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ABSTRACT 
Large amount of data that is often stored in many thousands of 
files is created as part of today’s geographically distributed 
scientific computation and collaboration environments. Managing 
and transferring large volumes of data sets present a significant 
challenge and are often a bottleneck in the scientific computing 
community. In this paper, we introduce an architecture to manage 
data distributions in a collaborative fashion through a GridTorrent 
Framework (GTF) whose data transfer mechanism inspired by 
Bittorrent. We present performance experiment data that 
compares our framework to parallel TCP (PTCP) and Bittorrent. 
Experimental results conducted suggest that using GridTorrent for 
large data set has significant advantages over parallel TCP in 
LAN and WAN type of computer networks.   
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1. INTRODUCTION 
Today’s computational science is in many cases based on data-
intensive applications. New scientific devices and large-scale 
observatories generate massive volumes of data sets. The Internet 
and computational Grid [10, 12] make the data accessible to 
anyone anywhere by mechanisms of replication, creation, and 
recreation of more data [13]. Prime examples of domain specific 
scientific disciplines with these characteristics include high-
energy physics and bioinformatics. To illustrate, every year, the 
Large Hadron Collider (LHC) experiment at CERN generates 
petabytes of data that is required to be distributed world-wide. 
Scientists geographically dispersed are interested in analyzing 
these data sets. Consequently, there is a growing need for efficient 
techniques to disseminate the data through a simple framework 
integrated into the collaboration environment for the scattered 
users. 

A number of related activities exist in this area of efficient data 
transfer. GridFTP [11] is the one of the most common data 
transfer services supported by the Grid community and a key 
feature of Data Grids [14]. However, due to petascale information, 
datacenters go beyond the concept of supercomputers with just 
CPU farms. They must more often include IO and networking 
arrays [15].  Consequently, a new data transfer technique that has 
the ability to utilize the available system resources effectively and 
efficiently is urgently required for many state-of-the-art scientific 

computations, particularly those needing to integrate Grid 
resources.   

In spite of the fact that peer-to-peer (P2P) systems have the  
potential of cost sharing and balancing of network resources, there 
is a lot of research being conducted in this area to investigate 
advantages and disadvantages of P2P  systems [7, 16, 17, 18]. 
However, many of those studies [16, 17, 18] have shown that 
scientific community could benefit by exploiting P2P, even 
though it does not fulfill all the requirements of data transfer for 
the scientific computing environment, such as security, content 
access control, and collaborative environment. In addition, 
Bittorrent has outperformed GridFTP in network areas where only 
limited bandwidth is available [18].  

In this paper, we investigate if a P2P system, i.e. GridTorrent, 
could be used for the dissemination of large amount of data 
generated in scientific applications while comparing data transfer 
performance of our GridTorrent Framework with that of parallel 
TCP. The distinguishing factors for our GridTorrent are the 
integration of security features and the conversion of its tracker to 
Web Service Tracker (WS-Tracker) (See Section 3.1.3 for more 
details about the tracker).  

The remainder of this paper is organized as follows. In the next 
section, we present the architecture of parallel TCP followed by 
Section 3 the GridTorrent Framework architecture. Section 4 
presents performance benchmarks conducted in two different 
types of networks (LAN and WAN) and analyze their results. 
Finally, we conclude and indicate opportunities for future research 
in section 5. 

2. MULTIPLE STREAM TRANSFER 
MECHANISM 
It is a well-known fact that TCP’s window based congestion 
control mechanism prevents [1] full-scale usage of high 
bandwidth-delay product. Hence, transferring large data set across 
high-performance networks is suffering from limitations of the 
current TCP implementation [1, 2] as it prevents the use of 
maximum bandwidth. A solution at the application level is 
provided by parallel TCP implementations [2, 3]. In the next 
section, we are going to present briefly the architecture of our 
Java-based implemented PTCP [4, 5] data transfer mechanism.   



2.1 PTCP Architecture 
A Parallel TCP stream consists of three basic steps; splitting of 
data into sub packets at the sender side, sending these sub packets 
over the network by using multiple streams in parallel, and 
coalescing of received sub packets at the receiver side. Using 
multiple parallel TCP streams gives high throughput by 
aggregating each socket bandwidth, although the default socket 
buffer size is not set to value of the bandwidth-delay product. 

 
Figure 1:  A parallel TCP socket architecture. 

Figure 1 depicts the architecture of the Java-based PTCP 
framework. PTCPSocket derived from Java.net.Socket can handle 
multiple sockets’ input and output streams. It is comprised of 
packet splitter, packet merger, senders, receivers, and TCP 
sockets, and has two type of channels; communication and data 
channels. All control information and negotiations are sent over 
the communication channel which stays open till the end of entire 
data transfer, and actual data are sent over the data channels. For 
instance, the decision of how many parallel streams are used is 
determined by the sender and is communicated with the receiver 
before initiating the actual data transfer through the 
communication channel. 

After the setting the number of parallel streams, the packet splitter 
divides user’s data into smaller sub packets. These sub packets are 
then passed on by the senders to the receivers while writing out 
these packets into data channels utilizing TCP sockets. The 
number of senders and receivers has to be same as the number of 
parallel streams. Receivers read packets from the data channels 
and pass them to the upper layer packet merger at the receiver’s 
side. Merging smaller sub packets into one packet is conducted by 
the packet merger. It combines the incoming packets by checking 
their packet number assigned by the packet splitter. There is no 
need to check data integrity at the packet merger layer again, since 
TCP uses a checksum computed over the whole packet to verify 
that the protocol header and the data in each received packet have 
not been corrupted. 

3. GRIDTORRENT DATA 
TRANSFERRING AND SHARING 
FRAMEWORK 
Parallel TCP could address the low performance data transfer [4, 
5, 6] problem caused by TCP’s window based congestion control 
mechanism, enabling aggregation of data transfer throughput by 
using multiple data stream sockets from the same source to same 
destination. However, when there are numerous requests for a 
single data source, that source becomes a bottleneck. To alleviate 
this problem, peer-to-peer data distribution strategies can be 
exploited effectively. There are three broad categories of 
techniques [7] to optimize large data distribution at application 
level: data staging, data partitioning, and exploiting orthogonal 
bandwidth in peer-to peer data dissemination.  

We chose the Bittorrent [8] protocol because it supports data 
partitioning and orthogonal bandwidth exploitation features [7, 8]. 
It uses tit-for-tat [8] scheme to enforce participation and fair 
sharing. Hence, implementing a data transfer framework based on 
Bittorrent enables having multiple streams to multiple destinations 
instead of having multiple streams from one source to many 
destinations. This approach alleviates the bandwidth bottleneck 
nodes and load balancing in the overall system.   

However, there are several requirements set by the scientific 
community that do not yet met by Bittorrent and address 
distributing and managing scientific community data.  

The first reason is the nature of data. The data in Bittorrent 
community is generally obtained from other people’s works, like 
music or movie file, whereas every scientific data is generated in 
scientific community. Therefore, scientific data are more sensitive 
than data used in Bittorrent community. The second reason is base 
on the users’ characteristics. In regular Bittorrent community, 
there is no competition between users. There is one type of user, a 
passive user, and any user can access any data as long as he or she 
gets the torrent file. However, in the scientific community, due to 
expertise or research agenda and competition between institutions, 
only authorized users are permitted to access to pre-determined 
data sets with some access rights. While the passive user type in 
Bittorrent, the users in scientific community area very active and 
some of them cooperate on some files as a group. This creates 
diverse users’ and groups’ profile in scientific community. Third 
reason is based on the importance of data and its access. Since, the 
current Bittorrent design itself does not provide a search facility to 
find files by name; a user must find the initial torrent file by other 
means, such as a web search.  On the other hand, searching, 
finding, and accessing to desired data are of paramount 
importance in scientific community, hence a reliable search 
service must be offered to scientific users. Therefore, even though 
there is a need for integration of Bittorrent and content and 
collaboration framework with a search facility to use Bittorrent in 
scientific community, our main objective is to compare parallel 
TCP’s experiment results with GridTorrent’s to verify that using 
GridTorrent for scientific data transfer could offer acceptable data 
transfer rate besides its efficient system’s resource usage. Hence, 
in the next sections, we are going to describe its architecture and 
components in brief. Also note that, since parallel TCP does not 
have security feature, in GridTorrent tests, to avoid biased test 
results, we did not involve any processes with regard to security, 
either. 



3.1 GridTorrent Framework Architecture 
GridTorrent Framework (GTF) has three major components: the 
GridTorrent Framework Client (GTFC), the WS-Tracker, and the 
Collaboration and Content Manager (CCM). 

Figure 2 presents the basic architecture of interactions between 
GridTorrent components. Users are the people who interact with 
the system through CCM. GTFC is software that runs on users’ 
computers and communicates with GTF by exchanging SOAP 
messages with WS-Tracker.  

The process is started by users (human being) by registering to 
Collaboration and Content Manager. Then, they publish their 
content to by selecting different access level of it. Afterwards, this 
information will be delivered to users’ GridTorrent client via WS-
Tracker. After receiving task list, i.e. mentioned information and 
delivered by WS-Tracker, firstly, GridTorrent Client starts to 
building .torrent file. Secondly, it announces it to WS-Tracker. 
Finally, it waits other peers to deliver content of shared file. 

 
Figure 2:  Interactions between GridTorrent Framework 

components. 

3.1.1 Collaboration and Content Manager 
As the name indicates, the Collaboration and Content Manager 
(CCM) has two subcomponents; content manager and 
collaboration manager.  

The Content Manager allows users to publish or share their files 
with selected access control rights. Three types of access level are 
supported; public, group, and user level access. Each content file 
must be assigned an access level. A content in public access level 
is accessible publically to all users. A content with group access 
level permits users to share their contents with selected group 
members. A group membership process is started either by the 
group owner or by the user making a request for a desired group. 
In both cases, group membership is activated after acceptance of  

both sides. However, since resignation of a group membership 
does not require both sides’ endorsements, it is a one-sided 
activity. Either the group owner or the user can revoke it. In user 
level access, content owners can choose individual users by name 
either from a list of all known users or a self-maintained Buddy 

list. Users can search for content through Content Subscriber 
component. 

The Collaboration Manager permits users to build a virtual 
sharing environment by managing working groups or friend list. 
Collaboration tools are composed of Group and Buddy 
Management subcomponents as illustrated in Figure 3. 

 
 Figure 3: Components of Collaboration and Content 

Manager. 

3.1.2 GridTorrent Framework Client 
The GridTorrent Framework Client is responsible for initiating 
actual data publishing, data sharing with other GTF clients and 
ensuring secure environment for the aforementioned activities. 
Figure 4 illustrates the architecture of GTF client. 

Security Manager

PTCP 
Socket
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Task Manager

WS-Tracker
Client

Torrent Data Sharing Algorithm

 
Figure 4: GridTorrent Framework Client Architecture. 

The GridTorrent Framework client is composed of five main 
components: Bittorrent data sharing algorithm, task manager, WS-
Tracker client, sockets, and security manager. Bittorrent data 
sharing algorithm uses Bittorrent algorithm to exchanges data 
between other GTF clients in peer-to-peer manner. Task manager 
make sure the tasks in the user’s task list entered to system by 
using Collaboration and Content manager and received from WS-
Tracker will be performed. WS-Tracker client behaves as a 
communication layer between task manager and WS-Tracker. 
Sockets module is responsible for sending and receiving actual 



data from other peers. Security manager handles issues related to 
security, for instance exchanging certificates, encrypting and 
decrypting of messages. 

3.1.3 WS-Tracker 
WS-Tracker is a server which assists in the communication 
between peers using the Bittorrent protocol. Even though, WS-
Tracker seem similar to Bittorrent tracker in this aspect, there are 
quite differences between them in regard to WS-Tracker’s 
functionalities. In Bittorrent, tracker only delivers list of available 
seeders and peers of a requested files, and collects statistics of 
uploading and downloading processes. After the initial 
communication, peer can continue without a tracker. However, in 
GridTorrent Framework, it acts as a maestro between real users 
and their GridTorrent clients and other GridTorrent clients. Task 
lists generated by users are delivered to GridTorrent clients 
through WS-Tracker. Additionally, access control list of each 
shared file is supplied to GridTorrent clients by WS-Tracker 

4. EXPERIMENTAL RESULTS 
In this section, we will discuss how well our GridTorrent 
Framework’s data transfer mechanism architecture is performing. 

To observe influence of the underlying networks over its 
performances,; we have set three scenarios and conducted their 
tests in LAN and WAN type of computer networks. Table 1 
shows technical features of machines used in different locations.  

In each scenario, to compare PTCP’s and GridTorrent’s 
performances, we used both PTCP and GridTorrent test cases. We 
chose 300 MB for file size because the study [7] has shown that 
only more than 5% are larger than 1 GB and the mean file size 
generated in scientific computation community is larger than 
300MB. 

To measure the practical maximum available bandwidth capacity 
of the underlying network, we used Iperf, a tool to measure 
maximum TCP bandwidth, allowing the tuning of various 
parameters and UDP characteristics. Iperf reports bandwidth, 
delay jitter, datagram loss. To assess the maximum TCP 
bandwidth, we tried several TCP window size along with the 
parallel stream number. In LAN and WAN tests, TCP window 
size was set to maximum value allowed by the underlying 
operating system. Note that since the operating systems are not 
same on test machines, TCP window size used for LAN and 
WAN are not the same. 

 
Table 1: Server and client machines’ descriptions and their locations 

Name Specifications Network Institution Location 

A 
Intel(R) Quad-Core Xeon(TM) 4x2.33GHz 
CPU with 8GB of RAM on Red Hat 
Enterprise Linux 4.0 

Broadcom NetXtreme II 
BCM5708 1000Base-T 

Indiana University Bloomington, IN 

B 
Sun Fire V880 8x1.2GHz UltraSPARC III 
processors with 16GB of RAM on Solaris 9. 
It has 6x72GB 10K rpm internal HD 

Gigabit Ethernet and 
10/100-BaseT Ethernet 

Indiana University Indianapolis, IN 

C 
Dual Pentium III 731MHz CPU with 512MB 
of RAM on GNU/Linux 2.6.20-1.2316.fc5 

Gigabit Ethernet and 
10/100-BaseT Ethernet 

Florida State University Tallahassee, FL 

 

4.1 LAN Test 
It was performed between two Indiana University’s machines 
nearly 50 miles apart. Theoretical available bandwidth capacity is 
the maximum data transfer rate which the underlying network 
interface card allows. Measured available bandwidth capacity is 
assessed by using Iperf with the following parameters. 

Theoretical Available Bandwidth: 1000 Mbps 

Measured Available Bandwidth: 857 Mbps 

Server side:  Iperf  -s -w 256k    

Client side:  Iperf  -c <hostname> -w 512k -P 50 

4.1.1 Scenario I 
The purpose of this scenario is to observe the performances of 
PTCP and GridTorrent in local area network. Therefore, server 
and client machines are in local area network. For the 
performance test of PTCP, we used one client and one server. The 
number of parallel TCP streams between server and client has 
risen from one to sixteen in increment of one stream in each step. 
Figure 5 demonstrates the connections diagram of PTCP test case. 

B A
B : Client

A: Server

    : PTCP Socket

 

Figure 5: Client and server configuration for PTCP test case. 
Server is located at Bloomington, IN, whereas client is at 

Indianapolis, IN. 
The connections topology between GridTorent client and seeders 
are displayed in Figure 6. In GridTorrent test case, one Java 
socket has been used between each seeders and the peer. Test has 
been initiated into one seeder and the number of seeders was 
increased by one in each step, up to sixteen. 
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Figure 6: GridTorrent test case configuration for LAN test. 

Regular Java sockets are used for data transfer. 

4.1.2 Scenario I: LAN Test Result 
In LAN test, there is no significant improvement in bandwidth 
usage while using multiple parallel streams [4, 5] because of 
today's very fast LAN connection. Furthermore, transmission time 
is smaller than overhead time in LAN; thus, any overhead process 
substantiality deteriorates data transfer rate, since the 
experimental data transfer (80-100 Mbps) rate is much lower the 
theoretical (1000Mbps) and the measured data transfer rate 
(857Mbps). As it is seen from Figure 7, the deterioration does not 
have identifiable pattern when the number of parallel streams is 
increased. The network instability, also, might cause that random 
fluctuation.

 
Figure 7: Bandwidth for different stream numbers with a 

fixed file size. (IU-IU settings) 

4.2 Continental WAN Test 
This test was performed between Indiana University at 
Bloomington and Florida State University at Tallahassee, and two 
scenarios were tested. 

Theoretical Available Bandwidth: 1000 Mbps 

Measured Available Bandwidth: 30.2 Mbps 
Instead of 512kB buffer size used in LAN test; we set TCP 
window buffer size to 256kB because of underlying network 
characteristic. We used Iperf with the following options to 
measure the maximum available bandwidth capacity of the 
underlying network,  

For server side: Iperf  -s -w 256k 

For client side: Iperf  -c <hostname> -w 256k -P 50 

4.2.1 Scenario II: GridTorrent Framework Client 
with One Socket 
This scenario is very similar to scenario I, except the location of 
client located at Florida State University at Tallahassee, FL. In 
scenario, one client and one server have been used for PTCP 
performance test, and the number of parallel TCP stream was 
increased from one to sixteen streams in increment of one stream. 
Figure 8 illustrates the connections diagram of PTCP test case. 

C A
C : Client

A: Server

    : PTCP Socket

 
Figure 8: Client and server layout for PTCP test case. Parallel 
TCP streams were used for data transfer. Server is located at 

Bloomington, IN, whereas client is at Tallahassee, FL. 

 
Figure 9: GridTorrent test case topology for wide area 

network test. Regular Java sockets are used for data transfer. 

4.2.2 Scenario II: Test Result 
The gains in terms of accomplished data transfer rate are 
substantial, when the multiple parallel streams used in long-
distance to transfer data. Test results were agreed with the above 
premise.  As seen in Figure 10, bandwidth usage is vastly 
improved in both GTF and PTCP.  

PTCP’s bandwidth utilization rate has risen steadily until fifteen 
streams. It has its peak value of 118 Mbps. Just after the fifteenth 
stream, its data transfer rate starts falling. 



  GTF has displayed the same characteristic; instead of fifteenth 
stream, its bandwidth usage rate begins to decline right after 
thirteenth streams. GridTorrent was performing better than PTCP 
when the number of parallel streams is less than five. Between the 
fifth and thirteenth streams, it demonstrates that it has slightly 
better data transfer rate than PTCP’s. Another interesting outcome 
is that the maximum achieved data transfer rate we measured is 
almost four times higher than Iperf’s result because Iperf is used 
as a standard network bandwidth measurement tool among 
computer users. Another advantage of GTF is feature of load 
balancing. Whereas the whole data is sent from a single source in 
PTCP setup, approximately  is sent from a single 
seeder in GTF setup. This feature will help to relieve the 
bottleneck problem of a single source under a great many requests 
of data transfer. 

 
Figure 10: Bandwidth for different stream numbers with a 

fixed file size. (IU-FSU settings). GridTorrent uses one socket 
in each connection for every source. 

4.2.3 Scenario III: GridTorrent Framework Client 
with Four Sockets 
Besides Java socket, other data transfer protocols can be exploited 
in GridTorrent client. In order to investigate the performance of 
the combination of multiple parallel TCP streams and Bittorrent 
algorithm in wide area network, in this scenario, instead of one 
Java socket, as it is seen in Figure 12, four parallel TCP sockets 
were used between peer and seeders, and number of seeders has 
commenced from one and increased from one to 16. The 
increment in number of seeders in each step was one. 

Figure 11: Client and server layout for PTCP test case. PTCP 
streams are used for data transfer. 

Figure 12: GridTorrent test case topology for WAN test. Four 
parallel TCP sockets are used for data transfer. 

4.2.4 Scenario III: Test Result 
Parallel TCP test topology in Figure 11 was same and conducted 
exactly as in previous scenario. So far the test results have been 
very encouraging. Using parallel TCP with Bittorrent algorithm 
demonstrates much better bandwidth usage than standalone 
GridTorrent and PTCP.  The maximum attained bandwidth is 
around 145 Mbps which is %23 higher than PTCP’s result (118 
Mbps). Figure 13 presents considerable increase in data transfer 
rate when multiple parallel streams are used in GridTorrent. This 
result is important, because there is no performance gain anymore 
after the 15th streams in parallel streams of PTCP; in fact, it 
deteriorates the data transfer rate. However, we could increase the 
number of parallel streams in GTF up to 40 while without having 
any decrease in the data transfer rate. 

 
Figure 13: Bandwidth of different stream numbers for a fixed 

file size. (IU-FSU settings). GridTorrent client uses four 
parallel TCP sockets in each connection for every source. 



We also set number of parallel stream and seeders to different 
values to obtain the maximum achievable bandwidth. 160 Mbps is 
the maximum accomplished bandwidth by using five parallel 
multiple streams with eight seeders. 

4.3 Overhead 
Both parallel TCP and GridTorrent have overhead due to nature of 
multiple parallel connections. Since data splitting and coalescing 
take place for the entire data transfer, they are the common 
overhead processes in both PTCP and GridTorrent. In addition to 
that, GridTorrent has to fragment files into chuck when the 
interested file is created. It is a one-time process, in contrast to 
data splitting and merging processes.  

PTCP’s communication channel overhead time can be compared 
to GridTorrent WS-Tracker client’s overhead time varying 
between 300 and 600 milliseconds.  Another overhead of 
GridTorrent is that control messages exchanged between peers to 
ensure Bittorrent protocol rules strictly enforced to all 
participating peers. Our testing results demonstrated that the total 
size of overhead messages is between 148KB to 169 KB. This 
overhead can be ignored when it is compared to file size of 300 
MB. 

5. Conclusion and Future Work 
The objective of GridTorrent Framework is to provide an 
application level data transferring and sharing framework for data 
intensive applications over high performance networks such as 
scientific computing. Due to its P2P nature and Bittorrent 
protocol, it provides a data transfer technique, which has ability to 
efficiently utilize the available system resources, such as network 
bandwidth, IO and CPU. Additionally, the experiment results 
have shown the performance of GTF is better or not worse than 
that of parallel TCP. This outcome is important since parallel 
streaming is used in many scientific computing data transfer tools 
such as GridFTP. Using Java socket and parallel TCP indicates 
that GTF can exploit other high performance data transfer 
protocols like GridFTP or UDT in traditional low BDP 
environments at the same time. 

GridTorrent Framework has been implemented and released as an 
open source project. In our future work, the integration of GTF 
with other high performance low level data transfer protocol 
mentioned above, and their performance over different network 
structure will be investigated. 
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