NEPHROGENIC SYSTEMIC FIBROSIS AND OMNISCAN: PART 2.

<u>B. Lipchick</u>^{1,3}, J. Swartzenberg^{1,3}, G. Smith^{2,3}, N. Conway^{2,3}, J. Hornak^{1,2,3} Department of Chemistry, Center for Imaging Science, and Magnetic Resonance Laboratory, jls3197@rit.edu, bcl3302@rit.edu, gesmith@rochester.rr.com, skigirl009@yahoo.com, jphsch@rit.edu

Gadolinium (Gd) based intravenous magnetic resonance imaging (MRI) contrast agents have recently been associated with a multisystemic fibrosing disorder. Transmetallation between the Gd of the contrast agent and the endogenously available copper (Cu) or zinc (Zn) cations is believed to play a role. This presentation examines the interaction of gadodiamide, the active ingredient in the contrast agent called Omniscan® (GE Healthcare), with copper (Cu) or zinc (Zn) cations. Nuclear magnetic resonance (NMR) relaxometry and UV-Vis absorption studies of mixtures of Omniscan and various metal ions were used to arrive at the following conclusions. Of the ions Zn⁺², Ca⁺², Mn⁺², Co⁺², Ni⁺², and Gd⁺³, Cu⁺² is unique in that two ions interact with one gadodiamide complex. An equilibrium between 2Cu⁺² and gadodiamide is reached after ~30 min at 20°C. The 2:1 ratio is independent of the copper's counter ion, solution temperature, excess Gd⁺³, and gadodiamide concentration. From these results, as well as λ_{max} values in the UV-Vis spectrum, we conclude that two Cu⁺² are complexing with the diamide ligand at the two secondary amines on the diamide ligand and the Gd remains complexed to the other eight sites on the ligand.