
WATT: A Compiler for Automated Visualization Service
Generation

Evan F. Bollig
School of Computational

Science
Florida State University
Tallahasse, FL 32306

+1 850 644 7018
bollig@scs.fsu.edu

Martin D. Lyness
Minnesota Supercomputing

Institute
University of Minnesota
Minneapolis, MN 55455

+1 612 624 6730
linux@msi.umn.edu

Gordon Erlebacher
School of Computational

Science
Florida State University
Tallahassee, FL 32306

+1 850 644 0186
erlebach@scs.fsu.edu

David A. Yuen
Minnesota Supercomputing

Institute
University of Minnesota
Minneapolis, MN 55455

+1 612 624 9801
davey@msi.umn.edu

ABSTRACT
Service-oriented application development is a time consuming
task that changes little between projects. In general, development
is a two step process where developers first create the core
functionality of the service and then routinely integrate details for
distribution, transport protocols and user interfaces. Addressing a
need to port standalone applications to web services, we have
developed a compiler to automate the generation of Web Services.
This compiler is called the Web Automation and Translation
Toolkit, or WATT. Originally designed as a utility for porting Tcl
scripts for the Visualization Toolkit (VTK) to equivalent but more
efficient C++, WATT has been extended to seamlessly integrate
the SOAP transport protocol to create working visualization web
services. Within this document, we present details of the WATT
compiler, including motivation, goals and example applications.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code
generation, I.3.8 [Computer Graphics]: Applications

General Terms
Algorithms, Performance, Experimentation, Human Factors

Keywords
Web Service, Automation, SOAP, GUI, Visualization.

1. INTRODUCTION
Service-oriented architectures that address workflow execution
and problem solving are becoming increasingly popular for
scientific computing. As seen in the architectures of the VLab
[26], TeraGrid [31] and eMinerals [8] initiatives, many issues
related to Grid computing and solving scientific problems have
already been investigated. While such consortiums investigate
specialized topics and approach solutions differently, their general
goals have considerable overlap, such as task automation, public
access to utilities and distributed computation that conform to
standards. Task automation pertains to the development of

workflows, load balancers, compilers and other technologies that
take control from users and abstract the complexities of the
underlying work. Public access to utilities usually refers to public
repositories from which they can be downloaded, or web
interfaces to control the execution of such utilities from a remote
location.

Working with the VLab consortium, we have concentrated on the
development of visualization tools, including 2D and 3D
representations through hand-crafted, install-on-demand, Java
WebStart [18] clients; and simple web page interfaces that utilize
remote web services to perform post-processing and data
rendering. In the case of WebStart clients, data is stored in remote
repositories, downloaded to the client and visualized with
packages such as VisAD [14], Prefuse [13] and the Java bindings
for OpenGL (JSR-231/JOGL) [16]. To better leverage existing
desk-side approaches to visualization, we have created web
services that translate scripts written to drive the free and popular
Visualization Toolkit (VTK) [28] libraries. These services
implement a client-server paradigm where one or several clients
connect to a server, which handles most of the computational
load.

The development of VTK services generally follows a simple
process. First, a VTK Tcl script is written to render data correctly.
Second, the Tcl is translated by hand into equivalent but more
efficient C++ using a one-to-one mapping between methods in Tcl
and methods in C++. Third, additional code is integrated to enable
communication via the SOAP protocol and to define web-
methods. Finally, resulting source is compiled into a complete
web service executable (on the server side).

Since this process does not change from one service to the next,
we automated the above four steps with a newly developed
compiler referred to as WATT (the Web Automation and
Translation Toolkit). With WATT, developers need only concern
themselves with client side programming with no knowledge of
client-server communication. All features of the WATT compiler
help the developers concentrate solely on their data represen-
tations; WATT takes care of the rest.

Ideally, developers of distributed applications should develop
code on a local machine and leave the details of distribution,
communication and integration. At this stage, we do not claim to
have a full solution to the problem of automatic software
generation; however, the WATT compiler already handles many
of the issues related to automating the generation of web services
from standalone input code. WATT translates standalone VTK
based Tcl scripts into C++ and automatically integrates the

Bollig, E. F., Lyness, M. D., Erlebacher, G., Yuen, D. A., WATT:
A Compiler for Automated Service Generation, International Workshop
on Grid Computing Environments 2007, Nov., 11-12, 2007, Reno, NV,
USA. An electronic version of this document will be available at
http://casci.rit.edu/proceedings/gce2007

necessary code to form a complete visualization web service. In
this paper, we introduce the WATT compiler, describe its
features, design and implementation, and illustrate WATT in
action through examples of the compiler's use within VLab. We
also present an ongoing effort to automate the generation of
graphical client interfaces based on directives embedded in the
input Tcl code.

2. RELATED WORK
The concept of the WATT compiler is not unique. For example,
the language-to-language compiler SWIG [4] has the ability to
compile standard C/C++ code and produce wrapped code for a
variety of output languages including Tcl, Python, Ruby, etc.
However, SWIG does not support the compilation of Tcl to C++,
a common problem with all compilers found in our effort to use
existing software.

Since the Tcl language was written in C++, it seems logical to use
the low level Tcl libraries and headers directly, or a higher level
abstraction like C++/Tcl [9], MkTclApp [25] or Bridge-Tcl [5]
that allow C++ to call Tcl and vice-versa. However, in our push
for efficient visualization web services we do whatever it takes to
cut corners and optimize code. Using Tcl from within C++
requires evaluation of the scripted language within the Tcl
interpreter; translating Tcl to C++ bypasses the interpreter and
executes directly. Translating to C++ directly also forces us to
choose C++ SOAP libraries over Tcl implementations like
TclSOAP [30], tWSDL/TWiST [33] or Gerald Lester's Web
Services for Tcl [22].

Related to the automation of service deployment, the Enunciate
[11] project lets developers write their web service code in Java,
and then completes the task of deployment, servlet configuration,
packaging and interoperability with other services/clients. The
Enunciate project automatically generates SOAP, REST and
JSON endpoints for every service, but at the time of this writing
still requires users to define and complete the web methods
themselves. WATT uses the input script to generate the web
methods for SOAP only, and depends on WATT Live to deploy
the service.

3. TECHNOLOGIES USED
The Visual Toolkit (VTK) is a visualization package that is free,
quite popular and feature-rich. It supports a wide range of
visualization techniques, such as volume rendering, isosurfaces
and streamlines, many of which take advantage of the hardware of
latest commodity video cards. Both on-screen and off-screen
rendering are supported. VTK is well supported on most operating
systems (Windows, Linux, OSX, etc.) In addition to the above,
VTK includes a wide array of input and output modules to handle
the most commonly used data formats for bitmaps (JPEG, PNG,
etc.) or 3D models (VRML, CAD, etc.). In addition, the C++
VTK sources can be optionally compiled to include bindings for
Tcl, Python, and Java. Other projects provide interfaces to VTK
from Ruby [36], and Perl [12]. The developers of VTK have
expended substantial effort to make their software usable by a
wide audience.

The Tool Command Language (Tcl) [32] is a high level scripting
language quite popular for interfaces to scientific and
visualization toolkits like VTK, Amira [2] and VMD [15]. Tcl is
loosely typed and seldom differentiates between number values,
logic, strings or objects. In addition, everything in Tcl is
considered a command; commands instruct invocation of
procedures on values, evaluation of logic,
instantiation/construction of objects, etc. The structure of Tcl
makes it easy to expand the available commands by writing
procedures in other languages. Since Tcl is less concerned with
type than C++, writing simple applications is quite
straightforward. There is no need to include headers, manage
memory, or declare and coerce types for all functions and calls.
Also, since it is a scripting language, modifications to Tcl
programs provide developers instant feedback with either a
working product or prototype code.

SOAP-enabled C++ services are implemented with the gSOAP
library [34]. gSOAP is a highly efficient toolkit designed for
SOAP message passing in codes that require high performance.
gSOAP requires some input from the user, specifically, a
description header to specify web-method signatures, types and
serializable objects (i.e., objects that can be converted to XML).
In addition, users also provide the content of each web-method,
but not the code that binds a SOAP request or response with the
method. A compiler (“soapcpp2”) included in the gSOAP
distribution, consumes and compiles the provided header and
creates wrappers to connect incoming or outgoing messages with
the specified serializable types and available web-methods.
gSOAP outputs separate C++ headers and implementations that
integrate seamlessly with either a service (callee) or a client
(caller). This generated code also includes details of the low level
socket connections that enable two-way messaging. Most aspects
of SOAP and low level communication are hidden from the users.
Unfortunately, users must still create their own serializable types,
and specify to SOAP when to listen for an incoming message.
gSOAP interprets what is received and either distributes it to the
correct RPC function or the user can intervene and handle the
message. With automatically generated client- and server-side
bindings for C++ programs, gSOAP is an important component in
the complete automation of the transport layer. WATT aims to go
the last mile and remove the user from all aspects of web service
generation, except writing the initial visualization Tcl script.

4. WATT ARCHITECTURE
Figure 1 illustrates how WATT transforms a Tcl script into a fully
functional web service. There are four steps. First, the input script
is submitted to the WATT compiler. WATT converts the script
into two types of output files: the first contains a C++ class with
methods that are direct translations of the Tcl procedures. In
addition, WATT generates stubs that wrap the aforementioned
methods to be called by SOAP. These stubs are referred to as
web-methods. The second type is a collection of gSOAP sources
required by the gSOAP compiler to build the web service. The
gSOAP sources include the web-methods description header,

Figure 1: WATT execution workflow

other files containing the declaration and implementations of
standard serializable objects (including Vector, Matrix and
Base64Binary types) and the WATT header, which provides
methods to automatically set up threads to handle SOAP
messages. The web-method description header is then sent to the
gSOAP compiler, which generates the necessary sources to
generate, parse, send and receive SOAP messages. Finally, all
generated sources from WATT and gSOAP are consolidated.
Together they form a working web service implementation that
can be compiled by most C++ compilers.

WATT begins Tcl conversion by sending the input code through
both a custom-written parser and a type-checker. Based on
immediate contextual use, WATT can determine the type for most
of the tokens within the script. Type and context information are
stored in an abstract syntax tree generated during a first pass
through the script. Once the entire file is parsed, WATT rescans
the file one or more times using the latest tree information until
either all types are determined or the undetermined types are
tagged as “WATT_AMBIGUOUS”, which in turn generates an
error on compilation. In this case, the user can choose to manually
update the source. A typical case where inferring type is not
possible are function return values.

When a service is generated from the Tcl input script, WATT
creates a list of stubs that wrap all Tcl procedures ("proc”
commands) as gSOAP web methods. The resulting WSDL
contains references to the wrapping stubs and also to the default
methods defined for all services generated by WATT. Any
dependencies between procedures (i.e., one procedure may
depend on another to be called first) are not represented in the
WSDL. Instead, dependencies are handled by the author of the Tcl
script by either calling them in the first few lines of the dependent
procedure contents, or by calling the dependencies outside of the
procedure declarations. Tcl interprets any command outside of
procedures or functions as global commands that are evaluated
once. When WATT parses such commands it places them in an
initialization function in the service and they are executed once
upon startup. In addition, our visualization services are not
stateless; they maintain state to avoid unnecessary loading of data
files, rendering, and other time-consuming tasks. Developers
should use this to their advantage when writing scripts.

Given that WATT does not support all the features of Tcl, we
avoid a direct translation from Tcl to binary code. Instead, the Tcl
script is translated to C++. This gives users the opportunity to
enhance the resulting C++ with more general constructs that could
not be translated, due to an incomplete Tcl to C++
implementation. Missing support includes loops, conditionals,

variables embedded within strings (e.g. “hello $name”), and
commands or names containing variables (e.g. set my$name
value). The C++ source and automatic build instructions make it
easy for users to generate complex web services by first creating a
simplified Tcl script with method names and simplified
implementations, automatically translating these scripts to C++
and associated SOAP routines, and then changing the C++
method implementations according to desired specifications. The
generation of the charge density service created for VLab follows
such an approach.

Once the Tcl has been typed, WATT uses a registry and interrupt
system to generate the C++ source code. The registry is a
collection of associations between expected formats and
commands in Tcl and C++. The interrupt system allows the
default translation of methods within WATT to be overridden. For
example, regular C++ constructors are invoked with the “new
className()” format, whereas standard VTK constructors are
called using “vtkName::New()”. An interrupt catches calls to
VTK constructors and translates them to the C++ format.

Another use of the interrupt system allows for the generation of
web method wrappers and a gSOAP description header based on
specific Tcl input patterns, rather than generate one web method
wrapper for each Tcl procedure, which is the default behavior.
Recall that a web method is callable from the final web service.
For example, one might only publish methods that contain a
certain prefix, suffix or keyword. The gSOAP bindings are
entirely optional, which allows users to first develop an interactive
Tcl script, and let WATT compile it into an interactive C++
application. When developers are sure the output C++ application
works correctly, the compiler can merge in the bindings for
gSOAP. It is important to note that WATT also provides a
uniform set of methods that are available in all generated services
through the use of a templating system.

The format of the output files generated by WATT is not hard-
coded, but is instead read in from a template file at run time. The
template is a C++ code fragment that contains directive variables
to specify the locality of content. Variable names appear as
“$$VARIABLE_NAME$$” within the template. When WATT
translates Tcl to C++, it stores the generated content in various
output buffers, each buffer corresponding to a specific variable
name. WATT then reads the template into memory and replaces
all variables found in the template with the corresponding buffer
contents. Typical templates control where WATT places function
declarations, header files, global variable declarations, and the
body of the code. Different templates are used if WATT is
compiling a web service or a standalone application. The web

service template defines the set of standard web-methods for all
WATT generated services.

CMake [23] manages all generated source files generated by
WATT and gSOAP, in addition to various operating system
dependencies. Once an inventory of available resources is
complete, CMake generates a Makefile to build binaries as
suggested in a description file. A Tcl script designed to be a web
service could easily have 20 or more web-accessible procedures.
Prior to compilation by the gSOAP compiler, these procedures are
converted to C++ within one file and joined by at least five
supplementary files including gSOAP and user interface
descriptor files. With 20 or more procedures accessible from the
web service, the gSOAP compiler can easily generate 40
additional source files.

The CMake file requires all binaries to depend on the shared
library, libwatt.so, provided with WATT. This library contains
definitions for a core set of VTK classes, serializable objects, etc.
for general use. For example, “CurlUtility”, which is an
abstraction to the cURL library [10] to allow easy fetching of
remote files to the service's host. We discuss an example VTK
class included in the library in the next section.

Finally, the generation of visualization services using WATT can
be accomplished using WATT Live [37], which is a set of Perl
based CGI scripts that allows users to upload Tcl scripts typed
into the input form in a browser. WATT is executed on the input
data and users receive feedback about the compilation process.
All output files generated by WATT can be downloaded so that
users can compile and install the generated service on their own
web servers. Alternatively, WATT Live can compile and execute
the service on our server. The latter option is primarily intended
for verification of functionality and debugging rather than for
production deployment and use. All services generated by WATT
have an internal counter to shut the service down after one hour of
inactivity.

When a service is deployed by WATT Live, users can also test a
client connection to the service as shown in Figure 2. Perl scripts
control the execution of a C++ client program output by WATT
and compiled against the gSOAP generated bindings. The client is
only aware of the default web-methods common to all WATT
generated services, and the WATT Live page calls only two of
them: one to monitor the service’s visualization, and the second to
change the camera position. The Tcl code used to create the
service is available from the WATT Live front page as an
example of supported Tcl syntax, and to demonstrate the output
generated by the WATT compilation process.

Security was not specifically addressed during the development of
WATT. Instead, the assumption was that users of WATT would
be responsible for integration into their own secure environment.
The initial emphasis was to deliver a functional product, followed
by support for additional types and syntax. If desired, users have
the option to modify WATT's templates to enhance security, or
they can modify generated services individually; however, out of
the box, Web Services generated by WATT utilize only the
default mechanisms provided by gSOAP. Security can also be
achieved by integrating WATT within an existing secure portal. In
our case, the intent is to include WATT as a feature in the VLab
portal. It should be noted that WATT does not currently support
the translation of potentially dangerous commands such as "exec"
or "interp". For syntax supported by WATT, WATT Live allows

the generated service to be compiled and tested on a small range
of ports on our test server.

Figure 2: Testing the WATT compiled VisQuad.tcl with

WATT Live

5. EXAMPLE APPLICATIONS
Two example applications are now considered to demonstrate
functionality and discuss restrictions placed on scripts by WATT.
First, a simple example helps readers understand the input and
output structure. Second, an application of WATT within the
VLab consortium is considered. For more details readers are
referred to the WATT Live webpage [37] where the Tcl examples
are available to study in detail and can be compiled into C++
source.

5.1 VisQuad
WATT was written as a VTK Tcl compiler/translator; therefore, it
is best to start with an example application taken from the VTK
documentation. To this end we comment on the compilation of
VisQuad.tcl [28], a standard example in VTK distributions. The
script is 33 lines of executable Tcl and demonstrates contour
filtering applied to an implicit function for 3D isosurface
representations. Figure 2 shows the results returned by the
VisQuad service using WATT Live.

Compiling VisQuad.tcl with WATT requires the “#WATT_EOF”
directive to be added before the last three lines of the script. This
directive indicates to WATT that it should assume the end of file
has been reached and it no longer needs to parse Tcl. It is
interpreted by Tcl as a comment and has no effect on normal
script execution. Standalone Tcl scripts can be written as a
combination of Tcl and Tk commands where Tcl manages
computation details and Tk manages user interfaces. WATT does
not support Tk commands. By integrating the directive into a
script, Tk can generate a user interface in standalone mode, and
WATT can finish parsing the file for a web service without errors.

When WATT compiles a script, the output C++ is organized in
the format described in Listing 1. For every VTK type that
appears in the script, a corresponding header entry is placed in the
“Includes” section. WATT embeds the translated Tcl within a
C++ class type. Commands not contained in a Tcl “proc” are

called from the C++ class “Constructor” to imitate Tcl’s single
execution of the same commands. Any variables or objects used
in the constructor become a part of “Global Declarations” and are
accessible to “Member Functions” (direct translations of Tcl
procedures). The “Main Method” initializes an instance of the
WATT class and listens for SOAP messages. When messages are
received, they are distributed to a web-method in the “Web
Method Wrappers” section where a wrapping method calls its
corresponding member function in the WATT class, converting
output to a serializable type known by gSOAP.

Listing 1: General Structure of WATT Output

{Includes}
{WATT_CLASS Definition
 [Global Declarations]
 [Constructor]
 [Member Functions]}
{Main Method}
{Web Method Wrappers}

Listing 2 provides output snippets from the application of WATT
to VisQuad.tcl. Comments in bold face show code structure. Lines
8 and 10 demonstrate the use of type casting to match function
input parameters to C++ type signatures. VisQuad.tcl does not
contain procedures; thus, Member Function and Web Method
Wrapper sections contain only the set of web-methods common to
all WATT services. The web-method on line 20, “ns__render”,
calls the method “render” on line 12. Inside the web-method, the
returned “vtkUnsignedCharArray” type is converted to a byte
array and sent to gSOAP under the alias “ns__renderResponse”.
The function on line 17 executes the gSOAP initialization and
starts an infinite loop for requests on the specified port.

5.2 Charge Density Visualization
The primary motivation behind developing WATT is to create
visualization services for the VLab consortium. One such example
was a 400+ line Tcl script that provides Volumetric, Isosurface,
and Ortho-sliced renderings for scalar values of charge density
distributions computed by PWscf [27], the core computational
engine of VLab. Although various programs like XCrysDen [21]
and JMol [20] are quite capable of rendering the output file in
various modalities (i.e., crystal structure or atom positions), none
provide the customizable versatility of VTK nor the ability to
render visualizations off-screen as a web service. One of the
requirements of VLab is to provide all web services within a web
portal. In response to this, we applied the WATT compiler to the
Tcl script and produced a service specialized for charge density
visualization.

The service accepts standard Gaussian Cube [7] input that
describes primitive cell vectors, atom positions and uniformly
spaced volumetric data corresponding to charge within the cell. At
the time of this writing, VTK version 5.0 has a standard Gaussian
Cube reader built-in, which we found to improperly transform the

Listing 2: Partial C++ Output Generated for VisQuad.tcl

// Includes
1. #include "vtkQuadric.h"
2. #include "vtkContourFilter.h"
 (…)
// WATT_CLASS Definition:
3. class MyWattClass {

// Global Declarations
4. vtkQuadric *quadric;
5. vtkContourFilter *contours;
 (…)
// Constructor
6. MyWattClass () {
 (…)
7. quadric = vtkQuadric::New();
8. quadric->SetCoefficients((float) .5, (float) 1, (float) .2,

(float) 0, (float) .1, (float) 0, (float) 0, (float) .2, (float) 0,
(float) 0);

 (…)
9. contours = vtkContourFilter::New();
10. contours->GenerateValues((int) 5, (float) 0.0, (float)

1.2);
 (…)
11. } // end Constructor

// Member Functions:
12. vtkUnsignedCharArray* render () {…}
 (…)
13. } *wattObject;

// Main Method:
14. int main(int argc, char *argv[])
15. {
 (…)
16. wattObject = new MyWattClass();
17. runSerialSoap(port, "MyService.wsdl");
18. }

// Web Method Wrappers:
19. int ns__render (SOAP* soap, ns__renderResponse*

result) {…}
 (…)

input data. Unfortunately, the default reader ignores the
coordinate system specified by primitive vectors within the file
and assumes the data to be in Cartesian coordinates. We
substituted a home grown reader. The class is available through
the core library, "libwatt.so", included by all programs generated
by WATT. Since the routines we use from VTK depend on the
Cartesian coordinate system, our reader linearly interpolates data
from its original oblique coordinate system into a Cartesian
representation. Data are shown in a orthorhombic box that
assumes that the primitive cell (based on the Face Centered Cubic
structure [29] is periodic in all directions and then clipped to the
dimensions of the bounding box. Figure 3 shows a simple Silicon
diamond structure created with high-energy cutoffs on a fine mesh
of 729,000 points and illustrates the diamond-shaped primitive
cell (gray tube wire frame). Contours are drawn in the clipped
cube box (thin white bounding box). Figure 4 shows an example

of orthorhombic structure in Perovskite data (MgSi03), whose
primitive cell is identical to the clipped box. Figures 3 and 4 were
produced by the on-screen interactive C++ code translated from
Tcl by WATT. Output produced off-screen by the completed web
service is the same but requires a client application/servlet to
display the images.

Figure 3: Isosurface representation of simple Silicon diamond
rendered by the charge density application output by WATT.

Figure 4: Volumetric representation of Perovskite (MgSiO3)

primitive cell as produced by charge density application
output by WATT.

Most Web services require a graphical user interface before they
become widely adopted. We have designed a simple web-based
user interface to the charge density application, shown in Figure 5.
The implementation only depends on a JavaScript-enabled web
browser. Java and JSP [17] were used to implement the interface
as a portlet within the VLab portal. Simulations can be run from
within the portal and the results immediately rendered within the
same window. The different modules—indicated by a dashed
border—connect to different web methods. Functionality is
limited at this time; however, the available options include
loading of new data files, on/off toggling of options, data slicing
with a cut plane with translation of the slice, and selecting the
viewing direction. Changes to any of the modules result in a
JavaScript call to a backing Java servlet that in turn makes a call
to the web service using the Apache Axis libraries [3].

The modular design of the handwritten Java portlet comes from
our current efforts to identify reusable interface components and
automate not just service-, but also client-generation with WATT.
For example, html input forms composed of one or many input

text fields plus a submit button can be used to interface with
methods that require one or many input parameters. Toggles
(radio buttons or checkboxes) correspond to a web-method with a
single boolean input, or two web-methods that turn represen-
tations on or off respectively. Using directives embedded within
Tcl comments, we have been investigating the auto-generation of
a Ruby-on-Rails interface, shown in Figure 6. Client interface
directives are specified using comment lines with the structure
“#WATT_GUI_{...}''. Current suffixes recognized by WATT
include: ``SETVALUE'' for a form (text fields and submit button)
that allows user input, ``PRESET'' for predefined values in a pull-
down menu (does not allow user input), “TOGGLE_ON” and
“TOGGLE_OFF” for toggle switches (radio buttons or
checkboxes), and “RENDERED_IMAGE” for displaying an
image. To bind a module with a web-method, the directive must
occur within the Tcl procedure statement. As WATT parses the
input Tcl script, it filters off directives and writes them to a
separate file paired with the associated C++ web-method
declarations. This file is read by a Ruby script that parses off the
directive information and associated web-method name,
parameters and return type. Ruby-on-Rails makes it easy to
generate Ajaxified HTML interfaces that provide improved
interactivity over standard web interfaces.

Figure 5: Portlet interface to the charge density service

created for the VLab collaborative computational portal.

6. FUTURE WORK
Interactive remote visualization through web services has proved
rather challenging. In our current implementation of WATT,
output services depend on clients to invoke a render method and
download resulting bitmap images. This view-on-demand method
allows clients and services to be less synchronous, but the frame
rate is rather low (< 3 fps), inefficient and fails to provide fully
interactive manipulation of objects. In addition, recall that WATT
generated web services maintain state. Research into AJAX and
portal based client interfaces have motivated this setup, but it is
clear that improvement is necessary. Our future plan is to
experiment with highly synchronous clients and services that
initiate communication via an asynchronous web service protocol
like SOAP, and open direct socket connections to allow a client to
receive streaming images from the service similar to a VNC
connection. A second connection would pipe client input (mouse
and keyboard) to the server for interactivity.

We have initiated a project to investigate the auto-generation of
client graphical interfaces. We are starting with Ruby-on-Rails
due to its strong support for databases and Ajax. Once the GUI is
automatically generated, it will be natural to develop interface
skins and store these in databases for use by the user community.
We are also looking into automatic unit testing of the auto-
generated service.

Figure 6: Initial results of Ruby-on-Rails interface.

Also in development is Kill-A-Watt (KWATT), to alleviate some
of the deficiencies of WATT. KWATT is an attempt to avoid
details of cross-language compilation by using the official Tcl
interpreter via the C++/Tcl library. The C++/Tcl Library allows
bi-directional communication between a C++ application and the
Tcl environment. KWATT is not a compiler like WATT, but a
stand-alone web service with a set of web-methods published via
gSOAP. Part of KWATT's desired functionality is the ability to
spawn a new web service to evaluate input Tcl. Currently, during
evaluation of a Tcl script KWATT interprets the code structure
and integrates communication details directly via evaluated Tcl
calls to the TclSOAP library. Since KWATT controls the Tcl
interpreter, it has access to the full list of Tcl commands and types
and can load additional commands from other packages like VTK.
When KWATT consumes Tcl input to generate web methods, the
Tcl interpreter extends the list of commands previously defined.
This implies that KWATT has the potential to be patched or
updated remotely without downtime.

Preliminary work on Kill-A-WATT has demonstrated it
is more promising for development to evaluate scripts directly
within the Tcl interpreter controlled by a C++ application than to
continue translating from Tcl to C++. The design of KWATT
leverages commands, types and packages already available to the
Tcl interpreter. Support for the SOAP protocol is limited in Tcl—
TclSOAP is more intended as an RPC package than for message
passing, even lacking a published WSDL. In light of this,
KWATT connects service methods to the gSOAP library and
when invoked, these C++ methods evaluate corresponding Tcl
procedures within the Tcl interpreter. To broaden application
areas, we are investigating the use of other C++ libraries including
Boost.Python [1] to interpret additional scripting languages. One
goal of KWATT is to allow developers to choose the most
appropriate language for their core code and then automatically
configure the corresponding interpreter and SOAP bindings for a
complete web service.

7. CONCLUSION
In summary, the WATT compiler is a utility for automatically
generating visualization web services based on standalone VTK
Tcl scripts. We have explained our motivation to originally
develop WATT as a Tcl to C++ translation utility, and later as a
tool to automatically integrate the SOAP protocol into translated
code. Design and implementation details were discussed including
a brief presentation of WATT's web-based front-end, WATT
Live, and work in progress to automatically generate client user
interfaces based on directives within the Tcl input. We also
presented an application of WATT to generate a visualization web
service for charge density output by quantum calculations within
the VLab consortium’s web portal.

8. ACKNOWLEDGEMENTS
Many thanks to Pierre Carrier for the charge density data and info.
Thanks as well to the rest of the VLab group for their support and
feedback on this project.

This work is supported by NSF through the ITR grant NSF-
0426867.

9. REFERENCES
[1] Abrahams, D., Grosse-Kunstleve, R. W., "Building Hybrid

Systems With Boost Python", Boost Consulting, 2003
[2] Amira Homepage: 3D Data Visualization,

http://www.amiravis.com
[3] Apache Axis, http://ws.apache.org/axis

[4] Beazley, D. M. 1996. SWIG: an easy to use tool for
integrating scripting languages with C and C++. In
Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4 (Monterey, California, July 10 -
13, 1996). USENIX Association, Berkeley, CA, 15-15.

[5] Bridge-Tcl. http://sourceware.org/sid/component-
docs/bridge-tcl.html

[6] Bollig, E.F., Jensen, P.A., Lyness, M.D., Nacar, M.A., da
Silveira, P.R.C., Kigelman, D., Erlebacher, G., Pierce, M.,
Yuen, D.A., da Silva, C.R.S. 2007, VLAB: Web Services,
Portlets, and Workflows for Enabling Cyber-infrastructure in
Computational Mineral Physics, Physics of the Earth and
Planetary Interiors (2007),
DOI=http://dx.doi.org/10.1016/j.pepi.2007.03.005

[7] Bourke, P., Gaussian Cube Files (Dec. 2003),
http://local.wasp.uwa.edu.au/~pbourke/dataformats/cube

[8] Calleja, M., Bruin, R., Tucker, M. G., Dove, M. T., Tyer,
R., Blanshard, L., van Dam, K. Kleese, Allan, R. J.,
Chapman, C., Emmerich, W., Wilson, P., Brodholt, J.,
Thandavan, A. and Alexandrov, V. N. 2005, Collaborative
grid infrastructure for molecular simulations: the eMinerals
minigrid as a prototype integrated compute and data grid.
Mol. Simulat. 31 (2005), p. 303.

[9] C++/Tcl, http://cpptcl.sourceforge.net
[10] cURL and libcurl, http://curl.haxx.se
[11] Enunciate, http://enunciate.codehaus.org

[12] Graphics::VTK - Perl Interface to Visualization Toolkit,
http://search.cpan.org/~cerney/Graphics-VTK-
4.0.001/VTK.pm

[13] Heer, J., Card, S. K., and Landay, J. A., Prefuse: A Toolkit
for Interactive Information Visualization, ACM Human
Factors in Computing Systems (CHI), 421-430, 2005

[14] Hibbard, W., Rueden, C., Emmerson, S., Rink, T., Glowacki,
D., Whittaker, T., Murray, D., Fulker, D. and Anderson, J.,
Java distributed components for numerical visualization in
VisAD. Communications of the ACM, Volume 48, Issue 3,
2005, pp.98-104.
DOI=http://doi.acm.org/10.1145/1047671.1047676

[15] Humphrey, W., Dalke, A. and Schulten, K., VMD - Visual
Molecular Dynamics, J. Mol. Graphics, 1996, vol. 14, pp.
33-38. http://www.ks.uiuc.edu/Research/vmd/

[16] Java Bindings for OpenGL (JOGL), https://jogl.dev.java.net/

[17] Java Server Pages Technology,
http://java.sun.com/products/jsp/

[18] Java WebStart Technology,
http://java.sun.com/products/javawebstart/

[19] Jensen, P A, Bollig, E F, Yuen, D A, Erlebacher, G, Momsen
A R (2006). Automatic Generation of Remote Visualization
Tools with WATT, EOS Trans. AGU, 87(52), Fall Meet.
Suppl., Abstract IN14A-06 2006.

[20] JMol: an open-source Java viewer for chemical structures in
3D, http://jmol.sourceforge.net/

[21] Kokalj, A., Computer graphics and graphical user interfaces
as tools in simulations of matter at the atomic scale, In
Proceedings of the Symposium on Software Development for
Process and Materials Design, Comp. Mater. Sci. 28(2), 155-
168 (Oct. 2003). DOI=http://dx.doi.org/10.1016/S0927-
0256(03)00104-6

[22] Lester, G., Web Services for Tcl,
http://members.cox.net/~gerald.lester/WebServicesForTcl.ht
ml

[23] Martin, K., Hoffman, B., Mastering CMake 2.2, Kitware,
Clifton Park, New York. 2006. ISBN 1-930934-16-5.

[24] Mesa 3D Graphis Library, http://www.mesa3d.org/

[25] MkTclApp: A Tool for Mixing C/C++ with Tcl/Tk,
http://www.hwaci.com/sw/mktclapp/

[26] Nacar, M., Aktas, M., Pierce, M., Lu, Z., Erlebacher, G.,
Kigelman, D., Bollig, E. F., De Silva, C., Sowell, B., and
Yuen, D. A., VLab: Collaborative Grid Services and Portals
to Support Computational Material Science, Concurrency
and Computation: Practice and Experience 19(12), 1717-
1728 (2007). DOI=http://dx.doi.org/10.1002/cpe.1199

[27] PWscf (Plane-Wave Self-Consistent Field),
http://www.pwscf.org/

[28] Schroeder, W., Martin, K. and Lorensen, B., The
Visualization Toolkit, An Object-Oriented Approach to 3D
Graphics (4th edition), Kitware (2002). ISBN 1-930934-19-
X

[29] Sque, S., Structure of Diamond (Mar. 2006),
http://newton.ex.ac.uk/research/qsystems/people/sque/diamo
nd/structure

[30] TclSOAP, http://tclsoap.sourceforge.net/
[31] TeraGrid, http://www.teragrid.org/
[32] The Tool Command Language (Tcl), http://www.tcl.tk/

[33] tWSDL, http://code.google.com/p/twsdl/

[34] van Engelen, R. A. and Gallivan, K., The gSOAP Toolkit for
Web Services and Peer-To-Peer Computing Networks. In
Proceedings of the 2nd IEEE International Symposium on
Cluster Computing and the Grid (CCGrid2002), 128-135,
(May 2002), Berlin, Germany.

[35] VLab Homepage, http://vlab.msi.umn.edu

[36] VTK-Ruby, http://www.gfd-
dennou.org/arch/ruby/products/ruby-vtk/

[37] WATT Live, http://vlab2.scs.fsu.edu/watt-live,
http://lilli.msi.umn.edu/watt-live

[38] WATT Homepage, http://vlab.sourceforge.net/WATT

