
Python for Scientific Gateways Development
Randy Heiland

Research Technologies
Indiana University

heiland@indiana.edu

Maciek Swat, Ariel Balter
Department of Physics

Indiana University
{mswat, abalter}@indiana.gov

Sean D. Mooney
Center for Computational Biology and
Bioinformatics, Department of Medical
and Molecular Genetics, Indiana
University School of Medicine

mooney@mail.compbio.iupui.edu

Marcus Christie
Computer Science Department

Indiana University
machrist@cs.indiana.edu

Joshua Boverhof, Keith Jackson
Distributed Systems Department

Lawrence Berkeley National Laboratory
{jrboverhof, krjackson}@lbl.gov

Joseph Insley

Mathematics & Computer Science
Division, Argonne National Laboratory

insley@mcs.anl.gov

ABSTRACT
A scientific gateway is an interface that addresses some
fundamental needs of a scientific community. This typically
involves remote computation and/or data access. The interface
might be Web-based or it might be some other type of workstation
application that uses client-server technology. This paper focuses
on tools and technologies that are based on the Python
programming language and can be quite useful for scientific
gateway development.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
extensible languages, object-oriented languages, very high-level
languages.

H.3.5 [Information Storage and Retrieval]: Online Information
Services – web-based services.

General Terms
Design, Experimentation, Standardization, Languages.

Keywords
Python, Web services, Gateways, Web development frameworks.

1. INTRODUCTION
A scientific gateway is, in layman’s terms, an entryway into some
scientific domain from a networked computer. The analogy of an
entryway into a home seems appropriate: one enters through a
(locked) door [security]; once inside, it is easy to explore
publicly-accessible rooms [interface layout and interaction]; the
rooms themselves [tabs, panels, gadgets] accommodate different
aspects of work, education, and leisure.

For a more concrete reference point, a TeraGrid Science Gateway
[1] is defined as “a community interface that enables access to
high end resources, usually through a web portal or desktop client
server arrangement”. We will present examples of both web and
desktop applications that may or may not qualify as a gateway,
depending on your point of view.

The landscape of technologies and tools for developing gateways
is quite vast. However, what are known as Enterprise
Frameworks has dominated much of that landscape for the past
several years. In this paper, we offer some alternatives that, we

believe, are lighter weight in terms of their development and
deployment costs yet empower scientific communities more than
ever. Our approach should appeal immediately to scientific
communities who are already using Python and thereby provide
them with an economy of scale in terms of software engineering
costs. More to the point, developers of scientific codes should be
able to prototype their own gateways using some of the Python-
based projects discussed here. Part of the motivation for this
paper can be found online [2].
This paper will be part survey, part unapologetic evangelizing (for
Python), and part discussion of a particular gateway (web)
development framework.

2. PYTHON: BATTERIES INCLUDED
Python [3][4] is an open source, cross platform, high level
programming language. It has a rich set of features that makes it
well-suited for scientific applications. A recent issue of CiSE [5]
was devoted to that very topic. Some basic features of the
language itself include: very readable syntax, dynamic data types,
object orientation, and modularity (allowing for easy extensibility
via community-contributed modules). In addition, the “batteries
included” phrase refers to Python’s standard library, offering a
wealth of functionality. Moreover, it is usually straightforward to
wrap existing codes (C, C++, Fortran) with Python, i.e. make
them accessible from Python.

Not surprisingly, some of the earliest adopters of Python as an
interface to large computational scientific codes were in the U.S.
National Labs. Various groups at both Lawrence Livermore and
Los Alamos National Labs, in particular, were using Python to
make it easier to interact with physics codes. For example,
Dubois [5] has shared his personal experience for performing
computational steering at LLNL using Python. Another early
project at LANL led to the development of SWIG [6], now one of
the most popular tools for automatically wrapping low-level
languages in Python.

We will not attempt to provide a Python tutorial in this paper.
Rather, for beginners in Python, we refer them to helpful online
material [7]. For those particularly interested in scientific Python
packages, we recommend additional material [8], some of which
we refer to in the next section.

3. SURVEY OF PYTHON-BASED
PROJECTS
Since we are discussing the development of scientific gateways in
general, using Python-based tools, a table of some Python projects
that may be useful for such gateways seems relevant. Table 1
may seem an odd mix of tools and, admittedly, reflects some of
our personal projects and interests. Nevertheless, it serves as a
starting point for newcomers who might consider Python for
science-related projects.

Table 1. Some potentially useful Python-based projects for
scientific gateways

While some of the projects listed here appear to be standalone
workstation applications and therefore not seem to fit into a
gateways scenario, it may be the case that either the tool can also
be used as a non-GUI Python scripting engine or that the GUI
application offers client-server functionality (recall the definition
of the TeraGrid Science Gateway). We refer to these projects by
their commonly used names and provide a simple description. A
web search will provide more information. Obviously, there are
many more Python projects that could be listed here as potential
contributors to scientific gateways (and many non-Python based
projects that could probably be easily wrapped in Python).
Remember, our goal is to minimize the burden on the scientists
who might like to develop their own gateways.

4. WEB SERVICES
Though not a requirement for building gateways, one approach for
performing remote data I/O and remote method execution is via
Web services [9]. By incorporating standards-based Web services
into the gateway model, one can provide dynamically updated
results. There exist a panoply of Web services technologies that
one could write about. For our purposes, we highlight one key
component, namely, the Web Services Description Language
(WSDL). A WSDL essentially defines the API for a Web service.

We offer, as examples, some projects that incorporate Web
services and might be classified as scientific gateways. The first
example uses a Python-based workstation application, UCSF
Chimera, for molecular graphics. The science behind this project
is to perform a structure-based local environment search [10] on
user-supplied proteins against a set of databases containing known
protein structures and functions. The gateway infrastructure
incorporates a Python Web services toolkit (a precursor to the ZSI
toolkit) to provide both the server hosting functionality (database
access, algorithm execution) and the client functionality (job
submission, visualization of results, etc). Thanks to Python’s easy
extensibility, we were able to augment the core Chimera
application with a “plugin”, a set of GUI panels that
communicated with the server (Figure 1, plugin is comprised of
the panels surrounding the 3-D view).

Figure 1. An SBLEST gateway using UCSF Chimera

We have also developed a Chimera plugin that communicates via
Web services provided by the ChemBioGrid project [11] (Figure
2).

NumPy Numerical module
providing array objects

UCSF Chimera, VMD, PyMOL Molecular graphics and
modeling

CompuCell3D Environment for cell-
based modeling

ZSI Web services toolkit

pyGlobus Interface to the Globus
Toolkit

pyGridWare WSRF toolkit (GT4
compatible)

SciPy Science and engineering
modules

Biopython Tools for computational
molecular biology

VTK, ParaView Scientific visualization

matplotlib 2D plotting

TurboGears, django Web development
frameworks

SWIG, SIP Tools for wrapping code
in Python

Pyrex Tool for writing
extension modules in C

VisTrails Scientific workflow
system

Figure 2. A ChemBioGrid gateway using UCSF Chimera

In a similar fashion, the ParaView scientific visualization
application (like the VTK libraries on which it depends) can also
be extended via Python [12]. This opens the door for more
interesting extensions to the TeraGrid Visualization Gateway [13].
We plan to explore VMD [14] as a rendering engine for this
gateway in the future.

5. PYTHON WEB FRAMEWORKS -
TURBOGEARS
We now focus on Web-based gateways, as opposed to workstation
applications operating as gateways. When discussing Web
gateways, one enters the realm of Web development frameworks.
Our criteria for choosing a suitable framework includes: Python-
based, active developer and user communities, and ease of use. In
our opinion, the two open source Python-based frameworks that
are viable options are django and TurboGears (incidentally these
frameworks are similar to the popular Ruby on Rails application).
We will discuss and evaluate the suitability of TurboGears as a
web framework for creating scientific gateways.

Like Enterprise Frameworks mentioned above, TurboGears offers
a Model-View-Controller (MVC) paradigm for Web
development. TurboGears is designed for rapid development and,
not surprisingly, the MVC tools are all Python-based. Each of the
three MVC components uses existing Python modules; there is no
need to reinvent the wheel. For the Model component, a
TurboGears project can connect to a relational database using
SQLObject [15], the View component uses Kid templating [16]
and the Controller component uses CherryPy [17].

For the following exercise, we have installed the latest version of
Python (currently 2.5) and the easy_install Python module [18].
We are also running the Apache web server (version 2.2.4) and
the mod_python Apache module. To install TurboGears, one
simply runs the command (probably as admin/root or sudo):

$ easy_install turbogears

After installing TurboGears, one can start a “project”, i.e. a
gateway project for our discussion, simply by running the
command:

$ tg-admin quickstart

and be prompted for a project name. This will create a
directory/folder structure that includes a Python script called start-
<project-name>.py. After running start-<project-name>.py, one
can point a browser to http://localhost:8080 (user configurable)
and see the default Web page (“gateway”) for this project (Figure
3).

Figure 3. Initial startup screen for a new TurboGears project

At this point, it is mostly a matter of becoming familiar with the
syntax of the automatically generated template for this view
(welcome.kid) and script for the controller (controller.py) in order
to create the desired look and functionality of a gateway.
Fortunately, TurboGears provides several “extras” that can help.
These include AJAX functionality (via MochiKit) such as drag-
and-drop, the ability to serialize objects using JSON instead of
XML, and numerous predefined widgets (several being AJAX-
based). Some of the widgets are common: buttons, checkboxes,
input forms, tables, file browser, etc. However, some widgets are
more complex: data grids, 2-D plots, multiple-value selection
between two lists, etc. (Figure 4).

Figure 4. 2-D plotting (top) and file transfer (bottom) widgets

in TurboGears

6. SIMPLE EXAMPLES
Now that we have more or less laid the foundation for developing
a Python-centric scientific gateway, let’s actually build some
simple examples. We begin with something that might be a useful
component for a TeraGrid-related gateway. The Network
Weather Service (NWS) [19] offers a batch queue prediction Web
service. It includes several TeraGrid computing resources. Using
the ZSI toolkit (version 2.1), one can automatically generate a
Python client script from the NWS WSDL (Nws.xml) that is
provided, as follows:

% wsdl2py --complexType Nws.xml

This will automatically generate the Python script,
NwsService_client.py. One could then use an (Python) IDE to
interactively develop functionality that may be specific to your
gateway’s needs and then insert this functionality into the
appropriate MVC component.

from NwsService_client import *

loc = NwsServiceLocator()
stub=loc.getNws()

req = qbetsGetMachinesRequest()
resp = stub.qbetsGetMachines(req)
machineInfo = resp._qbetsGetMachinesReturn
#print 'available machines = ',machineInfo

req = qbetsPredictBoundRequest()
set input parameters
req._in0 = 0 # timestamp for time of prediction
(0=now)
req._in1 = "bigred" # machine internal tag (rf.
qbetsGetMachines())
req._in2 = "MED" # queue of interest
req._in3 = 4 # how many nodes job will request
req._in4 = 341 # walltime max the job will request
req._in5 = 0 # quantile of interest (0= 0.95)
req._in6 = 0 # startDeadline (# of secs from 'now' of
job's desired start time)

call the remote method
resp = stub.qbetsPredictBound(req)
#print 'qbetsPredictBound-------- ',resp

bigredXML = resp._qbetsPredictBoundReturn

use an XML parser from the standard library to parse
the output results
import xml.etree.cElementTree as etree
root = etree.fromstring(bigredXML)
print '----- Big Red results ------'
print etree.tostring(root)

This produces the result:

----- Big Red results ------
<boundPrediction>
 <status>SUCCESS</status>
 <statusLong>Success</statusLong>
 <prediction>3658</prediction>
</boundPrediction>

After incorporating the above client code into the TurboGears
controller script and making a small change in the style sheet
template, we trivially transform the default gateway in Figure 3 to
that of Figure 5. Obviously, a more eye-pleasing style is possible
if we had used a predefined TurboGears form widget.

With Figure 5, we have set the stage for our next example
application, CompuCell 3D [20] (CC3D). CC3D is an open
source tissue simulation environment. Like UCSF Chimera, it is
intended to be used primarily as a standalone workstation
application (Figure 6). However, because it provides a Python
API, CC3D can be used in a non-interactive fashion as well. We
will take advantage of this and present an example that
incorporates CC3D into a gateway. Our goal in doing this will be
to allow for easy user input of simulation parameters and
subsequent remote execution of the simulation, providing a
gateway component for parameter studies. It is quite often the
case that modeling efforts are aimed at finding an optimal set of
parameters for which the model mimics reality. Unfortunately, in
many cases, a search for parameters is purely heuristic and
requires many trial-and-error attempts. Providing a gateway
component for parameter sweeps could greatly improve a
researcher’s productivity.

Figure 5. Simple example for real-time NWS results

Figure 6. CompuCell3D application

Making minor changes to the controller.py and template.kid files,
we can create a simple gateway component (Figure 7) to accept
input parameters, select a machine (and queue), and submit a
remote job. To execute a remote job, we follow the same
approach used in the (Python-based, ZSI-enabled) VisPort [21]
TeraGrid Web service, namely, invoke the command globus-job-
run from a Grid(Globus)-enabled server. We also make the
simplifying assumption that there exists a community credential
and we take advantage of the MyProxy service [22]. Assuming
the job runs successfully, we could then use a file transfer
gateway component as depicted in Figure 4 to retrieve output
files.

Figure 7. Mock-up for parameter input and job submission

7. SECURITY
To prevent resources exposed by a gateway from being available
to the general public, securing the web-based gateway is a
necessary deployment step. We have a fairly straightforward out-
of-the-box solution used to secure web gateways using Grid
Security Infrastructure (GSI) authentication. Our solution
assumes: the GSI file systems (e.g. /etc/grid-security) are
available on the host computer [23], a newer version of M2Crypto
(>=0.16) is installed, and a client certificate exists and has been
imported into the browser. Due to space constraints, we will not
elaborate on the steps involved but are more than willing to share
this information with interested readers.

8. NON-PYTHON COMPONENTS USING
AJAX
While there are a lot of great libraries for scientific gateway
development written in Python, there are also several others
available in different languages and runtimes. For example, a
great deal of grid middleware is available in Java, and in some
situations it would be beneficial to leverage this software. One
way to create a web application using a Python web framework
where the backend is partially non-Python would be to create web
components that are written to the browser runtime environment
and that communicate with the backend via an AJAX mechanism.
These web components could be implemented as JavaScript
widgets, using a JavaScript library like MochiKit, Yahoo UI,
Dojo, etc., or as Java applets or Adobe Flex/Flash components.
The main focus in this section is on JavaScript widgets talking to
a Java backend. To begin, the web components are added to the
view of the Python web framework (in TurboGears via the Kid
templates). They expect to make AJAX-like calls to the
originating server. To make this work, the Apache HTTP server
that is used to connect to the TurboGears server is also made to
connect to and proxy certain requests to an instance of Apache
Tomcat. The Java backend would run as a web application inside
of Apache Tomcat.

As an example, imagine a very simple MyProxy web component
implemented with a JavaScript library. This can be added directly
to a Kid template in a TurboGears application as a snippet of
JavaScript (perhaps needing a configuration option specifying a
path for AJAX requests). The MyProxy web component presents
a username and password login form. When the user fills in and
clicks the submit button, it generates a request to
/grid/MyProxyHandler, where /grid is the path that Apache HTTP
server has been configured to map to the Apache Tomcat instance,
and /MyProxyHandler is a path to a servlet running in Tomcat that
has been designed to handle these requests. This servlet could
then be implemented using the JGlobus API, for example.

Note that the web components themselves are agnostic as to their
backend. They expect to be able to communicate via some XML
or JSON schema with configured handlers, but whether those
handlers are implemented in Java, Python or some other language
is of no concern to them.

9. CONCLUSIONS
It is our belief that there is plenty of room in the scientific
gateways landscape for more ideas and more development tools.
Furthermore, we believe that scientific communities should be
empowered to build their own gateways, if they so desire. A
novel idea would be to provide some sort of self-organizing
mechanism in the gateway itself. Imagine, during the prototyping
phase, that end-users (scientists) make incremental changes to the
gateway layout and functionality, evolving it to be optimal for
their needs.

This paper has focused on Python-based tools and has presented
examples using two different approaches to gateways: extending
workstation applications to be client-server and using the
TurboGears web development framework, both taking advantage
of Web services. For scientific communities who are already
familiar with Python (or are considering learning), we hope we
have inspired you to experiment with some of the ideas and tools
discussed here. For communities using other approaches for
developing gateways, we hope we can share ideas and that
science and science education will benefit.

10. ACKNOWLEDGEMENTS
The authors wish to thank the entire Python community for an
amazing programming language and tools. We are grateful to the
UCSF Chimera development team and Rajarshi Guha of the
ChemBioGrid team for their assistance. Charlie Moad made
significant contributions to some of these implementation ideas.
RH was funded in part through the IPCRES Initiative grant from
the Lilly Endowment.

11. REFERENCES
[1] http://www.teragrid.org/programs/sci_gateways/
[2] http://communitygrids.blogspot.com/2007/02/rethinking-

science-gateways.html
[3] http://www.python.org
[4] http://en.wikipedia.org/wiki/Dive_into_Python

[5] Dubois, PF. Python for Scientific Computing, Computing in
Science & Engineering, vol. 9, no. 3, May/June 2007.

[6] D.M. Beazley and P.S. Lomdahl, "Building Flexible Large-
Scale Scientific Computing Applications with Scripting

Languages", 8th SIAM Conference on Parallel Processing
for Scientific Computing, March 14-17, Minneapolis,
Minnesota. (1997). CD-ROM.

[7] http://wiki.python.org/moin/BeginnersGuide
[8] http://wiki.python.org/moin/NumericAndScientific
[9] http://en.wikipedia.org/wiki/Web_service

[10] Peters B, Moad C, Youn E, Buffington K, Heiland R,
Mooney SD. Identification of Similar Regions of Protein
Structures Using Integrated Sequence and Structure Analysis
Tools. BMC Structural Biology 2006, 6:4.

[11] http://www.chembiogrid.org
[12] http://www.paraview.org/Wiki/Python_Programmable_Filter
[13] http://tg-portal.uc.teragrid.org
[14] http://www.ks.uiuc.edu/Research/vmd/
[15] http://www.sqlobject.org/
[16] http://www.kid-templating.org/
[17] http://www.cherrypy.org/
[18] http://peak.telecommunity.com/DevCenter/EasyInstall

[19] http://nws.cs.ucsb.edu/ewiki/
(http://nws.cs.ucsb.edu:8180/axis/services/Nws?wsdl)

[20] http://compucell3d.org/

[21] Baker MP, Heiland R, Bachta E, Das M. VisPort: Web-
Based Access to Community-Based Visualization
Functionality. Proceedings in TeraGrid Conference, Madison
WI, June 4-8, 2007.

[22] http://grid.ncsa.uiuc.edu/myproxy/teragrid.html
[23] http://www.globus.org/security/overview.html

