not represented in the 
WSDL. Instead, dependencies are handled by the author of the Tcl 
script by either calling them in the first few lines of the dependent 
procedure contents, or by calling the dependencies outside of the 
procedure declarations. Tcl interprets any command outside of 
procedures or functions as global commands that are evaluated 
once. When WATT parses such commands it places them in an 
initialization function in the service and they are executed once 
upon startup. In addition, our visualization services are not 
stateless; they maintain state to avoid unnecessary loading of data 
files, rendering, and other time-consuming tasks. Developers 
should use this to their advantage when writing scripts. 

Given that WATT does not support all the features of Tcl, we 
avoid a direct translation from Tcl to binary code. Instead, the Tcl 
script is translated to C++. This gives users the opportunity to 
enhance the resulting C++ with more general constructs that could 
not be translated, due to an incomplete Tcl to C++ 
implementation. Missing support includes loops, conditionals, 

variables embedded within strings (e.g. “hello $name”), and 
commands or names containing variables (e.g. set my$name 
value). The C++ source and automatic build instructions make it 
easy for users to generate complex web services by first creating a 
simplified Tcl script with method names and simplified 
implementations, automatically translating these scripts to C++ 
and associated SOAP routines, and then changing the C++ 
method implementations according to desired specifications. The 
generation of the charge density service created for VLab follows 
such an approach. 

Once the Tcl has been typed, WATT uses a registry and interrupt 
system to generate the C++ source code. The registry is a 
collection of associations between expected formats and 
commands in Tcl and C++. The interrupt system allows the 
default translation of methods within WATT to be overridden. For 
example, regular C++ constructors are invoked with the “new 
className()” format, whereas standard VTK constructors are 
called using “vtkName::New()”. An interrupt catches calls to 
VTK constructors and translates them to the C++ format.  

Another use of the interrupt system allows for the generation of 
web method wrappers and a gSOAP description header based on 
specific Tcl input patterns, rather than generate one web method 
wrapper for each Tcl procedure, which is the default behavior. 
Recall that a web method is callable from the final web service. 
For example, one might only publish methods that contain a 
certain prefix, suffix or keyword. The gSOAP bindings are 
entirely optional, which allows users to first develop an interactive 
Tcl script, and let WATT compile it into an interactive C++ 
application. When developers are sure the output C++ application 
works correctly, the compiler can merge in the bindings for 
gSOAP. It is important to note that WATT also provides a 
uniform set of methods that are available in all generated services 
through the use of a templating system.  

The format of the output files generated by WATT is not hard-
coded, but is instead read in from a template file at run time. The 
template is a C++ code fragment that contains directive variables 
to specify the locality of content. Variable names appear as 
“$$VARIABLE_NAME$$” within the template. When WATT 
translates Tcl to C++, it stores the generated content in various 
output buffers, each buffer corresponding to a specific variable 
name. WATT then reads the template into memory and replaces 
all variables found in the template with the corresponding buffer 
contents. Typical templates control where WATT places function 
declarations, header files, global variable declarations, and the 
body of the code. Different templates are used if WATT is 
compiling a web service or a standalone application. The web 



service template defines the set of standard web-methods for all 
WATT generated services.  

CMake [23] manages all generated source files generated by 
WATT and gSOAP, in addition to various operating system 
dependencies. Once an inventory of available resources is 
complete, CMake generates a Makefile to build binaries as 
suggested in a description file. A Tcl script designed to be a web 
service could easily have 20 or more web-accessible procedures. 
Prior to compilation by the gSOAP compiler, these procedures are 
converted to C++ within one file and joined by at least five 
supplementary files including gSOAP and user interface 
descriptor files. With 20 or more procedures accessible from the 
web service, the gSOAP compiler can easily generate 40 
additional source files.  

The CMake file requires all binaries to depend on the shared 
library, libwatt.so, provided with WATT. This library contains 
definitions for a core set of VTK classes, serializable objects, etc. 
for general use. For example, “CurlUtility”, which is an 
abstraction to the cURL library [10] to allow easy fetching of 
remote files to the service's host. We discuss an example VTK 
class included in the library in the next section.  

Finally, the generation of visualization services using WATT can 
be accomplished using WATT Live [37], which is a set of Perl 
based CGI scripts that allows users to upload Tcl scripts typed 
into the input form in a browser. WATT is executed on the input 
data and users receive feedback about the compilation process.  
All output files generated by WATT can be downloaded so that 
users can compile and install the generated service on their own 
web servers. Alternatively, WATT Live can compile and execute 
the service on our server. The latter option is primarily intended 
for verification of functionality and debugging rather than for 
production deployment and use. All services generated by WATT 
have an internal counter to shut the service down after one hour of 
inactivity.  

When a service is deployed by WATT Live, users can also test a 
client connection to the service as shown in Figure 2. Perl scripts 
control the execution of a C++ client program output by WATT 
and compiled against the gSOAP generated bindings. The client is 
only aware of the default web-methods common to all WATT 
generated services, and the WATT Live page calls only two of 
them: one to monitor the service’s visualization, and the second to 
change the camera position. The Tcl code used to create the 
service is available from the WATT Live front page as an 
example of supported Tcl syntax, and to demonstrate the output 
generated by the WATT compilation process.  

Security was not specifically addressed during the development of 
WATT.  Instead, the assumption was that users of WATT would 
be responsible for integration into their own secure environment. 
The initial emphasis was to deliver a functional product, followed 
by support for additional types and syntax. If desired, users have 
the option to modify WATT's templates to enhance security, or 
they can modify generated services individually; however, out of 
the box, Web Services generated by WATT utilize only the 
default mechanisms provided by gSOAP. Security can also be 
achieved by integrating WATT within an existing secure portal. In 
our case, the intent is to include WATT as a feature in the VLab 
portal. It should be noted that WATT does not currently support 
the translation of potentially dangerous commands such as "exec" 
or "interp". For syntax supported by WATT, WATT Live allows 

the generated service to be compiled and tested on a small range 
of ports on our test server. 

 
Figure 2: Testing the WATT compiled VisQuad.tcl with 

WATT Live 

5. EXAMPLE APPLICATIONS 
Two example applications are now considered to demonstrate 
functionality and discuss restrictions placed on scripts by WATT. 
First, a simple example helps readers understand the input and 
output structure. Second, an application of WATT within the 
VLab consortium is considered. For more details readers are 
referred to the WATT Live webpage [37] where the Tcl examples 
are available to study in detail and can be compiled into C++ 
source.  

5.1 VisQuad 
WATT was written as a VTK Tcl compiler/translator; therefore, it 
is best to start with an example application taken from the VTK 
documentation. To this end we comment on the compilation of 
VisQuad.tcl [28], a standard example in VTK distributions. The 
script is 33 lines of executable Tcl and demonstrates contour 
filtering applied to an implicit function for 3D isosurface 
representations. Figure 2 shows the results returned by the 
VisQuad service using WATT Live.  

Compiling VisQuad.tcl with WATT requires the “#WATT_EOF” 
directive to be added before the last three lines of the script. This 
directive indicates to WATT that it should assume the end of file 
has been reached and it no longer needs to parse Tcl. It is 
interpreted by Tcl as a comment and has no effect on normal 
script execution. Standalone Tcl scripts can be written as a 
combination of Tcl and Tk commands where Tcl manages 
computation details and Tk manages user interfaces. WATT does 
not support Tk commands. By integrating the directive into a 
script, Tk can generate a user interface in standalone mode, and 
WATT can finish parsing the file for a web service without errors.  

When WATT compiles a script, the output C++ is organized in 
the format described in Listing 1. For every VTK type that 
appears in the script, a corresponding header entry is placed in the 
“Includes” section. WATT embeds the translated Tcl within a 
C++ class type. Commands not contained in a Tcl “proc” are 



called from the C++ class “Constructor” to imitate Tcl’s single 
execution of the same commands. Any variables or objects used 
in the constructor become a part of “Global Declarations” and are 
accessible to “Member Functions” (direct translations of Tcl 
procedures). The “Main Method” initializes an instance of the 
WATT class and listens for SOAP messages. When messages are 
received, they are distributed to a web-method in the “Web 
Method Wrappers” section where a wrapping method calls its 
corresponding member function in the WATT class, converting 
output to a serializable type known by gSOAP.  

Listing 1: General Structure of WATT Output  

 
{Includes} 
{WATT_CLASS Definition 
 [Global Declarations] 
 [Constructor] 
 [Member Functions]} 
{Main Method}  
{Web Method Wrappers} 
 

Listing 2 provides output snippets from the application of WATT 
to VisQuad.tcl. Comments in bold face show code structure. Lines 
8 and 10 demonstrate the use of type casting to match function 
input parameters to C++ type signatures. VisQuad.tcl does not 
contain procedures; thus, Member Function and Web Method 
Wrapper sections contain only the set of web-methods common to 
all WATT services. The web-method on line 20, “ns__render”, 
calls the method “render” on line 12. Inside the web-method, the 
returned “vtkUnsignedCharArray” type is converted to a byte 
array and sent to gSOAP under the alias “ns__renderResponse”. 
The function on line 17 executes the gSOAP initialization and 
starts an infinite loop for requests on the specified port.  

5.2 Charge Density Visualization 
The primary motivation behind developing WATT is to create 
visualization services for the VLab consortium. One such example 
was a 400+ line Tcl script that provides Volumetric, Isosurface, 
and Ortho-sliced renderings for scalar values of charge density 
distributions computed by PWscf [27], the core computational 
engine of VLab. Although various programs like XCrysDen [21] 
and JMol [20] are quite capable of rendering the output file in 
various modalities (i.e., crystal structure or atom positions), none 
provide the customizable versatility of VTK nor the ability to 
render visualizations off-screen as a web service. One of the 
requirements of VLab is to provide all web services within a web 
portal. In response to this, we applied the WATT compiler to the 
Tcl script and produced a service specialized for charge density 
visualization.  

The service accepts standard Gaussian Cube [7] input that 
describes primitive cell vectors, atom positions and uniformly 
spaced volumetric data corresponding to charge within the cell. At 
the time of this writing, VTK version 5.0 has a standard Gaussian 
Cube reader built-in, which we found to improperly transform the  

Listing 2: Partial C++ Output Generated for VisQuad.tcl  

 
// Includes 
1. #include "vtkQuadric.h"       
2. #include "vtkContourFilter.h" 
          (…) 
// WATT_CLASS Definition: 
3. class MyWattClass {    
 
// Global Declarations 
4.     vtkQuadric *quadric; 
5.     vtkContourFilter *contours; 
                  (…) 
// Constructor 
6.     MyWattClass () { 
                  (…) 
7.       quadric = vtkQuadric::New(); 
8.       quadric->SetCoefficients((float) .5, (float) 1, (float) .2, 

(float) 0, (float) .1, (float) 0, (float) 0, (float) .2, (float) 0, 
(float) 0); 

                   (…) 
9.       contours = vtkContourFilter::New(); 
10.       contours->GenerateValues((int) 5, (float) 0.0, (float) 

1.2); 
                   (…) 
11.     }                       // end  Constructor 
 
// Member Functions: 
12.     vtkUnsignedCharArray* render () {…} 
                    (…) 
13. } *wattObject; 
 
// Main Method: 
14. int main( int argc, char *argv[] ) 
15. { 
                    (…) 
16.     wattObject = new MyWattClass(); 
17.     runSerialSoap( port, "MyService.wsdl" );   
18. } 
 
// Web Method Wrappers: 
19. int ns__render (SOAP* soap, ns__renderResponse* 

result) {…} 
             (…) 

 

input data. Unfortunately, the default reader ignores the 
coordinate system specified by primitive vectors within the file 
and assumes the data to be in Cartesian coordinates. We 
substituted a home grown reader. The class is available through 
the core library, "libwatt.so", included by all programs generated 
by WATT. Since the routines we use from VTK depend on the 
Cartesian coordinate system, our reader linearly interpolates data 
from its original oblique coordinate system into a Cartesian 
representation. Data are shown in a orthorhombic box that 
assumes that the primitive cell (based on the Face Centered Cubic 
structure [29] is periodic in all directions and then clipped to the 
dimensions of the bounding box. Figure 3 shows a simple Silicon 
diamond structure created with high-energy cutoffs on a fine mesh 
of 729,000 points and illustrates the diamond-shaped primitive 
cell (gray tube wire frame). Contours are drawn in the clipped 
cube box (thin white bounding box). Figure 4 shows an example 



of orthorhombic structure in Perovskite data (MgSi03), whose 
primitive cell is identical to the clipped box. Figures 3 and 4 were 
produced by the on-screen interactive C++ code translated from 
Tcl by WATT. Output produced off-screen by the completed web 
service is the same but requires a client application/servlet to 
display the images. 

 
Figure 3: Isosurface representation of simple Silicon diamond 
rendered by the charge density application output by WATT. 

 
Figure 4: Volumetric representation of Perovskite (MgSiO3) 

primitive cell as produced by charge density application 
output by WATT. 

Most Web services require a graphical user interface before they 
become widely adopted. We have designed a simple web-based 
user interface to the charge density application, shown in Figure 5. 
The implementation only depends on a JavaScript-enabled web 
browser. Java and JSP [17] were used to implement the interface 
as a portlet within the VLab portal. Simulations can be run from 
within the portal and the results immediately rendered within the 
same window. The different modules—indicated by a dashed 
border—connect to different web methods. Functionality is 
limited at this time; however, the available options include 
loading of new data files, on/off toggling of options, data slicing 
with a cut plane with translation of the slice, and selecting the 
viewing direction. Changes to any of the modules result in a 
JavaScript call to a backing Java servlet that in turn makes a call 
to the web service using the Apache Axis libraries [3].  

The modular design of the handwritten Java portlet comes from 
our current efforts to identify reusable interface components and 
automate not just service-, but also client-generation with WATT. 
For example, html input forms composed of one or many input 

text fields plus a submit button can be used to interface with 
methods that require one or many input parameters. Toggles 
(radio buttons or checkboxes) correspond to a web-method with a 
single boolean input, or two web-methods that turn represen-
tations on or off respectively. Using directives embedded within 
Tcl comments, we have been investigating the auto-generation of 
a Ruby-on-Rails interface, shown in Figure 6. Client interface 
directives are specified using comment lines with the structure 
“#WATT_GUI_{...}''. Current suffixes recognized by WATT 
include: ``SETVALUE'' for a form (text fields and submit button) 
that allows user input, ``PRESET'' for predefined values in a pull-
down menu (does not allow user input), “TOGGLE_ON” and 
“TOGGLE_OFF” for toggle switches (radio buttons or 
checkboxes), and “RENDERED_IMAGE” for displaying an 
image. To bind a module with a web-method, the directive must 
occur within the Tcl procedure statement. As WATT parses the 
input Tcl script, it filters off directives and writes them to a 
separate file paired with the associated C++ web-method 
declarations. This file is read by a Ruby script that parses off the 
directive information and associated web-method name, 
parameters and return type. Ruby-on-Rails makes it easy to 
generate Ajaxified HTML interfaces that provide improved 
interactivity over standard web interfaces. 

 
Figure 5: Portlet interface to the charge density service 

created for the VLab collaborative computational portal. 

6. FUTURE WORK 
Interactive remote visualization through web services has proved 
rather challenging. In our current implementation of WATT, 
output services depend on clients to invoke a render method and 
download resulting bitmap images. This view-on-demand method 
allows clients and services to be less synchronous, but the frame 
rate is rather low (< 3 fps), inefficient and fails to provide fully 
interactive manipulation of objects. In addition, recall that WATT 
generated web services maintain state. Research into AJAX and 
portal based client interfaces have motivated this setup, but it is 
clear that improvement is necessary. Our future plan is to 
experiment with highly synchronous clients and services that 
initiate communication via an asynchronous web service protocol 
like SOAP, and open direct socket connections to allow a client to 
receive streaming images from the service similar to a VNC 
connection. A second connection would pipe client input (mouse 
and keyboard) to the server for interactivity. 



We have initiated a project to investigate the auto-generation of 
client graphical interfaces. We are starting with Ruby-on-Rails 
due to its strong support for databases and Ajax. Once the GUI is 
automatically generated, it will be natural to develop interface 
skins and store these in databases for use by the user community. 
We are also looking into automatic unit testing of the auto-
generated service.  

 
Figure 6: Initial results of Ruby-on-Rails interface. 

Also in development is Kill-A-Watt (KWATT), to alleviate some 
of the deficiencies of WATT.  KWATT is an attempt to avoid 
details of cross-language compilation by using the official Tcl 
interpreter via the C++/Tcl library. The C++/Tcl Library allows 
bi-directional communication between a C++ application and the 
Tcl environment. KWATT is not a compiler like WATT, but a 
stand-alone web service with a set of web-methods published via 
gSOAP. Part of KWATT's desired functionality is the ability to 
spawn a new web service to evaluate input Tcl. Currently, during 
evaluation of a Tcl script KWATT interprets the code structure 
and integrates communication details directly via evaluated Tcl 
calls to the TclSOAP library. Since KWATT controls the Tcl 
interpreter, it has access to the full list of Tcl commands and types 
and can load additional commands from other packages like VTK. 
When KWATT consumes Tcl input to generate web methods, the 
Tcl interpreter extends the list of commands previously defined. 
This implies that KWATT has the potential to be patched or 
updated remotely without downtime. 

Preliminary work on Kill-A-WATT has demonstrated it 
is more promising for development to evaluate scripts directly 
within the Tcl interpreter controlled by a C++ application than to 
continue translating from Tcl to C++. The design of KWATT 
leverages commands, types and packages already available to the 
Tcl interpreter. Support for the SOAP protocol is limited in Tcl—
TclSOAP is more intended as an RPC package than for message 
passing, even lacking a published WSDL. In light of this, 
KWATT connects service methods to the gSOAP library and 
when invoked, these C++ methods evaluate corresponding Tcl 
procedures within the Tcl interpreter. To broaden application 
areas, we are investigating the use of other C++ libraries including 
Boost.Python [1] to interpret additional scripting languages. One 
goal of KWATT is to allow developers to choose the most 
appropriate language for their core code and then automatically 
configure the corresponding interpreter and SOAP bindings for a 
complete web service. 

7. CONCLUSION 
In summary, the WATT compiler is a utility for automatically 
generating visualization web services based on standalone VTK 
Tcl scripts. We have explained our motivation to originally 
develop WATT as a Tcl to C++ translation utility, and later as a 
tool to automatically integrate the SOAP protocol into translated 
code. Design and implementation details were discussed including 
a brief presentation of WATT's web-based front-end, WATT 
Live, and work in progress to automatically generate client user 
interfaces based on directives within the Tcl input. We also 
presented an application of WATT to generate a visualization web 
service for charge density output by quantum calculations within 
the VLab consortium’s web portal. 
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