
Creating Grid Resources for Use in Undergraduate
Coursework

John N. Huffman
Brown University

Box 1824
Providence, RI
02912, USA

1-401-863-7291
John_Huffman@brown.edu

Richard Repasky
Indiana University

2711 E. 10th St.
Bloomington, IN

47408, USA
1-812-856-4404

rrepasky@indiana.edu

Joseph Rinkovsky
Indiana University Purdue University

535 West Michigan Street
Indianapolis, IN

46202, USA
1-317-278-6092

jrinkovs@indiana.edu

ABSTRACT

Rendered animations are a significant part of many student and
research projects being done at Indiana University. Typically the
rendering process is very computationally intensive, but it is
allocated minimal computing resources. By creating a Condor
pool out of all student computing labs we have created a large
scale, homogeneous grid resource dedicated to the single purpose
of rendering.

 By implementing a web portal based interface to submit and
monitor rendering jobs the rendering system becomes independent
of the end users architecture, OS, and even rendering package
being used. This allows for a “learn once, run often” architecture
despite the highly complex distributed computational backend.
The web interface allows users to submit jobs with the needed
parameters, monitor the progress of the job, and display finished
frames of the animation. When the job finishes the render system
notifies the user and will present a web based preview of the final
movie, allowing the user to quickly assess the quality of the
rendered results.

The modular nature of the render system allows for easy upgrade
and additions to the rendering packages offered. New rendering
packages can typically be added within 24 hrs, without any
changes to the user interface or workflow.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – Distributed Systems

H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based Services

K.3.1 [Computers and Education]: Computer Use in Education
– Computer-assisted instruction (CAI)

General Terms
Management, Design.

Keywords
Portal, animation, condor, education, grid, rendering.

1. INTRODUCTION
In many discipline areas, such as creative art, sciences, and

business the production of animation movies is an integral part of
the research and classroom curriculum [1]. Beyond the creative
aspects of producing animations in undergraduate art classes,
animations in the form of high definition stereo movies are also
being used as a teaching tool, for outreach efforts, and for
scientific visualization [2],[3]. At many institutions, adequate
resources are not dedicated to the task of animation rendering,
which holds true at Indiana University. There are usually a limited
number of systems provided for these students to render on,
typically a single computer lab of 20-30 systems is set up with the
required software. Students find themselves having to limit the
length of their movies, or decrease the complexity of their scenes.
It is not uncommon to find students staying overnight in a
computer lab to utilize multiple machines for rendering.

Animation rendering is an embarrassingly parallel problem,
but each subtask can be quite complex. A single rendered image
can take as little as a few minutes, to several hours, depending on
the complexity of the scene. Since most animations consist of 24-
30 frames per second, even creating a movie that spans a few
minutes may require thousands of hours of computing time. Since
many of the animations produced at Indiana University are stereo
movies, the rendering process involves creating two full movies,
one for each eye, doubling the computation time needed. Storage
can also be an issue, with uncompressed HDTV movies easily
reaching the 10s of Gigabytes of storage space. Students are
typically only allocated a few GB of persistent disk storage,
making it difficult or impossible for them to work with the
original uncompress source. Finally, the software being used can
also be a particular problem for the user. Since these packages are
usually complex and expensive, only a single rendering suite is
provided for students to use, and there can be version mismatch
errors or compatibility problems with other applications.

John N. Huffman, Richard Repasky, Joseph Rinkovsky, Creating Grid
Resources for Use in Undergraduate Coursework, International
Workshop on Grid Computing Environments 2007, Nov.,11th, 2007,
Reno, NV, USA. An electronic version of this document will be available
at http://casci.rit.edu/proceedings/gce2007

To address these issues, we created the Render Portal, Figure
1. This system utilizes the spare cycles on the idle workstations
located in the various student computer labs across campus. Jobs
can be distributed and rendered without impacting their primary
function as student workstations. We utilize the Condor [4]
software system for integrating these workstations into a Condor
pool. An important requirement for this project was to create an
entire grid based rendering system that was easy to use, and can
be integrated into the classroom curriculum. While many of the
students are computer savvy, most of them are not familiar with
the complexity of submitting jobs to a large scale grid based
compute resource. Job submission, scheduling, and monitoring
are fundamental parts of grid computing, but the typical methods
to invoke these services are non-intuitive, and would only serve to
discourage novice users such as undergraduate students, from
using these resources. To achieve an easy to use interface to this
grid based resource, we implemented a web based interface. This
portal is based on the Gridsphere [5] portal frame work and
utilizes custom portlets for users to submit rendering jobs,
monitor/review the job process and when completed download
their rendered images. The rendering system takes advantage of a
modular package distribution that allows multiple animation
packages to be available to the users, including multiple versions
of the same application, ensuring greater compatibility and
functionality to the user.

2. Cluster Back End

One of the most important considerations of this project was
to have minimal or no impact on the systems being used to render.
Since the primary purpose of these systems is student
workstations, cycle scavenging was the only practical way to take
advantage of these systems. We also decided early on to make
minimal changes to these systems.

 Condor allows us to work with mixed hardware, work with
Windows XP, and to stage both the data and the application to the
compute nodes.

Condor receives jobs, manages the queue, and handles
application output. We are currently using Condor 2.6.3, which
has shown greater scalability over previous versions on the
Windows operating system.

Condor components can be broken down into two distinct
parts: the Condor compute nodes, composed of the student
workstations, and the Condor master node, a dedicated Linux
server for the Render Portal.

2.1 The Compute Nodes
The Condor pool is composed of more than 2700 Windows

XP workstations. These workstations are physically located in
various computer labs across Indiana University's Bloomington
campus, and are paid for almost entirely through Student
Technology Centre (STC) fee, which is a mandatory fee that each
student pays. The STC workstations are maintained with a pre-
defined set of software, giving us a homogenous computing
environment to work from. These systems are also part of a 3
year life cycle program, ensuring that most systems are reasonably
fast, and well equipped with memory and disk.

Almost all systems are connected through a 100Mb
switching system and are distributed across the entire campus, and
therefore rely on local departmental networking.

2.2 Master Node
A single Condor Master system manages all jobs for all

2700+ Condor clients. This central point of administration and
control lessens the chance of outside jobs being submitted to the
condor pool. The master node is a dual 3.0Ghz Intel Xeon
workstation with 4Gb of memory and 500 GB of local RAID
storage. It is currently running Gentoo Linux 1.1.16. This system
also hosts Apache Tomcat and Gridsphere that compose the web
interface to this resource, and the MySQL server to store the
condor usage statistics.

For storage, we use the local storage on the Condor master
for temporary storage of smaller files. For the raw images and
final animations we have mounted a large disk based storage
system to the Linux box, called the Data Capacitor [6]. This
utilizes the Lustre file system [7], and provides over 500TB of
spinning disk storage. Files are kept active for 30 days, allowing
enough time and disk space for user to complete there projects.

3. SYSTEM MODULARITY
To minimize the impact on the STC workstations, we have

chosen not to install any of the rendering software packages
permanently on these systems. The only software hosted on the
STC systems is the Condor client software. The rendering
packages and any other extra files are sent to the Condor client as
part of the job. This includes a zip file of the rendering package, a
decompression tool (unzip.exe), and tools for image post-
processing.

The decision to send the rendering package as a zip file,
instead of installing the application on every workstation was an
important part of the Render Portal. There are several key reasons
behind choosing this particular approach:

• Modular packaging frees up local disk space on the
student systems when not in use as a rendering node. While
system disks are getting larger, space can still be an issue on some
of the older systems. Serving as student workstations is the most

Figure 1. An overview of the Render Portal framework.

important task of these systems, so maintaining a small permanent
footprint for the Render Portal was a concern.

• Modular packaging minimizes the risk that something
can break on any given system. This ensures that all frames are
rendered using the exact same software, that doesn’t depend on
any other installed software.

• Multiple revisions of the same render package can be
hosted on the render portal. Often times a user needs a specific
feature that is no longer in the newer software or they have an
older version of the scene file that doesn’t render correctly with
the newer version of the rendering software. By sending the
entire rendering software with the job, we can retain old versions
of the rendering software

• Upgrading the render package can be done much faster,
with no impact on the student systems. The task of adding a new
rendering package becomes a simple task of adding the rendering
software as a zip package, and customizing a few scripts. This
typically takes 24-48 hours, depending on any specific
dependencies that may arise. This allows for greater flexibility in
the system, without having to make any changes on the STC
systems.

This approach to render package management is one of the
key differences between this system and similar systems, such as
the DRE at Purdue University [8]. Despite the obvious overhead
to the network, the added functionality greatly improves the scope
of the system. We don’t have to choose what rendering package
to support; we can support any package that works within our
framework. This also give a single interface to a wide variety of
packages, allowing the student to concentrate more on modeling
and animation, and less on the technical aspects of rendering.

4. THE WEB INTERFACE
The Render Portal is based on Gridsphere 2.1.5 portal

framework (that runs within a Apache Tomcat 5.5.17 servlet
container [9]). Tomcat is configured with SSL support, so that all
interactions with this web interface are secure. This is primarily
to protect the password of the user during login. For
authentication to this portal, we use Tomcat’s JAAS
authentication module and authenticate to Indiana University's
central Kerberos server.

The portal users interact with the portal mainly through two
JSR.168 [10] compliant portlets: the job submission portlet
(Submit Portlet), and the queue monitoring portlet (Monitor
Portlet). These two portlets handle the bulk of the tasks that the
user performs on the Render Portal.

4.1 Submit Portlet
After a user logs in, the Submit Portlet is the initial interface

into the Render Portal as seen in Figure 2. This is where the user
can upload her/his scene file to their personal workspace, and see
what other scene files are already in their workspace. This is also
where the user can select which file they want to render, what
options are needed for the rendering, what rendering software to
use, and then submit the job to be rendered.

After the scene to be rendered has been selected, a page for
other options allows the user to select what frames to render, what
resolution the output images should be, and what camera within
the scene file to use (Figure 3). A user is also asked to estimate

how long they expect for one frame to render on his/her
workstation. This allows us to tune how the job is submitted to
the Condor pool, and better utilize available resources. We have
found that this is much more practical and reliable than using
heuristics methods to try to guess a best fit.

4.2 Job Submission Scripts
When the user submits the job from the Submit Portlet, a

script on the Condor Master system is invoked. This script
generates two files, a condor .cmd file to submit to the Condor
queue, and a .bat file to run the rendering software and other tasks
on the compute nodes (Figure 4).

After the .cmd and .bat files are created, the Submit Portlet
runs a second script (run_job) which in turn submits the job to
Condor using the .cmd file. The .cmd file breaks the job into
chunks of frames to be sent to the Condor clients. The size of
each chunk is dependent on the estimated time to complete each
frame, and can range from 1-8 frames being computed per Condor
client. This .cmd file also specifies which scene file and
rendering package to transfer to the client system.

The
run_job
script
utilizes
the
Condor

Figure 4. The job creation script creates the files necessary
to submit the render job to the Condor master.

Figure 2. The initial Submit Portal screen. This is the
interface used to submit scene files to the Render Portal.

Figure 3. The render options portion of the Submit
Portlet.

Figure 6. The Monitor Portlet give a summary status of
each render job that is running, as well as previously

submitted jobs that have finished.

perl library functions to monitor the progress of the submitted job
and updates a status file for each job a user submits. This status
file is used by the Monitor Portlet to relay to the user the current
status of the job being run (Figure 5). When the job is completed,
run_job will send a confirmation e-mail to the user. This script is
also responsible for any post processing that needs to be done on
the image collection.

The .bat file that is sent to the client machines is responsible
for initiating several processes: first it will uncompress the
rendering software package, the scene file (if it is a zipped file)
and some conversion utilities. Then it will set up various
environment variables and directories, depending on the need of
the rendering software. Once the rendering package is installed, it
will then execute the specific commands and parameters to render
the image(s). The rendering software will create the image(s) in a
predefined format (TGA) and naming scheme. After the
rendering is finished, the conversion utilities will create thumb
nails of each of the images, and create a JPG image for each frame
for preview. It will then clean up all extra files and directories,
and only the finished images are sent back to the Condor master.

4.3 Monitor Portlet
After the user has submitted their scene to be rendered,

he/she can monitor the progress of their job with the Monitor
Portlet. This portlet give the user a list of all the jobs that have
been submitted, the current status of each one, and time stamp of
the last update (Figure 6). This summary screen gives an
overview of all jobs that have been submitted by the user,
including past jobs. In this way the user can keep track of all the
work completed on the Render Portal, and have a repository to get
to completed frames.

When a job is selected from the list, the user is presented
with thumbnails of all of the finished frames as a filmstrip (Figure
7). Each image in the filmstrip links to the completed frame of
the animation, so a user can select individual frames to inspect. If
the user detects a problem with the images being rendered, he/she
can abort and remove the job from Condor at this point and free
up resources. When the job has completed, a flash movie is

created on the Condor master system and embedded into the
Monitor Portlet so the user can preview the final animation. A
URL to a zip file containing all of the uncompressed frames is
presented. The user also has the option to recompress the images
into several other movie formats (various AVI and QT formats as
well as MPEG2) that can be downloaded.

5. SYSTEM MONITORING
As part of the Render Portal system we have also created a

monitoring system for Condor that presents current and trend
information on the status of the Condor pool, as well as the
individual systems (Figure 8). Graphs are generated every 15
minutes to show the number of free Condor clients in the pool as
well as the clients that are currently rendering. This can help a
user determine the best time to submit large jobs, and to work
around busy times of the day. This also is a useful tool for
administrators to quickly detect and analyzed problems with the
Condor pool, and identify problems with individual systems and
labs within the Condor pool.

On every page of the Render Portal, a feedback/error report
button is integrated into the interface. This button takes the user
to a simple form that lets him/her to quickly write and submit a
comment. The users are encouraged to use this anytime they
encounter a problem, or have a suggestion. When the report is
sent, all state information for the current portlet is kept and sent
with that e-mail, making it easier for the administrators to
diagnose and correct any errors that may have occurred.

Figure 5. The job submit script takes care of submitting
the job to Condor, as well as creating a log of the progress

of the job. This log is read by the Monitor Portlet.

Figure 7. When an individual job is selected from the
Monitor Portlet, a summary screen of the job is presented.

The summary shows all the frames that have been
completed, as well as a preview flash movie of the final

animation.

Figure 8. A small portion of the 2700+ Condor client
systems being monitored through the built in cluster

monitoring system.

6. RELATED AND FUTURE WORK
The Render Portal extends progress that has been made by

previous work in which distributed, surplus computing cycles
have been harvested to render animations. Madhavan et al. [8],
[12] built a Condor-based rendering system in which users
submitted jobs through a rendering client that was equipped with a
plug-in that created job descriptions and passed them to Condor.
Compute nodes in the rendering system were equipped with
rendering clients. Our Render Portal implements a more general
framework in several respects. Its modular design provides users
with a choice of rendering packages, and it allows new rendering
packages to be easily added in the future. Modularity of the
Render Portal is enhanced because the system distributes both
data and the application to compute nodes rather than distributing
only data. Also, the Render portal frees users from requirements
of particular operating systems or client software other than a web
browser. This independence and, indeed, the modularity of the
Render Portal come at the expense of a single interface in which
users can both render scenes and combine them to form a
complete movie. In the future we plan to add to the Render Portal
tools that allow students to combine multiple frame sets and
encode them into complete movies.

We are also exploring the idea of providing a venue in which
students can share their work with their peers and rate each
other’s work. This, we believe, would cultivate interest in the
Rendering Portal and build a community of users.

We plan to increase the portability of the Render Portal.
Presently, the server that hosts the web interface
(Tomcat/Gridsphere) must also host the Condor Master software,
restricting access to Condor to a single server. Access can be
expanded if the web server is decoupled from the Condor Master.
For example, we could offer portlets in a variety of JSR.168
compliant containers such as Sakai [11] that are used to deliver
course materials at Indiana University. We plan to decouple the
portal server from the Condor Master by implementing web
services within the Render Portal, and on the Condor Master.

 Finally, the Render Portal is being introduced as a TeraGrid
[12] resource, so researchers and educators anywhere in the US
can use this rendering system. To make the Render Portal
available on the TeraGrid, we are adding TeraGrid authentication
to the portal. Grid credentials will be obtained from a TeraGrid
Keberos server at the Pittsburgh Supercomputing Center.
Instructors will be able to request accounts for themselves and
their students.

7. CONCLUSION
The Render Portal has been a well received resource by the

students. Before the portal was introduced, rendering time was an
important consideration when a student animation project was
started, but with the power and ease of use of this system,
rendering has become an afterthought.

A 10 second benchmark movie takes 40 minutes per frame to
render on a high end, dual CPU workstation at a resolution of
1280x768. There are a total of 300 frames, so the entire movie
will take 12,000 minutes, or about 200 hours to render. On the
Render Portal, it takes just over two hours to complete the entire
rendering.

As a comparison, the rendering of the same movie was also
done manually by the students within the computer labs using 30
computers. This took 9 hours to complete (this does not include
the time to assemble all the images into one location).

The students have been very enthusiastic about the Render
Portal, and within the first week of beta testing the entire
animation class signed up to use the system. Currently, the Render
Portal is generating over 10,000 frames per week.

8. ACKNOWLEGEMENTS
We thank Marlon Pierce at Indiana University Pervasive

Technology Labs and Yu Ma at IU University Technology
Services for the technical guidance they have given to the Render
Portal project. We would like to thank Margaret Dolinsky IU
H.R. Hope School of Fine Arts and her art students for providing
critical feedback during the initial software deployment. We
would like to give special thanks to Kianosh Huffman, IU
Pervasive Technology Labs, for constructive criticism on all
aspects of this project. This work was funded in part by NSF grant
0504075 to Craig Stewart, Indiana University.

9. REFERENCES
[1] W.P. Flanagan, R. Earnshaw, “Visual Learning for Science

and Engineering”, IEEE Computer Graphics and
Applications, Dec. 2004

[2] D. Cox, “Visualization and Virtual Reality for Art and
Science”, Computer Graphics International 1999, p. 34, June
1999.

[3] (2006) An Animation Company takes Harvard University
Students on a 3D Journey, [Online] Available:
http://www.xvivo.net/-press/harvard_university.htm

[4] M. Litzkow, M. Livny, M.Mutka, “Condor – A Hunter of
Idle Workstations” in Proc. Of the 8th International
Conference of Distributed Computing Systems, pp 104-111,
June 1998.

[5] J. Novotny, M. Russell, O. Wehrens, “GridSphere: an
advanced portal framework” in Proc. 30th EUROMICRO
Conference, pp 412-419, Aug. 2004.

[6] (2007) The Data Capacitor website. [Online]. Available:
http://www.datacapcitor.org/

[7] (2006)The Luster Filesystem website. [Online]. Available:
http://www.lustre.org/

[8] K.P.C. Madhaven, L.L. Arns, G.R. Bertoline, “A Distributed
Rendering Environment for Teaching and Scientific
Visualization” IEEE Computer Graphics and Applications,
vol. 25, Issue 5, pp 32-38, Sept. 2005

[9] (2007) The Apache Tomcat website. [Online]. Available:
http://tomcat.apache.org

[10] (2007) JSR-000168 Portlet Specification - Final Release.
[Online], Available:
http://www.jcp.org/aboutJava/communityprocess/final/jsr168
/

[11] X. Yang, X.D. Wang, R. Allan, M. Dovey, M. Baker, R.
Crouchley, A. Fish, M. Gonzalez, T. van Ark, “Integration
of Existing Grid Tools in Sakai VRE”, in Proc. Fifth
international Conference on Grid and Cooperative
Computing Workshops, 2006, pp 13-21, June 2006

[12] S.L. Gooding, L.L. Arns, P. Smith, J. Tillson
“Implementation of a Distributed Rendering Environment for
the TeraGrid”, IEEE Challenges of Large Applications in
Distributed Environments, 2006, pp 13-21, June 2006

[13] (2007) The TeraGrid website. [Online]. Available:
http://www.teragrid.org

