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ON WHEN A GRADED RING IS GRADED EQUIVALENT

TO A CROSSED PRODUCT

JEREMY HAEFNER

(Communicated by Ken Goodearl)

Abstract. Let R be a ring graded by a group G. We are concerned with
describing those G-graded rings that are graded equivalent to G-crossed prod-
ucts. We give necessary and sufficient conditions for when a strongly graded
ring is graded equivalent to a crossed product, provided that the 1-component
is either Azumaya or semiperfect. Our result uses the torsion product theorem
of Bass and Guralnick. We also construct various examples of such rings.

1. Introduction

In this paper, all rings have an identity element. Let R and S be rings graded
by a group G. Following [12], [16], [13], and [14], we say that R and S are graded
equivalent provided there is a graded R-module P such that P is an R-progenerator
and EndR(P ) ∼= S as graded rings. This paper considers the following problem:

Describe those G-graded rings that are graded equivalent to G-crossed
products.

The significance of working with a G-graded ring that is graded equivalent to a
G-crossed product is that graded equivalence, in a certain sense, “preserves” the
categorical structure of the crossed product. For example, if R is strongly G-graded
and graded equivalent to a G-crossed product S, then not only are the categories
R-mod and S-mod equivalent, but so are the categories RH -mod and SH-mod for
each subgroup H of G. (RH denotes the truncation of R at the subgroup H.) See
[14].

The Cohen-Montgomery duality theory is an important application of how prob-
lems about graded rings can be reduced to problems about crossed products via
graded equivalence. Briefly, if R is a ring graded by a finite group G, Cohen and
Montgomery construct a ring R#G (the smash product of R by G) in such a way
that G acts as automorphisms on R#G. If P =

∐
g∈GR(g), where R(g) = R as

R-modules but is graded via R(g)h = Rgh, then P is a graded R-module and an
R-progenerator such that EndR(P ) and the skew group ring (R#G) ∗ G are iso-
morphic as graded rings ([18]). Consequently, if G is finite, a G-graded ring R is
always graded equivalent to the skew group ring (R#G) ∗ G. On the other hand,
if G is infinite, then R may not be graded equivalent to a crossed product ([15]).
In light of this, the problem posed above may be rephrased as describing those
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G-graded rings that are graded equivalent to G-crossed products, when the group
G is infinite.

Since Menini and Năstăsescu have determined when a G-graded ring is graded
equivalent to a G-strongly graded ring ([16, Theorem 2.2]), and since any crossed
product is strongly graded, we assume, for the remainder of this paper, that R
is strongly graded . We show, in Theorem 3, that any G-strongly graded ring R
such that the 1-component is semiperfect is graded equivalent to a crossed product.
Our main result, however, is Theorem 10, which provides necessary and sufficient
conditions for when a strongly graded ring is graded equivalent to a crossed product,
whenever the 1-component is commutative, Noetherian with Krull dimension d. We
extend this result, in Corollary 14, by requiring only that the 1-component be an
Azumaya algebra. To illustrate these theorems, we provide various examples in §5.

As a last introductory remark, if we were to consider rings without identity
elements and appropriately alter the definition of graded equivalence, then every
G-graded ring R is graded equivalent to a skew group ring T ∗G, where T need not
have an identity element. See [6], [18], [13], and [14]. In contrast, our requirement
for this paper is to work only with rings with identity.

We thank M. Beattie for her helpful comments in the writing of this paper.

2. Definitions and preliminaries

Throughout this paper, all 1-sided modules are left modules and we write mod-
ule homomorphisms on the right. Ring and group homomorphisms, however, are
written on the left.

Definition 1. If T is any ring, let T • denote the units of T , Pic(T ) denote the
set of isomorphism classes of invertible T -bimodules and Picent(T ) denote the set
of isomorphism classes of invertible bimodules that are centralized by the center
of T . Following [11], let Picn(T ) denote the isomorphism classes of invertible T -
bimodules P for which there is a left isomorphism P (n) ∼= T (n). (In this paper, the
notation X(n) refers to the direct sum of n copies of X .) Analogously, we define
Picentn(T ).

For any T -bimoduleX and for any σ ∈ Aut(T ), we define a new bimodule 1(X)σ.
As a left module, 1(X)σ = X , while the right T -action is given by x · t = xσ(t).
In particular, this definition induces a group homomorphism ω : Aut(T )→ Pic(T )
which is defined via ω : σ → 1(T )σ. See [8, Theorem 55.11] for further details.

Finally, R denotes a strongly G-graded ring, which we write as R =
⊕

g∈GRg.
Recall that a crossed product is a G-graded ring R such that each component Rg
contains a unit ug of the ring R ([17, Example 2, p. 18]), a skew group ring is
a G-crossed product such that the set of units {ug|g ∈ G} forms a group and is
isomorphic to G, and a twisted group ring R is a crossed product ring such that
each component contains a unit of R that commutes with R1. Since R is strongly
graded, we define the component group of R, Comp(R), to be the subgroup of
Pic(R1) consisting of the bimodule isomorphism classes of the components Rg of
R.

Lemma 2. Let R be G-strongly graded.

(1) Rg ∼= R1 as left modules ⇔ Rg contains a unit of R ⇔ Rg ∼= 1(R1)θ (as
R1-bimodules) for some θ ∈ Aut(R1)⇔ Rg ∈ imω.
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(2) R is a crossed product ⇔ Comp(R) ⊂ imω ⇔ there exists a map Θ : G→ R•

such that Rg = R1 ·Θ(g) = Θ(g) ·R1 ⇔ there exists a map ∆ : G→ Aut(R1)
such that Rg ∼= 1(R1)∆(g) as bimodules.

(3) R is a twisted group ring ⇔ Comp(R) = 1 (as a subgroup of Pic(R1))⇔ there
exists a map Θ : G→ R• such that Rg = R1 ·Θ(g) and Θ(g) commutes with
the elements of R1.

(4) R is a skew group ring ⇔ there exists a group homomorphism Θ : G → R•

such that Rg = R1 ·Θ(g) = Θ(g) ·R1 ⇔ there exists a group homomorphism
∆ : G→ Aut(R1) such that Rg ∼= 1(R1)∆(g) as bimodules.

(5) (Dade) R is graded equivalent to a crossed product ⇔ there is a progenerator
P of mod(R1) such that P is ‘fixed ’ under the tensor action of Comp(R) (i.e.,
Rg ⊗ P ∼= P for every g ∈ G).

Proof. (1) This is a special case of [8, Theorem 55.12].
(2) R is a crossed product if and only if each component Rg contains a unit ug

of R. Now apply (1).
(3) R is a twisted group ring if and only if each component Rg contains a unit

ug of R and ug commutes with the elements of R1. Thus, R is a twisted group ring
⇔ each Rg ∼= R1 as bimodules ⇔ Comp(R) = 1.

(4) R is a skew group ring if and only if each component Rg contains a unit ug
of R and the set of these units {ug|g ∈ G} forms a group isomorphic to G.

(5) This is [9, Corollary 5.14].

The above lemma affords us an opportunity to solve the problem posed in the
Introduction when R1 is semiperfect.

Theorem 3 (The semiperfect case). If R is a G-strongly graded ring such that R1

is semiperfect, then R is graded equivalent to a G-crossed product S. Moreover, S1

is the basic ring of R1.

Proof. Set T = R1. Using [2, Proposition 27.10], there exists a set {e1, . . . , em} of
pairwise orthogonal idempotents such that Te1, . . . , T em is a complete irredundant
set of representatives of the primitive left T -modules. In particular, if X is a
projective, indecomposable, left T -module, then X ∼= Tei for some i. Set Q =⊕m

i=1 Tei. Then Q is a left T -progenerator. If P ∈ Pic(T ), then P ⊗ Tei is a
projective indecomposable since P−1 ⊗ (P ⊗ Tei) ∼= Tei. Moreover, P ⊗ Tei ∼=
P ⊗ Tej ⇔ i = j. Consequently, P ⊗ Q ∼=

⊕m
i=1(P ⊗ Tei) ∼=

⊕m
i=1 Tei = Q.

In particular, Rg ⊗ Q ∼= Q for every g ∈ G. Thus, by Lemma 2(5), R is graded
equivalent to a crossed product S = EndR(R⊗Q) where S1 = EndT (Q). It follows
that Sg ∼= HomT (Q,Rg ⊗Q).

3. Matrix rings

We begin this section with an important but easy example of graded equivalence.

Example 4 (R and Mn(R) are graded equivalent). Let R be any G-graded ring.
For any positive integer n, Mn(R) is also G-graded with the grading defined by
Mn(R)g = Mn(Rg). If P is the free R-module of rank n with the induced grading,
it follows that P is a graded, R-progenerator such that EndR(P ) ∼= Mn(R). Thus,
R and Mn(R) are G-graded equivalent.
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Using the above example and Lemma 2, we can now prove the following key
proposition that characterizes when a strongly graded ring R is graded equivalent
to a crossed product of the form Mn(R).

Theorem 5. The following statements are equivalent :
(1) There is a positive integer n such that R is graded equivalent to a crossed

product of the form Mn(R), which is graded via Mn(R)g = Mn(Rg).
(2) Comp(R) ⊂ Picn(R1) for some positive integer n.
(3) There exists a positive integer n such that, for each g ∈ G, there exists an

isomorphism µg : R
(n)
1 → R

(n)
g as left modules.

(4) There exist a positive integer n and a function Θ : G→ (Mn(R))• such that
Mn(Rg) = Mn(R1) ·Θ(g) = Θ(g) ·Mn(R1).

(5) There exist a positive integer n and a function ∆ : G→ Aut(Mn(R1)) such
that Mn(Rg) ∼= 1(Mn(R1))∆(g) as bimodules.

Proof. First observe that statements (1), (4), and (5) are equivalent by Lemma 2
and Example 4. Statements (2) and (3) are equivalent by Definition 1. It suffices
to show that (2) and (4) are equivalent.

(2) ⇒ (4) Since Comp(R) ⊂ Picn(R1), there is, for each g ∈ G, a left module

isomorphism Θ(g) : R
(n)
1 → R

(n)
g . If we identify HomR1(R1, Rg) with Rg, we may

identify Θ(g) as an element of Mn(Rg). We have that Mn(R1) · Θ(g) ⊂ Mn(Rg)
and Mn(Rg) ·Θ(g)−1 ⊂Mn(R1), which yields Mn(R1) ·Θ(g) = Mn(Rg). Thus, (4)
holds by Lemma 2.

(4)⇒ (2) Since Mn(Rg) = Mn(R1)Θ(g), Mn(Rg) ∈ Pic1(Mn(R1)) by Lemma 2.
But, by [10, Lemma 3.1], Pic1(Mn(R1)) ∼= Picn(R1) via the mapping Mn(X) 7→ X .
It follows that Rg ∈ Picn(R1) and so Comp(R) ⊂ Picn(R1).

The set of units {Θ(g)|g ∈ G} in Mn(R) that appear in the proof of Theo-
rem 5 need not be a group under multiplication; this is precisely the obstruction
preventing Mn(R) from being a skew group ring.

Theorem 6. The following statements are equivalent :
(1) There is a positive integer n such that R is graded equivalent to a skew group

ring Mn(R) with grading Mn(R) =
⊕

g∈GMn(Rg).

(2) Comp(R) ⊂ Picn(R1) for some positive integer n and the map Θ : G →
Mn(R)• (from Theorem 5) is a group homomorphism.

(3) Comp(R) ⊂ Picn(R1) for some positive integer n and the map ∆ : G →
Aut(Mn(T )) (from Theorem 5) is a group homomorphism.

Proof. We first observe that (2) and (3) are equivalent by Lemma 2.
(2) ⇒ (1) Since Comp(R) ⊂ Picn(R1) for some positive integer n, R is graded

equivalent to a crossed product ring of the form Mn(R) by Theorem 5. Moreover,
there is a map Θ : G → Mn(R)• such that Mn(Rg) = Mn(R1) · Θ(g). If Θ is a
group homomorphism, then it follows that the 2-cocycle τ : G × G → Mn(R1)•

that defines the crossed product structure of Mn(R) is trivial and so Mn(R) is a
skew group ring. See [17, p. 3].

(1)⇒ (2) If R is graded equivalent to a skew group ring of the form Mn(R), then,
by Theorem 5, Comp(R) ⊂ Picn(R). Since Mn(R) is a skew group ring with grading
given by Mn(R)g = Mn(Rg), it follows that the 2-cocycle τ : G×G→Mn(R1)• is
trivial and so Θ(g) ·Θ(h) = Θ(gh) for each g, h ∈ G. Consequently, the map Θ is
a group homomorphism.
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In contrast to the result above, a strongly graded ring R is graded equivalent to a
twisted group ring of the form Mn(R) with grading defined by Mn(R)g = Mn(Rg)
if and only if R itself is a twisted group ring.

Theorem 7. The following statements are equivalent :
(1) There is a positive integer n such that R is graded equivalent to a twisted

group ring Mn(R), with grading defined by Mn(R)g = Mn(Rg).
(2) R is a twisted group ring.
(3) For every positive integer n, Mn(R) is a twisted group ring with grading

defined by Mn(R)g = Mn(Rg).

Proof. It is clear that (2)⇒ (1) and it is not difficult to see that (2)⇔ (3). Thus,
it suffices to prove (1)⇒ (2).

If Mn(R) is a twisted group ring, then, by Lemma 2, each Mn(Rg) ∼= Mn(R1)
as Mn(R1)-bimodules. Thus, for each g ∈ G, there is a linear isomorphism fg :
Mn(R1) → Mn(Rg) that commutes with all matrices from Mn(R1). Using the
idempotent matrix E which has 1 in the (1, 1)-entry and zeros elsewhere, it follows
that fg induces a R1-bimodule isomorphism between R1 and Rg. Since this holds
for each g ∈ G, we see that each Rg ∼= R1 as T -bimodules. Consequently, R is a
twisted group ring by Lemma 2.

Finally, combining Theorems 6 and 7, we get the following corollary:

Corollary 8. R is graded equivalent to a group ring of the form Mn(R) with grad-
ing defined by Mn(R)g = Mn(Rg) if and only if R is a twisted group ring and the
map Θ : G→Mn(R)• from Theorem 5 is a group homomorphism.

4. The commutative and the locally free cases

Let G be a group, let T be a commutative, Noetherian ring of Krull dimension
d, and let R denote a ring strongly graded by G, whose 1-component is T (i.e.,
T = R1).

Remark 9. (1) There is a split exact sequence

1→ Picent(T )→ Pic(T )
Φ−→ Aut(T )→ 1

where Φ is given by M 7→ ΦM and ΦM is an automorphism of T defined by the
relation tm = mΦM (t) for all m ∈ M and t ∈ T . The back map is ω : Aut(T ) →
Pic(T ), defined in Definition 1. Thus, Pic(T ) is the semi-direct product of Picent(T )
and Aut(T ) ([8, Theorem 55.13]). In particular, for each P ∈ Pic(T ), there is a
unique element ΦP ∈ Aut(T ) and a unique element Q(P ) ∈ Picent(T ) such that
P = 1(Q)ΦP . It is easy to see that Q(P ) = 1(P )Φ−1

P
. See [8, §55] for more details.

Let Q : Pic(T ) → Picent(T ) denote the projection of Pic(T ) into Picent(T ); i.e.,
Q(P ) = 1(P )Φ−1

P
. Note that Q need not be a group homomorphism.

(2) Let Compcent(R) denote the subgroup generated by the image of Comp(R)
inside Picent(T ) under the projection map Q : Pic(T )→ Picent(T ). Observe that
since Compcent(R) is contained in the abelian group Picent(T ), Compcent(R) has
a finite torsion exponent if and only if the set Q(Comp(R)) has a finite torsion
exponent.

The crux of the proof of the following theorem is a result of Bass and Guralnick,
which connects the multiplicative structure of Pic(R1) with the additive structure
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of K0(R1) ([4] and [5]). The work of Bass and Guralnick, in turn, heavily depends
on some nontrivial K-theoretical results of Bass. In particular, Bass proves in [3,
Corollary 4.5, p. 476] that if T is a commutative, Noetherian ring of Krull dimension
d and P is a faithful, finitely generated, projective T -module such that l is the least
common multiple of its local ranks, then there is a (finitely generated) projective

T -module Q such that P ⊗Q ∼= T l
d+1

. For example, if P ∈ Pic(T ), then l = 1 and
Q is simply the multiplicative inverse of P in Pic(T ).

Theorem 10. The following statements are equivalent :
(1) The ring R is graded equivalent to a crossed product.
(2) The group Compcent(R) has a torsion exponent.
(3) Comp(R) ⊂ Picn(T ) for some integer n.
(4) There is a positive integer n such that Mn(R) is a crossed product with

grading defined by Mn(R)g = Mn(Rg) and R and Mn(R) are graded equivalent.

Proof. First observe that statements (3) and (4) are equivalent by Theorem 5.
Clearly, (4)⇒ (1) and so it suffices to show (1)⇒ (2)⇒ (3).

(1) ⇒ (2) Since R is strongly graded, we know, by Lemma 2 (statement (5)),
that there is a left progenerator P1 for mod(T ) such that Rg ⊗T P1

∼= P1 for all
g ∈ G. Let l denote the least common multiple of the local ranks of P1 and set
n = ld+1, where d is the Krull dimension of T . By [3, Corollary 4.5, p. 476] and the
fact that P1 is faithful, there is a projective T -module S′ such that P1⊗S′ ∼= T (n).
Fix g ∈ G. Since T ⊗ P1

∼= Rg ⊗ P1, it follows that T ⊗ P1 ⊗ S′ ∼= Rg ⊗ P1 ⊗ S′
and so T (n) ∼= R

(n)
g , as left modules. Since Q(Rg) = 1(Rg)Φ

R
−1
g

, we see that, as left

modules, Q(Rg) and Rg are isomorphic. Consequently, T (n) ∼= Q(Rg)
(n), as left

modules. Taking nth exterior products, we see that
⊗nQ(Rg) ∼= R and so n is a

torsion exponent for Compcent(R).
(2) ⇒ (3) Assume that Compcent(R) has torsion exponent e and set n = ed+1.

Fix g ∈ G and set I = Q(Rg). By [5, Theorem 1], there exists a commutative
extension ring S of T such that I ⊗T S ∼= S (as S-modules) and S is T -projective
of rank e. By [3, Corollary 4.5, p. 476], there exists a projective T -module Q such
that S ⊗T Q ∼= T (n). Thus,

T (n) ∼= S ⊗T Q ∼= (I ⊗T S)⊗T Q ∼= I ⊗T (S ⊗T Q) ∼= I ⊗T T (n) ∼= I(n).

However, Rg ∼= Q(Rg) as left modules (as we have seen above) and so we have

R
(n)
g
∼= T (n). Thus, Comp(R) ⊂ Picn(T ).

Note that if G has a torsion exponent e, then so does Comp(R), and so R is
graded equivalent to a crossed product of the form Mn(R), where n can be taken to
be ed+1. In particular, if G is finite, then R is graded equivalent to a crossed product
of the form M|G|d+1(R). Of course, by the Cohen-Montgomery result mentioned in
the Introduction and [18], R is also graded equivalent to M|G|(R) with a special
grading.

We also observe that if R1 belongs to the center of R, then Comp(R) =
Compcent(R).

Corollary 11. If R1 belongs to the center of R, then R is graded equivalent to a
crossed product if and only if Comp(R) has a torsion exponent.
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We turn our attention to a noncommutative version of Theorem 10. We shall
require that there is a bijection between Comp(R) and a subgroup of Picent of the
center of the 1-component.

Definition 12. Let R1 be an arbitrary ring, let C denote the center of R1 and
assume C is Noetherian of Krull dimension d. Following [11], if Div(R1) denotes
the category of isomorphism classes of bimodule direct summands of some number of
copies of R1, then there is a categorical bijection between Div(R1) and the category
Proj(C) of finitely generated projective C-modules. Let F : Div(R1) → Proj(C)
denote this bijection. Set DPic(R1) = Div(R1) ∩ Pic(R1), which is a subset of
Picent(R1) (since the elements of Div(R1) are centralized by the center of R1).
By the above correspondence, there is a categorical bijection F : DPic(R1) →
Picent(C), F preserves direct summands and tensor products (see [11, p. 927]),
and F (R1) = C.

Theorem 13. If each Rg ∈ DPic(R1), then the ring R is graded equivalent to a
crossed product if and only if Comp(R) has a torsion exponent.

Proof. Since each Rg ∈ DPic(R1), it follows that Comp(R) ⊂ Picent(R1) and
Comp(R) = Compcent(R). Suppose R is graded equivalent to a crossed product.
As before, there exists a progenerator P1 for R1 such that Rg ⊗R1 P1

∼= P1 for all
g ∈ G. Applying the categorical bijection F mentioned in Definition 12, we see
that F (Rg) ⊗C F (P1) ∼= F (P1) for all g ∈ G. Now by the proof of Theorem 10,
there is a finite torsion exponent for the set {F (Rg)|g ∈ G} and hence, Comp(R)
also has a finite exponent.

Conversely, if Comp(R) has a finite torsion exponent, then so does F (Comp(R)).
Invoking the proof of Theorem 10, there exists an integer n such that F (Rg)⊗Cn ∼=
Cn for all g ∈ G. Since F (R1) = C, it follows that Rn1 is a progenerator for R1

such that Rg ⊗Rn1 ∼= Rn1 for all g ∈ G. Hence, R is graded equivalent to a crossed
product by Lemma 2.

Corollary 14. Let R be a ring strongly graded by G such that R1 is an Azumaya
algebra of degree m with center C. Assume each Rg is centralized by the center of
R. Then R is graded equivalent to a crossed product if and only if Comp(R) has a
torsion exponent.

Proof. By hypothesis, Comp(R) ⊂ Picent(R1). By [10, Proposition 4.1], DPic(R1)
= Picent(R1) ∼= Picent(C). Now apply Theorem 13.

5. Examples

We construct various examples of graded rings where the group Comp(R) is
prescribed. We first show that any group G can appear as Comp(R) for some skew
group ring R. We thank M. Beattie for her help on this example.

Example 15. Let G be any group and let S = k[Xg|g ∈ G] be a polynomial ring
over a field k in commuting indeterminants indexed by G. Note that G ∼= {φg :
Xh 7→ Xgh|g ∈ G} ⊂ Aut(S). Define R = S ∗ G, the skew group ring. Since
Rg = S ∗φg, we see that Rg ∼= 1(S)φg as bimodules. But 1(S)φg

∼= 1(S)φh ⇔ g = h,
and so, G ∼= Comp(R).

The preceding example implies, of course, that any abelian group can be realized
as the component group of a strongly graded ring. However, D. F. Anderson [1] has
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a nice construction technique for integral domains that are graded by commutative,
torsionless, cancellative monoids. Once we put Anderson’s result in our perspective,
we shall see that not only can we construct a commutative, strongly G-graded ring
R with a prescribed Comp(R) group, but we can partially prescribe Pic(R1) and
Pic(R) as well.

Proposition 16 (cf. [1, Theorem, p. 249]). Let R be a strongly G-graded, com-
mutative ring. If θ : Picent(R1) → Picent(R) is defined via I → IR, then
Comp(R) = ker(θ).

Proof. (⊂) If [Rg] ∈ Comp(R), then

Rg ·R = Rg

(⊕
x∈G

Rx

)
=
⊕
x∈G

Rgx = R

and so [Rg] ∈ ker(θ).
(⊃) Let [I] ∈ ker(θ) so that IR ∼= R, as bimodules. Since IR is a nonzero, ho-

mogeneous, principal ideal, there exists z ∈ Rg for some g ∈ G such that IR = zR.
Since we may assume that I ⊂ R1, we see that IR =

⊕
x∈G IRx = zR =

⊕
x∈G zRx

and so I = zRg−1 . Consequently, [I] = [Rg−1 ] as an element in Comp(R).

Corollary 17 (cf. [1, Example, p. 251]). Given a short exact sequence of abelian
groups 1 → A → B → C → 1, there exists a strongly graded, commutative ring R
such that Comp(R) ∼= A,Pic(R1) ∼= B, and Pic(R) ∼= C.

Proof. By [1, Example, p. 251], there exists a strongly graded commutative ring R
such that PicR1

∼= B,PicR ∼= C, and ker θ ∼= A. Now apply Proposition 16.

We close with a final example of a noncommutative strongly graded ring R that
is graded equivalent to a crossed product, but has the property that Comp(R) 6⊂
Picn(R1) and Comp(R) is torsionfree. Moreover, R1 is Azumaya. Yet R is graded
equivalent to a crossed product by Theorem 3. This serves to show that Theorem 10
cannot be extended to arbitrary rings without modification. We thank L. Levy for
his help on this example.

Example 18. Let k be any field and let K = k(Xi|i ∈ Z), the rational function
field with countably many indeterminants. Define σ ∈ Aut(K) via the rule Xi 7→
Xi+1 and extend linearly. It follows that 〈σ〉 is an infinite cyclic subgroup of
Aut(K); let G = 〈σ〉.

Set T to be the following ring and X to be the following T -bimodule, both
contained in M3(K):

T =

K K 0
K K 0
0 0 K

 , X =

 0 0 K
0 0 K
K K 0

 .

Note that X ⊗ X ∼= X · X = T and so X ∈ Pic(T ). Finally, T is a semiperfect,
Azumaya algebra.

Set R to be a Z-graded ring defined via R =
⊕

n∈ZRn where Rn = Xn ·σn. The
T -bimodule Rn inherits the left T -multiplication from the left T -action on X , and
the right T -action is skewed by σn : x·t = x(σn(t)). Notice that

⊗sRm ∼= Rsm � T

and so Comp(R) is torsionfree. Further, since X(n) � T (n) for any positive integer
n, Comp(R) 6⊂ Picn(R). Nonetheless, since T is semiperfect, R is graded equivalent
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to a crossed product S by Theorem 3. In fact, we see that S1 is the matrix ring

S1 =

(
K 0
0 K

)
so that S =

⊕
Sn where

Sn = S1 ·
(

0 1
1 0

)n
· xn.
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