Show simple item record

dc.contributor.authorSanders, Leeen_US
dc.contributor.authorSchott, Johnen_US
dc.contributor.authorRaqueno, Rolandoen_US
dc.date.accessioned2007-07-05T14:08:32Zen_US
dc.date.available2007-07-05T14:08:32Zen_US
dc.date.issued2001-12en_US
dc.identifier.citationRemote Sensing of Environment 78N3 (2001) 252-263en_US
dc.identifier.issn0034-4257en_US
dc.identifier.urihttp://hdl.handle.net/1850/4232en_US
dc.descriptionRIT community members may access full-text via RIT Libraries licensed databases: http://library.rit.edu/databases/
dc.description.abstractRadiometrically calibrated hyperspectral imagery contains information relating to the material properties of a surface target and the atmospheric layers between the surface target and the sensor. All atmospheric layers contain well-mixed molecular gases, aerosol particles, and water vapor, and information about these constituents may be extracted from hyperspectral imagery by using specially designed algorithms. This research describes a total sensor radiance-to-ground reflectance inversion program. An equivalent surface-pressure depth can be extracted using the Non-Linear Least-Squares Spectral Fit (NLLSSF) technique on the 760-nm oxygen band. Two different methods, the Atmospheric Pre-Corrected Differential Absorption (APDA) and NLLSSF, can be used to derive total columnar water vapor using the radiative transfer model MODTRAN 4.0. Atmospheric visibility can be derived via the NLLSSF technique from the 400–700-nm bands or using an approach that uses the upwelled radiance fit from the Regression Intersection Method from 550 to 700 nm. A new numerical approximation technique is also introduced to calculate the effect of the target surround on the sensor-received radiance. The recovered spectral reflectances for each technique are compared to reflectance panels with well-characterized ground truth.en_US
dc.description.sponsorshipn/aen_US
dc.language.isoen_USen_US
dc.publisherElsevier Science B.V., Amsterdamen_US
dc.relation.ispartofseriesvol. 78en_US
dc.relation.ispartofseriesno. 3en_US
dc.subjectAerosolsen_US
dc.subjectAtmospheric correctionen_US
dc.subjectAPDAen_US
dc.subjectHyperspectralen_US
dc.subjectInversionen_US
dc.subjectNLLSSFen_US
dc.subjectReflectanceen_US
dc.subjectScattering phase functionen_US
dc.subjectVisibilityen_US
dc.titleA VNIR/SWIR atmospheric correction algorithm for hyperspectral imagery with adjacency effecten_US
dc.typeArticleen_US
dc.identifier.urlhttp://dx.doi.org/10.1016/S0034-4257(01)00219-X


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record