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Abstract-The electromagnetic fields of the higher order axial 
resonant modes in a slow wave structure are analyzed and found 
to have considerably different characteristics from those of the 
conventional fundamental mode. Here, the reflections at both 
ends produce axial resonant modes corresponding to axisym- 
metric transverse magnetic (TM) modes. The period of field 
modulation of some of the higher order axial modes is shorter 
than that of the usual mode in a cylindrical waveguide, which 
could be of practical interest for higher power, higher frequency 
operation of backward wave oscillators. A perturbation technique 
is used to ascertain the field distribution inside the resonant 
cavity, and the numerical results thus obtained are compared 
to some experimental data. 

I. INTRODUCTION 
HE growing need for coherent, efficient, and high power T microwaves has led to the development of a number 

of innovative devices, including backward wave oscillators 
(BWO’s), which are a promising class of devices having 
a number of useful features, namely: high spectral purity 
microwave power, frequency tunability, high efficiency, etc. 
[1]-[5]. For example, for an overmoded structure, D/X > I .  
7% frequency tunability in the frequency range 5.2-5.6 GHz 
has been reported 161. Here, D is the mean diameter of the 
waveguide and X is the wavelength. Microwave radiations on 
the order of 1 GW at a frequency up to 30 GHz have been 
obtained [7], 181. Continuous efforts are being made to enhance 
the power and frequency level of the devices. 

In the slow wave devices, the interaction of electromagnetic 
(EM) quantities takes place inside the slow wave structures 
(SWS). In order to understand the physics of the mechanism 
involved, it  is necessary to analyze the SWS in a realistic 
way. Resonators are also used in linear accelerator (linac), 
but their geometries are considerably different from those 
used in BWO’s. Thc EM behaviors of the linac cavities 
have been extensively studied by many researchers using 
numerical computational techniques. I n  order to study the 
accelerator cavities with complex geometries, computational 
codes such as SUPERFISH 191, URMEL-T [ IO] ,  etc., have 
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been developed. These codes are based on the discretization 
techniques of Maxwell’s and Helmholtz’s equation, in general. 
The computational time of these codes depends on the number 
of mesh points, geometry of the cavity, boundary conditions, 
and accuracy demanded for the particular purpose. A brief 
description of the numerical codes generally used in linac 
studies is presented in [ 1 1 ] by Cooper and Jones. In this work, 
an attempt has been made to explore the EM quantities of 
a sinusoidally corrugated SWS typically used in the BWO 
experiments in the simplest way, by using analytic equations 
derived for this purpose. In the BWO’s, the finite axial 
dimension of the SWS causes reflections from the ends and, 
thereby, quantization of the axial wavenumber results in axial 
resonant modes. The tinite transverse dimension of the SWS 
limits the power handling capability due to the internal RF 
breakdown. In order to overcome such a problem, one can 
increase the mean diameter of the SWS, thus creating an 
overmoded system. In general, many higher modes can be 
oscillated in such an overmoded SWS. It is still possible to 
operate the BWO preferentially at a particular mode with 
higher frequency by carefully selecting the beam and size 
parameters. This is because the respective modes have dif- 
ferent starting current for oscillation with each other. This 
difference can be carefully used to select the particular mode 
for oscillation. In fact, recent experiments have shown that 
efficient and high power output can be achieved in such 
devices operating in a single mode [61. Despite the numerous 
studies on conventional, weakly relativistic microwave tubes, 
more detailed studies of the resonant modes in the finite length 
SWS’s intended for operation with highly relativistic electron 
beams are required. The motivation of the present work is 
the recent interest in the generation of high power microwave 
radiation employing overmoded slow wave systems. Most of 
the analyses of such systems were performed assuming infinite 
length systems or perfectly matched finite length systems, 
which are far from the actual experiments. Moreover, their 
analyses have been restricted mainly to the fundamental mode 
1121-1181. In this paper, we model a finite length SWS 
consistent with real experiments and include higher order 
modes in our computations. Specifically, we consider the 
two wave interaction process with 1008 round-trip reflection. 
Under this assumption, our SWS becomes an SWS cavity with 
perfectly shorted ends. Detailed field calculations along with 
higher harmonic analysis of the axial resonant modes in the 
SWS have been made. For the higher order axisymmetric TM 
modes (Thfo,q.s > 1). some unusual and novel phenomena 
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Fig. 1. Schematic diagram of a spatially periodic slow wave structure (SWS) 
showing the directions of forwardly propagating wave F and backwardly 
propagating wave B. (a) SWS shorted at z = 0 and r = L and (b) locations 
of the F and B waves in the dispersion curve in the first Brillouin zone. 

have been found for the first time regarding the amplitude 
of the spatial harmonic components of the resonant modes for 
particular values of the axial wavenumber. Cavity perturbation 
technique [ 191 has been employed to calculate the resonant 
frequency shift of the cavity. Some of the present numerical 
results are compared to experimental and numerical results 
obtained by using SUPERFISH in [20], and are found to be 
in excellent agreement. 

The organization of the paper is as follows. In Section 11, 
we present the mathematical formulation of the SWS. Section 
I11 describes the numerical results of the analysis. The cavity 
perturbation technique and the corresponding numerical and 
experimental results are given in Section IV. In Section V, 
discussion and conclusion of the present works are presented. 

11. MATHEMATICAL FORMULATION 
First, we consider an infinite length SWS; next, after im- 

posing additional axial boundary condition to the system, we 
will obtain the EM field quantities in a finite length SWS. As 
depicted in Fig. l(a), the SWS is assumed to be sinusoidally 
corrugated in the axial direction with radius R(z)  = Ro + 
h cos ICgz, where IC0 = 2.rr/zg. Physical quantities associated 
with an EM mode are represented by a spatial harmonic series 
satisfying Floquet’s theorem. For axisymmetric TM modes, 
the axial electric field E, can be expressed as [14], [16] 

where JO is the 0th-order Bessel’s function of the first kind, 
x: = Rg(w2/c2 - IC:) ,  ICn = IC f n k o ,  IC is the axial wavenum- 
ber, and n is an integer. For slow spatial harmonic waves 
with x i  < 0, Bessel’s function JO becomes the modified 
Bessel’s function IO. Although the contributions of these 
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Fig. 2. Numerically obtained dispersion relations of the SWS 
for-x 5 kro 5 x in the first Brillouin zone. The parameters of the 
SWS are: Ro = 1.4499 cm, zo = 1.67 cm, and h = 0.406 cm. Light lines 
( w / k  = c) are shown by dashed lines. 
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Fig. 3. Electric field patterns of the TMol mode. SWS parameters are: 
Ro = 1.499 cm, r g  = 1.67 cm, and h = 0.406 cm. Arrows indicate 
the direction of the electric field. The density of the field lines indicates 
the strength of electric field qualitatively. (a) TA4ol(O~/6) mode and (b) 
TA401(67r/6) mode. 

harmonics are substantial inside the deep corrugation (T N 

Ro + h) ,  this region is so small that we can still determine 
the EM characteristics inside the SWS correctly. The other 
components, E, and He, are derived from E,. The dispersion 
relation is obtained from the boundary condition at the wall 
of the structure, i.e., the tangential component of electric field 
should be zero at T = R(z) .  The mth spatial Floquet harmonic 
components of this boundary condition can be expressed as 
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Fig. 4. Electric lield patterns of the T.Ifo I mode. SWS parameters are the 
same a5 in Fig. 3. Arrows indicate the direction of electric field. The density 
of the field lines indicates the strength of the electric field qualitatively. (a) 
TAlfol(Or/G) mode and (b) TAlf~,~(G7i/G) mode. 

In order to evaluate this integral, we used Taylor series 
expansion of the Bessel's function around R = R,. since 
direct integration takes much time for computation. The radial 
boundary condition is imposed into the following matrix form: 

(2) 

where [A] is a column vector with elements A,?.  and [D] 
is a matrix of an infinite rank with each element given by 
D,,,, = [l + (71 - ~~I,)C),,]C,,,,, where 

[D] . [A] = 0 

( 3 )  

Q I L  = X:oX:,,/(w2/c2 - A : : )  and n = l l , /R~.  The dispersion 
relation is determined from the condition that (2) should have 
nontrivial solutions, and is given by 

(4) 

In our practical calculation, the value of n is limited to -4 
5 71 5 4, and 24 + In - 7 n  5 I O  is chosen in (3). By 
comparing to direct integration, we have confirmed that the 
Taylor expansion of the Bessel's function converges quite 
rapidly and that the numerical errors are less than 1% for 
the fundamental mode with the parameters later described. 

In the case of a finite length SWS, the additional boundary 
condition at both ends of the structure must be included. 
Referring to Fig. l(a), a forward propagating wave F in the 
z-direction is reflected at z = L and becomes a backwardly 
propagating wave B. The locations of the waves on the 
dispersion curve are shown in Fig. l(b). Both F and B waves 
have to satisfy (4). The F wave propagates from the z = 0 
boundary. After a round-trip with reflection at z = L.  the 
resultant wave at the z = 0 boundary should be "single" 
valued. This is a two wave interaction process, and the axial 
boundary condition can be expressed as [ 161 

( 5 )  

(:lb,) 
3: 2q+ 1 n - rn 1 ,I ( 2 9  + 111 - n1 I 1 

= 
22q+1,1-rr l lq!  (d'+ /,,/> - 7 4 ) !  

q=o 

D ( k .  w) = det [D] = 0. 

R e i ( k l . - k B ) L  = 1 

1 " " " " " " " " " I  

0 n12 72 
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(b)  

Fig. 5. Relative magnitude of the amplitude of the Floquet harmonics .Ar7 
versus normalized wavenumber for 0 5 kzo 5 7 i .  (a) T.lf(11 mode and (b) 
T.\fol mode. 

where R is the total reflection coefficient at the ends of 
the SWS, and I C F  and k . ~  are the wavenumbers of the F 
and B waves, respectively. If the cavity is lossless and the 
ends are shorted with perfectly conducting metal plates, then 
R = 1 and k:p = - k . ~  as shown in Fig. l(b). Hence, from 
( 5 ) ,  I C F  = N7r/L. where N is an integer. Except for the 
propagating direction, the wave B is the same as the wave 
F. They satisfy identical radial boundary conditions and have 
the same energy. Therefore, in ( I ) ,  the relationship between 

-,~. y summing the coefficients A,, can be written as A: = A" B 
the F and B waves, the expressions of the EM fields in the 
SWS cavity become 

Once the dispersion relation (4) is solved numerically, the 
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Fig. 6. Axial profiles of Floquet harmonics of field E; at radial position r = 0 for TMol and T1bfo4 modes. The higher order harmonics of small amplitudes 
are not shown in the figures. Thick, solid curves represent the total value of the electric field E,. Thin, dashed and chained curves represent the Floquet 
harmonics as indicated by n in the figures. (a) TAbfo1(07r/6) mode, (h) TMo1(67r /6)  mode, (c) Thf,34(07r/6) mode, and (d) TMo4(67r/6) mode. 

relative magnitudes between the A ,  factors are determined 
from ( 2 ) .  With a known set of values of A,, the normalized 
values of the fields E,, ET, and He can be calculated from 
(6), (7), and (8), respectively. 

111. NUMERICAL RESULTS 

In the present analysis, a six-period SWS having the 
following size parameters is considered: the mean ra- 
dius Ro = 1.499 cm; the period of corrugation zo = 
1.67 cm; and the corrugation amplitude h = 0.406 cm. 
These dimensions correspond to the experimental values 
used by our research group at the University of Mary- 
land [20]. Fig. 2 depicts dispersion relations computed 
from (4). The dashed lines in the figure are the light 
lines in free space. The end reflections cause the six- 
period SWS to resonate at seven distinct frequencies 
corresponding to the particular TM modes. For the first 
Brillouin zone (-T < kzo < T )  of the dispersion 
relation, the values of the normalized wavenumber kzo 
which correspond to the seven resonant axial modes are 
0 ~ 1 6 ,  ~/6,2~/6,3~/6,4~/6,5~/6, and 6 ~ 1 6 ,  respectively. 
We will designate these axial modes by T M o s ( N ~ / 6 )  
hereafter. 

A. Electric Field Lines of the Fundamental Mode 

Using the derived field equations in the SWS, the electric 
field lines are calculated. The method of computation is identi- 
cal to that developed by Ogura et al. [ 181, with a modification 
for the higher order modes. Examples of the electric field 
pattems of the TMol mode are depicted in Fig. 3(a) and (b), 
respectively, for TMol(Ow/6) and TMol(6~/6) modes. The 
separations Ar between the field lines in the radial direction 
are so chosen that E, AT =constant at the axial position 
E, = 0. The density of the field lines in the radial direction 
represents the strength of the electric field qualitatively. For 
the TMo1(Or/6) mode in Fig. 3(a), the electric field is fairly 
uniform in the axial direction, and the radial variation of the 
field has a maximum on the axis of the structure. The axial 
pattem of the fields has six zero points (E ,  = 0) for the 
TMol(6r/6) modes as shown in Fig. 3(b). The periodic nature 
of the field lines depicted in Fig. 3(b) can be explained by 
the contribution of the Floquet harmonics for n = 0 to the 
resonant axial modes. 

B. Field Patterns of Higher-Order Modes 

The numerical calculation of the field pattems for the higher 
order modes [TMos(s > l)] is complicated. We followed 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 18:06 from IEEE Xplore.  Restrictions apply.



AMlN et ul.: ELECTROMAGNETIC WAVES IN AN OVERMODED FINITE LENGTH SLOW WAVE STRUCTURE 819 

an improved technique from the case of the fundamental 
mode [18], and have tried to calculate the electric field 
lines for the TMo2,TMo3, and TMo4 modes. Some of the 
results for the TMo4 mode are presented in Fig. 4(a) and (b), 
respectively, for the case of TM04(07r/6) and TM04(67r/6) 
modes. The field patterns have fine and peculiar structures and 
differ considerably from those of the TMol mode in Fig. 3. 
The radial distribution of the electric field lines in Fig. 4 is 
localized and separated into two parts: the peripheral and 
the central axis regions. The possible explanations for this 
difference can be given by the contribution of the Floquet 
harmonics involved in the SWS. This will be discussed in 
detail in the following subsection. 

C. Floquet Harmonics of the Electromagnetic 
Fields in the Structure 

The number of Floquet harmonics to represent the EM fields 
are practically limited by the computation time and the relative 
magnitude of the amplitude factor An's. The values of A,, 
differ from mode to mode as shown in Fig. 5(a) and (b), 
respectively, for TMol and TMo4 modes. In general, A ,  
decreases with increasing 1711. namely, Ao within the first 
Brillouin zone of the dispersion relation is the largest. In 
Fig. 5(a), at kzo = 0, the relation between An's becomes 
lAnl = IAPnl and \Ani E IA-7L-ll at kzo = 7r. At 7' = 
0, the nonzero field component is E,. and it is proportional 
to Ao + A-1 exp [-2(27r/zo)z] + A1 exp [ i (27r/zo)z]  +.  . . . As 
shown in Fig. 5(a), the contribution of the 71 = 0 Floquet 
harmonic to E, is predominant, and the amplitudes of the 
higher order harmonics are very small except at kzo % 7r for 
the TMo1(0;7r/G) mode. For this reason, the field lines of the 
TMol(O7rl6) mode, as shown in Fig. 3(a), are almost straight 
lines for 7' 5 Ro. On the other hand, the field lines of the 
TM01(67r/6) mode are determined by the n = 0 and 71 = - 1 
Floquet harmonics. These two harmonics have the same field 
variations in the z-direction with a period of 220 and, hence, 
we obtain the field pattern with the periodicity depicted in 
Fig. 3(b). 

For the Til404 mode in Fig. 5(b), the values of A*l become 
greater than Ao for small values of k within the first Brillouin 
zone of the dispersion curve. This result is novel and was 
not known in the previous works [14]-[16], [18]. The effects 
of this unusual behavior are observed in the electric field 
patterns of the structure shown in Fig. 4. In Fig. 5(b), as k 
increases, lATLl approaches 1APTL-1 1 at kzo = 7r. as is observed 
for the TMo1 mode in Fig. 5(a). The field quantities of the 
T M o 4 ( 0 ~ / 6 )  mode in Fig. 5(b) are nearly proportional to 
A-1 exp [ - i (27r/zo)z]  +A1 exp [ i (27r /zo)z ] ,  which is periodic 
with period zo. This fact can be seen from the field patterns 
of the ?'Mo4(07r/6) mode as shown in Fig. 4(a). As kzo 
approaches 7r, the field patterns of the TM04(67r/6) mode near 
7' = 0 as shown in Fig. 4(b), have a periodicity 220,  which is 
similar to that for the TMol(67r/6) mode in Fig. 3(b). 

The harmonic components of E,(T = 0, z )  are shown in 
Fig. 6(a) and (b) for the TMol mode and in Fig. 6(c) and (d) 
for the TM04 mode. The EM fields are normalized by Ao. 
The thick, solid curves in the figures represent the total value 
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Fig. 7. Resonance frequency shift 1.f of the axial resonant modes for the 
T.lIo% mode due to perturbation by a spherical metallic bead. (a) Axial 
changes in 3.f of the T.\I[,d(Or/G) mode for the bead at I' = 0; (b) radial 
changes in 1f of the TJI" j (Gr /G)  mode for the bead at z = .VI": (c) 
axial changes in 1f of the T.lI[l t(Gr/G) mode for the bead at I'  = 0. Here, 
s = 1 ,  2;". 6. 

of EZ. The thin, dashed and chained curves in Fig. 6 express 
E, components at T = 0 denoted by the harmonic number ri 

in (l) ,  which can be understood if one compares to the values 
of A,, at kzo = 0 and kzo = 7r in Fig. 5(a) and (b). The 
amplitudes of the higher order harmonics not expressed are 
very small compared to those shown in Fig. 6. The z-direction 
periodicities of E,-as depicted in Fig. 6(a)-(d)+orrespond, 
respectively, to those of Figs. 3(a) and (b), and 4(a) and (b). 
In Fig. 6(a), the contribution of the rt = f 1 harmonics to E, 
results in a small superimposed perturbation in the z-direction. 
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Fig. 8. Comparison of numerical and experimental results of frequency shift Af by the displaced bead in axial and radial directions. The solid curves 
indicate the numerical results, and the open circles represent the corresponding experimental results. The axial data were measured by the bead at a radial 
position r = 0.543 cm. (a) Axial changes in Af for the T, \ fo l (6~ /6 )  mode; (b) radial changes in Af for the T12f01(6a/G) mode; (c) axial changes 
in Af for the TA403(37r/6) mode; (d) radial changes in Af for the Th! fo3 (3T /G)  mode. 

The effect of this perturbation can easily be observed in the 
field lines for the TMo1(0~ /6 )  mode in Fig. 3(a). 

and Ho given by (6)-(8). The resultant expression for Af 
becomes [19], [20] 

The above results for the TMo4 mode are never trivial and 
have not been clarified in the past in the literature [14]-[18]. 
In usual cases, the fundamental A0 term is dominant in (1) as 
shown in Fig. 6(b) and (d); the shortest axial period of E, is 
220 for kzo = T ,  as was shown by Fig. 3(b) and Fig. 4(b). 
On the other hand, in the special case where IAklI is larger 
than Ao, as shown in Fig. 5(b), the axial period can become 
as small as zo for kzo z 0, which is much shorter than the 
usual minimum period of 2z0. 

IV. PERTURBATION TECHNIQUE 

The perturbation technique is a powerful method to measure 
EM field variations inside the resonant cavity [19]. This 
technique has been employed in the following analysis of 
SWS cavity, and the numerical results have been compared 
to experimental ones obtained at the University of Maryland 
WI. 

When there exists a small metallic sphere bead with radius 
TO in the cavity, the EM fields in the cavity are perturbed and 
the resonance frequency of the cavity changes by an amount of 
A f. If the perturbation is small enough, Af can be calculated 
approximately with the unperturbed field quantities E, , E,, 

Af - - ~T$($PO~HOI~ - 3fo(IEz12 + IEr12)) 
fo J"(POlH0l2 + to(l&l2 + lJ%12) dV) . (9) 

From (9), the field quantities are closely related to the fre- 
quency shift of the SWS cavity due to the bead. In the case of 
a spherical bead, the EM field quantities cannot be determined 
separately, because an unidirectional perturbation is impossible 
to achieve with the spherical bead perturber. The perturbation 
in E is always accompanied by a perturbation in H .  

The calculated values of the frequency shift Af for the 
TMo4 mode, with a bead radius of 0.1195 cm, are presented 
in Fig. 7. The axial changes in Af in Fig. 7 are calculated 
with the perturber at T = 0. The axial changes in Af for 
the T M 0 4 ( 0 ~ / 6 )  mode are shown in Fig. 7(a). The radial and 
axial changes in Af for the T M o 4 ( 6 ~ / 6 )  mode are shown 
in Fig. 7(b) and (c), respectively. At T = 0, E, = Ho = 
0 and the only nonzero field component in (9) is E,, and, 
hence, Af in the axial direction as shown in Fig. 7(a) and 
(c), respectively, for T A 4 0 4 ( 0 ~ / 6 )  and T M o 4 ( 6 ~ / 6 )  modes 
are directly proportional to - 1 E, 1 2 .  In other words, the results 
presented in Fig. 7(a) and (c) are proportional to the square 
of the axial profiles of total E, in Fig. 6(c) and (d). Hence, 
at T = 0, we can obtain the quantitative information about 
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the axial electric field in the SWS from the Af data. It  
should be noted that the solid curve in Fig. 6(c) is not 
symmetric regarding EL ( r  = 0)= 0. The curve in Fig. 7(a) is 
therefore not simply sinusoidal. For 1’ # 0, however, using the 
spherical perturber, it is impossible to measure quantitatively 
the individual fields involved in A/. The radial variations of 
A f are dependent on E,. E,.. and Ho. In the case of r # 
0, at the axial positions where E,. = 0, both contributions 
from E,  and Ho to Af  cannot be ignored as is seen from 
(9). The positive region in the radial profile of Af for the 
5”Mo4(67r/6) mode, in  Fig. 7(b), is ascribed to H H .  The axial 
variations of Af for the ?’n/lu4(07r/Ci) mode, in Fig. 7(a), are 
very rapid compared to those for the TMo1(Ci7r/Ci) mode, as 
shown in Fig. 8(a) by the solid curve. Experimentally, it is 
difficult to measure axial changes in Af for the Y’n/Z[l,(Or/C;) 
mode, in Fig. 7(a), because of the very rapid variation of the 
fields in the axial direction. However, the 1’1W,)4(67r/6) mode 
in Fig. 7(c) has variations of Af similar to those observed 
for the TMol(67r/Ci) mode in Fig. 8(a). These modes have 
field variations which are not very rapid in the axial direction 
as depicted in Fig. 6(b) and (d). The numerical results of 
Af have been compared to experimental nieasurenients [ 201, 
and some of these results are shown in Fig. 8. The axial and 
radial changes in Af for the ’I’M,,l(Ci?r/Ci) mode are shown in 
Fig. 8(a) and (b), respectively. The axial and radial changes in  
Af for the T’M()3(37r/6) mode are shown in  Fig. 8(c) and (d), 
respectively. The open circles represent the experimental data, 
and the solid curves are the present numerical results. The 
numerical data presented in Fig. 8(a) and 8(c) are for the bead 
at a radial position 7’ = 0.543 cm from the axis. By comparing 
the frequency shift to the field profiles, one can determine 
the axial resonant modes in the SWS to be 7’M,jl(6~/Ci) and 
TMo3( 37r/6) modes. The agreement between the numerical 
and experimental results can be clearly estimated from the 
figures. The discrepancy between them lies within the range 
of 10-200/,. 

v. DISCUSSION AND CONCLUSION 

We have numerically analyzed the EM quantities of fun- 
damental and higher order axial TM modes in a finite length 
SWS. It is found that, for the higher order modes, the am- 
plitudes of the Floquet harmonics show unusual behavior as 
depicted in Fig. S(b) for the Tn/f(14 mode. For the 7’M[,,(O7r/6) 
mode ( k z o  = O), the field quantities are mainly determined by 
the Floquet harmonics with I )  = - I and I ,  and the fields 
have an unusual short period of zo as shown in Figs. 4(a) 
and 6(c). This indicates that the period of field modulations 
can decrease to q,. which is small compared to that for the 
usual modes in cylindrical waveguides where the period is 
larger than 2 2 0 .  Such a mode with short field modulations may 
become important for higher frequency operation of BWO’s. 

The numerical results presented in this paper are being 
verified experimentally at the University of Maryland [20]. 
Generally speaking, it is impossible to reconstruct the field 
distributions including phase change by the frequency shift 
measurements only, because the frequency shift is related to 
only the absolute values of the EM tields, as is seen from 

(9). In some cases, however, the experimental results can be 
compared to the numerical calculations as shown in Fig. 8. It is 
concluded that the measured resonant modes are TMol (67r/G) 
in Fig. 8(a) and (b), and T M o s ( 3 ~ / 6 )  in Fig. 8(c) and (d). 
The agreement between the numerical and experimental data 
is quite satisfactory. 

To determine the dispersion characteristics of an SWS 
cavity, shorted plates are placed at both ends and the resonant 
modes are excited by a suitable mode launcher at one of the 
end plates. The degree of coupling between the mode launcher 
and the SWS determines the type of mode launcher to be 
used in the experiment. If the coupling between the mode 
launcher and the cavity is strong, complete reflection on the 
input antenna side cannot be expected. For a disc-type mode 
launcher, the reflection coefficient at the input end will be 
small, and consequently our assumption of perfectly shorted 
ends of the SWS becomes inapplicable. Hence, we prefer a 
short wire antenna at the center of the plate as a mode launcher 
to excite the cavity. However, it is difficult to excite the surface 
wave modes near kzo = 7r)  as was reported in [20]. 
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