
The Integration of AJAX, Interactive X Windows
Applications and Application Input Generation into the

UCLA Grid Portal
Joan Slottow

Academic Technology Services
University of California Los Angeles

Los Angeles, CA 90095
1-310-825-7418

joan@ucla.edu

 Prakashan Korambath
Academic Technology Services

University of California Los Angeles
Los Angeles, CA 90095

1-310-825-7422
ppk@ucla.edu

 Kejian Jin
Academic Technology Services

University of California Los Angeles
Los Angeles, CA 90095

1-310-206-9605
kjin@cs.ucla.edu

ABSTRACT
The University of California (UC) has adopted the UCLA Grid
Portal (UGP), a Globus Incubator project, to create grids of
computational clusters [1] at its campuses. Campus grids can also
be accessed system wide via the UC Grid Portal. Developed as a
set of portlets for the GridSphere Portal Framework, parts of
UGP, such as those for data management and job submission,
have been rewritten using AJAX technologies. In this paper we
will discuss the latest additions to UGP. These include: the
various UGP services that were programmed using AJAX
technologies, the ability to run interactive applications such as
Matlab™ and Mathematica™ through the portal web interface,
and appForm, our interface that allows portal administrators to
easily create application input forms for users. appForm makes
extensive use of Web 2.0 technologies.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Design

Keywords
Grid, Grid Portal, Web Portal, AJAX, Web 2.0, VNC, Interactive,
Batch, Data Management, Job Submission, Port Forwarding

1. INTRODUCTION
UGP provides a common way of working with computational
clusters in a grid. UGP enables secure, unified, access to
computational resources. Because it handles all grid related
operations for users, UGP eliminates any requirement that users
install and use client-side grid software or certificates and lets the
users concentrate on their research.

A grid portal powered by UGP is currently deployed system wide
at the University of California [2] and at three University of
California campuses. Several additional campuses are in various
stages of grid implementation. The system-wide UC Grid Portal
allows users to access resources at the different campuses from a
single grid portal. Two UGP Web Services, following the Web
Services Resource Framework (WSRF), are run at the UC Grid
Portal. These web services are used for user registration and data
synchronization among the grid portals.

UGP is implemented as a set of Java portlets based on the
GridSphere Portlet Framework [3]. In addition, appropriate
Asynchronous JavaScript and XML (AJAX) toolkits are used to
provide client side interactivity. UGP makes use entirely of open
source software components. UGP is itself open source.

Services provided by UGP include: resource discovery, data
management, batch job submittal/management, the ability for
users to use interactive GUI applications, and a Grid Development
Environment (GDE) for programmers. Two Data Managers are
currently available: an HTML style Web 1.0 Data Manager and an
AJAX Data Manager. A new tool named appForm, to be
discussed in depth in this paper, makes it easy to build input forms
for popular applications so that users no longer need to know how
to create application specific input files. appForm forms are easy
to define via XML and appForm uses XSLT [4] to generate both
the HTML input forms for the web interface and the application
input file for the program.

2. ARCHITECTURE
2.1 Single-Campus Architecture
The grid portal at a single campus provides a single interface to all
of the clusters at that campus that are participating in the campus
grid. UGP provides a single login for users and hides user
interface and scheduler differences among clusters making it easy
to work with multiple clusters at once. UGP runs a certificate
authority (SimpleCA) to issue user certificates. Certificates
issued by UGP are only for use by the grid portal: user portal sign
on, job submission, cluster access, etc. and have no other campus
purpose.

Slottow J., Korambath P., Jin K. The Integration of AJAX, Interactive X
Windows Applications and Application Input Generation into the UCLA
Grid Portal, International Workshop on Grid Computing Environments
2007, Nov., Day, 2007, Reno, NV, USA. An electronic version of this
document will be available at http://casci.rit.edu/proceedings/gce2007

Individual university professors, groups and departments, own
and maintain control of the clusters, and local administrative
procedures and security solutions take precedence. Each of the
participating clusters is attached to a grid portal via a grid
appliance. The addition of a grid appliance to a cluster in no way
modifies policy decisions at the cluster level. Any participating
cluster can always also be used directly by users who login to the
cluster head node, without going through the grid portal.

The UCLA grid architecture for a single institution is depicted in
Figure 1.

Figure 1. Single Campus Architecture

The grid portal is accessed from a web browser. Each grid
appliance connects a cluster to the grid portal and acts as
alternative job submission host for that cluster. To facilitate data
management, the file system containing the user’s home
directories on a cluster is cross-mounted on its grid appliance. For
security, each grid appliance runs a firewall (depicted by the
dashed line) and is open only to the grid portal machine. All
transactions between the Portal and the Appliances use public key
cryptography conforming to the X-509 certificate standard [5].
Additional servers that can be part of the grid portal include a
MyProxy server for certificates, a storage server to provide disk
storage for those users who do not have their own cluster
accounts, and an ION Visualization server if the commercial
product IDL-ION™ is used to provide data visualization.

2.2 University of California Architecture
At the University of California, all computational resources reside
at the campus level. Consequently, there is a campus grid at each
campus and grid portal at each campus to provide access to the
campus grid. An additional grid portal for the UC provides access
to all computational resources system wide.

Figure 2 depicts the hierarchical architecture deployed for the
University of California. It shows the campus grids for three
campuses and their relationship to the UC Grid Portal.

Figure 2. Multi-Campus Architecture (“A” stands for grid

appliance; “C” stands for cluster)

The campus grids used in the multi-campus architecture are
different from grids constructed when there is only single campus
grid in that a certificate authority (CA) is not run at the campus
level. A single CA for all the grids is included as part of the UC
Grid portal and a special web service, the UC Register Service, is
also run at the UC grid portal, with clients at each campus, to
make sure the certificates and usernames are unique across the
campus grids. This design provides for a streamlined new user
application process. Each new user of a campus grid portal is
automatically given access to the UC Grid Portal as part of the
workflow that creates the user’s grid certificate.

In addition to the UC Register Service, the UC Sync Service, also
run at the UC Grid Portal, updates the information in the UC Grid
Portal’s databases about clusters and their applications whenever a
change is made to this same information on one of the campus
grid portals.

3. AJAX USER INTERFACES IN UGP
AJAX is a technique used for creating web applications that
makes them more interactive. It makes use of today’s JavaScript-
enabled web browsers that support asynchronous
XMLHttpRequests and JavaScript. AJAX enabled websites
normally make use of JavaScript libraries or toolkits, that include
widget sets and APIs that handle events and asynchronous
requests on the client side. Java code, run on the server, processes
the requests. Users experience real performance benefits because
only a small part of the user interface is updated with each
request.

3.1 AJAX Data Manager
The AJAX Data Manager is written using the Zimbra AjaxTK[6]
which has a very rich widget set. In writing the AJAX Data
Manager our design principle was to make data management as
intuitive as possible. With traditional web technology data
management is cumbersome, as the user has to click on something
and wait for a page to be refreshed numerous times just to
accomplish a simple task. With the AJAX Data Manager the
interface is extremely interactive and is very similar to a desktop
data manager in appearance. As shown in Figure 3, at the left side,
there is a directory tree. A menu appears at the top. There is even
an icon bar with icons for the most commonly used activities. The
AJAX Data manager’s GridFTP client, Figure 4, is formatted with
a column for each side of the FTP transaction, just like a GUI

desktop FTP client. A progress bar, Figure 5, is displayed when a
file is uploaded.

Figure 3. AJAX Data Manager

Figure 4. AJAX Data Manager – GridFTP Client

Figure 5. AJAX Data Manager – Upload Progress Bar

3.2 AJAX in Job Services
UGP Job Services enable users to submit batch jobs and view job
status and results. To submit a job, a user must fill out a form
specifying job requirements, input files, etc. UGP knows how to
run commonly used applications so that the details of how to run
them don’t have to be known by the user. For a user-provided
program the user must provide a path to the executable.

As shown in Figure 6, we have augmented the UGP Generic Job
Submission page with the auto-complete feature from Yahoo User
Interface (YUI)[7]. In addition to providing a convenient file
name completion for the user, this allows UGP to check whether
the executable exists as the user enters the executable’s path.
Eliminating errors in job submission has a large impact because of
the wait time in the queues before job startup; finding a problem
immediately literally saves hours or days.

Figure 6. Auto-completion

3.3 AJAX Grid Development Environment
The Grid Development Environment (GDE) was also written
using the Zimbra AjaxTK and benefits from its rich widget set.
Our goal in writing GDE was to enable code compilation from the

grid portal in the heterogeneous environment of the grid. Code
compilation is normally done interactively rather than via batch,
and a program has to be compiled on a machine of the same
architecture as the one on which it will be run. The UCLA Grid
currently has clusters of diverse architectures and the architecture
of the grid appliance normally differs from that of the cluster to
which it is attached. Therefore, the GDE submits code to an
instantaneous queue on the target cluster for compilation on a
compute node of the correct architecture. An expert user can
alternatively compile code on the cluster head node by getting an
xterm or by ssh, both interactive services provided by UGP.

Figure 7. Grid Development Environment

4. Providing Interactive X Windows-based
GUI Applications on the Web Through the use
of VNC
The use of Virtual Network Computing (VNC) for interactive
applications was spearheaded at other grid portals most notably:
Purdue University’s nanoHUB [8], University of Florida’s In-
VIGO [9] and University of Texas Advanced Computer Center
(TACC) [10] prior to its adoption by UGP. Figure 8 shows the
design used by UGP, which enables the VNC Viewer applet to
communicate with a VNC Server running on a compute node.

Figure 8. VNC Implementation

Figure 8 is a one-to-many diagram. Figure 9 shows an example of
this. Many grid appliances are connected to a single grid portal.
Each cluster can have multiple compute nodes that run interactive

applications and each compute node can run multiple
simultaneous interactive applications. UGP serves the VNC
Viewer applet to the user’s web browser and because the VNC
Viewer is an applet, it can only communicate with the Portal. (For
security purposes, an applet can only communicate with the
machine that served it.) Therefore, iptables port forwarding has to
be used, both on the grid portal machine and on the grid
appliances to pass the communication back and forth between the
VNC Viewer applet and the VNC server running on a compute
node in a private subnet. We give complete instructions on our
UGP Wiki [11] for setting up iptables.

Figure 9. Port Map for VNC

A table inside of UGP keeps track of this port mapping.
According to Figure 9, the grid portal’s port 50001 maps to port
70001 on the grid appliance named cluser1 and port 5901 on the
VNC server running on the first compute node connected to the
appliance. Other VNC servers can also use the same port 5901 but
these are running on different compute nodes on the same or
different clusters.

When the user wants to run an interactive application UGP picks a
compute node and runs the VNC server there as the user,
generating a random VNC password and creating all necessary
VNC startup files. UGP starts the VNC client applet in the user's
web browser, passing it the VNC password it just generated and
the grid portal address and port that it is to use to communicate
with the VNC Server. The user is unaware that all this is
happening in the background and just sees a window opening in
the browser containing the X Windows application.

Note that the VNC Server does not come with the OpenGL X-
Windows extension (GLX) enabled in versions of Fedora prior to
7.0. GLX enabling is required to run OpenGL applications
through VNC.

Figure 10 shows UGP’s Interactive Apps page. A list of all the
interactive applications available on each cluster in the user’s
cluster access list appears at left. Here the user has opened an
xterm, which opens in a separate pop-up browser window. The
information about the VNC session running the xterm appears in
the bottom line with purge and reconnect icons. UGP allows each
user to run an administrator configurable number of simultaneous
interactive applications and to close the web browser, for example
at work, and connect later from the same or a different browser to
continue working. This enables long-running “interactive”
problems to continue unattended. Figure 11 shows Matlab™
running through VNC.

Figure 10. Running xterm through VNC on UGP

Figure 11. Running Matlab™ through VNC on UGP

5. appForm: Interactive Application Input
File Generation Forms with a Web Interface
appForm is an application that generates both a web browser input
form and a program input file for an application. The form is
described with an easy-to-use set of XML elements. appForm
makes heavy use of XSLT, JavaScript, and YUI.

Commercial application programs such as Q-Chem™, and
Gaussian™ that are commonly run on the clusters as batch jobs
have complex, application-specific input files that require an
expert user to create. Many custom university discipline-specific
applications are similar in this respect. It would be easier for
casual users of these applications to be able to fill in forms on the
web and have the input files generated for them. In writing
appForm our goal was to do just that in the grid portal
environment of UGP.

5.1 Previous Work
In developing appForm we were inspired by Purdue University’s
Rappture [12] and the San Diego Supercomputer Center (SDSC)
and National Biomedical Computation Resource (NBCR) Project
Gemstone [13].

Rappture is a toolkit that can create a GUI interface for any
application. It includes an XML description language for a set of
Rappture widgets and it creates a GUI for the application using
TK/TCL. A set of language bindings for C/C++, Fortran,
Matlab™, Perl, Python, etc. allow the application to be
programmed to read the data placed into the GUI by the user and
to communicate the application output back to the GUI for display
to the user. A Perl, Python or TCL wrapper can be written for any
binary-only or legacy application to create an application input
file from the data entered in the GUI and to parse the application
output file for transmission back to the GUI. On the nanoHUB,
Rappture is used to turn many non-interactive applications into
interactive applications, which the nanoHUB runs under VNC.
Though we liked the XML widget descriptions defined by
Rappture, our goal was to have GUI input forms solely for
purpose of creating program input for batch jobs that are to be
submitted and queued and which might run for days or weeks.
Furthermore, we wanted the application input forms to be HTML
so that they could be integrated with UGP.

Gemstone requires that the user download a Gemstone client to
run on his/her local machine. A Gemstone application developer
has to write JavaScript code using the Gemstone API for each
application to be supported. The Gemstone client interacts with a
Web Service such as Opal that can interact with a scheduler to
launch jobs, query job status, retrieve job output, etc. We liked
the Gemstone user interface but 1) didn’t want the users to have to
download and run a client, 2) already had the features of the Web
Service built into UGP, and 3) wanted it to be easy to add forms
for additional applications. We therefore created appForm based
loosely on the Rappture widget XML.

5.2 How appForm Works
appForm has the following parts: 1) a documented set of XML
elements for creating widgets, 2) an XSLT translator for
translating the XML to the corresponding HTML for the form and
3) all related stylesheets and JavaScript code, including YUI code,
for the user’s interaction with elements in the form; and Java
servlets that provide server-side work such as saving files to the
clusters and submitting jobs. The XSLT translator is generic for
the widget set and is used for translating from XML to an HTML
form for all applications.

A form for a new application can be added by: 1) describing the
widgets to be placed in the form via XML, and 2) writing a small
XSLT translator from: a simple XML file that gives the name and
value of every data element the user has entered to: the input
format required by the application. These translators are usually
simple and can be based on existing translators for other
applications.

When the user selects an application, appForm opens in a new
window. As shown in the figures, each input form has two tabs:

Job Parameters (Figure 12) and Input Generator. The Job
Parameters result from a separate set of XML that allow the
Globus GRAM RSL job parameters to be customized for each
application. The RSL and appForm XML files are each translated
and combined into a single YUI tabbed view. The Input
Generator has an additional tabbed view of its own (seen in
Figures 13 and 14). What appears to be multiple pages is actually
one very large web page most of which is hidden from view. The
user can go back and forth between the tabs without loosing any
data values that have either been selected in pull-down menus or
input in text fields. Data would be lost between pages if
individually linked HTML pages had been used.

Figure 12. The Job Parameters “page”

The Submit Job button is on top of every tabbed view. The Save
and Load buttons appear near the top of every Input Generator
tabbed view. When the user presses the Save button, he/she is
presented with a Save dialog to enter a file name. This results in
1) an XML version of the form data being saved in a file on the
cluster, 2) invocation of the XSLT translator for the application
being used to save the input file for the application and 3) the
input file name being filled in automatically on the Job Parameters
tabbed view so the job can be submitted. The Load button can be
pressed if the user wants to populate the form from a previously
saved set of data values.

Figures 13 and 14 show the same part of a form that prepares
input for the chemistry program Q-Chem™. Here the user can
choose to supply the molecule description in the form or to read it
from a file and the form provides for both options. The user
selects “In the form” or “From a File” from the pull-down menu
under the heading “How the Molecule will be Specified” and
because Dynamic HTML (DHTML) is used, the change to the
form happens as soon as the use makes the selection.

Figure 13. Q-Chem Input Generator Main Page --With

Molecule Specified in the Form

Figure 14. Q-Chem Input Generator Main Page --With

Molecule Input from a File

If desired for visual feedback, graphs that correspond to the input
values selected by the user can be included in the form. An
example of this is shown in Figure 15, in which input is being
prepared for a physics code. In that example, when any of the
values for Density Amplitude, Density Scale or Density Shift are
changed, the accompanying graph is changed correspondingly.
The graphs are generated by a servlet that was written using the
open source jmathplot [14] API and updated dynamically.

Figure 15. Graph can be Generated from User Input

6. Future Work
We are currently in the process of updating UGP from portlets for
GridSphere 2 to portlets for the GridSphere 3 framework. As part
of this work we are redoing parts of UGP. Because of its excellent
performance, we have recently begun rewriting the AJAX Data
Manager using Google Web Toolkit (GWT) [15]. At the heart of
GWT there is a Java to JavaScript compiler that allows all code to
be written and debugged in Java. This approach improves
performance by minimizing the amount of data that needs to be
transmitted to the browser. Figure 16 shows our new GWT Data
Manager.

Figure 16. Data Manager using Google Web Toolkit

The grid portal of the future will be the interface of choice for
High Performance Computing. One challenge is to attract expert
users, who are used to command line interfaces, to the portal. To
do so, portal interfaces have to be as rich, flexible and easy to use
as Unix commands are today. Portals also have to provide new
services that are currently either unavailable or difficult for
researchers to access outside of portal environments. To that end,
we are continually improving UGP. We are planning to add
services in the near future that will enable collaboration among
researchers across multiple organizations, and provide the

capability of sharing data between the users of the UC grid
portals, in a secure fashion. AJAX and related Web 2.0
technologies definitely have a place in our future work as they can
be used to create intuitive user interfaces on the web.

7. ACKNOWLEDGMENTS
We are indebted to the In-VIGO developers Renato Figueiredo,
Mauricio Tsugawa and Jose Fortes and to James Kohl of Oak
Ridge National Laboratory whom we consulted as part of the
integration of interactive applications with UGP.

8. REFERENCES
[1] High-performance computing – Wikipedia, the free

encyclopedia. http://en.wikipedia.org/wiki/High-
performance_computing [28 August 2007].

[2] UC Grid Portal. http://portal.ucgrid.org [28 August 2007].

[3] Novotny J, Russell M, Wehrens O. 2004. GridSphere: a
portal framework for building collaborations. Concurrency
and Computation: Practice and Experience 16, 5 (Mar.
2004), 503-513. DOI = 10.1002/cpe.829.

[4] XSL Transformations (XSLT) Version 1.0. W3C
Recommendation. 1999.

[5] Adams C, Farrell S, Kause T, Mononen T. Internet X.509
Public Key Infrastructure: Certificate Management Protocol
(CMP). The Internet Society. 2005.

[6] Ajax toolkit download for Zimbra open source collaboration
software.
http://www.zimbra.com/community/kabuki_ajax_toolkit_do
wnload.html [28 August 2007].

[7] The Yahoo! User Interface Library (YUI).
http://developer.yahoo.com/yui [28 August 2007].

[8] McLennan M, Kennell R, Ebert D, Klimeck G, Qiao W.
2006. Hub-based Simulation and Graphics Hardware
Accelerated Visualization for Nanotechnology Applications.
IEEE Transactions on Visualization and Computer Graphics
2006; 12,5 (Sep. 2006): 1061-1068. DOI =
10.1109/TVCG.2006.150.

[9] Adabala S, Matsunaga A, Tsugawa M, Figueiredo R, Fortes
AB. Single Sign-On in In-VIGO: Role-based Access via
Delegation Mechanisms Using Short-lived User Identities.
Parallel and Distributed Processing Symposium,
Proceedings. April 2004; 22-30.

[10] TACC > Texas Advanced Computing Center.
http://www.tacc.utexas.edu [28 August 2007].

[11] How to Setup Interactive Applications – UGP-Wiki.
http://www.ucgrid.org/wiki/index.php/How_to_setup_Interac
tive_Applications [28 August 2007].

[12] Rappture – Trac.
https://developer.nanohub.org/projects/rappture [29 August
2007].

[13] Mozdev.org – gemstone: index. http://gemstone.mozdev.org
[29 August 2007].

[14] SourceForge.net: jmathplot.
http://sourceforge.net/projects/jmathplot [29 August 2007].

[15] Google Web Toolkit – Build AJAX apps in the Java
language. http://code.google.com/webtoolkit [28 August
2007].

[16] Spector, A. Z. 1989. Achieving application requirements. In
Distributed Systems, S. Mullender, Ed. Acm Press Frontier
Series. ACM Press, New York, NY, 19-33. DOI=
http://doi.acm.org/10.1145/90417.90738

 Matlab is a trademark of The MathWorks, Inc. Mathematica
is a trademark of Wolfram Research, Inc. IDL ION is a
trademark of ITT Corporation. Q-Chem is a trademark of Q-
Chem, Inc. Gaussian is a trademark of Gaussian, Inc.

