A two component model for the Broad Line Region of Active Galactic Nuclei'
Matt George (Harvard University) and Andrew Robinson (RIT)

The Broad Line Region of Active Galactic Nuclei is one of our closest probes of the immediate environs of Massive Black Holes. Reverberation mapping studies of its temporal response to variations in the ionizing continuum escaping from close to the Black Hole provide the only means of studying the coevolution of Black Holes and their host galaxy bulges beyond the local universe. Such information is vital if we are to understand the hierarchical assembly of galaxies and the reionization of the universe by the first Quasars. Unfortunately the structure of the Broad Line Region is poorly understood. Combining our best current insights into the BLR's structure from a combination of reverberation mapping, spectropolarimetry and line profile diversity has prompted us to construct a hybrid BLR model comprising of a relativistic accretion disk embedded in a an outflowing spheriodal envelope. We present preliminary results of the comparison of the predictions of our model with the statistical properties of the population of AGN BLR, and outline the next steps needed to develop a secure understanding of the Broad Line Region.