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Abstract

This paper aims at developing a comprehensive model for
optimal multi-mode wireless sensor operations. We start by
proposing a maximum data retrieval (MDR) problem that
jointly optimizes the routing and scheduling decisions over
time for multi-mode wireless sensors. Attempting to solve the
general yet extremely complex problem leads to observations
and analysis of optimal store-and-forward (S&F) operations
for individual sensors in an ideal setting. Our analytical
model for the S&F operation provides not only closed form
expressions in estimating sensor lifetime and total transmis-
sion, but also insights on developing a simpler flow distri-
bution problem that could approximate the MDR problem.
Heuristic procedures are then developed to demonstrate the
feasibility of having the sensors perform in S&F cycles. Our
simulation shows that these heuristics achieves performance
close to theoretical estimates derived based on the S&F op-
eration analysis.

1. Introduction

The emergence of wireless sensor networks (WSN)
[1, 2] introduce an exciting new frontier for data sens-
ing, data transfer, and data retrieval applications. Various
tracks of research work, ranging from device engineer-
ing to network protocol design, have been initiated to ad-
dress the fundamental problem of constrained energy for net-
worked wireless sensors. One common direction among
this cross-disciplinary effort is the use of wireless sen-
sors that can operate in multiple modes, e.g., sleep, idle,
receive, and transmit. The idea behind multi-mode wire-
less sensors is to preserve the energy consumption when one
or more of the sub-components are not in use.

Among the various research tracks, network engineers and
computer scientists focus on determining when and how to
operate the wireless sensors in different modes so that the
network as a whole can achieve better performance. Among
others, authors in [3] and [4] propose TDMA-based and
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CSMA/CA-based schemes, respectively, to determine the
sensor transmission schedule and thereby when to turn off
the communication component of the sensors. Particularly in
[4], the proposed Sensor-MAC protocol determines the sleep
schedules of a sensor node based on the schedule of its neigh-
bors, and exhibits good energy savings over schemes that
have the sensors remain on at all times. Various other MAC
propocols have also been proposed, e.g., [5, 6, 7], and au-
thors of [8] and [9] have discussed scheduling from the topol-
ogy control perspective. The above set of work, however, ei-
ther overlooks the impact of the buffer size of the sensor and
the energy spikes incurred due to switching between the op-
erational modes, or lacks the theoretical foundation for the
choice of policies that are used to determine the transmis-
sion schedule of the sensors. In addition to scheduling sen-
sor operations, routing is another aspect in retrieving sensed
data from individual wireless sensors to the data processing
center. Unfortunately, to our knowledge, none of the exist-
ing routing approaches for wireless sensor networks, e.g.,
[10, 11, 12, 13], have truly taken the multi-mode operations
into account.

One missing piece in the various afore-mentioned efforts
is a formal model that jointly optimizes the routing and the
scheduling decisions for networked multi-mode wireless sen-
sors. Notice that research effort has been put forth to jointly
optimize fusion and routing decisions [14], and to jointly
optimize transmission power control and routing decisions
[15, 16]. These studies, due to the complexity introduced,
can only focus on determining steady state “flow distribu-
tions” over the network, which does not directly translate to
online policies. By contrast, our approach attempts to deter-
mine the exact sequence of transmissions and the path to for-
ward sensed data over time. We do not claim that we can
solve our proposed joint optimization model to its entirety.
Instead, this paper starts by analyzing how complex the prob-
lem can be and focuses on breaking down the problem, hop-
ing to develop a practical online policy that also has theoret-
ical supports.

The contribution and organization of this paper are as fol-
lows. In the next section, we will first develop a joint rout-
ing and scheduling optimization problem by accounting for



both network spatial reuse constraints and various multi-
mode sensor operation constraints. Section 3 will follow and
provide an in-depth analysis of the optimal schedule an indi-
vidual sensor can have in an ideal setting. The development
of the optimal schedule opens up a new avenue to tackle the
overall joint optimization problem, and provides theoretical
estimates of wireless sensor network performance. Heuristic
procedures are proposed in Section 5 to investigate whether
and how one can achieve performance close to the theoreti-
cal estimates. Concluding remarks will be provided in Sec-
tion 6

2. The Maximum Data Retrieval Problem

The data retrieval problem is to determine when and
which path to transmit and forward sensed data from indi-
vidual sensors over possibly multiple intermediate nodes to
reach a data processing center. More specifically, the prob-
lem is a joint optimization of scheduling and routing deci-
sions subject to flow conservation, energy and spatial reuse
constraints, which will be formally defined later in this sec-
tion. Note that there are two other design decisions affect-
ing the data retrieval process: in-network data fusion and
transmission power control. We, however, consider model-
ing the most basic wireless sensor nodes, which are not able
to perform in-network data fusion or dynamically adjust their
transmission powers. In addition, our focus is on determining
the exact sequence of wireless transmissions over time.

The first challenge of modeling the joint optimization
problem is to understand the various operational modes of
wireless sensors, and to properly define the optimization vari-
ables. Modern wireless sensors are made up of many com-
ponents, including processing unit(s), sensing device(s), and
RF circuitry. These components may operate either indepen-
dently or as a whole in different modes - sleep, idle, receive,
transmit, etc. [17, 18, 19]. Many commercial wireless sensor
data specifications [19, 18, 20] suggest that the difference
in the power consumption between the idle and the receive
mode is marginal. Therefore, we decided to model the wire-
less sensors with three basic operational modes: sleep, re-
ceive, and transmit, where the receive mode refers to the case
where the transceiver is on but not transmitting, regardless of
whether it is actually receiving or in the idle mode. When
switching between the operational modes, the RF transceiver
is likely to incur an energy spike [21]. We consider two en-
ergy spikes: one incurred when turning on the transceiver
from the sleep mode, and the other incurred due to power-
ing up the transmitter to actually transmit.

Now we may formally define our model. Consider a net-
work formed by a set of sensor nodesN. A sensorj can re-
ceive messages from nodei if and only if j is a neighbor ofi,
denoted asj ∈ N(i). We assume symmetric wireless links
between nodes, soj ∈ N(i) if and only if i ∈ N( j). Note
that different physical wireless transmission property may

define differentN(i)’s. Our approach is independent of how
the neighborhood is defined, as long as it does not change
over time. LetS be the set of sinks, each of which is a can-
didate of the destination of any sensed data. We do not re-
strict the sink to which the sensed data should go. Instead,
we assume there is a backbone network that interconnects
the sinks and the sensed data will be processed on or beyond
this backbone network. Every sensor node has a buffer size
(bi), an average sensing rate (λi), a total initial energy (etot

i ),
the power levels to operate in the sleep mode (ps

i ), the addi-
tional power needed to turn on the RF transceiver (pr

i ), the ad-
ditional power needed to transmit (pt

i ) at a rate (ci j ) to neigh-
bor j, and the energy spikes incurred when transitioning from
the sleep mode to the receive mode (esr

i ) and that from the re-
ceive mode to the transmit mode (ert

i ). Note that, based on the
defined power parameters, the power consumed while oper-
ating in the sleep, receive, and transmit modes for nodei are
ps

i , ps
i + pr

i , andps
i + pr

i + pt
i , respectively.

Based on these definitions, we developed a mixed-integer
programming problem that maximizes the total data retrieved
by the sinks until one of the sensors dies due to energy ex-
haustion1. We refer to this problem as the Maximum Data
Retrieval (MDR) problem, as shown in Figure 1. A summary
of the notations is given in Table 1.

The model essentially determines the time intervalsTk,
during which a subset of sensor nodes transmit data to their
neighbors. Constraints (1a), (1b) and (1c) determine whether
sensori transmits to sensorj at timek (Xi jk ), as well as the
amount of time for such a transmission (Fi jk ). Similarly, con-
straints (2a), (2b) and (2c) determine if the communication
module of sensori is in the receive (idle) mode at timek (Yik)
along with the amount of time the module is in the receive
mode (Gik).

The strengths of our model are the accountability of the
spatial reuse on the network, the energy consumption due
to changes between the operational modes (sleep-to-receive
and receive-to-transmit), as well as the store-and-forward ca-
pability of the sensors over time. Constraint (3a) prevents a
sensor from transmitting and receiving during the same time
interval. Constraints (3b) and (3c) prevent the neighbors of
each transmitter from receiving, and the neighbors of each
receiver from transmitting. Note that by altering the set of
N(i), one can change the spatial reuse constraints to account
for a different wireless signal interference model. Constraint
(4a) forces the communication module to be on, if the corre-
sponding sensor at the time intervalk is either transmitting or
receiving. It is important to note that a communication mod-
ule could still be on, even if the sensor is neither receiving
nor transmitting. This will occur if the expenditure of en-
ergy for a time period is less than the cost of switching the

1 We recognize that defining the network lifetime as the time till the first
sensor dies may not be representative to all sensor networks. This defi-
nition, however, is sensible if every sensor is critical and has been used
by many researchers, e.g., [15].



max∑
i∈S

∑
j∈N(i)

K

∑
k=1

Fjikc ji

subject to
Fi jk ≤ Tk ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (1a)
Fi jk ≤ M ·Xi jk ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (1b)
Fi jk ≥ Tk−M(1−Xi jk) ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (1c)
Gik ≤ Tk ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (2a)
Gik ≤ M ·Yik ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (2b)
Gik ≥ Tk−M(1−Yik) ∀i ∈ N, j ∈ N∪S, 1≤ k≤ K (2c)

∑
j∈N(i)

Xi jk + ∑
j∈N(i)

Xjik ≤ 1 ∀i ∈ N, 1≤ k≤ K (3a)

∑
j∈N(i)

∑
l∈N( j)−i

Xl jk −M(1− ∑
j∈N(i)

Xi jk) ≤ 0 ∀i ∈ N, 1≤ k≤ K (3b)

∑
j∈N(i)

∑
l∈N( j)−i

Xjlk −M(1− ∑
j∈N(i)

Xjik) ≤ 0 ∀i ∈ N, 1≤ k≤ K (3c)

Yik− ( ∑
j∈N(i)

Xi jk + ∑
j∈N(i)

Xjik) ≥ 0 ∀i ∈ N, 1≤ k≤ K (4a)

Zik− ( ∑
j∈N(i)

Xi jk − ∑
j∈N(i)

Xi jk−1) ≥ 0 ∀i ∈ N, 2≤ k≤ K (4b)

Wik− (Yik−Yik−1) ≥ 0 ∀i ∈ N, 2≤ k≤ K (4c)
k

∑
l=1

∑
j∈N(i)

ci j Fjil +
k

∑
l=1

λil Tl −
k

∑
l=1

∑
j∈N(i)

ci j Fi jl ≤ bi ∀i ∈ N, 1≤ k≤ K (5a)

k

∑
l=1

∑
j∈N(i)

ci j Fjil +
k

∑
l=1

λil Tl −
k−1

∑
l=1

∑
j∈N(i)

ci j Fi jl ≥ ∑
j∈N(i)

ci j Fi jq ∀i ∈ N, 1≤ k≤ K (5b)

esr
i

K

∑
k=1

Wik +ert
i

K

∑
k=1

Zik + ps
i

K

∑
k=1

Tk + pr
i

K

∑
k=1

Gik + pt
i

K

∑
k=1

∑
j∈N(i)

Fi jk ≤ etot
i ∀i ∈ N (6)

Figure 1. The Maximum Data Retrieval (MDR) model for networked multi-mode wireless sensors.

transceiver from off to on. Constraints (4b) and (4c) allow
the model to track the energy spikes due to switching from
sleep to receive (Wik) and from receive to transmit (Zik), re-
spectively. Constraints (5a) and (5b) prevent the buffer from
overflowing and ensure that the amount of transmitted data
does not go beyond what has been sensed and received (as
a relay node in the multi-hop network). Finally Constraint
(6) decrements the energy accordingly due to the operational
modes in each time interval and the energy spikes, and guar-
antees that the amount of energy to be consumed over time
will not exceed the total available energy on the sensor.

The MDR problem explicitly determines the sensor op-
eration schedules, and implicitly forces the sensed data to
take energy efficient paths to reach the sinks, which have infi-
nite energy and infinite buffer. The integer decision variables
clearly increase the complexity of the model. Yet, the com-
plexity is unavoidable since the model decides on the exact
sequence of operations of all sensors over the network life-
time, while account for the restricted spatial reuse. As ex-
pected, the computational complexity (NP-Hard since it is a
generalization of Vertex Covering) of the problem prevents

the use of optimization tools to obtain solutions in a reason-
able time. In our attempts in solving the MDR problem opti-
mally using CPLEX, we observed that most wireless sensor
nodes in the network tend to operate in periodical (or semi-
periodical) “store-and-forward” cycles. This creates the need
to develop practical heuristic procedures that find “good” so-
lutions efficiently. The next section analyzes this store-and-
forward operation schedule that seemingly leads to maxi-
mum amount of sensed data retrieved.

3. Optimal Store and Forward Cycle

One key challenge in the MDR problem is to determine
the sensors’ operation schedule (sleep, receiving and trans-
mission) subject to the spatial reuse constraints. Research ef-
forts have attempted to formulate and solve the “scheduling”
problem, e.g., [22, 23]; yet, to our knowledge, no complete
answer has been put forth for general networks in the dy-
namic regime. This study takes a different approach than ex-
isting ones, and examines what the best possible operation
schedule could be for individual sensors assuming an ideal



Parameters Definition
N the set of sensor nodes
S the set of sink nodes
N(i)⊆ N∪S the set of 1-hop neighbors of nodei
ci j > 0 the transmission capacity between nodei and nodej
bi > 0 the buffer size of nodei
λi the sensing event arrival rate to nodei
etot

i > 0 the total amount of energy available for nodei
ep

i > 0 the spike energy consumed for nodei to switch from sleep to receive or from receive to transmission mode
ps

i > 0 the power level for nodei to stay in the sleep mode
pr

i > 0 the power (in addition tops
i ) for nodei to stay in the receive mode

pt
i > 0 the power (in addition tops

i + po
i ) for nodei to stay in the transmission mode

M > 0,K > 0 a large value, the number of time intervals
Variables Definition

Tk ≥ 0 the duration of thekth time interval

Fi jk ≥ 0 the time duration during which nodei transmits to nodej within thekth time interval

Gik ≥ 0 the time duration nodei turns on the communication circuit within thekth time interval

Xi jk ∈ {0,1} 1 if nodei transmits to nodej during thekth time interval and vice versa

Yik ∈ {0,1} 1 if nodei turns on the communication circuit during thekth time interval and vice versa

Wik ∈ {0,1} 1 if nodei switches from sleep to receive at the beginning of thekth time interval, and 0 otherwise

Zik ∈ {0,1} 1 if nodei switches from receive to transmit at the beginning of thekth time interval, and 0 otherwise

Table 1. Variable/parameter definitions for the integer-programming model.

situation. More specifically, we consider that a wireless sen-
sor can transmit and receive whenever it wants, and data is
always available. The idea behind this approach is that upon
determining the “ideal” schedule, we may simplify the MDR
problem and investigate an approximately optimal yet prac-
tical solution.

We will use the same buffer, power and energy parame-
ters defined in Table 1, but eliminate the use of sub-indexi
since the following analysis focuses on an individual wire-
less sensor node. To distinguish between data arriving to the
wireless sensor via the sensing unit and data arriving via the
RF receiver, we useλs andλr to represent the average sens-
ing rate and the average receiving rate, respectively, andµ is
the transmission capacity.

Notice that data may arrive in packets or through sensed
whenever an event happens, instead of a constant flow of bit
streams. In the case where the operation (sleep, receive and
transmit) intervals are much larger than the time scales to
perform packet transmission and event sensing, the average
rates are more than appropriate to be used for deriving the
amount of data arrived in that interval. In light of consider-
ing a continuous monitoring sensor network, we assume that
the sensing device will be kept on at all times and the amount
of data sensed in any large enough time intervalt will be
λst. The transceiver, however, can be turned on and off and,
while on, it can either receive or transmit but not both at the
same time2. Therefore, while the average amount of data re-

ceived by the sensor node in a “large-enough” time intervalt
is λrt, the actual time it takes to receive the data depends on
the transmission capacity of the neighbor nodes of the sen-
sor. For simplification, we assume a homogeneous environ-
ment where all neighbor nodes will have the same transmis-
sion capacityµ as the node of interest does. That is, the time
it takes to receiveλrt units of data will actually beλrt

µ .
Consider a busy cycle during which the buffer is empty

only at the beginning and at the end of the cycle. The fol-
lowing discussion focuses on determining the most amount
of data that can be transmitted by a wireless sensor using the
least amount of energy during a busy cycle. Recall the as-
sumed ideal case where the sensor node can transmit and re-
ceive whenever it wants and data is always available to be
received and sensed. It should be clear that, based on this as-
sumption, the sensor will schedule its transmission once and
only once immediately following the reception and sensing
that accumulates data in the buffer. Consequently, there will
be exactly oneert and at most oneesr incurred. Figure 2 de-
picts an exemplary buffer usage over a busy cycle based on
the scenario described above. Notice that within this busy cy-
cle, the data is stored and then forwarded; therefore, we refer
to it as the store-and-forward (S&F) cycle.

The S&F cycle shown in Figure 2 starts with the sen-

2 A wireless sensor may be able to transmit and receive at the same time,
if multiple antennae and circuits are used. We, however, do not consider
such expansive wireless sensors in this paper.



Figure 2. Buffer usage of a wireless sensor over an ideal

busy cycle.

sor collecting data only via sensing with a rate ofλs for
Td amount of time. Following sensing, the buffer usage in-
creases at a rate ofµ+ λs by performing both receiving and
sensing at the same time - recall that the data is received at
rateµ. After Tr amount of time, the buffer is full and the sen-
sor starts to transmit what has been stored and that contin-
uously arrives via sensing. In this transmission phase, the
buffer usage decreases at a rate ofµ− λs. Note that during
the firstTd time interval, the sensor may choose to be in the
sleep mode, or to stay in the receive (idle) mode to avoid the
penalty of incurring an energy spikeesr.

Now let’s consider the stability condition for this S&F cy-
cle. A periodical operation with the S&F cycle is stable if the
buffer usage does not go beyond the buffer sizeb and will
go down to zero at the end of the cycle. Based on these two
constraints and the fact that transmission and receiving can-
not happen simultaneously, we derive the following stability
condition.

Lemma 1 The S&F cycle is stable if and only ifλs+2λr ≤
µ.

Proof: The stability condition follows by solving the follow-
ing equality and inequalities.

Tcyc = Td +Tr +Tt

Tcycλr = Trµ
Tcycλs+Trµ−b ≤ Ttµ ≤ Tcycλs+Trµ

Note that this stability condition is more restricted than “λs+
λr ≤ µ” for traditional flow models where transmission and
receiving can happen simultaneously.

Satisfying the stability condition, we can now solve for,
within a S&F cycle, the amount of data transmitted (Rcyc),
the amount of energy used (Ecyc) and the time interval of the
S&F cycle (Tcyc). First, the total data that can be transmit-
ted in a S&F cycle is what can be transmitted in an interval
of b

µ−λs
with transmission rate ofµ. This gives

Rcyc =
b·µ

µ−λs
(1)

Since the total rate of data arriving to the sensor, either via
sensing or receiving, isλs+λr, and the total transmitted data
in the time intervalTcyc is Rcyc, we have

Tcyc =
b·µ

(µ−λs)(λs+λr)
(2)

Furthermore, notice that the sensing powerps will be con-
sumed during the entireTcyc interval, additional powerpr will
be consumed during theTr time interval and possibly theTd

interval if esr is large, and the transmit powerpt will be con-
sumed during theTt interval. This gives the closed form ex-
pression for the energy used during a S&F cycle as shown
below.

Ecyc =
b· ps ·µ

(µ−λs)(λs+λr)
+

b· pr · (λs+2λr)
(µ−λs)(λs+λr)

+
b· pt

(µ−λs)

+min

(
esr,

b· pr · (µ−λs−2λr)
(µ−λs)(λs+λr)

)
+ert (3)

The above equations allow one to analyze the lifetime of
a wireless sensor node given the total initial energyetot avail-
able to the sensor. Notice that Equations (1), (2) and (3) cor-
respond to the case where most amount of data is transmitted
using least amount of energy in a busy S&F cycle. This obser-
vation leads to the theorem below that finds the upper bounds
for the lifetime of the sensor node and the total amount of
data that can be transmitted during this lifetime.

Theorem 1 The lifetime (Tlife) and total amount of data
transmitted (Rlife) of an individual sensor with initial energy
etot � Ecyc will be upper bounded based on the following in-
equalities, respectively.

Tlife ≤ etot

Ecyc
·Tcyc := T∗life (4)

Rlife ≤ etot

Ecyc
·Rcyc := R∗life (5)

The proof of Theorem 1 lies in the fact thatRcyc
Ecyc

gives the
most energy efficient bits per joule transmitted by an individ-
ual sensor. Now with a total available energyetot that is much
larger thanEcyc, one cannot transmit more thane

tot

Ecyc
·Rcyc

amount of data. The lifetime also follows. Note that the in-
equalities shown in Theorem 1 become equal ifEcyc exactly
dividesetot. Since we assumeetot � Ecyc, we can approxi-
mate a sensor node’s lifetime and the total amount of data
transmitted over the lifetime asT∗life andR∗life , respectively.

4. Model Analysis and Discussion

A logical question following the S&F model is whether
the suggested ideal S&F cycle will be feasible for all nodes
in a given network. For arbitrary networks, the answer is no!
Figure 3 shows an exemplary network where not all the nodes



in the network can operate in S&F cycles. It is unavoidable
for this network, that at least one of the three level-2 nodes,
which transmissions may interfere with each other, needs to
switch from the sleep to the transmit mode twice in a sin-
gle operation cycle; Otherwise, the sink node will need to
turn on the transceiver more than once to receive data from
the level-2 nodes.

Figure 3. An exemplary network where not all the nodes

in the network can operate in S&F cycles.

Since that in general the S&F cycles are not always feasi-
ble for all nodes, we propose to identify the nodes that have
determining impact on the lifetime and the total retrieval of
the entire network, and let them have the priority to oper-
ate in S&F cycles. Below we use the S&F model developed
in Section 3 to characterize different types of sensor nodes
in a network, so as to determine their roles and possibly ob-
tain insights to find approximate solutions for the MDR prob-
lem.

4.1. Lifetime Critical Nodes

We first identify the nodes that may exhaust their battery
energy first and consequently determine the lifetime of the
entire network. Recall Equations (2), (3) and (4). These equa-
tions suggest that, given the physical make-up of a wireless
sensor node (i.e., the transmission capacity, the buffer size,
and the various energy power parameters are determined), a
node’s lifetime depends solely onλr and λs. Furthermore,
since it is logical to deploy same type of sensors on a sens-
ing field uniformly (or at least attempting to be uniformly),
it is reasonable to assume that the above parameters as well
as the average sensing rate are about the same for all sen-
sors. In this case,λr is the determining factor of a sensor’s
lifetime, and the larger it is the shorter the lifetime. Consider
the network environment defined in Section 2, it is not dif-
ficult to see that the nodes that are one hop away from the
sinks (i.e.,{n ∈ N(S)}) are the ones that will exhaust their
energy the earliest3, since all sensed data goes through them
and this translates to hugeλr.

3 Similar observation of that the 1-hop sensors being the bottleneck for
network lifetime has been made in [15].

Since the nodes inN(S) are critical to the network life-
time, it makes sense to have them operate in the ideal S&F
cycles, while letting others transition between operational
modes more often. This implies that a possible approximated
solution to the MDR problem may be found by determin-
ing the flow distribution over the entire network (i.e., finding
λr,i , ∀i ∈ N) that minimizes the lifetime of only the nodes
in N(S). The lifetime of these 1-hop nodes can be modeled
usingT∗life from Equation (2). It is still an open problem of
how exactly this flow distribution problem can be formulated
so that it is easy to be solved while guarantying reasonable
closeness to the MDR problem.

4.2. Energy Inefficient Nodes

The nodes that are far away from the sinks, though not
critical to the lifetime of the entire network, turn out to use
energy relatively less efficient than those closer to the sink.
This general statement can be explained by considering a
chain ofn sensor nodes, indexed as 1, 2, ...,n to indicate the
number of hops each node is away from the sink. Note that in
this chain network, all nodes can operate in a global S&F cy-
cle. The global S&F cycle requires that nodei + 1’s trans-
mission schedule matches nodei’s receiving schedule, and
so on. Based on this requirement, the effective buffer size
that can be used by a node diminishes as the node is situ-
ated farther away from the sink. Assuming that the physical
buffer size isb, node 1 in the chain network can use the en-
tire buffer size,b∗1 = b, but the subsequent nodes can use only
buffer sizeb∗i as given below.

b∗i = b∗i−1×
(λr,i +λs,i)(µ−λs,i)

(λr,i−1 +λs,i−1)(µ−λs,i−1)
, ∀i = 2, . . . ,n.

Because of the diminishing buffer size, the nodes that are far
away from the sink cannot store much data before forward-
ing it. Consequently, the energy spikes become a bigger por-
tion of the energy spent in a S&F cycle (recallEcyc from (3)).

The above suggests that even though the nodes close to
the sinks are the critical nodes, the degrading effectiveness
of energy usage cannot be overlooked especially if the en-
ergy spikes are significant. In fact, one strategy to enhance
the efficiency for these far away nodes is to have them store
more data and use multiple paths to disperse the stored data.
From the flow distribution problem perspective, this simply
means balancing the flows originating from the “leaf nodes.”

4.3. Sensing Effective Nodes

In Section 4.1, we consider the case where the wireless
sensors in a network have about the sameλs. In the case of
non-uniform sensing rates, we find that higherλr may not
lead to increasing total data transmitted by that sensor over
its lifetime, i.e.,R∗life from (5), By taking a closer look at the



model derived in Section 3, we derive the following corol-
lary.

Corollary 1 Asλr increases and all other parameter fixed, a
sensor will have

• T∗life monotonically decreases regardless the values of
other parameters, and

• R∗life decreases if and only ifλs/µ > ps/pr.

Proof: The proof to the corollary follows by deriving from
the conditionsd Tlife

dλr
< 0 andd Rlife

dλr
< 0, respectively.

Notice that although the sensor lifetime decreases as more
flows are directed to it, the total amount of data transmitted
(or forwarded) by the sensor may or may not go down as
the lifetime does. In fact, the total transmission will go up
asλr increases, if and only if it is more energy efficient to
receive a bit of data from one of the neighbors rather than
to sense a bit of data as the condition:λs/µ < ps/pr sug-
gests. Figure 4 depicts the numerical results to show how
T∗life andR∗life changes asλr increases, for the cases ofλs/µ =
0.5× (ps/pr), 1.0× (ps/pr) and 1.5× (ps/pr), respectively.
The results demonstrate that maximizing sensor lifetime does
not necessarily mean maximizing the total data transmitted
by that sensor. We argue that this is also true when applying
to the entire sensor network. Also interesting from Figure 4 is
that, regardless of whether sensing or receiving is more en-
ergy efficient, the total transmission approaches to the case
where they are equally efficient asλr → ∞4.

Figure 4. The changes of R∗life and T∗life as λr increases, for

different cases of λs/µ comparing to ps/pr.

4 Of courseλr can never go to infinity, since the sensor operation will not
be stable ifλs+2λr > µ - recall Lemma 1.

The above study suggests that when determining the flow
distribution on a wireless sensor network, it may be impera-
tive to distinguish nodes that are more sensing effective ver-
sus those that are not. It will be wise to distribute the least
flow possibile towards nodes that potentially collect much
data via sensing. In other words, the sensing nodes should be
allowed to focus on sensing while the other nodes forward
the data.

5. Max-Retrieval Heuristics

The S&F cycle suggests that each sensor in the network
should not try to transmit until its buffer is almost full, and
not try to receive until its buffer is quite empty. As stated ear-
lier, this may not be possible for all sensor nodes in general
networks. Two heuristic procedures are developed to investi-
gate the feasibility of using “online” procedures to force the
wireless sensor nodes to operate in “more or less” S&F cy-
cles, and also to determine their performance. Moreover, the
analyses given in Section 4 suggest a balanced flow distri-
bution over the network. These intuitions form the common
principles for the development of our heuristics.

• (MAC) They both greedily schedule transmissions for
nodes that have the most data in buffer, and schedule
receptions for nodes that are in the neighborhood of
the transmission nodes and have the most buffer space
available to absorb data to be transmitted.

• (Routing) They both greedily direct data flows towards
the sinks, by requiring the receiver of a transmission to
be 1-hop closer to at least one of the sinks as compared
to the transmitter.

Note that we do not suggest that the two heuristics proposed
here are the best ones. They are developed and simulated to
examine performance and the feasibility of S&F operations.
The two heuristics are different in that one of them deter-
mines the receiver of each transmission based on the resid-
ual energy of the eligible receivers, while the other does not.
We describe the two heuristics in detail below.

The first heuristic procedure takes a greedy approach that
starts from the node that has the most “urgent” need to trans-
mit, i.e., the one that has the least available buffer remain-
ing. Once the transmitter is determined, a downstream node
is designated as the receiver if its buffer usage is the small-
est among the other downstream nodes of the transmitter. A
node is called the downstream node of a transmitter if the re-
ceiver is one hop closer to at least one of the sinks. Once
we find a transmitter-receiver pair, we can examine the net-
work and determine the nodes that are still eligible to trans-
mit based on the spatial reuse constraints, and go through
the greedy procedure again, until no node is eligible to trans-
mit anymore. This looping procedure greedily finds a set of
transmission-receiver pairs that will be active during a time
interval, where the length of the interval is to be determined.



The determination of the length of the time interval needs
to be such that no buffer will overflow due to sensing and/or
receiving. To prevent the heuristic from entering a loop of
finding small time intervals, anα (0 < α < 1) parameter is
used to restrict the set of eligible nodes that can be selected
to transmit. That is, nodei will be eligible to transmit only
if the buffer usage is larger thanαbi , wherebi is the buffer
size of sensori. If none of the nodes in the network are el-
igible to transmit in a given time interval, the heuristic will
find the time interval such that at the end of the interval, at
least one node in the network will fill its buffer to almost full.
By “almost full”, we mean that the nodei will fill its buffer
to bi + β(bi − di), where 0< β < 1 anddi is the buffer us-
age of sensori at the beginning of the time interval. This cri-
terion will be used for determining the time interval to en-
sure no buffer overflow, while preventing multiple neighbor-
ing nodes from becoming full at the end of the time interval,
which will then not be able to transmit at the same time due
to spatial reuse constraints. Once the time interval and the
transmission-receiver pairs for this interval are determined,
the heuristic will move on to the next time interval based on
the updated sensor status. The above ideas build the foun-
dation of our first heuristic, Greedy-Buffer(α,β) (GB) algo-
rithm, as shown in Figure 5.

One problem arises when using the heuristic GB. Choos-
ing the receivers based on the buffer usage alone balances the
data flow to downstream nodes, but does not balance the en-
ergy spent by these downstream nodes. In fact, our experi-
ence with GB shows that over time every node in the net-
work will transmit its data equally to its downstream neigh-
bors. This equal distribution may result in a bottleneck node
that has its energy drained the quickest, while there are other
available nodes that could have helped to forward a portion
of the data that was passed to the bottleneck node. A sec-
ond heuristic Greedy-Energy(α,β,γ) (GE), therefore, is de-
veloped and shown in the bottom of Figure 5. The heuristic
GE balances the use of energy for the downstream nodes of
a transmitter, by determining the receiver as the one that has
the largest residual energy and has its buffer usagedi < γbi .
If no downstream node satisfies the buffer usage constraint,
the heuristic then chooses the one that has the largest resid-
ual energy to be the receiver.

We examine the two heuristics by simulating them over
30 randomly generated networks; each has 15 sensor nodes
and 5 sinks. All nodes in the network are guaranteed to
connect to at least one sink, via either direct connection or
through multiple hops. We consider a homogeneous case
where all nodes havec=10 Kbps,b=30 Kbits,(ps, pr, pt) =
(0.001, 0.01, 0.01) (W), and(esr, ert) = (0.001, 0.001) (J).
For each topology, six different offered loads were applied,
with the average sensing rates to individual sensors being 100
bps, 200 bps, 500 bps, 800 bps, 1 Kbps, and 1.3 Kbps, respec-
tively. Simulation results exhibiting the total data retrieval by
using the two heuristics, are shown in Figure 6. The total net-

Greedy-Buffer( α,β):
while (allNodeHasEnergy)

eligibleTxNodes = N;
while (eligibleTxNodes not empty)

For (i ∈ eligibleTxNodes)
si = (bi −di) / λi ;
if (si < smin)

nextToTx = i; smin = si ;
For (i ∈ NnextToTx∩Nhopi−1)

if (di < dmin)
nextToRc = i; dmin = di ;

update eligibleTxNodes(nextToTx,nextToRc,α);
For (i ∈ N)

if (timeToFillBufi(β) < Tk)
Tk =timeToFillBuf;

update network status;

Greedy Energy ( α,β,γ):
while (allNodeHasEnergy)

eligibleTxNodes = N;
while (eligibleTxNodes not empty)

For (i ∈ eligibleTxNodes)
si = (bi −di) / λi ;
if (si < smin)

nextToTx = i; smin = si ;
For (i ∈ NnextToTx∩Nhopi−1)

if (ei > emax,1)
nextToRc = i; emax,1 = ei ;

if (ei > emax,2 && di < γbi)
nextToRc = i; emax,2 = ei ;

update eligibleTxNodes(nextToTx,nextToRc,α);
For (i ∈ N)

if (timeToFillBufi(β) < Tk)
Tk =timeToFillBuf;

update network status;

Figure 5. The heuristics for the MDR problem.

work retrieval is the total amount of data received at the sinks
before the first sensor dies in the network.

Also shown in the two figures are theoretical estimates of
the total data retrieval based on the analysis described in Sec-
tion 3. More specifically, we compute the network total re-
trievalRtot based on the following formula.

Rnet = ∑
i∈N(S)

(
min j∈N Tlife, j

Tcyc,i
·Rcyc,i

)
. (6)

Note that in derivingTcyc,i andTlife,i , one needs to know the
average receiving rate for each sensor. We estimate the av-
erage receiving rates by assuming equal distribution of data
flows among shortest paths (i.e., over the nodes that are closer
to the sinks). This theoretical estimation may be considered
as the ideal version of the GB algorithm.



Figure 6. The total data retrieval (averaged over 30 ran-

dom topologies) as the offered load increases, using both

heuristics and based on the theoretical estimate.

Notice from Figure 6 that the GB algorithm performs not
too far from the theoretical estimate, especially in the light
load regime. This suggests that the greedy MAC approach, in
determining the transmitter-receiver pairs based on the buffer
content, performs well in mimicking the ideal S&F opera-
tions. Second, with GE outperforming the theoretical esti-
mate, it implies that balancing flows based on the residual en-
ergy achieves a higher volume of data retrieved as compared
to balancing flows over the available shortest paths. Note that
the good MAC and routing policies are actually integrated,
since GE in fact uses the buffer content and the residual en-
ergy together to infer both the transmission schedule and the
next hop to forward data.

The accurate prediction by the theoretical estimate is
somewhat surprising but reasonable. In fact, a careful exam-
ination of the sensor operations tells that by using the two
heuristics, most nodes exhibit periodical S&F cycles sim-
ilar to that suggested in Section 3. Note that the networks
are simulated without using actual network protocols. Con-
sequently, there are no collision, no retransmission and no
control overhead. Nevertheless, our simulation results vali-
date the feasibility of S&F operations by using online poli-
cies, and show the capability of achieving performance close
to the ideal case, where all nodes are assumed to be able to
transmit and receive as needed.

6. Concluding Remarks

It is a general belief that the use of multi-mode wireless
sensors is the key to energy efficient networked sensing. A
formal model, however, is greatly needed to investigate the
optimal routing and scheduling of multi-mode sensor opera-
tions to achieve the most out of a sensor network given in-
dividual sensor resource constraints. We have developed a
joint MDR problem that maximizes the total data transmit-

ted to the sinks subject to the spatial reuse constraints and
various multi-mode wireless sensor resource constraints. In
particular, our model truly reflects the penalty for switching
between operational modes as well as the benefit to buffer
sensed data. Though complex, the formulation allows us to
observe that periodical store-and-forward leads to good per-
formance.

Closed form equations have been developed for the ideal
S&F cycle. The analytical model developed, though sim-
ple, provides not only new avenues in solving the complex
joint optimization problem, but also theoretical foundation to
practical online policies. Variants of flow distribution prob-
lems based on our S&F models are under investigation to
examine their closeness to the MDR problem. Meanwhile,
we are developing cross-layered protocols based on the pro-
posed heuristic procedures to perform data forwarding and
sensor operational mode scheduling. The key to our protocol
design is for each sensor in the network to be able to gather
(or overhear) critical information that estimates the buffer us-
age and the residual energy of the neighbors, with minimal, if
not zero control overhead. Our ultimate goal is to have wire-
less sensors to autonomously schedule their operation sched-
ule and forwarding direction so as to achieve close to the
maximum achievable retrieval of data given individual sen-
sor resource constraints.
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