WATT: A Compiler for Automated

Visualization Service Generation

Evan F. Bollig!, Martin D. Lyness?, Gordon

Erlebacher! and David A. Yuen?

GCE °07
11 November 2007
Reno, NV

!'School of Computational Science, Florida State University
2 Minnesota Supercomputing Institute, University of Minnesota

Background

m [arge consortiums investigate specialized topics with
similar problems:
m Task automation (workflows, load balancers, compilers, etc.)
m Public access to utilities (repositories, portals, etc.)

= Distributed computation

m [n VIab (http://vlab.msi.umn.edu) everything should
be a service

= Compute services
® Task management services

m Visualization services

Can we automate service creation?

m Process to write a visualization service:
Write VIK (Tcl) script to render example data
Convert Tcl to C++ (by hand)

Add service details (SOAP, WSDL, security, etc.)
Compile and deploy
(Repeat)

m 2 and 4 stay the same; 3 rarely changes

The Web Automation and
Translation Toolkit (WATT)

m “Compiler” (> Translator)
B Tcl to C++

m Requires type inference

® Adds gSOAP to C++

m oSOAP provides SOAP handlers, WSDL, stub and

skeleton

m WATT connects gSOAP to core code

m Code Generation

m Developers write Tcl script, WATT does the
rest. (Almost...)

WATT Execution

VTK C++
Implementations

(-h/.cpp)

Defining the Stub

m Standard set of published methods
= Allow clients calling standard methods to work with
any service

m renderBase64Binary = returns image as byte array

m jumploView = move camera to view all rendered objects
jump]
along specified vector

® and more...

m Tcl “proc” commands

m Fxpand functionality of service

m Can be associated with Ul toggles, value modifiers, etc.

Determining Types

m Register system provides type mapping hints

m “proc” types determined by last statement and
parameter usage

m Two phase type inference:

® Generate abstract syntax tree and match known
types with registers

m Walk tree again assigning types based on other
usages

Input Limitations

m Limited Tcl syntax
= No variables in strings (1.e. “hello $name”)
= No variables in names (1.e. set my$name)

= No loops or conditionals

B VTIK classes (and member functions) must be
registered or compilation fails

m Use WATT for a head start on the final C++ program.

m Unsupported content can be added by hand after rest is
compiled.

® Charge Density service followed this approach.

Templates

C++ code fragments

Variables
m $SVARIABLE NAMES$S$
m replaced with buffered
content from WATT
Contain pre-written
standard methods

Structure and content of
template can change;
default template structure
shown here

{Includes}

{WATT CLASS Definition
[GLlobal Declarations]
[Constructor]

[Member Functions]}
{Main Method}
{Web Method Wrappers}

NOTE: each line can contain one
or more variables

Simple Example (VisQuad.tcl)

package require vtk
vtkQuadric quadric

quadric SetCoefficients .51.20.100.20 0
vtkContoutFilter contours

contours GenerateValues 5 0.0 1.2
AWATT_ EOF
iren AddObserver UserEvent {wm deiconify .vtkInteract}
iren Initialize

NOTE: original is 33 lines (65 w/ comments);
WATT output is 300+ lines C++

wm withdraw .

Simple Example (Cont’d)

// Includes:
#include "vtkQuadric.h"
#include "vtkContourFilter.h"
// WATT_CLASS Definition:
class MyWattClass {
// Global Declarations:
vtkQuadric *quadric;
vtkContoutFilter *contours;
/ / Constructor:
MyWattClass () {
quadric = vtkQuadric::New();
quadric->SetCoetficients((float) .5,
(float) 1, (float) .2, (float) O, (float)

1, (float) 0, (float) 0, (float) .2,
(float) 0, (float) 0);

(..)

contours = vtkContourFilter::New();

contours->GenerateValues((int) 5, (float) 0.0,

(float) 1.2);

} // end Constructor
// Member Functions:

vtkUnsignedCharArray* render () {...}
} *wattObject;
// Main Method:
int main(int argc, char *argv(])
{

wattObject = new MyWattClass();

runSerialSoap(port, "MyService.wsdl");
h
// Web Method Wrappers:

int ns__render (SOAP* soap,
ns__renderResponse* result) {...}

(.)

WATT Live

\’:’3 - - |5._;:1 ﬁ @ * | [httpeffvlabZ. sce. fauedufwatt-livefrunClient. cgitdir={tmp/wattfsession=test 56

Peﬂ CGI SCI_‘lptS to Testing Client + Service Connection
test Custom TCl With Client Loc

WATT

Generated service

Execution Details

att-execfwattVars.sh; cd ftmpfwattftest56; echo "j 1 0 1 "

available as

Test Image (View from 10 1

download.

Port fange for te Sting ﬁ Change Camera Position Yector

services (and clients)

m VisQuad service
image shown here

Charge Density Service

m 400+ line Tcl script for VLab

m View Plane-Wave self consistent field
(PWsct) charge densities as volume,
1sosurface and orthoslice
representations.

m Reads Gaussian Cube format

® Procedures to toggle
representations and update values

® Original test for WATT
m Available as example for WATT Live

Charge Density Portlet

el m Gridsphere portlet
provides controls;
Axis servlet in back-
end calls setvice.

Manually written
Dashed lines
distinguish Ul
components.

Orthoslice depth

control depends on

manual changes to
back-end service.

Automatic Client Generation

m H#WATT_GUI_{...}
directives within “proc”
content describe Ul
components

m SETVALUE
PRESET

||
s TOGGLE
= RENDERED IMAGE

index: fill-in walue: fill_in

Components common to o o Posototon

most UI packages . N P
= HTML, Qt, Swing, etc.

Ruby-on-Rails utility (work in

progress) uses WATT S

generated file to create sty

Ajaxified web interface

Kill-A-WATT (KWATT)

m Work in progress to replace WATT

B Stand-alone web service

B Service spawns New Services

m Services (C++) control Tcl interpreter
m Tcl was written to extend C++

m [nterpreter provides full access to Tcl types and commands
without limitation
m No registers or type hints
m Use any package with Tcl bindings
= Automate compute service generation
® Procedure content can be registered in the interpreter at any
time

m Patch/update service methods without downtime

Recap

m WATT

= Automates service development.

m Many limitations still present. KWATT to address these
problems.

m WATT Live

= Compiler as a service

B Client Interface Generation

= Create user interfaces based on stub description

m Possible to generate local and web based interfaces from one
description

Acknowledgements

m Thanks to the Virtual Laboratory for Earth and
Planetary Materials (VIab) for their support
http:/ /vlab.msi.umn.edu

m This work 1s supported by NSF through the ITR
grant NSF-0426367

