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Abstract-Specific slow wave structures are needed in order 
to produce coherent Cherenkov radiation in overmoded rela- 
tivistic generators. The electromagnetic characteristics of such 
slow wave, resonant, finite length structures commonly used in 
relativistic backward wave oscillators have been studied both 
experimentally and theoretically. In experiments, perturbation 
techniques were used to study both the fundamental and higher 
order symmetric transverse magnetic (TM) modes. Finite length 
effects lead to end reflections and quantization of the wave 
number. The effects of end reflections in open slow wave struc- 
tures were found from the spectral broadening of the discrete 
resonances of the different axial modes. The measured axial and 
radial field distributions are in excellent agreement with the 
results of a 2-D code developed for the calculation of the fields 
in these structures. 

Index Terms- Periodic structures, slow waves, dispersion 
curve, resonators. 

I. INTRODUCTION 

for more detailed studies of slow wave structures intended for 
operation with relativistic electron beams. 

A second motivation for the work presented in this paper is 
the recent interest that has developed around the generation 
of high power microwave radiation in devices employing 
overmoded slow wave structures. Despite traditional concerns 
about mode competition in overmoded devices, recent experi- 
ments [3], [4] have shown that efficient, high power operation 
can be achieved in such devices operating in a single mode. 
The present study, therefore, has been undertaken in part 
to accurately determine the electromagnetic characteristics of 
overmoded slow wave structures to aid in the linear and 
nonlinear analysis of advanced microwave sources employing 
such circuits. 

Finally, such issues as finite length of the periodic structures 
and finite reflections at both ends should be studied in more 
detail. For example, in a finite length structure the axial 
wave numbers of the electromagnetic modes are quantized 
affecting the spectral characteristics of device operation. Also, 
the amount Of reflection at both ends Of the structure affects 

ARIOUS electrodynamic structures capable of support- 
ing the propagation of slow electromagnetic are 

widely used for microwave generation and for the acceleration 
V 
of charged particles. These slow-wave structures are designed 
to match the phase velocity of the propagating electromagnetic 

the quality factor Of each Of the quantized 
the 

modes in 
“slow-wave” cavity in a unique way. 

to the speed of electrons in the Same structure in order 
to facilitate an effective b e d w a v e  interaction. For interaction 

to slow down the phase velocity significantly while for 
interaction with relativistic electron beams the phase velocity 
required is only slightly smaller than the speed of light. The 
electromagnetic properties of structures with very different 
phase velocities, obviously, would also be expected to be very 
different. Therefore, in spite of the availability of detailed 
studies of structures intended for operation in conventional, 
weakly relativistic microwave tubes [ 11, [2] there is still a need 
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This, in turn, strongly influences the interaction of the electrons 
with the electromagnetic waves associated with each mode. 

stationary operation of short pulse relativistic backward wave 

Perturbation techniques are available for measuring the 
spatial distribution of fields in resonant cavities [I], [21. These 
techniques have been Primarily applied to the fUmkin~~tal  
modes in accelerator cavities, which are electromagnetically 
closed (shorted) at both ends and typically have quality factors 
(Q) Over 4000. In contrast, the Q factors of spatially periodic 
slow-wave structures intended for operation with intense rel- 
ativistic electron beams are much lower (w several hundred) 
and the electromagnetic properties Of these Structures have 

with weakly relativistic electron beams it is therefore necessary Especially important is the effect of reflections on the non- 

(BWo’s) 1 5 1 7  i6]. 

and the Arm; Research Laboratory. not been studied in detail until recently [7]-[ 113. Due to the 

usually extracted via open-ended matching sections that lower 
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distribution. To date, parameters have usually been obtained 
through numerical calculations, which are more complicated as 
the Q-factor decreases. In this study we present experimental 
methods for determining these parameters and for checking 
the results of numerical calculations. 

To properly address these issues we have developed a 
formalism describing the fields inside a finite length, spatially 
periodic structure and methods for measuring the fields and 
end reflections. For this study we used a periodic structure 
in the shape of a cylindrical waveguide with a sinusoidally 
varying conducting wall. A schematic diagram of this appara- 
tus appears in Fig. l(a). The dispersion diagram for the first 
six symmetric transverse magnetic modes in an infinitely long 
slow wave structure with the same dimensions is shown in 
Fig. l(b). The periodic nature of the structure leads to a band 
pass characteristic of each mode. The passbands are given 
an index, starting with 1 for the lowest and increasing by 
1 for each subsequent passband. Thus, the first is referred 
to as mol, the second as TMo2, and the nth as TMon .  In 
this paper, we have studied the fundamental (TMol) and two 
higher order (TMo2, TM03) transverse magnetic modes in a 
spatially periodic, sinusoidally corrugated structure of finite 
length. Preliminary data for TM04 is also available. 

This paper is organized as follows. In Section I1 we discuss 
the formation of axial modes associated with each transverse 
mode in a finite length periodic resonator and the relation of 
these modes to the dispersion diagram of the corresponding 
infinite length structure. This dispersion diagram is useful for 
modeling some aspects of BWO operation, such as the relation 
of beam energy to the approximate operating frequency. To 
model the more complex nonlinear behavior, it is necessary 
to numerically simulate the operation of the BWO. For that 
purpose one needs to know the amplitude and phase of the 
reflection coefficient from the structure ends, as well as the 
beam-wave coupling coefficient. The coupling coefficient can 
only be calculated once the field profile in the structure is 
known. In Section 111 we describe how the electromagnetic 
fields are calculated by expanding the fields in a spatially 
harmonic series. In Section IV we show how the resonant fre- 
quencies as well as the radial field profile associated with each 
axial mode of the closed slow-wave structure was measured 
for the three TM modes considered. In Section V we describe 
how we experimentally determined the reflection coefficient 
at the open end of our slow-wave resonator. This was done 
by measuring the spectral width of each resonance, which 
broadens as the end of the slow-wave resonator is opened. We 
present both experimental and numerical results for the end 
reflection. Section VI summarizes our work and describes our 
latest efforts to increase the accuracy of our results. Possible 
extensions of these techniques to plasma filled systems are 
also discussed. Two appendices are also attached to explain 
the calculation of the reflection coefficient and the analytic 
model used for the closed cavity quality factor. 

11. AXIAL MODES IN A FINITE LENGTH SLOW-WAVE CAVITY 

The dispersion characteristics of electromagnetic modes in 
an infinitely long spatially periodic structure are determined 
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Fig. 1.  (a) Schematic diagram of a spatially periodic (corrugated wall) 
structure shorted at both ends. (b) The calculated dispersion diagram for six 
symmetric transverse magnetic (TMos) modes in an infinitely long, spatially 
periodic structure of Fig. l(a). 

only by the geometry of the conducting walls. A finite length 
structure, however, can be described by a simple dispersion 
relation only when it is well matched at both ends (i.e., no 
reflections). Structures used in relativistic BWO’s are usually 
not well matched. First, relativistic BWO’s utilize a strong 
reflection at the entrance of the structure to prevent microwave 
propagation into the diode region [7], [8], [IO], [ l l ] .  At the 
output end of the structure, part of the microwave radiation is 
reflected and part transmitted. As a result of these reflections 
a standing wave pattern is created leading to a spectrum of 
axial modes. This effect was studied in [5] and [6 ] .  

Any spatially periodic structure with end reflections con- 
taining N periods will support N + 1 different axial modes 
for each transverse mode [12]. Each of these axial modes is 
characterized by a discrete frequency ( f T )  and a discrete axial 
wave number (,OT), which are located on the dispersion curve 
of the same transverse mode in an otherwise identical structure 
of infinite length. As a consequence of the spatial periodicity 
of the structure, traveling waves can be presented as a super 
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position of spatial harmonics. The standing wave is formed 
by a pair of such traveling waves propagating in opposite 
directions. As an example, the measured frequencies and wave 
numbers of the seven axial modes associated with the lowest 
order symmetric transverse magnetic mode (TMol) of the six 
period slow-wave structure of Fig. 1 are shown in Fig. 2(a). In 
Fig. 2(a) we show, for simplicity, only axial wave numbers for 
the forward wave in the zero’s Brillouin zone. Bear in mind 
that for a given frequency, the total field contains a set of axial 
wave numbers corresponding to different spatial harmonics. 
Throughout this paper, resonance plots will be presented as 
frequency (in GHz) versus the normalized wave number, pd, 
which is equal to the phase advance per structure period. Here 
/? is the axial wave number and d is the length of the structure 
period. The structure wall radius is given by 

R, = Ro + h C O S ( ~ T Z / ~ )  (1) 

where Ro is the average radius and h is the amplitude of the 
wall corrugations. Even though all seven axial modes shown 
belong to the same transverse magnetic mode (TMol), they are 
characterized by completely different patterns of field lines. As 
an example, the calculated electric field line pattern of two of 
the seven axial modes in ,the slow-wave structure of Fig. 1 
are shown in Fig. 2(b). The technique used to calculate these 
patterns will be described in Section 111. 

A few features of finite length structures follow from 
Fig. 2(a), which describes an X-band slow-wave structure 
having a passband from 7.4 to 8.7 GHz for the fundamental 
symmetric transverse magnetic (TMol) mode. First, the dis- 
crete axial modes which are equally spaced in wave number 
are not equally spaced in frequency within the structure 
passband. The mode separation varies between 0.05 and 0.25 
GHz for the structure studied in this work. Second, the spectral 
resonance width (and thus the quality factor) of each of 
the axial modes is different since the group velocity of the 
electromagnetic wave varies. This feature is used to calculate 
the end reflection of shorted and open slow-wave structures, 
as will be shown in Section V. 

In addition to the dispersion curve, Fig. 2(a) shows all seven 
TMol resonance peaks for a closed six-period slow-wave 
cavity as measured with a microwave network analyzer. For a 
structure with N periods of length d the resonance condition 
can be stated as [12] 

where n, is the number of half wavelengths along the axis 
of the structure and ( 2 ~ / / 3 )  is the axial wave length. The 
resonant axial wave number PT is then found from n, using 
the above equation. Points on the dispersion curve are found 
by recording the resonant frequencies fT  and associated axial 
wave numbers pT for the set of axial modes associated with 
each transverse magnetic (TM) mode. The complete dispersion 
relation can then be constructed from these discrete points [ 131 
or calculated, as will be shown in Section 111. Measuring the 
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Fig. 2. (a) The dispersion diagram of an X-band slow wave structure having 
a passband of 7.4 to 8.7 GHz for the TMol mode as calculated by Superfish, 
presented as a smooth line. Only half of the first Brillouin zone is shown. Also 
shown is the measured reflection data and all seven TMol  resonance peaks 
of the closed six period slow wave cavity (open circles). (b) The electric field 
line pattern associated with two of the seven axial modes (OSn16). 

dispersion relation is therefore reduced to finding the set of 
resonant frequencies and axial wave numbers (fT, p,) for the 
desired TM mode. In practice it is much easier to find the 
frequencies than the wave numbers. For a spatially periodic 
resonator excited by an ideal mode launcher, the N + 1 axial 
modes associated with a single TM mode should be equally 
spaced in wave number. Thus if the dispersion curve, f(P), is 
known to be an increasing or decreasing monotonic function of 
the wave number over one Brillouin zone, then it is necessary 
to measure only the resonance frequencies. If the dispersion 
relation is non-monotonic, then it is necessary to measure both 
f and /3 to determine f(/?). In this study we consider the 
fundamental (TMol) and the next two higher order (TMoz and 
TM03) transverse modes, which are monotonic; however, the 
techniques presented also apply to nonmonotonic modes. In 
Section IV we show how these resonances were measured. 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.



MAIN er ai.: ELECTROMAGNETIC PROPERTIES OF OPEN AND CLOSED OVERMODED SLOW-WAVE RESONATORS 569 

111. NUMERICAL MODELING OF THE 
SLOW-WAVE STRUCTURE FIELDS 

A. Field model 

The first step in the simulation of overmoded slow wave 
structures is to find a way to accurately and efficiently calculate 
the electromagnetic fields in the structure. As higher modes 
are considered, these calculations become more complex and 
it becomes also important to experimentally verify the results. 
Here we present a technique which shows good agreement 
with experimental measurements for closed, spatially periodic 
structures at least up to the W O 3  mode. 

We use a model [14]-[16] in which the fields are expanded 
in a spatially harmonic series, according to Floquet’s theorem. 
Solving the dispersion relation for the sinusoidal boundary 
of the slow-wave structure given by (1) gives the expansion 
coefficients. Using Maxwell’s equation, we get the following 
expressions for the electromagnetic field components, E, E,, 
and Hd, 

where JO and J1 are the Bessel functions of the first kind of 
order 0 and 1, respectively, 

= R;(W’/C’ - pi) (6) 

where Pn = /3 + n27r/d is an integer and c is the velocity of 
light in vacuum. The dispersion relation is derived from the 
boundary condition [ 171 requiring that the tangential electric 
field is zero at the wall T = R(z) ,  

E,(R) x E,(R) + E,(R)dR/dz = 0. (7) 

The spatial Fourier transform of (7) can be expressed as: 

where A is a coefficient vector in (3)-(5) and D is a matrix of 
infinite order. The dispersion relation is the non-trivial solution 
of (8) and is given by 

det [ D ( p ,  w)] = 0. (9) 

In the case of a finite length, slow-wave structure, the addi- 
tional boundary conditions at both ends ( z  = 0 and z = L )  
must be satisfied [18]. A wave propagating forward along 
the z-axis, F ,  reflects at z = L and becomes a backward 
propagating wave B. Fig. 3(a) illustrates this process, and 

z=o  Z = L  
(a) 

Frequency, f 
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/ 
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Normalized Axial Wavenumber, Pd 

(b) 

Fig. 3. (a) A wave propagating forward along the z-axis, F ,  reflects at z = L 
and becomes a backward propagating wave. (b) The location of the F and 
B waves on the dispersion diagram. 

Fig. 3(b) shows the location of these waves on a dispersion 
diagram. 

Both forward and backward waves have to satisfy the 
dispersion relation, 

(10) 
(1 1) 

Electromagnetic quantities must also be single valued at a 
given position and time at the resonance, 

det [WF, U)] = 0, 
det [D(PB,  w)] = 0. 

p e { i ( P F - P B ) L }  = 1. (12) 

Here, p is a round trip reflection coefficient. With the assump- 
tion of a loss less cavity that is completely shorted at both ends, 
we may write p = 1 and PB = -PF.  Hence, (12) becomes 

PF = T N / L  (13) 

where N is an integer. Except for the propagation direction, 
the backward wave is identical to the forward wave; that is, 
it satisfies the same radial boundary condition and has the 
same energy. Therefore, in (3)-(5),  the relationship between 
the coefficients A: of backward wave and those AK of the 
forward wave may be written as 

A,F = AFn. (14) 

By summing the forward and backward waves, the electro- 
magnetic field components in the cavity can be written 

00 I \  

E Z ( r , z , t )  = e-iwt 2A 
n=-00 
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(17) 
In our calculations, the rank of the matrix was truncated at 9 
(-4 < n < 4) [15], [16]. Once the dispersion relation, (9), is 
solved numerically, the ratios of the coefficients, An/Ao,  are 
determined from (8). With a known set of An/Ao,  the field 
components E,, ET, and H4 are calculated from (15)-(17). 

B. Perturbation Theory 

Perturbation theory indicates that slight changes in the shape 
of a resonant cavity can affect the resonant frequency. Each 
resonance (associated with an axial mode) is frequency shifted 
by a perturbing object of volume AV by a different amount. 
The general relation for the relative frequency shift is given 
by [21 

where the integral in the numerator is evaluated over the 
perturbing object volume AV and the integral in the denom- 
inator is evaluated over the whole cavity. This assumes that 
the perturbing object is small compared to the amplitude and 
length of the wall ripple. For the case of a sphere [2] the 
above equation is geometrically corrected by multiplying the 
first term in the numerator by 3/2 and the second term in the 
numerator by 3. For a small metal bead of radius TO the field 
is almost constant over AV so the integration is unnecessary. 
Thus the equation commonly used is [ l]  

where Eo and HO are the field amplitudes normalized so that 
the integral of H i  or E: over the cavity is unity. Since the 
only field component on axis is E,, the simplest measurement 
would be to find pT by perturbing the field on axis. In our 
experiment, a bead was placed 0.54 cm away from the axis 
because of the difficulty associated with having both the bead 
and the antenna on axis. At this radius it was still possible 
to identify pz for the T M o l  modes by inspection of the 
axial profile of the frequency shift. Once the cavity fields are 
calculated, (19) can be used to find the associated perturbation. 
This frequency shift can then be directly compared with 
experimental measurements. 

Iv. RESULTS OF THE FIELD MODEL 
AND EXPERIMENTAL VERIFICATION 

There are two levels at which we can compare the field 
model of Section I11 with experiment. The first and simplest 
level is to compare the measured and calculated resonant 
frequencies associated with the axial modes. The second 
is to compare the field distribution (or the related spatial 
distribution of frequency shifts) of these modes using the 

I 6 period Slow-Wave SINCM 

W G h t  

Fig. 4. Cold test system used for measuring the electromagnetic character- 
istics of spatially periodic structures. The perturbing bead could be translated 
both axially and radially. 

spatial perturbation technique described in Section 111. In 
this section we will present the comparison on both levels. 
Fig. 4 shows the measurement system, including the bead-pull 
apparatus to be described later. 

A. Resonant Frequencies 

Experimentally, the modes of our slow-wave structure were 
excited using a small Hertzian antenna on the axis which 
could be moved axially in and out of the cavity to adjust 
the degree of coupling and to enable calibration. A network 
analyzer was used to measure the microwave reflection from 
the cavity over the desired frequency range (&I single port 
measurement). The resonances appeared as narrow spikes at 
frequencies where the magnitude of the reflection was reduced. 

The experimental results appear as plots of the resonant 
frequency ( f T )  versus the normalized axial wave number (pd). 
All measurements were compared with numerical calculation. 
The measurements agree very well with the boundary specific 
calculation of Section 111 and the general boundary calculation 
using the 2-D electromagnetic code Snperfish [19]. A graph- 
ical comparison of the experimental results with Superfish 
calculations is shown in Fig. 2(a). This figure shows the 
dispersion curve and reflection data with a common frequency 
axis. The Superfish results, which were actually calculated at 
seven points, are converted to form a smooth curve to aid 
in comparison with experiment. Similar plots comparing the 
measured and calculated results [161, [20] for the TM02 and 
TMo3 modes are shown in Fig. 5(a) and 5(b), respectively. The 
measured frequencies of the T M o l  resonances are, on average, 
0.17% lower than our calculations and 0.03% higher than 
Superfish. For the TMo2 and TMo3 modes the experimental 
data are, respectively, 0.05% and 0.37% lower than our 
calculations. 

B. Field Distribution 

To perturb the cavity a small object had to be placed at 
known locations within the structure and the resulting shift in 
the frequency of a given resonant mode was measured. Fig. 4 
shows a schematic diagram of the apparatus and Table I gives 
a few critical dimensions. 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.



MAIN et al.: ELECTROMAGNETIC PROPERTIES OF OPEN AND CLOSED OVERMODED SLOW-WAVE RESONATORS 571 

TABLE I 
DIMENSIONS OF SLOW-WAVE STRUCNRE. 

Structure Period 1.67 cm 
Total Length 10 cm (6 periods) 
Radius [cm] 1.5 + .41 sin(3.7~) 
Bead Diameter 0.24 cm 
Radial Position of String 0.54 cm 

14.4 
h 

2 
9 14.3 
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6 14.2 

E- l4.I 
L4 14 
N 0 

z 13.9 w 
13.8 

Numencal _. 
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14 3 
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14 I 

14 

13 9 

13 8 

- - _ _  
Reflection (dBj- Normalized Axial Wavenumber, pd 

(b) 

Fig. 5.  (a) The dispersion diagram of an X-band slow wave structure having 
a passband of 7.4 to 8.7 GHz for the TMoz mode (smooth line). Also shown 
is the measured reflection data for the TMoZresonance peaks of the closed 
six period slow wave cavity (open circles). (b) Same as (a), but for the 
Th40 3 mode. 

An aluminum bead was suspended in the cavity on a nylon 
thread via one of four sets of access holes: one set parallel to 
the cavity axis and three along the diameter at axial positions 
corresponding to the maximum, average, and minimum radii 
of the slow wave structure. Bead movement was regulated 
by tying one end of the thread to a dial caliper to measure 
position and the other end to a small weight to provide tension. 
An HP network analyzer measured the forward and reflected 
power versus frequency (SI1) from a coax Hertzian element 
inserted on axis through the cavity end plate. For each mode, 
the resonant frequency was recorded as a function of bead 
position. The frequency shift at a given point is then the 
difference between this frequency and the frequency in an 
unperturbed cavity. It should be noted that the effect of the 
nylon thread was negligible (less than 500 kHz in all cases). 
Both axial and radial dependence of frequency shifts were 
measured. The first shift was measured with the bead translated 
along a path parallel to the cavity axis at a radial position of 
0.54 cm. The second shift corresponded to a radial path at a 
position of maximum cavity diameter (see Fig. 4). 

In general, measurements and calculations can be performed 
for each of the seven axial modes associated with each of the 

Position (cm) Position (cm) 

Fig. 6. Field perturbation results in the shorted structure for three axial 
modes of the TM01 transverse mode. (a) Plots of the electric field lines, 
axial and radial frequency perturbation for x/2 axial mode; solid lines - 
calculation based on equation 18; open circles - experiment. (b) Same, for 
2 ~ / 3 .  (c) Same, for 5 r / 6 .  

$ 
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Fig. 7. Field perturbation results of the shorted structure for one axial mode 
of high order transverse modes. (a) Plots of the electric field lines, axial and 
radial frequency perturbation for 5 r / 6  axial mode of the TMoz mode; solid 
lines - calculation based on (18); open circles - experiment. (b) Same, for x 
mode of the Th4ostransverse mode. 

three transverse modes (TMol, TMoz, TMo3). In Fig. 6 and 
7 we present selected results. All seven axial modes of the 
TMol group of modes and some of the axial modes of the 
TMoz, TMo3, and T M o 4  have been studied numerically and 
experimentally. The results are shown in Fig. 6(a), (b), (c) 
for the TMol 7r/2, mol 2 ~ / 3 ,  and TMol 5 ~ / 6  modes, re- 
spectively. The experimental results appear as circles overlaid 
on solid lines that represent the numerical results. To help 
visualize the cavity fields, a plot of the electric field lines 
for each axial mode is displayed beside the corresponding 
data. Similarly, Fig. 7(a) displays the 5 ~ / 6  mode of the TMoz  
series and Fig. 7(b) shows the T mode of the TM03 series. 
The normalized wave number, pd, can be found from these 
results by simply counting the number of local maxima along 
the length of the resonator and multiplying the number by ~ / 6 .  

v. REFLECTION AND Q-FACTOR OF 
AN OPEN SLOW-WAVE STRUCTURE 

In most low power linear microwave devices the output 
power is extracted radially at one end of the interaction 
region. Microwave mode converters change the cylindrical 
mode produced in the interaction region into the fundamental 
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Fig. 8. (a). A schematic diagram of an open slow wave cavity - a way for 
axial power extraction in a relativistic backward wave oscillator. In this work 
a = 1.02 cm, b = 7.62 cm, c = 4.75 cm. (b). Demonstration of resonance 
broadening. The a/2 resonance of the TMol mode is broadened when the 
structure is open (dotted line) as compared to the shorted case (solid). This 
effect is used to calculate the reflection at the end of the structure. 

mode of a waveguide which can transport the energy to the 
load or antenna. At power levels of tens of MW, the complex 
geometry of the mode converter can lead to breakdown even 
in vacuum. To avoid this problem high power tube designs 
eliminate the mode converter and allow the output power 
to exit the slow-wave structure along the beam axis. Then 
the beam is separated from the microwave by tapering the 
magnetic guide field and thus dumping the beam into the wall 
of the waveguide. For these discussions this type of cavity is 
labelled “open” [23]. A diagram of a practical open cavity 
used in high power BWO experiments [8], [ l l ]  is shown in 
Fig. 8(a). 

When modeling a BWO it is important to know the end re- 
flection of the structure. End reflections affect both the starting 
conditions and saturation effects in the device [5 ] ,  [6]. Several 
numerical codes can predict the end reflection coefficient (p) 
for a given geometry, however, it is often difficult to accurately 
calculate end reflections due to the complex geometry of such 
systems and the often unknown surface finish conditions used. 
For these reasons it is important to perform experimental 
measurements. The most direct method of measuring p is to 
launch the desired mode down the structure and measure the 
waves which are transmitted through or reflected from the 
end of the structure. This technique requires both launching 
the desired mode and completely absorbing the reflected wave 
inside the structure. Either of these would be very difficult in 
practice. It is much easier to find p indirectly by exploiting its 
relation to the diffractive quality factor of the structure. The 
diffractive quality factor of a structure ( Q d )  is related to the 

radiative power loss through the output aperture of the cavity, 
whereas the power loss to the walls is related to the ohmic 
quality factor of the cavity (Qohm). 

To find Q d  it is necessary to separate the ohmic losses 
(Qohm) from the total circuit losses (Qt)  which include the 
radiative losses of the cavity. Since the Q-factor is inversely 
related to power loss, Qd can be found from Qt and Qohm 

by the relation 

Both Qt and Qohm can be measured directly. The measured 
quality factor of the system is Qt when the structure is open, 
and Qohm when the diffractive loss is eliminated by placing a 
short at the output side of the structure. Fig. 8(b) demonstrates 
this effect by showing how the 7r/2 resonance of the T M o l  
mode is broadened when the end of the structure is opened. 

A. Experimental measurement of Q 
It is useful to give some details of our Q measurement here. 

We measured the voltage standing wave ratio (VSWR) of 
the cavity across the desired resonance or resonances using 
a HP8510C vector network analyzer (we used a one-port 
measurement for simplicity). From this data we found the 
minimum VSWR (at resonance) and the maximum VSWR 
(between resonances). From these two values we used a 
technique [21] to find the VSWR level at which to read the 
upper and lower frequencies, f l  and f2,  of each resonance. 
From these frequencies, and the resonant frequency fr we can 
calculate the cavity Q using the relation 

Q = f r / ( f l  - f2). 

With the additional knowledge of whether the cavity was 
under-coupled (less than optimum coupling) or over-coupled 
(more than optimum coupling) a correction factor for the Q 
was found that eliminated the loading effect of our mea- 
surement apparatus and wave launcher. The cavity coupling 
could be adjusted by moving the launcher in and out of the 
cavity. Using the minimum insertion which would give a clear 
resonance we were certain to be in the under-coupled regime. 
The cavity was made of brass. 

Using these techniques we measured the Q’s of the cavity 
modes in both open-ended and close-ended configurations. 
As a check we compared the measured Q’s for the shorted 
configuration with an analytic calculation which is described 
in detail in Appendix 11. These results appear in Fig. 9. 
The agreement of the measured and calculated Q’s is very 
good when we use a surface roughness factor of 1.7. This 
factor effectively increases the skin depth in the calculation 
to compensate for increased field penetration due to surface 
imperfections (i.e. fabrication, oxidation). 

We use (20) to calculate Q d  from the measured values of 
Qt and Qohm. The only remaining step is to calculate the end 
reflection, p, from Q d .  Appendix I presents a derivation of the 
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Fig. 9. Calculation (open squares) and measurement (bars) of the wall losses 
for various axial modes associated with the TMoi  mode of the shorted periodic 
cavity. The surface finish factor is 1.7. 

relation of these two parameters. The result is 

where Q = ( W / C ) ~ ( L / P ) .  Using this relation the measured 
values of p were found. These values of p for the TMol axial 
modes were compared with a set of calculations performed 
by A. Bromborsky [ 2 2 ] .  The results appear in Fig. 10(b). 
The measured reflection coefficients are up to 15% larger 
than the calculated ones. This is a significant difference since 
reflections are important for both the linear characteristics 
(starting conditions) and for simulations of non-stationary 
operation of pulsed relativistic backward wave tubes. For 
example, a 15% change in the reflection coefficient can cause 
the starting current to double. 

VI. SUMMARY AND CONCLUSIONS 
The electromagnetic properties of slow-wave resonators 

for high-power relativistic backward wave tubes have been 
studied both theoretically and experimentally. The agreement 
between the measured and calculated frequencies and spatial 
field distributions is very good (the discrepancy is less than 
0.2%) for the first three symmetric transverse magnetic modes 
(TMopg) with the index p from 1 to 3 and various axial indices 

(from 0 to N where N is the number of periods of a slow- 
wave resonator). Preliminary data is also available for the 
TMo4 mode, which is characterized by a very flat dispersion 
curve (see Fig. 1). 

We have also developed a simple method to measure the end 
reflections in open slow-wave resonators by measuring their 
Q-factors. This measurement technique gives results for end 
reflections which are up to 15% higher than those that follow 
from computer code simulations [ 2 2 ] .  

Applying these techniques is especially important to high- 
power relativistic BWO's with overmoded structures because 
their dispersion diagram may not be a monotonic function 
of the axial wave number. For this reason it is necessary to 
measure both the frequency and the axial wave number, as 
was done in this work, in order to identify the transverse and 
axial indices of the operating mode. 

0 
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(b) 
Fig. 10. (a) Measurement of the diffractive quality factor of the open 
periodic cavity for various axial modes associated with the TMoi mode. (b) 
The measured reflection coefficient for various axial modes, derived from the 
diffraction quality factor using (22).  

The results obtained are important in the design of future 
high-power relativistic backward wave oscillators, relativistic 
travelling wave tubes, overmoded multiwave Cherenkov and 
multiwave diffraction generators. We also plan to extend 
the technique described here to the study of plasma filled 
relativistic slow wave devices [24]. 
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APPENDIX I 

DIFFRACTIVE QUALITY FACTOR 

We consider a cavity consisting of a section of waveguide 
with a short at one end and a "leaky" aperture (antenna) at 
the other. We find the dependence of the reflection from this 
aperture, p, on the diffractive quality factor of the cavity Q d  

in two steps. First, we relate Q d  to the ratio of circulating 
power to power loss, and then we relate this ratio to the end- 
reflection. We begin with a description of Q d  and how it relates 

DEPENDENCE OF CAVITY END-REFLECTIONON 
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to the total and ohmic quality factors. These three Q-factors 
are defined as follows: 

Thus, substituting into the equation for Qd 

Q o h m  = Q-factor related to RF power lost in the cavity wall 1 + lPI2 
1 - lP12 

Qd = CY- by resistive heating 
Qt = Q-factor related to all power loss mechanisms (ohmic 

Qd = Q-factor related to power lost by diffraction through 

By definition, the Q-factor is related to the cavity power 

and radiation) where 

an aperture in the cavity. CY = (w /c>2(L /P> .  

Inverting this expression in te;ms of P, we find 
loss, Pl,,,, by the equation 

where w is the resonant frequency and U is the electromagnetic 
energy stored in the cavity. Because Q is inversely related to 
power loss, and the total power loss is equal to the sum of 
the diffractive and ohmic losses, the three Q-factors have the 
relation 

n i S  is the relation we used to find the cavity end-reflection 
in Section v of this paper (22). 

APPENDIX 11 
OHMIC LOSSES IN RESONATORS WITH CORRUGATED WALLS 

Consider a resonator formed by the part of a cylindrical 
waveguide with corrugated walls which is bounded with two 
end walls. In general, the ohmic quality factor (Q) of any 
resonator can be defined as 

1 / Q t  = 1/Qohm + 1 / Q d .  (23) 

An experimental measurement of the open cavity would give 
the value for Qt. If the aperture was shorted then the measure- 
ment would give Qohm.  Thus, using this equation, all three Qs 
can be experimentally determined. 

We now proceed to relate Qd to the end reflection. To 
accomplish the first step we use the relation between power 
and energy in an empty waveguide Wohm JKkln 1I?,.,I2dV 

- 
(33) 

W sv (I?,.,12dV 
Qohm= - = 2  - . 

P / u  = ( P / W ) C 2  = vg, (24) 

where U is the energy per unit length in the waveguide ( U / L )  
and vgr is the group velocity. Using this relation the definition 
of quality factor becomes 

where Pcirc now represents the power circulating in the cavity. 
To relate Pcirc/Pd to the end-reflection p, we consider the 
forward and reverse waves in the cavity with associated power 
P+ and P-, and the power lost through the cavity aperture 
Pd. By definition 

Here, the bars imply the averaging over the wave time 
period 27r/w, W is the microwave energy stored in the 
resonator, Wohm is the microwave energy concentrated in a 
skin-layer of the metallic walls. is the volume associated 
with the skin depth. The coefficient 2 reflects the fact that 
inside a resonator the electric field amplitude is equal to the 
magnetic field amplitude while in a metallic wall (with the 
finite but very large conductivity, a) only the magnetic field 
is significant since E,., - (l/&)H-. 

We will restrict our consideration to the simplest but most 
important case of symmetric mope modes. The magnetic field 
of such modes has only one, non-zero component directed 
along azimuthal coordinate 4 (H-4). In a corrugated structure 
with strong end reflections this field, excited at the given 
frequency w,  can be presented as 

H-4 = H4eiwt + complex conjugate. 
and 

so 

where 
0 0 .  
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where p: = -9:. Below we will take into account only zero 
and f first spatial harmonics supposing that amplitudes of all 
other harmonics are negligibly small. 

Let us consider periodical corrugation of the resonator wall, 

and suppose that the height of these ripples, h, is much smaller 
than the wavelength, A. In such a case of small ripples it is 
possible to replace the boundary condition for the field at the 
real corrugated wall by an approximate boundary condition 
at the wall of the cylindrical waveguide of radius Ro [25]. 
From this condition one can find the relation between spatial 
harmonic amplitudes [26]: 

In the case of arbitrary relations between h and X the ratio of 
harmonic amplitudes can be found only numerically. 

In addition to the assumptions given above let us also 
assume that the structure consists of an integer number of 
periods: L = N . d where N is an integer. Then, for the 
microwave energy stored in the resonator one can obtain the 
following formula: 

where xp  = goRo is the pth root of the equation &(x) = 0, 
which is the boundary condition for the mope mode in a 
waveguide of the constant radius Ro, 

f 
4*1 = I ; (p: lRo)  [ m P + l R o )  - ~ O ( P + 1 R 0 ) ~ 2 ( P + l R O ) ] .  

(38) 
The last two terms in (11.5) correspond to the f first spatial 
harmonics. 

In a similar manner one can find the microwave energy 
stored in a skin-layer of the depth b S k .  Note that due to a 
certain roughness of the wall, a realistic skin depth is 1.5 - 2 
times larger [27] than the theoretical value. Correspondingly, 
the ohmic Q-factor of the closed cavity 

- 

- (39) 
W closed - 

Qohm - - 
Wohm,corr + Wohm,e .w.  

where Wohm,corr is the average microwave energy concen- 
trated in a skin- layer of the corrugated wall of a waveguide 
section, and m o h m , e . w .  is the microwave energy concentrated 
in a skin-layer of end walls. Denoting the skin-depth by 
Ssk one can derive for mohm,corr :  Wohm,e.w. the following 

- 

expressions: 

Here q*1 denotes Il(P*lRo)/~o(P*lRo).  
Substituting equations (IIS), (I1.6), (11.8) and (11.9) into 

(11.7) one can find the ohmic Q-factor of the closed cavity. In 
microwave generation experiments [3,4,6,7] structures without 
end walls are used. Correspondingly, when reflections of the 
microwave power at both ends ( z  = 0 and z = L)  are large 
enough, the ohmic Q-factor of the resonator can be estimated 
by the following equation 

where w and W&m,corr are defined by Eqs. (11.5) and (11.8), 
respectively. Equation (11.7) was used in Section V (and Fig. 9) 
to calculate the ohmic losses in a shorted cavity. 

Two limiting cases should be considered separately. In 
case of the 0-mode, we have 1 = 0,PF = P 2 1 , p l  = 
p-1 ,  q1 = q-1, a1 = a - 1  and 41 = 4-1, which means 
that the first and minus first harmonics degenerate to each 
other except for difference in propagating direction. Thus we 
have to recalculate our formulas from the first step by taking 
the degeneracy into consideration. This leads to simplified 
expressions for terms defined by eqs.(11.8),(11.9). We do not 
present here these formulas because it was found that for 
parameters of our slow-wave structure the amplitudes of * 
first harmonics are small ( A 1  = Awl  = 0.02Ao), and therefore 
these harmonics can be ignored in calculation. This fact has 
been used to calculate the Q-value of the 0-mode in Fig. 6. 

In case of r-mode, a zero harmonic of forward wave and 
minus first harmonic of backward wave have the same axial 
wave number as well as a zero harmonic of backward wave 
and plus first harmonic of forward wave. They propagate in 
opposite directions and thus form a standing wave together. 
In other words, these harmonics degenerate to each other in 
terms of dependence of the radial coordinate and therefore all 
formulas must account for this effect. We do not present here 
these formulas recalculated, because it was found that in our 
experiment the intersection between the light-line, w = k,c 
and the dispersion curve is close to the point of the r-mode, 
which means 1 go I<< P, where 

This condition I go I<< p simplifies the consideration. For 
experimental parameters the following relation between har- 
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monic amplitudes was found, 

- 1.025. A1 A-1 - = -1.57 x 10-4, - - 
A0 A0 

Thus we were able to ignore the plus first harmonic and to 
approximate the magnetic field as 

This expression has been used to calculate the Q-value of the 
r-mode in Fig. 6. 

REFERENCES 

L. C. Maier and J. C. Slater “Field strength measurements in resonant 
cavities,” J. Appl. Phys., vol. 23, pp. 68-77, 1952. 
Om. P. Gandhi, Microwave Engineering and Applications, Pergamon 

[21] D. K. King, Measurement at Centimeter Wavelength, pp. 128-141, New 
York Van Nostrand Co., 1952. See also, L. Malter and G. A. Brewer, 
J. Appl. Phys., vol. 20, p. 10, 1949. 

[22] A. Bromborsky, private communication. 
[23] The subject of “open” cavities with smooth walls is discussed in L.A. 

Weinstein, Open Resonators and Open Waveguides, Boulder, CO: Golem 
Press, 1969. In this work we deal with cavities having spatially periodic 
walls. 

[24] Y. Cannel, W. R. Lou, T. M. Antonsen, Jr., J. Rodgers, B. Levush, 
W. W. Destler, and V. L. Granatstein, “Relativistic plasma microwave 
electronics: Studies of high-power plasma filled backward wave oscil- 
lators,”Phys. Fluids B, vol. 4, pp. 2286-2292, 1992. 

[25] N. F. Kovalev, “Electrodynamic structure of the ultrarelativistic BWO,” 
Elektronnaya Tekhniku, ser. 1 ,  Electronika SVCh, no. 3, pp. 102-106, 
1978. 

[26] B. Z. Katzenelenbaum, Theory of Irregular Waveguides with Slowly 
Variable Parameters, Moscow, 1961. 

1271 K. Kreisher and R.J. Temkin, in Infrared and Millimeter Waves, vol. 7 ,  
ch. 8, Academic Press, 1983, p. 377. 

Press, 1984. 
D. K. Abe, T. Antonsen, Jr., Y. Cannel, W. W. Destler, V. L. 
Granatstein, B. Levush, and S .  M. Miller, “Experimental studies of 

William Main, photograph and biography not available at the time of 
publication. 

overmoded high power microwave generators,” in 1993 IEEE Inter. 
Con$ on Plasma Science. 
D. K. Abe, T. Antonsen, Jr., A. Bromborsky, Y. Cannel, B. Levush, and 
S. M. Miller, “Experime$al and theoretical results from the University 
of Maryland multiwave Cerenkov generator program,” in Beams ’92 
Con$ Proc. 
B. Levush, T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou, Y. Cannel, 
“Theory of relativistic backward wave oscillators with end reflections,” 
IEEE Trans. Plasma Sci., vol. 30, pp. 263-280, 1992. 
B. Levush, T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou, Y. Cannel, 
“Relativistic backward wave oscillators: Theory and experiment,” Phys. 
Fluids B, vol. 4, pp. 1-7, 1992. 
N. F. Kovalev, M. I. Petelin, M. D. Raiser, A. V. Smorgonsky and L. E. 
Tsopp. “Generation of powerful electromagnetic radiation pulses by a 
beam of relativistic electrons,” JETP Len., vol. 18, pp. 138-140, 1973. 
Y. Cannel, W. R. Lou, J. Rodgers, H. Guo, W. W. Destler, V. L. 
Granatstien, B. Levush, T. Antonsen, Jr., and A. Bromborsky, “From 
linearitv towards chaos: Basic studies of relativistic backward wave advanced concepts in n 

oscillators. oscillators,” Phys. Rev. Len., vol. 69, pp. 1652-1655, 1992. 
[9] S .  P. Bugaev et al., “Relativistic multiwave Cerenkov generators,” IEEE 

Trans. Plasma Sci., vol. 18, pp. 525-536, 1990. 
[lo] S. D. Korovin et al., “The nonuniform-phase velocity relativistic 

BWO,” in 9th International Conference on High Power Panicle Beams, 
BEAMS 92, Washington, DC, May 25-29, 1992, Paper PG-02. 

[ l l ]  R. A. Kehs et al., “High power backward wave oscillator driven by 
a relativistic electron beam,” IEEE Trans. Plasma Sci., vol. PS-13, pp. 
559-562, 1985. 

[I21 C. C. Johnson, Field and Wave Electrodynamics. New York: McGraw- 
Hill, 1965, ch. 7. 

[I31 Y. Cannel, H. Guo, W. R. Lou, D. Abe, V. L. Granatstein, and W. W. 
Destler, “Novel method for determining the electromagnetic dispersion 
relation of periodic slow wave structures,“ Appl. Phys. k n . ,  vol. 57, 
pp. 1304-1306, 1990; also, H. Guo, Y. Cannel, W. R. Lou, L. Chen, J. 
Rodgers, D. Abe, A. Bromborsky, W. Destler, and V. L. Granatstein, 
“A novel highly accurate technique for determination of the dispersive 
characteristics in periodic slow wave circuits,” IEEE Trans. Microwave 
Theory and Tech., vol. 40, pp. 2086-2094, 1992. 

[I41 J. A. Swegle et al., “Backward wave oscillators with rippled wall 
resonators: Analytic theory and numerical simulation,” Phys. Fluids, 
vol. 28, pp. 2882-2894, 1985. This paper also contains a list of Soviet 
references on this topic. 

[I51 K. Minami, Y. Cannel, V. L. Granatstein, W. Destler, W. R. Lou, 
D. Abe, T. Hosokawa, K. Ogura, and T. Watanabe, “Linear theory 
of electromagnetic wave generation in plasma loaded corrugated wall 
resonators,” IEEE Trans. on Plasma Sci., vol. 18, pp. 537-545, 1990. 

1161 K. Ogura, K. Minami er al., J.  Phys. Soc. Japan, vol. 61, p. 3966, 1992. 
[I71 V.I. Kurilko et al., Sov. Physics Tech. Physics, vol. 24, p. 1451, 1979. 
[18] M.M. Ali, K. Ogura et al., Phys. Fluids B, vol. 4, p. 1023, 1992. 
[I91 K. Halbach, and R. Holsinger, Part Accel., vol. 1, p. 213, 1976. 
[20] The results are also in excellent agreement with those of A. Bromborsky 

and B. Ruth, IEEE Trans. Microwave Theory Tech., vol. MlT-32, p. 
600, 1984. 

Yuval Cannel (S’66-M’74) was born in Israel in 
1942. He received the B.Sc. (EE) and M. Sc. 
(EE) degrees from the Technion, Israel Institute of 
Technology, in 1966 and 1971, respectively, and the 
Ph.D.(EE) degree from Cornell University, Ithaca, 
NY, in 1974. 

He was with the government of Israel, the Naval 
Research Laboratory, and is currently with the Uni- 
versity of Maryland, College Park. His research 
interest include electromagnetic radiation from in- 
tense electrons beams, plasma microwave devices, 

lillimeter-wave tubes, gyrotrons, and backward wave 

K. Ogura was born in Japan in 1957. He 
received the B.Sc. degree in physics from Okayama 
University in 1981, and the MSc. and D.Sc. degrees 
in physics from Kyoto University in 1983 and 1989, 
respectively. 

He is an Associate Professor in the Electrical 
and Electronic Engineering Department of Niigata 
University. His research interests include high- 
power microwave oscillators and their applications 
to plasma heating. 

James Weaver received the B.S. degree in physics 
from the Massachusetts Institute of Technology in 
1992. He is currently a graduate student in the De- 
partment of Electrical Engineering at the University 
of Maryland at College Park. 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.



MAIN er al.: ELECTROMAGNETIC PROPERTIES OF OPEN AND CLOSED OVERMODED SLOW-WAVE RESONATORS 571 

Gregoi 
issue. 

ry Nusinovich 

*- 
e -  

for a photograph and biography see page 524 of this 

S. Kobayashi received the B.Sc. and M.Sc. degrees 
in geological science from Kyoto University, in 
1986 and 1989, respectively, and the M.Sc. degree 
in physics from Washington State University in 
1991. He is currently a graduate student in the De- 
partment of Physics at the University of Maryland, 
College Park. 

Jeffrey P. Tate was born on April 15, 1958 in 
Detroit, Michigan. He received the B.S. degree 
in electrical engineering in 1982 from Michigan 
State University, East Lansing. From 1982-1983 he 
worked as a systems engineer for the Detroit Edison 
Company. He received the M.S. degree in electrical 
engineering from Michigan State in 1985. In 1991 
he received the Ph.D. degree in electrical engineer- 
ing and applied physics from Cornel1 University. 

During his study for the M.S. degree, he com- 
pleted thesis work on magnetostatic surface-wave 

amplifiers. In 1986 and 1987 he held summer internships with the Advanced 
Microwave and Millimeter-wave Laboratory of TRW, performing research 
in the area of gallium-arsenide microwave integrated circuits. His doctoral 
research involved the characterization of high electron-cyclotron harmonic 
radiation from a Penning discharge plasma. He currently holds a research 
associate position at the University of Maryland, College Park, where his work 
includes the study of advanced harmonic gyrotron devices. His other interests 
include passive microwave components, plasma diagnostics and microwave 
materials processing. 

John Rodgers, photograph and biography not available at the time of 
publication. 

S. Watanabe was born in Japan in 1969. He re- 
ceived the B.S. (EE) and M.S. (EE) degrees from 
Niigata University in 1991 and 1993, respectively. 

He is presently a Ph.D. candidate at the Graduate 
School of Science and Technology, Niigata Uni- 
versity. His research interests include high-power 
microwave generators and cryogenic plasmas. 

M. R. Amin was born in Rangpur, Bangladesh in 
1959. He received the B.Sc. (EEE) degree from the 
University of Rajshahi in 1984 and the M Sc. (EEE) 
degree from Bangladesh University of Engineering 
and Technology, Dhaka, in 1987. He is now on sab- 
batical from the Bangladesh Institute of Technology, 
Rajshahi, where he is an Assistant Professor in the 
Electrical and Electronic Engineenng Department 
He is presently working toward the Ph.D. degree 
at the Graduate School of Science and Technology, 
Niigata University, Japan. 

His research interests include theoretical and experimental investigations of 

Mr. Amin is a member of the Institute of Engineers Bangladesh (IEB), and 
high-power microwave devices, and semiconductor power electronic drives 

the Physical Society of Japan. 

K. Minami was born in Japan in 1938. He re- 
ceived the B.S. (EE) degree at Nagoya Institute 
of Technology in 1962, the M.S. (EE) degree at 
the Tokyo Institute of Technology in 1964, and the 
Ph.D. degree at Nagoya University in 1969. 

Since 1986 he has been a Professor in the Elec- 
trical Engineering Department, Niigata University, 
Japan. His research interests include the generation 

4 ,  

- h  

of high-power microwave radiation and interaction 
between powerful microwaves and plasmas. 

William W. Destler (M’84). photograph and biography not available at the 
time of publication. 

A. Bromborsky, photograph and biography not available at the time of 
publication. issue. 

Victor L. Granatstein for a photograph and biography see page 525 of this 

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 13, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.


