LOW REYNOLDS NUMBER SURFACE STATIC PRESSURE
MEASUREMENTS OF LOW ASPECT RATIO FLAT PLATE WINGS FOR
MICRO AERIAL VEHICLES. J. Jones, Kozak*, Department of Mechanical
Engineering, jej2874@rit.edu, jdkeme@rit.edu

Micro aerial vehicles are by definition small aircraft that fly at relatively low speeds
typically less than 30 mph. Many of the mathematical relationships used in conventional
aircraft design do not apply to the flight of very small airplanes at very low speeds, thus
requiring experimental data for flow description. Traditionally, wind tunnel data on MAV
wings include only basic load cell force measurements, resulting in a lack of adequate
knowledge of the pressure on the wing surface. Experimental pressure distribution
results are useful in determining whether laminar separation bubbles occur, and the
amount of drag that is due to the pressure gradient. Lift can be obtained by integration of
surface pressures, providing a means of comparison to earlier work. As a baseline case,
64 static pressure measurements on each surface of a 0.160” thick rectangular flat plate
wing of aspect ratio 1 were considered at Reynolds numbers of 100,000 and 140,000.
The models have thickness-to-chord ratio of 2.00% and 5-to-1 elliptical leading and
trailing edges. The static pressure tap array was acquired using 5 separate plates,
requiring a fabrication process that ensures repeatability and accuracy. An application of
the wind tunnel data and planned future work will be discussed.