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ISOMORPHISMS OF ROW AND COLUMN

FINITE MATRIX RINGS

J. HAEFNER, A. DEL RÍO, AND J. J. SIMÓN

(Communicated by Ken Goodearl)

Abstract. This paper investigates the ring-theoretic similarities and the cate-
gorical dissimilarities between the ring RFM(R) of row finite matrices and the
ring RCFM(R) of row and column finite matrices. For example, we prove that
two rings R and S are Morita equivalent if and only if the rings RCFM(R)
and RCFM(S) are isomorphic. This resembles the result of V. P. Camillo
(1984) for RFM(R). We also show that the Picard groups of RFM(R) and
RCFM(R) are isomorphic, even though the rings RFM(R) and RCFM(R)
are never Morita equivalent.

1. Introduction

Let R be a ring with identity, let RFM(R) be the ring of row-finite matrices
over R, let RCFM(R) be the ring of row and column-finite matrices over R, let
FC(R) be the ring of matrices with a finite number of nonzero columns, and let
FM(R) be the ring of all matrices with only a finite number of nonzero entries. All
matrices are considered countably indexed. The theme of this paper is that while
the rings RFM(R) and RCFM(R) are categorically quite different, they share
many ring-theoretic properties. For example, Camillo ([3]) has shown that rings R
and S are Morita equivalent if and only if RFM(R) and RFM(S) are isomorphic.
We prove

Theorem A. Rings R and S, with identity, are Morita equivalent if and only if
RCFM(R) and RCFM(S) are isomorphic.

Similar to Camillo’s proof, the key argument in the proof of Theorem A in-
volves understanding the isomorphisms between RCFM(R) and RCFM(S). Con-
sequently, we also prove

Proposition B. Every (ring) isomorphism between RCFM(R) and RCFM(S)
restricts to an isomorphism between FM(R) and FM(S).

Proposition B is fundamental in the study of the Picard groups ofRCFM(R) and
R and, again, we find a ring-theoretic similarity between RCFM(R) and RFM(R).
For example, in [2], the authors show that the Picard group of R is isomorphic to
the Picard group of RFM(R). We prove
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Theorem C. The Picard group of RFM(R) is isomorphic to the Picard group of
RCFM(R).

To prove this theorem, we first show that an automorphism of RFM(R) is
the product of an inner automorphism and an automorphism that restricts to an
automorphism of FM(R).

Finally, while the rings RFM(R) and RCFM(R) share ring-theoretic properties
as seen in the above results, our last theorem shows that they are very different in
a categorical sense. We prove

Theorem D. There do not exist rings R and S (with identity) such that RFM(S)
is Morita equivalent to RCFM(R).

So, for example, although the Picard groups of RFM(R) and RCFM(R) are
isomorphic, the rings themselves are not Morita equivalent.

The main tool for all these applications appears in section 3, in which we prove
that FM(R) is the largest 2-sided ideal in RCFM(R) satisfying some technical
property. See Lemma 1. Section 4 is devoted towards proving our above-mentioned
results.

2. Notation and preliminaries

Let R be a ring with identity. We will write the action of homomorphisms of left
modules on the right.

For every i, j ∈ N, eij ∈ FM(R) is the basic matrix having 1 ∈ R in the ij-place
and zero in each other. We denote ei = eii. For any finite subset X ⊂ N we denote
eX =

∑
x∈X ex. For any matrix α and i, j ∈ N, α(i, j) denotes the (i, j)-entry of α.

The following facts will be used without explicit mention. FC(R) is a two-sided
ideal of RFM(R) and it is generated by {ei | i ∈ N} as a left ideal. FM(R) is a
two-sided ideal of RCFM(R) and it is generated by {ei | i ∈ N} both as left ideal
and as right ideal. Actually, RCFM(R) is the idealizer of FM(R) in RFM(R).
FM(R) is the right ideal of RFM(R) generated by {ei | i ∈ N} (see[5]). Moreover,

FM(R) =
⋃
X⊂N
Xfinite

eXRFM(R)

=
⋃
X⊂N

X finite

RCFM(R)eX =
⋃
X⊂N

X finite

eXRCFM(R)

and

FC(R) =
⋃
X⊂N
Xfinite

RFM(R)eX .

We observe that if f ∈ RFM(R) and fei = 0 for all i ∈ N, then f = 0 and the
symmetric property also holds.

Finally, RFM(R) is isomorphic to End(RR
(N)) and to End(FM(R)FM(R)) (by

right multiplications).

3. The Fundamental Lemma

To prove the results posed in the introduction, we first show that FM(R) is the
largest two-sided ideal of RCFM(R) in a certain sense.
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Lemma 1. Let R be a ring with identity and suppose that there exists a family
{fij}ij∈N of nonzero elements of RCFM(R) such that:

1. fijfkl = δjkfil, for every i, j, k, l ∈ N.
2. J =

∑
NRCFM(R)fi is a two-sided ideal in RCFM(R) (where fi = fii).

Then J ⊆ FM(R).

Proof. Set I = FM(R). If fij ∈ I for some i, j then fkl = fkifijfjl ∈ I, for every
k, l ∈ N (because I is a two-sided ideal of A) and hence J ⊆ I. Therefore one may
assume that fij /∈ I for all i, j ∈ N.

For each n ∈ N set Xn = {i ∈ N | f1eif1n 6= 0} . We claim that Xn 6= ∅. To
see this, first note that f1f1n = f1n 6= 0 and so there is an i ∈ N such that
0 6= eif1 ∈ I. Thus eif1 = eif1eX , for some finite subset X ⊂ N and hence
0 6= eif1n = eif1f1n = eif1eXf1n =

∑
x∈X eif1exf1n so that there is an x ∈ X such

that f1exf1n 6= 0.
Next we prove that Xn is an infinite set. Suppose Xn is finite. For every k ∈ N,

let Pk = {r ∈ N | ekf1er 6= 0}. Then ekf1n = ekf1ePkf1n = ekf1ePk∩Xnf1n =
ekf1eXnf1n, for every k ∈ N and hence f1n = f1eXnf1n ∈ I which contradicts our
assumption.

We recursively construct two sequences, (ij)j∈N and (kj)j∈N, of natural numbers
such that the first sequence consists of elements fromXn, while second one is strictly
increasing. This will ultimately generate a contradiction to our assumption that
fij /∈ I for all i, j ∈ N.

Let i1 be the first element of X1, Z1 = {r ∈ N |erf1ei1 6= 0 or ei1f1er 6= 0} and
k1 = maxZ1. For every n > 1, let

Yn = {r ∈ N |emf1er 6= 0 or erf1nem 6= 0 for some m ≤ kn−1} .
It is clear that Yn is a finite set. Now we define in to be the first element of Xn−Yn
and Zn = {r ∈ N |erf1ein 6= 0 or einf1ner 6= 0}. Note that Zn is a finite set and is
not empty because in ∈ Xn. Further since in 6∈ Yn, r > kn−1 for every r ∈ Zn. In
particular kn = maxZn > kn−1.

Let α be the N×N matrix over R given by

α(i, j) =

{
(f1einf1n)(i, j) if kn−1 < i, j ≤ kn for some n ∈ N,
0 otherwise.

Obviously α ∈ RCFM(R). Let Kn = {i ∈ N | kn−1 < i ≤ kn}. Note that
eKnf1einf1n = f1einf1neKn = f1einf1n, because if exf1einf1n 6= 0 then x ∈ Zn ⊆
Kn and similarly f1einf1nex 6= 0 implies that x ∈ Zn ⊆ Kn. Hence we have that
eKnα = αeKn = f1einf1n for every n ∈ N.

Now we show two properties of α. First, we assert that α = f1α. Indeed, if j ∈ N,
then j ∈ Kn for some n. Therefore αej = αeKnej = f1einf1nej = f1 · f1einf1nej =
f1αeKnej = f1αej . We conclude that α = f1α.

Second, we assert that αfn 6= 0 for all n ∈ N. To see this, note that eKnαfn =
f1einf1nfn = f1einf1n 6= 0. Thus αfn 6= 0 for all n ∈ N.

But as α ∈ RCFM(R), f1α ∈ f1RCFM(R) ⊆ J because J is two-sided. There-
fore f1α =

∑
j∈F f1αfj , where F is a finite subset of N, so that f1αfn = 0 for

almost all n ∈ N, which contradicts the second property of α.

It is obvious that condition 1 of Proposition 1 cannot be deleted. The following
example shows that condition 2 of Proposition 1 is also not superfluous.
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Example 2. There exist a ring R, a family {fij}ij∈N ⊆ RCFM(R) such that

fijfkl = δjkfil for every i, j, k, l ∈ N, and a left ideal, J =
∑

RCFM(R)fi, that
properly contains FM(R).

Proof. Let β : N → N2 be a bijection. This bijection induces an isomorphism

of R-bimodules β : RR
(N)
R → R(R(N))

(N)
R which induces two ring isomorphisms

βl : End(RR
(N)) → End(R(R(N))(N)) and βr : End(R

(N)
R ) → End((R(N))

(N)
R ).

We recall that End(R(R(N))(N)) is isomorphic to the ring RCM(RFM(R)) of

row-convergent matrices over RFM(R) and End((R(N))
(N)
R ) is isomorphic to the

ring CCM(CFM(R)) of column convergent matrices over CFM(R) ([4, Theorem
106.1]). Now having in mind the nature of these isomorphisms, one can check
they induce an isomorphism σ between RCFM(R) and RCCM(RCFM(R)) =
RCM(RFM(R)) ∩ CCM(CFM(R)). Further, one can check that σ(FM(R)) =
FM(FM(R)).

Let K = RCCM(RCFM(R)) and f ′ij ∈ K such that f ′ij has 1 ∈ RCFM(R)

in the ij-place and zero elsewhere. Let J =
∑

Kf ′ii. Clearly, FM(FM(R)) is
contained properly in J and taking fij = σ−1(fij) we have the desired family.
We show explicitly that J is not a two-sided ideal. Take x ∈ K such that x has
e1j ∈ FM(R) in the 1j-entry and zero elsewhere. Since J ⊆ RFM(RFM(R)),
x 6∈ J . But, f11e1j = e1j for every j ∈ N, and hence x = f11x.

4. Comparing RFM(R) with RCFM(R)

In this section, we prove the results mentioned in the introduction. We begin
with Theorem A and Proposition B. The key to the main result of [3] is, in essence,
that an isomorphism φ : RFM(R) → RFM(S) satisfies φ(FC(R)) = FC(S),
where FC is the ring of matrices with only finitely many non-zero columns. In our
setting, with RCFM(R) taking the place of RFM(R), this result translates into
Proposition B from the Introduction.

Proposition 3. Let R and S be any two rings with identity.
(a) Every ring isomorphism δ : RCFM(R) → RCFM(S) satisfies

δ(FM(R)) = FM(S).

(b) Every ring isomorphism δ : RCFM(R) → RCFM(S) extends, in a
unique way, to an isomorphism δ′ : RFM(R) → RFM(S).

(c) Every ring isomorphism σ : RFM(R) → RFM(S) such that

σ(FM(R)) = FM(S)

satisfies σ(RCFM(R)) = RCFM(S).
(d) There is a group monomorphism

φ : Aut(RCFM(R)) → Aut(RFM(R))

via φ(δ) = δ′ using (b) above. Moreover, the image of φ is the subgroup of
automorphisms of RFM(R) that restrict to automorphisms of FM(R).

Proof. (a) follows immediately from Lemma 1. Using the fact that RFM(R) is
isomorphic to End(FM(R)FM(R)), (b) is straightforward. We get (c) from the fact
that RCFM(R) is the idealizer of FM(R) in RFM(R). Finally, (d) follows from
(a), (b), and (c).

Now we can prove an analogue to Camillo’s result for RCFM(R).
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Theorem 4. Let R and S be rings with identity. R and S are Morita equivalent
rings if and only if RCFM(R) and RCFM(S) are isomorphic rings.

Proof. Assume first that R and S are Morita equivalent rings. Let RP be a progen-
erator such that End(RP ) ∼= S as rings. By [1, Lemma 1.2] we have that there exists
a ring isomorphism α∗ : RFM(R) → RFM(End(RP )) such that α∗(FM(R)) =
FM(End(RP )). Let β : RFM(End(RP )) → RFM(S) be induced (coordinate-
wise) by the isomorphism End(RP ) ∼= S, and let δ = β ◦ α∗. Then it is clear
that δ(FM(R)) = FM(S). Since RCFM(R) (resp. RCFM(S)) is the idealizer of
FM(R) (resp. FM(S)), δ(RCFM(R)) = RCFM(S).

The converse follows from Proposition 3 together with [1, Theorem 2.5 (3 implies
1)].

It is interesting to note that there are some rings between FM(R) and RCFM(R)
which have automorphisms that do not restrict to automorphisms of FM(R), as
the next example shows.

Example 5. There exist rings with identity, R and S, such that FM(R) ⊂ S ⊂
RCFM(R) and an automorphism of S, say δ, such that δ(FM(R)) 6= FM(R).

Proof. Let K be any ring with identity and let B = RCFM(RCFM(K)). As we
saw in Example 2 there exists an injective ring homomorphism β : B → RCFM(K).
Let T be the image of β, let R = K×RCFM(K), and let S = T ×B. After identi-
fying RCFM(R) with RCFM(K)×B, it is clear that FM(R) ⊂ S ⊂ RCFM(R)
and that δ : S → S via δ(x, y) = (β(y), β−1(x)) is an automorphism of S. But an
straightforward calculation shows that δ(FM(R)) 6= FM(R).

The ringRFM(R) is another ring for which there are automorphisms of RFM(R)
that do not restrict to automorphisms of FM(R); see [1]. Nonetheless, we show that
these pathological automorphisms are “controlled” by the inner automorphisms of
RFM(R). In particular, we show that every automorphism of RFM(R) is a prod-
uct of an inner automorphism and an automorphism that restricts to an automor-
phism of FM(R).

Proposition 6. For every σ ∈ Aut(RFM(R)), there exists τ ∈ Inn(RFM(R))
such that στ(FM(R)) = FM(R).

Proof. Let σ ∈ Aut(RFM(R)). Then P = R(N)σ(e1) is a progenerator as left
R-module such that End(RP ) is isomorphic to R [3]. Specifically, the isomorphism
τ : R→ End(RP ) is given by (p)τ(r) = pσ(e1D(r)) where D(r) denotes the scalar
matrix defined by r. We consider P as an R-bimodule using this isomorphism;
explicitly, r·p·s = rpτ(s) (r, s ∈ R, p ∈ P ). Define τ∗ : RFM(R) → RFM(End(P ))
via a coordinate-wise application of τ .

The map f : P (N) → R(N) given by ((pi)i∈N)f =
∑

i∈N piσ(e1i) is an isomor-

phism whose inverse is given by ((ri)i∈N)f−1 = (riσ(ei1))i∈N.
We identify RFM(R) with End(R(N)) and RFM(End(P )) with End(P (N))

canonically. For every x ∈ RFM(R), the following diagram is commutative:

R(N) σ(x)−→ R(N)

f ↑ ↑ f
P (N) τ∗(x)−→ P (N)
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To see this, observe

(p)τ∗(x)f = ((
∑

i∈N piτ(xij))j∈N)f
= ((
∑

i∈N piσ(e1D(xij)))j∈N)f
=
∑

j∈N

∑
i∈N piσ(e1D(xij)e1j)

=
∑

i∈N piσ(e1
∑

j∈N D(xij)e1j)

=
∑

i∈N piσ(e1ix)
= (p)fσ(x).

Now let α : P (N) → R(N) be the isomorphism mentioned in [1], which induces
an isomorphism α∗ : RFM(End(P )) = End(P (N)) → End(R(N)) = RFM(R) such
that α∗(FM(End(RP ))) = FM(R). More concretely, α∗ is characterized by the
property that, for every y ∈ End(P (N)), the following diagram is commutative:

P (N) y−→ P (N)

α ↓ ↓ α
R(N) α∗(y)−→ R(N)

Therefore, the following diagram is commutative, for every x ∈ RFM(R):

R(N) σ(x)−→ R(N)

f ↑ ↑ f
P (N) τ∗(x)−→ P (N)

α ↓ ↓ α
R(N) α∗τ∗(x)−→ R(N)

It follows that σ−1α∗τ∗ is the inner automorphism of RFM(R) induced by α−1f
and α∗τ∗(FM(R)) = FM(R).

Recall that the Picard group of a ring T is the multiplicative group consisting
of the bimodule isomorphism classes of invertible T -bimodules. We now prove
Theorem C from the Introduction.

Theorem 7. For every ring R,

Pic(R) ' Pic(RFM(R)) ' Pic(FM(R)) ' Pic(RCFM(R)).

Proof. It has been shown in [2] that Pic(R)'Pic(RFM(R))'Pic(FM(R)). On
the other hand, both RFM(R) and RCFM(R) have the SBN property, so that
Pic(RCFM(R)) =Out(RCFM(R)) and Pic(RFM(R))=Out(RFM(R)); see [2].
Thus, it suffices to show that Out(RCFM(R)) ' Out(RFM(R)).

From Proposition 3, there is a group monomorphism φ : Aut(RCFM(R)) →
Aut(RFM(R)) such that the image of φ is the subgroup of automorphisms of
RFM(R) that restrict to automorphisms of FM(R). In particular, φ(δ) = δ′ using
(b) of Proposition 3. We claim that

φ(Inn(RCFM(R))) = Inn(RFM(R)) ∩ Im(φ).

It is clear that φ(Inn(RCFM(R))) ⊆ Inn(RFM(R)). For the opposite inclusion,
note that if σ ∈Aut(RCFM(R)) such that φ(σ) ∈Inn(RFM(R)), then there exists
a unit u ∈ RFM(R) for which uFM(R) = FM(R)u. In particular, for each
i, u · eii ∈ FM(R) so that ejj · u · eii = 0 for almost all values of j. Hence,
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u ∈ RCFM(R) and so σ ∈Inn(RCFM(R)). This completes our claim. Therefore,
φ induces an isomorphism between Out(RCFM(R)) and

Im(φ) · Inn(RFM(R))

Inn(RFM(R))
.

By Proposition 6, the above quotient module is isomorphic to Out(RFM(R)).

While the previous results show that the rings RFM(R) and RCFM(S) share
many ring-theoretical properties, they are quite different categorically. We conclude
this paper with our proof of Theorem D.

Theorem 8. For any two rings with identity, R and S the rings RFM(R) and
RCFM(S) cannot be Morita equivalent. In particular, they are not isomorphic.

Proof. Let E = RFM(R), B = RCFM(S), I = FC(R), and J = FM(S).
Assume that E and B are Morita equivalent rings. Then, by [6] we have that

there exists a natural number n ∈ N such that E and Mn(B) are isomorphic rings.
But B and Mn(B) are isomorphic. Indeed, the map α : B → Mn(B) given by
α(X)(i, j)(a, b) = X(n(a− 1) + i, n(b− 1) + j) (X ∈ B, 1 ≤ i, j ≤ n, a, b ∈ N) is a
ring isomorphism.

Let δ : E → B be a ring isomorphism, let {eij}ij∈N and {fij}ij∈N be the basic

matrices of E and B, respectively, and let e′ij = δ(eij) and f ′ij = δ−1(fij).

We show that I = δ−1(J). Since I =
∑

N Eei is a two-sided ideal of E, we
have that δ(I) =

∑
N Be′i is a two-sided ideal of B and the family {e′ij} verifies

the conditions of Lemma 1. We conclude that δ(I) ⊆ J and so I ⊆ δ−1(J).
Consequently, I = ⊕If ′i .

Now we use analogous ideas to those found in [3]. Let α : If ′1 →
∑

N If ′i = I
be any E-homomorphism. Then there exists α : I → I such that α = α ◦ f ′1. By
[5], ᾱ is the right multiplication by some a ∈ E. It is clear that a ∈ f ′1J and hence
δ(a) ∈ f1B. Therefore, δ(a) = δ(a)

∑
finite fj and hence a = a

∑
finite f

′
j. Thus

α(If ′1) ⊆
⊕∑

finite If
′
i . Since EIf

′
1 ' EIf

′
i , for every i ∈ N, we use [3] to conclude

that EIf
′
1 must be finitely generated. Let x1f

′
1, . . . , xnf

′
1 be a family of generators

of EIf
′
1 with xi ∈ I. Then If ′1 =

∑n
i=1 Exif

′
1, and hence there is a finite subset F

of N, such that If ′1 ⊆ EeF . This implies that eif
′
1 = eif

′
1eF for every i ∈ N, and

hence f ′1 = f ′1eF ∈ I. Thus f ′i = f ′i1f
′
1f

′
1i ∈ I for every i ∈ N and we conclude that

δ−1(J) ⊆ I.
To finish the proof, let x ∈ RFM(S)−B, and let ρx denote right multiplication

by x. We have the homomorphism δ(ρx)δ
−1 :B I →B I, and there exists y ∈

RFM(R) such that δ(ρx)δ
−1 = ρy. For every a ∈ I, a(y)δ = ((a)δ−1y)δ = ax.

Therefore, δ(y) = x contradicting the fact that x 6∈ B. This finishes the proof.
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