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Starting Energy and Current for a Large 
Diameter Finite Length Backward Wave 

Oscillator Operated at the Fundamental Mode 
K. Minami, K. Ogura, Y. Aiba, M. R. Amin, X. D. Zheng, T. Watanabe, Y. Cannel, SeniorMember, ZEEE, 

W. W. Destler, Fellow, IEEE, and V. L. Granatstein, Fellow, IEEE 

Abstruct-We study the starthg conditions for a large diameter 
(diameter/wavelength = 4.8) finite length backward wave oscil- 
lator designed for 24-GHz operation at the fundamental T M o l  
mode. This geometry is very promisiig for high power handling 
capability. We analyze two separate threshold conditions. First, 
finite length effects give rise to a threshold in electron beam 
energy below which oscillations cannot be sustained at any beam 
current. The second is the more familiar current threshold known 
as a start current. It is also found that the growth rate for the 
fundamental mode can be much larger than those of other higher 
order modes thus leading to coherent operation of large diameter 
source free from mode competition. 

I. INTRODUCTION 

IGH-POWER MICROWAVE sources are important for H a number of advanced applications ranging from current 
drive and RF heating of magnetically confined plasmas in 
fusion devices to high resolution nanosecond radars [1]-[3]. 
Pulsed high power microwave oscillators utilizing intense 
relativistic electron beams have been extensively studied in 
recent years [2]-[6]. Among various microwave sources, the 
multiwave Cerenkov generators (MWCG’ s) developed by [7] 
at the High Current Electronics Institute, Tomsk, Russia, have 
recently attained record outputs [7], [8]. Radiation powers of 
7.5 GW at a wavelength A = 9.7 mm with an electronic 
efficiency of 20% were reported. The MWCG involves a 
slow wave structure (SWS) with an average diameter D much 
larger than A. In the above example, D/A = 13. This large 
diameter SWS enables a larger output power for a given 
RF energy density inside the SWS before breakdown occurs. 
Despite a possibility of mode competitions, efficient, high 
power single mode oscillation was attained in a device utilizing 
overmoded SWS [9]. Twenty years ago, high average power 
millimeter microwave sources (gyrotrons) were invented by 
combining an electron cyclotron maser and an overmoded 
open barrel cavity [2], [3]. The large diameter (overmoded) 
SWS in MWCG’s may be an innovative key technology 
which corresponds to the overmoded open cavity employed 
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in gyrotrons, although the final evaluation of performance and 
the feasibility of using MWCG’s in actual applications are 
yet to be established. The MWCG has a close relationship to 
conventional backward wave oscillators (BWO’s), since both 
employ SWS’s in common 141, 151, [71-[141. 

Although the physical processes involved in the MWCG’s 
[7], [8] are complicated, we point out here that high-power 
millimeter microwaves can be generated without decreasing 
the mean diameter of the SWS. Both BWO’s and large 
diameter BWO’s can be operated in the fundamental TMol 
mode as will be shown in this paper. The difference in SWS’s 
between the two devices is as follows. The inner radius of 
the metal surface of the SWS, R(z), is assumed to vary 
sinusoidally around the mean radius Ro, i.e., R(z)  = Ro + 
h cos Koz, KO = 27r/z0. Here, zo and h are, respectively, the 
axial length of periodicity and the amplitude of corrugation. In 
BWO’s [4], [5], [lo]-[14], the mean radii, l& = D/2 ,  were 
chosen such that D / A  = 2Ro/A N 1, whereas, in the present 
large diameter BWO, the condition D/X >> 1 is explored. 
The key point is that, in the latter, oscillation frequency is 
raised by carefully choosing small values of h and zo, keeping 
Ro larger than A. This situation is quite similar to the SWS 
design of MWCG’s [7]-[9]. In the present paper, numerical 
studies are made within the scope of linear analysis for a 
large diameter SWS with D/X - 4.8. Specifically, the starting 
energy and the starting current of the beams for initiating 
microwave oscillation in such a finite length SWS are analyzed 
in detail. Previously, the starting current conditions for finite 
length BWO’s have been studied by various authors [5], [13], 
[15], [16]. Swegle analyzed the starting condition for a BWO 
[15]. In his treatment, 100% reflection at the beam entrance 
boundary and 0% reflection at the RF output boundary were 
assumed. This assumption was valid for the case of matched 
termination at the output end of the SWS. We consider here 
an alternative case of nonzero round trip reflection which may 
correspond to the experimental situations in [4] and [ 101. Such 
nonzero round trip reflection produces discrete spectra of axial 
wavenumber of eigenmodes of an axisymmetric TM mode 
[W, [141, 1171. 

In Section 11, we describe the model of our linear analysis. 
The difficulties to be overcome in the practical numerical 
computation in the case of D/A >> 1 are discussed. Numerical 
results are shown in Section III. Discussion and conclusions 
are given in Section IV. 
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11. FORMULATION AND DIFFICULTIES CORRUGATED WALL ANNULAR BEAM 
ENERGY Vb 

R(z)=Ro+h COS K o Z  CURRENT I b  

WAVEGUIDE IN NUMERICAL ANALYSIS 

The model of an axisymmetric large diameter SWS with 
length L shown in Fig. 1 is analyzed. The radius R(z)  of 
perfectly conducting metal wall varies with R(z)  = Ro + 
h cos KOZ. The entire system is immersed in a strong longitudi- 
nal external magnetic field. The transverse motion of the beam 
electrons is assumed to be negligible. We also assume that an 

beam energy vb and current Ib is incident to the SWS. The 
linear dispersion relation for the system in Fig. 1 was derived 
previously [ 151, [ 181, [ 191 and the results are summarized here. 
The boundary condition that the tangential components of the 

must be zero gives 

infinitely thin annular beam with radius Rb, monoenergetic 
I 

RF electric field at the corrugated metal surface of the SWS 20 =271 /KO 
< > 

z=L L z=o 
00 

Fig. 1. Model of analysis. Annular beam of monochromatic energy vb and 
current I b  is incident on the axisymmetnc corrugated wall large diameter 
slow wave structure with length L.  

[ I +  ( n  - m)Qn](BnC;, + CnCcn) 
m, n=-m 

= Dmn . A, 
= 0  (1) 

exp [i(n - m)Koz] 
-alKo 

(2 )  
CA, = salKn 

= c q=o 22'1+1n-mlq!(q0+ In - ml)! ' 

. Jo[yn( l  + a  cos K O Z ) ]  dz 

(yna)(2q+ln-ml) ~(2q+In-ml) ( Y n )  
00 

CY = h/Ro (3) 

where Qn = Kok,/(w2/c2 - IC:) ,  k ,  = k + nKo, y: = 
R;(w2/c2  - IC:) and c is the vacuum velocity of light. The RF 
field amplitudes, A,, B,, and C, of the Floquet harmonics are 
the same as those in (7) in [ 181. The beam quantities such as Ib 
and 6 are involved in B, and C,. In (l) ,  C:, is obtained by 
replacing the Bessel function of the first kind, Jo, in CL, by 
that of the second kind, NO. In the above expressions, temporal 
and spatial phase factors exp [ i (  knz - w t ) ]  have been assumed 
for every RF quantity. The dispersion relation combining w 
and k is given from (1) as the determinant equation, 

(4) D ( k ,  w )  = det [Dmn] = 0 

which is required to have nontrivial A, in (1). As is well 
known, NO goes to infinity at the origin which occurs in the 
case of light line in vacuum, w = ck,. Because the roots of 
(4) are slow waves, they are located in the complex w and k 
planes considerably separated from where w = ck,. Difficulty 
of No infinity does not occur for finding the roots. 

We discuss here some peculiar difficulties that arise in 
the computation for the large diameter SWS. For the time 
being, we consider the simple case without the beam, i.e., 
Ib = 0, and A ,  = B,, c, = 0 in (1) accordingly 1181. 
Because no input energy is present in the SWS, oscillations 
cannot be expected. For a real w ,  real k ' s  are obtained in 
(4) and vice versa. Equations (2) and (3) were useful to 
compute the dispersion relation of a BWO [19], [20]. In the 
present case of large diameter BWO's, however, there exist 

some difficulties for computing (2) and (3). In order to get 
a large oscillation frequency w /27r without decreasing Ro, 
we must choose a small h and zo in Fig. 1 that results in 
a large KO and that makes y; < 0 in (2). For negative 
yi, the Bessel function Jo becomes modified Bessel function 
Io consequently, and the integrand of (2) is rewritten as 
exp [i(n - m)Koz] Io[y ; ( l  + a  cos Koz)],  where 9: = -y:. 
The modified Bessel function IO in the integrand becomes 
extremely large, if y; is large. This effect causes an overflow in 
the process of numerical computation of (4). Such a difficulty 
arises often in the calculation of the large diameter SWS with 
small 20. To avoid the difficulty, we express I,(z) as 

P - 1  + ( P - l ) ( P - 9 )  - . . . )  
I ,  = ~ (27rZ)1/2 ez  ( I - _  2! ( 8 ~ ) ~  

7r I arg (.)I < 2, p = 4v2. 

Using this asymptotic expansion, (1) is expressed as 

Gn = An exp (9;)' 
D ' ( k ,  w )  = det [DL,] 

= 0. ( 5 )  

The dispersion relation is given by (5) instead of (4). Equation 
(5) does not have problems with numerical overflow. 

The next problem concerns the adequacy of the Taylor 
expansion used in (3). In general, numerical integration of (2) 
takes much computation time and the expanded form of (3) is 
preferable, as long as the sinusoidally corrugated SWS in Fig. 
1 is considered. A large KO again may result in lynal > 1 
in (3), and the summation does not converge rapidly. We find 
that tens of terms in (3) must be calculated to get a converged 
value of summation because of increased denominators. To 
avoid this difficulty, we truncate the rank of the determinant in 
(5) to as small a value as possible. This is because the values 
of k ,  and accordingly y, will not be very large for small 
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ranks of truncated determinant. For example, JynaJ >> 1 may 
be avoided, if one limits -1 5 n, m 5 0 (2 x 2 determinant) 
or -1 5 n, m 5 1 (3 x 3 determinant). Fig. 2 shows the 
result of the design study; the oscillation frequency f = w/2?r 
versus the corrugation wavenumber KO for several corrugation 
amplitudes h. Here, Ro = 3.0 cm has been assumed as a given 
parameter. Curves in the figure are obtained by computing the 
frequencies at the crossing point of the structure mode and 
the beam space charge line with Ib = 0 for various values of 
KO and h. The straight line, w = &K0/2, in Fig. 2 is the 
boundary that divides the BWO (absolute instability) from the 
TWT (convective instability) for the case of ?r-mode operation 
(k = &/2) with & = 100 keV. Microwave oscillation can be 
expected in the cases of KO to the left of the straight boundary 
line. Roughly speaking, BWO's and large diameter BWO's 
are expected, respectively, in cases of KO < 10 cm-' and 
KO > 10 cm-l. The black circle represents the parameters 
we have chosen for the present design study of a large 
diameter BWO with the following parameters: KO = 18.5 
cm-' (ZO = 0.34 cm), h = 0.17 cm and f = 24 GHz. 
The solid and dashed curves are, respectively, the calculations 
using (3) and (5) of the 9 x 9 and 2 x 2 approximate truncated 
determinants. The differences between both curves are less 
than 4%. For the chosen size parameters, the dispersion curves 
are calculated for various truncated ranks from 9 (9 x 9) to 
2 (2 x 2) of the determinant in (5). For ranks larger than 
6, the oscillation frequencies are almost unchanged, and the 
results are considered to be exact. Even in the case of rank 2, 
the deviations from exact values are less than several percent. 
These facts suggest that the truncation to the rank 2 of the 
determinant in (5) is almost correct for our purpose. Hence, 
in order to save computation time, we adopt the truncated 
determinant of rank 2 in the subsequent numerical analysis 
of complex w and k with incident beams, at the sacrifice of 
accuracy within a few percent. 

HI. NUMERICAL RESULTS 

A. Infinitely Long Slow Wave Structure 

The parameters of the large diameter SWS used in the 
following numerical analysis are: Ro = 3.0, h = 0.17, 
zo = 0.34, and Rb = 2.63 cm. Beam energies of vb = 100 
and 65 keV are used as typical values. The beam current Ib is 
mostly assumed to be 0.4 kA, unless specified otherwise. 

The dispersion relation (5) for complex w/27r versus real 
wavenumber k is shown in Fig. 3 for two values of v b .  100 and 
65 keV represented, respectively, by solid and dashed curves. 
Real and imaginary parts of w / 2 ~  are shown, respectively, 
in (a) and (b). Here, the beam current of Ib = 0.4 kA has 
been assumed. Because of Floquet's theorem, the dispersion 
curves have periodicity KO for wavenumber k, in other words, 
w ( k )  = w(k + nKo). Usually, figures are shown for the first 
Brillouin zone -K0/2 5 k 5 K0/2, however, we depict 
hereafter the curves for 0 5 k 5 KO, because the important 
parts of the curves are located near k = K0/2. As were pointed 
out previously, there exist generally 4 independent roots for 
the fundamental TMol mode [l8], [20]. They are the fast 

I ' /  

Ro = 3.0cm / h = 0.2cm 

/ ' BEAM ENERGY 100keV 

0 10 20 30 

WAVENUMBER KO (cm-I) 

Fig. 2. Design study of the slow wave structure. Oscillation frequency for 
100 keV beam versus corrugation wavenumber KO for various corrugation 
amplitudes h. The mean radius is Ro = 3.0 cm. The solid and dashed curves 
are, respectively, 9 x 9 and 2 x 2 approximate results of the determinant of 
the dispersion relation. The black circle is the chosen parameters of our large 
diameter backward wave oscillator. 

and slow space charge waves and the backward and forward 
structure waves. The first wave is always heavily damped and 
it is ignored entirely in the subsequent analysis. The second 
wave is the energy source for the third wave, i.e., the output 
radiation. The fourth wave can serve as a positive feedback 
mechanism in the case of a finite length SWS. For simplicity, 
the fourth wave is also ignored hereafter. For a real k, (5) 
can have a pair of complex conjugate roots of w. They are a 
growing slow space charge wave and a decaying fast space 
charge wave. The single beam line for infinitesimal currents 
is split into the fast (shown by F) and slow (shown by S) 
beam space charge waves in Fig. 3(a), because of nonzero 
beam current. Absolute instability can be found around the 
crossing point of the backward structure wave (shown by B) 
and the line S .  It is noted in Fig. 3 that the ranges of k for 
instability, i.e., complex w shown by thick solid and dashed 
lines in Fig. 3(b), are much more limited than the previous 
case of BWO's [lS], [19]. This is because the corrugation 
parameter a = h/Ro is presently smaller than those in the 
conventional BWO's. In other words, the oscillation condition 
in large diameter BWO's with D/X >> 1 is more restrictive 
or stringent than those in BWO's with D/X - 1. 

In our large diameter (overmoded) SWS, there exists a 
possibility of mode competition between various candidates 
including the fundamental and higher modes. Steady oscilla- 
tion of the fundamental mode may not be realized because 
the beam energy may be fed to various modes with higher 
frequencies. In order to clarify the situation, we extended the 
analysis for the fundamental mode shown in Fig. 3 up to sixth 
higher modes. The oscillation frequency and the maximum 
temporal growth rate of the fundamental TMol mode are 
compared with those of higher modes. We computed the 
dispersion curves similar to Fig. 3 for each higher mode. Fig. 4 
shows the dispersion curves for an infinitesimal beam current, 
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Oscillation Oscillation 
Wavenumber Frequency 

(cm-1) (GHd 
Mode 

%1 9.8 24. 1 

%Z 12.3 30. 4 

TDd, 12.5 30. 9 

127 

Maximum 
Temporal Growth 
Rate (rad/ns) 

0.195 

0.0048 
0.0118 

WAVE NUMBER k (cm-’ ) 
(b) 

Fig. 3. Dispersion relation for complex w / 2 ~  versus real wavenumber IC. 
I ,  = 0.4 kA. Solid curves are for vb = 100 keV and dashed curves are for 
Vb = 65 keV. (a) f = Re (w)/Zn versus IC. (b) Im(w)/27r versus IC. 

%4 

from which the oscillation frequencies can be estimated. It is 
interesting to note that the dashed beam lines, 100 and 65 
keV, intersect the curve of the fundamental T M o l  mode at the 
positions where the group velocities are much smaller than 
those for higher modes. The results from complex analysis 
like Fig. 3 are summarized in Table I, where the maximum 
temporal growth rate, corresponding oscillation frequency and 
oscillation wavenumber are listed for six modes. Here, the 
beam current 0.5 kA has been assumed. As is clearly shown 
in the table, the maximum temporal growth rates of the 
higher modes are much smaller than that of the fundamental 
TMOl mode. Accordingly, oscillations of higher modes may 
be ignored in the scope of the present linear analysis. Of 
course, mode competitions may be expected in large diameter 
BWO’s at the saturated level of oscillation in general. At 
the linear stage, however, mode competitions are insignificant 
in the large diameter SWS, if the size and beam parameters 
are carefully chosen. For this reason, we limit ourselves the 
subsequent analysis to the fundamental T M o l  mode. 

The dashed curves in Fig. 3 are for the case of vb = 65 keV. 
The temporal growth rate Im (w) for v b  = 65 keV shown by 
the dashed curve in Fig. 3(b) is considerably smaller than that 
for v b  = 100 keV shown by the solid curve. This difference 
suggests that, like conventional BWO’s, there exists a starting 
energy threshold for oscillation in a finite length large diameter 
SWS as will be analyzed in the next subsection. 

In Fig. 3, the real wavenumber k has been assumed. The 
real k means that we have assumed a sinusoidal small origin 
of oscillation with infinite extent in the z direction and 
have calculated its temporal evolution. On the other hand, in 
the case of a localized small origin of disturbance for the 

12.8 31. 8 0.0142 

I I I 

0 5 10 15 
WAVENUMBER k (cm-’) 

Fig. 4. The dispersion curves for TMol, . . ., TMo6 modes. The two dashed 
lines are the beam lines for 100 and 65 keV with infinitesimal currents, 
respectively. The crossing points of the beam lines and structure curves give 
possible oscillation frequencies. 

I I I m. 14. 0 34. 8 0.0132 

. .... 

instability, the origin develops asymptotically with temporal 
and spatial factors t-1/2 exp [-i(w,t - k s z ) ] ,  as was shown 
in (2.22) in [21]. Here, w, and k,  are, respectively, the 
complex angular frequency and complex wavenumber at the 
saddle point dw,/dk,  = 0 in (5). The localized origin can 
monotonically grow up in time at every point in x .  This is 
therefore an absolute instability. Once an unstable root of (5) 
in Fig. 3 is found, it is not very difficult to access the saddle 
point, w, and k,, which exists uniquely for a given set of all 
parameters, by using the Newton-Raphson technique. In the 
saddle point analysis of the large diameter BWO, it is found 
that the oscillation frequency Re (w,)/27r and the temporal 
growth rate Im (w,) are, respectively, slightly decreasing and 
increasing functions of I b ,  and the spatial growth rate Im (k , )  
iS almost unchanged with increase in 4. 

B. Finite Length Slow Wave Structure 

In a large diameter SWS with finite length L as shown in 
Fig. 1, the wave reflections (or leakages) at both ends are 
taken into account. The end reflections result in a feedback 
mechanism by the backward structure wave, and the distinc- 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 17:34 from IEEE Xplore.  Restrictions apply.



I 
I 1  I 1 1 1  

128 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 23, NO. 2, APRIL 1995 

tion between absolute and convective instabilities becomes 
somewhat ambiguous in the L finite case. The complex 
wavenumbers of the slow space charge wave and the backward 
structure wave are denoted, respectively, by a+ and a-. In the 
limit of infinite L, a+ (= a-)  coincides with the saddle point 
of (5). For L finite cases, the following equations must be 
satisfied instead of (3, [20]. 

D(a+,w) = 0 (6) 

D ( L ,  U )  = 0 (7) 

(8) 

Equation (8) comes from the requirement that the electromag- 
netic field must be a single value at every z point, when the 
propagating wave comes back after one round trip [20]. In 
(8), R is the one round trip reflection coefficient of wave 
fields at the both ends of the SWS, and assumed to be a given 
parameter. The length L is assumed to be L = 70z0 = 23.8 
cm. In general, the reflection coefficient R in (8) must be a 
complex number, however, for simplicity it is approximately 
replaced by a real number 0 < R < 1 in the subsequent 
analysis. This is because the argument of the complex number 
causes only changes in equivalent structure length less than 
zo much smaller than L. The additional requirement given by 
(8) results in the existence of the starting energy in addition 
to a nonzero starting current in finite L BWO's. Equation (8) 
is rewritten as 

R exp [-i(a- - a+)L] = 1. 

Re (a- - a+) = -27rN/L > 0 

Im (a-  - a+) = -In ( R ) / L  > 0 

(9) 

(10) 

where N is an integer. The following analysis is limited to 
the case N = -1 in (S),  because N = -1 is the easiest case 
for initiating oscillation among various choices of N for a 
given L. 

To solve (6x8)  correctly, it is necessary to watch the 
movements of roots a+ and a- on the complex k plane for 
various U ' S  with positive Im ( U )  approaching to zero [20], 
[21]. This is because the physical meaning (stable or unstable) 
of the each root is lost in the course of numerical calculation 
of (6x8). We must reconsider the physical meaning through 
watching the movement of the root on the complex k plane. 
If the particular root traverses the real axis during the change 
in Im ( U )  from a large positive number to zero, the root is 
unstable, otherwise it is stable. A pair of solutions a+ and a- 
is shown on the complex k plane in Fig. 5(a) for the case of 
V b  = 100 keV. The locations of the roots a+ and a- are found 
at the centers of the contour mapping of ID'[ given by (6x8)  
on the complex k plane. The corresponding common value of 
complex w/27r = 24.103 + i0.063 is found in Fig. 5(b) for 
both a+ and a- shown by black circles on the same complex 
k plane as Fig 5(a). The white circles in Fig. 5(b) are the 
locations of Im ( U )  = 0 that give the boundary lines between 
BWO's (Im ( U )  > 0), and TwT's (Im ( U )  < 0). The arrows 
on the solid lines show the directions of decrease in Im (w)/27r 
toward zero for constant Re (w)/27r. The diamond is the 
saddle point of (5). In L infinite case, oscillation (absolute 

0. 

- 
Y 

-0. 

~ / 2 7 r =  24.103 + i0.063 

9.6 9.8 10 

f' 0.0 

-0.4 

9.0 9.5 10.0 
Re ( k )  

(b) 

Fig. 5. Locations of the pair of roots, a+ and a - ,  on the complex k plane 

w / 2 n  = 24.103+i0.063. (a) Contour mapping of ID1 where D is defined by 
(5). (b) Locations of the roots (black circles) that are in the oscillation region 
within border lines of Im(w) 2 0 shown by white circles. The diamond is 
the saddle point. 

for vb = 100 keV and I b  = 0.4 U, L = 23.8 cm, N = -1 and 

instability) is expected at the saddle point as was stated in the 
previous subsection, if it is located in Im ( U )  2 0 region in 
complex k plane. In this case, oscillation is expected even for 
infinitesimal beam currents and no limitations exist for starting 
energy. In L finite case, however, the oscillation happens not at 
the saddle point but at a+ obtained from (6)-(8). Oscillation is 
impossible, if the pair of the roots are located in Im ( U )  5 0 
region. Because the black circles are located in the region 
Im ( U )  > 0 in Fig. 5(b), the oscillation can be expected in 
the present case of vb = 100 keV. Since we have chosen 
L = 23.8 cm and N = -1, Re (a-  - a+) = 0.264 cm-' 
from (9) is a fixed value, which is independent of the value 
of reflection coefficient R. The horizontal distance between 
a+ and a- is a constant 0.264 cm-' on the complex k plane 
shown in Fig. 5(b). 

A pair of solutions a+ and a- in (6x8)  in the case of 
vb = 65 keV is shown on the complex k plane in Fig. 6. Other 
parameters are the same as those in Fig. 5. The corresponding 
common value of complex w/27r = 23.295 - i0.092 is found 
in Fig. 6 for both a+ and a- shown by black circles. In 
this case, a+ and a- are located in the region of TWT's, 
Im ( U )  < 0, and oscillation cannot occur for = 65 keV, 
although the beam current I b  = 0.4 kA is identical to that for 
Vb = 100 keV in Fig. 5. Comparing Figs. 5(b) and 6, one finds 
that there may exist a threshold value in the beam energy V b  

below which oscillation in the BWO's stops, no matter how 
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129 

0.2 

h 

Y - 0.0 
E - 

-0.2 

0 

BEAM ENERGY 65keV 

23.422 

a+ 

. 23.425 

0.12 

8.422 

23.295 

- 

- 

Fig. 6. Locations of the pair of roots, a+ and a - ,  on the complex I ;  
plane for v, = 65 keV and Ib = 0.4 kA, L = 23.8 cm, Iv = -1 and 
w/27r = 23.295 - i0.092. Locations of the roots (black circles) are outside 
the oscillation region Im ( U )  2 0 shown by white circles. The diamond is 
the saddle point. 

I 

BEAM ENERGY \ ! I 1 l 00keV 

BEAM ENERGY 65 keV 

1 
U 

BEAM CURRENT Ib(kA) 

Fig. 7. Allowable oscillation regions of two solid curves for v b  = 100 
and 65 keV, i.e., horizontal separation of open circles as shown in Figs. 5(b) 
and 6 versus beam current Ib. The dashed line is the horizontal separation 
Re (a -  - a+)  = 0.264 cm-l of the roots for Ib = 0.4 U, L = 23.8 
cm, andN = -1 in (9). 

large the beam current I,. This statement is clarified in Fig. 
7, where the fixed horizontal separation between two black 
circles Re (U- - U+) = 0.264 cm-' given from (9) is shown 
by a horizontal dashed line. Two solid curves are the horizontal 
separations Re (Ak)  between two white circles, respectively, 
as shown in Figs. 5(b) and 6 as functions of 4. Here, Re (Ak) 
is the allowable range of oscillation for a given Ib. In the case 

Y STARTING ENERGY 
g o . 2  
Y 

3 I , ,  , , , , , , j  a: 
70 80 90 100 

BEAM ENERGY Vb (keV) 

Fig. 8. Oscillation region versus beam energy Vb. The dashed line is the 
horizontal separation Re ( a -  - a + )  = 0.264 cm-' for I!, = 0.4 kA, 
L = 23.8 cm, and N = -1. The black circle is the starting energy. 

of vb = 100 keV, the solid curve always lies above the dashed 
line. This fact suggests that the oscillation is possible. On the 
other hand, in the case of Vb = 65 keV, the curve stays below 
the dashed line, and oscillation does not occur. 

For a given current Ib = 0.4 kA, the starting energy for 
oscillation is found in Fig. 8, where the horizontal separations 
Re (Ak) of white circles such as those in Fig. 5(b) or 6 
versus vb are plotted. It is clearly shown that the starting 
energy denoted by the black circle is 76.5 keV for the given 
parameters of the present large diameter SWS. The larger 
length L,  the smaller starting energy, because the dashed line 
becomes lower. It must be emphasized, however, that the 
starting energy is not a sufficient condition, but a necessary 
condition for initiating oscillation in the finite length SWS. In 
order to have oscillation, the pair of roots a+ and a- must also 
satisfy (10) in addition to (9). This additional condition yields 
the starting current for oscillation. Equation (10) includes the 
reflection coefficient R as a given parameter, and the starting 
current I,t is affected sensitively by R. The results are shown 
in Fig. 9, where Is,  versus R is calculated for vb = 100 
keV and L = 23.8 cm. It is reasonably shown that I,, is a 
decreasing function of R. If we take into account the effect 
of the fourth wave (forward structure wave) as an additional 
feedback mechanism in (8), an oscillatory nature arises in the 
curve Ist versus L, as was pointed out in [13], [16]. 

Iv .  DISCUSSION AND CONCLUSIONS 

A large diameter backward wave oscillator of D/X N 4.8 
has been designed and analyzed numerically in detail. The key 
point of the design study is to raise the oscillation frequency 
without decreasing the mean diameter of the SWS. In our 
linear analysis, parameter selection for such purposes has been 
readily performed. 

It was shown in the previous section that there existed a 
starting current of the beam required to withstand the leakage 
of radiation at both ends of SWS. Moreover, there existed a 
starting energy of the incident beam, below which oscillation 
could not occur, because of the finite length of the SWS. These 
two statements are never trivial and the distinction between 
both conditions has not been clarified in the literatures in 
the past. The former condition for the starting current given 
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Fig. 9. 
vb = 100 keV, L = 23.8 cm, and N = -1. 

Starting current kst versus reflection coefficient R for beam energy 

by (10) arises from the requirement that the radiation loss 
depending on I b  at the ends of the SWS must be smaller than 
a threshold value. In other words, the external Q value of 
the corrugated wall resonator shown in Fig. 1 must be large 
enough for the occurrence of oscillations. The resonator must 
store a minimum amount of RF energy for oscillation. On the 
other hand, the latter condition for the starting energy given 
by (9) arises from the requirement that the coupling condition 
of real wavenumbers, Re (a+) and Re (a-), between the 
donor of RF energy a+ (slow space charge wave) and the 
acceptor a- (backward structure wave) becomes stringent, 
when L is small. The locations of the a+ and a- on the 
complex k plane are considerably separated in relatively short 
L case, and the coupling condition, namely, phase matching 
condition of the waves at the ends may not be satisfied. This 
restriction, Re (Ak), is relaxed in the case of large vb as 
was shown in Fig. 8. This is the reason for the existence of 
the minimum starting energy for oscillation. This oscillation 
condition for v b  is peculiar to the finite L case, and such 
additional requirement for the coupling of waves did not occur 
in conventional infinite L case shown in Fig. 3. It is well 
known that beam wave interaction is strong near z or 2z 
mode operation, where the group velocity of the backward 
structure wave is small. In L finite case, the oscillation may 
stop somewhere between two mode operations because of 
increased group velocity. This qualitatively well known fact is 
for the first time analyzed quantitatively in the present paper, 
and it is the significance of the starting energy analyzed in 
this paper. 

The diffraction of the radiation at the ends of large diameter 
SWS relating the value of reflection coefficient R is a com- 
plicated problem to analyze, and it is not treated here. In our 
numerical analysis, L = 23.8, & = 3.0, and X = 1.25 cm. 
The structure length L may be considered to be longer enough 
than Ro and A, and our analysis ignoring end diffraction 
problem may be qualitatively valid. The practical value of 
the reflection coefficient R of the large diameter SWS can 
be measured by means of vector network analyzers for a real 
fabricated sample. The coefficient R is estimated to be 0.2 
at 20 GHz from a straight cylindrical waveguide assuming 
that the corrugation parameter a = h/Ro = 0.0567 is small 
enough. Then, the starting current ISt = 1 A is found in 
Fig. 9. In the previous section, we assumed the typical beam 

current Ib = 0.4 kA, which is 400 times larger than ISt. In 
such cases, overbunch instability may occur in the oscillation 
and degradation of the microwave output may result as was 
predicted and observed in [5] and [13]. In order to suppress 
the instability, we may raise ISt by decreasing the length L 
under the restriction that the pair of roots in (9) remain in 
the oscillation region shown in Fig. 5(b). On the other hand, 
space charge limiting current in a cylindrical pipe for the 
average radius Ro = 3 cm and beam radius Rb = 2.68 
cm is calculated to be 17(y2I3 - 1)3/2/2 In (Rb/&) = 
2.9 kA, which is much larger than the present I b ,  where 
y is the relativistic factor. The nonlinear analysis [22] or 
numerical simulation [13] is required to predict the power 
level and the performances of the designed large diameter 
BWO. 

The energy sources in gyrotrons are the beam velocityvl 
perpendicular to the axial magnetic field. Electron beams with 
wul/vll = 1.5 - 2 are usually required for high efficiency 
operation in gyrotrons [2], [3]. For that purpose, a sophisticated 
technology to generate such spiral beams was devised by 
means of magnetron injection gun, and analytically and em- 
pirically adjusted nonuniform axial magnetic field profiles for 
optimized performance. In contrast to gyrotrons, BWO’s are 
easy to operate, because beams with wl /v( l  << 1 are available, 
and uniform axial magnetic fields are usually applicable. 

The growth rates of the large diameter BWO analyzed in 
the present paper are smaller than those in the conventional 
BWO’s. This is mainly because we have chosen small a = 
h/Ro. In fact, we carried out a preliminary measurement 
of BWO operation of our designed large diameter SWS. It 
was found that the microwave output at 21 GHz was quite 
small and that the operation was made in linear regime. It 
may be important to explore a possibility of enhancing the 
growth rates of radiation from the large diameter BWO. Our 
analysis has been confined to the case of very strong applied 
magnetic field. An extension of the present linear analysis to 
the finite magnetic field case, especially the case w N R, is 
very important [6]. Here, R is the relativistic electron cyclotron 
frequency. 

Reference [23] pointed out that, in slow wave cyclotron 
devices with 2111 < w / k  < c, the beam energy can be converted 
to wave energy through a transformation from to VI. This 
device was called the slow wave electron cyclotron maser. 
Although they assumed a dielectric loaded smooth cylindrical 
configuration, their statement can be applied to a metal wall 
SWS [%I, [25]. In fast wave devices such as gyrotrons, the 
normal Doppler shifted beam cyclotron wave, w = kvll + R, 
is used to interact with structure TE modes. On the other 
hand, the anomalous Doppler shifted beam cyclotron wave, 
w = kvll - 0, may be available to interact with structure 
Th4 modes in our large diameter SWS. The growth rates 
in the large diameter BWO in the present paper may be 
resonantly enhanced by the novel effect suggested by Kho 
and Lin [23]. Moreover, they showed in their Fig. 6 that the 
slow wave electron cyclotron maser was more tolerant of beam 
momentum spread than a fast wave device (CARM) for high 
efficiency operation. Their results are especially encouraging 
in the case of high beam current in which beam qualities such 
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as momentum spread and emittance are greatly inferior to the 
beams generated from thennoionic cathodes [26]. 
In conclusion, the slow wave devices such as MWCG’s will 

be a hopeful candidate for the purpose of generating multi-MW 
millimeter microwaves for a variety of advanced applications. 
The large diameter BWO studied in the present paper may be 
helpful for that purpose. 
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