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Abstract-A novel, highly accurate (0.1-0.5%) synthetic tech- 
nique for determining the complete dispersive characteristics 
of electromagnetic modes in a spatially periodic structure is 
presented. It was successfully applied for the cases of the fun- 
damental (TMo,,$ as well as higher order (TM0(*), TMo(3,) pass- 
band modes in a corrugated waveguide. This structure is com- 
monly used in relativistic backward wave oscillators, traveling 
wave tubes, extended interaction oscillators and a variety of 
multiwave Cerenkov generators. An appropriately shorted pe- 
riodic structure resonates at specific frequencies. To accurately 
and unambiguously measure these frequencies we used unique 
antenna radiators to excite pure modes in the circuit under test. 
An analytical technique to derive the complete dispersion re- 
lation using the experimentally measured resonances is pre- 
sented. This technique, which is based on the intrinsic char- 
acteristics of spatially periodic structures, is applicable to slow 
wave structures of arbitrary geometry. 

I. INTRODUCTION 
EN an electron beam is injected into a periodic w slow wave structure, the beam wave coupling often 

leads to either an absolute or a convective instability. The 
group and phase velocities of the slow waves in the struc- 
ture and the electron beam characteristics determine the 
nature and frequency of the beam-wave interaction. 

There are many families of microwave and millimeter 
wave generating devices, both relativistic and nonrelativ- 
istic, whose operation depends on the location of the in- 
teraction region along a dispersion curve. Fig. 1 shows 
schematically the regions of operation of various devices 
in the frequency-wave number domain. Relativistic trav- 
eling-wave tubes [1] operate below the point where the 
normalized wave number, PL, is equal to a radians where 
L is the structure period. In this case, both the phase and 
the group velocities are positive. At PL = a, the upper 
cutoff frequency, the electromagnetic wave undergoes a 
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Fig. I .  Regions of operation in the frequency wave number domain of var- 
ious microwave and millimeter wave sources. 

phase shift of a radians per period of the slow wave struc- 
ture. At this point, the phase velocity is positive and the 
group velocity is zero. Backward wave oscillators [2] 
(BWOs) as well as carcinotrons and multiwave Cerenkov 
generators [3] operate in the region a < PL < 2a, where 
the phase velocity (o/P) is positive and the group veloc- 
ity (dw/@3) is negative (U is the angular frequency and p 
is the wave number). Extended interaction oscillators 
(EIO) operate very close to the point where PL = 2a, 3 a ,  
. [4]. Despite the fact that the operational mode of 
these devices is usually the lowest passband symmetric 
transverse magnetic (TM0(,]) mode, some devices such as 
multiwave diffraction generators [3] operate at higher 
passband transverse modes (TM0(,J, n ,  > l ) ,  as can be 
seen from Fig. 1. 

Relativistic backward wave oscillators [2] and related 
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devices have proven to be emcieni ana powerlul micrw- 
wave and millimeter wave sources with reported record 
power levels reaching 15 GW [3] at wavelength of 3 cm 
and 5 GW at 3 mm, [5] with efficiencies of up to 50%. It 
is important, therefore, to know the dispersion relation 
both for the lowest and higher passband modes of such 
slow wave structures in order to synchronize the phase 
velocity of the wave with the electron beam to produce 
efficient interaction. 

In principle the dispersive characteristics of arbitrary 
slow wave circuits can be determined point by point using 
numerical techniques or by performing cold tests of the 
circuits themselves. Numerical two-dimensional (2-D) RF 
codes [6] are usually restricted to lower passband modes 
and cannot be easily used for analyzing high passband 
modes or overmoded systems (in which the slow wave 
circuit diameter is much greater than wavelength). Other 
numerical codes [7]-[9] which can calculate higher order 
passband modes are structure dependent and require code 
modifications each time the structure geometry is changed. 

The experimental approach is therefore of considerable 
importance not only for final verification of the actual slow 
wave circuit dispersive Characteristics but also for check- 
ing the validity of the computer code which has been em- 
ployed for the theoretical design of the circuit. For this 
reason its accuracy is of vital importance. At present, most 
of the studies on slow wave circuits are based on analysis 
and numerical calculation because of the difficulty in ac- 
curately measuring the complete dispersion curve exper- 
imentally. It is well known that any periodic slow wave 
structure of N periods, when shorted appropriately at both 
ends, will exhibit (N + 1) discrete resonant frequencies 
with phase shifts per period equally spaced between 0 and 
a. Generally speaking, these specific resonant modes can 
be determined experimentally and then used to fit to a 
curve to give the complete dispersion function. However, 
it is very difficult to accurately implement the above pro- 
cedure because of problems associated with field distor- 
tion due to the finite size of the mode launching probe, 
spurious resonances induced by imperfect input excitation 
devices and the limited accuracy of curve fitting tech- 
niques due to the limited number of data points obtained 
by the experimental apparatus. 

In this paper we present a novel, synthetic technique to 
accurately (0.1-0.5 %) determine the dispersive charac- 
teristics of periodic slow wave structures of arbitrary ge- 
ometry. This method was successfully applied to deter- 
mine the complete dispersion curves of the lowest (TMo(,)) 
as well as higher (TMOo, and TM,,,,) order passband 
modes in a sinusoidally corrugated waveguide which has 
been extensively used for higher power microwave gen- 
eration. 

The principles of the measurement, the experimental 
results, and a brief description of the launchers are given 
in Section 11. Determination of the complete dispersion 
relation (interpolation between points) is based on the in- 
trinsic characteristics of periodic slow wave structures- 
rather than on an equivalent circuit model [lo] or an ar- 

bitrary inlerpolation. This topic is covered in Section 111. 
Section IV is devoted to the excitation of pure modes in 
periodic waveguides, followed by a discussion and sum- 
mary (Section V). 

We wish to clarify the notation adopted here to describe 
the type of wave propagation in periodic structures. The 
axisymmetric transverse magnetic modes in spatially pe- 
riodic structures will be referred to in  this work as TMh,, 
passband modes, in analogy to the notation used for wave 
propagation in smooth waveguide (TMo(,)). However, 
there is a big difference between the two: Here ( n )  is the 
index number of the passband and does not correspond to 
the number of radial field variations of fast waves in 
smooth waveguides. In this way TMo(!, will refer to the 
lowest frequency passband, TMo(*, to the next one up and 
so on for higher and higher frequencies (see Figs. 1 and 
5 ) .  

11. DESCRIPTION A N D  RESULTS OF THE EXPERIMENT 
FOR DETERMINATION OF SPECIFIED POINTS ON THE 

DISPERSION CURVE 
Accurate determination of specified points on the dis- 

persion of periodic slow wave structures by experiment is 
usually difficult and is mostly restricted to the fundamen- 
tal mode of the slow wave circuit. As will be seen from 
our experimental results, those problems were solved due 
to the successful use of two novel mode launchers. 

We have designed, constructed and tested a modular 
X-band slow wave structure in the form of a rippled wall 
waveguide having six periods, as shown in Fig. 2 (for 
dimensions, see (7)). When the circuit is shorted appro- 
priately at both ends, and excited by cage or rod-wheel 
mode launchers (Fig. 8), the cavity accurately resonates 
at seven specific frequencies corresponding to wavenum- 
bers with phase shift per period of 0, a / 6 ,  2 ~ / 6 ,  3 a / 6 ,  
4 a / 6 ,  5 a / 6 ,  and a. Generally, the resonant approach is 
attractive for measuring the dispersion characteristics of 
a properly shorted slow wave circuit because of its poten- 
tially high accuracy, but the difficulty usually lies in 
choosing the most suitable excitation launcher. Single ax- 
ial pins, axial loops and side coupling loops [ 111 were all 
judged to be inadequate from a mode purity point of view. 
Obviously, single loops cannot excite symmetric modes. 
Single on-axis probes cannot effectively excite slow waves 
for which the on-axis field should not be maximum, [12] 
nor can they provide sufficient coupling to the cavity un- 
der test so as to distinguish resonance absorption from 
nonresonance reflection. It is therefore almost impossible 
to measure the dispersive characteristics of high order 
passband modes with conventional probes. In this work 
we used two new types of input excitation devices. The 
first is a cage antenna radiator (Fig. 8(b)) and the second 
is a rod-wheel radiator (Fig. 8(a)). Both yielded excellent 
experimental results. A more complete description of 
these launchers will be given in Section V. 

Figure 3 shows the experimentally measured resonant 
absorption peaks corresponding to seven axial modes of 
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Fig. 2. A modular X-band slow wave structure in the form of rippled 
waveguide used for measuring the special resonance frequencies; (1,3) 
shorting planes, (2) corrugated wall slow wave circuit, (4) cage antenna, 
(5,6) RF feed and support. 
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Fig. 3. The specific resonances corresponding to seven axial modes of the 
corrugated wall cavity associated with the fundamental, TM,,,, passband 
mode. 

the cavity associated with the TM,,,, passband mode us- 
ing the rod-wheel launcher. The resonances were mea- 
sured by looking at the reflection coefficient of the slow 
wave structure over the appropriate frequency range 
(ranging from below the lower cutoff to above the upper 
cutoff of the TMO(,, passband mode). This was achieved 
with a network analyzer system as shown in Fig. 4. Using 
the same experimental setup and the same mode launcher, 
14 additional resonant peaks associated with TM,(,, and 
TM0,3, modes were measured with a high degree of ac- 
curacy. These resonant peaks are all marked as black 
squares in Fig. 5 .  Fig. 6 gives the electric field structure 
corresponding to three of the seven absorption peaks: zero 
phase shift (6a), a / 2  phase shift (6b), and a phase shift 
(6c) in the passband of the lowest order symmetric TM,,,, 
mode, as calculated by a 2-D RF code (Superfish) [6]. 

Table I summarizes the measured resonance frequen- 
cies as well as those calculated by various numerical tech- 
niques for our six period rippled wall cavity. 
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Fig. 4. Block diagram of the system used for measuring the dispersion 
relation of a slow wave structure by means of resonant approach. 
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Fig. 5 .  The dispersion diagram of the sinusoidally cormgated waveguide 

R, = 1.67 cm, 6 = 0.273, d = 1.67 cm. 
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Fig. 6. Calculated mode patterns (electric field lines) corresponding to (a) zero phase shift, (b) ~ / 2  phase shift, and (c) ?r phase 
shift in the TM,,,, lower pass band of the sinusoidally corrugated waveguide used in this work. 

TABLE I 

CAVITY (GHz) (R,  = 1.5 cm, 6 = 0.273, d = I .67 cm) 
COMPARISON BETWEEN THE MEASURED A N D  CALCULATED RESONANCE ABSORPTION FREQUENCIES OF A SIX-PERIOD SINUSOIDALLY CORRUGATE WALL 

TMn, I ) TM”,,, TMo,,, 
Resonant 

Freq. 2-D RF  Bromborsky Lou & Bromborsky Lou & Bromborsky Lou & 
Symbol Experiment Code6 & Ruth7 Camel’ Experiment & Ruth7 Camel’ Experiment & Ruth’ Carmely 

f o  = f o  7.44 7.40 7.37 7.40 14.29 14.28 14.22 19.06 18.77 18.70 
fl = f r / 6  7.57 7.49 7.45 7.48 14.26 14.26 14.21 18.57 18.51 18.46 
f 2  = f , / ,  7.83 7.72 7.72 7.70 14.18 14.20 14.17 18.04 17.87 17.92 
f 3  = f * / *  8.15 8.05 8.02 8.02 14.06 14.10 14.09 17.49 17.35 17.35 
f 4  =f2r /3  8.48 8.40 8.38 8.37 13.92 13.94 13.97 17.00 16.87 16.90 
f 5  =fSr/6 8.75 8.67 8.67 8.64 13.81 13.78 13.83 16.67 16.59 16.66 
f 6  =fr 8.88 8.77 8.79 8.75 13.76 13.71 13.76 16.52 16.49 16.60 

111. DETERMINATION OF THE COMPLETE DISPERSION 
RELATION FROM THE MEASURED DISCRETE 

RESONANCES 

The complete dispersion curves of arbitrary slow wave 
circuits can be obtained, in principle, by measuring very 
large numbers of discrete resonances associated with long 
structures (large number of periods, N >> 1). Since this 
is not practical, one needs some form of interpolation be- 
tween small number of experimentally measured points 
on the dispersion relation. One possibility is to use an 
interpolation function which is based on an equivalent 
lumped element circuit [ 101. With this technique, how- 
ever, the results of the interpolation depend on the spe- 
cific equivalent circuit used, and high accuracy cannot be 
ensured. In this section we shall show that it is sufficient 
to know a few resonances (as few as three in many cases) 
in order to derive a direct analytical expression to produce 
the complete dispersion curve. Furthermore, we can an- 
alytically calculate the phase and group velocity at any 
point along the dispersion relation. This technique, which 
is derived from first principles, takes into account the in- 
trinsic characteristics of periodic slow wave circuits and 
can be successfully applied to the fundamental as well as 
to high order symmetric TM modes. 

We now discuss some aspects of the expression used to 
calculate the complete dispersion relation. By using the 
impedance or ABCD matrix of a four-terminal network, 

together with Floquet’s theorem to describe a periodic 
slow wave structure, the dispersion relation can be ex- 
pressed in the flowing nonexplicit form. 

where f is the frequency of the electromagnetic radiation, 
PL is the phase shift per period, and G is a geometric 
factor related to a specific slow wave structure dimension. 
From (1) we see that f is an even periodic function of PL 
with a period of 2 ~ .  Therefore, the dispersion relation can 
be written in the form of series: 

m 

f = C am cos mpL. 
m = O  

The explicit expression for G is not needed for our anal- 
ysis. Notice that G, as yet unspecified, does not appear in 
(2). Rather, it enters indirectly through aO, a l ,  u2, * * , 
am which are geometry-dependent parameters. These pa- 
rameters can be analytically determined by measuring (or 
numerically calculating) some specific resonant frequen- 
cies of the slow wave structure which correspond to spe- 
cific wavenumbers. For example, in order to calculate the 

we need do is experimentally measure the specific reso- 
nance frequencies fo, f,, f 2 ,  , f m  and invert the fol- 

geometry dependent parameters aO, a , ,  a2 ,  . * > a m ,  all 
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il m- 
rcOso cos 0 . . * cos 0 7 

cos O cos a / m  cos 2a /m * . . cosma/m 

cos ma cos 0 cos m a l m  cos 2mn/m . . 

Equation (3) can be solved analytically or numerically in 
order to obtain the unknowns a,. It will be shown that 
three terms in (2) are often sufficient to ensure excellent 
accuracy (< 1 %) for most practical cases. We shall next 
discuss two specific examples: obtaining a complete dis- 
persion relation with (a) three (m = 0, 1, 2) and (b) seven 
(m = 0, 1, 2, * * , 6) terms in (2). In both cases it is 
straightforward to obtain analytical expressions for the 
unknown coefficients. For the case (a) we obtain 

a0 = : ( f 0  + 2f,/2 + f J  

a1 = ; ( f 0  - f,) 
a2 = : ( f o  - 2fx/2 + f7r) (4) 

and the complete dispersion relation (2) can be approxi- 
mated for each mode by 

m = 2  

f = C a,  cos mPL. ( 5 )  
m = O  

It can be shown that the dispersion relation can also be 
expressed for this case in a slightly different form: 

(6) f = A - B COS PL - C cos2 PL 

where A = f n / 2 ,  B = ( fy  - fo)/2, c = f x / 2  - ( f 7 r  + 
f0) /2 .  The first term ( A )  in (6) represents the value of the 
frequency near the midband. The second term (B) is an 
increment term whose maximum value equals half the dif- 
ference between the upper and lower cutoff frequencies of 
the passband. The third term (C) is a correction term. The 
combination of all three terms exactly satisfies the dis- 
persion relation at the three special wavenumbers (PL = 
0, a / 2 ,  a )  and is an excellent approximation at all other 
wave numbers. 

The results of a test case are given in Fig. 7. It shows 
the TMo(Ij dispersion curve for a sinusoidally corrugated 
waveguide, oriented in the z direction whose radius is de- 
scribed by 

R = RO(l + 6 cos 2az/d)  (7) 

where Ro = 1.5 cm is the average radius, 6 = 0.273 is 
the normalized corrugation amplitude and d = 1.67 cm is 
the structure period. The dispersion relation shown by the 
solid line in Fig. 7 was derived point by point elsewhere 
[7] and tabulated in Table I (third column, TMo(1j). The 
three special resonance frequencies ( f O ,  f,/2, f,) calcu- 
lated by this code were used to generate the complete dis- 
persion relation using the technique described in this work 

a0 -:;I 
- a m  

(3) 

(6), and the results are again shown as a dashed line in 
Fig. 7. The two dispersion relations are in very good 
agreement, within 0.15%, over the entire wavenumber 
range 0 < PL < a .  Outside this range the dispersion re- 
lation is, of course, periodic. 

As yet another check of the accuracy of our novel tech- 
nique, we used the three specific resonance frequencies as 
calculated by a 2-D RF code [6] to generate the complete 
dispersion relation using (6). We then calculated addi- 
tional points on the dispersion relation using the same nu- 
merical code and compared the results with the dispersion 
relation as calculated by three terms. Again, the results 
are in very good agreement (> 0.2%) over the entire 
wavenumber range (0 < PL < a). 

In a similar way, we used three (out of seven) of the 
experimentally measured special resonant frequencies 
shown in Fig. 3 to generate a complete dispersion relation 
for actual periodic slow wave structures over the entire 
wavenumber range. These results are in excellent agree- 
ment with the experimentally obtained data ( > 0.5 %) for 
the remaining four resonances. 

For even higher accuracy, more terms in (2) can be 
used. As was described in Section 2, the six period sinu- 
soidally corrugated waveguide cavity was used to mea- 
sure seven specific resonances for each transverse wave- 
guide mode. We measured seven resonances associated 
with wavenumber values of 0, a / 6 ,  2 a / 6 ,  * . , 6 ~ / 6  
phase shift per period for each of the TM,(,j, TMO(,, and 
TMO(,, modes. These are tabulated in Table I and plotted 
in Fig. 5. For this case (b) the complete dispersion rela- 
tion (2) will be approximated for each mode by 

m = 6  

f = C a,  cos mPL (8) 
m = O  

where the coefficients a,, satisfying (9), are given by 
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Fig. 7 .  Comparison of the TM,,,, dispersion curve of [7] (solid line) and 
this work (dotted line) for the sinusoidally corrugated waveguide (R, = 
1.67 cm, 6 = 0.273, d = 1.67 cm). 

IV. EXCITATION OF PURE AXISYMMETRIC TM MODES 
IN PERIODIC SLOW WAVE CIRCUITS 

The motivation for the design of the rod-wheel (Fig. 
8(a)) and cage (Fig. 8(b)) launchers was outlined in Sec- 
tion 11. There are considerable difficulties associated with 
the excitation of pure modes in a corrugated wall cavity. 
First, the presence of an input coupling probe often dis- 
torts the field pattern. Second, spurious modes can make 
interpretation of the experimental data difficult, especially 
in an overmoded system. Finally, the slow wave modes 
cannot be effectively excited by usual techniques. An im- 
properly designed input coupler can launch just fast waves 
or will excite undesired TE waves and even asymmetric 
TM modes. It can also distort the desired field structure 
in the test circuit due to the inevitable existence of un- 
desired field components induced by the probe. This might 
destroy the exact symmetry condition and adversely affect 
the measurement accuracy. 

A suitable mode launcher should be able, together with 
a shorted slow wave circuit, to effectively excite (without 
distortion) and support both fast and slow waves. This is 
especially important for the lowest order passband modes 
where a large portion of the dispersion curve (in the re- 
gion 0 < PL < a) is dominated by slow waves. For an 
overmoded slow wave system the inverse is true (i.e., the 
fast wave portion of the dispersion curve is the largest). 
For effectively coupling to the slow wave space harmon- 
ics in the corrugated structure, the mode launcher should 

U 
(b) 

Coaxial Cable 
RF input 

Fig. 8 .  Novel TM,,,, mode launchers used for excitation of the corrugated 
wall cavity: (a) cage antenna radiator, (b) rod wheel radiator. 

be “appropriately” close to the corrugation. This is be- 
cause the amplitudes of those space harmonics decay away 
from the corrugations. A single, on axis pin cannot pro- 
vide efficient coupling and therefore cannot effectively ex- 
cite slow waves around the ‘ ‘T” mode. 

An ideal electric dipole has two important properties 
which may make it attractive for exciting corrugated wall 
cavities; 1) far from the dipole, the azimuthal magnetic 
field (H,) is minimum on axis, which is typical for slow 
waves, and 2) in the vicinity of the dipole, on a plane 
perpendicular to its axis, the only induced electric field 
component is E,, which is compatible with the desired 
cavity field pattern in the absence of a launcher (Fig. 6 ) .  
We will show that the two new antennas used in this work 
can be approximately treated as an ideal electric dipole 
and therefore may serve as a suitable source for driving 
the corrugated wall cavity. Both antennas yielded excel- 
lent experimental results. 

The cage antenna coupler is a complex current loop 
formed by parallel connection of many single loops sym- 
metrically arranged around a center conductor, as shown 
in Fig. 8(b). It is characterized by two features. First, its 
axial symmetry will ensure excitation of axially symmet- 
ric fields. Second, it will only excite the azimuthal com- 
ponent of magnetic field H, and therefore is equivalent to 
an ideal electric dipole radiator in the z direction located 
at the origin of a set of spherical coordinates (Fig. 9). The 
axial component of the magnetic field (H,) produced by 
the radial currents flowing on the cage top will be can- 
celled because of axial symmetry. The electric and mag- 
netic field components excited by the cage radiator in the 
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X 
Fig. 9 .  Schematic diagram of an ideal electric dipole radiator together with 

the notation used in our work. 

free space may therefore be approximated by a short 
(much less than a wavelength), ideal electric dipole in the 
z direction [13]. Considering the near field at 6 = 90" 
(mirror plane position) we have 

IEr1 = 0 

where = w = 2 x / X ,  h is the length of the antenna, 
and I, is the total current flowing through the antenna. 

Equation (10) indicates that on the surface of a plane 
going through the origin and perpendicular to the radiator, 
the excited E field is parallel to the z axis. This is con- 
sistent with the desired field structure (Fig. 6). The intro- 
duction of the coupling antenna is therefore not expected 
to bring about a substantial disturbance in the field of the 
corrugated wall cavity. 

At a distance far from the antenna, the only important 
terms of E, and H@ are those varying as 1 / r .  The Poynting 
vector is then completely in the radial direction, and the 
time-average power flow is 

P = Re (EBH,*) 0: sin2 0 (1 1) 

Equation (1 1 )  shows us another very interesting charac- 
teristic of the cage antenna, i.e., it will favorably excite 
the slow wave modes in the corrugated waveguide cavity. 
This is because only H+ and E, can be excited. EO is equiv- 
alent to the vector sum of E, and E, in a cylindrical co- 
ordinate system and has no significant value in the region 
near z axis (6 = 0) and far from the radiator. 

Another type of coupling device used to excite the test 
model is the rod-wheel antenna as depicted in Fig. 8(b). 
It is also equivalent to an electric dipole radiator because 
the displacement current (ID = &E/&) between the wheel 
and the mirror ground plane has only one component in z 

direction and forms a rectangular closing loop for the an- 
tenna current (equivalent to the current flowing in the ax- 
ial conducting wires around the center in the case of the 
cage antenna structure). Thus the analysis for cage an- 
tenna is approximately valid for the case of the rod-wheel 
structure. This structure proved to be superior to a con- 
ventional E probe coupler which cannot effectively excite 
slow wave modes and will inevitably distort the field 
structure near the mirror plane (leading to poor accuracy 
in the measurements of the specific resonant frequencies). 

V. DISCUSSION AND SUMMARY 
It is usually difficult to completely, accurately, and un- 

ambiguously measure the dispersive characteristics of 
specially periodic structures, especially of the higher 
passband modes [ 141. 

The technique presented here is simple to use. Further- 
more, it is general in nature and only the mode launcher 
is structure/mode specific. The analytic interpolation be- 
tween points on the dispersion relation takes into account 
the intrinsic characteristics of the slow wave circuit. This 
technique is unique in that it has been successfully applied 
to the fundamental as well as higher order passband TMo(,) 
modes. 

We have shown that to a high degree of accuracy, the 
complete dispersion relation of lower passband modes can 
be expressed in a simple form (6) with only three coeffi- 
cients, A ,  B ,  and C. In this case, (6) enables one to di- 
rectly calculate the phase and group velocities at any point 
along the dispersion relation. The expressions derived for 
the velocities are given in (12) and (13):  

ugroUp = d w / a p  = 2xL(B sin pL + 2C cos PL sin PL), 

(13) 
where A f = f - flrl2,. 

Since the interpolation between points on the dispersion 
relation is based on the intrinsic characteristics of slow 
wave circuits (rather than an arbitrary lumped element 
equivalent circuit) the accuracy depends on the number of 
terms used in the expansion of (2).  With seven terms it 
can be accurate to better than one-tenth of one percent 
even for higher passband modes. For the case of three 
terms the technique requires a knowledge of three special 
resonance frequencies which can be determined experi- 
mentally or numerically. With this in hand, complete dis- 
persion relations were constructed, and additional reso- 
nances were compared with constructed dispersion curves. 
This was done for three passband modes (TMo(l,, TMO(,,, 
TM,(,,) with the techniques available for acquiring the 
special resonance frequencies, and the results are tabu- 
lated in Table 11. 

For the experimental studies reported in this work, we 
developed two novel mode launchers suitable for exciting 
TMo(,) passband modes in a rippled wall waveguide: a 
cage antenna radiator and a rod-wheel antenna. Both 
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TABLE I1 

T H E  COMPLETE DISPERSION RELATION USING THREE TERMS (Eq. (6)) 
THE ACCBRACY OF T H t  SYNTHETIC TECHNIQUE FOR T H t  CALCULATION OF 

Method for acquiring the special resonance absorption 
frequencies 

Passband Experimental 2-D RF Code Bromborsky Lou & 
Mode (this work) Superfish’ & Ruth’ Cannel’ 

~~ 

TM,,,, <0.510% ~ 0 . 2 1 0 %  <0.500% <0.085% 
TM,,,, <0.034% NIA <0.130% <0.096% 
TM,,,, < 1.300% N/A <0.6405% <0.160% 

launchers proved to be capable of exciting the desired 
space harmonics with little distortion of the field structure 
in the corrugated wall cavity. With these mode launchers, 
the cavity was free from spurious modes and it was pos- 
sible to excite the a mode (see Figs. 3 and 5 ) ,  which is 
normally very difficult experimentally using other launch- 
ers. 

From a practical point of view, the most relevant com- 
parison is probably between the experimentally obtained 
frequencies and those calculated by Superfish (which is 
widely accepted as a quasi-standard); for this comparison, 
see Table I. The two agree to better than 1 %. This differ- 
ence of 1 % is probably due to the mechanical tolerances 
of the corrugated wall structure and cannot be used as an 
estimate for the accuracy of the experimental technique. 

We also tried, successfully, to excite the TMo(4) pass- 
band mode in a rippled wall cavity and indeed uncovered 
seven resonances, as expected. Interpretation, however, 
is difficult because the dispersion relation, f = f @ ) ,  is 
not a monotonic function of /3 in the interval 0 < PL < 
a. Even though the resonances are equally spaced in p, it 
is difficult to match specific resonance to a specific wave- 
number for a non-monotonic dispersion relation. The in- 
formation extracted from the TMo(4) measurement is lim- 
ited for the time being to the upper and lower cutoff 
frequencies for that mode. Agreement in this respect is 
also better than 1 %. The technique for determination of 
the complete dispersion relation of very high order TMo(,) 
modes when IZ 2 4 is now under further development, 
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