The Sign2 Project

Digital Translation of American Sign-

Language to Audio and Text

for Advanced Technology Development

The

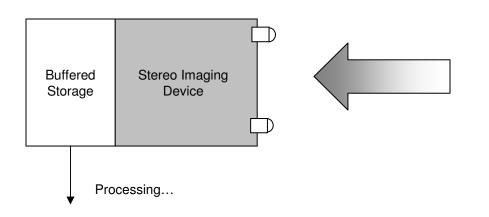
Center

The Laboratory of Applied Computing Rochester Institute of Technology

Fitzroy Lawrence, Jr. Advisor: Dr. Chance Glenn,

The Center for Advanced Technology Development Rochester Institute of Technology

The purpose of my research is to implement a device or apparatus that captures American Sign Language and converts it into sound and/or text. This will enable people who cannot use sign language to communicate with deaf and hard of hearing people.

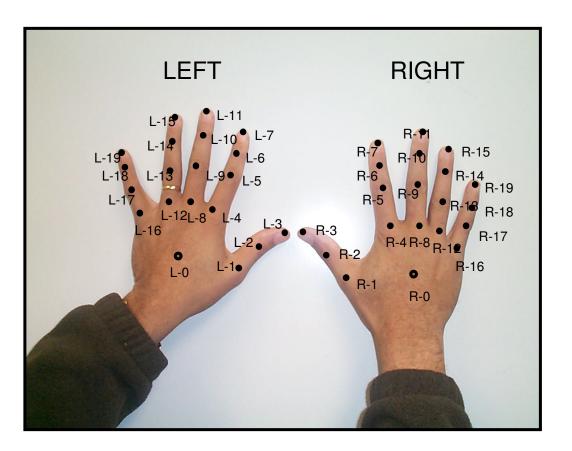

The way I plan to achieve these results are through the means of image processing. Using a combined method developed within Rochester Institute of Technology and Binghamton University, we are using a set of default "points" set all over the left and right hands (Points-of-Digital Articulation) to extract and compute into a database different letters of the American Sign Language. This will be expanded on with more body movements later on.

By maximizing, the results I wish to obtain will lead to the production of a portable device that can be worn or carried by a deaf or hearing impaired individual that can translate American Sign Language into English text or sound, in real-time, in a efficient manner

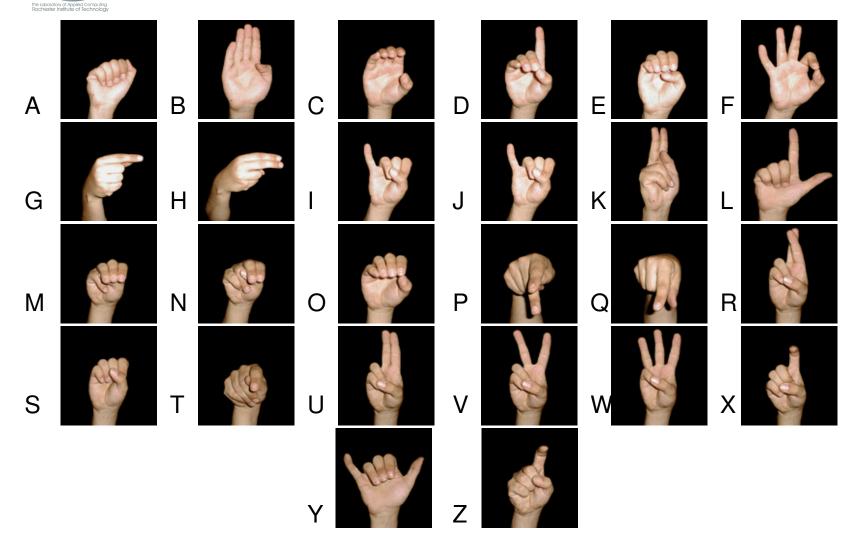
Project Statement

"The purpose of my research is to implement a device or apparatus that captures American Sign Language and converts it into sound and/or text. This will enable people who cannot use sign language to communicate with deaf and hard of hearing people."

"Hello, how are you?"



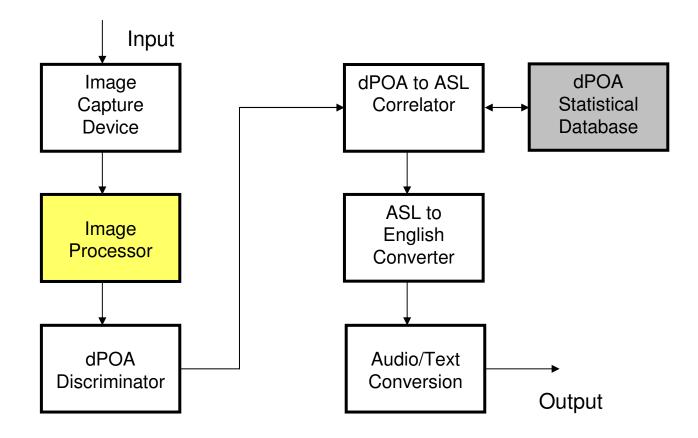
The Approach


•The approach employs the use of advanced image processing.

•Using a combined method developed within Rochester Institute of Technology and Binghamton University, we establish *digital points of articulation* (dPOAs) to extract critical data from the image.

•We will demonstrate this in ASL fingerspelling. This will be expanded on with more body movements later on.

American Sign Language Alphabet



The Center

for Advanced Technology Development

Sign2 System Block Diagram

Some Examples...

Letter: A

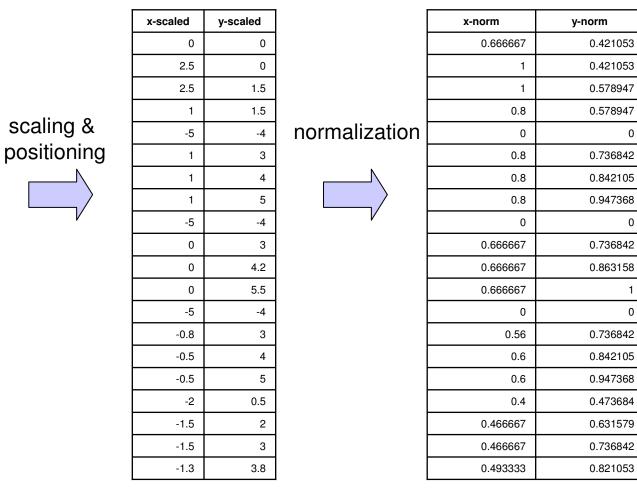

POAr Indicator	H-Position	V-Position	1													
R-0	5.5	4		10												
R-1	7.5	3.5		9												
R-2	7.9	5		3												
R-3	7	6	1	8										_		
R-4			1													
R-5	6.5	6		7												
R-6	6	8.1														
R-7	6	9.2		6												
R-8			Vertical	5												
R-9	5.5	6	Position	5						ъ.	14	10				
R-10	5.7	5		4					4			5				
R-11	5.7	3.7								а.	×					
R-12				3												
R-13	4.5	5.7		2				8								
R-14	5	4.5		2								1				
R-15	5.2	3.2	1	1												
R-16	3	4														
R-17	4	5.2		0												
R-18	4.5	4.5]		0	1	2	3	4	5	6	6	7	8	9	10
R-19	4.5	3.5]						Нс	orizon	ntal P	ositio	n			

Some Examples...

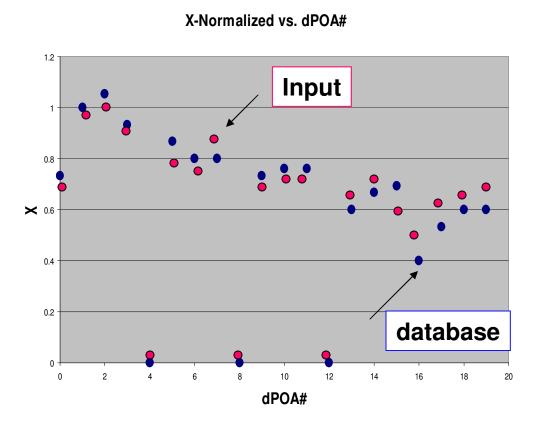
Letter: A (2nd Trial)

POAr Indicator	H-Position	V-Position				
R-0	5	4				
R-1	7.5	3.5				
R-2	7.5	5.5				
R-3	6.5	6.5				
R-4						
R-5	6	6.2				
R-6	6	5				
R-7	6	4.5				
R-8						
R-9	5	6				
R-10	5	4.5				
R-11	5	4.2				
R-12						
R-13	4	6				
R-14	4.5	5				
R-15	4.5	4.2				
R-16	3	4				
R-17	3.5	5.5				
R-18	4.2	3.5				
R-19	4	4				

After Imagine Capturing...


0

0


1

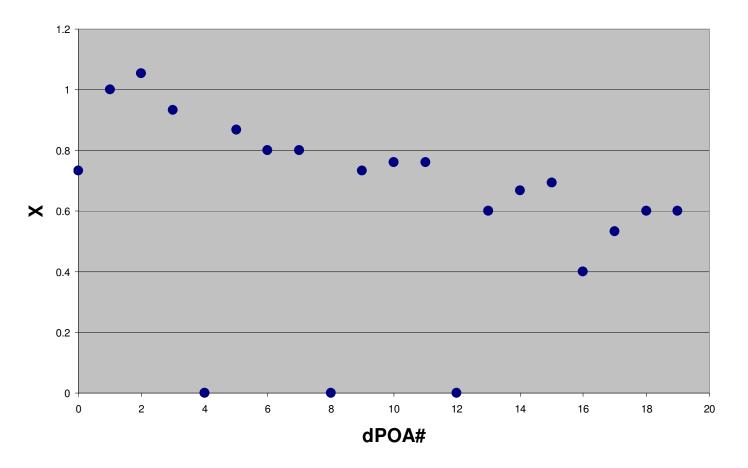
0

RIGHT	Α			
POAr	x	у		
0	5.5	4		
1	7.5	3.5		
2	7.9	5		
3	7	6		
4				
5	6.5	6		
6	6	8.1		
7	6	9.2		
8				
9	5.5	6		
10	5.7	5		
11	5.7	3.7		
12				
13	4.5	5.7		
14	5	4.5		
15	5.2	3.2		
16	3	4		
17	4	5.2		
18	4.5	4.5		
19	4.5	3.5		

Error Correllation

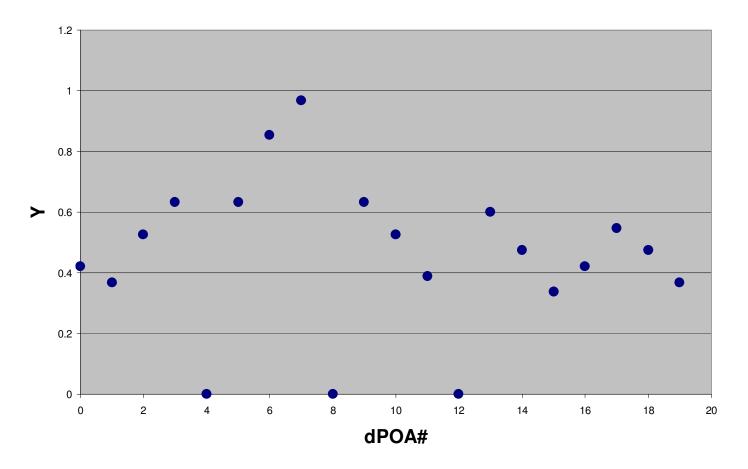
$$e_n = \left| d_n^B - d_n^I \right|$$

$$e_T = \sum_{n=1}^{19} e_n$$

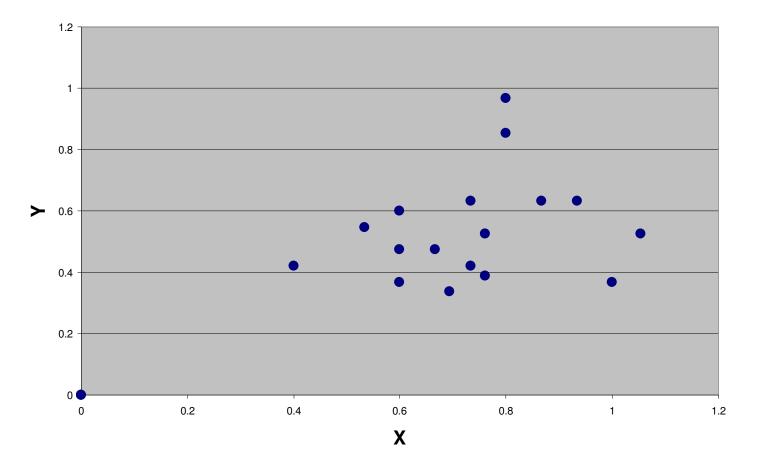

1

Where e_T is minimized, there suggest a match with a pre-stored letter from the statistical database.

Data Processing


X-Normalized vs. dPOA#

Data Processing


Y-Normalized vs. dPOA#

Data Processing

Y-Normalized vs. X-Normalized

Conclusions

Through these results, I wish to lead the production of a portable device that can be worn or carried by a deaf or hearing impaired individual that can translate American Sign Language into English text or sound, in real-time, in a efficient manner. This device may be worn around the neck, or even placed on the hip.

The realization of this device would allow a person who does not know sign-language to communicate with a deaf person.

References

Ahmad, S., and Tesp, V., "Classification with missing and uncertain inputs", Proc. Inter. Conf. on Neural Networks, Vol. 3, 1993. pp1949-1954

Alkoby, K., and Sedgwick, E., *Using a Computer to Fingerspell*. DeafExpo 99, San Diego, CA, November 19-22, 1999.

ASL Fingerspelling Conversion, Where.com (<u>www.where.com</u>).

Bobick, A. and J. Davis, 2001 "The recognition of human movement using temporal templates," *IEEE Transaction on Pattern Analysis & Machine Intelligence*, Vol 23, No. 3.

Bristo, M., et.al., Access to Multimedia Technology by People with Sensory Disabilities, National Council on Disabilities report to Congress, 1998.

Carter, R., et. al., A *Better Model for Animating American Sign Language*, Proceedings of the Technology and Persons with Disabilities, California State University Northridge, Los Angeles, CA, USA, March 2002. CyberGlove, http://www.immersion.com/3d/products/cyber glove.php, 2003.

Furst, J., et.al, *Database Design for American Sign Language*. Proceedings of the ISCA 15th International

Conference on Computers and Their Applications (CATA-2000). 427-430.

Haritaogula, I., Harwood, D. and Davis, L., 2000, "W4: Real-Time Surveillance of People and their activities," *IEEE Transactions on Pattern Recognition and Machine Intelligence, Vol 22, No. 8,*

Hernandez-Rebollar, J.L., et. al., *A Multi-Class Pattern Recognition System for Practical Finger Spelling Translation, Fourth <u>IEEE Int'l Conference on Multimodal Interfaces (ICMI'02)</u>, Pittsburgh, USA, October 14-16, 2002, pp. 185-190.*

Inventor Designs Sign Language Glove, USA Today Online, (www.usatoday.com), Tech section, Associated Press, August 4, 2003.

Itti L., and C. Koch. 2001. Computational modeling of visual attention. *Nature Neuroscience Review.*, 2(3):194-203. Kadous, Mohammed Waleed. Machine Recognition of Auslan Signs Using Power Gloves: Towards Large-Lexicon Recognition of Sign Languages. http://www.cse.unsw.edu.au/~waleed/paper-wigls/paper-wigls.html, July 1996. Kalra, P., Magnenat-Thalmann, Mossozet, et. al., "Real-time animation aof realistic virtual humans", IEEE Computer Graphics and Applications, vol.18, Sept. 1998. pp42-56