
SimpleGrid Toolkit: Enabling Efficient Learning and
Development of TeraGrid Science Gateway

Shaowen Wang Yan Liu
CyberInfrastructure and Geospatial

Information Laboratory (CIGI)
National Center for Supercomputing

Applications (NCSA)
University of Illinois at Urbana-

Champaign
1-217-333-7608

shaowen@uiuc.edu, yanliu@uiuc.edu

Nancy Wilkins-Diehr
San Diego Supercomputer Center (SDSC)

University of California at San Diego

wilkinsn@sdsc.edu

Stuart Martin
Argonne National Laboratory

University of Chicago

smartin@mcs.anl.gov

ABSTRACT
Science gateways have become an important cyberenvironment
modality to bridge domain applications and cyberinfrastructure,
which is fundamental to make cyberinfrastructure integral and
effective to the practice of advancing science and engineering.
However, it remains a significant challenge to learn science
gateway technologies and develop a science gateway because
science gateway technologies are still actively evolving and often
include a large number of sophisticated components. Some of
these components must be designed to fit within the legacy
methods through which scientists from a particular domain use
conventional computation tools. This paper establishes a generic
toolkit – SimpleGrid for learning and developing science
gateways based on a service-oriented architecture using a
component-based approach that allows flexible separation and
integration of the components between domain applications and
cyberinfrastructure in the process of learning and development of
science gateways. The paper presents the design and
implementation of SimpleGrid and illustrates our experience of
using SimpleGrid in a tutorial to teach TeraGrid science gateway
based on a well-known application (spatial interpolation) in the
field of geographic information science.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Management, Design, Security, Human Factors, Standardization

Keywords
problem solving environments (PSE), science gateway,
component-based software engineering, service-oriented
architecture

1. INTRODUCTION
The demand for high-level, easy to use, and powerful problem
solving systems (PSE) for science has been recognized for
decades [1]. Inadequate computing power, however, made such
systems infeasible until the 1980s when serious work began [2].
Grid computing environments have been developed as a
distributed computing infrastructure for coordinated resource
sharing and problem solving in dynamic, multi-institutional
virtual organizations (VO) [3]. Consequently, for
computationally-intensive applications, a Grid-based PSE can be
viewed as the environment through which end-users exploit
available Grid resources. The concept of a science gateway is a
community-specific set of tools, applications, and data collections
that are integrated together via a portal or a suite of applications,
providing access to Grid-integrated resources [4]. The science
gateway concept can be deemed as analogous to Grid-based
problem solving environments, particularly from the point view of
domain scientists.

Grid portal technologies have been used to manage the
complexity of using distributed resources owned by collaborating
users in Grid-based problem solving environments. A Grid portal
is designed to provide users with a point of access to Grids. It is
also defined as a type of PSE where a user can access Grid
resources and services, execute and monitor Grid applications,
and collaborate with other users [5]. Consequently, Grid portals
are emerging as an important way to exploit and manage Grids
when they are used to address scientific problems.

One challenge to developing Grid portals for science gateways
lies in the necessity of using a number of evolving and
sophisticated web portal technologies. Several evolving portal
technologies are widely used, including GridSphere, Liferay,
Sakai, and Jetspeed. Though these portal technologies are being
developed to conform to standards such as JSR-168, different
technologies have their specific implementations as well as
strengths and weaknesses that developers must understand to
build science gateways. Another challenge is to design and
develop robust and reusable interfaces between applications and
portals. Our research aims to address both challenges by
establishing a generic toolkit – SimpleGrid that provides reusable
software components [6] to encapsulate portal technologies and
generalize the interfaces among applications, portals, and Grid
middleware.

Shaowen Wang, Yan Liu, Nancy Wilkins-Diehr, Stuart Martin,
SimpleGrid Toolkit: Enabling Efficient Learning and Development of
TeraGrid Science Gateway, International Workshop on Grid Computing
Environments 2007, Nov. 11, 2007, Reno, NV, USA. An electronic
version of this document will be available at
http://casci.rit.edu/proceedings/gce2007

The design of SimpleGrid is consistent with service-oriented
architecture within a component-based framework [7] and fully
leverages the Java Commodity Grid (CoG) Kits that are based on
the Globus Toolkit 4. We use the TeraGrid – a key element of the
U.S. and world cyberinfrastructure as a cyberinfrastructure
resource and service provider in SimpleGrid development and

evaluation. Specifically, SimpleGrid is designed to provide
domain scientists a user-friendly interface, allow scalable
integration of Grid services, support standard-based portlet
development, and enable streamlined access to cyberinfrastructure
based on an easy-to-use component-based framework.
SimpleGrid is sandwiched between cyberinfrastructure and portal-
level capabilities. The SimpleGrid toolkit includes four basic
components: SimpleCred for user credential management,
SimpleRun for job execution support; SimpleTran for data
transfer, and SimpleViz for visualization (Figure 1). These
components are designed to be lightweight in terms of their
programmability and extensibility to support efficient learning
and development of science gateways.

In the remainder of this paper, section 2 describes the motivation
and targeted use of the SimpleGrid toolkit. Section 3 presents
SimpleGrid architecture. Section 4 illustrates the implementation
of each SimpleGrid toolkit component. Section 5 introduces an
application called spatial interpolation in geographic information
science (GIScience) that is used to demonstrate how SimpleGrid
interfaces with domain applications. Finally, section 6 draws
several conclusions, based on which some future research
directions are summarized.

2. MOTIVATION
SimpleGrid Toolkit is designed to lower the barriers and costs for
developing and learning science gateways. Currently, the barriers
and costs are high mainly because:

• there is a significant gap between Grid technologies and
application problem solving environments;

• Grid and web portal technologies are complex, and still
rapidly evolving;

• Grid technologies have been developed to focus on
enabling resource sharing and federation whereas the
development of problem solving environments requires
extensible, programmable, reusable, application-

oriented software components that support customizable
access to Grid and VO capabilities.

Gateway
Portal

User portlet Job
Management

Data
Management

Data
Visualization

SimpleGrid’s application-oriented components provide a set of
APIs that allow science gateway developers to concentrate on
developing problem solving environments tailored to the needs
and working styles of scientists. SimpleGrid toolkit integrates the
most recent advancements in existing generic Grid middleware
and portal technologies. Such integration facilitates science
gateway development and learning. Through the use of
SimpleGrid, science gateway developers benefit from avoiding
the overhead of managing changing portal technologies and
controlling the details of Grid and VO capabilities such as Grid
credential management and job execution.

3. ARCHITECTURE
SimpleGrid architecture includes four major components that
provide external interfaces to science gateway environments
(Figure 2-A).

• SimpleCred provides the capabilities to manage user
and VO authentication and authorization and to
support auditing and accounting. Myproxy is
integrated within SimpleCred while GridShib is being
investigated to support attribute-based authorization.

• SimpleRun automates the execution through a
workflow system that is developed to interface with
both Web services Globus GRAM (Grid Resource
Allocation and Management) and Pre-Web service
GRAM. The capabilities of auditing and recovering
computation jobs can be integrated within SimpleRun.

SimpleCred SimpleRun SimpleTran SimpleViz

AAAA Computation Storage Visualization Grid Infrastructure,
e.g., TeraGrid

SimpleGrid

Component Integration

Figure 1. SimpleGrid components

Figure 2-A. SimpleGrid architecture – external interfaces

• SimpleTran allows flexible file management that is

implemented by leveraging GridFTP with multi-
threaded support. The multithreading support enables
users to initiate multiple non-blocking GridFTP
transfers.

• SimpleViz customizes and integrates several
visualization tools such as Google Earth/Map and
ParaView [8].

These four components have both API and portlet interfaces to
science gateway applications. For learning how to develop
science gateways, portlet interfaces would be sufficient while
Java APIs provide more flexibility to specify the capabilities of
accessing cyberinfrastructure resources in science gateway
development.

SimpleInfo is an internal component serving as the information
system of SimpleGrid, which does not directly provide any
external interface to client applications. SimpleInfo uses the
Modular Information Provider [9] to gather and manage
information from the aforementioned four components.
SimpleGrid can interface with Grid information services such as
Globus MDS-4 by leveraging the capabilities of the Modular
Information Provider. SimpleRun, SimpleTran, and SimpleViz
rely on SimpleInfo to discover information about the status of
computation, data transfer, and visualization using credentials
from SimpleCred (Figure 2-B). Interactions among SimpleRun,
SimpleTran, and SimpleViz may take place depending on the
input-output requirements of a particular workflow.

Figure 2-B. SimpleGrid architecture – internal interactions

4. IMPLEMENTATION
SimpleGrid toolkit serves the purpose of supporting both learning
and development. As a learning environment SimpleGrid shortens
the learning curve of comprehending science gateway
technologies; as a development environment, SimpleGrid
simplifies science gateway development process. The toolkit uses
Globus Toolkit for Grid access capabilities, leverages Java CoG
kit as a Grid access programming interface, and employs
GridSphere as a gateway portal server. The accommodation of
various Grid services and web portal technologies is
accomplished using a service-oriented approach (Figure 2-A). A
set of APIs and reusable portlet components are developed based
on similar principles and technologies employed in the
development of GISolve – a TeraGrid GIScience Gateway [10].

4.1 Efficient Learning and Development
Because science gateway developers are faced with significant
complexity of technologies, spanning from understanding Grid
middleware, programming support for Grid access, to web
services and interface development. SimpleGrid implementation
aims to be “simple”.

The learning of Grid middleware and web portal technologies
using SimpleGrid is contextualized in prototyping a TeraGrid
science gateway using a representative scientific computing
application. Through such a concrete experience, developers can
easily switch to production gateway development by following
the principles learned and reusing SimpleGrid components. The
exercise includes learning Grid credential management, data
transfer, job submission, and visualization. The learning process
is carried out in three stages: command-line, Grid-enabled java
application development, and portal development. Each stage
fulfills the same requirements of using cyberinfrastructure
resources for scientific computing tasks. Command-line uses
Globus commands; Grid-enabled application uses SimpleGrid
Java APIs; and portal development uses both SimpleGrid Java
APIs and portlet components and interfaces.

SimpleGrid Toolkit is packaged to enable simple deployment
through ant. Currently, SimpleGrid toolkit uses GridSphere,
Tomcat, and Globus Toolkit as external supporting environments.
Instructions are also available to setup Eclipse environment for
efficient web application debugging.

Currently, Grid and portal technologies integrated within
SimpleGrid Toolkit include:

• Grid security: Grid certificate, Globus-based
authentication, MyProxy;

• Grid data management: GridFTP;
• Grid job submission and management: GRAM, WS-

GRAM;
• Grid-enabled application development: Java CoG Kit,

Globus APIs;
• Science gateway development: GridSphere portlet

container, JSR-168 java Portlet APIs;
• Portlet rendering: GridSphere Visual User Interface /

JSP, Velocity.

4.2 SimpleGrid APIs
SimpleGrid APIs enable automating the access to
cyberinfrastructure for a large number of scientific computing
tasks and provide a programming interface for domain scientists
who are generally not interested in all the details of Grid and VO
technologies. SimpleGrid APIs are tailored to web portal contexts,
and can be directly reused to learn and compose science
gateways. Through the APIs, the complexity of managing Grid
capabilities is hidden while application-oriented interfaces are
presented. Combined with portlet components that provide object
storage, SimpleGrid APIs allow developers to compose
application workflows, and support Grid-services via Globus WS-
Core and/or Apache Axis. WS-GRAM, Globus auditing, and
GISolve Grid services are such examples. SimpleInfo supports
Grid resource discovery and scheduling, and is under

development. We describe several example methods of
SimpleCred APIs and overview API implementations of other
components as follows.

4.2.1 SimpleCred
SimpleCred APIs have several methods to instantiate and manage
a Grid proxy.

• load(): Load a local valid proxy file via Globus APIs
(equivalent to globus-proxy-init command);

• logon(): Fetch the proxy file by contacting a MyProxy
server defined by SimpleGrid configuration (equivalent
to myproxy-logon command).

• get() method tries to load() first. If it failed, logon()
method is called. The result of get() is a standard
GSSCredential object instance stored as a variable. The
export() method saves a GSSCredential instance to a
file for later retrieval. Using get() method, gateway
developers can easily implement an automatic proxy
renewal function in their science gateways. Therefore,
little effort is required in Grid credential management.

SimpleCred functions are also made available through a portlet
interface based on GridSphere (Figure 3). This user interface used
a template to develop attribute-based authorization component
based on the GridShib [11]. In the case that a gateway uses a
community account, SimpleGrid supports an instantiated
SimpleCred object that can be shared among all portal users.

4.2.2 SimpleTran
This set of APIs are built directly on Java CoG kit by adding
multi-threaded support with which portal servers are able to return
immediately after starting GridFTP transfer instances. Therefore
gateway users experience responsive transfer actions. SimpleTran
authenticates control and/or data channels with a SimpleCred
instance, and is used to transfer input and output datasets and
visualization results between cyberinfrastructure resources.

4.2.3 SimpleRun
SimpleRun APIs support both Pre-WS GRAM and WS GRAM
with a unified interface method execute(). Jobs are submitted
using a batch mode to get immediate return with a job handle
from execution threads. getStatus() method takes a job handle as
its argument and retrieves job status. Job description file is
application-specific. SimpleRun depends on SimpleTran for input
and output dataset transfers. An application computation process
is uniquely identified and recorded based on user and job
information. Each user has its own space at portal side for dataset
uploading, result downloading, and intermediate information
storage. Such user-specific information management is
particularly useful for remote Grid resources in their management,
if a gateway uses a Grid community account.

4.2.4 SimpleViz
Currently, SimpleViz provides a local implementation via
JFreeChart and Google Earth/Map based visualization. This local
visualization is threaded. For large-scale visualization requiring
intensive data and computing, Grid-based visualization
technologies, e.g., ParaView on TeraGrid, are being integrated.

Figure 3. A user portlet based on SimpleCred

4.3 Portlet Components and Interfaces

SimpleGrid adopts standard-based portal development, i.e., JSR-
168 Portlet APIs. These APIs define a set of specifications to
make portlets deployable to different portlet containers. Portlet
development in SimpleGrid complies with the Portlet APIs
standard. Therefore, Porlets in SimpleGrid can be deployed into
different portlet containers.

However, conventions for inter-portlet communication, object
persistence, and response rendering are not defined in portlet
APIs, which means that multiple technology choices can be made.
SimpleGrid is not bound with any single technology. Instead, it
provides alternative technologies based on different development
interests. Take response rendering for example, GridSphere
Visual UI is a JSP-based portlet interface technology tightly
coupled with GridSphere; Velocity portlets separate code and
markup languages following the Model-View-Control
mechanism; AJAX achieves efficient communications between
portal and browser. To support them and other technologies (e.g.,
JavaServer Face (JSF) and Web 2.0), SimpleGrid implements a
pluggable component-based framework to link services between
Portlet APIs and specific technologies. SimpleGrid keeps and
updates the state information of application-level workflow,
portal page rendering, and computing and data transfer status
online in portlet session memory and offline in databases.

5. EXPERIENCE OF USING SIMPLEGRID
In this section, we describe our experience of using SimpleGrid to
teach a hands-on tutorial of developing TeraGrid science
gateways based on a spatial interpolation analysis in GIScience.
This hands-on tutorial was presented as part of the “Building

Blocks for Science Gateways Tutorial1” in the TeraGrid’07
conference.

5.1 Spatial Interpolation Analysis on
TeraGrid
Two-dimensional spatial interpolation is widely used in
GIScience to predict the trends of environmental and social
variables. Spatial interpolation often involves a nearest-neighbor
search procedure that is computing intensive for large spatial
datasets and/or high-resolution interpolation. In the tutorial, we
used a fast two-dimensional spatial interpolation algorithm called
DMS (Dynamically Memorized Search). A real-world spatial data
analysis based on this algorithm can be viewed as a parameter-
sweeping application.

The overall process of performing a DMS analysis on TeraGrid in
the SimpleGrid hands-on tutorial is summarized as follows.

1. Request an individual or community account on
TeraGrid. In this tutorial, TeraGrid training accounts
were used;

2. Install DMS executables on three TeraGrid sites: UC
(University of Chicago), NCSA (National Center for
Supercomputing Applications), and SDSC (San Diego
Supercomputing Center);

3. Prepare a dataset on a local machine. SimpleGrid
package provides a sample dataset in

1http://www.teragridforum.org/mediawiki/index.php?title=TG07_

Gateway_Tutorial

${SIMPLEGRID_DIR}/simplegrid/webapp/storage/sa
mples/;

4. Transfer a specified dataset to a TeraGrid site (e.g.,
NCSA);

5. Submit a Grid job to the specified TeraGrid site with a
parameter value;

6. The submitted job is scheduled to be executed on one
compute node on the specified TeraGrid cluster;

7. When the job is finished, the analysis result is written
into the data directory of DMS installation on the
TeraGrid cluster;

8. Transfer the result back to the local machine; and
9. Visualize the result using the DMS visualization tool

which is a Java-based application in
${SIMPLEGRID_DIR}/simplegrid/lib/viz/.

This process was demonstrated in three ways: TeraGrid
command-line tools for individual use, SimpleGrid APIs to
automate the access to cyberinfrastructure resources, and a
SimpleGrid portlet to enable community access to the analysis
using GridSphere.

5.2 DMS Analysis Portlet
A DMS portlet was created to provide a web interface for
performing DMS analysis. In this portlet, a DMS analysis process
goes through the selection of a dataset and parameter, job
creation, dataset transfer, job execution on TeraGrid, result
transfer, and local visualization. A "next" button and text area are
used to initiate each stage and show the status of states
respectively. For job execution and data transfer, DMS portlet
uses the loaded proxy from the user portlet (Figure 4) via the
inter-portlet communication mechanisms that are described in
section 4.3.

To illustrate alternative technologies that can be used to develop
portlets that are compliant with the JSR-168 standard, the User
portlet employs GridSphere-based method, i.e., ActionPortlet and
JSP-based Visual UI while the DMS portlet employs Apache
Velocity-based method.

5.3 Summary of the Hands-on Tutorial
Experience
The hands-on tutorial had 16 participants with various levels of
software development experience and Grid computing
knowledge. After two and half hours, all participants including
those with minimum Java programming knowledge were able to
master the SimpleGrid APIs for the DMS analysis, and to
successfully set up a portlet for the analysis in a GridSphere
portal server.

6. CONCLUDING DISCUSSION
The SimpleGrid toolkit makes an abstraction of generic Grid
middleware services and hides the complexity of evolving web
portal technologies by tailoring to application requirements for
developing PSE. This abstraction enables science gateway
developers to concentrate on developing PSE by working on
reusable and extensible software components. SimpleGrid Java
APIs and portlet support simplify science gateway development

and help overcome the learning curve of science gateway
technologies.

The SimpleGrid architecture complies with service-oriented
architecture within a component-based framework, and thus is
open and extensible to integrate evolving Grid middleware

Figure 4. Spatial interpolation portlet

services such as the RFT (Reliable File Transfer) service from the
Globus Toolkit. SimpleGrid toolkit paves the way to rapidly
prototype science gateways, and to lower the barriers to leverage
comprehensive Grid environment technologies such as the OGCE
(Open Grid Computing Environments) [12].
We used SimpleGrid to give a hands-on tutorial on TeraGrid
science gateway to a group of developers with various levels of
knowledge about programming and Grid computing. All
developers were able to successfully prototype a science gateway
using a well-known application in GIScience during the two and
half hours hands-on tutorial. The tutorial participants were also
able to understand the basic, but essential components needed to
build a TeraGrid science gateway and learned a scalable way to
develop and share their applications in a gateway portal. The code
in SimpleGrid is component-based, and thus can be directly
extracted for a generic science gateway development. Related
technologies are carefully referenced in SimpleGrid so that
gateway developers could directly use sophisticated capabilities
that are made available at the levels of generic Grid services and
various portal technologies.

Future work will integrate additional generic Grid services such
as those for scheduling and performance prediction of job
execution and data transfers; continue to enhance the SimpleInfo
component; develop a generic and simple workflow system that
tie SimpleGrid components together; and investigate ways of
recording and managing data provenance based on the
interactions of SimpleRun, SimpleTran, and SimpleViz
components.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation through the TeraGrid Grid Infrastructure Group
project award # 0503697 and a computation resource allocation
award: TG-SES070007N.

8. REFERENCES
[1] Culler, G., and Fried, B. 1963. An on-line computing center

for scientific problems. IEEE Pacific Computer Conference
(1963), 221.

[2] Rice, J., and Boisvert, R. 1985. Solving Elliptic Problems
Using ELLPACK. Springer-Verlag, New York.

[3] Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy
of the Grid: enabling scalable virtual organizations.
International Journal Supercomputer Applications (2001),
15(3).

[4] Wilkins-Diehr, N. 2007. Science Gateways – Common
Community Interfaces to Grid Resources. Concurrency and
Computation: Practice and Experience (2007), 19(6), 743-
749.

[5] Fox, G. C., Gannon, D., and Thomas, M. 2003. Overview of
Grid computing environments. Grid Computing, Making the
Global Infrastructure a Reality (2003), edited by R. Berman,
G. Fox, and T. Hey, John Wiley & Sons, West Sussex,
England.

[6] The Common Component Architecture Forum (2007).
http://www.cca-forum.org/ (September 2007).

[7] Schmidt, R., Benkner, S., Brandic, I., and Engelbrecht, G.
2007. Component oriented application construction for a
Web service-based Grid. Concurrency and Computation:
Practice and Experience (2007), 19(5), 637-650.

[8] ParaView. http://www.paraview.org/New/index.html.
[9] Wang, S., Shook, E., Padmanabhan, A., Briggs, R.,

Pearlman, L. 2006. Developing a modular information
provider to support interoperable Grid information services.
In the Proceedings of Grid and Cooperative Computing -
GCC 2006: The Fifth International Conference (2006), IEEE
Computer Society, 448-453.

[10] GISolve, TeraGrid GIScience Gateway. 2007.
http://www.gisolve.org (September 2007).

[11] GridShib. 2007. http://gridshib.globus.org/ (September
2007).

[12] OGCE. 2007. http://www.collab-ogce.org/ogce2/ (September
2007).

	1. INTRODUCTION
	2. MOTIVATION
	3. ARCHITECTURE
	4. IMPLEMENTATION
	4.1 Efficient Learning and Development
	4.2 SimpleGrid APIs
	4.2.1 SimpleCred
	4.2.2 SimpleTran
	4.2.3 SimpleRun
	4.2.4 SimpleViz

	4.3 Portlet Components and Interfaces

	5. EXPERIENCE OF USING SIMPLEGRID
	5.1 Spatial Interpolation Analysis on TeraGrid
	5.2 DMS Analysis Portlet
	5.3 Summary of the Hands-on Tutorial Experience

	6. CONCLUDING DISCUSSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

