Starting Energy and Current for a Large Diameter Finite Length Backward Wave Oscillator Operated at the Fundamental Mode


Abstract—We study the starting conditions for a large diameter (diameter/wavelength = 4.8) finite length backward wave oscillator designed for 24-GHz operation at the fundamental TM01 mode. This geometry is very promising for high power handling capability. We analyze two separate threshold conditions. First, finite length effects give rise to a threshold in electron beam energy below which oscillations cannot be sustained at any beam current. The second is the more familiar current threshold known as a start current. It is also found that the growth rate for the fundamental mode can be much larger than those of other higher order modes thus leading to coherent operation of large diameter sources free from mode competition.

I. INTRODUCTION

HIGH-POWER MICROWAVE sources are important for a number of advanced applications ranging from current drive and RF heating of magnetically confined plasmas in fusion devices to high resolution nanosecond radars [1]-[3]. Pulsed high power microwave oscillators utilizing intense relativistic electron beams have been extensively studied in recent years [2]-[6]. Among various microwave sources, the multiwave Cerenkov generators (MWCG’s) developed by [7] at the High Current Electronics Institute, Tomsk, Russia, have recently attained record outputs [7], [8]. Radiation powers of 7.5 GW at a wavelength \( \lambda = 9.7 \) mm with an electronic efficiency of 20% were reported. The MWCG involves a slow wave structure (SWS) with an average diameter \( D \) much larger than \( \lambda \). In the above example, \( D/\lambda = 13 \). This large diameter SWS enables a larger output power for a given RF energy density inside the SWS before breakdown occurs. Despite a possibility of mode competitions, efficient, high power single mode oscillation was attained in a device utilizing overmoded SWS [9]. Twenty years ago, high power single mode oscillation was attained in a device utilizing overmoded SWS [9]. Twenty years ago, high power single mode oscillation was attained in a device utilizing overmoded SWS [9].

This situation is quite similar to the SWS design of MWCG’s [7]-[9]. In the present paper, numerical studies are made within the scope of linear analysis for a large diameter SWS with \( D/\lambda = 4.8 \). Specifically, the starting energy and the starting current of the beams for initiating microwave oscillation in such a finite length SWS are analyzed in detail. Previously, the starting current conditions for finite length BWO’s have been studied by various authors [5], [13], [15], [16]. Swegle analyzed the starting condition for a BWO [15]. In his treatment, 100% reflection at the beam entrance boundary and 0% reflection at the RF output boundary were assumed. This assumption was valid for the case of matched termination at the output end of the SWS. We consider here an alternative case of nonzero round trip reflection which may correspond to the experimental situations in [4] and [10]. Such nonzero round trip reflection produces discrete spectra of axial wavenumber of eigenmodes of an axisymmetric TM mode [13], [14], [17].

In Section II, we describe the model of our linear analysis. The difficulties to be overcome in the practical numerical computation in the case of \( D/\lambda \gg 1 \) are discussed. Numerical results are shown in Section III. Discussion and conclusions are given in Section IV.
II. FORMULATION AND DIFFICULTIES IN NUMERICAL ANALYSIS

The model of an axisymmetric large diameter SWS with length $L$ shown in Fig. 1 is analyzed. The radius $R(z)$ of perfectly conducting metal wall varies with $R(z) = R_0 + h \cos K_0z$. The entire system is immersed in a strong longitudinal external magnetic field. The transverse motion of the beam electrons is assumed to be negligible. We also assume that an infinitely thin annular beam with radius $R_b$ monoenergetic beam energy $E_b$ and current $I_b$ is incident to the SWS. The linear dispersion relation for the system in Fig. 1 was derived previously [15, 18, 19] and the results are summarized here. The boundary condition that the tangential components of the RF electric field at the corrugated metal surface of the SWS must be zero gives

$$\sum_{m, n=\infty} \left[1 + (n - m)Q_n \right] \left[ B_n C_n^d + C_n C_{mn}^N \right] = D_{mn} \cdot A_n = 0 \quad (1)$$

$$C_n^d = \int_{\pi/K_0}^{\pi/K_0} \exp \left[ i(n - m)K_0z \right] \cdot \text{J}_0(y_n(1 + \alpha \cos K_0z)) \, dz \quad (2)$$

$$= \sum_{q=0}^{\infty} \frac{y_n(1 + \alpha \cos K_0z)}{2\pi q(n - m)!} \left[ e^{i(n - m)qK_0z} \right] \quad (3)$$

where $Q_n = K_0k_0/\left[ (\omega^2/c^2 - k_0^2) \right]$, $k_n = k + nK_0$, $y_n = R_0/\left[ \omega^2/c^2 - k_0^2 \right]$ and $c$ is the vacuum velocity of light. The RF field amplitudes, $A_n, B_n$, and $C_n$ of the Floquet harmonics are the same as those in (7) in [18]. The beam quantities such as $I_b$ and $V_b$ are involved in $B_n$ and $C_n$. In (1), $C_{mn}^N$ is obtained by replacing the Bessel function of the first kind, $\text{J}_0$, in $C_n^d$ by that of the second kind, $\text{Y}_0$. In the above expressions, temporal and spatial phase factors $\exp\left[ i(n - m)qK_0z \right]$ have been assumed for every RF quantity. The dispersion relation combining $\omega$ and $k$ is given from (1) as the determinant equation,

$$D(k, \omega) = \det \left[ D_{mn} \right] = 0 \quad (4)$$

which is required to have nontrivial $A_n$ in (1). As is well known, $N_0$ goes to infinity at the origin which occurs in the case of light line in vacuum, $\omega = ck_0$. Because the roots of (4) are slow waves, they are located in the complex $\omega$ and $k$ planes considerably separated from where $\omega = ck_0$. Difficulty of $N_0$ infinity does not occur for finding the roots.

We discuss here some peculiar difficulties that arise in the computation for the large diameter SWS. For the time being, we consider the simple case without the beam, i.e., $I_b = 0$, and $A_n = B_n$. $C_n = 0$ in (1) accordingly [18]. Because no input energy is present in the SWS, oscillations cannot be expected. For a real $\omega$, real $k$'s are obtained in (4) and vice versa. Equations (2) and (3) were useful to compute the dispersion relation of a BWO [19, 20]. In the present case of large diameter BWO's, however, there exist some difficulties for computing (2) and (3). In order to get a large oscillation frequency $\omega/2\pi$ without decreasing $R_0$, we must choose a small $h$ and $z_0$ in Fig. 1 that results in a large $K_0$ and that makes $y_n^2 < 0$ in (2). For negative $y_n^2$, the Bessel function $\text{J}_0$ becomes modified Bessel function $I_0$ consequently, and the integrand of (2) is rewritten as

$$\exp\left[ i(n - m)K_0z \right] \text{J}_0[y_n(1 + \alpha \cos K_0z)] \quad (2)$$

$$\int_{-\pi/K_0}^{\pi/K_0} \exp\left[ i(n - m)K_0z \right] \text{J}_0[y_n(1 + \alpha \cos K_0z)] \, dz = \sum_{q=0}^{\infty} \frac{y_n(1 + \alpha \cos K_0z)}{2\pi q(n - m)!} \left[ e^{i(n - m)qK_0z} \right] \quad (3)$$

The modified Bessel function $I_0$ in the integrand becomes extremely large, if $y_n^2$ is large. This effect causes an overflow in the process of numerical computation of (4). Such a difficulty arises often in the calculation of the large diameter SWS with small $z_0$. To avoid the difficulty, we express $I_0(z)$ as

$$I_0 = \frac{e^z}{(2\pi z)^{1/2}} \left( 1 - \frac{\mu - 1}{8\pi z} + \frac{\mu - 1)(\mu - 9)}{2(8\pi z)^2} \right) \quad (2)$$

Using this asymptotic expansion, (1) is expressed as

$$\int_{\frac{\pi}{2}, \mu = 4a^2} \exp\left[ i(n - m)qK_0z \right] \text{J}_0[y_n(1 + \alpha \cos K_0z)] \, dz = \sum_{q=0}^{\infty} \frac{y_n(1 + \alpha \cos K_0z)}{2\pi q(n - m)!} \left[ e^{i(n - m)qK_0z} \right] \quad (3)$$

The dispersion relation is given by (5) instead of (4). Equation (5) does not have problems with numerical overflow.

The next problem concerns the adequacy of the Taylor expansion used in (3). In general, numerical integration of (2) takes much computation time and the expanded form of (3) is preferable, as long as the sinusoidally corrugated SWS in Fig. 1 is considered. A large $K_0$ again may result in $y_n, |a| > 1$ in (3), and the summation does not converge rapidly. We find that tens of terms in (3) must be calculated to get a converged value of summation because of increased denominators. To avoid this difficulty, we truncate the rank of the determinant in (5) to as small a value as possible. This is because the values of $k_n$ and accordingly $y_n$ will not be very large for small
ranks of truncated determinant. For example, \(|\nu_n\alpha| > 1\) may be avoided, if one limits \(-1 \leq n, m \leq 0\) (2 x 2 determinant) or \(-1 \leq n, m \leq 1\) (3 x 3 determinant). Fig. 2 shows the result of the design study; the oscillation frequency \(f = \omega/2\pi\) versus the corrugation wavenumber \(K_0\) for several corrugation amplitudes \(h\). Here, \(R_0 = 3.0\) cm has been assumed as a given parameter. Curves in the figure are obtained by computing the frequencies at the crossing point of the structure mode and the beam space charge line with \(I_b = 0\) for various values of \(K_0\) and \(h\). The straight line, \(\omega = V_h K_0/2\), in Fig. 2 is the boundary that divides the BWO (absolute instability) from the TWT (convective instability) for the case of \(\pi\)-mode operation \((k = K_0/2)\) with \(V_h = 100\) keV. Microwave oscillation can be expected in the cases of \(K_0\) to the left of the straight boundary line. Roughly speaking, BWO’s and large diameter BWO’s are expected, respectively, in cases of \(K_0 < 10 \text{ cm}^{-1}\) and \(K_0 > 10 \text{ cm}^{-1}\). The black circle represents the parameters we have chosen for the present design study of a large diameter BWO with the following parameters: \(K_0 = 18.5\) cm\(^{-1}\) \((z_0 = 0.34\) cm\), \(h = 0.17\) cm and \(f = 24\) GHz. The solid and dashed curves are, respectively, the calculations using (3) and (5) of the 9 x 9 and 2 x 2 approximate truncated determinants. The differences between both curves are less than 4%. For the chosen size parameters, the dispersion curves are calculated for various truncated ranks from 9 \((9 \times 9)\) to 2 \((2 \times 2)\) of the determinant in (5). For ranks larger than 6, the oscillation frequencies are almost unchanged, and the results are considered to be exact. Even in the case of rank 2, the deviations from exact values are less than several percent. These facts suggest that the truncation to the rank 2 of the determinant in (5) is almost correct for our purpose. Hence, in order to save computation time, we adopt the truncated determinant of rank 2 in the subsequent numerical analysis of complex \(\omega\) and \(k\) with incident beams, at the sacrifice of accuracy within a few percent.

III. NUMERICAL RESULTS

A. Infinitely Long Slow Wave Structure

The parameters of the large diameter SWS used in the following numerical analysis are: \(R_0 = 3.0\), \(h = 0.17\), \(z_0 = 0.34\), and \(R_0 = 2.63\) cm. Beam energies of \(V_h = 100\) and 65 keV are used as typical values. The beam current \(I_b\) is mostly assumed to be 0.4 kA, unless specified otherwise.

The dispersion relation (5) for complex \(\omega/2\pi\) versus real wavenumber \(k\) is shown in Fig. 3 for two values of \(V_h\), 100 and 65 keV represented, respectively, by solid and dashed curves. Real and imaginary parts of \(\omega/2\pi\) are shown, respectively, in (a) and (b). Here, the beam current of \(I_b = 0.4\) kA has been assumed. Because of Floquet’s theorem, the dispersion curves have periodicity \(K_0\) for wavenumber, in other words, \(\omega(k) = \omega(k + nK_0)\). Usually, figures are shown for the first Brillouin zone \(-K_0/2 \leq k \leq K_0/2\), however, we depict hereafter the curves for \(0 \leq k \leq K_0\), because the important parts of the curves are located near \(k = K_0/2\). As were pointed out previously, there exist generally 4 independent roots for the fundamental TM\(_{01}\) mode [18], [20]. They are the fast and slow space charge waves and the backward and forward structure waves. The first wave is always heavily damped and it is ignored entirely in the subsequent analysis. The second wave is the energy source for the third wave, i.e., the output radiation. The fourth wave can serve as a positive feedback mechanism in the case of a finite length SWS. For simplicity, the fourth wave is also ignored hereafter. For a real \(k\), (5) can have a pair of complex conjugate roots of \(\omega\). They are a growing slow space charge wave and a decaying fast space charge wave. The single beam line for infinitesimal currents is split into the fast (shown by F) and slow (shown by S) beam space charge waves in Fig. 3(a), because of nonzero beam current. Absolute instability can be found around the crossing point of the backward structure wave (shown by B) and the line S. It is noted in Fig. 3 that the ranges of \(k\) for instability, i.e., complex \(\omega\) shown by thick solid and dashed lines in Fig. 3(b), are much more limited than the previous case of BWO’s [18], [19]. This is because the corrugation parameter \(\alpha = h/R_0\) is presently smaller than those in the conventional BWO’s. In other words, the oscillation condition in large diameter BWO’s with \(D/\lambda > 1\) is more restrictive or stringent than those in BWO’s with \(D/\lambda \sim 1\).

In our large diameter (overmoded) SWS, there exists a possibility of mode competition between various candidates including the fundamental and higher modes. Steady oscillation of the fundamental mode may not be realized because the beam energy may be fed to various modes with higher frequencies. In order to clarify the situation, we extended the analysis for the fundamental mode shown in Fig. 3 up to sixth higher modes. The oscillation frequency and the maximum temporal growth rate of the fundamental TM\(_{01}\) mode are compared with those of higher modes. We computed the dispersion curves similar to Fig. 3 for each higher mode. Fig. 4 shows the dispersion curves for an infinitesimal beam current.
MINAMI et al.: STARTING ENERGY AND CURRENT FOR A LARGE DIAMETER FINITE LENGTH BACKWARD WAVE OSCILLATOR

STARTING ENERGY AND CURRENT FOR A LARGE DIAMETER FINITE LENGTH BACKWARD WAVE OSCILLATOR

Oscillation Oscillation
Wavenumber Frequency (cm$^{-1}$) Mode
9.8 24. 1 %1
12.3 30. 4 %2
12.5 30. 9 TDd, 12.

Maximum Temporal Growth Rate (rad/ns)
0.195
0.0048
0.0118

Fig. 3. Dispersion relation for complex $\omega/2\pi$ versus real wavenumber $k$. $I_b = 0.4$ kA. Solid curves are for $V_b = 100$ keV and dashed curves are for $V_b = 65$ keV. (a) $f = Re(\omega)/2\pi$ versus $k$. (b) $Im(\omega)/2\pi$ versus $k$.

from which the oscillation frequencies can be estimated. It is interesting to note that the dashed beam lines, 100 and 65 keV, intersect the curve of the fundamental TM$_{01}$ mode at the positions where the group velocities are much smaller than those for higher modes. The results from complex analysis like Fig. 3 are summarized in Table I, where the maximum temporal growth rate, corresponding oscillation frequency and oscillation wavenumber are listed for six modes. Here, the beam current 0.5 kA has been assumed. As is clearly shown in the table, the maximum temporal growth rates of the higher modes are much smaller than that of the fundamental TM$_{01}$ mode. Accordingly, oscillations of higher modes may be ignored in the scope of the present linear analysis. Of course, mode competitions may be expected in large diameter BWO's at the saturated level of oscillation and oscillation wavenumber are listed for six modes. Here, the beam current 0.5 kA has been assumed. As is clearly shown in the table, the maximum temporal growth rates of the higher modes are much smaller than that of the fundamental TM$_{01}$ mode. Accordingly, oscillations of higher modes may be ignored in the scope of the present linear analysis. Of course, mode competitions may be expected in large diameter BWO's at the saturated level of oscillation and oscillation wavenumber are listed for six modes. Here, the beam current 0.5 kA has been assumed. As is clearly shown in the table, the maximum temporal growth rates of the higher modes are much smaller than that of the fundamental TM$_{01}$ mode. Accordingly, oscillations of higher modes may be ignored in the scope of the present linear analysis. Of course, mode competitions may be expected in large diameter BWO's at the saturated level of oscillation and oscillation wavenumber are listed for six modes. Here, the beam current 0.5 kA has been assumed. As is clearly shown in the table, the maximum temporal growth rates of the higher modes are much smaller than that of the fundamental TM$_{01}$ mode. Accordingly, oscillations of higher modes may be ignored in the scope of the present linear analysis. Of course, mode competitions may be expected in large diameter BWO's at the saturated level of oscillation and oscillation wavenumber are listed for six modes. Here, the beam current 0.5 kA has been assumed. As is clearly shown in the table, the maximum temporal growth rates of the higher modes are much smaller than that of the fundamental TM$_{01}$ mode. Accordingly, oscillations of higher modes may be ignored in the scope of the present linear analysis.

Fig. 4. The dispersion curves for TM$_{01}$, ..., TM$_{06}$ modes. The two dashed lines are the beam lines for 100 and 65 keV with infinitesimal currents, respectively. The crossing points of the beam lines and structure curves give possible oscillation frequencies.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Oscillation Wavenumber (cm$^{-1}$)</th>
<th>Oscillation Frequency (GHz)</th>
<th>Maximum Temporal Growth Rate (rad/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM$_{01}$</td>
<td>9.8</td>
<td>24.1</td>
<td>0.195</td>
</tr>
<tr>
<td>TM$_{02}$</td>
<td>12.3</td>
<td>30.4</td>
<td>0.0148</td>
</tr>
<tr>
<td>TM$_{03}$</td>
<td>12.5</td>
<td>30.9</td>
<td>0.0138</td>
</tr>
<tr>
<td>TM$_{04}$</td>
<td>12.5</td>
<td>30.9</td>
<td>0.0142</td>
</tr>
<tr>
<td>TM$_{05}$</td>
<td>15.3</td>
<td>33.1</td>
<td>0.0132</td>
</tr>
<tr>
<td>TM$_{06}$</td>
<td>14.0</td>
<td>34.0</td>
<td>0.0132</td>
</tr>
</tbody>
</table>

In Fig. 3, the real wavenumber $k$ has been assumed. The real $k$ means that we have assumed a sinusoidal small origin of oscillation with infinite extent in the $z$ direction and have calculated its temporal evolution. On the other hand, in the case of a localized small origin of disturbance for the instability, the origin develops asymptotically with temporal and spatial factors $t^{-1/2} \exp [-i(\omega - k_s)z]$, as was shown in (2.22) in [21]. Here, $\omega_s$ and $k_s$ are, respectively, the complex angular frequency and complex wavenumber at the saddle point $\partial \omega_s/\partial k_s = 0$ in (5). The localized origin can monotonically grow up in time at every point in $z$. This is therefore an absolute instability. Once an unstable root of (5) in Fig. 3 is found, it is not very difficult to access the saddle point, $\omega_s$ and $k_s$, which exists uniquely for a given set of all parameters, by using the Newton-Raphson technique. In the saddle point analysis of the large diameter BWO, it is found that the oscillation frequency $Re(\omega_s)/2\pi$ and the temporal growth rate $Im(\omega_s)$ are, respectively, slightly decreasing and increasing functions of $I_b$, and the spatial growth rate $Im(k_s)$ is almost unchangeable with increase in $I_b$.

B. Finite Length Slow Wave Structure

In a large diameter SWS with finite length $L$ as shown in Fig. 1, the wave reflections (or leakages) at both ends are taken into account. The end reflections result in a feedback mechanism by the backward structure wave, and the distinc-
tion between absolute and convective instabilities becomes somewhat ambiguous in the $L$ finite case. The complex wavenumbers of the slow space charge wave and the backward structure wave are denoted, respectively, by $a_+$ and $a_-$. In the limit of infinite $L$, $a_+ (= a_-)$ coincides with the saddle point of (5). For $L$ finite cases, the following equations must be satisfied instead of (5), [20],

$$D(a_+, \omega) = 0$$
$$D(a_-, \omega) = 0$$
$$R \exp \left[-i(a_- - a_+)L\right] = 1.$$  

Equation (8) comes from the requirement that the electromagnetic field must be a single value at every $z$ point, when the propagating wave comes back after one round trip [20]. In (8), $R$ is the one round trip reflection coefficient of wave fields at the both ends of the SWS, and assumed to be a given parameter. The length $L$ is assumed to be $L = 70 z_0 = 23.8$ cm. In general, the reflection coefficient $R$ in (8) must be a complex number, however, for simplicity it is approximately replaced by a real number $0 < R < 1$ in the subsequent analysis. This is because the argument of the complex number causes only changes in equivalent structure length less than $z_0$ much smaller than $L$. The additional requirement given by (8) results in the existence of the starting energy in addition to a nonzero starting current in finite $L$ BWO’s. Equation (8) is rewritten as

$$\text{Re} \left(a_- - a_+\right) = -2\pi/N/L > 0$$
$$\text{Im} \left(a_- - a_+\right) = -\text{In} \left(R\right)/L > 0$$

where $N$ is an integer. The following analysis is limited to the case $N = -1$ in (9), because $N = -1$ is the easiest case for initiating oscillation among various choices of $N$ for a given $L$.

To solve (6)–(8) correctly, it is necessary to watch the movements of roots $a_+$ and $a_-$ on the complex $k$ plane for various $\omega$’s with positive $\text{Im} \left(\omega\right)$ approaching to zero [20], [21]. This is because the physical meaning (stable or unstable) of the each root is lost in the course of numerical calculation of (6)–(8). We must reconsider the physical meaning through watching the movement of the root on the complex $k$ plane. If the particular root traverses the real axis during the change in $\text{Im} \left(\omega\right)$ from a large positive number to zero, the root is unstable, otherwise it is stable. A pair of solutions $a_+$ and $a_-$ is shown on the complex $k$ plane in Fig. 5(a) for $V_b = 100$ keV. The locations of the roots $a_+$ and $a_-$ are found at the centers of the contour mapping of $|D|$ given by (6)–(8) on the complex $k$ plane. The corresponding common value of complex $\omega/2\pi = 24.103 + i0.063$ is found in Fig. 5(b) for both $a_+$ and $a_-$ shown by black circles on the same complex $k$ plane as Fig 5(a). The white circles in Fig. 5(b) are the locations of $\text{Im} \left(\omega\right) = 0$ that give the boundary lines between BWO’s ($\text{Im} \left(\omega\right) > 0$), and TWT’s ($\text{Im} \left(\omega\right) < 0$). The arrows on the solid lines show the directions of decrease in $\text{Im} \left(\omega\right)/2\pi$ toward zero for constant $\text{Re} \left(\omega/2\pi\right)$. The diamond is the saddle point of (5). In $L$ infinite case, oscillation (absolute instability) is expected at the saddle point as was stated in the previous subsection, if it is located in $\text{Im} \left(\omega\right) \geq 0$ region in complex $k$ plane. In this case, oscillation is expected even for infinitesimal beam currents and no limitations exist for starting energy. In $L$ finite case, however, the oscillation happens not at the saddle point but at $a_+$ obtained from (6)–(8). Oscillation is impossible, if the pair of the roots are located in $\text{Im} \left(\omega\right) \leq 0$ region. Because the black circles are located in the region $\text{Im} \left(\omega\right) > 0$ in Fig. 5(b), the oscillation can be expected in the present case of $V_b = 100$ keV. Since we have chosen $L = 23.8$ cm and $N = -1$, $\text{Re} \left(a_- - a_+\right) = 0.264$ cm$^{-1}$ from (9) is a fixed value, which is independent of the value of reflection coefficient $R$. The horizontal distance between $a_+$ and $a_-$ is a constant 0.264 cm$^{-1}$ on the complex $k$ plane shown in Fig. 5(b).

A pair of solutions $a_+$ and $a_-$ in (6)–(8) in the case of $V_b = 65$ keV is shown on the complex $k$ plane in Fig. 6. Other parameters are the same as those in Fig. 5. The corresponding common value of complex $\omega/2\pi = 23.296 - i0.092$ is found in Fig. 6 for both $a_+$ and $a_-$ shown by black circles. In this case, $a_+$ and $a_-$ are located in the region of TWT’s, $\text{Im} \left(\omega\right) < 0$, and oscillation cannot occur for $V_b = 65$ keV, although the beam current $I_b = 0.4$ kA is identical to that for $V_b = 100$ keV in Fig. 5. Comparing Figs. 5(b) and 6, one finds that there may exist a threshold value in the beam energy $V_b$ below which oscillation in the BWO’s stops, no matter how
large the beam current \( I_b \). This statement is clarified in Fig. 7, where the fixed horizontal separation between two black circles \( \Re(a_+ - a_-) = 0.264 \text{ cm}^{-1} \) given from (9) is shown by a horizontal dashed line. Two solid curves are the horizontal separations \( \Re(\Delta k) \) between two white circles, respectively, as shown in Figs. 5(b) and 6 as functions of \( I_b \). Here, \( \Re(\Delta k) \) is the allowable range of oscillation for a given \( I_b \). In the case of \( V_b = 100 \text{ keV} \), the solid curve always lies above the dashed line. This fact suggests that the oscillation is possible. On the other hand, in the case of \( V_b = 65 \text{ keV} \), the curve stays below the dashed line, and oscillation does not occur.

For a given current \( I_b = 0.4 \text{ kA} \), the starting energy for oscillation is found in Fig. 8, where the horizontal separations \( \Re(\Delta k) \) of white circles such as those in Fig. 5(b) or 6 versus \( V_b \) are plotted. It is clearly shown that the starting energy denoted by the black circle is 76.5 keV for the given parameters of the present large diameter SWS. The larger length \( L \), the smaller starting energy, because the dashed line becomes lower. It must be emphasized, however, that the starting energy is not a sufficient condition, but a necessary condition for initiating oscillation in the finite length SWS. In order to have oscillation, the pair of roots \( a_+ \) and \( a_- \) must also satisfy (10) in addition to (9). This additional condition yields the starting current for oscillation. Equation (10) includes the reflection coefficient \( R \) as a given parameter, and the starting current \( I_{st} \) is affected sensitively by \( R \). The results are shown in Fig. 9, where \( I_{st} \) versus \( R \) is calculated for \( V_b = 100 \text{ keV} \) and \( L = 23.8 \text{ cm} \). It is reasonably shown that \( I_{st} \) is a decreasing function of \( R \). If we take into account the effect of the fourth wave (forward structure wave) as an additional feedback mechanism in (8), an oscillatory nature arises in the curve \( I_{st} \) versus \( L \), as was pointed out in [13], [16].

IV. DISCUSSION AND CONCLUSIONS

A large diameter backward wave oscillator of \( D/\lambda \sim 4.8 \) has been designed and analyzed numerically in detail. The key point of the design study is to raise the oscillation frequency without decreasing the mean diameter of the SWS. In our linear analysis, parameter selection for such purposes has been readily performed.

It was shown in the previous section that there existed a starting current of the beam required to withstand the leakage of radiation at both ends of SWS. Moreover, there existed a starting energy of the incident beam, below which oscillation could not occur, because of the finite length of the SWS. These two statements are never trivial and the distinction between both conditions has not been clarified in the literatures in the past. The former condition for the starting current given

\[ \text{Re}(\Delta k) = 0.264 \text{ cm}^{-1} \]

and the latter condition for the starting energy given by

\[ V_b = 76.5 \text{ keV} \]

Fig. 6. Locations of the pair of roots, \( a_+ \) and \( a_- \), on the complex \( k \) plane for \( V_b = 65 \text{ keV} \) and \( I_b = 0.4 \text{ kA} \), \( L = 23.8 \text{ cm} \), \( N = -1 \), and \( \omega/2\pi = 23.295 - 10.092 \). Locations of the roots (black circles) are outside the oscillation region \( \text{Im} (\omega) \geq 0 \) shown by white circles. The diamond is the saddle point.

Fig. 7. Allowable oscillation regions of two solid curves for \( V_b = 100 \) and 65 keV, i.e., horizontal separation of open circles as shown in Figs. 5(b) and 6 versus beam current \( I_b \). The dashed line is the horizontal separation \( \Re(a_+ - a_-) = 0.264 \text{ cm}^{-1} \) of the roots for \( I_b = 0.4 \text{ kA} \), \( L = 23.8 \text{ cm} \), and \( N = -1 \) in (9).

Fig. 8. Oscillation region versus beam energy \( V_b \). The dashed line is the horizontal separation \( \Re(a_+ - a_-) = 0.264 \text{ cm}^{-1} \) for \( I_b = 0.4 \text{ kA} \), \( L = 23.8 \text{ cm} \), and \( N = -1 \). The black circle is the starting energy.
by (10) arises from the requirement that the radiation loss depending on \( I_b \) at the ends of the SWS must be smaller than a threshold value. In other words, the external \( Q \) value of the corrugated wall resonator shown in Fig. 1 must be large enough for the occurrence of oscillations. The resonator must store a minimum amount of RF energy for oscillation. On the other hand, the latter condition for the starting energy given by (9) arises from the requirement that the coupling condition of real wavenumbers, \( \text{Re} (a_+) \) and \( \text{Re} (a_-) \), between the donor of RF energy \( a_+ \) (slow space charge wave) and the acceptor \( a_- \) (backward structure wave) becomes stringent, when \( L \) is small. The locations of the \( a_+ \) and \( a_- \) on the complex \( k \) plane are considerably separated in relatively short \( L \) case, and the coupling condition, namely, phase matching condition of the waves at the ends may not be satisfied. This restriction, \( \text{Re} (\Delta k) \), is relaxed in the case of large \( V_b \) as was shown in Fig. 8. This is the reason for the existence of the minimum starting energy for oscillation. This oscillation condition for \( V_b \) is peculiar to the finite \( L \) case, and such additional requirement for the coupling of waves did not occur in conventional infinite \( L \) case shown in Fig. 3. It is well known that beam wave interaction is strong near \( \pi \) or \( 2\pi \) mode operation, where the group velocity of the backward structure wave is small. In \( L \) finite case, the oscillation may stop somewhere between two mode operations because of increased group velocity. This qualitatively well known fact is for the first time analyzed quantitatively in the present paper, and it is the significance of the starting energy analyzed in this paper.

The diffraction of the radiation at the ends of large diameter SWS relating the value of reflection coefficient \( R \) is a complicated problem to analyze, and it is not treated here. In our numerical analysis, \( L = 23.8 \), \( R_0 = 3.0 \), and \( \lambda = 1.25 \) cm. The structure length \( L \) may be considered to be longer enough than \( R_0 \) and \( \lambda \), and our analysis ignoring end diffraction problem may be qualitatively valid. The practical value of the reflection coefficient \( R \) of the large diameter SWS can be measured by means of vector network analyzers for a real fabricated sample. The coefficient \( R \) is estimated to be 0.2 at 20 GHz from a straight cylindrical waveguide assuming that the corrugation parameter \( \alpha = h/R_0 = 0.0567 \) is small enough. Then, the starting current \( I_{st} = 1 \) A is found in Fig. 9. In the previous section, we assumed the typical beam current \( I_b = 0.4 \) kA, which is 400 times larger than \( I_{st} \). In such cases, overbunch instability may occur in the oscillation and degradation of the microwave output may result as was predicted and observed in [5] and [13]. In order to suppress the instability, we may raise \( I_{st} \) by decreasing the length \( L \) under the restriction that the pair of roots in (9) remain in the oscillation region shown in Fig. 5(b). On the other hand, space charge limiting current in a cylindrical pipe for the average radius \( R_0 = 3 \) cm and beam radius \( R_b = 2.68 \) cm is calculated to be \( 17(\gamma^{2/3} - 1)^{3/2}/2 \ln (R_b/R_0) = 2.9 \) kA, which is much larger than the present \( I_b \), where \( \gamma \) is the relativistic factor. The nonlinear analysis [22] or numerical simulation [13] is required to predict the power level and the performances of the designed large diameter BWO.

The energy sources in gyrotrons are the beam velocity\( v_{\parallel} \) perpendicular to the axial magnetic field. Electron beams with \( v_{\parallel}/v_{\perp} = 1.5 \sim 2 \) are usually required for high efficiency operation in gyrotrons [2], [3]. For that purpose, a sophisticated technology to generate such spiral beams was devised by means of magnetron injection gun, and analytically and empirically adjusted nonuniform axial magnetic field profiles for optimized performance. In contrast to gyrotrons, BWO's are easy to operate, because beams with \( v_{\parallel}/v_{\perp} \ll 1 \) are available, and uniform axial magnetic fields are usually applicable.

The growth rates of the large diameter BWO analyzed in the present paper are smaller than those in the conventional BWO's. This is mainly because we have chosen small \( \alpha = h/R_0 \). In fact, we carried out a preliminary measurement of BWO operation of our designed large diameter SWS. It was found that the microwave output at 21 GHz was quite small and that the operation was made in linear regime. It may be important to explore a possibility of enhancing the growth rates of radiation from the large diameter BWO. Our analysis has been confined to the case of very strong applied magnetic field. An extension of the present linear analysis to the finite magnetic field case, especially the case \( \omega \sim \Omega \), is very important [6]. Here, \( \Omega \) is the relativistic electron cyclotron frequency.

Reference [23] pointed out that, in slow wave cyclotron devices with \( v_{\parallel} < \omega/k < c \), the beam energy can be converted to wave energy through a transformation from \( v_{\parallel} \) to \( v_{\perp} \). This device was called the slow wave electron cyclotron maser. Although they assumed a dielectric loaded smooth cylindrical configuration, their statement can be applied to a metal wall SWS [24], [25]. In fast wave devices such as gyrotrons, the normal Doppler shifted beam cyclotron wave, \( \omega =kv_{\parallel} + \Omega \), is used to interact with structure TE modes. On the other hand, the anomalous Doppler shifted beam cyclotron wave, \( \omega = kv_{\parallel} - \Omega \), may be available to interact with structure TM modes in our large diameter SWS. The growth rates in the large diameter BWO in the present paper may be resonantly enhanced by the novel effect suggested by Kho and Lin [23]. Moreover, they showed in their Fig. 6 that the slow wave electron cyclotron maser was more tolerant of beam momentum spread than a fast wave device (CARM) for high efficiency operation. Their results are especially encouraging in the case of high beam current in which beam qualities such
as momentum spread and emittance are greatly inferior to the beams generated from thermoionic cathodes [26].

In conclusion, the slow wave devices such as MWCG’s will be a hopeful candidate for the purpose of generating multi-MW millimeter microwaves for a variety of advanced applications. The large diameter BWO studied in the present paper may be helpful for that purpose.

REFERENCES


T. Watanabe was born in Japan in 1941. He received the B.S. degree in physics from the Tokyo Institute of Technology in 1964, and the M.S. and Ph.D. degrees from Nagoya University in 1966 and 1969, respectively.

He is currently with the National Institute for Fusion Science, Nagoya. His research interests include nonlinear plasma dynamics, and a generalized scheme to solve numerically a variety of systems of nonlinear equations.

W. W. Destler (M’84–SM’90–F’92), photograph and biography not available at the time of publication.

V. L. Granatstein (S’59–M’64–SM’86–F’92), for a photograph and biography, see page 524 of the October 1994 issue of this IEEE TRANSACTIONS.

Y. Carmel (S’66–M’69–SM’90), for a photograph and biography, see page 577 of the October 1994 issue of this IEEE TRANSACTIONS.