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A novel method for calculating the dispersion relation of electromagnetic modes in an
arbitrary periodic slow wave structure is reported. In this method it is sufficient to know the
frequencies corresponding to three special wave number values, with other points
calculated using an approximate analytical expression. This technique was successfully
applied to determine the dispersion rdation of the TMo1 mode in a sinusoidaUy corrugated
slow wave structure. This structure is commonly used in relativistic high-power backward
wave oscillators and traveling-wave tubes, and is expected to have many additional
applications.

FlG. 1. (al Regions of operation in the fl'equency-wave1ength domain of
various microwave and millimeter wave generators; (b) schematic dia­
gram of a sinusoidally cOfmgated waveguide; (c) iris loaded waveguide.

interaction. In this letter we present a novel, accurate, and
simple method for calculating the dispersion curve of an
infinitely long slow wave structure of arbitrary geometry.
This method was successfully applied to determine the dis­
persion curve of the TMOl mode in a sinusoidally corru­
gated waveguide. The results are then compared with those
achieved by using other techniques.

Any periodic slow wave structure with n periods, when
shorted at both ends, will exhibit (n + 1) resonant fre­
quencies with a phase shift per period equally spaced be­
tween 0 and 1T. Outside of the region O<,(JL<,rr, the disper­
sion relation is periodic in (J space (Floquet's theorem).
This dispersion relation can be either be calculated using
computational methods or measured experimentally (cold
test).

When an electron beam is injected into a periodic slow
wave structure, the beam structure resonance often leads to
either an absolute or a convective instability. The beam
space-charge waves couple to the slow wave structure nor­
mal modes to produce microwave and millimeter wave ra­
diation. The group and phase velocity of the slow wave
structure modes, as well as the electron beam characteris­
tics, determine the nature and frequency of the beam-wave
interaction.

There are many families of microwave and millimeter
wave generating devices whose operation depends on this
type of interaction. As an example, Fig. 1 shows schemat­
ically the regions of operation of some of these devices in
the frequency-wave number domain, as well as some typi­
cal slow wave structures. Relativistic traveling-wave tubes i

(RTWTs) operate below the point where the wave number
(normalized to the structure period) is equal to 7T radians.
In this case, both the phase and the group velocities are
positive. At [3L = 7T, the upper cutoff frequency, the elec­
tromagnetic wave undergoes a phase shift of 1T radians per
period of the slow wave structure. At this point, the phase
velocity is positive and the group velocity is zero. Back­
ward wave oscillators (BWOs) as well as carcinotrons op­
erate in the region 1T < {3L < 2rr, where the phase velocity
(w/(3) is positive and the group velocity caU)/iJ{3) is neg­
ative (l') is the angular frequency and (J is the wave num­
ber). Extended interaction oscillators (BIO) operate very
close to the {3L = 27T point.

Relativistic backward wave osillators2 and rdated de­
vices which typically operate close to the (3L = 7T point,
prove to be efficient and powerful microwave and millime­
ter wave sources with reported record power levels reach­
ing 15 GW at wavelength of 3 cm' and 5 GW at 3 mm,4
with efficiencies of up to 50%. In these devices, a smoothly
corrugated waveguide has been found to be advantageous
aver alternative periodic structures due to its high-power
handling capabilities. Many other devices (to be discussed
later) also employ corrugated waveguide slow wave struc­
tures operating in both TM and TE modes. It is important
therefore, to know the dispersion relation of such slow
"...ave structures in order to synchronize the phase velocity
of the wave with the electron beam to produce efficient
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TABLE 1. Resonance frequencies (GHz) of a sinusoidally corrugated
waveguide cavity (Rn = 1.5 em, L = 1.67 em, h = 0,273 em),

Resonance frequency
(GHz)

1.1= f( (3L = 0)
j( /3L= 17/4)
fT;; = j( til. = 1712)
f( (3L = 317/4)
fe = f( {3L ~,. 17)

2-period cavity

70404
N/A
8,046
N/A
8,773

4-period cavity

70412
7,589
8.046
8.557
8.754

(a)

Instead of llsing a large number of periods to accu­
rately calculate the dispersion relation, we will show that it
is sufficient to calculate the short circuit cavity resonant
frequencies corresponding to three special normalized
wave number values, /3L = 0, 1'/2, and rr radians by rigor­
ously solving the boundary value problem. With these
three frequencies, one can use an analytical expression to
produce the complete dispersion curve. Furthermore, we
can also analytically calculate the phase and group veloc­
ities at any point along the dispersion relation. We have
used a two-dimensional electromagnetic code5 ("Super­
fish") for the calculation of these three special frequencies
for a sinusoidally corrugated waveguide, oriented in the z
direction whose radius is described by

FIG. 2. (a) Mode patterns (electric Ileld lines) corresponding to zero
phase shift, (b) "/T12 phase shift, and (c) 17 phase shift in the TMOI lower
pass band of a sinusoidally corrugated waveguide.R =Ro! 1 + h cos(2rrz/L)], (1)

Ill)

(0)

where Ro is the average radius, h is the normalized corru­
gation amplitude, and L is the structure period.

For high-power relativistic BWOs, the main mode of
interest is the cylindrically symmetric TMOI mode. In our
test case, the waveguide average radius was Ro = 1.50 em,
the ripple period was L = L67 em, and the normalized
corrugation amplitude was h = 0.273 em. Superfish mod­
eling yielded (with proper boundary conditions) the three
special resonance frequencies in the lower passband. The
results are tabulated in the second column of Table I (two
period cavity). The corresponding mode patterns (electric
field lines) are shown in Figs. 2 (a), 2 (b), and 2 (c), which
pertain to phase shifts per period of 0, rr/2, and 'IT, respec­
tively.

Next, the expression used to calculate the complete
dispersion relation is discussed. By using the impedance or
ABeD matrix of a four-terminal network, together with
Floquet's theorem6 to describe a periodic slow wave struc­
ture, the dispersion relation can be expressed in the non­
explicit form

The three terms in Eq, (3) are sufficient to ensure excellent
accuracy for most practical cases, as will be shown later.
Notice that the geometrical factor G (as yet unspecified)
does not appear in the equation. Rather, it enters indirectly
through A, B, C, which are geometry-dependent parame­
ters with simple physical meaning. The first term, A, rep­
resents the value of the frequency near th.e midband. The
second is an increment term whose maximum value equals
half the difference between the upper and lower cutoff fre­
quencies of the passband. The third term is a correction
term. The combination of all three terms exactly satisfied
the dispersion relation at the three special wave numbers
(0, rr/2, andrr) and is an excellent approximation at all
other wave numbers, as will be shown later.

Equation (3) enables one to directly calculate the
phase and group velocities at any point along the disper­
sion relation. The expressions derived for the velocities are
given in Eqs. (4) and (5):

f =fCcos (3L,G) (2)

[2Lrr jrr/2(l + tJ.j/lrr/z)J
vpha," cos- 1( [(B2_4CAj)l/2 __ B]l2Q' (4)

where f is the frequency of the electromagnetic radiation
and G is a geometric factor related to a specific slow wave
structure dimension. Let A = frr!2' B = (111"- fo)/2,
C = j~!2 - ( j~ +10) /2. It can be shown that th.e dispersion
relation of any general periodic structure can be expressed
in the following explicit, approximate form:

f =A - B cos /3L - C cosz /3L. (3)

Vgroup =3M/3/3=21'L(B sin f3L + 2C cos (3L sin f3L), (5)

where f!/=F-lrr/2.
The results of our test case are plotted in Fig. 3. It

shows the TMo1 dispersion curve in the lower passband for
the sinusoidally corrugated waveguide Fig. 3(a), as well as
that of an iris loaded waveguide having the same minimum
and maximum radial dimensions. The two are similar with
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FIG. 4. Comparison of the TM01 dispersion curve of Ref. 7 (solid line)
and this work (dotted line) for a sinusoidally corrugated waveguide.
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as calculated by these two techniques [Ref. 7 and Eq. (3)1
for the same corrugated guide. The results are in excellent
agreement (within 0.15%) over the entire wave number
range 0 < f3L < 1T. Outside this range the dispersion relation
is, of course, periodic.

It is expected that this technique will be beneficial for
determining the dispersion curve of periodic structures of
arbitrary shapes. The three special resonance frequencies
which are needed in order to generate the complete, gen­
eral dispersion curve can be calculated by rigorously solv­
ing the boundary problem or measured experimentally.

Corrugated slow wave structures may prove beneficial
in prospective applications such as TE mode slow wave
cyclotron amplifiers,9 TM mode relativistic extended inter­
action oscillators and amplifiers,1O TE mode CARMs,ll
electromagnetically pumped free-electron lasers, 12, 13 and
plasma-loaded backward wave oscillators. 14
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FIG. 3. Ca) TMo1 dispersion curve for a sinusoidally corrugated, iris
loaded, and smooth waveguide, (b) normalized group velocities, (c)
phase velocities.

the iris loaded guide dispersion curve always lower in fre­
quency compared to the corrugated guide. This is expected
since the volume of the first is larger than that of the
second, driving all the resonant frequencies down. The
open circles at (3L = 0, 1T/2, and 1T were calculated by using
Superfish and were used in Eq. (3) to calculate the com­
plete dispersion relation. For comparison, the dispersion
relation of a smooth waveguide is also given. Figures 3(b)
and 3(c) display the phase and group velocities (normal­
ized to the speed of light) for the same cases [Eqs. (4) and
(5)].

In order to estimate the accuracy of this technique as
applied to the sinusoidaUy corrugated guide, we first cal­
culate additional resonance points on the dispersion curve,
using "Superfish". Four periods of the corrugated guide
cavity were modeled, yielding five resonances in the wave
number range of 0 to 1T and the results are given in the
third column of Table I (four-period cavity) and are plot­
ted as additional open circles in Fig. 3(a) with very good
agreement (eight periods were also successfully modeled).
As an independent check, the dispersion relation derived
here was compared to the dispersion relation derived
elsewhere7

,8 for the same corrugated guide geometry by
solving a system of coupled linear differential equations.
Figure 4 shows a comparsion between the dispersion curve
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