• Login
    View Item 
    •   RIT Digital Archive Home
    • Meeting minutes, announcements and publications from RIT Colleges
    • Citations Only
    • View Item
    •   RIT Digital Archive Home
    • Meeting minutes, announcements and publications from RIT Colleges
    • Citations Only
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering

    Thumbnail
    Date
    1984-04
    Author
    Kotlarchyk, Michael
    Chen, Sow-Hsin
    Huang, John
    Kim, Mahn Won
    Metadata
    Show full item record
    Abstract
    The intensity distribution of the critical scattering from sodium di-2-ethylhexylsulfosuccinate AOT-D2O-n-alkane water-in-oil (W/O) microemulsions has been measured over an extensive range of droplet volume fractions (3-30 vol%) and temperatures (22 to 43°C) in the critical region. The water/surfactant molar ratio of the microemulsion was kept at a constant value of 40.8, for which previous experiments on the temperature variation have been well documented. A structural model of W/O microemulsions based on well-defined surfactant-coated water droplets is firmly established up to a volume fraction of about 20 vol% for all temperatures studied. Data analysis assumes that the cloud points and subsequent phase separation are caused by concentration fluctuations of polydisperse droplets. The major conclusions drawn from the analysis are as follows. (1) The order parameter of the critical phenomenon can be taken to be the volume fraction of the dispersed droplets. (2) The size and polydispersity of the droplets remain essentially constant in the vicinity of the critical point (for a fixed water/surfactant ratio). (3) The critical phenomenon is driven by an increased attraction between the droplets as the critical point is approached. (4) The critical point can be approached by either raising the temperature at fixed volume fraction or by varying the carbon number of the oil solvent at fixed volume fraction and temperature. (5) The nature of the droplets does not change upon a phase separation into two coexisting microemulsions. The data also gives some evidence that the droplet picture of the microemulsion breaks down at sufficiently high concentrations of water and surfactant.
    URI
    http://hdl.handle.net/1850/3117
    Collections
    • Citations Only

    About RIT Digital Archive
    RIT Libraries | Rochester Institute of Technology | 90 Lomb Memorial Drive, Rochester, New York 14623
    Theme by 
    Atmire NV
     

     

    Browse

    All of RIT Digital ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    About RIT Digital Archive
    RIT Libraries | Rochester Institute of Technology | 90 Lomb Memorial Drive, Rochester, New York 14623
    Theme by 
    Atmire NV